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En primer lugar me gustaŕıa manifestar mi agradecimiento a mi directora de tesis, Adriana

Dapena. Gracias por todo lo que me has enseñado, por guiarme, apoyarme y motivarme
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y guió en la realización del mismo en plazos tan ajustados. Dani, gracias por hacer

siempre un ambiente mejor en todas las reuniones de grupo y departamento, y ayudarme

en la impartición de materias. Cris, gracias, contigo el departamento y el grupo ha

cambiado mucho desde que llegaste, nos has hecho más fácil y divertido el d́ıa a d́ıa, y
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Resumen

En este trabajo se realiza un estudio de técnicas de separación ciega de fuentes para la

estimación de los coeficientes en sistemas de transmisión que emplean la codificación de

Alamouti con 2 antenas transmisoras y 1 antena receptora. La mayoŕıa de los estándares

actuales incluyen śımbolos piloto para estimar el canal en recepción. Dado que estos

śımbolos no transportan datos del usuario, su utilización decrementa la tasa de transfe-

rencia y degrada el rendimiento del sistema. Por otro lado, los algoritmos de separación

ciega son menos precisos en la estimación de los coeficientes de canal que los supervisados

pero consiguen una tasa de transferencia mayor.

En el presente trabajo, modelaremos el sistema de codificación de Alamouti como

un problema t́ıpico de separación ciega de fuentes donde las señales transmitidas y los

coeficientes del canal deben ser estimados a partir de mezclas lineales e instantáneas (ob-

servaciones). La estructura ortogonal impuesta por la codificación de Alamouti permite

resolver este problema mediante la descomposición de autovalores y autovectores de ma-

trices calculadas a partir de diferentes estad́ısticos de las observaciones. Estos algoritmos

pueden ser clasificados en aquellos que utilizan estad́ısticos de segundo orden y aquellos

que emplean estad́ısticos de orden superior.

Los algoritmos que emplean estad́ısticos de segundo orden trabajan con la matriz de

correlación de las observaciones, son computacionalmente poco costosos pero requieren de

un precodificador lineal para descompensar la potencia de las señales transmitidas. Una

de nuestras aportaciones es la de determinar de forma emṕırica cómo debe realizarse la

descompesación de potencia de cara a reducir la probabilidad de error del sistema.

Por otro lado, los algoritmos que trabajan con estad́ısticos de orden superior se basan

en diagonalizar una o varias matrices de cumulantes de orden superior, lo que conlleva

un mayor coste computacional en el receptor. Como ventaja debe resaltarse que no

requieren incluir un precodificador lineal que realice la descompensación de potencia.

En este trabajo mostraremos que el rendimiento de estas técnicas depende del grado de
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dispersión de los autovalores de la matriz que se diagonaliza. Utilizaremos esta idea para

obtener la matriz de cumulantes óptima y para formular un nuevo algoritmo que supera

en rendimiento a los propuestos previamente por otros autores.

Otra aportación relevante del presente trabajo es presentar una detallada comparación

de las técnicas de estimación de canal en entornos simulados, considerando canales con

ditribución Rayleigh y Rice, y en entornos reales en la banda ISM de 2.4 GHz mediante

el empleo de una plataforma de transmisión MIMO desarrollada en la Universidade da

Coruña.



Summary

This work is based on a study of blind source separation techniques in order to estimate

coefficients in transmission systems using Alamouti codification with two transmit anten-

nas and one receive antenna. Most of present standards include pilot symbols to estimate

the channel in reception. Since these symbols do not deliver user’s data, their use decrease

transferring quantity and also the system capacity. On the other hand, algorithms of blind

separation are less precise when estimating channel coefficients than those supervised, but

achieving a higher transferring rate.

In this work we will deal with Alamouti codification system as a typical problem of

blind sources separation where the signals transmitted and the channel coefficients must

be estimated according to lineal and instantaneous mixtures (observations). Orthogonal

structure required by Alamouti codification allows us to solve this problem by decom-

posing eigenvalues and eigenvectors of matrices calculated from different statistics of the

observations. These algorithms could be classified as those using second order statistics

and those using higher order statistics.

Algorithms based on second order statistics work with correlation matrix of observa-

tions. They are computationally less expensive, but require a lineal precoder in order to

balance the power of the signals transmitted. One of our contributions is being able to

determine in an empirical way how the power decompensation should be done in order to

reduce the proabibility of error in the system.

On the other hand, algorithms dealing with high level statistics are based on diagonal-

ize one or several high level cumulant matrices deriving into a major computational cost

in the receiver. As an advantage we must point out that they do not require to include

a lineal precoder to do the power decompensation. In this work we will prove that the

output of these techniques depends on the level of eigenvalue of the diagonalized matrix

spreading. This idea will be used by us in order to achieve the optimal cumulant matrix

and also to propose a new algorithm that increases the output in relation to those already
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proposed by other authors.

Another important contribution of this present study is to propose a detailed compar-

ison between channel estimation techniques in simulated scenarios, considering channels

with Rayleigh and Rice distribution, and in real scenarios in ISM of 2.4 GHz band, by

using a MIMO testbed developed in Universidade da Coruña.



1. Resumen

En la tesis se realiza un estudio de técnicas de separación ciega de fuentes para la es-

timación de los coeficientes en sistemas de transmisión que emplean la codificación de

Alamouti con 2 antenas transmisoras y 1 antena receptora. La mayoŕıa de los estándares

actuales incluyen śımbolos piloto para estimar el canal en recepción. Dado que estos

śımbolos no transportan datos del usuario, su utilización decrementa la tasa de transfe-

rencia y degrada el rendimiento del sistema. Por otro lado, los algoritmos de separación

ciega son menos precisos en la estimación de los coeficientes de canal que los supervisados

pero consiguen una tasa de transferencia mayor.

Nosotros modelaremos el sistema de codificación de Alamouti como un problema t́ıpico

de separación ciega de fuentes donde las señales transmitidas y los coeficientes del canal

deben ser estimados a partir de mezclas lineales e instantáneas (observaciones). La estruc-

tura ortogonal impuesta por la codificación de Alamouti permite resolver este problema

mediante la descomposición de autovalores y autovectores de matrices calculadas a partir

de diferentes estad́ısticos de las observaciones. Estos algoritmos pueden ser clasificados

en aquellos que utilizan estad́ısticos de segundo orden y aquellos que emplean estad́ısticos

de orden superior.

Los algoritmos que emplean estad́ısticos de segundo orden trabajan con la matriz de

correlación de las observaciones, son computacionalmente poco costosos pero requieren de

un precodificador lineal para descompensar la potencia de las señales transmitidas. Una

de nuestras aportaciones es la de determinar de forma emṕırica cómo debe realizarse la

descompensación de potencia de cara a reducir la probabilidad de error del sistema.

Por otro lado, los algoritmos que trabajan con estad́ısticos de orden superior se basan

en diagonalizar una o varias matrices de cumulantes de orden superior, lo que conlleva un

mayor coste computacional en el receptor. Como ventaja debe resaltarse que no requieren

incluir un precodificador lineal que realice la descompensación de potencia. En la tesis

mostraremos que el rendimiento de estas técnicas depende del grado de dispersión de los



autovalores de la matriz que se diagonaliza. Esta idea será utilizada por nosotros para

obtener la matriz de cumulantes óptima y para formular un nuevo algoritmo que supera

en rendimiento a los propuestos previamente por otros autores.

Otra aportación relevante del trabajo es el presentar una detallada comparación de

las técnicas de estimación de canal en entornos simulados, considerando canales con dis-

tribución Rayleigh y Rice, y en entornos reales en la banda ISM de 2.4 GHz, mediante

el empleo de una plataforma de transmisión MIMO desarrollada en la Universidade da

Coruña.

2. Metodoloǵıa

El primer paso en la elaboración de la tesis ha sido la revisión de la bibliograf́ıa existente

en el ámbito de la separación ciega de fuentes y en el ámbito de transmisión sobre canales

MIMO. Se han estudiado los algoritmos más importantes de separación ciega de fuentes,

realizándose su implementación y se ha comprobado su funcionamiento en los entornos de

procesado de imagen, procesado de audio y comunicaciones digitales. De forma paralela,

se han estudiado los sistemas que trabajan con canales MIMO y se han implementado y

utilizado los tradicionales métodos de estimación de canal para los mismos.

Posteriormente, se han estudiado las aplicaciones existentes de separación ciega de

fuentes para la estimación de canal en sistemas MIMO que utilizan OSTBC (del inglés,

Orthogonal Space-Time Block Codes). En un paso siguiente, estos algoritmos han sido

particularizados para los sistemas que emplean la codificación de Alamouti con 2 antenas

transmisoras y 1 antena receptora. Además, se han desarrollado nuevos algoritmos que

utilizan estad́ısticos de segundo orden y nuevos algoritmos que emplean estad́ısticos de

orden superior.

Se ha hecho una comparativa de rendimiento, mediante simulaciones de ordenador,

entre los algoritmos existentes y los nuevos realizando la transmisión por canales que



siguen distribuciones Rayleigh y distribuciones Rice.

Para obtener una mayor representatividad de los resultados obtenidos, el funcionamiento

de los algoritmos ha sido cotejado en un entorno interior de transmisión real de 2.4 GHz,

mediante una plataforma desarrollada por el Grupo de Tecnoloǵıa Electrónica y Comuni-

caciones (GTEC) de la Universidade da Coruña. Se han utilizado dos tipos de escenarios:

con visión de ĺınea directa y sin visión de ĺınea directa. Los resultados indican el adecuado

funcionamiento de los nuevos algoritmos desarrollados.

Los canales obtenidos han sido sometidos a un contraste estad́ıstico para determinar

su correspondencia con una determinada distribución.

Finalmente, se han obtenido las conclusiones y las posibles ĺıneas futuras del trabajo

realizado.

3. Conclusiones y Aportaciones

El principal objetivo de este trabajo es estudiar y comparar diferentes tipos de técnicas,

basadas en la descomposición de autovectores y autovalores, para la estimación de la

matriz y de canal (y la recuperación de las señales transmitidas) en sistemas de comuni-

caciones que emplean la codificación de Alamouti con 2 antenas transmisoras y 1 antena

receptora.

La ortogonalidad que imponen los OSTBC ha sido utilizada para diseñar algoritmos

espećıficos que estimen los parámetros de canal calculando los autovalores y autovectores

de una matriz formada por estad́ısticos calculados a partir de las observaciones, esto es,

calcular una EVD (del inglés, Eigenvalue Decomposition). En la tesis se clasifican estos

algoritmos en dos clases teniendo en cuenta el tipo de estad́ısticos que se utilizan en la

estimación de la matriz: métodos SOS (del inglés, Second Order Statistics) y métodos

HOS (Higher Order Statistics).



El funcionamiento de los métodos basados en SOS radica la diagonalización de la

matriz de correlación de las observaciones. Hemos mostrado que la matriz de canal puede

ser identificada solo cuando las señales transmitidas tienen diferente varianza. En la tesis,

se han estudiado diferentes métodos alternativos para evitar esta limitación. El primero

de ellos, ha sido el propuesto por Shahbazpanahi y otros. Estos autores mostraron que

la estimación de canal basada en SOS para la codificación de Alamouti puede realizarse

mediante una simple matriz que actúe como precodificador lineal, escogida de forma que

garantice que los autovalores de la matriz de autocorrelación tendrán orden 1, lo cuál puede

obtenerse utilizando una simple matriz de precodificación situada antes de la esquema

de codificación de Alamouti. En este sentido, Vı́a y otros han propuesto implementar

esta procedimiento basado en SOS considerando una representación “real” en lugar de

“compleja” del esquema de codificación de Alamouti. En la tesis hemos derivado una

simple implementación de este algoritmo empleando notación de “complejos”.

Otra importante contribución de la tesis es la presentación de los resultados de simula-

ciones obtenidos en diferentes escenarios que nos permiten determinar de forma emṕırica

la matriz óptima de precodificación que ha de ser usada para los métodos SOS. Nuestros

resultados de simulación muestran que el método SOS que emplea el parámetro óptimo

de descompensación proporciona un adecuado rendimiento medio, aunque existe una con-

secuencia inmediata y no deseada: la descompensación proporcionada por el paso de

precodificación, la tasa de error para una de las dos señales puede ser considerablemente

incrementada.

Para los métodos basados en HOS se considera la diagonalización de una matriz for-

mada por cumulantes de 4o orden. Esta idea fue propuesta inicialmente por Beres y otros.

Los autores proponen emplear una matriz que utiliza un número reducido de cumulantes

de 4o orden. Mostramos que el rendimiento de este método puede mejorarse haciendo una

selección más adecuada de los cumulantes de 4o orden utilizados. De hecho, se obtiene una

mejora sustancial cuando la matriz diagonalizada se calcula a partir de las combinación

lineal de los cumulantes de 4o orden empleados por Beres y otros.



La contribución más importante de la tesis es la obtención de una forma cerrada para

la matriz óptima de cumulantes de 4 orden que maximiza la dispersión de los autovalores.

Nuestros análisis muestran que la matriz óptima depende de un parámetro γ, cuyos valores

han de ser calculados considerando el valor concreto de los coeficientes de canal. Los

resultados de las simulaciones verifican que el rendimiento de este método coincide con el

rendimiento obtenido cuando el receptor conoce perfectamente los parámetros de canal.

Hemos determinado también, una sencilla forma de estimar el parámetro γ mediante los

cumulantes de 4 orden de las observaciones, pero, desafortunadamente se ha observado

una degradación del rendimiento para altas SNR debido a los errores de estimación.

Otra importante contribución es el proponer un método subóptimo que selecciona

la matriz con mayor dispersión de autovalores entre un conjunto de dos matrices. Este

método presenta un rendimiento satisfactorio comparándolo con otras técnicas basadas en

SOS o HOS. Por lo tanto, el método subóptimo es adecuada para su implementación real

en FPGAs y DSPs: calcula pocos cumulantes y diagonaliza una matriz 2x2. Además, el

parámetro γ es simplemente utilizado como umbral en el método subóptimo, haciéndolo

menos sensible a errores de estimación.

El comportamiento de los métodos basados en SOS y HOS ha sido evaluado me-

diante simulaciones de ordenador considerando canales con distribución Rayleigh y dis-

tribución Rice y en escenarios de interior realistas empleando una plataforma MIMO.

Esta plataforma MIMO, configurada como un sistema con 2 antenas transmisoras y 2

receptora, ha sido diseñada para operar en la banda de 2.4 GHz ISM con el objetivo de

hacer pruebas y rápidos prototipados de módulos MIMO de banda base. La puesta en

marcha de la plataforma consiste en el procesamiento off-line de la señales en el trans-

misor y el receptor mientras que los datos son enviados y adquiridos en tiempo real. Esta

propiedad proporciona en la fase de generación de señal, que la modulación y codificación

espacio-temporal puedan llevarse a cabo mediante Matlab. En el receptor, el flujo de

datos adquirido también es procesado en Matlab: tiempo y frecuencia, sincronización,

estimación de canal, decodificación espacio-temporal y, finalmente, detección śımbolo a
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śımbolo son bloques de operación fundamentales.
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Chapter 1

Introduction

This work focuses on the problem of estimating the channel coefficients in an Alamouti

coded system [1]. To this end, the received signals (observations) will be modeled as

instantaneous mixtures of the transmitted signals (sources). This interpretation allows

us to estimate the channel by using Blind Source Separation (BSS) algorithms [2]. More

specifically, we will investigate those algorithms based on computing the Eigenvalue De-

composition (EVD) of matrices computed from the observation statistics.

EVD-based channel estimation algorithms can be classified into SOS-based and HOS-

based methods depending on the information used to compute the matrix to be diago-

nalized. SOS-based approaches compute the correlation matrix of the observations which

requires less computer operation, but they need to include a linear precoder before the

Alamouti encoder to unbalance the source power or to color the sources [3, 4]. On the

contrary, HOS-based methods are based on diagonalizing one or several matrices contain-

ing higher order cumulants. The best-known method has been proposed in the context of

BSS, although not specifically for the Alamouti code, by Cardoso et al [5] with the name

of Joint Approximate Diagonalization of Eigenmatrices (JADE). More recently, Beres et

al [6] have particularized JADE for Alamouti coded systems. Following these ideas, in

this work we will present novel HOS-based methods which present a good performance in

1
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different environments with a considerably low computational load.

The performance of the blind channel estimation techniques will be evaluated both in

computer simulations carried out assuming Rayleigh and Rice distributed channels, and

realistic indoor scenarios using a Multiple Input Multiple Output (MIMO) [7] hardware

testbed. This MIMO testbed, configured as a Two Input Single Output (TISO) system,

has been designed to operate at the 2.4 GHz Industrial, Scientific and Medical (ISM)

band, and is intended for the testing and rapid prototyping of MIMO baseband modules.

The testbed operation consists of performing the signal processing off-line both at the

transmitter and at the receiver while the data are sent and acquired in real-time. This

property enables, at the signal generation stage, modulation and space-time coding oper-

ations to be carried out off-line using MATLAB. At the receiver, the acquired data stream is

also processed in MATLAB: time and frequency synchronization, channel estimation, space-

time decoding and, finally, symbol-by-symbol detection are the fundamental operational

blocks.

This work is based on two important issues. Section 1.1 focuses on the concept of

Space-Time Diversity and Section 1.2 motivates the importance of using blind channel

estimation methods. Finally, Section 1.3 presents an overview of this work.

1.1 Space-Time Diversity

Information theory investigations have demonstrated that the capacity of wireless chan-

nels can be considerably increased, at no extra bandwidth or power consumption, if the

multipath is sufficiently rich and properly exploited by means of multi-element antennas

at both transmission and reception points [7, 8, 9, 10, 11]. The basic idea is to interpret

the transmission through multipath channels from a new perspective in which multipath

signal propagation is no longer viewed as an impairment. Instead of this standpoint, the

multipath is considered as a phenomenon that provides spatial diversity and can be suc-

cessfully exploited to improve reception. To this end, the signals on the transmit antennas
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Figure 1.1: Scheme of a digital communication system

at one end and the receive antennas at the other end are “combined” in such way that the

quality, Bit Error Rate (BER), or the data rate for each user will be improved [12, 13].

Figure 1.1 shows the scheme of a digital communication system. A high-rate bit stream

is decomposed into several bit sequences which are then transmitted simultaneously using

multiple antennas. At the receiver side, after identifying the channel, the individual bit

streams are separated and estimated. This kind of system can be expressed using linear

equations. In fact, the received signals (observations), x, are a linear combination of the

transmitted signals (sources), s, i.e., the signal model obeys the following equation

x = Hs (1.1)

where H contains the channel coefficients (the input hij denotes the path from the i-th

transmit antenna to the j-th receive antenna). Depending on the number of elements

in transmission and reception, communication systems can be classified into four groups:

Single Input Single Output (SISO), Multiple Input Single Output (MISO), Single Input

Multiple Output (SIMO) and MIMO.

A SISO system refers to configurations that employ one antenna in transmission and

one antenna in reception. The capacity of this system is

C(H) = log2(1 +
σ2
s

σ2
v

|h|2) (1.2)

where h is the normalized channel coefficients and σ2
s

σ2
v

is the Signal to Noise Ratio (SNR)
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at the receive antenna, i.e. the quotient between the signal power and noise power.

The capacity can be improved by using diversity on reception obtained by including

nR receive antennas, such that we have a SIMO system with

C(H) = log2(1 +
σ2
s

σ2
v

nR∑
i=1

|hi|2) (1.3)

Note that the fact of increasing the value of nR only results in a logarithmic increase in

the average capacity. On the contrary, if we opt for transmission diversity by using a

MISO system which employs nT antennas in transmission and one antenna in reception,

the capacity is given by

C(H) = log2(1 +
σ2
s

σ2
v

1

nT

nT∑
i=1

|hi|2) (1.4)

where the normalization of the SNR by nT ensures a fixed total transmitter power. Again

the capacity has a logarithmic relationship with nT .

Consider now a MIMO system which uses both transmission and reception diversity.

For the case of nT transmit antennas and nR received ones, we have the famous capacity

equation [14]

C(H) = log2

(
det(InR

+
σ2
s

σ2
v

1

nT
HHH)

)
(1.5)

where (·)H denotes the hermitian operator. Foschini [10] and Telatar [8] have demon-

strated that the capacity of a MIMO system grows linearly with m = min(nR, nT ) rather

than with the logarithm function.

The performance of systems with several antennas in transmission or reception can be

substantially improved by including codes specifically designed to take both the spatial

and temporal dimensions [15] into account. These techniques are collectively known as

Space-Time Coding (STC) [12] and obey the scheme shown in Figure 1.2. In this scheme,

a number of code symbols equal to the number of transmit antennas are generated and

transmitted simultaneously, one symbol from each antenna. These symbols are generated
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Figure 1.2: Block diagram of a STC

by the space-time encoder such that by using the appropriate signal processing and de-

coding algorithm at the receiver, the diversity gain and/or the coding gain is maximized.

The key development of the STC concept was originally revealed in [15] in the form of

Space-Time Trellis Codes (STTC), which require a multidimensional Viterbi algorithm at

the receiver for decoding. These codes provide, without any loss in bandwith efficiency, a

diversity gain equal to the number of transmit antennas in addition to a coding gain that

depends on the number of code complexity (i.e. trellis states). The popularity of STC

was due to the discovery of the so-called Space-Time Block Codes (STBC) that can be

decoded using simple linear processing at the receiver instead of a Viterbi trellis. STBC

provides the same diversity gain as STTC but the coding benefit is zero or minimal.

In addressing the issue of decoding complexity, Alamouti [1] discovered a remarkable

STBC considering two antennas at transmission. This scheme represents the first example

of the Orthogonal Space-Time Block Coding (OSTBC) [16, 17]. The basic premise of OS-

TBC is the encoding of the transmitted symbols into an orthogonal matrix which reduces

the optimum Maximum Likelihood (ML) decoder to a matrix matched filter followed by a

symbol-by-symbol detector. Other OSTBC have been proposed for more than two trans-

mit antennas but they suffer from severe spatial rate loss [17, 18]. The Alamouti code can

be used in systems with one or multiple antennas at reception. At first glance, it seems

that using several receive antennas is beneficial because this increases the diversity gain

and provides array gain. However, the signal structure imposed by the Alamouti code

reduces the constrained channel capacity limit when there is more than one receive an-
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tenna [19]. This means that when used in concatenation with capacity approaching codes

(such as turbo or LDPC codes), Alamouti systems with more than one receive antenna

exhibit a degradation in performance. Thus, the (2×1) Alamouti coded systems are most

attractive in wireless communications due to their simplicity and their ability to provide

maximum diversity gain while preserving channel capacity. Because of these advantages,

the Alamouti code has been incorporated in the IEEE 802.11 and IEEE 802.16 standards

[20].

In this work we will study and propose methods considering the (2×1) Alamouti code,

some of which can be generalized for other kind of OSTBC.

1.2 Blind Channel Estimation

Coherent detection in the (2 × 1) Alamouti coded systems requires the identification of

a 2 × 2 unitary channel matrix. The standard way of estimating this channel matrix is

through the transmission of pilot symbols, also referred to as training sequences. How-

ever, the inclusion of pilot symbols reduces the system throughput (equivalently, it also

reduces the system spectral efficiency) and wastes transmission energy because training

sequences do not convey information. Strategies that avoid this limitation include the so-

called Differential STBC (DSTBC) [21], which is a signalling technique that generalizes

differential modulations to the transmission over MIMO channels. DSTBC can be inco-

herently decoded without the aid of channel estimates but they incur a 3 dB performance

penalty when compared to coherent detection.

Training sequences can also be avoided by the use of BSS techniques to identify the

channel, which is the main theme of discussion in this work. The transmitted symbol

substreams can be considered as unknown sources to be recovered from their mixtures

observed at the receive antenna output, whereas the channel matrix can be seen as the

mixing transformation between the sources and the observations [22, 23, 24, 25, 26]. The

term blind (or unsupervised) refers to the fact that little or nothing is known or assumed
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about the sources and the mixing matrix structure in a general BSS scenario. Under

the assumption of statistical independence between the transmitted symbol substreams,

Independent Component Analysis (ICA) techniques can be used to tackle this problem.

Hence, many existing ICA algorithms (e.g., [22, 23, 24, 25]) would be able to identify the

channel matrix and recover the transmitted symbols. However, in order to reduce the

computational load, specific algorithms taking advantage of the special structure of these

codes can be designed instead [4, 6, 27, 28].

A property commonly exploited in BSS is the statistical independence of the sources.

Depending on the degree of independence considered, two main groups of techniques can

be distinguished: Principal Component Analysis (PCA), which are based on Second Order

Statistics (SOS), and ICA, which exploits Higher Order Statistics (HOS). A number of

PCA and ICA approaches rely on the eigendecomposition of certain matrix or tensor

structures.

PCA approaches are based on diagonalizing the correlation matrix of the observed sig-

nals. However, it is well known that this operation can be done only when the associated

eigenvalues are different [29]. In order to guarantee this condition, several authors have

proposed the use of a linear precoder before the Alamouti encoder with the aim of unbal-

ancing the source power or coloring the sources [3, 4]. In this work, we will show that the

global performance is degraded when the power source is unbalanced because, although

the mean probability is adequate, the error probability of the sources with lower power is

excessively high for some real applications. Another way of guarantying the identifiable

condition consists of transmitting an odd number of real symbols at each block [27]. This

approach, however, produces a loss in the transmission rate because some symbols must

be ruled out.

The higher order independence of the source signals is exploited by the ICA approach.

Independence is typically measured by means of HOS such as the higher order cumulants:

the absolute value of the marginal cumulants is to be maximized or, equivalently, that

of the cross-cumulants minimized, subject to the appropriate constraints. In Comon’s
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pioneering ICA contribution [23], the initial source estimations provided by PCA are

further processed via Givens rotations aiming at maximizing the 4th order independence

of the transformed signals. The optimal rotation angles are obtained by rooting a low-

degree polynomial whose coefficients are computed from the 4th order cumulants of the

signal pair. Several sweeps over all signal pairs are necessary for convergence. This

pairwise scheme can be seen as the generalization to 4th order cumulant tensors (higher

order arrays) of the well-known Jacobi technique for matrix diagonalization. Research

into higher order eigen-based approaches began with Cardoso’s early work on the so-

called quadricovariance, a folded version of the 4th order moment array, and culminated

in the popular JADE method [5].

The orthogonality property imposed in OSTBC makes it possible to propose HOS

approaches consisting of computing the eigenvalue decomposition (EVD) of matrices con-

taining 4th order statistics of the observations [6, 28]. These algorithms can be considered

as particular cases of JADE but present a reduced computational cost. In this work, we

will study this kind of BSS algorithms in detail.

1.3 Work Overview

This work is organized as follows.

Chapter 2 focuses on Space-Time Block Codes (STBC). We present the signal model of

the (2× 1) Alamouti system that in other OSTBC takes advantage of their orthogonality

to allow an easy, linear and optimal decoding at the receiver. In this context we explain

classical decoding strategies and well-known BSS algorithms.

Chapter 3 presents SOS-based channel estimation algorithms based on finding the

eigenvector and eigenvalues of the correlation matrix obtained from the observed signals.

In this sense, we make a review of the methods proposed by Shahbazpanahi et al. [3]

and Via et al. [4] considering the general real-valued model of an STBC. In addition, we
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present a new formulation of these methods for the (2×1) Alamouti system considering a

complex-valued signal model. An important contribution of this chapter is to determine

empirically the form of the matrix that can be used to code the original signals.

Chapter 4 is devoted to present HOS-based BSS approaches which diagonalize a linear

combination of a sensible choice from a set of different 4th order cumulant matrices. We

begin with the method proposed by Beres et al. [6] and then go on to propose a set of

novel methods. This chapter contains the most important contribution of this work, that

is to propose a closed form to obtain the optimal cumulant matrix.

Chapter 5 shows a comparison of performance for the different approaches through a

set of computer simulations.

In Chapter 6 a MIMO Testbed developed at the Universidade da Coruña is shown and

employed to test the approaches shown in the previous chapters.

Finally, Chapter 7 is devoted to the conclusions and future work.
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Chapter 2

Orthogonal Space-Time Block Codes

Space-Time Codes (STC) make it possible to improve the performance of data transmis-

sion in wireless communications that employ multiple transmit and/or receive antennas

[12]. STC consist of transmitting multiple, redundant copies of a data stream across

a number of antennas at the transmitter to the multiple antennas at the receiver with

the aim of overcoming the impairments of the physical paths between transmission and

reception. The transmitted signal must cross a potentially difficult environment with scat-

tering, reflection, refraction and thermal noise presence in the receiver, which means that

some of the received copies of the data will be better than others. In fact, STC combine

all the copies of the received signals in an optimal way to extract as much information

from each of them as possible.

STC can be classified into two main groups according to their function:

• Space-Time Trellis Codes (STTC) distribute a trellis code over multiple antennas

and multiple time slots providing both coding gain and diversity gain.

• Space-Time Block Codes (STBC) act on a block of data simultaneously (similarly

to block codes). Unlike STTC, the STBC only provide diversity gain, but their

implementation complexity is less.

11
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A particular and interesting case of STBC is Orthogonal Space-Time Block Codes (OS-

TBC), which takes advantage of their orthogonality to allow an easy, linear and optimal

decoding at the receiver. Their most important disadvantage is that the redundancy

imposed by the orthogonality can punish the data rate and, as a consequence, they are

unable to attain the full capacity of the MIMO channel.

This chapter is structured as follows. Section 2.1 describes the Alamouti code, which

is the simplest and the pioneer OSTBC. Section 2.2 presents the Maximum Likelihood

(ML) criterion. Subsequently, we present two different strategies to estimate the channel

matrix: Supervised methods in Section 2.3 and Blind Source Separation (BSS) techniques

in Section 2.4. Finally, Section 2.5 compares the performance of classical and BSS algo-

rithms to estimate the channel matrix for the Alamouti coded scheme.

2.1 The Alamouti Code

In 1998 [1], Alamouti designed a code considering 2 transmit antennas and 1 or 2 receive

antennas. Although he did not make any reference to the term OSTBC, this method is

considered today the first example of this kind of code. For the case that employs 1 receive

antenna, this is the only OSTBC that achieves full diversity for complex constellations.

In order to explain the Alamouti code, we define the sources s1(n) and s2(n) as inde-

pendent equiprobable discrete random variables, where n ∈ N is the independent variable,

the time instant. Henceforth, we prefer to employ the notation s1 and s2, without the

independent variable for reasons of simplicity. The signals take values from a finite set

of symbols belonging to a real or complex modulation (PAM, PSK, QAM...). Hence, we

will employ the operator (·)∗ to denote the conjugate of a symbol.

The (2×1) Alamouti code is shown in Figure 2.1. In this scheme, each pair of symbols

{s1, s2} is transmitted in two adjacent time slots using a simple strategy: in the first time

slot s1 and s2 are transmitted from the first and the second antenna, respectively, and
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Alamouti’s

Coder

z−1

s1

h1

h2

s1

s2

−s∗2
s∗1

x1

( )∗s2
x2

r1

r2

Figure 2.1: The (2× 1) Alamouti code

in the second time slot −s∗2 is transmitted from the first antenna and s∗1 from the second

one. The transmitted symbols arrive at the receive antenna through the fading paths h1

and h2 and the signal is perturbed by an additive noise v1, i.e, the received value in the

first time slot has the form

r1 = h1s1 + h2s2 + v1 (2.1)

where hi denotes the path from the i-th transmit antenna to the receive one. If the

channel remains constant during two time slots, the received value in the second time slot

is given by

r2 = h2s
∗
1 − h1s

∗
2 + v∗2 (2.2)

Thus, from equations (2.1) and (2.2) we obtain the received vector r = [r1 r2]
T. The

(2× 1) Alamouti code can be also expressed in matrix form as follows r1

r2

 =

 h1s1 + h2s2

h2s
∗
1 − h1s

∗
2

+

 v1

v∗2

 (2.3)

where v1 and v2 are two independent random variables following the distribution N(0, σv),

i.e. additive white Gaussian noise.

A more convenient form of writing this coding strategy consists of considering the

source vector s = [s1 s2]
T, the noise vector v = [v1 v2]

T, and the observation vector
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Alamouti’s

Coder
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z−1

r11

r21

x11

x21

h11

h21

x12

x22

r12

r22

h12

h22

Figure 2.2: The (2× 2) Alamouti code

x = [x1 x2]
T = [r1 r

∗
2]T. Considering the 2× 2 channel matrix

H =

 h1 h2

h∗2 −h∗1

 (2.4)

the relationship between observations and sources is given by

x = Hs + v ⇐⇒

 x1

x2

 =

 h1 h2

h∗2 −h∗1

 s1

s2

+

 v1

v2

 (2.5)

It is important to point out that the (2× 1) Alamouti code is the unique STBC that

achieves the maximum capacity of the equivalent MIMO channel. In Appendix A, we

demonstrate that the capacity is given by

C(H) = log2

(
1 +

σ2
s

σ2
v

(|h1|2 + |h2|2)
)

(2.6)

where σ2
s is the variance of the sources s1 and s2, and σ2

v is the variance of the noise.

Alamouti [1] has also proposed the code for 2 transmit antennas and 2 receive antennas,

as shown in Figure 2.2. In this case, we make the same transmission as in the (2 × 1)

system but the 2 signals are received simultaneously (1 at each receive antenna). Thus,

the source vector is the same s = [s1 s2]
T and there are 4 fading paths: h11, h21, h12 and
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h22 where hij denotes the path from i-th transmit antenna to the j-th receive antenna.

Since there are 2 receive antennas and 2 time slots, we have 4 observations. The noise

vector is v = [v11 v21 v12 v22]
T and the observation vector is x = [x11 x21 x12 x22]

T. The

relationship between these terms is given by

x = Hs + v ⇐⇒


x11

x21

x12

x22

 =


h11 h21

h∗21 −h∗11

h12 h22

h∗22 −h∗12


 s1

s2

+


v11

v21

v12

v22

 (2.7)

Denoting by k the number of symbols that the encoder takes as its input at each

operation, and p the number of transmission time slots required to transmit the Space-

Time Coded symbols through the multiple transmit antennas, the relationship between

these two terms is known as rate, i.e.

R =
k

p
(2.8)

In particular, the rate is R = k/p = 2/2 = 1 for the Alamouti code with 1 and 2 receive

antennas. In Appendix A we show that the capacity of the (2× 2) Alamouti code is

C(H) = log2

(
1 +

σ2
s

σ2
v

(|h11|2 + |h12|2 + |h21|2 + |h22|2)
)

(2.9)

This value is lower than the maximum capacity of a (2× 2) MIMO system.

Tarokh et al. [17, 30] coined the concept of STBC and developed a theory to design

OSTBC which support an easy, linear and optimal decoding at the receiver. For any

number of transmit antennas, these codes achieve the maximum possible transmission

rate when the symbols correspond to any arbitrary real constellation and 1/2 for complex

constellations. For the specific case of 2, 3 or 4 transmit antennas, it is possible to

achieve, respectively, full, 3/4 and 3/4 of the maximum transmission using arbitrary

complex constellation.
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2.2 Maximum Likelihood Decoder

Maximum Likelihood (ML) is a statistical method for estimating parameters from sample

data that selects as estimates those parameter values maximizing the probability of ob-

taining the observed data. For the case of the (2× 1) Alamouti code, assuming that the

sources take values from a complex modulation with an equiprobable distribution, an ML

decoder [1, 17] chooses a pair of parameters (si, sj) from the modulation constellation C

in order to minimize the Euclidean distance. The rule is to take the pair (si, sj) ∈ C ×C

that satisfies

d2(r1, h1si + h2sj) + d2(r2, h2s
∗
i − h1s

∗
j) ≤

d2(r1, h1sk + h2sl) + d2(r2, h2s
∗
k − h1s

∗
l ), ∀ (sk, sl) ∈ C × C (2.10)

where d2(a, b) is Euclidean distance between two complex-valued numbers. This is calcu-

lated by employing the equation

d2(a, b) = |a− b|2 = (a− b)(a− b)∗ = (a− b)(a∗ − b∗) (2.11)

Hence, we can expand the first term of the equation (2.10) and obtain

d2(r1, h1si + h2sj) = (r1 − h1si − h2sj)(r
∗
1 − h∗1s∗i − h∗2s∗j) = (2.12)

|r1|2 + |h1|2|si|2 + |h2|2|sj|2 − h1r
∗
1si − h∗1r1s∗i − h2r

∗
1sj − h∗2r1s∗j + h1h

∗
2sis

∗
j + h∗1h2s

∗
i sj

Doing the same for the second term, we have

d2(r2, h2s
∗
i − h1s

∗
j) = (r2 − h2s

∗
i + h1s

∗
j)(r

∗
2 − h∗2si + h∗1sj) = (2.13)

|r2|2 + |h2|2|si|2 + |h1|2|sj|2 − h∗2r2si − h2r
∗
2s
∗
i + h∗1r2sj + h1r

∗
2s
∗
j − h1h

∗
2sis

∗
j − h∗1h2s

∗
i sj

Thus, from the addition of the equations (2.12) and (2.13), we obtain the following ex-

pression

d2(r1, h1si + h2sj) + d2(r2, h2s
∗
i − h1s

∗
j) =

|r1|2 + |r2|2 + (|h1|2 + |h2|2)(|si|2 + |sj|2) +

−(h1r
∗
1 + h∗2r2)si − (h∗1r1 + h2r

∗
2)s∗i − (h2r

∗
1 − h∗1r2)sj − (h∗2r1 − h1r

∗
2)s∗j (2.14)



2.2. MAXIMUM LIKELIHOOD DECODER 17

Hence, if we employ the decision statistics

s̃1 = h∗1r1 + h2r
∗
2 (2.15)

s̃2 = h∗2r1 − h1r
∗
2 (2.16)

we can express the equation (2.14) as

d2(r1, h1si + h2sj) + d2(r2, h2s
∗
i − h1s

∗
j) =

|r1|2 + |r2|2 + (|h1|2 + |h2|2)(|si|2 + |sj|2)− s̃∗1si − s̃1s
∗
i − s̃∗2sj − s̃2s

∗
j =

(|h1|2 + |h2|2 − 1)(|si|2 + |sj|2) + d2(s̃1, si) + d2(s̃2, sj) +

|r1|2 + |r2|2 − |s̃1|2 − |s̃2|2 (2.17)

Substituting in both sides of the inequation (2.10), we have the ML decoding rule

(|h1|2 + |h2|2 − 1)(|si|2 + |sj|2) + d2(s̃1, si) + d2(s̃2, sj) ≤

(|h1|2 + |h2|2 − 1)(|sk|2 + |sl|2) + d2(s̃1, sk) + d2(s̃2, sl), ∀ (sk, sl) ∈ C × C(2.18)

In this rule, we distinguish two parts corresponding to si and sj

(|h1|2 + |h2|2 − 1)|si|2 + d2(s̃1, si) ≤ (|h1|2 + |h2|2 − 1)|sk|2 + d2(s̃1, sk), ∀ sk ∈ C (2.19)

(|h1|2 + |h2|2 − 1)|sj|2 + d2(s̃2, sj) ≤ (|h1|2 + |h2|2 − 1)|sl|2 + d2(s̃2, sl), ∀ sl ∈ C (2.20)

In conclusion, for any constellation C employed in transmission, the ML rule consists

of choosing the symbol si that satisfies equation (2.19) and the symbol sj that satisfies

equation (2.20). For constant modulus constellations, the term (|h1|2 + |h2|2 − 1)|si|2 is

constant and the expressions (2.19) and (2.20) can be simplified to

d2(s̃1, si) ≤ d2(s̃1, sk), ∀ sk ∈ C (2.21)

d2(s̃2, sj) ≤ d2(s̃2, sl), ∀ sl ∈ C (2.22)

Note that in order to employ the statistics needed to apply the ML rule, we need to know

the fading paths h1 and h2, i.e. the channel realization.
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2.3 Supervised Decoder

The Wiener filter [31] can be considered the main supervised decode method in an OSTBC

scheme. The idea is to obtain the desired output s(n) from a set of observations x(n) =

[x(n) x(n + 1) . . . x(n + M − 1)]T employing a Finite Impulse Response (FIR) filter

w = [w1 w2 . . . wM ]T. Thus, the obtained output is

y(n) =
M∑
i=1

w∗i x(n+ i− 1) = wHx(n) (2.23)

And the error between the desired and the estimated signals is

e(n) = s(n)− y(n) = s(n)−wHx(n) (2.24)

Considering the Minimum Mean Square Error (MMSE) criterion, we define the following

cost function

J(w) = E[|e(n)|2] = E[e(n)e∗(n)] (2.25)

where E[·] denotes the expectation operator. Substituting (2.23) and (2.24) in (2.25), we

obtain the following expanded expression

J(w) = E[|s(n)|2 − s(n)xH(n)w − s∗(n)wHx(n) + wHx(n)xH(n)w]

= E[|s(n)|2] + wHE[x(n)x(n)H]w − E[s(n)xH(n)]w −wHE[s∗(n)x(n)]

= σ2
s + wHRxw − pHw −wHp (2.26)

where Rx = E[x(n)x(n)H] is the correlation matrix of the observations and p = E[s∗(n)x(n)]

is the correlation between the desired signal and the observations. In order to determine

the minimum J(w), we will compute the points where the gradient vanishes

∇wJ(w) =

[
∂J

∂w∗1

∂J

∂w∗2
· · · ∂J

∂w∗M

]T

=
∂(σ2

s + wHRxw − pHw −wHp)

∂w∗
= Rxw − p = 0

(2.27)

Hence, the Wiener filter w that minimizes (2.25) is

Rxw = p⇒ wopt = R−1
x p (2.28)
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For the (2× 1) Alamouti code, where we need to recover the signals s1(n) and s2(n),

and therefore we have to compute two Wiener filters

w1 = R−1
x E[s1(n)x(n)] = R−1

x p1 (2.29)

w2 = R−1
x E[s2(n)x(n)] = R−1

x p2 (2.30)

with pi = E[s∗i (n)x(n)]. We can express the two Wiener filters jointly in a single matrix

as

Wopt = [w1 w2] = R−1
x [p1 p2] (2.31)

In order to employ the Wiener filter, we need to know the correlation matrix of ob-

servations Rx and the cross-correlation between the observations and the sources p. This

information is in most cases unknown but Rx can be estimated by means of a sample

correlation matrix of L observations, i.e

R̂x =
1

L

L∑
n=1

x(n)xH(n) (2.32)

and pi can be estimated employing pilot symbols.

2.4 Blind Source Separation

Blind Source Separation (BSS) algorithms have been widely used in digital communication

to estimate the propagation coefficients (and transmitted signals) from the signals received

in the antennas without using pilot symbols [32]. This lack of prior knowledge may limit

the achievable performance, but makes blind approaches more robust to calibration errors

(i.e. deviations of model assumptions from reality) than conventional array processing

techniques [5]. A property commonly exploited in BSS is the statistical independence of

the sources. Depending on the degree of independence considered, two main groups of

techniques can be distinguished: Principal Component Analysis (PCA), which is based

on Second Order Statistics (SOS) and Independent Component Analysis (ICA), which

exploits Higher Order Statistics (HOS).
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The classical problem to represent BSS is the Cocktail Party. It consists of a party

with people talking at different places in a room and, also, several microphones placed

at different points of the room collecting mixtures of the voices. Each voice is a source

and the received signals in the microphones are the observations, which consist of a

combination of the voices. The aim is to recover the sources from the collected signals in

the microphones.

The simplest model in BSS considers that the mixtures are instantaneous combinations

of the sources, i.e. we have a memoryless mixing system that can be expressed as

x = Hs + v (2.33)

where s = [s1 s2 . . . sN ]T is the source vector, x = [x1 x2 . . . xM ]T is the observation

vector, H is the mixing matrix, which has dimension M × N , and v = [v1 v2 . . . vM ]T

is the noise vector. Note that this model corresponds to the same structure as in the

Alamouti scheme in the equation (2.5). The aim is to obtain a separation matrix Ĥ−1

such as

Ĥ−1H = ∆P (2.34)

where ∆ is a diagonal matrix and P is a permutation matrix. Thus, the sources can be

achieved using

ŝ = y = Ĥ−1x (2.35)

To achieve the sources from a set of observations, it is necessary for all the sources

to be statistically independent and non-Gaussian. In fact, one of the sources can be

Gaussian but it is usually coined noise instead of source. The Darmois-Skitovich Theorem

[33, 34] proves that these constraints are necessary for achieving the separation. Note

that these ideas are valid for real and complex sources. Taking this into account and for

reasons of simplicity, we henceforth assume that the sources s will be independent and

identically distributed (i.i.d.) real or complex random variables with variance equal to
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Figure 2.3: Adaptive BSS algorithms

one, i.e σ2
s = σ2

si
= 1, i = 1, 2, . . . , N . Thus, their correlation matrix will be

Rs = E[ssH] = IN (2.36)

BSS algorithms can be classified into two main types according to their function:

• Adaptive algorithms obtain the result through several iterations. They have one or

more adaptive parameters that influence on algorithm speed and the accuracy of

the result.

• Batch algorithms achieve the separation system directly from a block input data.

2.4.1 Adaptive Algorithms

Adaptive algorithms are useful to tracking applications because they are able to adapt

their parameters to changes in the environment [35]. In general, they work better with

smaller data blocks than batch algorithms, and so they need less memory. Therefore, they

are attractive in cases where the data input suffers frequent updatings. Their work can

be summarized in Figure 2.3. The input is the observation vector x = [x1 x2 . . . xM ]T

and the output is the vector y = [y1 y2 . . . yN ]T. The matrix W has dimension M ×N

and contains the free coefficients of the separation system. The system is updated in each
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−ŵ1N−ŵ12
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Figure 2.4: Separation system employed by Herault and Jutten

iteration following the rule

W(n+ 1) = W(n) + µ∆(W(n),x(n)) (2.37)

where µ ∈ R is the speed learning parameter, ∆ is a matrix usually composed of non-

linear terms dependent on W and the input vector x. The concrete form of matrix ∆

depends on the specific separation criterion.

We will now explain the basis of several of the best-known algorithms of this kind:

Herault and Jutten, Infomax and FastICA.

Herault and Jutten’s Algorithm

The first BSS algorithm was proposed in 1985 by Herault and Jutten [36]. The authors

developed their work in the context of neural networks and they employed a separation

system like the one shown in Figure 2.4. This separation system assumes that the number

of inputs is the same as the number of outputs, and there are feedback paths which

substract the inputs from the outputs on a weighted basis. The coefficient ω̂ij represents

the factor which is multiplied by the output yi before being subtracted from the input
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xi. Also, we assume that there are no self-feedbacks (i.e. ŵii = 0). Mathematically, the

relationship between input and output follows the rule

y(n) = (I + ŴT(n))−1x(n) (2.38)

The decision criterion used to choose the matrix W is to minimize the statistical inde-

pendence between the outputs of the network. Herault and Jutten propose maximizing

the statistical independence between yi and yj by means of the following learning rule

W(n+ 1) = Ŵ(n) + µf(y(n))gT(y(n)) (2.39)

where f(y) = [f(y1) f(y2) . . . f(yN)]T and g(y) = [g(y1) g(y2) . . . g(yN)]T are two vectors

composed of non-linear functions of the outputs f(·) and g(·). Considering that the signals

to be separated have symmetric distributions, it is necessary for these non-linearities to

be odd (i.e. f(yi) = −f(−yi) and g(yi) = −g(−yi)) for their Taylor expansions to have

odd powers. For example, f(yi) = ymi and g(yi) = yni can be a possible choice.

The convergence point of this algorithm verifies

dW

dt
= E[f(y)gT(y)] = 0 (2.40)

Note that the following equality is verified when the outputs are statistically independent,

E[f(y)gT(y)] = E[f(y)]E[gT(y)] = 0 (2.41)

and for equation (2.40) this is a convergence point. Moreover, the theorem of Darmois-

Skitovich guarantees that each output corresponds to a single and different source.

Bell and Sejnowski’s Algorithm: Infomax

An important learning paradigm in neural networks is the principle of information preser-

vation (infomax), which was proposed by Linsker [37]. According to this paradigm, the

parameters of a neural network are adjusted with the aim of maximizing the transferred

information between the input and the output. It is believed that concrete learning mech-

anisms of living beings work in this manner.
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The method proposed by Bell and Sejnowski [38] is a gradient algorithm that maxi-

mizes the information transfer between the input and the output of a non-linear neural

network with only one layer and the same number of inputs and outputs. The network is

excited by the observations in order to achieve the activation vector of states, y = WTx,

where W is a N × N square matrix that contains the synaptic weights. Final output is

a non-linear function of state u = h(y).

Bell and Sejnowski’s algorithm pursues the maximization of the transfer between the

input x and the output after the non-linearity of u. If we use H(u) to denominate the

entropy of u and H(u|x) to denominate the uncertainty about u that is not solved when

x is observed, we can thence write the mutual information, I(u,x), as

I(u,x) = H(u)−H(u|x) (2.42)

In [38], it has been demonstrated that the maximization of the mutual information

I(u,x) is equivalent to maximizing the following cost function

JMI(M)
def
= ln(det(WT)) +

N∑
i=1

E[ln(h′i(yi))] (2.43)

The next step is to obtain an adaptive algorithm that maximizes JMI(M). With

this aim, we can employ either a steepest descent algorithm [38] or a relative gradient

algorithm [39, 40]. It can be demonstrated from equation (2.43) that

∇WJ = ∇W

(
ln(det WT))

)
+∇W

(
N∑
i=1

E [ln(h′i(yi))]

)
=

adj(WT)

det(WT)
− E[xgT(y)] = W−T − E[xgT(y)] (2.44)

where g(y) = [−h′′1(y1)/h
′
1(y1) . . . − h′′N(yN)/h′N(yN)]T is a vector of non-linearities that

depends on the activation function that has been employed. Estimating the expectations

in the equation (2.44), we obtain the following learning rules:

• Gradient algorithm

W(n+ 1) = W(n) + µ
(
W−T(n)− x(n)gT(y(n))

)
(2.45)
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• Relative gradient algorithm. This is obtained by multiplying the above algorithm

by W(n)WT(n).

W(n+ 1) = W(n) + µW(n)WT(n)
(
W−T(n)− x(n)gT(y(n))

)
= W(n) + µW(n)

(
I− x(n)gT(y(n))

)
(2.46)

FastICA

FastICA is an efficient and popular ICA algorithm developed by Aapo Hyvärinen at

Helsinki University of Technology in [41]. The algorithm, initially proposed for real-

valued signals, is based on a fixed-point iteration scheme maximizing non-Gaussianity as

a measure of statistical independence. It can also be derived as an approximative Newton

iteration.

In order to explain the first step of the FastICA algorithm jointly with the first step

of the JADE algorithm, which will be shown in Section 2.4.2, the hermitian operator (·)H

will be employed instead of the transpose operator (·)T, even though we are speaking of

real matrices in this case.

So, the noiseless observation vector of dimension M × 1 is defined as

x = Hs (2.47)

Recall that H is the mixing matrix of dimension M × N , and s is the source vector of

dimension N × 1 which obeys equation (2.36) due to its i.i.d.

The first step is to find a whitening matrix B of dimension N ×M carried out by the

method described in Appendix B such that

Rx̃ = E[x̃x̃H] = IN (2.48)

Note that this new observation has the form

x̃ = Bx = BHs = Us (2.49)
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Thus, we define a new matrix

U = BH (2.50)

and from equations (2.48) and (2.49), it is straightforward to conclude that U is orthog-

onal, i.e.

IN = Rx̃ = E[x̃x̃H] = E[UssHUH] = UE[ssH]UH = UUH (2.51)

Taking this into account, from equations (2.50) and (2.51)

UHx̃ = UHBHs = UHUs = s (2.52)

Hence, with the aim of achieving the sources s, the problem is reduced to finding the

matrix U.

The second step, like most suggested solutions to the ICA problem, is to use the 4th

order cumulant (kurtosis) of the signals, defined in Appendix E for a zero-mean random

variable x as

kurt(x) = E[x4]− 3E2[x2] (2.53)

The kurtosis is zero for Gaussian random variables, positive when the variables have

densities peaked at zero and negative when the density is flatter. Note that for two

independent variables x1 and x2 and for a scalar α, it obeys kurt(x1 + x2) = kurt(x1) +

kurt(x2) and kurt(αx1) = α4kurt(x1).

Hence, we will find a linear combination of the sphered observations x̃i, i.e. wHx̃, such

that it has maximal or minimal kurtosis, considering that ||w|| = 1. Bearing this in mind,

we can define z = UHw, and then also ||z|| = 1. Using equation (2.49) and the properties

of the kurtosis, we obtain the expression

kurt(wHx̃) = kurt(wHUs) = kurt(zHs) =
N∑
i=1

z4
i kurt(si) (2.54)

Under the constraint ||w|| = ||z|| = 1, it is straightforward to see that the function (2.54)

has a number of local minima and maxima. For reasons of simplicity, we assume that

there is at least one source with positive kurtosis and at least one source with negative
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kurtosis. Hence, as was shown by Delfosse and Loubaton in [42], the extremal points of

equation (2.54) are the canonical base vectors z = ±ej, i.e. vectors whose components

are all zero except the j-th component, which equals 1. The corresponding weight vectors

are w = Uz = ±Uej = ±uj, for any j-th column of the orthogonal mixing matrix U.

So, under the given constraint, by minimizing or maximizing the kurtosis in the equation

(2.54) the columns of U are obtained as solutions for w, and the linear combination:

wHx̃ = uH
i x̃ = si is one of the independent sources. Recall that equation (2.54) also

shows that Gaussian components cannot be estimated in this way, because for them

kurt(si) is zero.

In order to minimize or maximize equation (2.54), a neural algorithm based on gradient

descent or ascent can be used, such as the one shown by Delfosse and Loubaton in [42] or

that shown by Hyvärinen and Oja in [43]. Then, w is interpreted as the weight vector of

a neuron input vector x̃ and the objective function can be simplified due to the fact that

the inputs are sphered: it obeys

kurt(wHx̃) = E[(wHx̃)4]− 3E2[(wHx̃)2] = E[(wHx̃)4]− 3||w||4 (2.55)

The constraint ||w|| = 1 must also be taken into account, e.g. by a penalty term [43].

The final objective function is

J(w) = E[(wHx̃)4]− 3||w||4 + F (||w||2) (2.56)

where F is a penalty term due to the constraint. Henceforth, the exact form of F is not

important. Denoting the sequence of the observations by x̃(n), the learning rate sequence

by µ(n), and the derivative of F/2 by f , the on-line learning algorithm then has the form

w(n+ 1) = w(n)±µ(n)[x̃(n)(w(n)Hx̃(n))3− 3||w(n)||2w(n) + f(||w(n)||2)w(n)] (2.57)

The first two terms in brackets are obtained from the gradient of kurt(wHx̃) when in-

stantaneous values are used instead of the expectation. The third term in brackets is

obtained from the gradient of F (||w||2); note that as long as this is a function of ||w||2

only, its gradient has the form αw, where α ∈ R. A Positive sign before the brackets

means finding the local maxima, negative sign corresponds to local minima.
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The convergence of this kind of algorithms can be proved by using the principles of

stochastic approximation [44]. The advantage of such neural learning rules is that the

inputs x̃(n) can be used in the algorithm immediately, thus enabling fast adaptation in

a non-stationary environment. A resulting trade-off, however, is that convergence is slow

and depends on a good choice of the learning rate sequence µ(n). A bad choice of the

learning rate can, in practice, destroy convergence. Therefore, some ways of making the

learning radically faster and more reliable may be needed: fixed-point iteration algorithms

are such an alternative.

The fixed points w of the learning rule (2.57) are obtained by taking the expectations

and equating the change in the weight to 0:

E[x̃(wHx̃)3]− 3||w||2w + f(||w||2)w = 0 (2.58)

The time index n has been dropped. A deterministic iteration could be formed from

equation (2.58) in a number of ways, e.g. by standard numerical algorithms for solving

such equations. A very fast iteration is obtained, as shown in the next section, if we write

(2.57) in the form

w = α(E[x̃(wHx̃)3]− 3||w||2w) (2.59)

Actually, because the norm of w is irrelevant, it is the direction of the right hand side

that is important. The scalar in equation (2.59) is therefore not significant and its effect

can be replaced by explicit normalization or the projection of w onto the unit sphere.

These ideas have been extended in [45] for complex-valued signals. In this case

w = α(E[x̃(wHx̃)∗g(|wHx̃|2)]− E[g(|wHx̃|2) + |wHx̃|2g′(|wHx̃|2)]w) (2.60)

For the particular case, when g(x) = x and g′(x) = 1, we can rewrite equation (2.60) as

w = α(E[x̃(wHx̃)∗|wHx̃|2]− 2||w||2w) (2.61)

Note that the above expression for complex-valued signals w is close to the expression

(2.59) for real-valued signals.
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• Step 1. Let i = 1.

• Step 2. Let w(0) be a random vector where ||w(0)|| = 1. Let k = 1.

• Step 3. Let

w(k) = E[x̃(w(k − 1)Hx̃)∗ + g(|w(k − 1)Hx̃|2)] +

− E[g(|w(k − 1)Hx̃|2) + |w(k − 1)Hx̃|2g′(|w(k − 1)Hx̃|2)]w(k − 1)

The expectation can be estimated using a large sample of x vectors (say 1, 000

points).

• Step 4. Let w(k) = w(k)
||w(k)|| .

• Step 5. If |w(k)Hw(k − 1)| is not close enough to 1, let k = k + 1 and return to

step 3. Otherwise, output the vector wi = w(k).

Table 2.1: FastICA algorithm

Assuming that we have collected a sample of the sphered (or prewhitened) random

vector x̃ and using the derivation of the equation (2.60), we get the fixed-point algorithm

for ICA shown in Table 2.1. The final vector wi given by the algorithm equals one of the

columns of the (orthogonal) mixing matrix U. In the case of blind source separation, this

means that wi separates one of the non-Gaussian source signals in the sense that wH
i x̃

equals one of the source signals.

A remarkable property of this algorithm is that a very small number of iterations,

usually 5-10, seems to be enough to obtain the maximal accuracy allowed by the sample

data. This is due to the cubic convergence.

In order to achieve the remaining N − 1 sources and guarantee the separation of

the sources, it is necessary to decorrelate each output wH
i after every one is obtained.

There are several methods of resolving this situation. A simple way is a deflation scheme
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based on a Grand-Schmidt-like decorrelation. This consists of estimating the independent

components one by one. After obtaining i vectors w1,w2, . . . ,wi, in order to achieve the

next vector wi+1, it has to let i = i+1, go to step 2, and when we have the desired vector,

it has to subtract from wi the projections wjw
H
j wi, j = 1, 2, . . . , i − 1 of the previously

i− 1 estimated vectors

wi = wi −
i−1∑
j=1

wjw
H
j wi (2.62)

and then renormalize wi

wi =
wi

||wi||
(2.63)

2.4.2 Batch Algorithms

Batch Algorithms achieve the separation system directly from a block input data. The

Joint Approximate Diagonalization of Eigenmatrices (JADE) is one of the best-known

algorithms of this kind. This algorithm, developed by Cardoso and Souloumiac in 1993

[5], is based on the simultaneous diagonalization of cumulant matrices. ‘Good’ statistical

performance is achieved by involving all the 2nd order and 4th order cumulants while a

fast optimization is obtained by the device of joint diagonalization.

JADE

In order to explain the principles of the JADE algorithm, we consider N i.i.d. sources

that obey equation (2.36) and M noiseless observations that have the form

x = Hs (2.64)

As in the case of FastICA explained in Section 2.4.1, JADE needs a first step in which

to work with sphered observations x̃, and hence we assume all equations from (2.47) to

(2.52) for this algorithm. Recall that the sphered observations are

x̃ = Bx = BHs = Us, Rx̃ = E[x̃x̃H] = IN (2.65)
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Note that U = BH and it has dimension N ×N . For explaining the following equations,

it is interesting to denote its columns by

U =
[

u1 u2 . . . uN

]
(2.66)

Before explaining the second step, we define the kurtosis of the i-th source as

ρi = kurt(si) = cum(si, s
∗
i , si, s

∗
i ) (2.67)

where cum(·) represents the cumulant function (see Appendix E for more details about

definition and properties). For any N ×N matrix M, it is possible to associate it with a

cumulant matrix Qx̃(M), defined by

[Qx̃(M)]ij =
N∑

k,l=1

cum(x̃i, x̃
∗
j , x̃k, x̃

∗
l )mlk, 1 ≤ i, j ≤ N (2.68)

Taking into the cumulant properties account, it has been demonstrated in [5] that Qx̃(M)

can be decomposed in

Qx̃(M) = U∆MUH (2.69)

where

∆M = diag(ρ1u
H
1 Mu1, ρ2u

H
2 Mu2, . . . , ρNuH

NMuN) (2.70)

Hence, from equation (2.69) above it is possible to recover the vector s of N sources and

it is possible to achieve the mixing matrix H by means of the following equation

H = B]U (2.71)

where (·)] is the pseudoinverse operator.

Summarizing, JADE can be described by the steps shown in Table 2.2. Actually, the

JADE algorithm presented in [5] is more complicated because the selection of the matrices

to be diagonalized is done by computing the EVD of an N2 ×N2 matrix whose columns

correspond to the matrices Qx̃(M) for any matrix M. In Appendix F, we describe an

optimized version of the Jacobi technique when N = 2, which is particularly attractive

for the (2× 1) Alamouti code.
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• Step 1. Compute a whitening matrix B of dimension N ×M making the Eigen-

value Decomposition (EVD) of the correlation matrix Rx. To this end, some of the

methods described in Appendix B can be used. Thus, you will have achieved a

white vector x̃ of dimension N .

• Step 2. Compute the N2 4th order cumulants in matrices Qx̃(M) of the whitened

process x̃(n) = Bx(n)

• Step 3. Jointly diagonalize the N most significant 4th order cumulants in matrices

Qx̃(M).

• Step 4. The estimation of H is Ĥ = B]U.

Table 2.2: JADE algorithm

2.5 Comparison between Classical and BSS Estima-

tion Algorithms

In this section we make a performance comparison between the channel estimation algo-

rithms described above:

• The Wiener filter with different size of the pilot symbol set: 2%, 10% and 20% of

the total symbols.

• The complex FastICA with the non-linearity function g(y) = 1/(ε+y) with ε = 0.1.

• The JADE algorithm.

These algorithms have been tested through the following computer simulated scenario.

Blocks of 1000 symbols were generated from an equiprobable distribution which symbols

belongs a 4-QAM which have been coded using the (2 × 1) Alamouti code. For that,
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Figure 2.5: Comparison between supervised and blind algorithms for Rayleigh channel distri-

bution: SER versus SNR

each generated block has been rearranged as 500 symbols for each source. The transmis-

sion of the symbols is carried out through block fading channels with Rayleigh or Rice

distribution.

The performance has been measured in terms of the Symbol Error Rate (SER) for dif-

ferent values of the Signal to Noise Ratio (SNR). The results have been averaged over 105

channel realizations and transmitted symbols. Perfect CSI obtained using the theoretical

channel matrix is used as a reference to compare performance.

Employing these parameters, Figure 2.5 shows the performance for Rayleigh channel

distribution. We can see that the Wiener filter differs by only 0.5 dB when the pilot

symbols are 2% of the total and achieves Perfect CSI when they are over 10%. FastICA

and JADE performance is also close to Perfect CSI.

Figure 2.6 shows the results obtained for Rice channel distribution. All the algorithms

achieve a SER of 10−4 with 10 dB, while for the Rayleigh case 25 dB are needed. Note

also that FastICA presents a poor performance for SNRs when are greater than 12 dBs.
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The reason for this undesirable situation may be the non-linearity function selection.



Chapter 3

SOS-based Approaches

One of the best known SOS-based approaches is Principal Component Analysis (PCA)

[46], introduced by Pearson in 1901 [47] in a biological context to recast linear regression

analysis into a new form. This technique is based on finding the eigenvector and eigen-

values of the correlation matrix obtained from the original data. PCA is widely used in

data compression where the eigenvectors represent the basis used to transform the original

data into a reduced set of uncorrelated components. It is also employed for whitening the

data before applying other algorithms such as FastICA and JADE.

Taking x to be the original data vector, the correlation matrix is defined by Rx =

E[xxH]. In the particular case where the observations are noised linear mixtures of sources

s, i.e. x = Hs + v where v is the noise vector, the correlation matrix has the form

Rx = E[xxH] = HRsH
H + σ2

vI (3.1)

The term σ2
v represents the noise variance and Rs = E[ssH] is the correlation matrix of

the sources. For the particular case of the (2 × 1) Alamouti code defined in Section 2.1

where the channel matrix is orthogonal, HHH = ||h||2I2, the correlation matrix given in

the equation (3.1) can be rewritten as

Rx = HRsH
H +

σ2
v

||h||2
HHH = H

(
Rs +

σ2
v

||h||2
I2

)
HH = H∆SOSH

H (3.2)

35
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• Step 1. Compose the correlation observation matrix Rx = E[xxH].

• Step 2. Let C = Rx.

• Step 3. Compute the EVD of C. The result is C = Ĥ∆SOSĤ
H.

• Step 4. Return Ĥ.

Table 3.1: General SOS algorithm: PCA

So, we can think that the matrix H can be identified by computing the eigenvectors of

the correlation matrix, applying the procedure described in Table 3.1. Note that if the

two sources have the same variance, σ2
s = E[|s1|2] = E[|s2|2], the above expression has the

form

Rx = (σ2
s +

σ2
v

||h||2
)HHH = (||h||2σ2

s + σ2
v)I2 (3.3)

This is true for any orthogonal matrix and, hence, it is impossible to identify H.

The limitations of using SOS in OSTBC were first focused on by Shahbazpanahi et

al. in [3]. Using specific properties of OSTBC, including (2 × 1) Alamouti code, these

authors proposed a closed form to make a blind estimation of the channel matrix and show

that the SOS-based channel estimation in the (2 × 1) Alamouti code can be realized by

using a simple linear precoding matrix selected in order to guarantee that the eigenvalues

of the correlation matrix have an order equal to one, which implies that the encoded

sources have different variances that can be obtained using a precoder matrix before the

Alamouti code. In this sense, Via et al. [4] have proposed an adaptive procedure which

makes it possible to estimate the channel matrix when the eigenvalues of Rx are different.

More recently, in [28] we have proposed a compact form of interpreting the approach of

Shahbazpanahi et al., and we have studied how to choose the best precoding matrix for

Rayleigh and Rice distributed channels which keeps the orthogonality property of the

channel matrix.
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This chapter is structured as follows. In Section 3.1 we present a real-valued notation

to express the (2× 1) Alamouti code. Using this notation, Section 3.2 presents the basis

of the blind SOS approach proposed by Shahbazpanahi et al. In Section 3.3 an adaptive

implementation of Shahbazpanahi et al.’s approach is shown, as proposed by Via et al.

in [4]. In this section, we also propose an alternative implementation for this algorithm

considering a complex-valued model. Finally, Section 3.4 shows how to choose the best

precoding matrix for SOS-based approaches, keeping orthogonality coding, in the context

of Rayleigh and Rice channels.

3.1 Real-valued Representation of Alamouti Code

In order to formulate the SOS-based techniques, we will introduce the real-valued notation

of the (2× 1) Alamouti code. To this end we define the operator (·) for any vector a and

for any matrix A as a =
[
<{a}T ={a}T

]T
and A =

[
<{A}T ={A}T

]T
, respectively.

As in the case of the complex notation introduced in Section 2.1, the source vector is

s = [s1 s2]
T and the noise vector is redefined as v = [v1 v

∗
2]T. Remember that the received

signals have the form

r =

 r1

r2

 =

 h1s1 + h2s2 + v1

h2s
∗
1 − h1s

∗
2 + v∗2

 (3.4)

Hence, in order to work separately with the real and imaginary parts of the sources, we

define a set formed by 4 coding matrices

C1 =

 1 0

0 1

 C2 =

 0 1

−1 0

 C3 =

 j 0

0 −j

 C4 =

 0 j

j 0

 (3.5)

which satisfy

CH
k Cl =

 I2, k = l

−CH
l Ck, k 6= l

(3.6)

The real-valued source vector is s = [<{s1} <{s2} ={s1} ={s2}]T which is formed by

4 elements. We will define a source matrix whose columns represent the antenna used to
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transmit and whose rows represent the time slot,

S =

 s1 s2

−s∗2 s∗1

 (3.7)

Denoting by sk the k-th entry in s, we can interpret Ck as the matrix that indicates the

antenna and time slot used to transmit the symbol sk. As a result, the equation above

can be rewritten as follows

S =

 <{s1}+ j={s1} <{s2}+ j={s2}

−(<{s2} − j={s2}) <{s1} − j={s1}

 =
4∑

k=1

Cksk (3.8)

Thus we can rewrite the received signal vector in the equation (3.4) as

r = Sh + v (3.9)

where the channel vector is defined by

h =

 h1

h2

 (3.10)

Using the form of matrices Ck in the equation (3.5), the vector above can be rewritten as

r = Sh + v =
4∑

k=1

Ckskh + v =
4∑

k=1

Ckhsk + v (3.11)

Defining the vector wk(h) = Ckh and the matrix

W(h) = [w1(h) w2(h) w3(h) w4(h)] = [C1h C2h C3h C4h] (3.12)

we can rewrite equation (3.11) as

r =
4∑

k=1

wk(h)sk + v = W(h)s + v (3.13)

Finally, using the operator (·), we can obtain the real-valued representation of the receiving

signals, r =
[
<{r}T ={r}T

]T
, which obeys the following expression

r =
4∑

k=1

wk(h)sk + v = W(h)s + v (3.14)
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We will prove that the matrix W(h) is orthogonal. Directly, from equations (3.10) and

(3.12), it can be obtained that the matrix W(h) has the form

W(h) =

 h1 h2 jh1 jh2

h2 −h1 −jh2 jh1

 (3.15)

and the matrix W(h) = [<{W(h)}T ={W(h)}T]T is

W(h) =


<{h1} <{h2} −={h1} −={h2}

<{h2} −<{h1} ={h2} −={h1}

={h1} ={h2} <{h1} <{h2}

={h2} −={h1} −<{h2} <{h1}

 (3.16)

By performing simple operations and considering that |hi|2 = <{hi}2 +={hi}2, we obtain

that

WT(h)W(h) = (|h1|2 + |h2|2)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = ||h||2I4 (3.17)

This property allows us to estimate the sources from equation (3.14) by means of

ŝ =
WT(h)r

||h||2
(3.18)

which is the ML criterion.

The complex source vector s can then be obtained as

ŝ = [I2 jI2] ŝ (3.19)

where I2 is the 2× 2 identity matrix. In order to apply equation (3.18) we need to know

the vector channel h or an estimation of it.

3.2 The Shahbazpanahi et al. Approach

One of the most significant SOS-based techniques for channel identification for OSTBC

has been proposed by Shahbazpanahi et al. in [3]. In this section, we will formulate this
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technique using the real-valued notation introduced in the previous section.

The technique is based on unbalancing the source variance by using a diagonal encoder

matrix

D =

 σz1 0

0 σz2

 (3.20)

Thus, the new encoded sources are

z = Ds (3.21)

In order to obtain the relation between z and s, we define an alternative encoder matrix

D′ =


σz1 0 0 0

0 σz2 0 0

0 0 σz1 0

0 0 0 σz2

 (3.22)

Thus, it is possible to establish the following relationship

z = D′s (3.23)

The received signals are linear combinations of z and they follow the model in equation

(3.14) using z instead of s, i.e

r =
4∑

k=1

wk(h)zk + v = W(h)z + v (3.24)

and their correlation matrix is given by

Rr = E[rrT] = W(h)RzW
T(h) +

σ2
v

2
I4 = W(h)D′RsD

′WT(h) +
σ2

v

2
I4 (3.25)

Directly from equation (3.17), we obtain

σ2
v

2
I4 =

σ2
v

2||h||2
W(h)WT(h) (3.26)

and the correlation matrix can be expressed as

Rr = W(h)

(
D′RsD

′ +
σ2

v

2||h||2

)
WT(h) (3.27)
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Since W(h) is an orthogonal matrix and the sources have the same variance, the channel

can be identified using an EVD if the values in the diagonal of D′ are different, i.e,

σz1 6= σz2 . In fact, Shahbazpanahi et al. have proved that this identification problem can

be solved using the following optimization criterion

arg max
ĥ

Tr(WT(ĥ)RrW(ĥ)D′)

||ĥ||2
(3.28)

In Appendix D, using the properties of the Kronecker operator ⊗, it is shown that the

numerator of this expression can be written as

Tr(WT(ĥ)RrW(ĥ)D′) = vecT(W(ĥ))(I4 ⊗Rr)vec(W(ĥ)D′) (3.29)

We will express this criterion in a compact form by defining the following matrices

Dk =
[
Ck jCk

]
, k = 1, . . . , 4 (3.30)

where Ck, k = 1, . . . , 4 have been defined in equation (3.5). Applying the operator (·),

expression (3.16) can also be rewritten using the matrices defined in [27]

Dk =

 <{Ck} −={Ck}
={Ck} <{Ck}

 , k = 1, . . . , 4 (3.31)

which satisfy

DH
kDl =

 I4, k = l

−DH
l Dk, k 6= l

(3.32)

We also define the 16× 4 matrix

Φ =


D1

D2

D3

D4

 (3.33)

Since the matrices Dk are orthogonal, this matrix obeys the following relationship

ΦTΦ = 4I4 (3.34)

In Appendix D, the following expression is demonstrated

vec(W(ĥ)) = Φĥ (3.35)
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where the matrix W(ĥ) is related to the matrices Dk, k = 1, .., 4 through the expression

W(ĥ) =
[
D1ĥ D2ĥ D3ĥ D4ĥ

]
(3.36)

The matrix Ψ from equations (3.22) and (3.33) is therefore defined as

Ψ = (D′ ⊗ I4)Φ =


σz1D1

σz2D2

σz1D3

σz2D4

 (3.37)

In Appendix D, it is also proved that it is possible to establish the following relationship

vec(W(ĥ)D′) = Ψĥ (3.38)

Substituting equations (3.35) and (3.38) in the equation (3.29), we obtain the equation

vec(W(ĥ))T(I4 ⊗Rr)vec(W(ĥ)D′) = ĥ
T
ΦT(I4 ⊗Rr)Ψĥ

= ĥ
T
ΦT(I4 ⊗Rr)(D

′ ⊗ I4)Φĥ (3.39)

Since (I4 ⊗Rr)(D
′ ⊗ I4) = D′ ⊗Rr, the criterion (3.28) can be expressed as

arg max
ĥ

ĥ
T
ΦT(D′ ⊗Rr)Φĥ

||ĥ||2
(3.40)

Observing this expression, we conclude that the channel can be obtained by computing

the main eigenvector of the following matrix

C = ΦT(D′ ⊗Rr)Φ (3.41)

Finally, we introduce the operator P{·} to denote the normalized principal eigenvector

of a matrix (||P{·}|| = 1). Thus, we obtain the normalized solution to equation (3.40)

which can be expressed as

ĥopt = P{C} = P{ΦT(D′ ⊗Rr)Φ} (3.42)

Therefore, the algorithm to estimate the channel vector h from observations, after

selecting an adequate precoding matrix D′, can be summarized in the steps shown in

Table 3.2. Note that the decoder needs to know the precoding matrix D′ which has been

applied to the sources before transmission.
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• Step 1. Compose the real correlation of the receiving signals matrix Rr = E[rrH].

• Step 2. Let C = ΦT(D′ ⊗Rr)Φ.

• Step 3. Compute the normalized principal eigenvector of C, i.e P {C} and name

it ĥ.

• Step 4. Return ĥ.

Table 3.2: The Shahbazpanahi et al. SOS algorithm

3.2.1 Simulation Results

We will consider the computer scenario described in Section 2.5. Blocks of 1000 symbols

were generated from an equiprobable distribution whose symbols belong to a 4-QAM

employing the (2 × 1) Alamouti code. The transmission was carried out through block

fading channels with Rayleigh and Rice distribution. Bearing this in mind, we have tested

the Shahbazpanahi et al. algorithm shown in Table 3.2 considering the following precoding

matrix

Dγ =

 σz1 0

0 σz2

 =

 √ 2
1+γ2 0

0 γ
√

2
1+γ2

 (3.43)

giving γ the values 0.5, 0.6, 0.8 and 0.9. Note that thanks to the factor
√

2
1+γ2 , the

mean variance between z1 and z2 is the same for every value of γ. Thus, with this set

of values, we attain different precoding matrices which produce an unbalancing in the

sources variance. The 4× 4 matrix D′ employed in Step 2 can be directly obtained from

Dγ using equation (3.32).

We can see the results obtained for the Rayleigh channel distribution in Figure 3.1.

It is shown that when the value of γ is 0.8 the performance is very close to Perfect CSI.

For the remaining values of γ the performance is worse due to the high source variance

unbalancing.
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Figure 3.1: Performance of the Shahbazpanahi et al. SOS algorithm employing different pre-

coding matrices with Rayleigh channel distribution: SER versus SNR
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Figure 3.2: Performance of the Shahbazpanahi et al. SOS Algorithm employing different pre-

coding matrices with Rice channel distribution: SER versus SNR
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Figure 3.2 shows the results obtained for the transmission through Rice channel dis-

tribution. We can see that the performance for Perfect CSI in terms of SER is equal to

10−4 for 10 dB instead of 25 dB as in the case of Rayleigh channel distribution. The

performance obtained for the Shahbazpanahi et al. algorithm with different values of γ is

equivalent to that described for the Rayleigh case.

3.3 The Via et al. Adaptive Implementation

An important contribution of Via et al. in [4] is to formulate an adaptive algorithm to im-

plement the ideas presented by Shahbazpanahi et al. [3]. The basis of this implementation

is to find the vector ĥ that maximizes the equation (3.28),

J(ĥ) =
Tr(WT(ĥ)RrW(ĥ)D′)

||ĥ||2
(3.44)

We will obviate the time instant n for reasons of simplicity, and considering that the

unbalanced sources are z = D′s, the received signals have the form

r = W(h)z + v (3.45)

Thus, if we obviate the noise term v, the cost function to be minimized could be rewritten

as

J(ĥ) =
Tr(WT(ĥ)E[W(h)zzTWT(h)]W(ĥ)D′)

||ĥ||2

=
Tr(E[WT(ĥ)W(h)zzTWT(h)W(ĥ)]D′)

||ĥ||2
(3.46)

Now, it is interesting to simplify the expression considering as the estimation of z the ML

criterion shown in the following relationship

ẑ =
WT(ĥ)r

||ĥ||||h||
=

WT(ĥ)W(h)z

||ĥ||||h||
(3.47)
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And, introducing the term W(h) inside the expectation, we obtain a new expression of

the criterion to be maximized from equation (3.46), i.e.

J(ĥ) =
Tr(||ĥ||||h||E[ẑẑT]||h||||ĥ||D′)

||ĥ||2

=
||ĥ||2||h||2Tr(E[ẑẑT]D′)

||ĥ||2

= ||h||2Tr(E[D′ẑẑT])

= ||h||2E[ẑTD′ẑ] (3.48)

By considering D′ to be a diagonal matrix, we have removed the trace by using Tr(E[D′ẑẑT]) =

E[ẑTD′ẑ]. Employing the matrices Dk defined in equation (3.31) and the equation (3.36),

it is straightforward to obtain from equation (3.47) the following relationship

ẑ =


rTD1

...

rTD4

 ĥ

||ĥ||||h||
(3.49)

Substituting this expression of ẑ in the equation (3.48) a new expression is obtained for

the maximization criterion shown in equation (3.44), i.e

J(ĥ) = ||h||2E[ẑTD′ẑ] =
||h||2

||ĥ||2||h||2
E

ĥ
T
[
DT

1 r · · · DT
4 r
]

D′


rTD1

...

rTD4

 ĥ



=
1

||ĥ||2
ĥ

T
E

[ DT
1 r · · · DT

4 r
]

D′


rTD1

...

rTD4


 ĥ

=
1

||ĥ||2
ĥ

T
E

[
4∑

k=1

DT
k d
′
kkrr

TDk

]
ĥ

=
1

||ĥ||2
ĥ

T

(
4∑

k=1

DT
k d
′
kkE

[
rrT
]
Dk

)
ĥ

=
1

||ĥ||2
ĥ

T

(
4∑

k=1

d′kkDT
kRrDk

)
ĥ (3.50)
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The estimation problem is thus reduced to a PCA problem where the true channel is

obtained, with scale and sign indeterminacy, making the extraction of the main eigenvector

of the following correlation matrix

4∑
k=1

d′kkDT
kRrDk (3.51)

Applying Oja’s rule [48], we obtain, for every k-th component of ẑk and for every n time

instant, the following adaptive rule

ĥ(n) = ĥ(n− 1) + µd′kkDT
k r(n)ẑk(n) (3.52)

where ẑk(n) is

ẑk(n) = rT(n)Dkĥ(n− 1) (3.53)

It is interesting to note that the equation (3.53) corresponds with the ML criterion. This

will be shown in Section 3.3.1.

Now, considering the equations (3.52) and (3.53), assuming that there are L source

vectors and L observations in the context of Alamouti code, the adaptive algorithm can

be summarized in Table 3.3. It is important to note that by employing this algorithm

the estimation of h is always normalized. However, thanks to the precoding matrix and

this implementation, the estimation of sources is always non-scaled and non-permuted.

Nevertheless, just as for any blind source estimation method, we will not know the phase

of the channel.

3.3.1 Complex-valued Implementation

In this section, we present how to obtain the complex-valued representation of the Via

et al. procedure shown in Table 3.3 in order to achieve a simpler implementation of this

algorithm.

We will consider the relationship between the matrix Dk from Ck given in equation
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• Step 1. Initialize the learning rate µ with a positive real value and ĥ with random

values. Let n = 1 and let k = 1.

• Step 2. Compute the estimation of the k-th unbalanced source for the time instant

n

ẑk(n) = rT(n)Dkĥ

• Step 3. Update the estimated channel ĥ employing

ĥ = ĥ + µd′kkDT
k r(n)ẑk(n)

Note that d′kk is the k-th element from the diagonal of D′ from the precoding matrix

shown in the equation (3.22).

• Step 4. Normalize the estimated channel

ĥ =
ĥ

||ĥ||

• Step 5. Update the k-th estimated source

ẑk(n) = rT(n)Dkĥ

• Step 6. Let k = k + 1. If k ≤ 4 then go back to step 2, otherwise continue.

• Step 7. Let n = n + 1. If n ≤ L then let k = 1 and go back to step 2. Otherwise

finalize.

Table 3.3: The Via et al. adaptive SOS algorithm
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(3.31). Replacing by the values of Ck, we obtain

D1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = I4 D2 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



D3 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 D4 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 (3.54)

Applying these matrices over the ĥ vector channel, the following expressions are obtained

D1ĥ = I4ĥ = ĥ D2ĥ =


<{ĥ2}

−<{ĥ1}

={ĥ2}

−={ĥ1}

 D3ĥ =


−={ĥ1}

={ĥ2}

<{ĥ1}

−<{ĥ2}

 D4ĥ =


−={ĥ2}

−={ĥ1}

<{ĥ2}

<{ĥ1}


(3.55)

From now onwards, for simplicity reasons, we will remove the times index n. From the

equation (3.55), we obtain the following expression

rTD1ĥ + rTD3ĥj = <{r1}<{ĥ1}+ <{r2}<{ĥ2}+ ={r1}={ĥ1}+ ={r2}={ĥ2}+(
−<{r1}={ĥ1}+ <{r2}={ĥ2}+ ={r1}<{ĥ1} − ={r2}<{ĥ2}

)
j

= <{ĥ1}(<{r1}+ ={r1}j)−={ĥ1}j(<{r1}+ ={r1}j) +

<{ĥ2}(<{r2}+ ={r2}j) + ={ĥ2}j(<{r2}+ ={r2}j)

= ĥ∗1r1 + ĥ2r
∗
2 (3.56)

where r is r =
[
<{r}T ={r}T

]T
. Equivalently, for rTD2ĥ and rTD4ĥj, we obtain

rTD2ĥ + rTD4ĥj = ĥ∗2r1 − ĥ1r
∗
2 (3.57)

Hence, stacking the terms obtained from equations (3.56) and (3.57) in an array, produces
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the following expression

 rTD1ĥ + rTD3ĥj

rTD2ĥ + rTD4ĥj

 =

 ĥ∗1 ĥ2

ĥ∗2 −ĥ1


︸ ︷︷ ︸

ĤH

 r1

r∗2


︸ ︷︷ ︸

x

= ĤHx (3.58)

which is equivalent to Step 2 of the Via et al. algorithm with k = 1, 2, 3 and 4, joining

the real and the imaginary part as a complex number.

Note that this expression is equivalent to the ML criterion, as can be seen in the

following expression

ĤHx =

 ĥ∗1r1 + ĥ2r
∗
2

ĥ∗2r1 − ĥ1r
∗
2

 =

 ĥ∗1(h1z1 + h2z2) + ĥ2(h
∗
2z1 − h∗1z2)

ĥ∗2(h1z1 + h2z2)− ĥ1(h
∗
2z1 − h∗1z2)


'

 |h1|2z1 + ĥ∗1h2z2 + |h2|2z1 − ĥ2h
∗
1z2

ĥ∗2h1z1 + |h2|2z2 − ĥ1h
∗
2z1 + |h1|2z2

 =

 (|h1|2 + |h2|2)z1

(|h2|2 + |h1|2)z2


= ||h||2z (3.59)

Referring to Step 3 of the Via et al. algorithm, employing the values k = 1, 2, 3, and

4 and summing the obtained terms, it is possible to achieve the following expression

4∑
k=1

d′kkDT
k rẑk =

4∑
k=1

DT
k r d′kkẑk︸ ︷︷ ︸

ẑ′k

=
4∑

k=1

DT
k rẑ′k (3.60)

Now, we can obtain from equations (3.14) and (3.54) the following relationships

DT
1 r = I4r = r DT

2 r =


−<{r2}

<{r1}

−={r2}

={r1}

 DT
3 r =


={r1}

−={r2}

−<{r1}

<{r2}

 DT
4 r =


={r2}

={r1}

−<{r2}

−<{r1}


(3.61)

Hence, substituting the expressions from equation (3.61) in equation (3.60), we obtain
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the following vector

h+ =
4∑

k=1

ẑ′kDT
k r =


<{ẑ′1}<{r1} − <{ẑ′2}<{r2}+ ={ẑ′1}={r1}+ ={ẑ′2}={r2}

<{ẑ′1}<{r2}+ <{ẑ′2}<{r1} − ={ẑ′1}={r2}+ ={ẑ′2}={r1}

<{ẑ′1}={r1} − <{ẑ′2}={r2} − ={ẑ′1}<{r1} − ={ẑ′2}<{r2}

<{ẑ′1}={r2}+ <{ẑ′2}={r1}+ ={ẑ′1}<{r2} − ={ẑ′2}<{r1}


(3.62)

From the 1st and 3rd component of the equation (3.62), we obtain the 1st component of

h+, which is the complex version of h+. It can be expressed as

h+
1 = h+

1 + h+
3 j

= <{ẑ′1}(<{r1}+ ={r1}j)−={ẑ′1}j(<{r1}+ ={r1}j) +

−<{ẑ′2}(<{r2}+ ={r2}j)−={ẑ′2}j(<{r2}+ ={r2}j)

= ẑ′∗1 r1 − ẑ′2r2 (3.63)

Equivalently, from the 2nd and 4th component of the equation (3.62), we obtain the 2nd

component of h+, i.e.

h+
2 = h+

2 + h+
4 j = ẑ′1r2 − ẑ′∗2 r1 (3.64)

Stacking these two terms, we obtain the following vector

h+ =

 h+
1

h+
2

 =

 ẑ′∗1 −ẑ′2
ẑ′∗2 ẑ′1

 r1

r2

 (3.65)

Note that this is equivalent to Step 3 of the Via et. al Algorithm, but it is first necessary

to compute the sources vector estimation ẑ′ by means of the following expression

ẑ′ =

 ẑ′1

ẑ′2

 = D

 ẑ1

ẑ2

 (3.66)

The matrix D is the same introduced in equation (3.20) where the terms in its diagonal

are related with the values of matrix D′ used in the equation of the real-valued model

(3.22) by d11 = d′11 = d′33 and d22 = d′22 = d′44.
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In the complex-valued case, it is also needed to perform the normalization in Step 4.

Finally, the estimated sources are updated using 2 again, i.e

z(n) = ĤHx(n) (3.67)

Assuming that there are L source vectors and, therefore, L observations in the context

of Alamouti code, the SOS complex-valued adaptive algorithm is composed of the steps

shown in Table 3.4. It is important to note that this implementation is fully equivalent

to the original implementation shown in Table 3.3.

3.3.2 Simulation Results

Considering the scenario described in Section 3.2.1 and taking into account the precod-

ing matrix of equation (3.43) with γ equal to 0.5, 0.6, 0.8 and 0.9, we have performed

several simulations using the Via et al. adaptive implementation presented in Table 3.3.

Note that if we had employed the complex-valued implementation shown in Table 3.4,

the performance achieved would have been the same because these implementations are

equivalent. The learning step parameter employed is µ = 1 for the Rayleigh case, and is

µ = 0.1 for the Rice case. This parameter has been chosen empirically in order to obtain

the best performance by means of a dichotomy procedure.

We can see in Figure 3.3 the performance of the Via et al. adaptive SOS algorithm

with different values of γ for Raleigh channel distribution. The case of γ = 0.8 obtains

the best performance, similar to that of the batch Shahbazpanahi et al. algorithm shown

in Figure 3.1, but there is a flooring effect when the SNRs are higher. Note that when

the SNR is 25 dB the performance obtained for γ = 0.8 is a SER close to 10−3, instead

of around 10−4 for Perfect CSI. Hence, it is somewhat distant from the batch procedure

with the same γ.

Figure 3.4 shows the performance when the Rice channel distribution is employed in

transmission for the Via et al. adaptive SOS algorithm. Again, the case of γ = 0.8 obtains



3.3. THE VIA ET AL. ADAPTIVE IMPLEMENTATION 53

• Step 1. Initialize the learning rate µ with a real value between 0 and 1, and

randomly initialize the estimated channel vector ĥ. Let n = 1.

• Step 2. Let

ẑ(n) = ĤHx(n)

Note that the matrix Ĥ is

Ĥ =

 ĥ1 ĥ2

ĥ∗2 −ĥ∗1


• Step 3. Obtain a new sources vector estimation

ẑ′(n) = Dẑ(n)

Note that D is the precoding matrix (3.20) to unbalance the variance of the sources.

• Step 4. Update the estimated channel ĥ employing

ĥ = ĥ + µ

 ẑ′∗1 (n) −ẑ′2(n)

ẑ′∗2 (n) ẑ′1(n)

 r(n)

• Step 5. Normalize the estimated channel

ĥ =
ĥ

||ĥ||

• Step 6. Update the estimated source vector of instant n

z(n) = ĤHx(n)

• Step 7. Let n = n+ 1. If n ≤ L go back to step 2. Otherwise, output the vector ĥ.

Table 3.4: The complex-valued adaptive SOS algorithm
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Figure 3.3: Performance of the Via et al. adaptive SOS algorithm employing different precoding

matrices with Rayleigh channel distribution: SER versus SNR
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the best performance, as in the case of the batch Shahbazpanahi et al. algorithm shown

in Figure 3.2. It also presents a high flooring effect for high SNRs.

3.4 Choosing the Optimal Precoding Matrix

The approaches presented in the previous sections make it possible to estimate OSTBC

systems employing SOS through a batch or an adaptive algorithm. The key is to modify

the encoder by adding a precoding matrix that produces an unbalancing of the sources

variance. In this section, we will show how to choose the best precoding matrix from

empirical results.

As we have explained above, the sources s have been unbalanced using a diagonal

matrix D, such as z = Ds. In order to keep the same variance as in the balanced case,

this matrix takes the form

D =

 σz1 0

0 σz2

 =

 √ 2
1+γ2 0

0 γ
√

2
1+γ2

 (3.68)

where γ2 ∈ (0, 1) ⊂ R is the unbalancing parameter. The variance of the z1 and z2 are

σ2
z1

= E[|z1|2] =
2

1 + γ2
E[|s1|2] =

2σ2
s

1 + γ2
(3.69)

and

σ2
z2

= E[|z2|2] = γ2 2

1 + γ2
E[|s2|2] = γ2E[|z1|2] = γ2 2σ2

s

1 + γ2
(3.70)

Note that if γ2 = 0, the source s2 is completely cancelled and it is totally balanced if

γ2 = 1, i.e. σ2
z1

= σ2
z2

. The factor 2
1+γ2 is used to guarantee that the mean variance will

be the same as in the balanced case. Performing the same reasoning as in the equation
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Figure 3.5: Finding the optimum γ2 parameter for Rayleigh channel distribution: SER versus

SNR

(3.2), it is straightforward to obtain the following expression

Rx = H

(
Rz +

σ2
v

||h||2
I2

)
HH = H

 σ2
z1

+ σ2
v

||h||2 0

0 γ2σ2
z1

+ σ2
v

||h||2

HH =

= σ2
z1

H

 1 + σ2
v

σ2
z1
||h||2 0

0 γ2 + σ2
v

σ2
z1
||h||2

HH (3.71)

As a result, the matrix H can be identified using an EVD.

In order to choose the best D precoding matrix, we will show the results of several

computer simulations employing the general SOS algorithm shown at the beginning of this

chapter in Table 3.1. Bearing this in mind, remember the scenario described in Section

2.5, where we have (2×1) Alamouti code, blocks of 1000 statistically independent symbols,

identically distributed with a 4-QAM. Each block is rearranged as a block of 500 symbol

vectors of dimension 2 and there is block fading. Also, the results have been averaged

over 105 realizations.

Taking into account all these assumptions, Figure 3.5 and Figure 3.6 show, respectively,
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Figure 3.6: Finding the optimum γ2 parameter for Rice channel distribution: SER versus SNR

the SER versus the γ2 parameter for the Rayleigh and the Rice channel distributions for

different values of SNR. We can empirically conclude that the optimum value for both

the Rayleigh and the Rice distributions is the same, γ2 ' 0.64. We can see that the

performance is poor for the limits of the range of γ2. This seems logical because in this

case the unbalancing between the two sources is high. Performance is better for values of

γ2 close to the middle of the interval, which is the compromise between producing enough

unbalancing to make channel identification possible and avoiding excessive degradation

of one of the two sources. Note that these assertions are true for any value of SNR.

In Figure 3.7 and Figure 3.8 we can see, respectively, the performance in terms of SER

versus SNR for Rayleigh and Rice channel distribution when employing the optimal value

for γ2 = 0.64. We show the performance for source z1 and source z2 separately, and the

average performance. We can see that performance is close enough to the Perfect CSI:

for source z1 performance is better than the Perfect CSI because its variance is greater

than 1, whilst for source z2 performance does not quite reach the Perfect CSI because its

variance is lower than 1.
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Figure 3.7: Performance of the general SOS algorithm employing the optimal encoding matrix

with Rayleigh channel distribution: SER versus SNR

0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

S
E

R

105 channels

 

 

Perfect CSI
General SOS (γ2=0.64): s

1

General SOS (γ2=0.64): s
2

General SOS (γ2=0.64)

Figure 3.8: Performance of the general SOS algorithm employing the optimal encoding matrix

with Rice channel distribution: SER versus SNR



3.4. CHOOSING THE OPTIMAL PRECODING MATRIX 59

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

105 channels

 

 

Perfect CSI
General SOS
Shahbazpanahi et al. SOS
Via et al. Adaptive SOS

Figure 3.9: Comparison between SOS algorithms for Rayleigh channel distribution: SER versus

SNR

Finally, Figures 3.9 and 3.10 compare the results obtained using the general SOS al-

gorithm, the Shahbazpanahi et. al. approach and the Via et. al. method using the

optimal encoding matrix. Note that the results of the general method match those ob-

tained with the Shahbazpanahi algorithm, while the adaptive implementation presents a

loss of performance.

The main advantage of the SOS based approaches presented above is the lower com-

putation effort required to achieve the matrix C and the easy of implementation of this

algorithm in DSPs or FPGAs. However, this approach needs to unbalance the variance

between sources, which degrades the SER of one source.
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Chapter 4

HOS-based Approaches

In the previous chapter, we have shown that SOS can be used for the Alamouti coding

system because the channel matrix is orthogonal but, however, it implies unbalancing the

source variances. An undesirable consequence of this step is that the bit error for one

source may be considerably increased.

In this chapter we will present blind channel identification approaches based on di-

agonalizing a linear combination or a sensible choice of 4th order cumulant matrices, i.e.

HOS-based approaches. For the particular case of a (2× 1) Alamouti code, we have only

4 different matrices with the form

C
[k,l]
HOS = cum(x,xH, xk, x

∗
l )

=

 cum(x1, x
∗
1, xk, x

∗
l ) cum(x1, x

∗
2, xk, x

∗
l )

cum(x2, x
∗
1, xk, x

∗
l ) cum(x2, x

∗
2, xk, x

∗
l )

 , k, l ∈ {1, 2} (4.1)

Due to the properties of cumulants, it is shown, in Appendix E.3, that there are only 6

different 4th order cumulants.

The main idea of the techniques studied in this chapter is to consider that the cumulant

matrices can be written as follows

C
[k,l]
HOS = H∆̆klH

H (4.2)

61
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• Step 1. Obtain a matrix C depending on the chosen approach.

• Step 2. Make the EVD of the matrix C. The result is C = Ĥ∆HOSĤ
H, where Û

is the matrix that contains the eigenvectors of C, and ∆HOS is the diagonal matrix

which contains the eigenvalues of C.

• Step 3. Return an estimation of the channel matrix, Ĥ.

Table 4.1: General HOS Algorithm: ICA

where ∆̆kl is a diagonal matrix. As a consequence, the channel matrix can be estimated

by computing the eigenvectors of C
[k,l]
HOS. Note that it is also possible to estimate H from

the linear combination of the cumulant matrices because the matrix H in equation (4.2)

is the same for all C
[k,l]
HOS. Call any linear combination of these matrices C. Thus, the

eigenvalue decomposition will be C = Ĥ∆HOSĤ
H where ∆HOS is a diagonal matrix which

contains the eigenvalues and Ĥ is the matrix where each column is an eigenvector of C in

any order, and note that they are normalized. Taking this into account, we can conclude

that we will always obtain a normalized estimation Ĥ of the matrix channel. Therefore,

we have a permutation and scale indeterminacy. Table 4.1 describes the general algorithm

for the approaches that employ HOS for estimating the channel matrix.

This chapter is structured as follows. Section 4.1 describes the approach proposed by

Beres and Adve in [6]. Subsequently, Section 4.2 shows how to improve the performance of

this approach by using a linear combination of the cumulant matrices used independently

by Beres and Adve. Section 4.3 studies the performance when using a different selection

of the cumulant matrix. Section 4.4 contains the main contribution of this chapter, which

is to present an analytical way of determining the optimum cumulant matrix to be diago-

nalized. We will also propose a suboptimal technique which presents a good performance

with a low computational cost. Finally, Section 4.5 particularizes the well-known Joint

Approximate Diagonalization of Eigenmatrices (JADE) to the (2× 1) Alamouti code.
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4.1 The Beres and Adve Approach

Beres and Adve have presented in [6] a blind channel estimation method for OSTBC in

MISO systems. These authors consider the diagonalization of 4th order cumulants matrices

obtained by considering k = l in equation (4.1) and, hence, we have only two matrices:

C
[1,1]
HOS and C

[2,2]
HOS. In Appendix E, we show that these matrices can be decomposed as

follows

C
[k,k]
HOS = H∆̆kkH

H (4.3)

where

∆̆11 = ρ

 |h1|2 0

0 |h2|2

 , ∆̆22 = ρ

 |h2|2 0

0 |h1|2

 (4.4)

Taking this into account, we can employ the common algorithm shown in Table 4.1 to

obtain an estimation of the matrix H, choosing as matrix C between the matrices C
[1,1]
HOS

and C
[2,2]
HOS. Note that the diagonalization fails when the entries in ∆̆11 (or ∆̆22) are close,

i.e. when the modules of the channel realization are similar |h1| ' |h2|.

It is interesting to note that this approach needs to compute a reduced number of

4th order cumulant matrices. In fact, using the definitions and properties presented in

Appendix E, these matrices can be computed as follows

C
[1,1]
HOS = cum(x,xH, x1, x

∗
1) =

 cum(x1, x
∗
1, x1, x

∗
1) cum(x1, x

∗
2, x1, x

∗
1)

cum∗(x1, x
∗
2, x1, x

∗
1) cum(x2, x

∗
2, x1, x

∗
1)

 (4.5)

C
[2,2]
HOS = cum(x,xH, x2, x

∗
2) =

 cum(x1, x
∗
1, x2, x

∗
2) cum(x1, x

∗
2, x2, x

∗
2)

cum∗(x1, x
∗
2, x2, x

∗
2) cum(x2, x

∗
2, x2, x

∗
2)

 (4.6)

We can see that each matrix needs to compute only 3 different cumulants. In practice,

these 4th order cumulants matrices are computed by sample averaging on the observations.

4.1.1 Simulation Results

In order to illustrate the performance of this approach, we will show the results of several

computer simulations using the scenario described in Section 2.5. Remember that blocks



64 CHAPTER 4. HOS-BASED APPROACHES

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

105 channels

 

 

Perfect CSI
 C[1,1]

HOS

Figure 4.1: Performance of the Beres and Adve HOS algorithm employing C[1,1]
HOS (or C[2,2]

HOS)

with Rayleigh channel distribution: SER versus SNR
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of 1000 symbols have been generated from an equiprobable distribution whose symbols

belong to a 4-QAM and employing the (2×1) Alamouti code. Hence, each block generated

is rearranged as a block of 500 symbol vectors of dimension 2, where each component is a

source, and thus we have 500 realizations for each source. The transmission of the symbols

is carried out through block fading channels following a Rayleigh or a Rice distribution

and the results have been averaged over 105 realizations.

Considering these parameters of simulation, Figures 4.1 and 4.2 show the performance

in terms of SER versus SNR for Rayleigh and Rice distributions, respectively. We can

see, for both distributions, that as SNR values increase, performance deteriorates and, in

general, is very far from the Perfect CSI. The reason of this undesirable situation is that

for some experiments the channel realizations have similar modules, |h1|2 ' |h2|2 and

hence the estimation of the channel matrix (and of the source symbols) is inadequate.

4.2 The Beres and Adve Approach Improvement I:

Linear Combination of Cumulants

A direct question arises from the approach proposed by Beres and Adve shown in Section

4.1: Why use only C
[1,1]
HOS or C

[2,2]
HOS? We propose to employ a simple linear combination

from the two matrices C
[1,1]
HOS and C

[2,2]
HOS,

Cλ
HOS = C

[1,1]
HOS + λC

[2,2]
HOS (4.7)

where λ ∈ (0, 1) ⊂ R. Since Cλ
HOS is an addition of two 4th order cumulant matrices, it

admits the following decomposition

Cλ
HOS = C

[1,1]
HOS + λC

[2,2]
HOS = H∆̆1,1H

H + λH∆̆2,2H
H = H∆̆λH

H (4.8)
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where ∆̆1,1 and ∆̆2,2 have been defined in equation (4.4) and ∆̆λ is the diagonal matrix

which contains scaled eigenvalues given by

∆̆λ = ρ

 |h1|2 + λ|h2|2 0

0 |h2|2 + λ|h1|2

 (4.9)

It is important to note that the channel cannot be identified when λ = 1 since the two

entries in ∆̆λ have the same value and hence

Cλ=1
HOS = C

[1,1]
HOS + C

[2,2]
HOS

= ρ H

 |h1|2 + |h2|2 0

0 |h2|2 + |h1|2

HH

= ρ H (|h1|2 + |h2|2)

 1 0

0 1

HH

= ρ (|h1|2 + |h2|2) H HH = ρ (|h1|2 + |h2|2) I2 (4.10)

Thus, the two eigenvalues of the matrix Cλ=1
HOS are the same and it is not possible to achieve

them by means of a traditional EVD. On the contrary, when λ = −1, the eigenvalues will

be opposite, as we can see in the development of the following equation

Cλ=−1
HOS = C

[1,1]
HOS −C

[2,2]
HOS

= ρ H

 |h1|2 − |h2|2 0

0 |h2|2 − |h1|2

HH

= ρ H (|h1|2 − |h2|2)

 1 0

0 −1

HH (4.11)

This point having been made, the common diagonalization algorithm shown in Table

4.1 with C = Cλ can be used to achieve the channel matrix H. Referring to the compu-

tation of the matrix Cλ, note that only 5 different cumulants need to be computed, as

can be seen in equations (4.5) and (4.6).
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Figure 4.3: Finding the optimum λ parameter for Rayleigh channel distribution: SER versus
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HOS for Rayleigh channel distribution: SER versus SNR

4.2.1 Simulation Results

In order to show the importance of the parameter λ, employing the same scenario as in

Section 4.1.1, Figures 4.3 and 4.4 show the SER versus the parameter λ for the Rayleigh

and the Rice channel distributions, respectively. Each curve represents the performance

for a different value of SNR. We can conclude that the optimum value for the Rayleigh

and the Rice distribution is λ = −1 and that performance is better for values around the

latter figure. This is because the difference is maximum between the eigenvalues of the

matrix Cλ
HOS for this value of λ. On the contrary, when λ is close to 1 the performance

is poor because the eigenvalues of Cλ
HOS are very similar and the EVD will therefore be

inaccurate.

Figures 4.5 and 4.6 show the performance in terms of SER versus SNR for the optimum

value of λ. We can see that, although the performance is better than for the original Beres

and Adve approach, when the values of SNR are high the curve nevertheless continues to

present a high flooring effect.
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Figure 4.6: Performance of the Beres and Adve improvement I HOS algorithm with Matrix

C[1,1]
HOS −C[2,2]

HOS for Rice channel distribution: SER versus SNR

4.3 The Beres and Adve Approach Improvement II:

Cross-slot Cumulants

It is interesting to note that also it is possible to use the matrix C
[1,2]
HOS (or C

[2,1]
HOS) instead

of C
[1,1]
HOS (or C

[2,2]
HOS) in order to achieve a channel estimation. In Appendix E we show that

C
[1,2]
HOS admits the following decomposition

C
[1,2]
HOS = cum(x,xH, x1, x

∗
2)

=

 cum(x1, x
∗
1, x1, x

∗
2) cum(x1, x

∗
2, x1, x

∗
2)

cum(x2, x
∗
1, x1, x

∗
2) cum(x2, x

∗
2, x1, x

∗
2)

 (4.12)

= ρ H

 h1h2 0

0 −h1h2

HH
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and C
[2,1]
HOS

C
[2,1]
HOS = cum(x,xH, x1, x

∗
2)

=

 cum(x1, x
∗
1, x2, x

∗
1) cum(x1, x

∗
2, x2, x

∗
1)

cum(x2, x
∗
1, x2, x

∗
1) cum(x2, x

∗
2, x2, x

∗
1)

 (4.13)

= ρ H

 h∗1h
∗
2 0

0 −h∗1h∗2

HH

Unlike the matrices C
[1,1]
HOS and C

[2,2]
HOS, in this case the set of 4 cumulants in each matrix

C
[1,2]
HOS and C

[2,1]
HOS cannot be reduced using the cumulant properties. Note that the EVD

fails when h1h2 ' 0, which is a less restrictive condition, in the context of a Rayleigh

or a Rice channel distribution, than in the case |h1|2 ' |h2|2, which corresponds to the

problem detected in the methods presented in Section 4.1 and Section 4.2.

Again, the algorithm is that described at the beginning of the chapter in Table 4.1,

with C being the matrix C
[1,2]
HOS or C

[2,1]
HOS.

4.3.1 Simulation Results

Figure 4.7 and Figure 4.8 show the SER versus SNR for improvement II. We can see that

the SER is close to Perfect CSI for values lower than 15 dB in the Rayleigh distribution and

is close to Perfect CSI for values lower than 11 dB in the Rice distribution. Unfortunately,

this approach presents a floor effect at high values of SNR, although it achieves better

performance than the methods shown previously.

4.4 Maximum Eigenvalue Spread Approach

The performance of EVD based methods depends on the distance between the eigenvalues

of the matrix to be diagonalized because, as has already been mentioned, the eigenvectors

associated with equal eigenvalues cannot be determined up to a unitary transformation



4.4. MAXIMUM EIGENVALUE SPREAD APPROACH 71

0 5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

S
E

R

105 channels

 

 

Perfect CSI
 C[1,2]

HOS

Figure 4.7: Performance of the Beres and Adve improvement II HOS algorithm with matrix

C[1,2]
HOS for Rayleigh channel distribution: SER versus SNR
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[29]. In this section, we focus on the problem of determining the optimum linear combi-

nation of cumulant matrices in order to guarantee a sound conditioning of the matrix to

be diagonalized.

Any matrix C of dimension 2 × 2 can be decomposed as C = U∆U−1 where ∆ =

diag(δ1, δ2) contains the two eigenvalues of C. Then, we can define the term Eigenvalue

Spread as the absolute difference between the two eigenvalues: L = |δ1 − δ2|. In order

to work with this term, we introduce a more convenient notation to define the cumulant

matrices. Given a matrix M ∈ C2×2, the 4th order cumulant matrix Qx(M) is defined in

[5] as the 2× 2 matrix with components

[Qx(M)]ij =
2∑

k,l=1

cum(xi, x
∗
j , xk, x

∗
l )mlk, 1 ≤ i, j ≤ 2 (4.14)

where mlk = [M]lk. In Appendix E, it is shown that we can rewrite equation (4.14) as

Qx(M) = m11C
[1,1]
HOS +m21C

[1,2]
HOS +m12C

[2,1]
HOS +m22C

[2,2]
HOS (4.15)

Also, under a linear model such as the equation of the (2 × 1) Alamouti code (equation

(2.5)) with statistically independent sources and orthogonal mixing matrix1, in Appendix

E we show that the cumulant matrix takes the form

Qx(M) = H∆̆MHH = U∆MUH (4.16)

where the matrix ∆̆M is diagonal with

[∆̆M]ii = ρhH
i Mhi (4.17)

This notation allows us to make any linear combination with the set of the 4 matrices

shown in the equation (4.1). For this reason, by choosing the appropriate matrix M we

can compute the methods shown in Sections 4.1, 4.2 and 4.3. Also, note that the EVD

of equation (4.16) obtains an eigenvector orthogonal matrix U with the form

U =
H

||h||
=

1

||h||
[h1 h2] =

1

||h||

 h1 h2

h∗2 −h∗1

 (4.18)

1In fact, expression (4.16) is valid for any mixing matrix H, even if it is not orthogonal.
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Thus, according to the equation (4.16), the diagonal eigenvalue matrix will be

∆M = ||h||2∆̆M (4.19)

Taking these assumptions into account, we will subsequently consider the following defi-

nition of the eigenvalue spread depending on M matrix

L(M) = |[∆M]11 − [∆M]22| = ||h||2
∣∣∣[∆̆M]11 − [∆̆M]22

∣∣∣ (4.20)

It is important to note that the eigendecomposition of the matrix from equation (4.16)

allows the remaining orthogonal part of H to be identified if the eigenvalues of Qx(M) are

different, i.e. if the matrix ∆M contains different entries: ||h||2ρhH
1 Mh1 6= ||h||2ρhH

2 Mh2.

In particular, substituting equation (4.17) in equation (4.20), the eigenvalue spread of the

cumulant matrix Qx(M) for the (2× 1) Alamouti code is given by

L(M) = ||h||2|ρ||hH
1 Mh1 − hH

2 Mh2| = ||h||2|ρ||h̃Hm| (4.21)

where the vector h̃ is

h̃ =


|h1|2 − |h2|2

2h∗1h
∗
2

2h1h2

|h2|2 − |h1|2

 (4.22)

and m is a vector containing the components of matrix M, i.e

m =


m11

m21

m12

m22

 (4.23)

Our aim is to find the vector m that maximizes the eigenvalue spread, which can be

expressed as

mopt =
arg max

||m||2 = 1
|h̃Hm| (4.24)
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Since the scalar product between h̃ and m will be maximum when m has the direction

and sense of h̃, the optimum value is

mopt =
h̃

||h̃||
(4.25)

where

||h̃|| =
√

2(|h1|2 − |h2|2)2 + 8|h1|2|h2|2 (4.26)

and thus, multiplying and dividing in equation (4.26) by |h1|2 − |h2|2, the following ex-

pression is obtained

||h̃|| = |h1|2 − |h2|2

|h1|2 − |h2|2
||h̃|| = (|h1|2 − |h2|2)

√
2 + 2

4|h1|2|h2|2
(|h1|2 − |h2|2)2

= (|h1|2 − |h2|2)

√
2 + 2

∣∣∣∣ 2h1h2

|h1|2 − |h2|2

∣∣∣∣2 (4.27)

Defining the term β as

β =
2h1h2

|h1|2 − |h2|2
(4.28)

we can obtain

||h̃|| = (|h1|2 − |h2|2)
√

2 + 2|β|2 (4.29)

Hence, replacing equations (4.22) and (4.29) into (4.25), the vector mopt can be expressed

as

mopt =
1

(|h1|2 − |h2|2)
√

2 + 2|β|2


|h1|2 − |h2|2

2h∗1h
∗
2

2h1h2

|h2|2 − |h1|2

 =
1√

2 + 2|β|2


1

β∗

β

−1

 (4.30)

and rearranging these terms, the optimum matrix Mopt is given by

Mopt =

 m11 m12

m21 m22

 =
1√

2 + 2|β|2

 1 β

β∗ −1

 (4.31)

Note that this optimum matrix depends on the parameter β which requires the current

values of channel coefficients h1, h2, which are unknown. In Section 4.4.3 we will show
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a method of estimating this parameter. At this point, we can obtain a theoretical re-

sult, employing the common algorithm shown in Table 4.1 to achieve a channel matrix

estimation Ĥ, making use of the matrix C = Qx(Mopt).

4.4.1 Maximum Eigenvalue Spread Suboptimal Approach

In this section we will present a simplified and suboptimal version of the approach pro-

posed above, which estimates the channel matrix by selecting the cumulant matrix with

the highest eigenvalue spread. We will focus on the study of the following matrices

M1 =

 1 0

0 0

 , M2 =

 0 0

1 0

 (4.32)

Before continuing, note that it is shown in Appendix E that

Qx(M1) = C
[1,1]
HOS, Qx(M2) = C

[1,2]
HOS (4.33)

Evaluating equation (4.21), we obtain that the associated eigenvalue spreads are

L(M1) = ||h||2ρ||h1|2 − |h2|2|

L(M2) = ||h||2ρ2|h1h2| (4.34)

As a result, the matrix M that maximizes the eigenvalue spread can be selected using the

following criterion

|L(M2)|
|L(M1)|

=
||h||22|h1h2|

||h||2||h1|2 − |h2|2|
=

2|h1||h2|
||h1|2 − |h2|2|

M1

≶

M2

1 (4.35)

It is interesting to note that the decision criterion referred to above depends on the

absolute value of parameter β defined in equation (4.28), i.e. the matrix M1 or M2 must

be selected by using the rule

|β|
M1

≶

M2

1. (4.36)
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Figure 4.9: Cumulative probability distribution for different matrices M: L(M1), L(M2),

max(L(M1), L(M2)) and L(Mopt) with Rayleigh channel distribution

To summarize, in order to achieve an estimation of the channel matrix Ĥ employing

the common algorithm described at the beginning of this chapter, in Table 4.1, the choice

of the C matrix between Qx(M1) = C
[1,1]
HOS and Qx(M2) = C

[1,2]
HOS is carried out by means

of the parameter |β|.

4.4.2 Comparison Among Eigenvalue Spreads

One way of measuring the improvement obtained by using the optimal and suboptimal

approaches consists in measuring the probability of the eigenvalue spread of the matrix

to be diagonalized being close to zero. The best criterion has the lowest probability.

In order to compare the eigenvalue spread obtained with different matrices M, we have

evaluated equation (4.21) considering that the channel coefficients have a Rayleigh distri-

bution and a Rice distribution. Subsequently, we have computed the Cumulative Prob-

ability Distribution (CPD) corresponding to each value of L(M), employing 106 channel

realizations. Figure 4.9 (a) plots the CPD following a Rayleigh channel distribution for

L(M1), L(M2), the suboptimal approach which computes the maximum between L(M1)
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Figure 4.10: Cumulative probability distribution for different matrices M: L(M1), L(M2),

max(L(M1), L(M2)) and L(Mopt) with Rice channel distribution

and L(M2), and the optimal approach which computes L(Mopt). The channels have been

normalized to avoid the influence of scale. It is apparent that L(M1) has the highest

probability of taking values close to zero. Figure 4.9 (b) zooms the part corresponding

to an eigenvalue spread of less than 0.15, also for a Rayleigh distribution. Note that

the CPD of the optimal approach coincides with the CPD of the suboptimal one when

L(M) ≤ 0.1 and therefore it is reasonable to think that both approaches will achieve a

similar performance when estimating the channel matrix.

Figure 4.10 shows the CPD, following a Rice channel distribution, for the same cases

as in Figure 4.9. Note that Figure 4.10 (a) is very similar to Figure 4.9 (a), with a

factor of scale in the axis corresponding to eigenvalue spread. Note also that the curves

corresponding to L(M2) and max(L(M1), L(M2)) are closer than in the Rayleigh case.

In Figure 4.10 (b), a zoomed version of Figure 4.10 (a), we can see that all the eigenvalue

spreads, with the exception of L(M1), are very low when L(M) ≤ 0.5.

To summarize, it is straightforward to conclude from these results that employing M1

we will obtain the worst result for Rayleigh and Rice channel distribution in terms of
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eigenvalue spread, being the Beres and Adve Approach. Also, for both Rayleigh and Rice

channel distributions the performance for the optimal and suboptimal approaches will

be very similar. Finally, in the case of Rice channel distribution, for a lower eigenvalue

spread, the probabilities are very similar for M2, suboptimal and optimal matrix M.

4.4.3 Blind Estimation of Parameter β

The matrix M, obtained in the approaches presented above, depends on parameter β

given in equation (4.28), which is a function of the channel coefficients h1 and h2. Using

the results in Appendix E, we can estimate this parameter from the 4th order cumulants

obtained from the observations. It is demonstrated that

cum(x1, x
∗
2, x1, x

∗
2) = 2h2

1h
2
2ρ (4.37)

cum(x1, x
∗
1, x1, x

∗
2) = (|h1|2 − |h2|2)h1h2ρ (4.38)

Using these definitions, it is straightforward to obtain

β =
cum(x1, x

∗
2, x1, x

∗
2)

cum(x1, x∗1, x1, x∗2)
=

2h2
1 h

2
2 ρ

(|h1|2 − |h2|2)h1 h2 ρ
=

2h1h2

|h1|2 − |h2|2
(4.39)

Note that the suboptimal approach only needs to know the module of parameter β which

can be estimated by computing the absolute value of equation (4.39). An alternative way

of obtaining |β| is to use the 4th order cumulant of equation (4.38) and

cum(x1, x
∗
1, x2, x

∗
2) = 2|h1|2|h2|2ρ (4.40)

In this case, we have

|β| = cum(x1, x
∗
1, x2, x

∗
2)

|cum(x1, x∗1, x1, x∗2)|
=

2|h1|2 |h2|2ρ
||h1|2 − |h2|2||h1 h2|ρ

=
2|h1h2|

||h1|2 − |h2|2|
(4.41)

Simulation results presented in the following section show that this second way of esti-

mating |β| is more appropriate because the error in the estimation of cum(x1, x
∗
2, x1, x

∗
2)

is bigger than for cum(x1, x
∗
1, x2, x

∗
2). Also, it is important to note that if |h1| is too close

to |h2| then β cannot be properly computed.



4.4. MAXIMUM EIGENVALUE SPREAD APPROACH 79

• Step 1. Compute the 6 different cumulants, i.e c1 = cum(x1, x
∗
1, x1, x

∗
1),

c2 = cum(x1, x
∗
1, x1, x

∗
2), c4 = cum(x1, x

∗
1, x2, x

∗
2), c6 = cum(x1, x

∗
2, x1, x

∗
2), c8 =

cum(x1, x
∗
2, x2, x

∗
2) and c16 = cum(x2, x

∗
2, x2, x

∗
2).

• Step 2. Compute β = c6
c2

=
cum(x1,x∗2,x1,x∗2)

cum(x1,x∗1,x1,x∗2)
.

• Step 3. Let M =

 m11 m12

m21 m22

 = 1√
2+2|β|2

 1 β

β∗ −1

.

• Step 4. Employing the cumulants which have been computed in step 1, form the

following matrices

C
[1,1]
HOS =

 c1 c2

c∗2 c4

 C
[1,2]
HOS =

 c2 c6

c4 c8


C

[2,1]
HOS =

 c∗2 c4

c∗6 c∗8

 C
[2,2]
HOS =

 c4 c8

c∗8 c16


• Step 5. Obtain C = Qx(M) = m11C

[1,1]
HOS +m12C

[2,1]
HOS +m21C

[1,2]
HOS +m22C

[2,2]
HOS

• Step 6. Employ the algorithm of Table 4.1 and obtain the estimation of the channel.

Table 4.2: Maximum Eigenvalue Spread Optimal Approach (MESOA)

Table 4.2 shows all the steps to obtain the matrix Qx(Mopt) displayed in Section 4.4,

in order to employ it as matrix C in the General HOS Algorithm described in Table 4.1.

Table 4.3 is devoted to explaining the steps of the suboptimal algorithm shown in Section

4.4.1.

4.4.4 Simulation Results

This section shows a set of experiments that has been performed with the scenario de-

scribed in Section 4.1.1. In order to compare the two methods proposed above for estimat-
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• Step 1. Compute the cumulants c4 = cum(x1, x
∗
1, x2, x

∗
2) and c2 =

cum(x1, x
∗
1, x1, x

∗
2).

• Step 2. Obtain |β| employing one of the following methods:

Method 1 |β| = |c6|
|c2| =

|cum(x1,x∗2,x1,x∗2)|
|cum(x1,x∗1,x1,x∗2)| .

Method 2 |β| = c4
|c2| =

cum(x1,x∗1,x2,x∗2)

|cum(x1,x∗1,x1,x∗2)| .

• Step 3. If |β| < 1 then

compute the cumulant c1 = cum(x1, x
∗
1, x1, x

∗
1) and form the matrix

C = Qx(M1) = C
[1,1]
HOS =

 c1 c2

c∗2 c4


else compute the cumulants c6 = cum(x1, x

∗
2, x1, x

∗
2) and c8 =

cum(x1, x
∗
2, x2, x

∗
2).

C = Qx(M2) = C
[1,2]
HOS =

 c2 c6

c4 c8


• Step 4. Employ the algorithm described in Table 4.1 and obtain the estimation of

the channel.

Table 4.3: Maximum Eigenvalue Spread Suboptimal Approach (MESSA)
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Figure 4.13: Performance of the eigenvalue spread HOS algorithms for Rayleigh channel distri-

bution: SER versus SNR

ing the module of parameter β, Figure 4.11 shows the normalized error in the estimation

of the 4th order cumulants cum(x1, x
∗
1, x1, x

∗
2), cum(x1, x

∗
2, x1, x

∗
2) and cum(x1, x

∗
1, x2, x

∗
2).

The normalized error has been computed using the following expression

error =
|cum(xi, x

∗
j , xk, x

∗
l )− ˆcum(xi, x

∗
j , xk, x

∗
l )|

|cum(xi, x∗j , xk, x
∗
l )|

(4.42)

where cum(xi, x
∗
j , xk, x

∗
l ) represents the theoretical value, computed directly from the

channel realizations from a Rayleigh distribution, using equations (4.37), (4.38) and (4.40),

and ˆcum(xi, x
∗
j , xk, x

∗
l ) is the estimated value obtained by sample averaging a sequence of

K = 500 symbol vectors of 4-QAM following an equiprobable distribution. It is apparent

that the error in the estimation of cum(x1, x
∗
1, x2, x

∗
2) is considerably smaller than the error

obtained for cum(x1, x
∗
2, x1, x

∗
2). This means that the best way of estimating |β| consists

in estimating the 4th order cumulants used in equation (4.41) instead of considering the

module of equation (4.39), as can be observed in Figure 4.12.

Figures 4.13 and 4.14 plot the performance of the proposed approaches, respectively,

for Rayleigh and Rice channel distributions. In both figures, both algorithms match the
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Figure 4.14: Performance of the eigenvalue spread HOS algorithms for Rice channel distribution:

SER versus SNR

Perfect CSI when the theoretical value of β is used. Note also that both the optimal

and the suboptimal approaches present a loss of performance for high SNRs when the

parameter β is estimated using equation (4.39). This undesirable situation does not

appear when the module of β is computed employing equation (4.41).

4.5 Joint-Diagonalization Approach

The JADE algorithm presented in Section 2.4.2 is another method for estimating the

channel matrix by diagonalizing 4th order cumulant matrices. However, it presents a high

computational cost because, for the (2 × 1) Alamouti code, it computes 16 cumulants

and diagonalizes a 3 × 3 matrix. Also, note that the first step consists of whitening the

observations.

The first way to reduce the computational load is to eliminate the whitening step

because the matrix H in the Alamouti scheme is orthogonal and the observations are
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• Step 1 Compute the cumulants c1 = cum(x1, x
∗
1, x1, x

∗
1), c2 = cum(x1, x

∗
1, x1, x

∗
2),

c4 = cum(x1, x
∗
1, x2, x

∗
2), c6 = cum(x1, x

∗
2, x1, x

∗
2) and c8 = cum(x1, x

∗
2, x2, x

∗
2).

• Step 2 Form the two matrices

C
[1,1]
HOS =

 c1 c2

c∗2 c4

 C
[1,2]
HOS =

 c2 c6

c4 c8


• Step 3. Jointly diagonalize the previous set formed by two matrices employing the

method described in Appendix F. The Ĥ matrix obtained is the estimation of the

channel.

Table 4.4: Joint-Diagonalization HOS algorithm

therefore uncorrelated.

The second consideration is that there are only 6 different cumulants and 4 cumulant

matrices. There is also a clear relation between C
[1,2]
HOS and C

[2,1]
HOS, which can be observed

in Appendix E: C
[2,1]
HOS = (C

[1,2]
HOS)H. In a situation where the channel behavior is similar in

the two time slots, it is reasonable to think that it is equivalent to compute either C
[1,1]
HOS or

C
[2,2]
HOS. With these considerations, the computational load can be reduced by computing

only the matrices C
[1,1]
HOS and C

[1,2]
HOS. Finally, in Appendix F, we propose a simplified

method for diagonalizing these matrices using the Jacobi technique, which presents a

low computational load because the eigendecomposition of the 3 × 3 matrix is directly

obtained using the method described in the Appendix C.

We can see in Table 4.4 the steps required to implement this approach considering the

simulatenous diagonalization of C
[1,1]
HOS and C

[1,2]
HOS.
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Figure 4.16: Performance of Joint-Diagonalization HOS algorithm for Rice channel distribution:

SER versus SNR
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4.5.1 Simulation Results

Figure 4.15 and Figure 4.16 show the SER versus SNR for a Rayleigh distribution and

Rice distribution, respectively. We can see that the SER always matches the Perfect CSI

for the two distributions. Comparing it with the experiment shown in Section 2.5, we can

conclude that this algorithm works very well with a lower computational cost than the

JADE algorithm.



Chapter 5

Performance Comparison

In this chapter, we compare the different types of blind channel estimation algorithms

presented in Chapters 3 and 4. These algorithms have been proposed considering the

specific properties of the (2 × 1) Alamouti code and are therefore more efficient than

those introduced in Chapter 2 in the context of BSS. The approaches analyzed will be

the following:

• The general SOS algorithm that uses a matrix CSOS formed by 2nd order statistics,

which has been presented in Chapter 3.

• The general HOS algorithm with the matrix C
[1,1]
HOS, i.e. the Beres and Adve approach

presented in Section 4.1.

• The general HOS algorithm with the matrix C
[1,1]
HOS−C

[2,2]
HOS, i.e. the Beres and Adve

approach improvement I shown in Section 4.2.

• The general HOS algorithm with C
[1,2]
HOS matrix, i.e. the Beres and Adve approach

improvement II presented in Section 4.3

• Maximum Eigenvalue Spread Optimal Approach (MESOA) presented in Section 4.4.

The parameter β has been estimated from equation (4.39).

87
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• Maximum Eigenvalue Spread Suboptimal Approach (MESSA) presented in Subsec-

tion 4.4.1, employing |β| estimated using equation (4.41).

• The Joint-Diagonalization approach presented in Section 4.5.

In order to reduce the computational load, we have used the properties of the cumulants

to compute only those that are different.

The comparison is done using computer simulations where the sources are generated

with an equiprobable distribution belonging to a 4-QAM and transmitted in packets

through block fading channels following a Rayleigh or a Rice distribution. We measure

the performance considering the SER obtained for different SNR and different packet sizes

(Section 5.1), and the associated computational load needed to compute the cumulants

and to diagonalize the matrix, whose form depends on the specific approach (Section 5.2).

5.1 Symbol Error Rate Comparison

In the first experiment we have considered that each source is transmitted in blocks of

500 symbols that are used to estimate the statistics corresponding to each approach.

The results have been averaged over 105 channel and source realizations. Figure 5.1

shows the performance of these algorithms in terms of SER versus SNR for a Rayleigh

channel distribution. We can see that the Beres and Adve approach (C
[1,1]
HOS) presents

a high flooring effect, occurring at about 8 dBs, and thus this approach has the worst

performance. The Beres and Adve approach improvement I (C
[1,1]
HOS − C

[2,2]
HOS) obtains

a slightly better performance. The Beres and Adve approach improvement II (C
[1,2]
HOS)

achieves a significantly better behavior because the flooring effect appears at about 18

dBs. The performance for MESOA with estimated β is very similar to the preceding one.

The SOS approach is close to Perfect CSI, and MESSA and the Joint-Diagonalization

approach overlap with Perfect CSI.

Figure 5.2 shows the performance of these algorithms in terms of SER versus SNR when
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Figure 5.1: Performance comparison of algorithms for Rayleigh channel distribution: SER

versus SNR
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Figure 5.3: Performance comparison of algorithms for Rayleigh channels: SER versus block

size

the channel follows a Rice channel distribution. We can see that the difference between

the algorithms is more significant than in the case of a Rayleigh channel distribution,

but again the worst performance is obtained by the Beres and Adve approach. The SOS

approach differs more with regard to the Perfect CSI than in the previous experiment.

Note also that MESSA and the Joint-Diagonalization approach again match the Perfect

CSI performace.

The second experiment tests the dependence of the SER with respect to the packet

size. In this case, Figure 5.3 shows the performance for a Rayleigh channel distribution for

an SNR of 15 dB, varying the block size. We can see that the Beres and Adve approach

shows the worst performance, followed by the Beres and Adve Improvement I. The Beres

and Adve Improvement II works significantly better, overlapping with the SOS approach

and MESOA. MESSA and the Joint-Diagonalization approach are very similar in terms

of performance and almost achieve Perfect CSI when the block size is greater than 350.

Figure 5.4 shows the performance with Rice channel distribution. Again, the results
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Figure 5.4: Performance comparison of algorithms for Rice channels: SER versus block size

are very similar to the Rayleigh channel distribution case. The most significant difference

is that the Joint-Diagonalization method matches the Perfect CSI with only 100 symbols

while MESSA needs 250 symbols. Note, however, that the achieved SER for MESSA is

better when the number of symbols is lower than 50.

5.2 Computational Cost

The decoding complexity of methods based on 2nd or 4th order statistics matrix diago-

nalization depends on two parameters: the number of cumulants to be computed and the

size of the matrix to be diagonalized. Table 5.1 shows the number of operations (sum-

mations and multiplications) and the FLoating-point OPerations (flop)1 associated with

computing 2nd and 4th order cumulants for a block of K points. We consider that all the

operations are performed with complex-valued numbers: a summation corresponds to 2

1We will use the term flop for both singular and plural to avoid confusion with Floating point Oper-

ations Per Second (FLOPS).
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Sums Multiplications Squared root flop

(2 flop) (6 flop) (8 flop)

2nd order statistic (SOS) K − 1 K + 1 0 8K + 4

4th order statistic (FOS) 7K − 4 9K + 4 0 68K + 16

Compute eigenvectors 6 11 3 102

Joint-Diagonalization 21 24 1 194K + flop(EVD)

Table 5.1: Computational load corresponding to the computation of 2nd and 4th order

cumulants and matrix diagonalization

Approach Number of Size of the matrix flop

cumulants to be diagonalized

CSOS 3 SOS 2× 2 24K + 114

C[1,1]
HOS 3 FOS 2× 2 204K + 150

C[1,1]
HOS −C[2,2]

HOS 5 FOS 2× 2 340K + 182

C[1,2]
HOS 4 FOS 2× 2 272K + 166

MESOA 6 FOS 2× 2 408K + 198

MESSA 3,7 FOS 2× 2 251.2K + 161.2

Joint-Diagonalization Approach 5 FOS 3× 3 340K + flop(EVD) + 274

Table 5.2: Computational load of the approaches studied

flop, a multiplication corresponds to 6 flop and a square root to 8 flop. This table also

shows the operations (and flop) related with the procedure used to diagonalize the cu-

mulant matrices. It should be remembered that all the approaches described in Chapter

3 and Chapter 4, except the Joint-Diagonalization approach, compute eigenvectors of a

2 × 2 matrix using expressions shown in Appendix C. The term flop(EVD) denotes the

number of flop needed to compute the eigenvalues of a 3× 3 matrix, which is a significant

quantity, as we can also see in Appendix C.

We can see that the general SOS algorithm which uses CSOS matrix, is by far the

least expensive in terms of computation. The approaches which employ the general HOS

algorithm presented in Chapter 4 with different selection of matrix C are very similar in
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Approach Performance Computational Cost

Joint-Diagonalization Approach 1st place 7th place

MESSA 2nd place 3rd place

CSOS 3rd place 1st place

C[1,2]
HOS 4th place 4th place

MESOA 5th place 6th place

C[1,1]
HOS −C[2,2]

HOS 6th place 5th place

C[1,1]
HOS 7th place 2nd place

Table 5.3: Ranking classification in terms of performance and computational cost

terms of computation, the difference lying in the number of 4th order statistics, which is

3, 5, 4 and 6 for C
[1,1]
HOS, C

[1,1]
HOS − C

[2,2]
HOS, C

[1,2]
HOS and MESOA, respectively. In the case of

MESSA, the number of 4th order cumulants to be computed depends on the decision cri-

terion given in equation (4.36). Referring back to the equation (4.32), in 105 independent

simulations with a Rayleigh channel distribution, we have obtained that M1 (3 different

4th order cumulants) is used 30% of the time and M2 (4 different 4th order cumulants)

is computed 70% of the time, which corresponds to computing an average number of 3.7

when MESSA is used. The Joint-Diagonalization approach is the most expensive because

the term flop(EVD) requires a significant amount of computation. Taking into account

these considerations, Table 5.2 shows the number of 2nd and 4th order cumulants (denoted

by SOS and FOS) and the size of the matrix to be diagonalized. The last column shows

the flop of each approach computed by considering Table 5.1.

Finally, Table 5.3 shows the classification of the approaches following the terms of

performance (SER versus SNR) and computational cost. Hence, we can conclude that

MESSA and CSOS are the most interesting approaches. Altough the choice will be de-

pendent on the most important parameter (SER or computational load) of each specific

application, it must be taken into account that the unbalance step introduced in SOS

produces a degradation in the SER obtained for one source.
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Chapter 6

MIMO Testbed

This chapter is devoted to evaluating the performance of the channel estimation algorithms

described in the previous chapters using a MIMO testbed developed at Universidade

da Coruña, using hardware from Sundance Multiprocessor Ltd. This MIMO testbed,

configured as a 2 × 1 system, has been designed to operate at the 2.4 GHz Industrial,

Scientific and Medical (ISM) band, and is intended for the testing and rapid prototyping

of MIMO baseband modules. The testbed operation consists of performing the signal

processing off-line at both the transmitter and the receiver while the data are sent and

acquired in real time. This property enables, at the signal generation stage, modulation

and space-time coding operations to be carried out off-line using MATLAB. At the receiver,

the acquired data stream is also processed in MATLAB: time and frequency synchronization,

channel estimation, space-time decoding and, finally, symbol-by-symbol detection are the

fundamental operational blocks.

This chapter is structured as follows. Section 6.1 is devoted to describing the elements

that make up the MIMO testbed. Section 6.2 describes the scenarios employed to make

the transmissions. Section 6.3 shows and discusses the experimental results.

95
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Figure 6.1: MIMO testbed

6.1 Description of the MIMO Testbed

A first release of the MIMO testbed, developed by the Universidade da Coruña, was

presented in [49]. Figure 6.1 shows its general organization and Figure 6.2 shows a picture

of the current equipment.

The testbed is mainly constructed by using two conventional PCs, each equipped with

a Sundance SMT310Q PCI carrier board composed of four different kinds of module:

the processing module (SMT365), the storage module (SMT351), the A/D and D/A

conversion module (SMT370) and, finally, the RF front-end module (SMT349).

The transmit PC host consists of a Sundance SMT310Q PCI carrier board, an SMT365

processing module that acts as the master module, an A/D and D/A SMT370 converter

module and, finally, an RF/IF SMT349 converter module (see Figure 6.1). The processing

module contains a DSP TMS320C6416 at 600 MHz from Texas Instruments, a Xilinx

Virtex-II FPGA, 16 MB of ZBTRAM and two SHB ports. The SMT370 is equipped with

a dual D/A converter AD9777 from Analog Devices. It has 16 bits of resolution and is

capable of transmitting up to 400 MS/s. The SMT370 also has two AD6645-105 A/D

converters from Analog Devices with 14 bits of resolution and maximum speed of 105

MS/s. The transfer speed between processing and conversion modules achieves 200 MB/s

per channel. The SMT370 also has a 1 MSample/channel memory that is used as a buffer
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Figure 6.2: MIMO testbed picture

for each frame to be sent.

The transmitter is configured to generate the IF signal at the carrier frequency of 10

MHz with a sampling frequency of 80 MHz in order to generate a 70 MHz replica at the

input of the RF/IF converter module. The SMT349 upconverts the IF signals to a carrier

RF frequency of 2.45 GHz in two stages.

The receiver host contains another SMT310Q carrier board with the same modules as

the transmitter but a SMT351 1 GB FIFO storage module is additionally placed between

the processing and A/D converter modules. This memory module is used to save the

data acquired by the A/D converters of the SMT370 in real time. The SMT349 captures

signals at 2.45 GHz and downconverts them to 70 MHz. The sampling frequency of the

A/D converters is also set at 80 MHz in order to obtain a 10 MHz replica.

We have developed a complete multilevel protocol in order to synchronize both trans-

mitter and receiver either at physical, transport and application levels. The protocol

implementation is based on 3L Diamond, Texas Instruments Code Composer and the

Sundance SMT6025 software development kit. The first level manages module configura-

tion and data transfer between host and DSP through the PCI bus. The second level uses



98 CHAPTER 6. MIMO TESTBED

Figure 6.3: Experiment locations

a common network link to synchronize the transmitting and receiving hosts and the pro-

cessing transmitter and receiver. Finally, the third level can be used to platform remote

application access.

6.2 Experiment Description

We have carried out several experiments over the two scenarios shown in Figure 6.3 to

compare the performance of the different blind channel estimation methods presented in

Chapter 3 and Chapter 4. We have configured our testbed with 2 transmit antennas

and 1 receive antenna. The experiments took place in the laboratory of the Grupo de

Tecnoloǵıa Electrónica y Comunicaciones (GTEC) at Universidade da Coruña. In scenario

1 the transmitter and the receiver were approximately 5 meters apart with a clear Line

Of Sight (LOS) between them. In the scenario 2 configuration the transmitter was also

placed about 5 meters away from the receiver, but without LOS (NLOS scenario). Note

that the radio transmission frequency is 2.45 GHz, so, according to the formula λ = c
f
, the

wave length is λ = 3·108 m/s
2.45·109 s−1 = 12.2445 cm. Hence, in both cases the transmit antennas

were placed about 30 cm apart, i.e. more than two times λ, in order to provide a good
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Figure 6.4: (2× 1) Alamouti complete scheme

spatial diversity.

Figure 6.4 shows the block diagram of a 4-QAM modulator combined with a (2 × 1)

Alamouti encoder that was implemented on the testbed. In order to test the different

estimation methods, frames of 1, 000 4-QAM vector symbols are transmitted, i.e. 2, 000

symbols (1, 000 symbols for each source). Accordingly, the duration of the frame is 200 µs,

lower than the channel time coherence, which ensures that the channel remains constant

for the whole frame. The first subframe of 2× 500 symbols is used to test the HOS-based

Approaches. The second subframe, also composed of 2×500 symbols, is employed to test

the SOS-based approach. The power of the second subframe is unbalanced before the

Alamouti coder according to

1√
1+γ2

2

·

 s1

γs2

 , 0 < γ < 1. (6.1)

This equation guarantees that the total mean power of the sources in both subframes is

the same with a correction factor. As a performance bound, we have also evaluated the

results with Least Squares (LS) [50] channel estimation considering that all symbols of the

first subframe are used for training. Subsequently, LS channel estimation has been used

to decode only this subframe. Therefore, its performance is very close to the situation

where perfect CSI is available at reception.

After the (2× 1) Alamouti encoder, the following operations are carried out over the

discrete complex symbols for each antenna:
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• The real and imaginary parts of each symbol are split into two different sets.

• Each set is firstly up-sampled (16 samples per symbol) and filtered using a square

root raised cosine pulse shaping with a roll-off factor of 40%. As a result, each set

is a 2-PAM baseband signal.

• The two previous binary modulated signals are IQ modulated in order to obtain the

4-QAM signal with carrier and sampling frequency of 10 and 80 MHz respectively.

The resulting signal has 7 MHz of bandwidth and 5 MBauds symbol rate.

• The next step is to pass the signal through the D/A converter configured with a

sampling frequency of 80 MHz, so that a replica at 70 MHz is filtered out and up

converted to a carrier RF frequency of 2.45 GHz.

With the aim of achieving a correct time synchronization for each frame, a 50 pseudo-

random symbol sequence is added at the beginning of the frame obtained after the Alam-

outi encoder. The preamble sequence is only transmitted by one of the two antennas while

the other is idle. The resulting real frame is composed of a 50 symbol preamble and 2, 000

data symbols. After the Alamouti encoder the frame has 50 preamble symbols and 4, 000

data symbols. Since we are using 16 samples per symbol, the frame contains 65, 600 16-bit

signal samples which results in a frame size equal to 128, 125 KBytes. At the receiver, the

known preamble is correlated with the acquired signal to determine the first frame sample.

A true carrier recovery task must also be incorporated after the time synchronization to

fix signal frequency impairment due to reference oscillator errors. After IQ demodulation,

a root raised cosine matched filter is used in each demodulator branch followed by a down

sampler to produce the I and the Q components of the baseband signal.

In a real transmission, the SNR of the channel cannot be established a priori and in

order to test the real performance for each estimation method every frame is sent several

times, varying the transmitting power. Different channel realizations and distinct signal

strength values are obtained in this manner. Hence, the SNR is estimated for each received

frame jointly with the SER obtained by the estimation method. Finally, the pairs formed
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Figure 6.5: Scenario 1: LOS - probability density function

by the SNR and SER are clustered, averaged, sorted by SNR value and plotted to obtain

a performance curve.

6.2.1 Channel Characterization

In order to establish a comparison with the simulation experiments presented in the pre-

vious chapter, in this section we will compare the Probability Density Function (PDF)

and the Cumulative Probability Distribution (CPD) of the channel measures with a theo-

retical Gaussian distribution of zero mean and unit variance. Since there are two complex

paths h1 and h2 for each transmission, we will consider 4 different channel distributions.

The comparison is done before centering the channel realizations and normalizing their

variance.

Figure 6.5 shows the PDF obtained in scenario 1 (LOS). It seems that the channel

realization is similar to the Gaussian distribution but it appears to peak at values close

to zero. In Figure 6.6 we can see that the CPD fits perfectly with the Gaussian of zero
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Figure 6.6: Scenario 1: LOS - cumulative distribution function

mean and unit variance.

For scenario 2 (NLOS), Figure 6.7 shows the PDF and Figure 6.8 represents the CPD.

We can see that the PDF is more concentrated around zero than in the LOS scenario.

Although there are also two peaks in the center, they are more significant than in LOS.

It can be concluded that the channel distribution is not Gaussian. The same conclusion

can be obtained from Figure 6.8 where we can see that the CPD of the real/imaginary

part of two channels differs from a Gaussian of zero mean unit variance.

In order to obtain more theoretical results, we will use the chi-square (χ2) Pearson

goodness-of-fit test [51], which is considered as a non-parametric test that measures the

discrepancy between an observed distribution and another, theoretical, one. From this

discrepancy, the test obtains a confidence value. The procedure is simple: the observed

and the theoretical distributions are divided into the same number of cells, n, and, sub-

sequently, the corresponding number of realizations of each distribution at each interval

is obtained. Let Oi and Ei be, respectively, the observed frequency and the expected

(theoretical) frequency in the i-th cell.
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Figure 6.7: Scenario 2: NLOS - probability density function
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Figure 6.8: Scenario 2: NLOS - cumulative distribution function
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Channel Statistic X2 Test Significance

<{h1} 66, 95 Rejected 100%

={h1} 53, 13 Rejected 100%

<{h1} 58, 07 Rejected 100%

={h2} 31, 66 Rejected 99.91%

Table 6.1: χ2 Pearson goodness-of-fit test - scenario 1: LOS

Channel Statistic X2 Test Significance

<{h1} 1497, 77 Rejected 100%

={h1} 671, 27 Rejected 100%

<{h1} 578, 13 Rejected 100%

={h2} 338, 35 Rejected 100%

Table 6.2: χ2 Pearson goodness-of-fit test - scenario 2: NLOS

The discrepancy between the two distributions is computed using the following ex-

pression

X2 =
n∑
i=1

(Oi − Ei)2

Ei
(6.2)

where X2 is the test statistic that asymptotically approaches a χ2 distribution. The X2

statistic can then be used to calculate a p-value by comparing the value of the statistic

with respect to a χ2 distribution. The number of degrees of freedom is equal to the

number of cells, n, minus the reduction in degrees of freedom, p = 1. In this particular

case, we have chosen to divide the distributions into 12 intervals and, hence, we have used

the distribution χ2 with 11 degrees of freedom.

In Table 6.1, we can see the results of applying the χ2 Pearson goodness-of-fit test for

scenario 1 (LOS). We can see that statistics obtained have a high value, and looking at

this value in the table of a χ2 with 11 degrees of freedom, we can reject, with a significance

very close to 100%, the hypothesis that these channels follow a Gaussian distribution.

In Table 6.2 we show the results of applying the Goodness-of-Fit Pearson χ2 test to the

channels of the scenario 2 (NLOS). From these values, the hypothesis that the channels
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follow a Gaussian distribution is also rejected with a significance very close to 100%.

6.2.2 SNR Estimation

In order to measure the performance of the channel estimation algorithms, we must de-

termine a way of estimating the SNR at reception. Figure 6.9 plots an example of the

symbols estimated using LS criterion in a transmission with the testbed using a 4-QAM.

The red stars represent the symbols of the constellation ±1±j√
2

. We divide the estimated

symbols taking into account the constellation. Thus, we obtain four clouds termed C1+j,

C1−j, C−1+j and C−1−j. Subsequently, the center point of each cloud, c±1±j, is computed

by sample averaging of their symbols which are represented with green crosses in the

center of the cloud.

The energy in reception is then estimated by computing the average of the squared

modulus of the center points, i.e.

EC =
1

4

(
|c1+j|2 + |c1−j|2 + |c−1+j|2 + |c−1−j|2

)
(6.3)
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the next step is to estimate the noise power. To do so, we compute the scattering of the

points in a cloud with respect to the center point,

Ev =
1

4

(
E[|C1+j|2]− |c1+j|2 + E[|C1−j|2]− |c1−j|2

+ E[|C−1+j|2]− |c−1+j|2 + E[|C−1−j|2]− |c−1−j|2
)

Finally, the SNR is estimated using

SNR =
EC
Ev

6.3 Experimental Results

In this section we compare the same methods as in Chapter 5, but in this case over the

real scenarios described above. The methods tested were:

• Least Squares (LS) estimator assuming knowledge of all transmitted symbols. In

the case of a real transmission it is not possible to achieve Perfect CSI, and for this

reason LS with the whole frame as pilot symbols is a good approximation.

• The general SOS algorithm that uses a matrix CSOS formed by 2nd order statistics,

which has been presented in Chapter 3.

• The general HOS algorithm with the matrix C
[1,1]
HOS, i.e. the Beres and Adve approach

presented in Section 4.1.

• The general HOS algorithm with the matrix C
[1,1]
HOS−C

[2,2]
HOS, i.e. the Beres and Adve

approach improvement I showed in Section 4.2.

• The general HOS algorithm with C
[1,2]
HOS matrix, i.e. Beres and Adve approach im-

provement II presented in Section 4.3

• Maximum Eigenvalue Spread Optimal Approach (MESOA), presented in Section 4.4.

The parameter β has been estimated from Equation (4.39).
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Figure 6.10: Scenario LOS: performance for the SOS-based approach according to the unbalance

power factor γ2.

• Maximum Eigenvalue Spread Suboptimal Approach (MESSA), presented in Subsec-

tion 4.4.1, employing |β| estimated using Equation (4.41).

• The Joint-Diagonalization approach presented in Section 4.5.

6.3.1 Scenario 1: LOS

The configuration of scenario 1 is shown in Figure 6.3, where the transmitter and the

receiver are approximately 5 meters apart with a clear Line Of Sight (LOS) between

them.

In order to optimize the General SOS algorithm, we have performed an experiment

that consists of evaluating the SER for different values of γ2. The results plotted in Figure

6.10 shows that the optimum value is between γ2 = 0.5 and γ2 = 0.64. This value is in

accordance with the optimal value obtained by simulations for a Rayleigh and a Rice

channel in Section 3.4, which is plotted with a vertical black line (γ2 = 0.64).
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Figure 6.11: Scenario 1: LOS - performance results measuring SER according to the SNR

Figure 6.11 shows the performance results for SER versus SNR. As expected, the per-

formance with LS estimation is the best, since it assumes that all transmitted symbols

are known at the receiver. In general, the Beres and Adve Approach, which uses matrix

C
[1,1]
HOS, obtains the worst performance with a high flooring effect. The Beres and Adve Ap-

proach Improvement I, which uses matrix C
[1,1]
HOS−C

[2,2]
HOS, works a little better, and MESOA

improves on this result. The SOS approach is close to LS estimation. The remaining ap-

proaches (C
[1,2]
HOS, MESSA and Joint-Diagonalization) overlap with LS estimation for an

SNR greater than 6 dBs. Note that, in general, these results are very similar to those

obtained for the simulations shown in Chapter 5.

We can see, in Figure 6.12, the performance for an SNR of 10 dB in terms of SER

versus block size. The red line is the LS estimation employed as optimal performance.

The approaches that achieve the best performance with the least number of symbols are

the Beres and Adve Improvement II (C
[1,2]
HOS), MESSA and Joint-Diagonalization. MESOA

works in a similar fashion to the Joint-Diagonalization until 250 symbols, although there

is no practical improvement in performance when more symbols are employed.
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Figure 6.12: Scenario 1: LOS - performance results measuring SER according to block size for

an SNR of 10 dB

6.3.2 Scenario 2: NLOS

The configuration of scenario 2 is showed in the Figure 6.3, where the transmitter and

the receiver are approximately 5 meters apart, and the Line Of Sight LOS is avoided.

As in the LOS scenario, in order to optimize the General SOS algorithm we have per-

formed an experiment evaluating the SER for different values of γ2. The results obtained

are shown in Figure 6.13, revealing that the optimum value is around γ2 = 0.5. Note

that this value is not in accordance with the optimal value obtained by simulations for

a Rayleigh and a Rice channel in Section 3.4, which is plotted with a vertical black line

(γ2 = 0.64). Figure 6.14 plots the SER versus SNR for this scenario using γ2 = 0.5 and

500 symbols by frame. The performance of all algorithms can be considered as acceptable

and is better than in the LOS scenario. Note that the Beres and Adve Approach Improve-

ment II (C
[1,2]
HOS), MESOA, MESSA and Joint-Diagonalization are completely overlapped

with the LS estimation.
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Figure 6.13: Scenario NLOS: performance for the SOS-based approach according to the unbal-

ance power factor γ2.
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Figure 6.14: Scenario 2: NLOS - performance results measuring SER according to the SNR
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Figure 6.15: Scenario 2: NLOS - performance results measuring SER according to block size

for an SNR of 10 dB

Figure 6.15 shows the SER versus block size for a transmission with an SNR of 10

dB. The worst results were obtained by the General SOS Approach and the Beres and

Adve Approach (C
[1,1]
HOS), neither of which achieves the optimum performance. The other

methods present a similar performance when the number of symbols is greater than 250.

For fewer symbols, MESSA and Joint-Diagonalization are the best alternatives.
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Chapter 7

Conclusions and Future Work

The main objective of this work is to examine and compare different types of EVD-based

techniques for estimating the channel matrix (and recovering the transmitted signals)

in communication systems that make use of the (2 × 1) Alamouti code. We started by

introducing the signal model and the channel characteristic of the space-time block coding

proposed by Alamouti by considering 2 transmit antenna and only 1 receive antenna.

The basic premise of this code is to encode the transmitted symbols into a 2× 2 unitary

matrix so as to spatially decouple their ML detection, which can be seen as a matched

filter followed by a symbol-by-symbol detector.

The orthogonality property imposed by OSTBC has been exploited to design specific

algorithms that estimate the channel parameter by computing the eigenvalues and the

eigenvectors of a matrix formed by statistics of the observations, i.e. performing an

EVD. We have classified these algorithms in two classes taking into account the statistics

used to estimate the matrix: SOS-based and HOS-based methods. A general condition

to guarantee that the channel matrix can be identified using these methods is that the

eigenvalues of the matrix to be diagonalized be different.

SOS-based methods are based on diagonalizing the correlation matrix of the observa-

tions. We have shown that the channel matrix can be identified only when the transmitted

113
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signals have different variance. In this work, we have studied different approaches to solv-

ing this limitation. The first of these has been proposed by Shahbazpanahi et al. in [3].

These authors showed that the SOS-based channel estimation in the (2 × 1) Alamouti

coding system can be performed by using a simple linear precoding matrix selected in or-

der to guarantee that the eigenvalues of the correlation matrix have an order equal to one.

In this sense, Via et al. [4] have proposed implementing this SOS-based approach con-

sidering the real-valued representation of the Alamouti coding scheme. In Chapter 3, we

have derived a simpler implementation of this algorithm by assuming the complex-valued

notation.

Another important contribution of Chapter 3 is to present simulation results obtained

in different environments that allow us to empirically determine the optimal precoding

matrix that must be used in SOS-based approaches. Our simulation results show that the

SOS-based approach using the optimal unbalancing parameter provides an adequate mean

performance, but an undesirable consequence of using a precoding step to unbalance the

signal power is that the bit error for one transmitted signal may be considerable increased.

The HOS-based approaches studied in Chapter 4 consider the diagonalization of a

matrix formed by 4th order cumulants. This idea was initially proposed by Beres et.

al. in [6]. These authors propose to using a matrix which involves a reduced set of 4th

order cumulants. We show that the poor performance of this method can be improved by

making a better selection of the 4th order cumulants. In fact, a considerable improvement

is obtained when the matrix to be diagonalized is computed as a linear combination of

the 4th order cumulants used by Beres et. al.

The most important contribution of Chapter 4 is to obtain the closed form of the opti-

mum matrix 4th order cumulant matrix that maximizes the eigenvalue spread of cumulant

matrices. Our analysis shows that the optimum matrix depends on a parameter β whose

value must be computed taking into account the correct value of the channel coefficients.

Simulation results verify that the performance of this approach matches the performance

obtained when the receiver perfectly knows the channel parameters. We have also de-
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termined a simple form of estimating the parameter β by computing the 4th order cross

cumulants of the observations but, unfortunately, a loss of performance for high SNR has

been observed due to finite-sample estimation errors.

Another contribution of Chapter 4 is to propose a suboptimal approach which selects

the matrix of highest eigenvalue spread from a set of only two cumulant matrices. This

approach presents a satisfactory performance compared with the optimal approach and

with other SOS- and HOS-based techniques. Furthermore, the suboptimal approach has

important advantages for real implementation in FPGAs and DSPs: it computes fewer

cross-cumulant matrices and diagonalizes a single 2× 2 matrix. Moreover, parameter β is

only used as a threshold in the suboptimal approach, making it less sensitive to estimation

errors.

The performance of SOS- and HOS-based approaches has been evaluated both in com-

puter simulations carried out assuming Rayleigh and Rice distributed channels (Chapter

5) and realistic indoor scenarios using a Multiple Input Multiple Output (MIMO) hard-

ware testbed (Chapter 6). This MIMO testbed, configured as a Two Input Single Output

(TISO) system, has been designed to operate at the 2.4 GHz Industrial, Scientific and

Medical (ISM) band and is intended for the testing and rapid prototyping of MIMO base-

band modules. The testbed operation consists of performing the signal processing off-line

at both the transmitter and the receiver while the data are sent and acquired in real-time.

This property enables, at the signal generation stage, modulation and space-time coding

operations to be carried out off-line using MATLAB. At the receiver, the acquired data

stream is also processed in MATLAB: time and frequency synchronization, channel estima-

tion, space-time decoding and, finally, symbol-by-symbol detection are the fundamental

operational blocks.
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ible Testbed for the Rapid Prototyping of MIMO Baseband Modules”, in ISWCS

2006, Valencia, Spain, September 2006.
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López, L. Castedo, “A Flexible MIMO Testbed Developed at the University of A

Coruña”, 1st Workshop on CMCS 2007, Duisburg, Germany, September 2007.
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7.2 Further work

The results presented in this thesis indicate that blind techniques provide an important

benefit in wireless digital communications systems because they avoid the transmission

of pilot symbols that reduce the rate performance. Further work deals with the following

three research lines:

Obtaining the analytical expression of SOS

The SOS-based methods presented in Chapter 3 are based on obtaining a correlation

matrix whose eigenvalues have a multiplicity equal to 1. A way of satisfying this condi-

tion is to unbalance the power of the sources at the transmitter by using an additional

stage before the Alamouti encode. The computer experiments presented in Chapter 3 for

Rayleigh and Rice channels show that the optimum unbalancing value is γ2 = 0.64. This

value is in agreement with the results obtained in Chapter 6 using the MIMO testbed

considering a scenario where there is a direct line of sight from the transmitter to the re-

ceiver. However, the results obtained in a non-line of sight environment show that other

values provide better performance. Our future work deals with determining the analytical

expression of the probability error of the system as a function of the value of γ taking

into account the channel distribution and the type of modulation. The objective is then

to obtain the parameter γ that minimizes the error probability.

Generalizing the proposed strategies

We are working on generalizing the methods studied for other applications where the

mixing matrix is not orthogonal. The idea is to transform the general problem

z = As (7.1)
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where A is non-orthogonal into another problem

x = Hs (7.2)

where H is an orthogonal matrix. To this end, we need to compute the EVD of Rz =

E[zzH] = UDUH and white the observations by using zW = D−1/2UHz. Substituting

equation (7.1), we obtain that

zW = D−1/2UHAs = Hs (7.3)

where H = D−1/2UHA. Observe that the correlation matrix of zW is given by

RzW
= E[zWzH

W ] = HRsH
H (7.4)

Now, since zW is a white signal (RzW
= I), the matrix H must be orthogonal. As a result,

all the algorithms presented in this thesis can be applied to other typical applications of

BSS [2], e.g. separation of artifacts encephalography data, reduction of noise in natural

images, etc.

Another interesting reseach line is to generalize the MESSA and the MESOA algo-

rithms to situations where the mixing matrix has a dimension greater than two. We can

think, for example, of other kinds of OSTBC [15] or of any BSS problem with more than

two observations and sources. For this situation, it is not clear which is the best definition

of the term eigenvalue spread used in the above mentioned strategies. For this reason, it is

necessary to determine the influence of different kinds of eigenvalue discrepancy measures

on the estimation error. We can consider, for example, the separation between the closest

eigenvalues of the separation between the biggest and the smallest eigenvalues.

Performance in OFDM systems

The combination of the Alamouti scheme with Orthogonal Frequency Division Multiplex-

ing (OFDM) has been recently addressed in several works [52, 53].
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OFDM is a frequency-division multiplexing scheme where a large number of closely-

spaced orthogonal sub-carriers are used to carry data [54]. The data is divided into several

parallel data streams or channels, one for each sub-carrier. Each sub-carrier is modulated

with a conventional modulation scheme (such as QAM or PSK) at a low symbol rate,

maintaining total data rates similar to conventional single-carrier modulation schemes in

the same bandwidth. One advantage of OFDM is that frequency-selective channels are

turned into a set of parallel frequency-flat channels. This allows us to apply the Alamouti

scheme on each subcarrier separately so as to enable spatial diversity.

Our future work deals with testing the methods proposed in this thesis by configuring

the testbed of a MIMO-OFDM. It is reasonable to think that this will present several

difficulties. First, the permutation indeterminacy inherent to blind algorithms can lead

to the sources being recovered in a different order in some sub-carriers. In [55], an MSE-

based criterion has been proposed that allows this indeterminacy to be avoided in an

OFDM system and it is predictable that a similar strategy can be also used when OFDM

is combined with OSTBC. Second, we need new strategies to be developed to reduce the

number of symbols required by the proposed approaches and focus on the problem of

time-selective and time-varying channels.
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Appendix A

Capacity of MIMO Channels

This Appendix is devoted to characterizing the capacity of Multiple Input Multiple Output

(MIMO) channels in systems with the (2× 1) and (2× 2) Alamouti code. With this aim,

firstly, we define the following channel model

H =


h11 h12 · · · h1nT

h21 h22 · · · h2nT

. . . . . .
. . . . . .

hnR1 hnR2 · · · hnRnT

 (A.1)

where hij is the fading coefficient path between antennas i and j, nT is the number of

transmitting antennas and nR is the number of receiving antennas. With this channel

model and assuming that the channel is unknown at the transmitter, it can be shown in

[56] that the capacity of a given MIMO channel H is

C(H) = log2 det

(
InR

+
σ2
s

σ2
v

HHH

)
(A.2)

where σ2
s is the variance of the sources and σ2

v is the variance of the noise.

123



124 APPENDIX A. CAPACITY OF MIMO CHANNELS

A.1 Capacity of (2× 1) Alamouti Code

In order to determine the capacity of (2 × 1) Alamouti code we define a different, but

equivalent model, from the one shown in Section 2.1. The OSTBC (2× 1) Alamouti code

employs 2 transmit antennas and 1 receive antenna, thus, the according channel matrix

in equation (A.1) is a row vector

H =
[
h11 h12

]
=
[
h1 h2

]
= hT (A.3)

The capacity of the equivalent unconstrained MIMO channel is obtained by using the

equation (A.2),

C(H) = log2 det

(
1 +

σ2
s

σ2
v

HHH

)
= log2

(
1 +

σ2
s

σ2
v

hTh

)
= log2

(
1 +

σ2
s

σ2
v

||h||2
)

(A.4)

In the (2 × 1) Alamouti code, two slots are needed to transmit the sources s1 and s2.

Then, we can express this redundancy as the following source matrix

S =

 s1 −s∗2
s2 s∗1

 (A.5)

and we can obtain the following relationship between the transmit and the receive signals

[
r1 r2

]
=
[
h1 h2

] s1 −s∗2
s2 s∗1

+
[
v1 v∗2

]
(A.6)

where v1 and v∗2 are the noise, respectively, in the first and second time slots. In this

equation, the terms r1 and r2 denote the observations in the first and second time slots.

Note that this equation can be rewritten as follows x1

x2


︸ ︷︷ ︸

x

=

 r1

r∗2

 =

 h1 h2

h∗2 −h∗1


︸ ︷︷ ︸

H

 s1

s2


︸ ︷︷ ︸

s

+

 v1

v2


︸ ︷︷ ︸

v

(A.7)

where the equivalent channel matrix H is a scaled orthogonal matrix which implies

HHH = HHH = (|h1|2 + |h2|2)I2 = ||h||2I2 (A.8)
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Hence, we can attain the unconstrained capacity of the equivalent channel H employing

equation (A.2). Since we are using 2 time slots, the resulting capacity must be divided

by 2

C(H) =
1

2
log2 det

(
I2 +

σ2
s

σ2
v

HHH

)
=

1

2
log2 det

(
I2 +

σ2
s

σ2
v

(|h1|2 + |h2|2)I2

)
=

1

2
log2

(
1 +

σ2
s

σ2
v

(|h1|2 + |h2|2)
)2

= log2

(
1 +

σ2
s

σ2
v

(|h1|2 + |h2|2)
)

= log2

(
1 +

σ2
s

σ2
v

||h||2
)

(A.9)

which is the same capacity of a 2 × 1 unconstrained MIMO channel showed in equation

(A.4).

A.2 Capacity of (2× 2) Alamouti Code

First, we will determine the capacity of an unconstrained MIMO channel with 2 antennas

in transmission and 2 antennas in reception whose channel matrix is

H =

 h11 h12

h21 h22

 (A.10)
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From equation (A.2), the capacity is given by

C(H) = log2 det

(
I2 +

σ2
s

σ2
v

HHH

)

= log2 det

I2 +
σ2
s

σ2
v

 (|h11|2 + |h12|2) (h11h
∗
21 + h12h

∗
22)

(h∗11h21 + h∗12h22) (|h21|2 + |h22|2)


= log2 det

 1 + σ2
s

σ2
v
(|h11|2 + |h12|2) σ2

s

σ2
v
(h11h

∗
21 + h12h

∗
22)

σ2
s

σ2
v
(h∗11h21 + h∗12h22) 1 + σ2

s

σ2
v
(|h21|2 + |h22|2)


= log2

(
1 +

σ2
s

σ2
v

(|h11|2 + |h12|2 + |h21|2 + |h22|2) +
σ4
s

σ4
v

(|h11|2 + |h12|2)(|h21|2 + |h22|2)−

σ4
s

σ4
v

(|h11|2|h21|2 + h11h
∗
21h
∗
12h22 + h∗11h21h12h

∗
22 + |h12|2|h22|2)

)
= log2

(
1 +

σ2
s

σ2
v

||H||2F +
σ4
s

σ4
v

(|h11|2|h22|2 + |h12|2|h21|2 − h11h
∗
21h
∗
12h22 − h∗11h21h12h

∗
22)

)
= log2

(
1 +

σ2
s

σ2
v

||H||2F +
σ4
s

σ4
v

(h11h22(h
∗
11h
∗
22 − h∗21h

∗
12)− h12h21(h

∗
11h
∗
22 − h∗21h

∗
12))

)
= log2

(
1 +

σ2
s

σ2
v

||H||2F +
σ4
s

σ4
v

|h11h22 − h12h21|2
)

(A.11)

Considering that the source matrix continues being the same as in equation (A.5), we

define the relationship between the transmission and the reception for (2 × 2) Alamouti

code as  r11 r12

r21 r22

 =

 h11 h12

h21 h22

 s1 −s∗2
s2 s∗1

+

 v11 v∗12

v21 v∗22

 (A.12)

This equation can be rewritten as
x11

x12

x21

x22


︸ ︷︷ ︸

x

=


r11

r∗12

r21

r∗22

 =


h11 h12

h∗12 −h∗11

h21 h22

h∗22 −h∗21


︸ ︷︷ ︸

HH

 s1

s2


︸ ︷︷ ︸

s

+


v11

v12

v21

v22


︸ ︷︷ ︸

v

(A.13)

By means of the equation (A.1), we obtain the desired capacity of an (2 × 2) Alamouti

code where again a factor 1/2 must be included because 2 time slots are used to transmit
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the same symbol. The resulting capacity is

C(H) =
1

2
log2 det

(
I2 +

σ2
s

σ2
v

HHH

)
=

1

2
log2 det

(
I2 +

σ2
s

σ2
v

(|h11|2 + |h12|2 + |h21|2 + |h22|2)I2

)
=

1

2
log2

(
1 +

σ2
s

σ2
v

(|h11|2 + |h12|2 + |h21|2 + |h22|2)
)2

= log2

(
1 +

σ2
s

σ2
v

(|h11|2 + |h12|2 + |h21|2 + |h22|2)
)

= log2

(
1 +

σ2
s

σ2
v

||H||2F
)

(A.14)

which is lower or equal to the capacity of a (2× 2) MIMO system in equation (A.11), i.e.

log2

(
1 +

σ2
s

σ2
v

||H||2F
)
≤ log2

(
1 +

σ2
s

σ2
v

||H||2F +
σ4
s

σ4
v

|h11h22 − h12h21|2
)

(A.15)

Note that both capacities are equal only when h11h22 = h12h21.
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Appendix B

Computation of a Whitening Matrix

Whitening procedures are used in many BSS algorithms, like FastICA and JADE, to

reduce the complexity of the problem to solve. This appendix explains two different

methods to obtain white observations.

We define a non-white vector of M variables x, such as its correlation is the following

M ×M matrix

Rx = E[xxH] (B.1)

The aim is to achieve a new white vector x̃ of dimmension N from x which satisfies the

correlation matrix

Rx̃ = E[x̃x̃H] = IN (B.2)

Note that N ≤M . In order to obtain this vector x̃, we compute the EVD of Rx given by

Rx = UDUH (B.3)

This matrix is a hermitian matrix and its eigenvalues in matrix D are real numbers.

Instead of employing the totality of the eigenvectors, it is possible to choose only the N

eigenvectors that have the corresponding major eigenvalues. In this case, U will have

dimmension M ×N . From equation B.3 we define the whitening matrix

W = D−
1
2 UH (B.4)
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and multiplying x by the W whitening matrix, the white vector x̃ is obtained, i.e

x̃ = Wx (B.5)

Substituting the definition of x̃ in the correlation matrix of the vector x̃, we can demon-

strated that the new set of observations are white

Rx̃ = E[x̃x̃H] = E[Wx(Wx)H] = E[D−
1
2 UHxxH(D−

1
2 UH)H]

= D−
1
2 UHE[xxH]UD−

1
2 = D−

1
2 UHUDUHUD−

1
2 = D−

1
2 DD−

1
2 = IN (B.6)

Instead of using the whitening matrix in equation (B.4), it is possible to employ the

alternative W matrix

W = UD−
1
2 UH (B.7)

In this case, substituting equation (B.7) in equation (B.2), the following relationship is

obtained

Rx̃ = E[x̃x̃H] = E[Wx(Wx)H] = E[UD−
1
2 UHxxH(UD−

1
2 UH)H]

= UD−
1
2 UHE[xxH]UD−

1
2 UH = UD−

1
2 UHUDUHUD−

1
2 UH

= UD−
1
2 DD−

1
2 U = UUH = IN (B.8)



Appendix C

EVD Computation

The Eigenvalue Decomposition (EVD) is important in the context of blind source separa-

tion because it allows to extract the mixing matrix by means of the decomposition of the

cumulant matrices.

Bearing this in mind, the eigenvectors and eigenvalues of any square matrix A are

defined as the pairs (x, λ) that satisfy the following relationship

Ax = λx, ||x|| = 1 (C.1)

From above equation, it is straightforward to obtain

(A− λI) x = 0 (C.2)

and thus the λ values can be achieved by equating the determinant of equation (C.2) to

zero, i.e.

det (A− λI) = 0 (C.3)

once the eigenvalues λ have been obtained, it is possible to calculate the eigenvectors x,

substituting the different λ values in equation (C.2) and solving the system.

We will describe the concrete algorithms to compute eigenvalues and eigenvectors for

the cases of matrices of dimension 2× 2 and 3× 3.
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C.1 EVD of a 2× 2 Matrix

For any matrix A of dimmension 2× 2

A =

 a11 a12

a21 a22

 (C.4)

from equations (C.3) and (C.4) we obtain the following expression

det (A− λI2) = det

 a11 − λ a12

a21 a22 − λ


= (a11 − λ)(a22 − λ)− a12a21

= λ2 − Tr(A)λ+ det(A)

= λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0 (C.5)

Thus, solving the 2nd degree equation we obtain

λ1,2 =
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

2
(C.6)

Substituting the values of λi, i = 1, 2 in equation (C.2) and solving the system, we obtain

the corresponding eigenvectors a11 − λi a12

a21 a22 − λi

 x1

x2

 =

 0

0

 (C.7)

This system is homogeneous and, thus if any solution x different from trivial solution

(x1 = x2 = 0) exists, then for any k ∈ Z∗, kx will also be a solution of this system. Thus,

we establish the value of one of the components of x, for example, we let x2 = 1, so a11 − λi a12

a21 a22 − λi

 x1

1

 =

 0

0

 (C.8)

It is possible to achieve the value of x1 via the following two ways

(a11 − λi)x1 + a12 = 0⇒ x1 =
a12

λi − a11

(C.9)

a21x1 + a22 − λi = 0⇒ x1 =
λi − a22

a21

(C.10)
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Algorithm I

The following algorithm is a good choice when the requirements are to obtain eigenvalues

and eigenvectors.

• Step 1. Define the variables b1 and b0 from the coefficients of the 2nd degree

polynomial equation (C.5)

b1 = −(a11 + a22), b0 = a11a22 − a21a12 (C.11)

• Step 2. Solve the 2nd degree polynomial equation (C.5) and obtain the eigenvalues

of A with the following expression

λ1,2 =
−b1 ±

√
b21 − 4b0

2
(C.12)

• Step 3. Achieve the eigenvectors

U′ =
[

u′1 u′2

]
=

 a12

λ1−a11

a12

λ2−a11

1 1

 (C.13)

• Step 4. Obtain the norm of the eigenvectors

||u′1|| =

√(
a12

λ1 − a11

)2

+ 1, ||u′2|| =

√(
a12

λ2 − a11

)2

+ 1 (C.14)

• Step 5. Finally, normalize the eigenvectors, i.e

U =
[

u′1
||u′1||

u′2
||u′2||

]
(C.15)

Algorithm II

In the case that we need to obtain only the eigenvectors, the following algorithm is a

better choice.
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• Step 1. Define the new variables p and q according with the following expression

p =
a11 − a22

2
, q =

√
p2 + a12a21 (C.16)

• Step 2. Achieve the non-normalized eigenvectors u′1 and u′2 from the above equation

(C.16) employing the following definition

U′ =
[

u′1 u′2

]
=

 a12

−p+q
a12

−p−q

1 1

 (C.17)

• Step 3. Obtain the norm of the eigenvectors

||u′1|| =

√(
a12

−p+ q

)2

+ 1, ||u′2|| =

√(
a12

−p− q

)2

+ 1 (C.18)

• Step 4. Finally, normalize the eigenvectors, i.e

U =
[

u′1
||u′1||

u′2
||u′2||

]
(C.19)

C.2 EVD of a 3× 3 Matrix

For any matrix A of dimension 3× 3

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (C.20)

from equations (C.3) and (C.4) we obtain the following expression

det (A− λI3) = det



a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ




= −λ3 + (a11 + a22 + a33)λ
2

(a12a21 + a13a31 + a23a32 − a11a22 − a11a33 − a22a33)λ

+a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a11a23a32 − a12a21a33

= −λ3 + Tr(A)λ2 + 1
2
(Tr(A2)− Tr2(A))λ+ det(A) = 0(C.21)
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So, at this point, we need to solve a cubic function and Cardano’s method [57] is a good

choice to achieve this aim. Its steps are the following

• Step 1. Define the variables b2, b1 and b0 from the coefficients of the 3rd degree

polynomial equation (C.21)

b2 = −Tr(A), b1 =
1

2

(
b22 − Tr(A2)

)
, b0 = − det(A) (C.22)

• Step 2. Define the new variables p and q according to the following expression

p = b1 −
b22
3
, q = b0 +

2b32 − 9b2b1
27

(C.23)

• Step 3. From the above variables, compute the variables v1, v2 and v3 obeying the

following equation

v1 =
3

√
−q

2
+

√
q2

4
+
p3

27
, v2 =

−1 +
√

3j

2
v1, v3 =

−1−
√

3j

2
v1 (C.24)

• Step 4. We can achieve the eigenvalues by means of

λi = ui −
p

3vi
− b2

3
, i = 1, 2, 3 (C.25)

• Step 5. Substituting every value of λi, i = 1, 2, 3 in equation (C.2) and solving the

system, we obtain the corresponding eigenvector
a11 − λi a12 a13

a21 a22 − λi a23

a31 a32 a33 − λi



x1

x2

x3

 =


0

0

0

 (C.26)

As this is a homogeneous system, we let x3 = 1 and we have to solve the following

system of 2 variables

(a11 − λi)x1 + a12x2 + a13 = 0

a21x1 + (a22 − λi)x2 + a23 = 0 (C.27)
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Hence, we conclude that the solution is

x1 =
−a12a23 + a13(a22 − λi)

a12a21 − (a11 − λi)(a22 − λi)
, x2 =

−a13a21 + a23(a11 − λi)
a12a21 − (a11 − λi)(a22 − λi)

, x3 = 1

(C.28)

Note that for each value of λi, i = 1, 2, 3 we have a different solution. Taking this

into account, we can obtain the 3 eigenvectors

U′ =
[

u′1 u′2 u′3

]
=


x1(λ1) x1(λ2) x1(λ3)

x2(λ1) x2(λ2) x2(λ3)

1 1 1

 (C.29)

Finally, we divide by their norm in order to achieve the normalized eigenvectors

U =
[

u′1
||u′1||

u′2
||u′2||

u′3
||u′3||

]
(C.30)



Appendix D

Demonstration: Equations of

Shahbazpanahi et al. Approach

This appendix is devoted to explain how to rewrite some concrete equations shown in

Section 3.2 which make use of the operator (·), the operator vec(·) and the Kronecker

product. We will start by presenting the properties of this operator.

D.1 The Kronecker Product

The Kronecker product is an special case of the tensor product. The Kronecker product

operator between two matrices A of dimension M × N and B of dimension P × Q is

defined as

A⊗B =


a11B a12B · · · a1NB

a21B a22B · · · a2NB
...

...
. . .

...

aM1B aM2B · · · aMNB

 (D.1)
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Properties

• Property 1: Bilinearity and Associativity. Since the Kronecker product is a

special case of the tensor product, so it is bilinear and associative. Let A, B and

C be three matrices and k be a scalar. Taking this into account, the Kronecker

product obeys the following relationships

A⊗ (B + C) = A⊗B + A⊗C (D.2)

(A + B)⊗C = A⊗C + B⊗C (D.3)

(kA)⊗B = A⊗ (kB) = k(A⊗B) (D.4)

(A⊗B)⊗C = A⊗ (B⊗C) (D.5)

In general, the Kronecker product is not commutative

A⊗B 6= B⊗A (D.6)

But it is permutation equivalent, this means that there exist two permutation ma-

trices P1 and P2 such that

A⊗B = P1 (B⊗A) P2 (D.7)

• Property 2: Mixed-Product. There is a relation between the ordinary product of

matrices and the Kronecker product, it can be summarized in the following equation

(A⊗B)(C⊗D) = (AC)⊗ (BD) (D.8)

As a consequence of this property, if the matrices A and B have an inverse, then it

is possible to establish the following relationship

(A⊗B)−1 = A−1 ⊗B−1 (D.9)

• Property 3: Transpose. The operation of transposition is distributive over the

Kronecker product, i.e.

(A⊗B)T = AT ⊗BT (D.10)
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• Property 4: Spectrum. If A and B are square matrices of rank M and N

respectively, let δ1, δ2, . . . , δM be the eigenvalues of A and let λ1, λ2, . . . , λN be the

eigenvalues of B. Hence, the eigenvalues of A⊗B are δiλj where i = 1, 2, . . . ,M and

j = 1, 2, . . . , N . Consequently, the trace and determinant of a Kronecker product

are given by

Tr(A⊗B) = Tr(A)Tr(B) (D.11)

and

det(A⊗B) = det(A)N det(B)M (D.12)

• Property 5: Singular Values. Assuming that A and B are rectangular (non-

square) matrices and supposing that A has M non-zero singular values δ1, δ2, . . . , δM

and B has N non-zero singular values, then the Kronecker product A⊗B has M ·N

non-zero singular values. Since the rank of a matrix is equal to the number of non-

zero singular values, we have that

rank(AB) = rank(A)rank(B) (D.13)

• Property 6: Vector. Considering that matrix A has dimension M × N , matrix

B has dimension N × P and matrix C has dimension P ×M , it is interesting to

remark the following property

Tr(ATBC) = vecT(A)(IN ⊗B)vec(C) (D.14)

D.2 Demonstration of Equation (3.29)

We will demonstrate equation (3.29),

Tr(WT(ĥ)RrW(ĥ)D) = vecT(W(ĥ))(I4 ⊗Rr)vec(W(ĥ)D) (D.15)

Letting A = W(ĥ), B = Rr and C = W(ĥ)D, equation (D.15) obeys property (D.14),

and thus it has been demonstrated.
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D.3 Demonstration of Equation (3.35)

We will show how to obtain the expression given in equation (3.35),

vec(W(ĥ)) = Φĥ (D.16)

Remember the equation (3.10). We will employ ĥ instead of h, and thus applying the

operator (·) we obtain

ĥ =


<{ĥ1}

<{ĥ2}

={ĥ1}

={ĥ2}

 (D.17)

Obeying the definition of the Di matrices in equation (3.31), we can rewrite them in an

expanded version as

D1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = I4, D2 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



D3 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 1

 , D4 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 (D.18)

Note that all of these matrices have an element distinct from 0 for every row and ev-

ery element distinct from 0 is 1 or −1. Thus, from equations (D.17) and (D.18), it is

straightforward to obtain

D1ĥ =


<{ĥ1}

<{ĥ2}

={ĥ1}

={ĥ2}

 = ĥ, D2ĥ =


<{ĥ2}

<{−ĥ1}

={ĥ2}

={−ĥ1}
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D3ĥ =


={−ĥ1}

={ĥ2}

<{ĥ1}

<{−ĥ2}

 , D4ĥ =


={−ĥ2}

={−ĥ1}

<{ĥ2}

<{ĥ1}

 (D.19)

Replacing h by ĥ in the expression of equation (3.16), we obtain

W(ĥ) =


<{ĥ1} <{ĥ2} −={ĥ1} −={ĥ2}

<{ĥ2} −<{ĥ1} ={ĥ2} −={ĥ1}

={ĥ1} ={ĥ2} <{ĥ1} <{ĥ2}

={ĥ2} −={ĥ1} −<{ĥ2} <{ĥ1}

 (D.20)

Substituting equations (D.19) in (D.20), it is easy to establish that

W(ĥ) =
[
D1ĥ D2ĥ D3ĥ D4ĥ

]
(D.21)

Thus, if we employ vec(·) in the equation (D.21), the following expression is obtained

vec(W(ĥ)) =


D1ĥ

D2ĥ

D3ĥ

D4ĥ

 (D.22)

Defining a new matrix Φ from the set of matrices in equation (D.18)

Φ =


D1

D2

D3

D4

 (D.23)

Hence, multiplying on the right side by ĥ, we obtain

Φĥ =


D1ĥ

D2ĥ

D3ĥ

D4ĥ

 (D.24)
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which is the same one shown in equation (D.22), i.e.

vec(W(ĥ)) = Φĥ (D.25)

Thus it has been demonstrated the relationship shown in equation (3.35).

D.4 Demonstration of Equation (3.38)

At this point, the aim is to demonstrate the relationship shown in (3.38), i.e

vec(W(ĥ)D′) = Ψh (D.26)

With this objective, remember equation (3.22), i.e

D′ =


σz1 0 0 0

0 σz2 0 0

0 0 σz1 0

0 0 0 σz2

 (D.27)

Multiplying on the right side by equation (3.22), the following relationship is obtained

W(ĥ)D′ =
[
D1ĥ D2ĥ D3ĥ D4ĥ

]
D′ =

[
σz1D1ĥ σz2D2ĥ σz1D3ĥ σz2D4ĥ

]
(D.28)

And, thus, applying the operator vec(·) over equation (D.28), it is straightforward to

obtain

vec(W(ĥ)D′) =


σz1D1ĥ

σz2D2ĥ

σz1D3ĥ

σz2D4ĥ

 (D.29)

Remembering the definition of Ψ = (D′ ⊗ I4)Φ given in equation (3.37), we can rewrite
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equation (D.29) as 
σz1D1ĥ

σz2D2ĥ

σz1D3ĥ

σz2D4ĥ

 = (D′ ⊗ I4)Φh = Ψh (D.30)

And finally, from equations (D.29) and (D.30) we obtain

vec(W(ĥ)D′) = Ψh (D.31)

which veryfies the equation (3.38).
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Appendix E

HOS Matrices for (2× 1) Alamouti

Code

In this appendix, we present the formal definition of HOS and its more important proper-

ties. We also show the specific form of HOS matrices for the concrete case of the Alamouti

code, which have been employed in Chapter 4.

E.1 Higher Order Statistics (HOS) definition

Let x = [x1 x2 . . . xM ]T and w = [w1 w2 . . . wN ]T be two sets of random complex-valued

variables. The cumulant of k-order is defined as the coefficients associated to the k-order

polynom of the Taylor Series, with respect to w, of the generator function

Θ(w) = ln(Φ(w)) (E.1)

where Φ(·) is the jointly characteristic function of the random variables x

Φ(w) = E[exp(jwTx)] (E.2)

and the Taylor series expansion provides the elements of x. Thus, it is possible to establish

the next relationship for the 2nd, 3rd and 4th order cumulants of a variable x (of zero mean)
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and its moments

cum(xi, xj) = E[xixj] (E.3)

cum(xi, xj, xk) = E[xixjxk] (E.4)

cum(xi, xj, xk, xl) = E[xixjxkxl]− E[xixj]E[xkxl]− E[xixl]E[xjxk]− E[xixk]E[xjxl] (E.5)

If the variables do not have zero mean, it is necessary to replace every variable xm, m ∈

{i, j, k, l} by xm−E[xm]. Note that equation (E.3) corresponds to the correlation between

the variables xi and xj. Also, it is important to remark that the kurtosis of xi is

kurt(xi) = cum(xi, x
∗
i , xi, x

∗
i ) = E[|xi|4]− 2E2[|xi|2]− |E[x2

i ]|2 (E.6)

And in the case of a real-valued variable, xi = x∗i , thus, from equation (E.6) we obtain

kurt(xi) = cum(xi, xi, xi, xi) = E[|xi|4]− 3E2[|xi|2] (E.7)

E.2 HOS Properties

• Property 1. The cumulants of weighted quantities are equal to the product of all

scale factors by the cumulant of the non-scaling quantities

cum(a1x1, . . . , aNxN) =

(
N∏
i=1

ai

)
cum(x1, . . . , xN) (E.8)

where ai, i =, 1 . . . , N are constants and xi, i = 1, . . . , N are random variables.

• Property 2. The cumulants are symmetric with respect to their arguments

cum(x1, . . . , xN) = cum(xi1, . . . , xiN) (E.9)

where i1, . . . , iN is any permutation of the indexes i = 1, . . . , N .

• Property 3. The cumulants are unaltered by additive constants, i.e., if K is a

constant then

cum(K + x1, . . . , xN) = cum(x1, . . . , xN) (E.10)
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• Property 4. The cumulant of the addition between independent pairs of variables

(xi, yi), i = 1, . . . , N is equal to the addition of the cumulants of every variable, i.e

cum(x1 + y1, . . . , xN + yN) = cum(x1, . . . , xN) + cum(y1, . . . , yN) (E.11)

• Property 5. The cumulant of a set formed by the variables x1, . . . , xN is zero if

some variable xi is independent, i.e.

cum(x1, . . . , xN) = 0 (E.12)

• Property 6. The conjugate of the cumulant is equal to the cumulant obtained

conjugating all the variables, i.e.

cum(x1, . . . , xN) = cum∗(x∗1, . . . , x
∗
N) (E.13)

E.3 4th Order Cumulants for 2 Variables

We will consider that we have 2 complex-valued variables x1,x2 and, therefore, they are

16 different 4th order cumulants

c1 = cum(x1, x
∗
1, x1, x

∗
1) c9 = cum(x2, x

∗
1, x1, x

∗
1)

c2 = cum(x1, x
∗
1, x1, x

∗
2) c10 = cum(x2, x

∗
1, x1, x

∗
2)

c3 = cum(x1, x
∗
1, x2, x

∗
1) c11 = cum(x2, x

∗
1, x2, x

∗
1)

c4 = cum(x1, x
∗
1, x2, x

∗
2) c12 = cum(x2, x

∗
1, x2, x

∗
2)

c5 = cum(x1, x
∗
2, x1, x

∗
1) c13 = cum(x2, x

∗
2, x1, x

∗
1)

c6 = cum(x1, x
∗
2, x1, x

∗
2) c14 = cum(x2, x

∗
2, x1, x

∗
2)

c7 = cum(x1, x
∗
2, x2, x

∗
1) c15 = cum(x2, x

∗
2, x2, x

∗
1)

c8 = cum(x1, x
∗
2, x2, x

∗
2) c16 = cum(x2, x

∗
2, x2, x

∗
2)

(E.14)
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Note that employing the cumulant properties, we can conclude that there are actually

only 6 different cumulants and they correspond to

c1 = cum(x1, x
∗
1, x1, x

∗
1) ∈ R

c2 = cum(x1, x
∗
1, x1, x

∗
2) = c∗3 = c5 = c∗9 ∈ C

c4 = cum(x1, x
∗
1, x2, x

∗
2) = c7 = c10 = c13 ∈ R

c6 = cum(x1, x
∗
2, x1, x

∗
2) = c∗11 ∈ C

c8 = cum(x1, x
∗
2, x2, x

∗
2) = c∗12 = c14 = c∗15 ∈ C

c16 = cum(x2, x
∗
2, x2, x

∗
2) ∈ R

(E.15)

Taking this into account, we define the vector x as

x =

 x1

x2

 (E.16)

and, thus, we can form the following 4 different matrices C
[k,l]
HOS where k, l = 1, 2

C
[k,l]
HOS = cum(x,xH, xk, x

∗
l ) =

 cum(x1, x
∗
1, xk, x

∗
l ) cum(x1, x

∗
2, xk, x

∗
l )

cum(x2, x
∗
1, xk, x

∗
l ) cum(x2, x

∗
2, xk, x

∗
l )

 (E.17)

In order to rewrite the matrix in equation (E.17), we define the matrix M as

M =

 m11 m12

m21 m22

 (E.18)

And, we define the matrix Q for a vector x and a matrix M by means of the following

expression

Qx(M) =
∑2

k,l=1 cum(xi, x
∗
j , xk, x

∗
l )mlk

= m11C
[1,1]
HOS +m21C

[1,2]
HOS +m12C

[2,1]
HOS +m22C

[2,2]
HOS (E.19)
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If we let M be a matrix of dimmension 2 × 2 with only one component distinct from 0

and equal to 1, we obtain the following Qx(M) matrices

M =

 1 0

0 0

 ⇒ Qx(M) = C
[1,1]
HOS = cum(x,xH, x1, x1) =

 c1 c2

c∗2 c4

 (E.20)

M =

 0 0

1 0

 ⇒ Qx(M) = C
[1,2]
HOS = cum(x,xH, x1, x2) =

 c2 c6

c4 c8

 (E.21)

M =

 0 1

0 0

 ⇒ Qx(M) = C
[2,1]
HOS = cum(x,xH, x2, x1) =

 c∗2 c4

c∗6 c∗8

 (E.22)

M =

 0 0

0 1

 ⇒ Qx(M) = C
[2,2]
HOS = cum(x,xH, x2, x2) =

 c4 c8

c∗8 c16

 (E.23)

Note that this set of 4 matrices contains the 16 cumulants shown in equation (E.14).

E.4 HOS Matrices for (2× 1) Alamouti Code

In order to obtain the expression of the 4th order cumulants for the (2×1) Alamouti code,

we will define the channel matrix as follows

H =

 h1 h2

h∗2 h1

 =
[

h1 h2

]
(E.24)

Remember that the observations vector x has the form

x =

 x1

x2

 =

 h1s1 + h2s2 + v1

h∗2s1 − h1s
∗
2 + v2

 = Hs + v (E.25)

Heretoafter, we will not consider the noise because its 4th order cumulants are equal to

zero. Thus, we simplify the equation (E.25), obtaining

x =

 x1

x2

 =

 h1s1 + h2s2

h∗2s1 − h1s
∗
2

 = Hs (E.26)
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Hence, substituting the above equation (E.26) in (E.14), we can see that the cumulant c1

take the following value

c1 = cum(x1, x
∗
1, x1, x

∗
1)

= cum(h1s1 + h2s2, h
∗
1s
∗
1 + h∗2s

∗
2, h1s1 + h2s2, h

∗
1s
∗
1 + h∗2s

∗
2)

= cum(h1s1, h
∗
1s
∗
1, h1s1, h

∗
1s
∗
1) + cum(h2s2, h

∗
2s
∗
2, h2s2, h

∗
2s
∗
2)

= h1h
∗
1h1h

∗
1cum(s1, s

∗
1, s1, s

∗
1) + h2h

∗
2h2h

∗
2cum(s2, s

∗
2, s2, s

∗
2)

= |h1|4cum(s1, s
∗
1, s1, s

∗
1) + |h2|4cum(s2, s

∗
2, s2, s

∗
2) (E.27)

Considering that ρi is the corresponding kurtosis of the variable si, ρi = cum(si, s
∗
i , si, s

∗
i ),

and that the variables s1 and s2 have the same kurtosis, we can establish that ρ1 = ρ2 = ρ,

and it is possible to simplify the equation (E.27) in

c1 = (|h1|4 + |h2|4)ρ (E.28)

In analogous form, we can obtain the values for the remaining cumulants

c1 = (|h1|4 + |h2|4)ρ c2 = (|h1|2 − |h2|2)h1h2ρ

c4 = 2|h1|2|h2|2ρ c6 = 2h2
1h

2
2ρ

c8 = (|h2|2 − |h1|2)h1h2ρ c16 = (|h1|4 + |h2|4)ρ

(E.29)

In order to study the eigenvalue decomposition of the matrix (E.19) in the (2 × 1)

Alamouti code context, we rewrite the matrix of equation (E.17) employing the equation

(E.26). We obtain

C
[k,l]
HOS = cum(x,xH, xk, x

∗
l ) = cum(Hs, sHHH, xk, x

∗
l ) = Hcum(s, sH, xk, x

∗
l )H

H (E.30)

It is straightforward and interesting to acquire a new version of equation (E.19) employing

the equation (E.30) and introducing the term ∆̆M. Hence, we obtain

Qx(M) = H(m11cum(s, sH, x1, x
∗
1) +m21cum(s, sH, x1, x

∗
2) +

m12cum(s, sH, x2, x
∗
1) +m22cum(s, sH, x2, x

∗
2))H

H = H∆̆MHH (E.31)
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Also, replacing x1, x
∗
1, x2 and x∗2 in equation (E.31) by their corresponding values from

equation (E.26), it is possible to isolate the kurtosis of s1 and s2 as

cum(s, sH, x1, x
∗
1) = cum(s, sH, h1s1 + h2s2, h

∗
1s
∗
1 + h∗2s

∗
2)

= |h1|2cum(s, sH, s1, s
∗
1) + |h2|2cum(s, sH, s2, s

∗
2)

= |h1|2
 ρ1 0

0 0

+ |h2|2
 0 0

0 ρ2


= |h1|2P1 + |h2|2P2 (E.32)

Remark that the terms P1 and P2 are introduced in order to reduce the expression.

Equivalently, the remaining terms of cumulants are

cum(s, sH, x1, x
∗
2) = cum(s, sH, h1s1 + h2s2, h2s

∗
1 − h1s

∗
2) = h1h2P1 − h1h2P2 (E.33)

cum(s, sH, x2, x
∗
1) = cum(s, sH, h∗2s1 − h∗1s2, h

∗
1s
∗
1 + h∗2s

∗
2) = h∗1h

∗
2P1 − h∗1h∗2P2 (E.34)

cum(s, sH, x2, x
∗
2) = cum(s, sH, h∗2s1 − h∗1s2, h2s

∗
1 − h1s

∗
2) = |h2|2P1 + |h1|2P2 (E.35)

Substituting this set of results formed by equations (E.32), (E.33), (E.34) and (E.35) in

equation (E.31), the following expression is obtained

Qx(M) = H((m11|h1|2 +m21h1h2 +m12h
∗
1h
∗
2 +m22|h2|2)P1 +

(m11|h2|2 −m21h
∗
1h
∗
2 −m12h1h2 +m22|h1|2)P2)HH (E.36)

By means of equations (E.24) and (E.18), it is possible to simplify the coefficients of P1

and P2. Thus, we achieve

δ̆1 = ρ1(m11|h1|2 +m21h1h2 +m12h
∗
1h
∗
2 +m22|h2|2) = ρ1h

H
1 Mh1 (E.37)

δ̆2 = ρ2(m11|h2|2 −m21h
∗
1h
∗
2 −m12h1h2 +m22|h1|2) = ρ2h

H
2 Mh2 (E.38)

As a result, we have obtained a new form of equation (E.19) for the (2 × 1) Alamouti

code, i.e.

Qx(M) = H∆̆MHH = H

 δ̆1 0

0 δ̆2

HH (E.39)
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where

δ̆i = δ̆ii = ρih
H
i Mhi (E.40)

Note that the EVD of matrix (E.39) corresponds to the following expression

Qx(M) = U∆MUH (E.41)

where U is the unitary matrix of the eigenvectors and ∆M is the diagonal matrix that

contains the eigenvectors. Equalizing the equations (E.39) and (E.41) and considering

that ||h||2 = |h1|2 + |h2|2, the following expression is obtained

Qx(M) = H∆̆MHH = U∆MUH = U

||h||2
 δ1 0

0 δ2

UH (E.42)

Thus, we can conclude that the eigenvectors are determinded by the following expression

∆M = ||h||2∆̆M (E.43)

For the different M matrices of the equations (E.20), (E.21), (E.22) and (E.23), we

can obtain their corresponding values for matrix ∆̆M replacing M in equation (E.40)

M =

 1 0

0 0

 ⇒ ∆M =

 ρ1|h1|2 0

0 ρ2|h2|2

 = ρ

 |h1|2 0

0 |h2|2

 (E.44)

M =

 0 0

1 0

 ⇒ ∆M =

 ρ1h1h2 0

0 −ρ2h1h2

 = ρ

 h1h2 0

0 −h1h2

 (E.45)

M =

 0 1

0 0

 ⇒ ∆M =

 ρ1h
∗
1h
∗
2 0

0 −ρ2h
∗
1h
∗
2

 = ρ

 h∗1h
∗
2 0

0 −h∗1h∗2

 (E.46)

M =

 0 0

0 1

 ⇒ ∆M =

 ρ1|h2|2 0

0 ρ2|h1|2

 = ρ

 |h2|2 0

0 |h1|2

 (E.47)



Appendix F

Joint Diagonalization Procedure

The procedure used by JADE for simultaneous diagonalization of several 4th order cross

cumulant matrices is an extension of the Jacobi technique: a joint diagonality criterion

is iteratively optimized under plane rotations. We have optimized the original code pre-

sented in [58] by considering the special structure of the Alamouti code.

For a matrix C of dimension 2× 4 defined as

C =

 c11 c12 c13 c14

c21 c22 c23 c24

 (F.1)

the first step of the procedure consists of obtaining the following 3× 2 matrix

G =


c11 − c22 c13 − c24

c12 c14

c21 c23

 (F.2)

From this matrix, we obtain F = GGH and a 3× 3 symmetric matrix given by

E =


e11 e12 e13

e21 e22 e23

e31 e32 e33

 (F.3)
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where

e11 = f11 (F.4)

e12 = e21 = real(f12 + f13) (F.5)

e13 = e31 = imag(−f12 + f13) (F.6)

e22 = real(f22 + 2f23 + f33) (F.7)

e23 = e32 = imag(f22 + 2f23 + f33) (F.8)

e33 = real(f22 − 2f23 + f33) (F.9)

The eigenvalues are computed and then the eigenvector u1 corresponding to the largest

eigenvalue is obtained. If u11 < 0 then we let u1 = −u1. Finally, the channel matrix is

estimated as

H =

 c −s∗

s c

 (F.10)

where c =
√

1+u11

2
and s = u21−u31j

2c
.

Note that the method described in Appendix C.2 is a good choice to compute the

eigenvalues of the 3× 3 matrix E.
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[36] J. Hérault, C. Jutten, B. Ans, “Détection de Grandeurs Primitives dans un Message

Composite par une Architecture Neuromimétique en Apprentissage Non Supervisé”,
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“Performance of STBC Transmissions with Real Data”, 16th IST Mobile and Wireless

Communications Summit, Budapest, Hungary, July 2007.

[50] O. Macchi, “Adaptive Processing: The Least Mean Squares Approach with Applica-

tions in Transmission”, John Wiley & Sons, New York, 1995.

[51] H. Chernoff, E. L. Lehmann, “The Use of Maximum Likelihood Estimates in χ2 Tests

for Goodness-of-Fit”, The Annals of Mathematical Statistics 25, pp. 579–586, 1954.
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