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INTRODUCTION

Variability in abundance, distribution and diversity
inevitably involves a hierarchy of spatial and temporal
scales in ecological communities. The availability and
quality of habitats vary between localities on scales
ranging from centimeters to hundreds of kilometers,
affecting abundance and diversity both directly and
indirectly through modification of biotic interactions
(Underwood et al. 2000). The identification of ecologi-
cal assemblages at a particular place and time is a
multivariate problem, where each species is consid-
ered a variable (Anderson & Clements 2000) that must
be solved to determine the structural patterns of the
community over environmental gradients.

Most of the published literature on marine com-
munities uses a purely descriptive observational ap-
proach, lacks a falsificationist approach and is unable

to reveal consistent patterns (see Underwood et al.
2000), thus limiting any conclusions. Although the
designs of marine community surveys are becoming
more rigorous with the development of sampling the-
ory and the wide availability of software packages
for multivariate analysis (e.g. Clarke & Warwick 1994,
Legendre & Legendre 1998, ter Braak & Šmilauer
1998), the main cause of the limitations in marine
community studies is related to the lack of a pro-
cedure enabling selection of the best spatial and/or
temporal model from a set of a priori models in a
matrix of community data. 

Several examples in the scientific literature describe
both spatial and temporal assemblage patterns using
different statistical tests based on the relationships
among different environmental variables and species
abundance (or presence/absence). The most frequent
flaws of these analyses are: 
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(1) The absence of an a priori explicit hypothesis.
The only null hypothesis assumed in a typical direct
gradient analysis is that the species data are unrelated
to the environmental data (Jongman et al. 1995), and
this is insufficient when a set of alternative models is
not rigorously defined and tested. Examples of publi-
cations in which explicit hypotheses were tested are
rare, and in most of the cases studies focus more on
revealing relationships with some environmental vari-
ables (the more the better) than on falsifying a priori
hypotheses. The prevailing method seems to ‘search
for relations with environmental variables, and if you
find a significant one, then endeavors to explain the
ordination patterns and formulate hypotheses’. When
an independent matrix is constructed, then implicitly
(and probably unconsciously) a set of hypotheses is
created to explain them.

(2) Flaws in the selection of a priori hypotheses.
Relationships between the environment and species
are not consistently supported since in most cases the
selected environmental variables do not represent
essential processes (making it impossible to determine
the right response variables necessary to define the
dynamic environment) and provide an inadequate
environmental context. Many of the environmental
variables included in the analyses exhibit collinearity.

(3) Ordination patterns emerge as spurious relation-
ships or statistical artifacts, reflecting more the statisti-
cal procedures employed than ecological causality.
The statistical methods invariably generate patterns
from the species environment matrix relations that
falsify the null hypothesis. In many cases they do not
allow successful inferences about patterns and eco-
logical processes to be drawn. 

(4) The arbitrary selection method. Different ordina-
tion and classification methods may give different
results when used to model the same data set (Ander-
son & Clements 2000), indicating the need for a set
of alternative assemblage models and a validation
method. Models should be used as a key tool, ‘con-
fronting hypotheses with data’ in a model validation
strategy (Hilborn & Mangel 1997).

Information-theoretic methods avoid the above
problems. They comprise a statistical methodology for
the definition and selection of an a priori set of alterna-
tive hypotheses (expressed as models), rather than a
simple statistical test of a null hypothesis (Burnham &
Anderson 1998, Anderson et al. 2000). This approach
estimates the formal likelihood of each model and the
rank of each hypothesis (a measure of precision that
incorporates model selection uncertainty), and pro-
vides simple methods for integrating alternative mod-
els when making inferences (Anderson et al. 2000).
Here we propose a procedure based on the informa-
tion-theoretic approach that utilizes the output of uni-

modal methods of multivariate analysis (ter Braak &
Šmilauer 1998) to analyze competing a priori models of
the spatial and temporal organization of marine com-
munities and to select the most parsimonious model.
Parsimonious models achieve a proper tradeoff
between bias and variance, and all model selection
methods are based to some extent on the principle of
parsimony (Burnham & Anderson 1998).

METHODS

Procedure for model formulation and selection.
The proposed procedure consists of 3 steps:

(1) Definition of a set of a priori models: The defini-
tion of the universe of probable models would be ideal.
However, usually the available data on the community
concerned are insufficient to develop a solid set of
hypotheses. A clear theoretical concept of the possible
ecological patterns in the data set should be estab-
lished using alternative models and reflected on the
codification of the matrix of independent variables.
Codification based on dummy variables (see ter Braak
& Šmilauer 1998, Legendre & Anderson 1999, Ander-
son & Clements 2000) allows the construction of the
matrices to reflect the expected grouping of sampling
statistics in various alternative configurations of time,
space and other experimental factors and their inter-
actions. 

(2) Statistical fit of models to data: In the example
presented in this paper, we used canonical correspon-
dence analysis (CCA) (ter Braak & Šmilauer 1998) to
measure the fit of the model to data by means of the
trace of each tested model. Other analyses such as
redundancy analysis or detrended CCA could be used
to measure the information extracted to data. 

Direct gradient analysis is one of the methods most
frequently used to assess assemblage variability and to
test the statistical significance of the effect of environ-
mental variables on community structure (ter Braak &
Šmilauer 1998). Direct gradient analysis incorporates
information about the environment into the analysis of
multivariate species data (ter Braak 1994) and deter-
mines the main patterns in the relationships between
species abundance and independent variables. One of
the most common implementations of the direct gra-
dient techniques is CCA (usually using the software
CANOCO; ter Braak 1996), which selects the linear
combinations of environmental variables that maxi-
mize the dispersion of the species scores. CCA com-
bines the concepts of ordination and regression
(Legendre & Legendre 1998), and data on species
composition are represented by a Gaussian response
model in which the explanatory variable is a linear
combination of the environmental variables. The key
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assumption is that the response model is unimodal,
even though CCA is extremely robust when this
assumption does not hold (Jongman et al. 1995).

The statistical significance of the relationship be-
tween the species matrix and the set of environmental
variables is assessed in the CANOCO package using
Monte Carlo permutation tests. The statistical test is an
F-ratio of the sum of all canonical eigenvalues and the
residual sum of squares (RSS). This test is highly sensi-
tive to all manner of deviations from the null hypothe-
sis (ter Braak & Šmilauer 1998), which assumes the
non-significance of relationships between the a priori
environmental variables and the species matrix. In
other words, each permutation of the samples in the
species data is equally likely. The design of the
hypotheses to be tested using permutation tests
involves the construction of a matrix with quantitative
and/or binary environmental variables, or the defini-
tion of matrices of the analysis of variance type, where
either single or several classification factors and their
interactions are included and recorded as dummy
variables (Legendre & Legendre 1998). A multivariate
analog of the univariate RSS is:

(1)

where h is the number of factors in the model (Le-
gendre & Anderson 1999).

(3) Selection of the best model: The best model
among competing multivariate models is determined
by a parsimonious procedure called the Akaike infor-
mation criterion (AIC). If we presume that in a direct
gradient analysis each environmental variable extracts
a fraction of the total variability in the data (including
environmental variables constructed by a random
process), a model that considers more variables (and
therefore, in our case, more groups of sampling sta-
tions) has to extract more variability. In the extreme
case, we could codify each sampling station as one
separate group, in which case a CCA would approxi-
mate a correspondence analysis (CA) (ter Braak &
Šmilauer 1998). The principle of parsimony is defined
as the tradeoff between variance (uncertainty) and the
number of estimable parameters (groups in an ordina-
tion model) in the model (Burnham & Anderson 1998).

Akaike information criterion. Akaike (1973) intro-
duced his entropy maximization principle as a theoret-
ical basis for model selection and found a simple rela-
tionship between the Kullback-Liebler (K-L) distance
(or information) and Fisher’s maximized log-likelihood
function (Burnham & Anderson 1998). This relation-
ship leads to a simple, effective and very general
methodology for selecting a parsimonious model for
the analysis of empirical data called the AIC. The K-L
distance can be conceptualized as a direct distance

between 2 models (Kullback 1959); it is also considered
a discrepancy measure (Burnham & Anderson 1998).

The true statistical sampling distribution of the data
is established by ƒ(x) and the model by g(x |θ) (with a
known form but generally unknown parameters,
denoted by θ). The K-L discrepancy then is:

(2)

The K-L discrepancy is deeply rooted in information
theory and is by no means an arbitrary choice of metric
here. Essentially, l (ƒ,g) is a unique metric to use in the
context of maximum likelihood theory (Anderson et al.
1994). Akaike (1973) found a relationship between the
K-L discrepancy and an expected log-likelihood, and
this finding has allowed major practical and theoretical
advances in model selection and the analysis of com-
plex data sets (Burnham & Anderson 2001). The maxi-
mized log-likelihood is a biased estimator of this ex-
pected log-likelihood, and the asymptotic bias equals
K, the number of free parameters in the model (Akaike
1973); hence,

(3)

This has become known as Akaike’s information cri-
terion, or AIC, and it enables the combination of esti-
mation and model selection under the single theoreti-
cal framework of optimization (Anderson et al. 2000). A
simple transformation of the estimated RSS allows the
value of log [L(θ̂)] to be obtained using least-squares
estimation with normally distributed errors rather than
the likelihood method. For all standard linear models,
we can take:

(4)

where log = loge, n is sample size and σ̂2 = RSS/n
(Burnham & Anderson 1998). To avoid the bias in AIC
estimates due to the relationship between number of
parameters and sample size, Sugiura (1978) derived a
secondary variant of AIC:

(5)

AICc (Aikaike information criterion corrected) is
used when the ratio n/K <40. As AICc is measured on a
relative scale, Burnham & Anderson (1998) recom-
mended the computation of the AIC (∆i) differences
rather than the AIC values for all candidate models in
the set:

∆i =  AICi – minAIC (6)

Such differences estimate the expected relative K-L
differences between ƒ and gi(x |θ̂). In order to get a bet-
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ter measurement of the plausibility of each model as
being the actual K-L model, Akaike (1983) proposed
exp(–1⁄2∆i) as being the relative likelihood of the model.
Burnham & Anderson (1998) normalized Eq. (6) to a set
of positive Akaike weights (wi) summing 1:

(7)

As ∆i becomes larger, wi becomes smaller and it
becomes increasingly less probable that Model i is
the best K-L model based on the design and sample
size used. 

Ecological example of the procedure. The data used
for the application of the proposed procedure were
from experimental fishing cruises with a shrimp
trawler on in the inner continental shelf of the Mexican
central Pacific (see Godínez-Domínguez & González-
Sansón 1998 for details of the study area). The strati-
fied experimental design was chosen to analyze spa-
tial patterns of macroinvertebrate assemblages. Five
cruises (named DEM 1 to 5) were conducted aboard
the RV ‘BIP-V’ of the University of Guadalajara,
Mexico, and covered the different hydroclimatic and
fishing seasons. The main sea surface currents define 3
seasons: the California Current (CC) (the subtropical-
temperate affinity period), the North Equatorial
Counter-Current (NCC) (the tropical affinity period),
and a transition (the transition period) between these 2
currents in which neither dominates. Seven sites along
the coast were sampled during each cruise at 4 depths
(20, 40, 60 and 80 m at each site), making a total of
28 sampling stations per cruise.

Two main sources of spatial variability in community
structure are proposed as basic a priori hypotheses:
depth and spatial variability along the coast due to the
alternation of sheltered and exposed areas. A set of
possible models describing the spatial organization of
the community was defined (Models s1 to s8; Fig. 1).
The models reflect the existence of effects on commu-
nity organization of the depth gradient, exposure level
and the interaction of both these factors. The interac-
tion between these 2 factors was included to examine
the possibility that only in shallow waters was the
effect of exposure (through waves, tides and input of
freshwater) critical. The selection of a spatial model
was carried out independently for each cruise.

For the temporal analysis, several alternative models
were tested, from the absence of seasonality to a sea-
sonal pattern determined by the main hydroclimatic
coastal processes. Temporal patterns in species assem-
blages were analyzed using a matrix that included data
from all cruises, and no spatial structure was included
in these models. The models had the following designs: 

Model t1: community organization was similar on
the cruises (DEM 1 = 2 = 3 = 4 = 5). Model t2: commu-
nity organization is different in each cruise (DEM 1 ≠
2 ≠ 3 ≠ 4 ≠ 5). Model t3: community organization
changed seasonally according to the hydrographic
structure: transition period ≠ tropical period ≠ sub-
tropical-temperate period (DEM 1 and 4) ≠ (DEM 2 and
5) ≠ (DEM 3). Model t4 (constructed in accordance with
the results of the selection of the spatial models): tran-
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Fig. 1. Schematic representation of the different models of
spatial community organization based on 3 basic hypotheses:
(1) Effect of depth gradient; 3 levels of effects are proposed:
(i) no effect; (ii) differences among all the depth strata; (iii) dif-
ferences between the shallow (20 and 40 m) and deep (60 and
80 m) strata (previous data indicated an important ecological
discontinuity between 40 and 60 m; Godínez-Domínguez et
al. unpubl data). (2) Degree of exposure (alongshore variabil-
ity), with 2 levels of effects: (i) no effect; (ii) differences
between exposed and sheltered areas. (3) Interaction be-
tween depth and exposure; some models include possi-
bility that exposure is only effective in shallow waters. In the
diagram, each box represents samples with homogeneous 

community structure
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sition period ≠ tropical period + subtropical-temperate
period (DEM 1 and 4) ≠ (DEM 2,5 and 3).

CCAs with non-transformed species abundance data
(organisms ha–1) were performed for each cruise, car-
rying out a run for each spatial model tested and intro-
ducing a dummy variable coded file as environmental
matrix. File codifications (Fig. 2, Table 1) should
include 1 nominal variable for each box in the model
(sample group with homogeneous community struc-
ture). This codification scheme produces a last class or
category that is always collinear with the preceding
classes; however this does not affect the ordination
results (ter Braak & Šmilauer 1998). The sum of all
unconstrained eigenvalues and the sum of all canoni-
cal eigenvalues are used to estimate the RSS. The
number of variables coded or groups in the model
tested were considered as the number of parameters,
K, in the estimation of the AIC.

RESULTS AND DISCUSSION

The permutation tests (Table 2)
show that it is possible for the same
species data set to obtain a signifi-
cant fit to several spatial models, and
that in several cases the ecological
support of some of these models can
vary substantially. Thus, an alter-
native objective criterion for model
selection appears to be necessary.
AIC results (Table 3) indicated that
during Cruises DEM 1 and 4 (hydro-
climatic transition period) the best
model was s2 (effect of depth differ-
entiating shallow and depth strata),
and during Cruises DEM 2, 5 (tropi-
cal period) and 3 (subtropical-
template period), s5 (differentiating
4 depth strata) was the best model.
Effect of exposure was not included
in any of the models selected. For
Cruise DEM 1, Models s2 to s8 were
statistically significant (permutation
tests, p < 0.05); Models s2 to s8 were
statistically significant (permutation
tests, p < 0.05). Models s3 and s4,
which included an interaction be-
tween depth and exposure, were
ranked 2nd and 4th respectively.
Statistically all the tested models
showed a significant fit except
Model s1. For Cruises DEM 2 and 3,
all the tested models were signifi-
cant (except Model s1 for DEM 2 and

21

Fig. 2. Study area and sampling stations (Stns 1 to 28)

Table 1. Environmental characteristics (depth and degree of exposure) of sampling
stations, and examples of the codification scheme used to represent the spatial mod-
els (here Models s1 and s6 are shown as contrasting examples). Environmental
variables are dummy variables that define each group of sampling stations (boxes
in Fig. 1) with homogeneous community structure. Sh: sheltered; Ex: exposed

Stn Spatial features Model s1 Model s6
Depth Exposure Sh Ex 20and 60 m 80 m 60 m 80 m

40 m Sh Sh Ex Ex

1 20 Ex 0 1 1 0 0 0 0
2 40 Ex 0 1 1 0 0 0 0
3 60 Ex 0 1 0 0 0 1 0
4 80 Ex 0 1 0 0 0 0 1
5 20 Sh 1 0 1 0 0 0 0
6 40 Sh 1 0 1 0 0 0 0
7 60 Sh 1 0 0 1 0 0 0
8 80 Sh 1 0 0 0 1 0 0
9 20 Sh 1 0 1 0 0 0 0
10 40 Sh 1 0 1 0 0 0 0
11 60 Sh 1 0 0 1 0 0 0
12 80 Sh 1 0 0 0 1 0 0
13 20 Ex 0 1 1 0 0 0 0
14 40 Ex 0 1 1 0 0 0 0
15 60 Ex 0 1 0 0 0 1 0
16 80 Ex 0 1 0 0 0 0 1
17 20 Sh 1 0 1 0 0 0 0
18 40 Sh 1 0 1 0 0 0 0
19 60 Sh 1 0 0 1 0 0 0
20 80 Sh 1 0 0 0 1 0 0
21 20 Ex 0 1 1 0 0 0 0
22 40 Ex 0 1 1 0 0 0 0
23 60 Ex 0 1 0 0 0 1 0
24 80 Ex 0 1 0 0 0 0 1
25 20 Ex 0 1 1 0 0 0 0
26 40 Ex 0 1 1 0 0 0 0
27 60 Ex 0 1 0 0 0 1 0
28 80 Ex 0 1 0 0 0 0 1
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Model s6 for DEM 3). All DEM 4 spatial models tested
were not significant, and for Cruise DEM 5 a signifi-
cant fit was obtained for Model s5. 

Spatial hierarchical patterns in the assemblage dis-
tribution are evident from our results. With the proce-
dure proposed, it is possible not only to determine the
best model but to rank the different hypotheses
according to parsimonious criteria, avoiding the cur-
rent trend to determine only 1 spatial model which is
inferred in most cases from the graphical CCA output
display. AIC is useful not only as an effective selection
model tool, but also to rank hierarchical spatial pat-
terns, which add an alternative non-disjunctive per-
spective to assemblage analysis, in contrast to other
conventional procedures that use only 1 implicit model
and ignore other hierarchical patterns in a community.
This is illustrated by Cruises DEM 1, 2, and 3, for which
a wide range of models adequately fit the data (Models
s2 to s8): any of these models can be presented as a
‘true model’ if a selection procedure is not applied. 

The analysis of temporal models showed that the
more complex model (Model t2) (according to the num-
ber of parameters) was the best model based on the
AIC procedure (Table 4). This indicates that commu-
nity structure was different for each cruise, with no
grouping by hydroclimatic similarity, despite the fact

that some cruises had the same spatial structure.
Model t3, which grouped cruises by hydroclimatic sea-
sons, was statistically significant, and was ranked third
according to its AIC value after Models t2 and t4
(similar community structure in all cruises). Permuta-
tion tests of the CCA (Table 5) showed that Models t2
and t3 were both statistically significant (p < 0.05),
although both indicated contrasting patterns of com-
munity organization (similarity among cruises vs
grouping by hydroclimatic season).

The hierarchical spatial structure was determined by
the relationship between the 2 main physiographic
traits of a coastal shelf-depth and exposure gradients.
The selected models illustrate how the AIC methods
apply the parsimony principle, leading to a model that
incorporates the smallest possible number of para-
meters required for adequate representation of the
data. Following this principle the ‘true model’ achieves
a successful tradeoff between bias and variance (Burn-
ham & Anderson 1998). Development of an a priori
set of candidate models should include a global model,
i.e. a model that has many parameters and includes
all potentially relevant effects (in our case Model s8).
Models with fewer parameters can then be derived
by modifications to the global model (Burnham &
Anderson 1998).
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Table 2. Results of permutation tests of canonical correspondence analysis (CCA) to determine significance of relationship 
between species and fitted spatial models

Cruise Spatial Model
s1 s2 s3 s4 s5 s6 s7 s8

DEM 1
Total inertia 2.857 2.857 2.857 2.857 2.857 2.857 2.857 2.857
Trace 0.065 0.652 0.821 0.865 0.979 1.058 1.242 1.408
p-value, first canonical axis 0.001 0.001 0.001 0.001 0.001 0.001
p-value, global test 0.814 0.001 0.001 0.001 0.001 0.001 0.001 0.001

DEM 2
Total inertia 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556
Trace 0.284 0.497 0.797 1.081 1.503 1.094 1.940 2.444
p-value, first canonical axis 0.006 0.011 0.001 0.043 0.001 0.001
p-value, global test 0.529 0.001 0.001 0.002 0.001 0.023 0.001 0.001

DEM 3
Total inertia 4.812 4.812 4.812 4.812 4.812 4.812 4.812 4.812
Trace 0.204 0.489 0.657 0.890 1.251 0.955 1.520 2.046
p-value, first canonical axis 0.006 0.004 0.001 0.150 0.010 0.108
p-value, global test 0.333 0.001 0.009 0.008 0.001 0.128 0.007 0.006

DEM 4
Total inertia 2.550 2.550 2.550 2.550 2.550 2.550 2.550 2.550
Trace 0.047 0.082 0.119 0.155 0.419 0.514 0.590 0.653
p-value, first canonical axis 0.560 0.790 0.050 0.163 0.190 0.324
p-value, global test 0.774 0.082 0.620 0.830 0.077 0.179 0.140 0.437

DEM 5
Total inertia 4.455 4.455 4.455 4.455 4.455 4.455 4.455 4.455
Trace 0.036 0.213 0.225 0.367 0.981 0.402 1.157 1.479
p-value, first canonical axis 0.530 0.394 0.001 0.858 0.001 0.011
p-value, global test 0.986 0.225 0.742 0.704 0.003 0.852 0.053 0.140
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According to the AIC values for each cruise, depth is
the most recognizable gradient in the spatial distribu-
tion of macrofaunal assemblages. The main bathy-
metric discontinuity lies between 40 and 60 m. Degree
of exposure constitutes a secondary gradient, and is

only relevant for shallow waters. The main problem of
conventional analyses is that they can introduce bias
toward the most obvious gradients, while other less
evident, but potentially important sources of variation
can remain undetected. Using the AIC procedure,
hierarchical patterns appear as layers in a scale-
dependent resolution framework.
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Table 3. Results of procedure applied for selection of spatial models using Akaike information criterion. Shaded columns indicate
most parsimonious model. n = 28 sampling stations on all cruises. RSS: residual sum of squares; AICc: Akaike information crite-

rion corrected; w: Akaike weights

Table 4. Results of procedure applied for selection of temporal
models using Akaike information criterion (K: no. of para-
meters; n: sample size; AICc: Akaike information criterion
corrected; RSS: residual sum of squares; w : Akaike weights)

Parameter Temporal Model
000t1 000t3 000t3 000t4

K 0001 0003 0005 0002
n 000140 000140 000140 000140
Total inertia 0006.218 0006.218 0006.218 0006.218
Trace 0000.000 0000.180 0000.410 0000.058
RSS/n 0000.044 0000.043 0000.041 0000.044
AICc –433.958 –433.923 –435.089 –433.212
w 0000.226 0000.222 0000.397 0000.155

Table 5. Results of permutation tests of canonical correspon-
dence analysis (CCA) to determine significance of relation-
ship between species and fitted temporal models. CCA of
Temporal Model t1 was not carried out because this model
assumes an ordination of only 1 group and the trace should 

approximate zero

Temporal Model
t2 t3 t4

Total inertia 6.218 6.218 6.218
Trace 0.410 0.180 0.058
p-value first canonical axis 0.001 0.008
p-value global test 0.001 0.013 0.165

Cruise Spatial Model
s1 s2 s3 s4 s5 s6 s7 s8

DEM 1
Total inertia 2.857 2.857 2.857 2.857 2.857 2.857 2.857 2.857
Trace 0.065 0.652 0.821 0.865 0.979 1.058 1.242 1.408
RSS/n 0.100 0.079 0.073 0.071 0.067 0.064 0.058 0.052
AICc –60.072 –66.681 –66.394 –64.267 –65.917 –64.132 –63.880 –59.338
w 0.011 0.291 0.252 0.087 0.199 0.081 0.072 0.007

DEM 2
Total inertia 4.556 4.556 4.556 4.556 4.556 4.556 4.556 4.556
Trace 0.284 0.497 0.797 1.081 1.503 1.094 1.940 2.444
RSS/n 0.153 0.145 0.134 0.124 0.109 0.124 0.093 0.075
AICc –48.163 –49.596 –49.225 –48.686 –52.311 –45.803 –50.376 –48.789
w 0.053 0.109 0.091 0.069 0.425 0.016 0.162 0.073

DEM 3
Total inertia 4.812 4.812 4.812 4.812 4.812 4.812 4.812 4.812
Trace 0.204 0.489 0.657 0.890 1.251 0.955 1.520 2.046
RSS/n 0.165 0.154 0.148 0.140 0.127 0.138 0.118 0.099
AICc –46.043 –47.831 –46.421 –45.298 –48.001 –42.778 –43.940 –41.236
w 0.116 0.283 0.140 0.080 0.308 0.023 0.040 0.010

DEM 4
Total inertia 2.550 2.550 2.550 2.550 2.550 2.550 2.550 2.550
Trace 0.047 0.082 0.119 0.155 0.419 0.514 0.590 0.653
RSS/n 0.089 0.088 0.087 0.086 0.076 0.073 0.070 0.068
AICc –63.132 –63.526 –61.429 –59.108 –62.378 –60.667 –58.459 –51.795
w 0.259 0.316 0.111 0.035 0.178 0.076 0.025 0.001

DEM 5
Total inertia 4.455 4.455 4.455 4.455 4.455 4.455 4.455 4.455
Trace 0.036 0.213 0.225 0.367 0.981 0.402 1.157 1.479
RSS/n 0.158 0.152 0.151 0.146 0.124 0.145 0.118 0.106
AICc –47.216 –48.361 –45.92000 –44.137 –48.694 –41.390 –43.889 –39.187
w 0.170 0.302 0.089 0.037 0.357 0.009 0.032 0.003

K (no. of parameters) 2 2 3 4 4 5 6 8
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