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Abstract

In this paper, we consider a fixed regression model where the errors are
a strictly stationary process and in which both functions, the conditional
mean and the conditional variance (volatility), are unknown. Two nonpara-
metric estimators of the volatility function based on local polynomial fitting
are studied. Expressions of the asymptotic bias and variance are given and
the asymptotic normality is shown for both estimators. The influence of the
dependence of the data is observed in the expressions of the variance. A sim-
ulation study and an analysis with real economic data illustrate the behavior

of the proposed nonparametric estimators.

Key Words: autoregressive process; heteroscedasticity; local polynomials, volatility

2000 AMS Subject Classification: 62G05, 62G20

tCorresponding author. Email: mariofr@udc.es



1 Introduction

Nonparametric methods are appropriate tools used to perform exploratory analy-
ses, because they do not require selecting a specific parametric shape before fitting
the data. One of these methods, in the context of the regression function estimation,
which has good theoretical and practical properties, is the local polynomial regres-
sion (LPR) estimator. Some significant references on this method for independent
observations are, for example, Tsybakov [19], Fan [4] and Ruppert and Wand [17].

Sometimes, it cannot be assumed that the observations in the sample data are
independent, for example, if they are gathered sequentially in time. In this case,
the statistical properties of the LPR estimator presented in the papers mentioned
above can change. Some related works in this setting of dependence are: Masry [13]
and Masry and Fan [14]. In these papers, a regression model, considering a random
data sample, {(X;,Y;)};,, satisfying some mixing conditions, was used. However,
in Francisco-Ferndandez and Vilar-Fernandez [6], a regular fixed design regression
model with short-range correlated and homoscedastic errors was considered. In this
case, while the asymptotic bias of the regression estimator is exactly the same as
that obtained under independence, the asymptotic variance of the estimator changes.
Now, the sum of the covariances of the errors in this term appears instead of simply
the variance of the errors, as in the case of independent observations or under mixing
dependence conditions. Opsomer et al. [16] provide an overview of the problem of

nonparametric regression with correlated errors.



In this paper, we consider the same framework as that used in Francisco-Fernandez
and Vilar-Ferndndez [6], but now the regression model is heteroscedastic. In this
case, the aim is not only to estimate nonparametrically the regression function but
also the volatility function. This kind of regression models frequently arise in eco-
nomic studies, in the analysis of growth curves and usually in the study of time series
with deterministic trend and non-constant conditional variance (risk, in financial ter-
minology). A by-product of our work is the generalization of the asymptotic results
obtained in Francisco-Fernandez and Vilar-Fernédndez [6] for the regression function
to a heteroscedastic regression model. Considering this model, we study two es-
timators of the volatility function previously studied in Hirdle and Tsybakov [11]
and Fan and Yao [5], respectively, in different contexts. They consider a dynamic
regression model of a mixing process and a two-dimensional strictly stationary and
absolutely regular process, respectively, in their approaches. As it will be seen, the
leading term of the asymptotic variance of these estimators in our model is different
from the ones obtained in those papers.

Other articles concerning the problem of estimating the conditional variance are,
for instance, Gasser et al. [9], Hall et al. [10], Masry and Tjgstheim [15], Ruppert
et al. [18], Andersen and Lund [1] and Ziegelmann [20].

In what follows, it is assumed that univariate data Y;,, Y2,, -+, Y, , are ob-
served, and that

}/t,n - m(xt,n) + S(xt,n> Etmy 1 S t S n (1)

where m(z) and s(x) are “smooth” functions defined on [0, 1], with s(z) > 0. The
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errors ;. ,, 1 <t < n, are a sequence of unobserved random variables with E(e;,,) = 0
and E(gf,n) = 1, where for each n, {1, €2, ..., €n,n } have the same joint distribution
as €1, €, ..., €, With {€;, t € Z} being a strictly stationary stochastic process. Also,
it is assumed that the design z;,, 1 <t < n, is a regular fixed design generated by

a design density f, that is, for each n, the design points are defined by

/t’nf(x)d(x) =L
0

f being a positive function defined on [0, 1] and its first derivative is continuous. In
order to simplify notation, we will not use n in the subindexes, that is, we will write
T, & and Y;.

We study the problem of estimation of the volatility function v(z) = s*(x), given
a sample {(z,Y;)},.

The organization of the work is as follows: In Section 2, two estimators for the
volatility function v(x) = s?(x) are introduced. In Section 3 asymptotic properties
of both estimators are provided. Expressions for the asymptotic bias and variance
are obtained and asymptotic normality is shown in both cases. These expressions
will give some guidelines on how to select reliable smoothing parameters in this
model. In Section 4 the estimators studied are compared via a simulation study and

are used to analyze a real economic data set.



2 The estimators

In this Section, two estimators of the volatility function are introduced. Both
use local polynomial techniques, although different approaches are followed for their
construction. Due to the simple decomposition v(z) =E(Y?|z) — m?(x) and fol-
lowing the idea of Hérdle and Tsybakov [11], the first estimator of the volatility
function is defined by

0 (2) = ga() — {ia(2)}, (2)
where §,(z) is an estimator of g(z) = E(Y? z) = m?(x) + s*(z), and 1, (z)
is an estimator of m(x). We will use estimators 7,(z) and g,(z) based on the
LPR estimator. So, assuming that the (p + 1)th derivatives of m(x) and g(z)
exist and are continuous, local polynomial fitting permits estimating the para-
meter vectors f(z) = (Bo(z), By (z), ...,ﬁp(a:))t, where 3;(z) = mY(z)/(5!), and
(@) = (vo(@), (@), ..., (@), where v;(x) = ¢V (2)/(j1), with j = 0,1,....p

by minimizing, respectively, the functions

n

V(F(x) =) (Yt - Zﬁj(l’)(l‘t - x)j) Wt

t=1

and

n P 2
V() =) (Yf = @) (@ - x)f) Wnt,
=1 =0
where w,,; = n 'h 'K (h'(z; — z)) are the weights, K being a kernel function and

h,, the bandwidth or smoothing parameter. Standard weighted least squares theory

leads to the solutions

1 = -
By @) = (X iy Wy Xo.m)  Xp.o Wi Yoy = Sy Ly (3)



and

Yy (@) = (X W Xpm) ~ Xp Wi V) = S Zny, (4)

where Y,y = (Y1,....Y,)", Y2 = (Y2,....Y2)", X, () is the n.x (p + 1) matrix with
ith row equal to (1, (z1 —z),...,(z1 — x)"), and W(,,) = diag (w1, ... ,wny) is the
diagonal array of weights.

The estimator 92 () of v(x) is defined as

05(2) = Ay (@)'er — { B l@)er } | (5)

where e; is the (p+ 1) x 1 vector having 1 in the first entry and all other entries
being 0.

In those z’'s where v(x) is close to 0, the estimator defined in (5) could be
negative. In those cases, 93 () is defined as 0.

On the other hand, Fan and Yao [5] suggest a novel approach, asymptotically
fully adaptive to the unknown conditional mean. This consists in, first, obtaining
the residuals from a nonparametric fit (using, for instance, the LPR estimator with
a kernel L; and a bandwidth hy,), squaring them, 7, = {Y; — 7y, (xt)}Q, t =
1,2,...,n, and finally defining the estimator of the volatility function as the LPR
estimator of the regression function with kernel L, and bandwidth ho,, using {7},
as the response variables. Obviously the degree of the polynomial used in each step
can be also different, say p; and ps. Mathematically, this can be written as follows:

using (3), the LPR estimator of m(x) is given by

iy, () = eb (X Xt Wi Y = St

p1,(n)

yWiim) Xy (n)) Y,

1in
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where Wiy is the diagonal array of weights n~'hy,, L1 (hy,, (z;—)). Then, the second
estimator of the volatility function considered in this paper (denoted by 92 (z)) is

defined by

0P (x) =€l (Xt

pg,(n

1 A A
W) Xpon))  Xpo () Waim) Bin) = Sy, o By, (6)

where Wy, is defined as Wy, but using the kernel L, and the bandwidth hy,,, and

~

Riwy = (F1,. .., 70).

3 Theoretical results

In this section, the asymptotic normality of estimators (5) and (6) are obtained.

The following assumptions will be needed in our analysis:

A1l The kernel functions, K(-), Li(-) and Ls(-) are symmetric, with a bounded

support, and Lipschitz continuous.

A2 The sequence of bandwidths, {h’}, satisfies h* > 0, h* | 0, nh 1 oo, where the

sequence {h}} can be {h,}, {hi,} or {ha,}.

A3 The point x at which the estimation is taking place satisfies h, < x < 1 — h,

when 99 (z) is used, and satisfies max{hi,, hon} < < min{l — hy,, 1 — ho,}

D

when 7,

(x) is used, for all n > ng where nyg is fixed in both cases.
A4 The errors, {e;};_,, satisfy E(s7) = 1, E(e;) =E(e}) = 0. Moreover, de-

noting ¢ (k) =Cov(e;, eirx), k = 0,£1, ..., then > 7 klc(k)] < oo, and

d(e) =Y p Cov(e?, ) < oo.



A5 Elg,[**™) < 50 for some § > 0.

A6 The stationary stochastic process {e;} is a—mixing with mixing coefficients
such that ia(t}‘s/ (2+9) < o0. Then, there exists a sequence of positive in-

=
tegers {s,}, s — o0 as n — oo with s, = 0<(nh,*;3)1/2), such that
(nhx=1)"? i a(t)'™ < oo, with v = 2/(2 4 §), where h} can be h, or

t=sn

hay,.
AT 1 =0 (n7V/")  where h; and p* can be h, and p, or hs, and ps.
A8 {W0HY - (nhiy) = 0 (HB2).

Remark 3.1 The a—mizing or strong mizing condition is one of the least restrictive
among the numerous dependence conditions and it is satisfied by many processes, for
instance, the ARMA processes generated by absolutely continuous noise. A thorough

study of this condition can be seen in Doukhan [3].

Remark 3.2 Assumption A8 holds, for instance, when the bandwidths hy, and ho,
are selected at their optimal rate for estimating the regression function, that is,

O (n—l/(2pj+3)) L j=1,2.

The following notation will be used. Let K,(u) = (j! |M,y(u)|/|S]) K(u), where S
is the (p + 1) x (p + 1) array whose (i + 1, j + 1)th element is p;, ;(K), 0 < 1,7 < p,
with 1,(K) = [ u'K (u)du, and M,(u) is the same as S with the first column replaced
by (1,u,...,uP). K, is pth-order kernel as defined by Gasser et al [9]. The same
kind of functions as K, but using kernels L; and L, will be also used. These will
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be denoted by Ly, and Ls,,, respectively. We also define the matrix S as the
(p+1) x (p+1) array whose (i + 1, j + 1)th element is [ vt K?(u)du, 0 < i,j < p.
By assumption A1, S and S are positive definite, see Lemma, 1 of Tsybakov [19], and
therefore nonsingular. We denote R(L) = [ L(u)*du. Also, throughout the paper,

notation A ~ B denotes A = B(1 + o(1)).

Theorem 3.1 If assumptions A1-A7 are fulfilled, we have

Hg, ﬁ/n(‘r)_i(l’) 0
o (n) ( (n) ) — b(x) N Nogps1) (072(33)) , as M — 00,

where Hyy = diag(1, hy,, h2,... h2),

(p+1) (p+1) ¢
g (z) la-1- M (7) 1a-1-
b)) — pPt BPt

with ji = (Np+1(K)7 s 7M2p+1(K)>t’ and

® (5—155—1) ,

where c(e) = > 52 c(k) < oo. Here A ® B denotes the Kronecker product of

matrices A and B.
Theorem 3.2 Assume AI1-A7. Then
nhy (05 (x) —v(z) — bs(x)) -5 N (0,0%(x))

as n — 0o, where

be(0) = i (470 + ((0) " = 2o () (9
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and

os(x) = @) d(e) R(Kp). (9)

D

With respect to estimator ,,

(x), in the following Theorem its asymptotic nor-
mality is established. For this, the following additional assumption is used only to

simplify the calculations involved in the proof of Theorem 3.3.:

A9 The errors {g;} follow an MA(oco) process, &, = > . W;e,_;, with kurtosis of

the white noise {e;} being equal to 0.
Theorem 3.3 If assumptions A1-A9 are fulfilled, we have

Vitha, (87 (2) = v(w) = bp(2)) == N (0,0%(x)).

as n — 0o, where

hg?—l p2+1
bo(x) = oD @y 1 (L) (10)
and
2 _U2(5L’) c
7h(x) = S ) R Loy (1)

The proofs of these Theorems are given in the final Appendix.

Remark 3.3 In both estimators, the dependence of the observations influences the
leading term of the wvariance, but not the the leading term of the bias. Moreover,
comparing the results obtained in Theorems 3.1 and 3.2 with those obtained by Hérdle
and Tsybakov [11] for 05 (x) with random and a-mizing observations (Theorems 3.1
and 3.2 of that paper) and Yao and Fan [5] for 9P (z) with random and absolutely
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reqular observations (Theorem 1 of that paper), respectively, it can be observed that in
both cases, while the asymptotic bias is exactly the same in the random and the fixed
design, the asymptotic variance of both estimators changes, now the term d () =
Sre o Cov(s?,6§+k) appearing instead of simply Var(e?) as occurs in the random
case with dependent or independent observations (see Ruppert et al. [18], where a
version of 92 (z) is studied in the independent case). The reason for this fact is that
in random design (under mizing dependence conditions) if we want to calculate the
estimator of the conditional variance function at a point x, the random variables
(X5,Y;) and (X;,Y;), such that X;, X; € (x — hyp,x + hy,), are nearly uncorrelated
in the majority of the cases, as h, — 0. On the other hand, in a fixed design with
correlated errors, the spatial distance between the x's coincides with distance in time
and, therefore, the corresponding Y's variables at the x's locations in a neighborhood

of x (or the corresponding errors) are strongly dependent between them.

S

Remark 3.4 A comparison between 03 (x) and 92 (x) is possible by just looking at

Theorems 3.2 and 3.3. If the same bandwidth and kernel are used in both estimators,

D

(), but includes one more term in the

0% (x) has the same asymptotic variance as O
bias, A = (m2(x))(p+1) — 2m(x)m®P+Y(z). This term could have an adverse effect
on the bias of estimator v (x), for instance, when p =1, A = 2 (m/(x))*> > 0. This

fact will be seen in the simulations.

Remark 3.5 Defining AMSE(ﬁnD (w)) as the mean squared error approximation ob-

tained by combining (10) and (11), the asymptotically optimal local bandwidth can

12



be computed by minimizing AMSE(0F (x)) with respect to ha,. This minimizer is

) 1/(2p2+3)
WP () = Copo (L) ( v {o)d(e) f(x)> | (12)

n ('U(Pz-‘rl) (IL’))

where Cy p,(L2) is a real number that depends on kernel Lo.

This expression give us some guidelines on how to select a local plug-in bandwidth,
Just by replacing the unknown quantities appearing in the optimal bandwidth with
pilot estimators. Analogous comments are also possible for the case of a plug-in local
bandwidth for 03 (), and for the selection of global plug-in bandwidths by minimizing
the AMISE of both estimators. The problem of bandwidth selection in the context of
the volatility function is beyond the scope of the present paper. But this is certainly

worthy of effort for further research.

Remark 3.6 The value of d () =Y oo Cov(e?,€2,,) can be calculated assuming

some hypothesis for the errors.

o [f the errors follow an AR(1) process, €y = pei—1 + e, and denoting by I' the

kurtosis of €;, then

(13)
e If the errors follow a normal distribution, d(e) =2 (1+2% 2, ¢ (k’)2) :
o [f the errors follow an AR(1) process with normal distribution, d () = 2}4_'—22.

Remark 3.7 From Theorem 3.1, it is easy to obtain the asymptotic variance of the

LPR estimator of the regression function, m.,(z), in this setting of correlated errors.
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This is given by

Var i) ~ = SR, (14
where
o(e) = %ﬁ (15)

if the errors are AR(1). A simple comparison between (138) and (15) clearly shows
that although (14) and (9), or (11) have the same kind of structure, their behavior,
as a function of p, for AR(1)-errors are different. While c(g) goes to infinity when
p goes to 1, and goes to 0 when p goes to —1, d(g) goes to infinity when p goes
to 1 or —1, that is, the variance of 03 (z) and 92 (x) increases when p goes to 1 or
—1, while the asymptotic variance of the LPR estimator of the regression function
increases when the dependence increases, it being smaller for negative dependence

than for independent observations.

4 Simulation study and example

In this section, we present some simulation results comparing the estimators of
the volatility function theoretically studied in the previous section. We also apply

these estimators to a real data set.

4.1 Simulation study

In this subsection, the performance of estimators ¢ (z) and 42 (x) is illustrated

through a simulation study. In the theoretical portion of this article, we showed
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that 92 (z) is asymptotically fully adaptive in the sense that the variance function
can be estimated with this method with the same asymptotic mean and variance
as if the mean function were known. To observe the real influence of this fact with
finite samples, we have also considered in the study the same estimator as 92 (),
but using, in the second step, the squared errors instead of the squared residuals.
This estimator is denoted by ©2(x) (the superscript standing for “benchmark”, as
in Fan and Yao [5]).

We simulated 300 samples of size 100 from a fixed and equally spaced model
like (1) in the interval [0, 1] with errors following an AR(1) process, &; = pe;—1 + €4,
with N (0, 1) distribution. We have used this model of dependence because it is easy
to simulate, and by varying only one parameter, the autocorrelation coefficient of
order 1, p, the dependence of the observations is controlled. Taking this into account,
we considered different values of p (—0.9, —0.6, —0.3, 0, 0.3, 0.6, 0.9) to study the
influence of the dependence of the observations. Optimal bandwidths by minimizing
the Mean Integrated Squared Error (MISE) were computed. Using Monte Carlo
approximations, the integrated squared bias, the integrated variance and the MISE
of 93 (x), 9P (x) and 9 (z) were then approximated. For a more comprehensive
study, we considered three different problems: to estimate the volatility function on
interval [0, 1] (global region), to estimate the function on the central region [0.2, 0.8]
and to estimate the function on the boundary region [0,0.2] U [0.8,1]. In each case,
the optimal bandwidths obtained are different. The kernel function used was the

quartic kernel (K (u) = Li(u) = La(u) = £2(1 — u?)? if |u] < 1).
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We considered the following regression models:
Model (1) m(z) = sin(rz) and s(z) = 3z.
Model (2) m(z) = sin(mx) and s(z) = sin(7x).
Model (3) m(z) = 5z and s(x) = sin(mz).

As was pointed out in the definition of 47 (z), this estimator can become negative
in cases. To check how often negative values are obtained in these regression models,
we have computed the percentage of negative values of 97 (x) in each one of the 300
samples using a range of reasonable bandwidths. The averages of these percentages
over the 300 samples, depending on the regression model and the bandwidth, ranged
from 1% to 15%, approximately. Since these numbers are not completely negligible,
the adjusted estimator of 92 (), taking the value 0 when a negative value is obtained,
was used in our simulations. It is important to note that the percentage of negative
values depends on the shape of the volatility function. In any case, the results
obtained using the original estimator and the adjusted one are quite similar, being
slightly better for the adjusted estimator of ©(x).

For brevity, we present here only some of the results obtained that are represen-
tative of the simulations performed.

Table 1 shows the results for Model (1) when the autocorrelation coefficient of
the AR(1) error is p = 0.3 and p = 0.9. The optimal bandwidths used to obtain the
residuals needed to compute ¢ (z) were 0.2636 and 0.3454 for p = 0.3 and p = 0.9,
respectively. So, the optimal bandwidths appearing in Table 1 for 42 (z) and ©2(z)
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refer to those used in the second step of these estimators to fit the squared residuals

and the squared errors, respectively.
[Table 1 about here.|

In Table 2, the results for Model (2) when the autocorrelation coefficient of the
AR(1) error is p = —0.6 and p = 0.6 are presented. Here, the optimal bandwidths
needed to obtain the residuals to compute 92 (z) were 0.2525 and 0.4545 for p = —0.6

and p = 0.6, respectively.
[Table 2 about here.|

Finally, concerning Model (3), Figure 1 shows the evolution of the MISE of 92 (z),
0P (z) and 9% (z) as a function of p, in the central part of the interval ([0.2,0.8]) and

in the whole interval ([0, 1]).

[Figure 1 about here.|

S

J(z) and 92(x)) had similar, good performance, al-

Overall, both estimators (0
though, in general, 97 (z) gave better results, especially in cases where the additional
term appearing in the leading term of the bias of ¥(z) could have an important
effect on the estimation. For instance, this happens in Model (3) as seen in Figure
1 (see Remark 3.4 to understand the effect of the regression function on the bias of

~S

92(x)). On the other hand, significant differences between 42 () and ©?(z) do not

seem to exist and the different results obtained for these estimators are possibly a

random sample effect.
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Another interesting point observed in the simulations is that when |p| increases,
the MISE of the estimators also increases. This is due to the behavior of the variance
and it is compatible with the asymptotic expressions obtained in Section 3 (see

Remark 3.6).

S
n

Finally, we have observed that ©2(x) worked better than 97 (x) at boundary
values. This could be due to the way 92 () is constructed: the known automatic
boundary correction proven for the local linear estimator of the regression function
is now carried over to the estimation of the conditional variance function when 42 ()

n

is used.

4.2 Example

In this subsection, both estimators of the volatility function, 92 (z) and 92 (x),
are applied to the study of a real economic data set.

The sample data considered are 222 quarterly observations of the real change in
private inventories in the USA, from 1947 to 2002. Each observation indicates the
seasonally adjusted annual rate, measured in billions of chained 1996 dollars (in the
year 2002, only two observations are available). The source of these data is the U.S.
Department of Commerce, Bureau of Economic Analysis, obtained from the web

page: http://www.research.stlouisfed.org/fred /data/gdp.html.

A fixed regression model can be fitted to these data, considering an equally
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spaced design in [0, 1], that is,
Y, = m(t/222) + s(t/222)e,, t=1,2,...,222.

The aim is to estimate the volatility function v(z) = s?(x) using the nonparamet-

S
n

ric estimators 95 (z) and 92 (x). Only the linear case, that is, p = p; = ps = 1, will be
considered for both estimators. To compute 92 (z), first, it is necessary to obtain the
residuals from a nonparametric fit. At this point, the bandwidth needed to estimate
the regression function was computed by the time series cross-validation (TSCV)
method proposed by Hart [12]. This parameter showed good performance in the
simulation study presented in Francisco-Ferndndez and Vilar-Ferndndez [7] in a fixed
regression model with autoregressive errors. In Figure 2 the sample data and the lo-
cal linear estimator of m(x) using that bandwidth, hrscvr = 0.2229, are presented.
The TSCV method was again used, producing the bandwidth ETSCVQ = 0.1618, in
the second step of this estimator. Figure 3 shows both estimators of the volatility
function, 97 (z) being the dashed line and 92 (x) the solid line. For simplicity, the
bandwidth needed to compute ¢ (z) was selected by ordinary cross-validation, giv-
ing as result hey = 0.1172. Both estimators have a similar shape, although there is
a boundary effect when 92 () is used, especially at values near one, where the esti-
mated volatility function decreases. This effect seems not to be present for 92 (x),

n

as explained in the previous Section.
[Figure 2 about here.|

[Figure 3 about here.|
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A Appendix: Proofs

In this Section, we sketch proofs of the results presented in Section 3.

To complete the proof of Theorem 3.1, the following Propositions are needed.

Proposition A.1 Under assumptions A1-AS3, we have

lim H,

n—oo (n

%S(n)H(;S = f(z)S,

where Sy is the array (p+ 1) X (p+1) whose (i,])th element is 5(7;.) — 551)3'—27 with

(n) _ 1 u : Ty — T
% _nhnt—zl(xt_x)jK< h, )

Proposition A.2 Under assumptions A1-A4, we have

lim nhnE<H‘1f&)f(";f)H‘l) = f(a)Sv(x)e(e),

n—00 (n) (n)

Pk _ t
where T(n) =X

o) W) (ﬁn) - M(n)): with Mgy = (m(1), ..., m(z,))"
Proof. The proofs of Propositions A.1 and A.2 follow the same lines as Proposi-
tions 1 and 2 of Francisco-Ferndndez and Vilar-Fernéndez [6]. W

The next step consists in studying estimator (4). To do this, a similar result to

that of Proposition A.2 is obtained.
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Proposition A.3 Under assumptions A1-A4, we have

7}1—{20 nh, E (H(;L%Z’{n)f*é)H@%) = f(x)gv(x) (d(s)v(x) + 4m2(x)c(€)) , (16)

where ZE"n) =X, W (}_}(i) - C_j(n)), with é(n) = (g(x1), ... g(z))" .

Proof. Taking into account that E(g;) =E(g,2) = 0, we obtain, for i,j =
0,1,...,p, that

lim nh, B (h,” 2 ()25 mhn') = A1 + Ay, (17)

n—oo

where 2z} (n) 18 the i-th component of Zﬁ(*n),

o 1 &S z—a\ [z, —z\ Ty — X Tp — X
A = nh—{gonhngz( hn ) ( ho, )K< ha, )K< hin )

and

Now, using the same kind of arguments as in the proof of Proposition A.2, and

the Taylor expansions for v(-) and m(-), we obtain that

Ay = v*(2) f(z) ( / ui+jK2(u)du> d(e) (18)

and
Ao = 4o(a)m?(x) f () < / ui+jK2(u)du) (©). (19)
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From (17), (18) and (19), (16) is deduced. W
Based on the asymptotic properties of /3 (my(7) and F(, () the asymptotic prop-
erties of 97 (x) can be obtained. Taking into account that B(n) (x)'e; converges in

probability to 5 (x)tey, it is easy to see that

i5(0) = o(a) % () = 70)' 1 = (20 (o) = ) ). 20

To deduce the variance of 97 (z) it is necessary to obtain the covariance between

Y(my(7) and 6(n (x). This is deduced from the following result.

Proposition A.4 Under assumptions A1-A4, we have

lim nhnE<H Ve Teb )_2f() v(z)m(z)c(s).

n—oo

Proof. The proof is similar to that of Propositions A.2 or A.3, and therefore it is
omitted here. W
Finally, to prove Theorem 3.1, it suffices to study the asymptotic performance
S - t
Proposition A.5 If assumptions A1-A7 are fulfilled, we have
Vnh,Hg, U £, Nogpi1) (6, 20) , asn — 00, (21)
where H,y = diag(1, hy, ..., h2, 1, hy, ... hE) and

)y Hopy Ly

d(e)v(z) + 4m?(x)c(e) 2m(z)c(e) N
= {v(@)f(2)} ® 5.
2m(x)c(e) c(e)
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Proof. Let @), be an arbitrary linear combination of IHI(_nl) U ()’

H 17
Q, =a (=)~ () ., with a € R?PHD,

Hiy Tt

Using the well-known small-blocks and large-blocks method the asymptotic nor-
mality of \/nh,Q, is established, following exactly the same lines as those in Propo-
sition 3 of Francisco-Fernédndez and Vilar-Fernéndez [6]. Then, (21) is obtained from
the Cramer-Wold theorem.

|

Now, from equation (20) and Propositions A.1, A.2, A.3, A.4 and Theorem 3.1,
the proof of Theorem 3.2 is straightforward.

Proof. (Proof of Theorem 3.3)

Proposition A.1 and simple calculations lead to

) 2 0 (e |
00 = 0l0) s Y b (5 ){— Dia—ap (2
n n ]:O .
and
. | m(p1+1) €
(1) =) i ZLlpl( ) st T L)

(23)

Note that

Foo= Y= ru,, (@)} = {s(@)e; + mla) — o, (2:) )
= (i)} + 2s(xi)e; {m(@) — 1y, (@)} + {ml@) — 1y, (2:) ). (24)
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By replacing (24) in (22), it follows that
oP(x) —v(x) = Iy + I — 215 + 1, (25)

n

where

e (2 - £}
- nh2nf Zl ”’2( )U(l‘i) (e2-1),

= s 30 b (S ) (e G () = e,

= s o b (S ) ) = sy

We will prove that in (25), term [; provides the bias of ¢ (z), Iy its variance
and terms /3 and I, are asymptotically negligible.

A Taylor expansion and typical approximations of sums by integrals lead to

(p2+1)
1V ( )
~ hp2+ (p +—1)' :up2+1 (L2,p2)'

As far as I is concerned, using Assumption A4 to show that E(/3) = 0, following

the same lines as Proposition A.3 to show that

i=1 j=1
v(z)

~ f)

d(e)R(Layp,)

and using again the small-blocks and large-blocks method, as in Theorem 3.1, to

establish the asymptotic normality, we have that

(nhan)? I =55 N (0,0%(2))
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where

2(x) = d Ls,,).
Op (l’) f(l’) (€>R( 27['2)
The rest of the proof is devoted to proving that I3 = Iy = o, (h§§L+1).

Using (23), I3 can be written as

[ ~ ke L J 7 . Veses
’ thlnhan $ lezl f 2p2 ( on ) Lp1 ( hln ) S(.’L’ )S(:L’])g €j
hzl)ﬁlﬂp +1 Ll p1
= - L ; (p1+1) e
nhon f () Z 2,p2 < Fran ) s(z;)m (x;)e
= I3 + I3.

Splitting I3;, we have

P{|Iz1| > e} = P{|Iz11 + 12| > ¢}

19 g
< P{|]311| > 5} +P{|]312| > 5}7

where

n

1 1 T; — X
Tar: — L 22 3 (xy)e?
s n2h1nh2nf(’r) Z_Zl f(x2> 22 < h?n ) ° (aj )€Z

and
Ly = TiZ ¥\ Tj— i
312 n2h1nh2nf Zzlzl f 2P2 < h2n ) L1 < hln )
i#j
xs(xz;)s(xj)eie;

With respect to I311, using Markov’s inequality and typical approximations, it is

easy to show that

15 2 1
P{I >—} < ZE|Liy| = O .
fanl > 5} < 2Bfanl =0 ()
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For the term I315, using again Markov’s inequality, we have
€ 4
P{|1312| > 5} < gE (13212)

1 = T, — X
N Cn4h%nhgn ;LZW < hay, )
n—i ; N
X Z Ll,pl ( +]§1 ) Z L2 D2 ( h2 )

p=1
n—u Ty — Ty

X Z Ly p, <+hq—1) E (€i€i+pCuCutq) » (26)
q=1 "

where C' is a generic constant.
Since the errors {;} are MA(00), with autocovariance function c(j) =E(et, 145),
using a result given in Brockwell and Davis [2], pp. 226227, and taking into account

that the kurtosis of {e;} is 0, we have

P{|1312| > g} < Ty 4T+, (27)
where
n n— Z n n—u xl $Z xl
I o= n4h2 12 L2p2( )Llpl( +2 )
In™2n y—1 p=1 u=1 ¢=1 In
Ty — T Ty Ty
<Lags (55 ) L () clpleta
2n in
n n—1u n n—u Q’/‘Z xz+ I‘Z
Iy = n4h2 h2 ZZ L2p2( )L1p1( Z )
20 =1 p=1 u=1 ¢=1 2n In
Ty — X T Tu
X Lo p, T clu—i)e(u—1i—p+q)
hgn hln
and

Iy = n4h2 h2 Z L2p2 (T) Ly, (Ziln)



Using Riemann approximations of sums by integrals, changes of variables and

considering that the kernels have bounded support, it is not difficult to show that

Fl = FQ = Pg = 0 (nhlln)

With respect to I35, using again Markov’s inequality, we have

’ 2

E|I
P{|]32| > 6} S ‘ 52

2 ¢ (hgiﬂ) :

Finally, with respect to I, from Assumption A8, we obtain
By, (w5) —m(wi)}* = { B0 + (k) 7} =0 (7).

Using once again approximations of sums by integrals, it follows that I, =

op (hgfj—l) . 1

References

[1] Andersen, T.G and Lund, J., 1997, Estimating continuous time stochastic
volatility models of the short term interest rate. Journal of Econometrics, 77,

343 -377.

[2] Brockwell, P.J. and Davis, R.A., 1991, Time Series: Theory and Methods.

Springer Series in Statistics, 2nd edition.

[3] Doukhan, P., 1995, Mizing. Properties and FExamples. Notes in Statistics,

Springer: Berlin, Vol 85.

[4] Fan, J., 1992, Design-adaptive nonparametric regression. Journal of the Amer-
ican Statistical Association, 87, 998 —1004.

27



[5]

(6]

[10]

[11]

Fan, J. and Yao, Q., 1998, Efficient estimation of conditional variance functions

in stochastic regression. Biometrika, 85, 645—660.

Francisco-Ferndndez, M. and Vilar-Fernandez, J.M., 2001, Local polynomial re-
gression estimation with correlated errors. Communications in Statistics. The-

ory and Methods, 30(7), 1271 -1293.

Francisco-Ferndandez, M. and Vilar-Fernandez, J. M., 2005, Bandwidth selec-
tion for the local polynomial estimator under dependence: a simulation study.

Computational Statistics, 20(4), 539—558.

Gasser, T., Miiller, H.G. and Mammitzsch, V., 1985, Kernels for nonparametric

curve estimation. Journal of the Royal Statistical Society, Series B, 47, 238—

252.

Gasser, T., Sroka, L. and Jennen-Steinmetz, C., 1986, Residual variance and

residual pattern in nonlinear regression. Biometrika, 73, 625—633.

Hall, P., Kay, J.W. and Titterington, D.M., 1990, Asymptotically optimal
difference-based estimation of variance in nonparametric regression. Biometrika,

77, 521-528.

Hirdle, W. and Tsybakov, A., 1997, Local polynomial estimators of the volatil-
ity function in nonparametric autoregression. Journal of Econometrics, 81,

223 —-242.

28



[12] Hart, J., 1994, Automated kernel smoothing of dependent data by using time
series cross-validation. Journal of the Royal Statistical Society, Series B, 56,

529-542.

[13] Masry, E., 1996, Multivariate regression estimation—local polynomial fitting for

time series. Stochastic Processes and their Applications, 65, 81 —101.

[14] Masry, E. and Fan, J., 1997, Local polynomial estimation of regression functions

for mixing processes. Scandinavian Journal of Statistics, 24, 165—179.

[15] Masry, E. and Tjgstheim, D., 1995, Nonparametric estimation and identification

of nonlinear ARCH time series. Econometric Theory, 11, 258-289.

[16] Opsomer, J.D., Wang, Y. and Yang, Y., 2001, Nonparametric regression with

correlated errors. Statistical Science, 16, 134-153.

[17] Ruppert, D. and Wand, M.P., 1994, Multivariate locally weighted least squares

regression. Annals of Statistics, 22, 1346 —1370.

[18] Ruppert, D., Wand, M.P., Holst, U. and Hossjer, O., 1997, Local polynomial

variance-function estimation. Technometrics, 39, 3, 262-273.

[19] Tsybakov, A., 1986, Robust reconstruction of functions by the local approxi-

mation method. Problems of Information Transmission, 22, 133—146.

[20] Ziegelmann, F.A., 2002, Nonparametric estimation of volatility functions: the

local exponential estimator. Fconometric Theory, 18, 985-991.

29



List of Figures

1

MISE of 9(z) (solid line), 92 (z) (dash-dot line) and 9% (z) (dashed
line) as a function of p. Interior points at left and whole interval at

FERE. © o o e e e e 31
Sample data and local linear estimator of m(z) computed with iLTSCV =

0.2229 obtained from TSCV method. . . . . . . . . .. .. .. .... 32
Volatility estimators: 92 (z) (dashed line) and 92 (x) (solid line) . . . 33

30



0.35 T T T 0.35 T T T

vS(x) )
A A
03 | V| 031 )

Figure 1: MISE of () (solid line), 2 (z) (dash-dot line) and % (z) (dashed line)
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Figure 2: Sample data and local linear estimator of m(z) computed with hysoy =
0.2229 obtained from TSCV method.
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Table 1: m(z) = sin(7z), s(z) = 0.5z, p=0.3 and p = 0.9.

s(z) = p=03 p=0.9

o O OGN A O O RAG

Central | hynsg  0.1636  0.4061  0.3737 | 0.2000  0.3990  0.5050
fBiaS2 0.00009 0.00002 0.00002 | 0.00091 0.00163 0.00004
J Var 0.00082 0.00036 0.00043 | 0.00150 0.00034 0.00249
MISE 0.00091 0.00038 0.00045 | 0.00241 0.00197 0.00253

Global | hygsg  0.1636  1.0000  1.0000 | 0.1818  1.0000  1.0000
fBiaS2 0.00041 0.00030 0.00016 | 0.00373 0.00442 0.00019
JVar 0.00220 0.00085 0.00105 | 0.00198 0.00048 0.00475
MISE 0.00261 0.00115 0.00121 | 0.00571 0.00490 0.00494

Bound. | hypsg  0.1636  1.0000  1.0000 | 0.1727  1.0000  1.0000
fBiaS2 0.00088 0.00064 0.00013 | 0.00778 0.00845 0.00028
J Var 0.00427 0.00149 0.00185 | 0.00283 0.00077 0.00801
MISE 0.00515 0.00213 0.00198 | 0.01061 0.00922 0.00829
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Table 2: m(z) = sin(nz), s(xz) = sin(rz), p = —0.6 and p = 0.6.

s(z) = p=-06 p=06

sin() HOE A ONEAOE (O

Central | hynsg  0.4727 0.3990 0.4040 | 0.4182  0.3232  0.3959
fBiaS2 0.01657 0.01404 0.01327 | 0.02462 0.02411 0.01613
JVar 0.03112 0.03836  0.03785 | 0.03489 0.03788 0.04187
MISE 0.04769 0.05240  0.05112 | 0.05951 0.06199 0.05800

Global | hynsg  0.4636 0.3939 0.3959 | 0.4000 0.3232  0.3879
fBias2 0.01224  0.00876  0.00815 | 0.01562 0.01465 0.00978
[ Var 0.02127  0.02582  0.02574 | 0.02437 0.02430 0.02789
MISE 0.03351 0.03458  0.03389 | 0.03999 0.03895 0.03767

Bound. | hynsg  0.1454 0.2576 0.2505 | 0.1273  0.2626  0.2343
fBias2 0.00126  0.00100  0.00106 | 0.00035 0.00026 0.00075
JVar 0.00720 0.00564  0.00571 | 0.00544 0.00397 0.00527
MISE 0.00846 0.00664 0.00677 | 0.00579 0.00423 0.00602
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