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Departamento de Matemáticas, Facultad de Informática
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ABSTRACT

In this paper, nonparametric estimators of the regression function, and its derivatives,

obtained by means of weighted local polynomial Þtting are studied. Consider the Þxed

regression model where the error random variables are coming from a stationary stochastic

process satisfying a mixing condition. Uniform strong consistency, along with rates, are

established for these estimators.

Furthermore, when the errors follow an AR(1) correlation structure, strong consistency
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properties are also derived for a modiÞed version of the local polynomial estimators proposed

by Vilar-Fernández and Francisco-Fernández in (1).

1. INTRODUCTION AND DEFINITIONS

Let us consider the Þxed regression model where the functional relationship between the

design points, xt,n, and the responses, Yt,n, can be expressed as

Yt,n = m(xt,n) + εt,n, 1 ≤ t ≤ n, (1.1)

where m(x) is a regression function and εt,n, 1 ≤ t ≤ n, is a sequence of unobserved

random variables with zero mean and Þnite variance σ2. For each n, it is assumed that

ε1,n, ε2,n, . . . , εn,n have the same joint distribution as ²1, ²2, . . . , ²n, where {²t, t ∈ Z} is a

strictly stationary stochastic process. Finally, it is considered that the design points, xt,n,

1 ≤ t ≤ n, follow a regular design generated by a design density f ; that is, for each n, the

design points are deÞned by

Z xt,n

0

f(x)d(x) =
t− 1
n− 1 , 1 ≤ t ≤ n, (1.2)

f being a positive function (see (2)).

In this setting, the goal is to estimate the regression function, m(x) = E (Y |X = x), and

its derivatives when the errors are dependent, satisfying the strong mixing condition. To

do this, the local polynomial regression (LPR) estimator will be considered in the present

study. Assuming that the (p + 1)th derivative of the regression function at point x exists,
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then ~β(x) = (β0(x),β1(x), · · · ,βp(x))t, where βj(x) = m(j)(x)/(j!), with j = 0, 1, . . . , p, can

be estimated by minimizing the function

Ψ(~β(x)) =
nX
t=1

Ã
Yt,n −

pX
j=0

βj(x)(xt,n − x)j
!2

ωt,n, (1.3)

where ωt,n = n
−1Kn(xt,n − x) are the weights and Kn(u) = h

−1
n K (h

−1
n u), K being a kernel

function and hn the bandwidth or smoothing parameter that controls the size of the local

neighborhood and so the amount of smoothing.

Now, commonly used matrix notation is introduced for concise presentation of results.

Denote

~Y(n) =


Y1,n

...

Yn,n

 , X(n) =


1 (x1,n − x) · · · (x1,n − x)p

...
...

...
...

1 (xn,n − x) · · · (xn,n − x)p

 ,

and let W(n) = diag (ω1,n, . . . ,ωn,n) be the diagonal array of weights. Then, by assuming the

invertibility of X t
(n)W(n)X(n), the LPR estimator of ~β(x) is given by

�~β(n)(x) =
¡
X t

(n)W(n)X(n)

¢−1
X t

(n)W(n)
~Y(n) = S

−1
(n)(x)

~T(n)(x), (1.4)

where S(n)(x) is the (p + 1) × (p + 1) array whose (i + 1, j + 1)th element is si,j,n(x) =

si+j,n(x), i, j = 0, 1, . . . , p, with

sj,n(x) =
1

n

nX
t=1

(xt,n − x)jKn (xt,n − x) , 0 ≤ j ≤ 2p, (1.5)

and ~T(n)(x) = (t0,n(x), t1,n(x), . . . , tp,n(x))
t, being

tj,n(x) =
1

n

nX
t=1

(xt,n − x)jKn (xt,n − x)Yt,n, 0 ≤ j ≤ p. (1.6)
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So, the LPR estimator of m(j)(x) is given by �m
(j)
n (x) = j! �βj(x), �βj(x) being the jth

component of
�~β(n)(x), j = 0, 1, . . . , p.

Since early papers on LPR, (3) and (4), many other relevant papers on this smoothing

method have appeared, showing that the LPR estimator presents several good properties.

See, for example, (5), (6), (7), (8), (9), and the references within. In these papers the

independence of the observations is assumed. The statistical properties of LPR estimator

with dependent data have been studied in recent works ((10), (11), (12), (13), (14), (15)

and (16)). In these works the regression model with random design is considered and the

assumption of the data satisfying some mixing condition is used. In the present context

of Þxed design, the asymptotic normality of the LPR estimator was studied in (17) when

the random error, εt, has absolutely summable autocovariances. A complete study of this

smoothing method can also be found in monograph (18).

The present paper is devoted to establishing strong uniform consistency and obtaining

sharp rates of almost sure convergence over a compact set of R of two estimators of m(x) and

its derivatives. The Þrst of these estimators is the LPR estimator given in (1.4), considering

that the random errors satisfy an α−mixing condition. The second estimator considered is

a modiÞed version of the LPR estimator, which has been proposed by Vilar-Fernández and

Francisco-Fernández in (1). This last estimator is studied in the particular case where the

stochastic process ²t follows an AR(1) type correlation structure

²t = ρ²t−1 + et, t ∈ Z, (1.7)

with |ρ| < 1 and {et}t∈Z, a noise process with mean zero and Þnite variance σ
2
e . The proposed

4



estimator is obtained in two steps. In the Þrst step, a matrix P(n), deÞned by

P(n) =



p
1− ρ2 0 0 . . . 0

−ρ 1 0 . . . 0

0 −ρ 1 . . . 0

...
. . . . . . . . .

...

0 . . . 0 −ρ 1


,

in the case of AR(1) errors, is used to transform the regression model and to get a new model

where the errors are uncorrelated.

For this purpose, performing a Taylor series expansion, the regression model (1.1) can be

approximated by

~Y(n) ≈ X(n)
~β(x) + ~ε(n), (1.8)

where ~ε(n) = (ε1,n, ε2,n, . . . , εn,n).

Then, the errors of the following regression model

P(n)
~Y(n) = P(n)X(n)

~β(x) + P(n)~ε(n) (1.9)

are uncorrelated.

Now, in the second step, assuming that X t
(n)P

t
(n)W(n)P(n)X(n) is nonsingular, an estimator

of ~β(x), generalized least squares estimator (GLPR), is obtained by using weighted least

squares

�~βG,n(x) =
¡
Xt

(n)P
t
(n)W(n)P(n)X(n)

¢−1
X t

(n)P
t
(n)W(n)P(n)

~Y(n) = �C−1
(n)(x)

�~G(n)(x), (1.10)

where �C(n)(x) = X
t
(n)P

t
(n)W(n)P(n)X(n) and

�~G(n)(x) = X
t
(n)P

t
(n)W(n)P(n)

~Y(n).
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As matrix P(n) is unknown, the new estimator of ~β(x) is obtained by changing P(n) to an

estimator of it, �P(n). This new estimator is called feasible least squares estimator (FLPR)

and it is given by

�~βF,n(x) =
³
X t

(n)
�P t(n)W(n)

�P(n)X(n)

´−1

X t
(n)
�P t(n)W(n)

�P(n)
~Y(n) = �C−1

(n)(x)
�~G(n)(x), (1.11)

where �C−1
(n)(x) is assumed to exist.

In the case of AR(1) errors considered here, the matrix P(n) is estimated on the basis of

a previous consistent estimation of ρ. In (1), ρ was estimated by

�ρn =

Pn−1
t=1 �εt,n �εt+1,nPn

t=1 �ε
2
t,n

, (1.12)

where �εt,n = Yt,n− �mn(xt,n), 1 ≤ t ≤ n, are nonparametric residuals and �mn(x) is a consistent

estimator of m(x), for example, the LPR estimator. A natural estimator for P(n) is then

obtained by replacing ρ with �ρn.

Vilar-Fernández and Francisco-Fernández in (1) proved that the estimators
�~β(n)(x) and

�~βF,n(x) have the same asymptotic distribution. However, in a simulation study a better

behavior was observed for the mean integrated squared error of estimator
�~βF,n(x) with respect

to
�~β(n)(x) when correlation of the observations was large.

Before continuing, it is worth mentioning some works concerned with the study of strong

consistency properties for kernel nonparametric estimators of the regression function un-

der dependence conditions. For the regression model with random design, Collomb and

Härdle in (19) obtained the strong uniform convergence of a robust nonparametric estimator

under φ−mixing conditions, GyorÞ et al. in (20) and Roussas in (21) proved strong con-

sistency of the Nadaraya-Watson kernel estimator under several mixing conditions, Troung
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and Stone in (22) obtained weak convergence rates under α-mixing assumption and Masry

and Tjøstheim in (23) established strong convergence rates and asymptotic normality under

α−mixing conditions. Recently, Lu and Cheng in (24) proved the distribution-free strong

consistency under α-mixing and quite mild conditions, Ango Nze and Douckan in (25) consid-

ered delta-sequence estimators and established uniform convergence in the mean and almost

surely under α−mixing conditions and absolute regularity. In (26), Masry employed the

local polynomial Þtting for the estimation of the multivariate regression function and ob-

tained uniform strong consistency with rates for strong mixing processes. Vilar-Fernández

and Vilar-Fernández in (16) studied a recursive local polynomial smoother under α-mixing

dependence and established properties of strong consistency.

In the case of nonparametric regression with Þxed design, Roussas in (27) studied a

general linear smoother of the regression function and obtained consistency in quadratic mean

and strong consistency under several mixing conditions of the errors. Roussas et al. in (28)

established the asymptotic normality of this estimator when the errors are α−mixing and in

(29), Tran et al. generalized this result dispensing of mixing assumptions and encompassing

models with discrete noise.

The organization of this paper is as follows: in Section 2, the uniform strong convergence

of the estimator
�~β(n)(x) over compact subsets of R is proven and the rates of convergence

are established. In Section 3, the uniform strong convergence for the new estimator
�~βF,n(x)

is obtained. Finally, Section 4 is devoted to the proofs of the results.
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2. UNIFORM STRONG CONSISTENCY OF THE LPR ESTIMATOR

To establish the uniform strong convergence of the LPR estimator,
�~β(n)(x), deÞned in

(1.4), a standard proof technique based on using a Berstein�s type inequality for strongly

mixing sequences joint to a coupling argument due to Rio (30) is considered. First of all, it is

necessary to split the error estimation. For this purpose, assuming the continuity of the Þrst

(p + 1) derivatives of m(x), a Taylor series expansion around x with an integral remainder

is performed, so that

m(xt,n) =

pX
j=0

m(j)(x)

j!
(xt,n − x)j + m

(p+1)(x)

(p+ 1)!
(xt,n − x)p+1 +Rt,n(x), t = 1, . . . , n, (2.1)

where

Rt,n(x) =
(xt,n − x)p+1

p!

Z 1

0

(1− w)p £m(p+1)(x+ w(xt,n − x))−m(p+1)(x)
¤
dw. (2.2)

In matrix form,

~M(n) = X(n)
~β(x) +

m(p+1)(x)

(p + 1)!


(x1,n − x)p+1

...

(xn,n − x)p+1

+ ~R(n)(x), (2.3)

with ~M(n) = (m(x1,n), . . . ,m(xn,n))
t and ~R(n)(x) = (R1,n(x), . . . , Rn,n(x))

t .

Using (1.4) and (2.3), the following is obtained:

E
³
�~β(n)(x)

´
= ~β(x) +

m(p+1)(x)

(p+ 1)!
S−1

(n)(x)
~U(n)(x) + S

−1
(n)(x)

~V(n)(x), (2.4)

8



where ~U(n)(x) and ~V(n)(x) are (p+1)-dimensional vectors whose (j+1)th components Uj,n(x)

and Vj,n(x), j = 0, 1, . . . , p, are given by

Uj,n(x) = sj+p+1,n(x),

Vj,n(x) =
sj+p+1,n(x)

p!

Z 1

0

(1− w)p £m(p+1)(x+ w(xt,n − x))−m(p+1)(x)
¤
dw.

From (2.4), the following decomposition for the error

�~β(n)(x)− ~β(x) = S−1
(n)(x)

~T ?(n)(x) +
m(p+1)(x)

(p+ 1)!
S−1

(n)(x)
~U(n)(x) + S

−1
(n)(x)

~V(n)(x)

= ~∆1,n(x) + ~∆2,n(x) + ~∆3,n(x), (2.5)

is directly derived, where it has been denoted that

~T ?(n)(x) =
~T(n)(x)− E

³
~T(n)(x)

´
.

The vector ~∆1,n(x) is random and the vectors ~∆2,n(x) and ~∆3,n(x) are deterministic.

Now, to obtain the strong consistency of the LPR estimator, the convergence of these three

vectors is studied next.

The following assumptions are required:

A.1. The kernel function K(·) is symmetric, positive, Lipschitz continuous and with a

bounded support.

A.2. The sequence of bandwidths {hn} is such that hn > 0, ∀n, and hn ↓ 0 and nhn ↑ ∞ as

n ↑ ∞.
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A.3. The matrix S−1
(n)(x) exists for x ∈ A, with A a compact subset of R, and the design

density function f satisÞes 0 < C ≤ f(x) ≤ C 0 <∞, with C and C 0 real numbers.

A.4. The function m(p+1)(x) is uniformly continuous on A.

A.5. E
³
|εt|δ

´
<∞, for some δ > 2.

A.6. The stationary process εt is α-mixing, with mixing coefficients α(k) such that

∞X
k=1

kα(k)1−2/δ <∞.

A.7. DeÞne the sequence Mn =
¡
n lnn (ln lnn)1+γ¢1/δ

, for some 0 < γ < 1. Then hn is

chosen in such a way that

γn =

µ
nM2

n

h3
n lnn

¶1/2

→∞ and bn =

µ
nhn

M2
n lnn

¶1/2

→∞ as n→∞.

In addition, the α-mixing sequence α(k) satisÞes

∞X
n=1

nγn
bn

µ
nM2

n

hn lnn

¶1/2

α (bn) <∞.

Assumptions A.1, A.2, A.3, A.4 and A.5 are not very restrictive regularity conditions

and are quite usual in the context of local polynomial regression. While assumption A.6

is also a usual summability requirement on the mixing coefficients, assumption A.7 is a

more complex condition involving both the bandwidth and the α-mixing sequence. It is

imposed to determine an appropriate truncation sequence to obtain a precise block size

when the Bernstein�s block technique is employed. It has also been required by Masry in

(26). It is quite usual to Þnd complex conditions on the α-mixing coefficients in the literature
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concerning strong consistency. Interesting comments about this topic can be seen in Lu and

Cheng in (24) (Remark 2.3).

In particular, it can be easily seen that if

hn = O

µ
lnn

n

¶φ
, with φ < 1− 2/δ,

then the conditions γn →∞ and bn →∞ in assumption A.7 are satisÞed. If, in addition, the

mixing coefficients are assumed to decay exponentially fast, that is, α(k) = O (exp{−θk}),

then both assumption A.6 and the summability restriction in assumption A.7 are also satis-

Þed for all θ > 0.

Another mixing case of interest is α(k) = O
¡
k−θ
¢
. In such a case, straightforward

calculations allow us to conclude that the summability restriction in assumption A.7 is

satisÞed provided that

θ >
(1 + φ)5/2 + 3/δ

(1− φ)1/2− 1/δ = L (φ, δ) .

Note that for Þxed φ, the function L (φ, δ) is monotonically decreasing in δ. Therefore,

assumption A.5 and the summability condition in assumption A.7 move in opposite directions

since the larger δ is chosen, the smaller θ can be selected.

In what follows H(n) denotes the diagonal array diag (1, hn, h
2
n, · · · , hpn) and S is the

(p + 1)× (p + 1) array whose (i+ 1, j + 1)th element is si,j = µi+j, i, j = 0, 1, . . . , p, where

µj =

Z
ujK(u) du and ~µ = (µp+1, . . . , µ2p+1)

t.

The following result of Francisco-Fernández and Vilar-Fernández given in (17) will be

used.
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PROPOSITION 1. If assumptions A.1 and A.2 hold, then

lim
n→∞

h−jn sj,n(x) = f(x)µj , 0 ≤ j ≤ 2p+ 1. (2.6)

Result (2.6) can be written in matrix form as

lim
n→∞

H−1
(n)S(n)(x)H

−1
(n) = f(x)S. (2.7)

Proposition 1 is then used to obtain the uniform convergence for the deterministic terms

~∆2,n(x) and ~∆3,n(x).

PROPOSITION 2. If assumptions A.1-A.4 hold, then

sup
x∈A

H(n)
~∆2,n(x) = h

p+1
n

µ
sup
x∈A

m(p+1)(x)

¶
1

(p + 1)!
S−1~µ (1 + o(1)) = O

¡
hp+1
n

¢
(2.8)

and

sup
x∈A

H(n)
~∆3,n(x) = O

¡
hp+2
n

¢
. (2.9)

Next, the strong consistency for the random term ~∆1,n(x) is established.

PROPOSITION 3. If assumptions A.1-A.7 are fulÞlled, then

sup
x∈A

H(n)
~∆1,n(x) = O

µ
lnn

nhn

¶1/2

almost sure. (2.10)
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The proof of Proposition 3 is the most complex step. The basic tool is the Bern-

stein�s blocks technique which consists in approximating mixing sequences by independent

sequences, so that a Bernstein-type exponential inequality can be applied. After the blocks

are determined, an independence approximation argument must be used. In this paper a

coupling theorem due to Rio in (30) is adopted, which has also been used by others (see for

example Carbon, Tran and and Wu in (31)). Alternatively, other authors have considered a

weaker argument from Bradley (32).

The following theorem follows from equation (2.5) and Propositions 2 and 3.

THEOREM 1. If assumptions A.1-A.7 are fulÞlled, then

sup
x∈A

H(n)

³
�~β(n)(x)− ~β(x)

´
= O

¡
hp+1
n

¢
+O

µ
lnn

nhn

¶1/2

almost sure. (2.11)

In the next result, derived directly from Theorem 1, the uniform strong convergence and

rates for the local polynomial estimator of the regression function and its derivatives are

established.

COROLLARY 1. Under the hypothesis of Theorem 1, we have, for j = 0, 1, . . . , p, that

sup
x∈A

¡
�m(j)
n (x)−m(j)(x)

¢
= O

¡
hp+1−j
n

¢
+O

µ
lnn

nh1+2j
n

¶1/2

almost sure. (2.12)

3. UNIFORM STRONG CONSISTENCY OF THE FLPR ESTIMATOR
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This section is devoted to establishing the uniform strong convergence of the FLPR

estimator,
�~βF,n(x), deÞned in (1.11). Therefore, throughout this section it will be assumed

that the stochastic process ²t follows an AR(1) model with |ρ| < 1.

Our attention will Þrst focus on
�~βG,n(x), the estimator deÞned in (1.10). In particular,

conditions to ensure the uniform strong convergence of
�~βG,n(x) will be established.

Approximating the vector ~M(n) with a Taylor series in a neighborhood of x and employing

similar arguments as those used in the previous section, the following decomposition of the

error is obtained:

�~βG,n(x)− ~β(x) = �C−1
(n)(x)

�~G
∗
(n)(x) +

m(p+1)(x)

(p + 1)!
�C−1

(n)(x)
�~U (n)(x) + �C−1

(n)(x)
�~V (n)(x)

=
�~∆1,n(x) +

�~∆2,n(x) +
�~∆3,n(x), (3.1)

where

�~G
∗
(n)(x) =

�~G(n)(x)− E
³
�~G(n)(x)

´
,

and
�~U (n)(x) and

�~V (n)(x) are (p+ 1)-dimensional vectors analogous to ~U(n)(x) and ~V(n)(x) in

(2.4), respectively. Here, they are given by

�~U (n)(x) = X
t
(n)P

t
(n)W(n)P(n)

¡
(x1,n − x)p+1 , . . . , (xn,n − x)p+1¢t , (3.2)

and

�~V (n)(x) = X
t
(n)P

t
(n)W(n)P(n)

~R(n)(x), (3.3)

with ~R(n)(x) given in (2.3).
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Using basic algebra allows to derive the particular form for the (j + 1)th component of

�~U (n)(x), for j = 0, 1, . . . , p:

�Uj,n(x) = �cj,p+1,n(x)

=
1

n

nX
t=1

(xt,n − x)j+p+1Kn (xt,n − x)− ρ
2

n
(x1,n − x)j+p+1Kn (x1,n − x)

−ρ
n

nX
t=2

(xt,n − x)j (xt−1,n − x)p+1Kn (xt,n − x)

−ρ
n

nX
t=2

(xt,n − x)p+1 (xt−1,n − x)jKn (xt,n − x)

+
ρ2

n

nX
t=2

(xt−1,n − x)j+p+1Kh (xt,n − x) .

To show the convergence to zero of terms
�~∆i,n(x), i = 1, 2, 3, assumptions A.3, A.4 and

A.7 are modiÞed as follows:

A.30. The matrix �C−1
(n)(x) exists for x ∈ A, with A a compact subset of R, and the design

density f veriÞes 0 < C ≤ f(x) < C 0, with C and C 0 real numbers.

A.40. The functions f 0 and m(p+1) are continuous on A.

A.70. Denote Mn =
¡
n lnn (ln lnn)1+γ¢1/δ

for some 0 < γ < 1. The bandwidth hn is such

that the sequences

γn =

µ
nM2

n

h3
n lnn

¶1/2

→∞ and bn =

µ
nhn

M2
n lnn

¶1/2

→∞ as n→∞.

The next result, obtained by Vilar-Fernández and Francisco-Fernández in (1), is here

used to show the convergence to zero of the deterministic terms
�~∆2,n(x) and

�~∆3,n(x).
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PROPOSITION 4. If assumptions A.1, A.2, A.30 and A.40 hold, then

lim
n→∞

h−(i+j)
n �ci,j,n(x) = (1− ρ)2 f(x)µi+j, 0 ≤ i, j ≤ p+ 1. (3.4)

Expression (3.4) can be rewritten in matrix form as follows:

lim
n→∞

H−1
(n)
�C(n)(x)H

−1
(n) = (1− ρ)2 f(x)S. (3.5)

The strong consistency of both
�~∆2,n(x) and

�~∆3,n(x) is now a direct consequence of Propo-

sition 4 and is established in the following result.

PROPOSITION 5. If assumptions A.1, A.2, A.30 and A.40 hold, then

sup
x∈A

H(n)
�~∆2,n(x) = O

¡
hp+1
n

¢
(3.6)

and

sup
x∈A

H(n)
�~∆3,n(x) = O

¡
hp+2
n

¢
. (3.7)

The strong convergence of the random term
�~∆1,n(x) is established in the following Propo-

sition.

PROPOSITION 6. If assumptions A.1, A.2, A.30, A.40, A.5 and A.70 are fulÞlled, then

sup
x∈A

H(n)
�~∆1,n(x) = O

µ
lnn

nhn

¶1/2

almost sure. (3.8)
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In accordance with (3.1), the uniform strong convergence of the estimator
�~βG,n(x) follows

from Propositions 5 and 6.

THEOREM 2. Under assumptions of Proposition 6, it is veriÞed that

sup
x∈A

H(n)

³
�~βG,n(x)− ~β(x)

´
= O

¡
hp+1
n

¢
+O

µ
lnn

nhn

¶1/2

almost sure. (3.9)

On the other hand, on the basis of the convergence in probability of the estimator �ρn,

deÞned in (1.12), to the autoregressive coefficient ρ, the uniform strong convergence to zero

of the term H(n)

³
�~βF,n(x)− �~βG,n(x)

´
is obtained in the next result.

THEOREM 3. If assumptions A.1, A.2, A.30 and A.40 hold, then

sup
x∈A

H(n)

³
�~βF,n(x)− �~βG,n(x)

´
= o

¡
hp+1
n

¢
+ o

µ
lnn

nhn

¶1/2

almost sure. (3.10)

From both, Theorems 2 and 3, the uniform strong convergence of the FLPR estimator

�βF,n(x) is deduced.

THEOREM 4. Under assumptions of Theorem 2 it is veriÞed that

sup
x∈A

H(n)

³
�~βF,n(x)− ~β(x)

´
= O

¡
hp+1
n

¢
+O

µ
lnn

nhn

¶1/2

almost sure. (3.11)
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If �m
(j)
F,n(x) denotes the nonparametric feasible least squares estimator of m

(j)(x), for

j = 0, 1, . . . , p, then �m
(j)
F,n(x) = (j!)

�βj,F,n(x), being

�~βF,n(x) =
³
�β0,F,n(x), �β1,F,n(x), . . . , �βp,F,n(x)

´t
.

Result (3.11) can be then reformulated in terms of �m
(j)
F,n(x), as shown in Corollary 2.

COROLLARY 2. Under assumptions of Theorem 4, it is veriÞed that

sup
x∈A

³
�m

(j)
F,n(x)−m(j)(x)

´
= O

¡
hp+1−j
n

¢
+O

µ
lnn

nh1+2j
n

¶1/2

almost sure. (3.12)

The extension of these results to regression models with more general correlation struc-

tures, for example, ARMA(p, q) models, is conceptually straightforward but with the draw-

back that the P(n) matrix depends on more parameters and these need to be estimated.

4. PROOFS

Throughout this section, the proofs of the results presented in sections 2 and 3 are

outlined.

PROOF OF PROPOSITION 2.

According to (2.5),

~∆2,n(x) =
m(p+1)(x)

(p+ 1)!
S−1

(n)(x)
~U(n)(x)

=
m(p+1)(x)

(p+ 1)!
hp+1
n H−1

(n)

³
H−1

(n)S(n)(x)H
−1
(n)

´−1
µ

1

hp+1
n

H−1
(n)
~U(n)(x)

¶
.

18



Then, using Proposition 1 it is obtained that

~∆2,n(x) = h
p+1
n

m(p+1)(x)

(p+ 1)!
H−1

(n)S
−1~µ (1 + o(1))

and thus (2.8) is derived from the boundedness of m(p+1)(x).

The proof of (2.9) follows for similar arguments and it has been omitted.

PROOF OF PROPOSITION 3.

From (2.5)

H(n)
~∆1,n(x) =

³
H−1

(n)S(n)(x)H
−1
(n)

´−1

H−1
(n)
~T ?(n)(x).

The limit ofH−1
(n)S(n)(x)H

−1
(n) is given in (2.7), so that, it is sufficient to establish the almost

sure convergence of H−1
(n)
~T ?(n)(x), that is, of its components h

−j
n t

?
j,n(x), for j = 0, 1, . . . , p.

Let {Mn} be the sequence of positive numbers deÞned in A.7 and let

εt,Mn = εt,n I (|εt,n| ≤Mn) . (4.1)

Replacing εt with εt,Mn , new terms t
?B
j,n(x) are deÞned by

t?Bj,n(x) =
1

n

nX
t=1

(xt,n − x)jKn (xt,n − x) εt,Mn , 0 ≤ j ≤ p, (4.2)

so that, for j = 0, 1, . . . , p,

sup
x∈A

h−jn t
?
j,n(x) ≤ sup

x∈A
h−jn

¡
t?j,n(x)− t?Bj,n(x)

¢
+ sup

x∈A
h−jn t

?B
j,n(x) = Qj,1,n +Qj,2,n.

Now, each term on the right-hand side above is examined. As far as term Qj,1,n is

concerned, it is observed that

h−jn
¡
t?j,n(x)− t?Bj,n(x)

¢
=
1

n

nX
t=1

εt,nI (|εt,n| > Mn) h
−j
n (xt,n − x)jKn (xt,n − x) .
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Under A.5 and using Markov�s inequality, it is obtained that

P (|εn,n| > Mn) ≤M−δ
n E

³
|εn,n|δ

´
<∞,

for sufficiently large n. In addition, Proposition 1 ensures the summability of the factor on

the right-hand side. Therefore, Borel-Cantelli Lemma gives that |εn,n| ≤ Mn almost surely

for all sufficiently large n. On the other hand, since Mn is increasing, there exists n such

that |εt,n| ≤Mn almost surely for t ≤ n. From the above conclusions follows the almost sure

convergence to zero of Qj,1,n, for j = 0, 1, . . . , p.

Attention is now concentrated on the term Qj,2,n. Since A is compact, it can be covered

with γn intervals of length 2ln and center x
0
k,n. Denote Ik,n =

£
x0k,n − ln,x0k,n + ln

¤
, 1 ≤ k ≤ γn,

with γn →∞ as n→∞. Note that necessarily ln = O (γ−1
n ). Then

Qj,2,n = sup
x∈A

h−jn t
?B
j,n(x)

≤ max
1≤k≤γn

sup
x∈A∩Ik,n

h−jn
¯̄
t?Bj,n(x)− t?Bj,n(x0k,n)

¯̄
+ max

1≤k≤γn

h−jn
¯̄
t?Bj,n(x

0
k,n)
¯̄
= Pj,1,n + Pj,2,n. (4.3)

Under assumption A.1, for each x ∈ Ik,n one has

h−jn
¯̄
t?Bj,n(x)− t?Bj,n(x0k,n)

¯̄ ≤ Cj lnMn

h2
n

= C
Mn

γnh2
n

, (4.4)

where C is a positive real number. Taking into account (4.3), (4.4) and the deÞnitions of

the sequences Mn and γn given in A.7, it is concluded that

Pj,1,n ≤ C
µ
lnn

nhn

¶1/2

→ 0 as n→∞. (4.5)

Thus, only the following remains to be proven:

Pj,2,n = O

µ
lnn

nhn

¶1/2

almost sure. (4.6)
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The two following lemmas are necessary to show (4.6). The Þrst of these lemmas is a

coupling theorem for strongly mixing real-valued random variables.

LEMMA 1. (Theorem 4 of (30)) Let A be a σ−Þeld of (Ω,z, P ) and let X be a real-valued

random variable taking almost sure values in [a, b]. Suppose furthermore that there exists

a random variable β with uniform distribution over [0, 1], independent of A ∨ σ(X). Then,

there exists some random variable X∗ independent of A and with the same distribution as

X such that

E (|X −X∗|) ≤ 2(b− a)α (A, σ(X)) .

Moreover, X∗ is a A ∨ σ(X) ∨ σ (β)−measurable random variable.

The second lemma is the Bernstein inequality. The proof can be seen in (33).

LEMMA 2. Let Y1, Y2, . . . , Yn be independent bounded random variables with zero mean

and |Yi| ≤ M. Denoting σ2
i as the variance of Yi, and supposing

Pn
i=1 σ

2
i ≤ V . Then, for

each η > 0,

P

Ã¯̄̄̄
¯
nX
i=1

Yi

¯̄̄̄
¯ ≥ η

!
≤ 2 exp

µ
−1
2
η2

Áµ
V +

1

3
Mη

¶¶
.

From (4.2), h−jn t
?B
j,n(x) can be written in the form

h−jn t
?B
j,n(x) =

1

n

nX
t=1

ξt,n(x) = Γn(x), (4.7)

where

ξt,n(x) =

µ
xt,n − x
hn

¶j
Kn (xt,n − x) εt,Mn . (4.8)
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The Bernstein�s blocks technique is used next. Set n = 2snbn + vn, where sn, bn and vn

are integer numbers satisfying sn → ∞, bn →∞ as n → ∞ and 0 ≤ vn < bn. Then, Γn(x)

is split into 2sn blocks of size bn plus a residual block of size vn as follows:

DeÞne the blocks

Bk,n(x) =
1

n

kbnX
t=(k−1)bn+1

ξt,n(x), k = 1, 2, . . . , 2sn. (4.9)

So the partition of Γn(x) is given by

Γn(x) =
1

n

nX
t=1

ξt,n(x) = Γ1,n(x) + Γ2,n(x) + Γ3,n(x), (4.10)

where

Γ1,n(x) =
snX
j=1

B2j−1,n(x), Γ2,n(x) =
snX
j=1

B2j,n(x) and Γ3,n(x) =
nX

t=2snbn+1

ξt,n(x). (4.11)

Since the contribution of the residual term Γ3,n(x) is negligible, we have for each ε > 0

P (|Pj,2,n| > ε) ≤ P
µ
max

1≤k≤γn

¯̄
Γ1,n(x

0
k,n)
¯̄
> ε/2

¶
+ P

µ
max

1≤k≤γn

¯̄
Γ2,n(x

0
k,n)
¯̄
> ε/2

¶

≤ 2P
µ
max

1≤k≤γn

¯̄
Γ1,n(x

0
k,n)
¯̄
>
ε

2

¶
≤ 2γn sup

x∈A
P
³
|Γ1,n(x)| > ε

2

´
. (4.12)

To bound the last term in (4.12) the independence approximation argument given in

Lemma 1 is used next.

Let {Uj}j>0 be a sequence of independent random variables with uniform distribution

over [0, 1], independent of {B2j−1,n(x)}sn

j=1. By Lemma 1, for any positive j, there exists a

measurable function Fj such that B
∗
2j−1,n(x) = Fj (B1,n(x), B3,n(x), . . . , B2j−1,n(x), Uj) satis-

Þes the conditions of Lemma 1 (here A = σ (B2k−1,n(x), 1 ≤ k < j)). Therefore, for each
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j, B∗2j−1,n(x) is independent of B
∗
1,n(x), B

∗
3,n(x), . . . , B

∗
2j−3,n(x), has the same distribution as

B2j−1,n(x) and satisÞes

E
¡¯̄
B2j−1,n(x)−B∗2j−1,n(x)

¯̄¢ ≤ 2 kB2j−1,n(x)k∞ α (bn) . (4.13)

From (4.9) and (4.11), it can be written that

P
³
|Γ1,n(x)| > ε

2

´
≤ P

Ã¯̄̄̄
¯
snX
j=1

¡
B2j−1,n(x)−B∗2j−1,n(x)

¢¯̄̄̄¯ > ε

4

!

+P

Ã¯̄̄̄
¯
snX
j=1

B∗2j−1,n(x)

¯̄̄̄
¯ > ε

4

!
= ∆1,n(x) +∆2,n(x). (4.14)

By assumption A.1,

kB2j−1,n(x)k∞ =
°°°°°°1n

(2j−1)bnX
t=(2j−2)bn+1

µ
xt,n − x
hn

¶j 1
hn
K

µ
xt,n − x
hn

¶
εt,Mn

°°°°°°
∞

≤ C1
bnMn

nhn
, (4.15)

with C1 a positive constant. Then, by using Markov�s inequality, (4.13) and (4.15), one has

∆1,n(x) ≤
snX
j=1

P

µ¯̄
B2j−1,n(x)−B∗2j−1,n(x)

¯̄
>

ε

4sn

¶
≤ 8s2

n

ε
C1
bnMn

nhn
α (bn) . (4.16)

Concerning ∆2,n(x), if σ
2
j denotes V ar

¡
B∗2j−1,n(x)

¢
= V ar (B2j−1,n(x)), then Davidov�s

Lemma (see (34)) and assumption A.6 lead to

∞X
k=1

k |c(k)| <∞, where Cov (²t, ²t+k) = σ2c(k).

Therefore Proposition 2 in (17) can be applied to obtain that

snX
j=1

σ2
j ≤ E

¡
h−jn t

?
j,n(x)

¢2
=

1

nhn
ν2jf(x)c(ε) ≤ 1

nhn
ν2jC2c(ε) =

Cv
nhn

, (4.17)

where ν2j =
R
u2jK2(u)du, c(ε) = σ2 (c(0) + 2

P∞
k=1 |c(k)|) and C2 and Cv are positive

constants.
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Now, Lemma 2, (4.15) and (4.17) lead to

∆2,n(x) ≤ 2 exp
µ
−1
2

ε2

16

Áµ
Cv
nhn

+
ε

12
C1
bnMn

nhn

¶¶
= 2 exp

µ
− 1
32

ε2nhn
Cv + C1εbnMn

1
12

¶
.

(4.18)

It follows from (4.12), (4.14), (4.16) and (4.18) that

P (|Pj,2,n| > ε) ≤ 2γn
·µ
8s2
n

ε
C1
bnMn

nhn
α (bn)

¶
+ 2 exp

µ
− 1
32

ε2nhn
Cv + C1εbnMn

1
12

¶¸
. (4.19)

By choosing ε = εn = Cε

µ
lnn

nhn

¶1/2

, expression (4.19) can be written in the form

P (|P2,j,n| > ε) ≤ an + bn,

where

an =
16C1

Cε
γn
n

bn

µ
M2
nn

hn lnn

¶1/2

α (bn)

and

bn = 4γnn

−c2ε
32
¡
Cv +

C1

12
Cε
¢
.

From assumption A.7, the sequence an is summable and by selecting a large enough Cε,

one can obtain that bn is also summable. Then, the Borel-Cantelli Lemma leads to (4.6) and

the proof of Proposition 3 is completed.

PROOF OF PROPOSITION 5.

This proof follows in the same way as Proposition 2 but using Proposition 4 instead of

Proposition 1 and, therefore, it has been omitted.
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PROOF OF PROPOSITION 6.

Similar arguments to those used in Proposition 3 are employed here and only the main

differences are presented below.

According to (3.1), H(n)
�~∆1,n(x) =

³
H−1

(n)
�C(n)(x)H

−1
(n)

´−1

H−1
(n)

�~G
∗
(n)(x). Since Proposition 4

ensures the convergence of the Þrst term, our attention is focused on the components of

H−1
(n)

�~G
∗
(n)(x), which are given by

h−jn �g
∗
j,n(x) =

1

n

nX
t=1

χt,n(x),

with

χ1,n(x) =
¡
1− ρ2

¢µx1,n − x
hn

¶j
Kn (x1,n − x) ε1,n

and

χt,n(x) =

"µ
xt,n − x
hn

¶j
− ρ

µ
xt−1,n − x

hn

¶j#
Kn (xt,n − x) et,n, t = 2, 3, . . . , n.

Note that the random variables {χt,n(x)}nt=1 are independent.

Next, a truncation argument is again used. Let εt,Mn be as in (4.1) and consider the error

variables deÞned by et,Mn = εt,Mn − ρεt−1,Mn. Then terms �g
∗B
j,n(x) are constructed as �g

∗
j,n(x),

but replacing ε1,n with ε1,Mn and et,n with et,Mn, t = 2, . . . , n. Hence, for j = 0, . . . , p,

sup
x∈A

h−jn �g
∗
j,n(x) ≤ sup

x∈A
h−jn

¡
�g∗j,n(x)− �g∗Bj,n(x)

¢
+ sup

x∈A
h−jn �g

∗B
j,n(x) = �Qj,1,n + �Qj,2,n.

For η > 0, the Tchebyshev and Cauchy-Schwartz inequalities lead to

P
³
�Qj,1,n > η

´
≤ sup

x∈A

"
1

nη

¡
1− ρ2

¢µx1,n − x
hn

¶j
Kn (x1,n − x) [P (|ε1,n| > Mn)]

1/2 σe
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+
1

nη

nX
t=2

Ãµ
xt,n − x
hn

¶j
− ρ

µ
xt−1,n − x

hn

¶j!
Kn (xt,n − x) [P (|et| > 2Mn)]

1/2 σe

#
.

Since Mn is increasing, |ε1,n| < Mn and |et,n| < 2Mn almost surely. Hence, using the

Borel-Cantelli Lemma, it is concluded that �Qj,1,n → 0 almost sure as n→∞.

With regard to the almost sure convergence of �Qj,2,n we proceed as in (4.3). Consider γn

intervals Ik,n =
£
x0k,n − ln,x0k,n + ln

¤
covering A. Then

�Qj,2,n = max
1≤k≤γn

sup
x∈A∩Ik,n

h−jn
¯̄
�g∗Bj,n(x)− �g∗Bj,n(x0k,n)

¯̄
+ max

1≤k≤γn

h−jn
¯̄
�g∗Bj,n(x

0
k,n)
¯̄
= �Pj,1,n + �Pj,2,n.

From assumption A.1,

�Pj,1,n ≤ Mn (1− ρ2)Cj
nhn

¯̄̄̄
x0k,n − x
hn

¯̄̄̄
+
2MnCj
nhn

nX
t=2

µ¯̄̄̄
x0k,n − x
hn

¯̄̄̄
(1− ρ) +O

µ
1

nhn

¶¶

= O

µ
Mn

hn

µ
ln
hn
+

1

nhn

¶¶
= O

µ
Mn

γnh2
n

¶
,

and deÞnitions of Mn and γn in A.7
0 allow us to conclude that �Pj,1,n ≤ O

µ
lnn

nhn

¶1/2

.

Thus, only the convergence of �Pj,2,n remains to be studied. For each ε > 0,

P

µ
max

1≤k≤γn

h−jn
¯̄
�g∗Bj,n(x

0
k,n)
¯̄
> ε

¶
= γn sup

x∈A
P

Ã¯̄̄̄
¯
nX
t=1

1

n
χBt,n(x)

¯̄̄̄
¯ > ε

!
, (4.20)

where χBt,n(x) denotes independent random variables deÞned as χt,n(x), but replacing ε1,n

with ε1,Mn and et,n with et,Mn .

From assumptions A.1 and A.70, it is obtained that

¯̄̄̄
1

n
χBt,n(x)

¯̄̄̄
≤ CeMn

nhn
, t = 1, 2, . . . , n, (4.21)

with Ce being a positive constant.
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On the other hand, taking into account the independence of random variables χt,n(x)

and using Proposition 3.2 of (1), one has that

nX
t=1

V ar

µ
1

n
χBt,n(x)

¶
= V ar

¡
h−jn �g

∗B
j,n(x)

¢ ≤ 1

nhn
ν2jf(x)(1− ρ)2σ2

e =
Cv
nhn

, (4.22)

where σ2
e is the variance of et,n.

Using (4.21), (4.22) and the Berstein inequality (Lemma 2), as in (4.18), it is concluded

that

P

Ã¯̄̄̄
¯
nX
t=1

1

n
χBt,n(x)

¯̄̄̄
¯ > ε

!
≤ 2 exp

µ −3nhnε2

6Cv + 2CeMnε

¶
. (4.23)

If the bound in (4.23) is considered in (4.20) and ε = εn = Cε

µ
lnn

nhn

¶1/2

is taken with a

large enough Cε, then Borel-Cantelli�s Lemma leads to

�Pj,2,n = O

µ
lnn

nhn

¶1/2

almost sure,

and the proof of Proposition 6 is completed.

PROOF OF THEOREM 3.

From deÞnitions (1.10) and (1.11),

H(n)

¯̄̄
�~βF,n(x)− �~βG,n(x)

¯̄̄
= H(n)

¯̄̄̄³
X t

(n)
�Ω−1
n X(n)

´−1

X t
(n)
�Ω−1
n
~Y(n) −

¡
X t

(n)Ω
−1
n X(n)

¢−1
X t

(n)Ω
−1
n
~Y(n)

¯̄̄̄
, (4.24)

where the matrices �P t(n)W(n)
�P(n) and P

t
(n)W(n)P(n) have been denoted by �Ω

−1
n and Ω−1

n , re-

spectively. In addition, the dependence on x of all the matrices in (4.24) has been omitted

for simplicity in notation.
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Replacing ~Y(n) with ~M(n) + ~ε(n) and using (2.3), one obtains that

sup
x∈A

H(n)

¯̄̄
�~βF,n(x)− �~βG,n(x)

¯̄̄
≤ Φ1,n + Φ2,n + Φ3,n, (4.25)

where

Φ1,n = sup
x∈A

½
1

(p + 1)!
m(p+1)(x)H(n)

¯̄̄
�C−1

(n)X
t
(n)
�Ω−1
n
~Ux − �C−1

(n)X
t
(n)Ω

−1
n
~Ux

¯̄̄¾
,

Φ2,n = sup
x∈A

n
H(n)

¯̄̄
�C−1

(n)X
t
(n)
�Ω−1
n
~R(n) − �C−1

(n)X
t
(n)Ω

−1
n
~R(n)

¯̄̄o
,

Φ3,n = sup
x∈A

n
H(n)

¯̄̄
�C−1

(n)X
t
(n)
�Ω−1
n ~ε(n) − �C−1

(n)X
t
(n)Ω

−1
n ~ε(n)

¯̄̄o
,

with ~Ux denoting the vector
¡
(x1,n − x)p+1 , . . . , (xn,n − x)p+1¢t.

The three terms on the right hand-side of (4.25) are studied next.

Let X t
(n)
�Ω−1
n
~Ux and X

t
(n)Ω

−1
n
~Ux be denoted by �Cu,n and �Cu,n, respectively. From assump-

tion A.40 follows that

Φ1,n ≤ CMH(n) sup
x∈A

¯̄̄
�C−1

(n)
�Cu,n − �C−1

(n)
�Cu,n

¯̄̄
≤ CMH(n) sup

x∈A

¯̄̄
�C−1

(n)

³
�Cu,n − �Cu,n

´¯̄̄
+ CMH(n) sup

x∈A

¯̄̄³
�C−1

(n) − �C−1
(n)

´
�Cu,n

¯̄̄
= Φ1,1,n + Φ1,2,n,

where CM is a positive real number.

Proposition 4 together with the almost sure convergence of the estimator �ρn (Proposi-

tion 3.4 of (1)) lead to

Φ1,1,n = CM sup
x∈A

¯̄̄̄³
H−1

(n)
�C(n)H

−1
(n)

´−1

H−1
(n)

³
�Cu,n − �Cu,n

´¯̄̄̄

= CM sup
x∈A

³¡
(1− �ρn)2f(x)S + o(1)

¢−1 ¡
(1− ρ)2f(x)~µ+ o(1)¢hp+1

n

´
o(1) = o

¡
hp+1
n

¢
.

(4.26)
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On the other hand, it can be written that

Φ1,2,n = CM sup
x∈A

¯̄̄̄·³
H−1

(n)X
t
(n)

³
�Ω−1
n −Ω−1

n

´
X(n)H

−1
(n) +H

−1
(n)X

t
(n)Ω

−1
n X(n)H

−1
(n)

´−1

−
³
H−1

(n)X
t
(n)Ω

−1
n X(n)H

−1
(n)

´−1
¸
H−1

(n)X
t
(n)Ω

−1
n
~Ux

¯̄̄̄
.

Then, Proposition 4 and Lemma 1 of (1) allow us to deduce that Φ1,2,n ≤ o
¡
hp+1
n

¢
, which

jointly with (4.26) lead to Φ1,n ≤ o (hp+1
n ).

Taking into account the expression of ~R(n) given in (2.2) and using the same arguments

employed previously, it is directly deduced that Φ2,n ≤ o
¡
hp+1
n

¢
.

Finally, the strong consistency of Φ3,n is established as follows:

Φ3,n ≤ sup
x∈A

³
H(n)

¯̄̄
�C−1

(n)X
t
(n)

³
�Ω−1
n −Ω−1

n

´
~ε(n)

¯̄̄´
+ sup

x∈A
H(n)

³¯̄̄³
�C−1

(n) − �C−1
(n)

´
Xt

(n)Ω
−1
n ~ε(n)

¯̄̄´
≤ sup

x∈A

³¯̄̄
H(n)

�C−1
(n)H(n)

¯̄̄ ¯̄̄
H−1

(n)X
t
(n)

³
�Ω−1
n −Ω−1

n

´
~ε(n)

¯̄̄´
+sup
x∈A

³¯̄̄
H(n)

³
�C−1

(n) − �C−1
(n)

´
H(n)

¯̄̄ ¯̄̄
H−1

(n)X
t
(n)Ω

−1
n ~ε(n)

¯̄̄´
= Φ3,1,n + Φ3,2,n.

Now, convergence of both Φ3,1,n and Φ3,2,n are derived by using Propositions 4 and 6,

the strong convergence of �ρn and similar arguments to those employed to establish the

consistency of Φ1,1,n and Φ1,2,n. In particular, it is concluded that Φ3,n ≤ o
µ
lnn

nhn

¶1/2

almost

sure and the proof of (3.10) is stated.
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