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Universidad de A Coruña, Spain

W. González-Manteiga

Departamento de Estad́ıstica e I.O.

Universidad de Santiago de Compostela, Spain

Abstract

In this paper the problem of testing the equality of regression curves with depen-
dent data is studied. Several methods based on nonparametric estimators of the
regression function are described. In this setting, the distribution of the test statis-
tic is frequently unknown or difficult to compute, so an approximate test based on
the asymptotic distribution of the statistic can be considered. Nevertheless, the
asymptotic properties of the methods proposed in this work have been obtained
under independence of the observations and just one of these methods was studied
in a context of dependence (Vilar-Fernández and González-Manteiga, 2003). In
addition, the distribution of these test statistics converges to the limit distribution
with convergence rates usually rather slow, so that the approximations obtained
for reasonable sample sizes are not satisfactory. For these reasons, many authors
have suggested the use of bootstrap algorithms as an alternative approach.
Our main concern is to compare the behavior of three bootstrap procedures that
take into account the dependence assumption of the observations when they are
used to approximate the distribution of the test statistics considered. A broad
simulation study is carried out to observe the finite sample performance of the
analyzed bootstrap tests.
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1 Introduction

The comparison of several regression curves is an important problem of
statistical inference. In many cases of practical interest, the objective con-
sists in comparing regression functions of a response variable Y observed
in two or more groups on an explanatory variable which is an adjustable
parameter, for instance, time. So, if {(xl,t, Yl,t) : t = 1, . . . , nl; l = 1, . . . , k}
denotes the initial sample of observed data, then they are assumed to satisfy
the following regression models

Yl,t = ml (xl,t) + εl,t, l = 1, . . . , k and t = 1, . . . , nl, (1.1)

where {εl,t}nl

t=1 are random errors with distribution function Gl, mean zero
and finite variance σ2

l . The design points {xl,t} are fixed and usually
rescaled into the unit interval, so 0 ≤ xl,1 < xl,2 < . . . < xl,nl

≤ 1.

In this context, we are interested in the following hypothesis test

H0 : m1 = . . . = mk versus H1 : Exists (l, j) such as ml 6= mj. (1.2)

In this work nonparametric procedures to test (1.2) are considered. Indeed,
classical F -test performs well to test (1.2) when the regression curves ml

follow specific parametric models. For instance, if ml is modelled accord-
ing to a generalized linear model, m(x) = At(x)θ and the errors in (1.1)
are assumed to be gaussian, then the power of the F -test is higher than
those of the nonparametric tests proposed in this paper. However, the non-
parametric tests provide a more flexible tool since they only require very
general regularity conditions on the regression curves in study. In fact, the
problem of testing the equality of k regression functions by using nonpara-
metric techniques has been broadly studied in recent statistics literature.
Some relevant papers are Härdle and Marron (1990), King et al. (1991),
Hall and Hart (1990), Kulasekera (1995), and Kulasekera and Wang (1997,
1998), among others. Most of these works focus on the case of equal design
points for every group and homocedastic errors. In a recent paper of Dette
and Neumeyer (2001) the general case of testing the equality of k ≥ 2 mean
functions is studied and the proposed methodology is applicable to the case
of different design points in each sample and of heterocedastic errors.

The construction of nonparametric estimators of regression functions re-
quires the previous selection of a smoothing parameter. Some authors have
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avoided the selection of the smoothing parameter by using empirical pro-
cesses, see Delgado (1993), Scheike (2000) and Neumeyer and Dette (2003).
Munk and Dette (1998) consider another way of avoiding the bandwidth
selection and they propose to directly estimate the difference between the
mean curves without using prior nonparametric estimators. Other recent
works in this field are those of Hall et al. (1997) and Koul and Schick (1997).

Under independence of the observations, it is well known that the tests
based on kernel smoothing methods detect alternatives converging to the

null hypothesis at a rate
(

n
√

h
)−1/2

, where h is the bandwidth. On the

other hand, the procedures based on empirical processes can distinguish be-
tween distant n−1/2 regression functions, but the asymptotic results of pro-
cedures of this second group are more complex and more linked to Gaussian
processes than to the asymptotic normal distribution, typical of tests of the
first group. In any case the sampling distribution of the test statistics for
checking the equality of regression functions is very difficult to obtain and
only an asymptotic approximation is available. Besides, this asymptotic
approximation depends on unknown characteristics of the population and
the rate of convergence is rather slow. For these reasons, several authors
(Hall and Hart, 1990; Neumeyer and Dette, 2003) have proposed resampling
procedures to obtain the sampling distribution of the test statistics.

In this paper we consider two regression models in fixed design given
by

Yl,t = ml (xt) + εl,t, l = 1, 2 and t = 1, . . . , nl, (1.3)

with equal design points, that is xt = x1,t = x2,t, for all t. In addition, the
processes of random errors {εl,t}nl

t=1, l = 1, 2, are assumed to be independent
among themselves and to have an ARMA type dependence structure. These
regression models often arise by analyzing economical data samples, growth
curves, and in general, whenever the observations are sequentially gathered
in time. So, essentially, we wish to test the equality of tendencies of two
time series. In such a problem it is very important to take into account
the existence of correlation among the errors. Ignoring this fact affects the
power of the equality test used.

Vilar-Fernández and González-Manteiga (2003) studied the problem of
checking the equality of k regression functions with dependent errors in
a general context. They used as test statistic a functional distance be-
tween nonparametric estimators of the regression functions and obtained
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its asymptotic normality. We do not know other works treating this prob-
lem under dependence conditions.

The problem of testing the equality of two regression curves under the
dependence assumption of the observations is therefore the main concern
of this work. Several methods using nonparametric regression estimators
are described and three bootstrap algorithms are used to approximate the
distribution of the test statistics. The rest of the paper is organized as
follows. The methods for testing the equality of regression curves are in-
troduced in Section 2. The resampling algorithms under dependence of
the errors are described in Section 3. The results from a broad simulation
study performed to compare the proposed tests are reported in Section 4,
and finally, the conclusions of our study are presented in Section 5.

2 Testing the equality of regression functions by nonpara-

metric methods

Let us consider the regression models defined in (1.1). Several test statistics
for checking the hypothesis of equality of regression curves given in (1.2)
are next summarized. In all cases, nonparametric regression estimators are
used to evaluate the test statistics.

Test A. The first test statistic considered is computed as the difference be-
tween a nonparametric variance estimator of the pooled sample, σ̂2

P , and a
convex combination of nonparametric variance estimators of the individual
samples, σ̂2

C . In particular, σ̂2
P is defined by

σ̂2
P =

1

n

k
∑

l=1

nl
∑

t=1

(Yl,t − m̂p,g (xl,t))
2 , with n =

k
∑

l=1

nl,

where m̂p,g(x) is the Nadaraya-Watson estimator of the regression function
obtained on the basis of the total combined sample and g is the bandwidth.
On the other hand, σ̂2

C is defined by

σ̂2
C =

1

n

k
∑

l=1

nlσ̂
2
l ,

where

σ̂2
l =

1

nl

nl
∑

t=1

(Yl,t − m̂l,hl
(xl,t))

2
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is the estimator of the variance of the l-th sample and m̂l,hl
(x) is the

individual nonparametric estimator of ml with bandwidth hl. This variance
estimator was introduced by Hall and Marron (1990). So, the proposed test
statistic is

Q̂(A)
n = σ̂2

P − σ̂2
C . (A)

The statistic Q̂
(A)
n was studied under independence conditions by Dette

and Neumeyer (2001).

Test B. The second test statistic is ANOVA type and it is defined by

Q̂(B)
n =

1

n

k
∑

l=1

nl
∑

t=1

(m̂p,g (xl,t) − m̂l,hl
(xl,t))

2 . (B)

This test was introduced by Young and Bowman (1995) and is moti-
vated by the classical one-way analysis of variance. Note that there is a

strong link between Q̂
(A)
n and Q̂

(B)
n .

Test C. The third test is based on the Crámer-von-Mises type functional
distance between individual nonparametric estimators of regression func-
tions. The test statistic is given by

Q̂(C)
n =

k
∑

l=2

l−1
∑

s=1

∫

(m̂l,hl
(x) − m̂s,hs

(x))2 ωls(x)dx, (C)

where {ωls(x)} are weight functions defined on the support of the design
variables, let us say C, a compact set in R. Without loss of generality we

can assume that C = [0, 1]. Essentially, Q̂
(C)
n is a consistent estimator of

Q =

k
∑

l=2

l−1
∑

s=1

∫

(ml − ms)
2 ωls.

Studies related to statistic Q̂
(C)
n , in a context of independence, can be

seen in King et al. (1991), Kulasekera (1995) and Kulasekera and Wang
(1997, 1998) for the case k = 2. More recently, Dette and Neumeyer (2001)
studied the general case k ≥ 2 with heterocedasticity and different designs
in each group. In this last work, the asymptotic normality of the three

test statistics, Q̂
(A)
n , Q̂

(B)
n and Q̂

(C)
n , was obtained. Also, the consistency

of a wild bootstrap version of the tests was established. In a context of
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dependence, Vilar-Fernández and González-Manteiga (2003) studied the

asymptotic normality of Q̂
(C)
n for k regression curves and under general

conditions of the design of each group.

In the following methods the case k = 2 is considered although the
analysis can be easily extended to the comparison of k > 2 regression
curves.

Tests D and E. Neumeyer and Dette (2003) proposed new tests based
on the difference of two marked empirical processes, which are constructed
from the residuals obtained under the assumption of equality of the two
regression curves. So, the residuals can be generated as

εl,t = Yl,t − m̂p,g (xl,t) , t = 1, . . . , nl, and l = 1, 2,

and the difference between the corresponding marked empirical processes
would be given by

R̂n(s) =
1

n

n1
∑

t=1

ε1,t I (x1,t ≤ s) − 1

n

n2
∑

t=1

ε2,t I (x2,t ≤ s) ,

where s ∈ [0, 1] and I(·) denotes the indicator function.

Neumeyer and Dette (2003) suggested to test the hypothesis of equal
regression functions on the basis of real valued functionals of the process
R̂n(t). In particular, the next two test statistics were proposed,

Q̂(D)
n =

∫ 1

0
R̂2

n(s) ds (D)

and
Q̂(E)

n = sup
s∈[0,1]

R̂n(s). (E)

Note that this method is valid in a context of different design points and

heterocedasticity. In the case of equal design points, the statistic Q̂
(E)
n is

essentially the same as the statistic considered in Delgado (1993). The

asymptotic behavior under independence of Q̂
(D)
n and Q̂

(E)
n was studied in

Neumeyer and Dette (2003). In particular, the ability of both test statistics
to detect alternatives tending to the null at a rate n−1/2 was demonstrated
and a wild bootstrap version of these methods was analyzed.

It is worthwhile to mention that the results of the five test statistics
presented do not depend on the specific smoothing procedure used in the
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computation of the test. For example, a local polynomial estimator (Fan
and Gijbels, 1996) can be used but with a substantial increase in the math-
ematical complexity of the proofs of the theoretical results.

Test F. The sixth test considered was proposed by Hall and Hart (1990)
and it has nonparametric nature in the sense that no structured functional
forms for the regression curves are assumed. In the simple case of equal
design and comparing two mean functions, the test statistic is defined as
follows.

Define Dt = Y1,t − Y2,t for 1 ≤ t ≤ n0, with n0 = n1 = n2, and
Dt = Dt−n0

for n0 + 1 ≤ t ≤ n0 + n′, where n′ is the integer part of n0p,
with 0 < p < 1 fixed. Here n′ plays the role of the smoothing parameter.
The test statistic is then given by

Q̂(F )
n =





n0−1
∑

t=0

(

t+n′

∑

i=t+1

Dt

)2




(

n0

2

n0−1
∑

t=1

(Dt+1 − Dt)
2

)−1

, (F)

so that the criterion is to reject the null hypothesis if Q̂
(F )
n is too large. The

asymptotic behavior of the proposed method was studied in Hall and Hart
(1990) under independence of the observations and one bootstrap version
was also considered. The test admits several generalizations, including for
example, the case of testing the equality of k ≥ 2 regression curves or of
considering different design points.

3 Bootstrap algorithms

In what follows, the regression models of fixed design given in (1.3), with
k = 2 and n1 = n2 = n0, are considered. Without loss of generality, it
is assumed that m(x) is defined in [0, 1]. The points of the design are
taken evenly spaced, that is, xt = t/n0, for t = 1, . . . , n0. The processes of
random errors {εl,t} are independent among themselves and each follows
an ARMA(pl, ql) type dependence structure, i.e.

εl,t =

pl
∑

i=1

φl,i εl,t−i + el,t +

ql
∑

j=1

ϑl,j el,t−j, with t ∈ Z and l = 1, 2, (3.1)

where {el,t, t ∈ Z} is a sequence of independent random variables with zero
mean, finite variance σ2

l,e and distribution function Fl,e. In addition, the
series {εl,t}, l = 1, 2, are assumed to be stationary and invertible.
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In this context, our interest is focused on checking the null hypothesis
H0 : m1 = m2. For this, any of the test statistics introduced in Section 2,

Q̂
(•)
n , • =A, B, C, D, E, F, can be used, so that, in all cases, the criterion is

to reject H0 for large values of Q̂
(•)
n . In practice, it is obviously necessary to

know the distribution of Q̂
(•)
n in order to compute the critical values of the

test. Unfortunately, it is in general extremely complicated to determine the
distribution of these statistics under dependence conditions. In some cases
it has been possible to derive the asymptotic distribution, for instance,

the asymptotic behavior of Q̂
(C)
n was established in Vilar-Fernández and

González-Manteiga (2003) for dependent observations. In applications, an
alternative procedure for solving this problem is to estimate the unknown
parameters of the distribution on the basis of the sample data and then to
consider a plug-in version of the test. In any case, it is well known that the
convergence rate of the distribution of the test statistic is usually slow and
very large sample sizes are necessary to obtain reasonable critical values for
the test.

In this work, an alternative simple way of approximating the distri-

bution of the test statistic Q̂
(•)
n by means of bootstrapping techniques is

proposed. In particular, three different resampling procedures are next
studied.

The general idea of the bootstrap methods in time series is that when-
ever some parametric structure is explicitly stated for the dependence (an
ARMA model, for instance), this must be included in the resampling algo-
rithm. This idea is used in the first proposed bootstrap (Bootstrap 1). In
the more general case in which a parametric model of dependence cannot be
assumed, the bootstrap algorithms are based on replicating the dependence
just by resampling a whole block of observations. This is the key point in
constructing the other two boostraps considered in this work. The second
proposed bootstrap uses blocks of fixed size and the third one uses blocks
of random size. Recent reviews on bootstrap methods in time series are
those by Li and Maddala (1996), Cao (1999), Berkowitz and Kilian (2000)
and Härdle et al. (2003).

The first studied resampling mechanism consists of a simple and di-
rect resampling of the original observations, taking into account that the
processes of random errors have an ARMA dependence structure. The
algorithm follows the next steps.
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Bootstrap 1

Step B1.1 The test statistic Q̂
(•)
n is computed from the initial sample

given by {(xt, Y1,t, Y2,t)}n0

t=1.

Step B1.2 Under the null hypothesis, nonparametric residuals ε̂l,t are
obtained by means of

ε̂l,t = Yl,t − m̂p,g(xt), for t = 1, . . . , n0 and l = 1, 2,

where m̂p,g(x) is the nonparametric estimator of the regression
function computed from the total combined sample with auxil-
iary bandwidth g.

Step B1.3 A bootstrap sample of the residuals estimated in Step B1.2

is drawn as follows.

Step B1.3a Estimates
(

φ̂l, ϑ̂l

)

, l = 1, 2, of the parameter vectors

associated with the ARMA structure of the errors are con-
structed on the basis of the residuals estimated ε̂l,t, l = 1, 2.

Step B1.3b Since the autoregressive representation of the error
processes is invertible, estimates {êl,t, t > rl = max (pl, ql)}
of the noise of the ARMA models can be obtained using

{ε̂l,t} and
(

φ̂l, ϑ̂l

)

, l = 1, 2. The estimated noise series are

then centered as ẽl,t = êl,t − êl,·, for t > rl, where êl,· =

1

n0 − rl

n0
∑

t=rl+1

êl,t, for l = 1, 2.

Step B1.3c The empirical distribution of ẽl,t is derived for l = 1, 2,

F̂l(x) =
1

n0 − rl

n0
∑

t=rl+1

1{ẽl,t≤x}.

Step B1.3d A sample of independent and identically distributed

random variables
{

e∗l,−M , . . . , e∗l,−1, e
∗
l,0, e

∗
l,1, . . . , e

∗
l,n0

}

, with

M > 0, is drawn from each F̂l, l = 1, 2.

The sequence
{

e?
l,t

}n0

t=−M
is then used together with (φ̂l, ϑ̂l)

to generate a bootstrap sample of the error
{

ε?
l,t

}n0

t=1
, for

l = 1, 2.
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Step B1.4 A bootstrap sample {(xt, Y
∗
1,t, Y

∗
2,t)}n0

t=1 is obtained, making

Y ∗
l,t = m̂p,g(xt) + ε̂∗l,t, t = 1, . . . , n0 and l = 1, 2.

The test statistic Q̂
(•)∗
n is now computed with this bootstrap

sample.

Step B1.5 Step B1.3d and Step B1.4 are repeated a large number of

times, say T , so that a sequence {Q̂(•)∗
n,1 , . . . , Q̂

(•)∗
n,T } is obtained.

A bootstrap critical region of a significance level α is then given
as

Q̂(•)
n > Q̂

(•)∗
n,([(1−α)T ]),

where [·] represents the integer part and {Q̂(•)∗
n,(i)}T

i=1 is the sample

{Q̂(•)∗
n,i }T

i=1 arranged in increasing order of magnitude.

As mentioned before, the other two bootstrap procedures analyzed
in this paper do not take into account the autoregressive structure
imposed on the error processes. So, there is not an explicit equation
to draw the replications of the residuals, and therefore, the resampling
mechanism of the estimated residuals {ε̂l,t}n0

t=1, l = 1, 2, followed in
Bootstrap 1 (Step B1.3) is not valid in Bootstraps 2 and 3. In fact,
the only modification in the new algorithms concerns the intermediate
Step B1.3 and it is next described for each new bootstrap method.

Bootstrap 2

Step B2.3 The bootstrap sample of the estimated residuals {ε̂l,t}n0

t=1,
l = 1, 2, is generated following the moving blocks bootstrap tech-
nique (MBB) (see Künsch (1989) and Li and Maddala (1992)).
The method proceeds as follows.

Step B2.3a Fix a positive integer, b, which represents the block
size, and take k equal to the smallest integer greater than
or equal to n0/b.

Step B2.3b Define the blocks Bl,i = (ε̂l,i, . . . , ε̂l,i+b−1), for i =
1, . . . , q, with q = n0 − b + 1, and l = 1, 2.

Step B2.3c Draw k blocks, εl,1, . . . , εl,k, with equiprobable distri-
bution from the set {Bl,1, . . . , Bl,q}, l = 1, 2. Note that
every εl,i is a b-dimensional vector (εl,i,1, . . . , εl,i,b).
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Step B2.3d The bootstrap version of the estimated residuals is
formed with the first n0 components of

(εl,1,1, . . . , εl,1,b, εl,2,1, . . . , εl,2,b, . . . , εl,k,1, . . . , εl,k,b) .

Bootstrap 3

The MBB method is not stationary. To overcome this drawback, Poli-
tis and Romano (1994) proposed a stationary bootstrap (SB) which
is used in Bootstrap 3 to obtain resamples of ε̂l,t.

Step B3.3 The bootstrap replications of {ε̂l,t}n0

t=1, l = 1, 2, are now
drawn by means of the following stationary bootstrap.

Step B3.3a Fix a positive real number p ∈ [0, 1].

Step B3.3b The first bootstrap replication, ε̂∗l,1, is directly drawn
from the empirical distribution of {ε̂l,t}n0

t=1, l = 1, 2.

Step B3.3c Once the value ε̂∗l,i = ε̂l,j , for some j ∈ {1, . . . , n0

−1}, has been drawn, with i < n0, then the next bootstrap
replication ε̂∗l,i+1 is defined as ε̂l,j+1, with probability 1 − p,
and drawn from the empirical distribution of {ε̂l,t}n0

t=1, l =
1, 2, with probability p.
In the particular case j = n0, ε̂l,j+1 is replaced by ε̂l,1.

Remark 3.1. Note that the test statistic Q̂
(F )
n differs in its nature from the

rest of considered statistics since it is based on the values Dt = Y1,t − Y2,t

while all the others obtain previous estimators of the regression functions
on the basis of the initial sample {(xt, Y1,t, Y2,t)}n

t=1. As a consequence, the

described bootstrap methodologies are not directly applicable when Q̂
(F )
n is

considered. Under independence conditions, Hall and Hart (1990) proposed

a bootstrap approximation to the distribution of Q̂
(F )
n based on obtaining

bootstrap replications from the sequence {Dt}n0

t=1. Nevertheless, that ap-
proach is not possible under dependence conditions because the explicit de-
pendence structure of the process Dt is not known. For this reason the

analysis of the test statistic Q̂
(F )
n using Bootstrap 1 is omitted in this work.

With regard to Bootstraps 2 and 3 for approximating the distribution of

Q̂
(F )
n , they are run as follows. The centered differences dt = (Y1,t − Y2,t) −
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(

Ȳ1,· − Ȳ2,·

)

, t = 1, . . . , n0, with Ȳl,· =
1

n0

n0
∑

t=1

Yl,t, l = 1, 2, are firstly ob-

tained. Then, a bootstrap resample {d∗
t }n0

t=1 is drawn from {dt}n0

t=1 by using
the MBB technique (Bootstrap 2) or the SB one (Bootstrap 3). Now, a

bootstrap version Q̂
(F )∗
n of the statistic Q̂

(F )
n is computed from each {d∗t }n0

t=1

and the p-value of the test is finally derived as in Step B1.5.

It is also important to notice that there exist at least two ways for using

Bootstrap 1 with Q̂
(F )
n . The first of these would consist in drawing bootstrap

resamples of the initial sample {(xt, Y1,t, Y2,t)}n0

t=1 and then computing Q̂
(F )∗
n

from each resample. The second one would be to fit an ARMA model to the
process {dt}n0

t=1 and then to follow Step B1.3-Step B1.5 to obtain naive
resamples of {dt}n0

t=1.

Remark 3.2. The described bootstrap algorithms admit several variations.
For instance, in Bootstrap 1, the bootstrap resample of centered estimated
errors, ẽl,t, is obtained from the empirical distribution (naive bootstrap),
but one alternative would be to obtain this resample by wild bootstrap (see
Härdle and Mammen, 1993). In a similar problem (testing linear regression
model) Vilar-Fernández and González-Manteiga (2000) showed that both
methods have similar behavior.

4 Simulation study

This section shows some of the results of a broad simulation study per-

formed to compare the different tests based on the statistics Q̂
(•)
n using the

three bootstrap algorithms described.

Samples {(xt, Y1,t, Y2,t)}n0

t=1, of size n0 = 100, were simulated by fol-
lowing the regression model given in (1.3), with k = 2 and xt = t/n0,
t = 1, . . . , n0. The error processes were designed to follow the same AR(1)
model

εl,t = φεl,t−1 + el,t, t ∈ Z and l = 1, 2,

where ε1,t and ε2,t have the same distribution function, N(0, σ2), σ2 = 0.5,
and φ = 0.50 or 0.80.

In the first study the regression functions m1(x) = m2(x) = cos(πx)
were considered under the null hypothesis. A total of 500 trials were carried
out. Each one consisted in obtaining an initial sample and computing the
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values of the statistics Q̂
(•)
n , (•) = A, B, C, D, E, F. Then, a bootstrap

resample of size T = 500 was obtained for each statistic by using the

three bootstrap procedures (although bootstrap 1 was omitted for Q̂
(F )
n as

already mentioned). So, bootstrap critical regions of several significance
levels α were determined and the corresponding associated p-values were
approximated.

The smoothing parameter used in the computation of the statistics Q̂
(•)
n ,

(•) = A, B, C, D, E, was h = 0.30 and the value of the parameter p to obtain

Q̂
(F )
n was p = 0.75. Other auxiliary parameter values were empirically

chosen.

Smoothing parameter selection indeed plays an important role here and
its influence will be analyzed further on. In any case, our initial choice
h = 0.30 allowed us to obtain satisfactory results for all the tests considered
under the null hypothesis, so that h = 0.30 was a reasonable choice to
compare the relative merits of the competing tests. Nevertheless, in general,
an automatic selector of the smoothing parameter aimed to increase the test
power would be a more adequate approach.

The results for φ = 0.50 are summarized in Table 1. In particular, the
simulated rejection probabilities of the proposed bootstrap tests with level
10%, 5% and 2.5% are shown in Table 1 together with the average and
standard deviation of the set of p-values obtained in the 500 trials.

A simple inspection of Table 1 allows us to conclude that the tests
based on Bootstrap 1 present the best performance with independence of
the statistic considered. In fact, the differences due to the kind of statis-
tic are practically negligible. In contrast, relevant differences are found
when the results are compared according to the bootstrap procedure used.
Bootstraps 2 and 3 are clearly worse, providing rejection levels significantly
greater than the theoretical ones. Furthermore, note that Bootstrap 3 leads
to more satisfactory results than Bootstrap 2 for any of the statistics, A, C,
D and E, while both methods present similar results with the statistics B

and F. In particular, the results for Q̂
(A)
n , Q̂

(C)
n and Q̂

(D)
n using Bootstrap 3

are somewhat acceptable.

The same numerical study was next carried out with a stronger depen-
dence level for the observations. In particular, φ = 0.80 was chosen and
the results obtained are shown in Table 2.
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Table 1: Mean and standard deviation of the critical values of the tests analyzed

and simulated rejection probabilities for three levels α = 0.10, 0.05 and 0.025 with

φ = 0.50.

Bootstrap 1 α = 0.10 α = 0.05 α = 0.025
Mean

p-values

St. Dev.

p-values

Test A 0.1020 0.0520 0.0160 0.5322 0.2863

Test B 0.0980 0.0520 0.0320 0.5185 0.2868

Test C 0.0960 0.0500 0.0240 0.5228 0.2867

Test D 0.1080 0.0480 0.0300 0.5020 0.2862

Test E 0.1080 0.0560 0.0240 0.5118 0.2891

Bootstrap 2

Test A 0.2180 0.1420 0.0960 0.4343 0.3115

Test B 0.1860 0.1140 0.0880 0.4395 0.3044

Test C 0.1760 0.1120 0.0760 0.4480 0.3033

Test D 0.1960 0.1540 0.1020 0.4327 0.3072

Test E 0.2500 0.1640 0.1200 0.3841 0.2949

Test F 0.3000 0.2260 0.1680 0.3751 0.3142

Bootstrap 3

Test A 0.0880 0.0620 0.0420 0.6491 0.3281

Test B 0.1500 0.1240 0.0880 0.5598 0.3521

Test C 0.0720 0.0560 0.0380 0.6788 0.3144

Test D 0.1300 0.0840 0.0580 0.6101 0.3443

Test E 0.1720 0.1180 0.0900 0.5568 0.3482

Test F 0.3080 0.2380 0.1780 0.4610 0.3723

Results in Table 2 are uniformly worse than those in Table 1. This
was expected since it is well known that to increase the dependence level
means to lose sample information for a given sample size. Once this is made
clear, the conclusions obtained from Table 1 can be extended to the results
in Table 2 in spite of the increasing dependence. So, all the test statis-
tics provided reasonable rejection levels (although slightly higher than the
theoretical ones) when Bootstrap 1 was used, while both Bootstrap 2 and
Bootstrap 3 led to quite poor results. In fact, the empirical levels obtained
with these two bootstrap procedures are quite far from the nominal ones.
Hence, it is interesting to explore how much the sample size, n0, must be
increased to approximate well the theoretical levels. For this purpose the
numerical study was again run with sample sizes n0 = 300 and n0 = 500.



The Bootstrap for Comparing Regression Curves Under Dependence 15

Table 2: Mean and standard deviation of the critical values of the tests analyzed

and simulated rejection probabilities for three levels α = 0.10, 0.05 and 0.025 with

φ = 0.80.

Bootstrap 1 α = 0.10 α = 0.05 α = 0.025
Mean

p-values

St. Dev.

p-values

Test A 0.1240 0.0880 0.0480 0.4918 0.2943

Test B 0.1200 0.0660 0.0480 0.4907 0.2937

Test C 0.1220 0.0680 0.0480 0.4891 0.2931

Test D 0.1240 0.0700 0.0500 0.4866 0.2972

Test E 0.1400 0.0760 0.0500 0.4799 0.2912

Bootstrap 2

Test A 0.3280 0.2440 0.1940 0.3404 0.3078

Test B 0.3000 0.2200 0.1840 0.3443 0.3014

Test C 0.2660 0.1940 0.1440 0.3727 0.3046

Test D 0.3320 0.2660 0.2020 0.3568 0.3204

Test E 0.4040 0.3060 0.2500 0.2715 0.2784

Test F 0.4700 0.4060 0.3540 0.2581 0.2914

Bootstrap 3

Test A 0.2560 0.2060 0.1820 0.4932 0.3783

Test B 0.3880 0.3180 0.2780 0.3800 0.3789

Test C 0.1880 0.1520 0.1280 0.5669 0.3700

Test D 0.3100 0.2720 0.2420 0.4692 0.3897

Test E 0.3960 0.3400 0.3020 0.3629 0.3609

Test F 0.5920 0.5480 0.5100 0.2343 0.3314

Table 3 shows the rejection probabilities pertaining to the theoretical sig-
nificance level α = 0.05 and the autocorrelation value φ = 0.50. In this
case a smaller bandwidth h = 0.20 was used.

Table 3 confirms that the good behavior of Bootstrap 1 becomes already
apparent with n0 = 100. However, Bootstrap 3 needs to work with at
least n0 = 300 to obtain acceptable results and Bootstrap 2 even requires
sample sizes larger than n0 = 500 to reach reasonable approximations to
the theoretical significance level.

A useful tool to discern between the proposed tests is the empirical

distribution function of the simulated p-values, say F̂
(•)
p , (•) = A, B, C, D,

E, F. In particular, it is of interest to check graphically and numerically how
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Table 3: Simulated rejection probabilities for α = 0.05, with φ = 0.50 and three

different initial sample sizes.

n0 = 100 Test A Test B Test C Test D Test E Test F

Bootstrap 1 0.0880 0.0660 0.0680 0.0700 0.0760

Bootstrap 2 0.2440 0.2200 0.1940 0.2660 0.3060 0.4060

Bootstrap 3 0.2060 0.3180 0.1520 0.2720 0.3400 0.5480

n0 = 300 Test A Test B Test C Test D Test E Test F

Bootstrap 1 0.0620 0.0460 0.0640 0.0580 0.0580

Bootstrap 2 0.1300 0.1220 0.0940 0.1100 0.1200 0.1600

Bootstrap 3 0.0680 0.1280 0.0440 0.0600 0.0700 0.1580

n0 = 500 Test A Test B Test C Test D Test E Test F

Bootstrap 1 0.0417 0.0617 0.0583 0.0600 0.0650

Bootstrap 2 0.1000 0.0900 0.0883 0.0983 0.1083 0.1350

Bootstrap 3 0.0283 0.0750 0.0217 0.0517 0.0533 0.1333

close F̂
(•)
p is to the distribution of a uniform [0, 1] random variable, FU . For

example, with regard to the graphical procedures, a very convenient plot for
this purpose is the p-value discrepancy plot (see Davidson and MacKinnon,

1986), consisting in plotting the pairs (ps, F̂
(•)
p (ps)−ps) where s indexes the

simulated samples. Figure 1 shows the discrepancy plots associated with
tests C and D for each bootstrap procedure with n0 = 100 and φ = 0.50.

Figure 1 corroborates the above comments in the sense that Bootstrap 1

shows the best performance of the test statistics. Note that although the

conduct of both the Q̂
(D)
n -test and the Q̂

(C)
n -test is quite close, Q̂

(D)
n presents

slightly better behavior. In any case, Bootstraps 2 and 3 are clearly worse

and the best performance corresponds to the Q̂
(C)
n -test with Bootstrap 2.

To illustrate numerically the differences between distribution functions

F̂
(•)
p and FU , Delicado and Placencia (2001) proposed to use the following

distances:

dKS =
√

S sup
p∈[0;1]

∣

∣

∣
F̂

(•)
p,S(p) − p

∣

∣

∣
,

dLr =
√

S

(∫

∣

∣

∣F̂
(•)
p,S(p) − p

∣

∣

∣

r
dp

)1/r

, r = 1, 2,

where S is the number of samples (here S = 500). In hypothesis test

context, the above distances are specially sensitive to deviations of F̂
(•)
p
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Figure 1: The p−value discrepancy plots associated with tests C and D for each

bootstrap procedure used with n0 = 100 and φ = 0.50. Axis OY = [−0.30, 0.30].

from the diagonal at low values of the nominal size α. So, it is interesting
to introduce a weight function ω in the distance definitions to correct this
effect and to pay more attention to that range of values. Delicado and
Placencia (2001) proposed to use as weight function the density of a beta
distribution β(a = 2, b = 8), that is,

ω(p) = 72p(1 − p)7, 0 ≤ p ≤ 1.

vilar/vilarFig1Cb1.eps
vilar/vilarFig1Db1.eps
vilar/vilarFig1Cb2.eps
vilar/vilarFig1Db2.eps
vilar/vilarFig1Cb3.eps
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So, the distances are reformulated to be

dω
KS =

√
S sup

p∈[0;1]

∣

∣

∣F̂
(•)
p,S(p) − p

∣

∣

∣ω(p),

dω
Lr

=
√

S

(
∫

∣

∣

∣
F̂

(•)
p,S(p) − p

∣

∣

∣

r
ω(p) dp

)1/r

, r = 1, 2.

The six distances introduced to measure the discrepancy between the

distribution functions F̂
(•)
p and FU were computed for all statistics and for

the three bootstrap procedures. The results for the case n0 = 100 and
φ = 0.50 are shown in Table 4. For the case φ = 0.80 only the results
obtained for the last three distances are shown in Table 5.

Table 4: Distances between the empirical function of the simulated p-values of the

proposed tests and the uniform distribution with n0 = 100 and φ = 0.50.

Test A Test B Test C Test D Test E Test F

B.1 1.431 1.029 1.252 0.492 0.939

dKS B.2 2.728 2.236 2.057 2.504 3.578 4.651

B.3 5.814 3.757 6.484 5.143 3.622 4.830

B.1 3.695 3.011 3.328 1.725 2.364

dω
KS B.2 7.707 6.328 5.601 8.076 8.980 10.953

B.3 8.260 6.006 12.537 4.088 5.995 11.398

B.1 0.705 0.497 0.421 0.169 0.298

dL1
B.2 1.493 1.376 1.185 1.526 2.614 2.816

B.3 3.359 1.856 4.004 2.647 1.866 2.087

B.1 0.718 0.523 0.488 0.214 0.318

dω
L1

B.2 1.992 1.683 1.479 1.944 2.505 3.113

B.3 1.995 0.999 3.117 1.151 1.203 3.007

B.1 0.816 0.583 0.510 0.200 0.386

dL2
B.2 1.686 1.507 1.303 1.674 2.797 3.105

B.3 3.885 2.201 4.507 3.151 2.109 2.457

B.1 0.870 0.623 0.587 0.242 0.396

dω
L2

B.2 2.069 1.735 1.519 2.004 2.640 3.319

B.3 2.672 1.125 3.695 1.584 1.317 3.246

Tables 4 and 5 allow us to conclude that, according to the minimum dis-

tance criterion between F̂
(•)
p and FU , Bootstrap 1 definitely behaves much

better than the other two bootstrap methods. The best performance of
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Table 5: Distances between the empirical function of the simulated p-values of the

proposed tests and the uniform distribution with n0 = 100 and φ = 0.80.

Test A Test B Test C Test D Test E Test F

B.1 2.845 2.656 2.135 2.366 3.152

dω
KS B.2 11.756 11.101 9.938 11.929 12.789 13.615

B.3 11.345 13.444 8.216 12.901 13.460 13.689

B.1 0.444 0.333 0.328 0.472 0.592

dω
L1

B.2 3.435 3.193 2.825 3.434 3.849 4.212

B.3 2.587 3.870 1.516 3.244 3.922 4.427

B.1 0.497 0.369 0.386 0.482 0.633

dω
L2

B.2 3.718 3.438 2.998 3.704 4.258 4.757

B.3 2.762 4.257 1.683 3.526 4.329 5.123

Bootstrap 1 is indeed justified since it takes advantage of knowing the par-
ticular error autoregressive structure. The other bootstrap mechanisms
considered replicate the dependence without assuming an explicit error
structure, so that their generality involves a loss of efficiency. In any case
both Bootstrap 2 and Bootstrap 3 behave worse than expected in terms of
efficiency and hence large sample sizes are required when they are used. In
this sense, note that in contrast with the results in Table 3, where Boot-
strap 3 presents advantage over Bootstrap 2 for α = 0.05, the distances

observed between F̂
(•)
p and FU are significantly smaller for Bootstrap 2 than

for Bootstrap 3. So, it can be concluded that, in general, Bootstrap 2 ex-
hibits better performance than Bootstrap 3. Similar conclusions were also
derived from our simulation study when different autocorrelation values
were considered.

As Bootstrap 1 procedure requires to assume a parametric dependence
structure, it is appropriate to examine its robustness to misspecification
problems. For this purpose, the simulation design was modified to gener-
ate errors following arbitrary ARMA models but keeping the Bootstrap 1

algorithm without changes. This means assuming always an AR(1) error
structure. Some of the results obtained with this new simulation plan are
shown in Table 6. Specifically, Table 6 provides the rejection probabili-
ties simulated with the three bootstrap procedures for a theoretical level
α = 0.05, a sample size n0 = 500 and the following dependence models for
the error process:
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Model 1 (ARMA(1,1)): εt = 0.8εt−1 + et + 0.3et−1 (1)

Model 2 (ARMA(1,1)): εt = 0.5εt−1 + et + 0.8et−1 (2)

Model 3 (MA(2)): εt = et + 1.4et−1 + 0.4et−2 (3)

Model 4 (AR(2)): εt = 0.4εt−1 + 0.5εt−2 + et (4)

Table 6: Simulated rejection probabilities with the three bootstrap procedures for

α = 0.05, n0 = 500 and four different dependence models for the error process.

Bootstrap 1 was constructed as if the error was AR(1).

Bootstrap 1 Test A Test B Test C Test D Test E Test F

Model 1 0.0100 0.0150 0.0200 0.0225 0.0125

Model 2 0.0000 0.0025 0.0100 0.0100 0.0025

Model 3 0.0050 0.0050 0.0075 0.0050 0.0050

Model 4 0.6500 0.5475 0.4975 0.3375 0.4500

Bootstrap 2

Model 1 0.0725 0.1425 0.0900 0.0875 0.1825 0.3400

Model 2 0.0200 0.0375 0.0325 0.0625 0.0625 0.0150

Model 3 0.0175 0.0200 0.0100 0.0300 0.0200 0.0500

Model 4 0.7700 0.6900 0.6150 0.4750 0.6525 0.6825

Bootstrap 3

Model 1 0.1075 0.3675 0.0725 0.0875 0.1350 0.5500

Model 2 0.0250 0.1250 0.0200 0.0275 0.0275 0.2475

Model 3 0.0020 0.0275 0.0025 0.0075 0.0125 0.1400

Model 4 0.5825 0.7375 0.3800 0.3575 0.4900 0.7375

Results in Table 6 do not yield definitive conclusions on the robustness of
the Bootstrap 1 procedure. In fact, when Bootstrap 1 was used, Models 1,
2 and 3 led to conservative tests and Model 4 provided very poor results.
This is because of the amount of departure from the AR(1) structure. Thus,
while a certain similarity with the AR(1) covariance structure exists for the
first three models, Model 4 is very different from an AR(1). In general,
according to the results in Tables 1, 2 and 6, it is reasonable to expect
that if the covariance structure used to perform Bootstrap 1 is similar to
the true dependence structure, then Bootstrap 1 will provide acceptable
results. In this sense, when the theoretical dependence model is not clear
from data, it may be advisable to consider an AR(p) structure, with p large
enough, to construct the Bootstrap 1 algorithm.
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Except for Model 4, results in Table 6 for Bootstrap 2 and Bootstrap 3

are similar to those previously achieved under an AR(1) error structure (see
Table 3). Note that, in general, both Bootstrap 2 and Bootstrap 3 provided
less conservative tests than Bootstrap 1. Results for Model 4 were again
very poor but here this performance is not expected since Bootstraps 2 and
3 are constructed by resampling blocks of observations without assuming
a particular model for the error. This unexpected behavior is likely due
to an unsuitable selection of two parameter values required in the resam-
pling algorithms. These parameter values are the block size b, in the case
of Bootstrap 2 algorithm (see Step B2.3a in Section 3), and the proba-
bility value p, in the case of Bootstrap 3 algorithm (see Step B3.3a in
Section 3). Each of these values has a heavy influence on the behavior of
the corresponding bootstrap algorithm and, in our simulation study, both
b and p were kept fixed for the four models. We think that a more suitable
choice in the case of Model 4 should improve the results significantly. How-
ever, the selection of b and p from the sample data is still an open problem,
as well as it is to establish the consistency of Bootstraps 2 and 3.

Next, our numerical study was extended to analyze the influence of the

smoothing parameter on the tests. In particular, the statistic Q̂
(C)
n was

chosen to explore the effect of the bandwidth h used in its computation
(assuming h1 = h2 = h). The simulation was performed as follows. A
total of 300 random samples of size n = 100 were drawn under null hy-

pothesis with autoregressive parameter φ = 0.50. The statistic Q̂
(C)
n was

then computed from each sample and for different values of h ranging from
hmin = 0.010 to hmax = 0.600 in 0.010 steps. So, 300 trials were run for
each h and the corresponding 300 p-values obtained by using each boot-
strap procedure were averaged. Let ACi(h) denote the function assigning

to each h the average of the p-values of the test statistic Q̂
(C)
n using boot-

strap i, i = 1, 2, 3. In addition, let Q(C)(h) be the function defined by

Q(C)(h) = 10 × Q̂
(C)

n (h), where Q̂
(C)

n (h) denotes the average of the 300
values obtained for the statistic when the bandwidth h was used. The
graphs derived from the simulation study for AC1(h), AC2(h), AC3(h) and
Q(C)(h) are jointly shown in Figure 2.

Figure 2 shows that, with independence of the selected smoothing pa-
rameter, Bootstrap 1 leads to average p-values always close to the mean
of the uniform on [0, 1]. This fact confirms the very good performance of
Bootstrap 1 under the null hypothesis, and simultaneously, allows us to
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,6,4,20,0

1,0

,8

,6

,4

,2

0,0

Boot_3

Boot_2

Boot_1

Test_C*10

Figure 2: Graphs of 10× Q̂
(C)

n (h) and of the averaged p-values for test C using the

three bootstraps as a function of h. Sample size is n = 100 and the autoregressive

coefficient is φ = 0.50

conclude the negligible influence of the bandwidth over the results of the
test when the bandwidth is chosen in a reasonable range of values. In con-
trast to Bootstrap 1, an undersmoothing of the regression functions leads
to incorrect rejection of the null hypothesis of equality when Bootstrap 2

or Bootstrap 3 are used. On the other hand, the three bootstrap proce-
dures yield similar results for large values of h. This was expected since an
oversmoothing provides estimates tending to the averages of the response

variables. So, if Ȳ1· ≈ Ȳ2·, then Q̂
(·)
n ≈ 0, and therefore, the null hypoth-

esis is accepted and the resulting test presents low power. Therefore it
can be concluded that the bandwidth selection problem is indeed crucial
to obtain a satisfactory power for the test, but its influence is greater with
Bootstrap 2 and Bootstrap 3 than with Bootstrap 1.

Similar behavior was observed with a larger number of samples. Table 7
shows the average and standard deviation of the p-values of test C using
the three bootstrap methods for several values of h on the basis of 1000
samples.

vilar/vilarFigure2.eps
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Table 7: Mean and standard deviation of critical values of the test C and simulated

rejection probabilities for level α = 5%, varying the smoothing parameter h, on

the basis of 1000 samples of size n0 = 100 and autoregressive coefficient φ = 0.50.

Test C h = 0.10 h = 0.20 h = 0.30 h = 0.40

Bootstrap 1 Mean p-value 0.5246 0.5176 0.5133 0.5105

St. Dev. p-value 0.2902 0.2929 0.2899 0.2886

α = 0.05 0.0370 0.0500 0.0560 0.0560

Bootstrap 2 Mean p-value 0.2419 0.3629 0.4475 0.5198

St. Dev. p-value 0.2827 0.3072 0.3027 0.2924

α = 0.05 0.3870 0.2020 0.1060 0.0690

Bootstrap 3 Mean p-value 0.3127 0.5031 0.5972 0.6628

St. Dev. p-value 0.3438 0.3497 0.3425 0.3321

α = 0.05 0.3510 0.1370 0.0870 0.0710

The simulation study was next driven to investigate the power of the
proposed tests. The same model described above, with φ = 0.50, was
simulated but now under alternative hypotheses. Specifically, the simulated
regression functions were m1 (x) = cos(πx) and m2 (x) = m1 (x) + ∆(x),
with ∆(x) taking several forms described in Table 8, so that the differences
m1 − m2 represent a variety of alternatives.

Table 8: Simulated rejection probabilities of the proposed tests under the alterna-

tive hypothesis m2(x) = m1(x) + ∆(x) using bootstrap 1 for level α = 0.05 with

φ = 0.50 and n0 = 100.

∆(x) Test A Test B Test C Test D Test E

0.25 0.2160 0.2680 0.2760 0.2740 0.2560

0.50 0.7260 0.7740 0.7700 0.8200 0.7920

0.75 0.9760 0.9820 0.9820 0.9880 0.9840

0.50 x 0.2840 0.2900 0.2900 0.3040 0.2480

0.75 x 0.6040 0.6060 0.5920 0.5800 0.5200

1.00 x 0.8520 0.8460 0.8440 0.8300 0.7940

0.5 sin(2πx) 0.1780 0.0820 0.0620 0.0360 0.0600

sin(2πx) 0.5720 0.2020 0.1160 0.0100 0.1580

First, sample size n0 = 100 was considered. Bootstraps 2 and 3 do
not lead to acceptable results of the tests under the null hypothesis with
n0 = 100 (see Table 1) and so it makes no sense to investigate their power
for that sample size. Thus, just Bootstrap 1 technique was initially included
in the simulation. Simulated rejection probabilities for level α = 0.05 of
the proposed tests with Bootstrap 1 are shown in Table 8.
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Table 9: Simulated rejection probabilities of the proposed tests under the alter-

native hypothesis m2(x) = m1(x)+∆(x) using the three bootstrap algorithms for

level α = 0.05 with φ = 0.50 and n0 = 500.

∆(x) Test A Test B Test C Test D Test E Test F

0.10 B1 0.2017 0.2417 0.2383 0.3017 0.2717

B2 0.2867 0.3217 0.2250 0.3633 0.3600 0.4067

B3 0.0917 0.2483 0.0733 0.1600 0.1750 0.3683

0.25 B1 0.8300 0.8683 0.8667 0.9000 0.8867

B2 0.8633 0.9033 0.8417 0.9267 0.9217 0.9333

B3 0.4683 0.7300 0.4917 0.6433 0.5683 0.8700

0.50 B1 0.7260 0.7740 0.7700 0.8200 0.7920

B2 0.8240 0.8560 0.8440 0.8940 0.8880 0.9280

B3 0.5520 0.7340 0.5780 0.7020 0.7120 0.8860

0.25 x B1 0.9760 0.9820 0.9820 0.9880 0.9840

B2 0.8900 0.8880 0.8860 0.9980 0.9920 0.9980

B3 0.8580 0.9460 0.8440 0.9220 0.9200 0.9920

0.50 x B1 1.000 1.000 1.000 1.000 1.000

B2 1.000 1.000 1.000 1.000 1.000 1.000

B3 0.9575 1.000 0.9600 0.9825 0.9925 1.000

0.25 x B1 0.3500 0.4083 0.3917 0.3967 0.3400

B2 0.4183 0.4967 0.4583 0.4850 0.4350 0.5067

B3 0.1800 0.3617 0.1750 0.2017 0.1967 0.4467

0.50 x B1 0.9100 0.9300 0.9200 0.9100 0.8675

B2 0.9325 0.9575 0.9475 0.9350 0.9150 0.9375

B3 0.5800 0.8000 0.5450 0.5975 0.5725 0.8900

0.25 sin(2πx) B1 0.3750 0.3225 0.2850 0.0525 0.1300

B2 0.4500 0.4225 0.3500 0.0925 0.2275 0.1975

B3 0.1600 0.2725 0.0925 0.0550 0.1075 0.1875

0.50 sin(2πx) B1 0.9600 0.9400 0.9225 0.0475 0.5125

B2 0.9700 0.9550 0.9425 0.00825 0.6425 0.3850

B3 0.6450 0.7550 0.4275 0.0300 0.2650 0.5650

The inspection of any row in Table 8 allows us to conclude that there are
no significant differences among the several tests considered since all of them
provided similar rejection probabilities. However note the worse perfor-
mance of test D in the case of the oscillating alternative (∆(x) = sin(2πx)),
which has been previously observed in Neumeyer and Dette (2003) under
independence conditions.
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Next, the sample size was increased to compare the bootstrap proce-
dures in terms of power of the tests. Table 9 includes the results generated
with n0 = 500.

Valuable information can be derived from the results in Table 9. First,
regardless of the alternative considered, the tests based on Bootstrap 3

were clearly the worst in terms of power. In general, the highest rejection
probabilities were attained with Bootstrap 2 although the results generated
with Bootstrap 1 were only a little bit worse. Therefore, Bootstrap 1 can
be placed in the first position of the ranking since it is competitive in terms
of power and, in contrast to others, permits to achieve acceptance rates
very close to the nominal ones under the null hypothesis. Concerning the
test statistics, note that test D again showed the worst performance in the
case of the sinusoidal alternative. In addition, also test E and, to a less
extent, test F presented a worse performance than the rest for this kind of
alternative.

Additional simulation studies were carried out and similar conclusions
were derived in all the cases. So, for example, Table 10 collects the results
of some of these studies where different regression functions m1 and m2

were used. The regression model and the parameter values are the same as
in the previous study.

Table 10: Simulated rejection probabilities of the proposed tests
under different alternative hypotheses m2(x). Here, m1(x) = 0,
α = 0.05, φ = 0.50 and n0 = 500.

m2(x) Test A Test B Test C Test D Test E Test F

0 B1 0.0800 0.0680 0.0680 0.0580 0.0620

B2 0.1680 0.1640 0.1480 0.1520 0.1940 0.2560

B3 0.0720 0.1580 0.0540 0.0540 0.0680 0.1880

x2/2 B1 0.5340 0.5200 0.4500 0.3020 0.3540

B2 0.6580 0.6940 0.5560 0.5760 0.5380 0.5160

B3 0.3640 0.5280 0.2740 0.2500 0.2400 0.4740

x2 B1 0.9800 0.9760 0.9520 0.9180 0.8920

B2 0.9840 0.9840 0.9740 0.9500 0.9420 0.9420

B3 0.8500 0.9280 0.7220 0.7420 0.7340 0.8640
√

x/4 B1 0.3700 0.3920 0.3920 0.3940 0.3680

B2 0.4920 0.5280 0.4180 0.5320 0.5060 0.5700

B3 0.2680 0.4360 0.2480 0.2620 0.2620 0.5280

(Continued on next page)
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(Table 10. Continued from previous page)

m2(x) Test A Test B Test C Test D Test E Test F
√

x/2 B1 0.8900 0.9060 0.9160 0.9120 0.8880

B2 0.9440 0.9500 0.9420 0.9540 0.9400 0.9420

B3 0.6680 0.8500 0.6760 0.7420 0.7360 0.9040

sin (2πx) /4 B1 0.3060 0.2540 0.2260 0.0880 0.1400

B2 0.4560 0.4020 0.3500 0.1500 0.3080 0.2340

B3 0.2040 0.3380 0.1300 0.0500 0.1060 0.2580

sin (2πx) /2 B1 0.8040 0.7520 0.7180 0.0700 0.3820

B2 0.8700 0.8360 0.8120 0.1480 0.6160 0.4000

B3 0.5860 0.7000 0.4120 0.0420 0.25400 0.3500

5 Conclusions

In this work several methods of testing the equality of regression curves
by using regression nonparametric estimators have been analyzed in a con-
text of dependence. In particular, three bootstrap algorithms were used to
approximate the distribution of the statistic tests considered. One of the
three bootstrap procedures, Bootstrap 1, is based on replicating the de-
pendence structure which is assumed to be known in this case. The other
two procedures, named Bootstraps 2 and 3, are more general since they
are constructed without assuming an explicit structure for the error. The
broad simulation study carried out allows us to conclude the superiority of
Bootstrap 1 when compared to the other two bootstrap algorithms, which
was expected since Bootstrap 1 takes advantage of knowing the dependence
model. It is remarkable that, under the null hypothesis and with moderate
sample sizes, both Bootstrap 2 and Bootstrap 3 have provided substan-
tially greater rejection rates than the theoretical ones, and in fact, this
poor performance was uniformly presented over all test statistics analyzed.
At the same time, Bootstrap 1 also performed well in terms of power under
different alternative hypotheses and with large sample sizes. In this sense,
Bootstrap 1 and Bootstrap 2 performed similarly and much better than
Bootstrap 3. On the other hand, in the present fixed design regression
context, the dependence structure for the error can be frequently well ad-
justed by means of an ARMA model. The suitable parameter values for the
ARMA structure would be obtained on the basis of the residuals derived
from a previous nonparametric estimation of the regression function. In
any case, our simulation study also showed that Bootstrap 1 is reasonably
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robust to small deviations from the true dependence structure. Indeed,
this is an additional reason in favor of using Bootstrap 1 algorithm. In
summary, the previous arguments suggest that it is better to first estimate
the error dependence structure and then to use Bootstrap 1 than to use
Bootstrap 2 or Bootstrap 3 directly.

Concerning to the analyzed test statistics, some conclusions can be also
made from the simulation study. First, regardless of the resampling tech-
nique used, the six statistics have shown similar performance under the null
hypothesis. None of them exhibited a significant advantage over the rest.
There was not a clear winner in terms of power under different alternatives
either. However, in this setting, it is remarkable to note that statistics D
and E presented the worst results with the oscillating alternatives, while
the behavior of statistic D was very poor in these cases. As in every non-
parametric procedure, it is necessary to take into account the smoothing
parameter selected in order to assess the behavior of the different statis-
tics. Our simulation study allowed us to observe that the influence of the
bandwidth is not as strong as in the case of having to fit a regression curve.
Nevertheless, it was made clear that too small bandwidths lead to incor-
rectly reject the null hypothesis while too large bandwidths frequently lead
to accept the null hypothesis when it is false. Therefore, the bandwidth
selection problem is also very important in this context. The first strategy
to tackle this problem would consist in adjusting the methods proposed in
Kulasekera and Wang (1997, 1998) to dependence setting. In any case, an
empirical solution would be to compute the p-values associated with the
test statistic for a grid of the bandwidth values and to make a decision on
the basis of the results achieved.
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Künsch, H. R. (1989). The jackknife and the bootstrap for general sta-
tionary observations. The Annals of Statistics, 17:1217–1241.

Li, H. and Maddala, G. (1992). Moving blocks jackknife and bootstrap
capture weak dependence. In R. LePage and L. Billard, eds., Exploring
the limits of bootstrap, pp. 225–248. John Wiley & Sons, New York.

Li, H. and Maddala, G. (1996). Bootstrapping time series models. Econo-
metric Theory , 15:115–195.

Munk, A. and Dette, H. (1998). Nonparametric comparison of several
regression functions: exact and asymptotic theory. The Annals of Statis-
tics, 26(6):2339–2368.

Neumeyer, N. and Dette, H. (2003). Nonparametric comparison of re-
gression curves: an empirical process approach. The Annals of Statistics,
31(3):880–920.

Politis, D. N. and Romano, J. R. (1994). The stationary bootstrap.
Journal of American Statistical Association, 89:1303–1313.

Scheike, T. H. (2000). Comparison of nonparametric regression functions
through their cumulatives. Statistics & Probability Letters, 46:21–32.

Vilar-Fernández, J. M. and González-Manteiga, W. (2000). Re-
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