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Directores: Dr. Luis Castedo Ribas y Dr. Michael Joham

Fecha: 9 de octubre de 2009

Tribunal

Presidente:

Vocal 1:

Vocal 2:

Vocal 3:

Secretario:





A Juan





Agradecimientos

En primer lugar quiero expresar mi más profundo y sincero agradecimiento a mi tutor y
director de tesis, el Dr. Luis Castedo Ribas, por su apoyo y ayuda durante estos años.
Gracias por haberme motivado a realizar la tesis doctoral y por la inestimable ayuda en
todos y cada uno de los artı́culos que hemos realizado juntos. Gracias por todo lo que me
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estancias en Ḿunich de las que he podido disfrutar losúltimos ãnos.
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e o seu apoio e cariño dende que comencei este longo camiño na universidade. Por estar
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Resumen
En este trabajo consideramos un sistema multiusuario con múltiples antenas en
transmisíon y unaúnica antena en cada uno de los usuarios receptores y que se denota
por brevedad como MU-MISO, del inglés Multi–User Multiple–Input/Single–Output.
Este modelo MU–MISO se ajusta perfectamente al enlace descendente de un sistema
de comunicaciones ḿoviles, donde ḿultiples antenas situadas en la estación base env́ıan
informacíon a varios usuarios dentro de su zona de cobertura y cuyos terminales ḿoviles
disponen generalmente de unaúnica antena. Este canal descendente se denomina también
canal de difusíon (BC, del ingĺesBroadcast Channel). Cuando se considera un canal de
difusión, el transmisor centralizado tiene claramente más grados de libertad que cada
uno de los receptores descentralizados, por lo que es más apropiado separar las señales
aplicandoprecodificacíonen transmisíon. Para poder realizar el diseño de los paŕametros
del precodificador, el transmisor necesita conocer la informacíon de canal (CSI, en inglés
Channel State Information) correspondiente a los distintos usuarios receptores. En el
caso de sistemas FDD (del inglés,Frequency Division Duplex), esta informacíon puede
obtenerse (al menos parcialmente) mediante realimentación, siempre tras haber aplicado
un proceso de cuantificación de la informacíon enviada con el objetivo de adaptarse a las
condiciones de ancho de banda limitado del canal de retorno.

La asuncíon est́andar para el diseño del retorno es CSI libre de errores en los usuarios
receptores (e.g., [1–5]), pero los receptores consiguen suCSI mediante estimación, por
lo que, evidentemente,́esta contiene errores. Ası́, para optimizar la CSI realimentada
seŕa necesario obtener una adecuada caracterización estad́ıstica de los errores. A lo
largo de esta trabajo se considerarán las siguientes fuentes de error: estimación de canal,
truncamiento (reducción de rango), cuantificación, y retardo inherente al envı́o de la
informacíon por el canal de retorno. Consideramos, sin embargo, que el canal de retorno
no sufre errores durante la transmisión.

Como primera aproximación, planteamos un diseño basado en una ḿetrica CSI-
MSE, es decir, los parámetros de la realimentación se van a obtener mediante la
minimizacíon del error cuadrático medio (MSE, del inglésMean Squared Error) entre
el canal verdadero y el canal erróneo o ruidoso enviado desde cada uno de los usuarios
receptores al transmisor. Los filtros del precodificador, sin embargo, se obtienen a partir
de una optimización MSE independiente de la anterior. Se propone, por lo tanto, una
optimizacíon conjunta de la estimación, la reduccíon de rango y los parámetros de la
libreŕıa, disponible tanto en el transmisor como en el receptor. Conello tendremos el
interesante resultado de que tanto la estimación como la reducción de rango obtenidas
de esta formulación son independientes de la librerı́a, y queésta va a poder computarse
off-line mediante el algoritmo de Lloyd. El rendimiento final en términos de BER (del
inglés,Bit Error Rate) puede mejorarse, como veremos, mediante el algoritmo propuesto
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para la asignación dińamica de los bits asociados al proceso de cuantificación evaluando
de forma sencilla su impacto en el MSE obtenido.

Como segunda aproximación, presentamos el diseño conjunto de los estimadores
de canal y los cuantificadores junto con el precodificador basado en unúnico criterio
orientado al precodificador en lugar del criterio CSI–MSE aplicado en los primeros
esquemas. Por lo tanto, la optimización planteada consiste en minimizar el MSE entre
los śımbolos transmitidos y los sı́mbolos recuperados en recepción. Las entradas de
la libreŕıa son ahora los posibles filtros de precodificación, de forma que cada usuario
realimenta eĺındice correspondiente a un conjunto de precodificadores y la interseccíon
de estos conjuntos realizada en transmisión va a proporcionar el precodificadoróptimo
empleado mientras no varı́en los estad́ısticos del canal.

Las simulaciones realizadas con MATLAB nos muestran que la precodificacíon
robusta basada en CSI imperfecta enviada desde los usuarios receptores presenta un claro
mejor rendimiento que la precodificación convencional que no tiene en cuenta esos errores
en la CSI. Tambíen se observa que estos diseños robustos son especialmente cruciales
en sistemas que emplean precodificación no lineal con un canal de retorno limitado,
puesto que son ḿas sensibles a errores en la CSI. Si efectuamos una comparación entre
las dos aproximaciones propuestas, claramente un diseño orientado al precodificador
lleva a mejores resultados en términos de BER a costa de incrementar notablemente la
complejidad computacional del algoritmo robusto.

La metodoloǵıa de trabajo seguida en el desarrollo de la presente Tesis Doctoral ha
consistido fundamentalmente en definir una lista de tareas,teniendo en cuenta tanto los
trabajos previos como los recursos disponibles; determinar a continuacíon su secuencia
u orden de ejecución, estableciendo una duración aproximada; organizar estas tareas por
bloques de cierta entidad que definan etapas; y, finalmente, fijar los objetivos concretos de
cada etapa y la metodologı́a de trabajo a emplear para alcanzarlos. En la Tesis Doctoral
se ha realizado una exhaustiva revisión bibliogŕafica y, tras evaluar las aportaciones
realizadas durante lośultimos ãnos por la autora de la misma en congresos y revistas
del ámbito de conocimiento, sólo aquellas ḿas relevantes han sido incluidas finalmente
en este trabajo. Tal y como se ha mencionado antes, los resultados de simulación por
ordenador realizados sobre un clúster de10 PCs del Laboratorio de Ćalculo del grupo
GTEC de la Universidad de A Coruña han sido obtenidos utilizando el lenguaje de
programacíon t́ecnica de alto nivel MATLAB.
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Summary
In this work, we consider a multiuser system with a transmitter equipped with multiple
antennas and only one antenna at each receiver user. This system, which is termed MU-
MISO (Multi–User Multiple–Input/Single–Output), is of use to model the downlink of a
wireless communications system, where multiple antennas at the base station transmit to
several users with usually only one antenna at each receiving unit. This downlink channel
is also calledBroadcast Channel(BC). When considering this broadcast channel, the
centralized transmitter clearly has more degrees of freedom than each of the receivers.
Therefore, it is appropriate to separate the signals by applying precoding at the transmitter.
To be able to design precoding, the transmitter needs knowledge about the channel states
of the different receivers. In the case ofFrequency Division Duplex(FDD) systems,
this knowledge can be obtained by feedback (at least partially), where theChannel State
Information(CSI) of the receivers is quantized to adapt to the limited rate conditions of
the feedback channel.

The standard assumption for feedback design is error-free CSI at the receivers (e.g.
[1–5]), but the receivers get their CSI by estimation. Thus, it contains errors. In
order to properly design the limited feedback, it is necessary to obtain an adequate
statistical characterization of the CSI errors. The following sources of error are considered
throughout this work: channel estimation, truncation (rank reduction), quantization, and
feedback channel delay. It is assumed, however, that the feedback channel does not suffer
from errors during the transmission.

As a first approach, we propose a design based on a CSI-MSE metric, i.e. the
feedback parameters are found by means of the minimization of theMean Squared Error
(MSE) between the true channel and the erroneous channel sent from the receiver side
to the transmitter. The precoder filters, however, are obtained by means of a different
minimum squared error optimization. In other words, we propose a joint optimization
of the estimation, the rank reduction, and the codebook usedfor the feedback, available
at both the transmitter and the receiver side. Interestingly, the estimator and the rank
reduction resulting from this formulation are independentof the codebook used, which
can be computed off–line with the generalized Lloyd algorithm. As we will see, the
results in terms ofBit Error Rate(BER) can be improved by the algorithm proposed to
dynamically allocate the bits associated to the quantization process by means of easily
computing the obtained MSE.

As a second approach, we jointly design the channel estimators and the quantizers
at the receivers together with the precoder at the transmitter based on a single criterion
oriented to the precoder instead of the CSI–MSE criterion applied for the first approach.
Therefore, this optimization consists of minimizing the MSE between the symbols
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transmitted and recovered by each user. The codebook entries are now the possible
precoder filters so that each receiver feeds back the index corresponding to a set of
precoders and the intersection of the sets gives the optimumprecoder to be used while
channel statistics remain unchanged.

Several simulations carried out using MATLAB show that robust precoding based on
fed–back information clearly outperforms conventional precoding that does not take into
account the errors in the CSI. Additionally, we observe that arobust design is especially
crucial for systems employing non-linear precoders with scarce feedback rate. Some
comparisons between the above–mentioned approaches show that a limited feedback
design involving the precoder in the MSE optimization exhibits better performance
compared to the isolated precoder optimization, although the computational complexity
is much higher.
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Chapter 1

Introduction

This work focuses onMultiuser MISO (MU–MISO) systems where a centralized
transmitter equipped with multiple antennas communicateswith several single antenna
decentralized receivers. MU–MISO systems typically arisein the downlink of cellular
communication systems. The transmitter is theAccess Point(AP) or Base Station(BS),
which admits more complexity and can support several antennas. The receivers are
Mobile Stations(MS) with limited power consumption, size, and processing capabilities,
and they will support a single antenna at the most. Recently, it has been shown that the
Dirty Paper Coding(DPC) [6] signaling technique designed according to theSignal-to-
Interference-plus-Noise Ratio(SINR) criteria is able to approach the sum capacity of a
broadcast channel [7,8]. These contributions, however, only consider the ideal case where
the CSI at the transmitter is perfectly known, similar to [9–11]. In the more practical case,
where only an estimate of the CSI is available, the capacity region of the broadcast channel
has not yet been found. Furthermore, the application of DPC is questionable, since it is
unclear up to now how to systematically include the uncertainties in the SINR criterion
(see the discussion in [12] and the attempt in [13] for the case of statistical CSI).

As shown in [14], the SINR and the MSE achievable regions for MU-MISO systems
are closely related. Additionally,minimum MSE(MMSE) allows for a robust precoder
design by considering a conditional expectation of the costfunction [15–18]. Hence, we
concentrate on MMSE precoder design. Based on the MMSE designfor linear precoding
as in [19, 20], for THP in [11, 21], and for VP in [22, 23], we develop robust linear
precoding, robust THP, and robust VP, taking the expectation of MSE conditional on
the available CSI.

Most of the work on precoding with erroneous CSI was motivatedby aTime Division
Duplex(TDD) setup, where the transmitter can estimate the CSI during the transmission
in the opposite direction (e.g. [17, 18]). This approach, however, is difficult due to the
need for very good calibration (e.g. [24]). Contrarily, we focus on the more difficult case,
where the CSI is obtained by the receivers and fed back to the transmitter. In this case,

1



2 Chapter 1 Introduction

calibration errors are estimated as being part of the CSI, andtherefore no special problems
arise from calibration. Additionally, the feedback of CSI enables precoding inFrequency
Division Duplex(FDD) systems, where the transmitter is unable to obtain theCSI during
reception, because the channels are not reciprocal.

Since the data rate of the feedback channels is limited (e.g.[25]), the CSI must be
compressed to ensure that the tight scheduling constraintsare satisfied. Moreover, when
the CSI is not perfectly known, it is a matter of discussion what kind of information has
to be sent from the receiver to the transmitter and the way it is recovered at the transmitter
side.

In the limited feedback systems proposed in this work, we start by estimating the
channel at the receivers using the observations of pilot symbols sent from all transmit
antennas. This enables the receivers to estimate their respective vector channels. Then,
we reduce the estimates to a low-dimensional representation by projecting them onto a
basis, which depends only on the channel statistics. We assume that the channel statistics
are also known to the transmitter. The coefficients are quantized prior to transmission
over the feedback channel which also introduces a delay. We restrict ourselves to scalar
quantization (uniform and non-uniform quantization) in order to obtain closed-form
solutions for the robust designs. However, in order to illustrate the trade-off between
performance and complexity achieved with scalar quantizers, we also show how vector
quantization can be applied in our limited feedback design.

Basically, we consider two types of limited feedback systems, namely, those systems
that are based on minimizing the MSE between the true channeland the erroneous channel
available at the transmitter, i.e. based on a CSI metric, and those systems that are based
on a metric oriented to the precoder, i.e. that minimize the MSE between the transmitted
symbols and the symbols recovered by the users and that therefore include the precoder
in the MSE optimization. The idea of the limited feedback based on CSI is to jointly
optimize the estimator and the quantizer parameters (i.e. codebook entries and partition
cells), although the precoders must be obtained by means of aseparate MSE optimization.
Contrary to this idea, we find the second type based on a new metric that is not derived
from the MSE of the CSI, but from the MSE of the data transmission. We derive
expressions for the optimum estimators, quantizer parameters, and precoders obtained
from this joint optimization that clearly outperform the previous approaches based on the
MSE of the CSI. We also develop a strategy to optimally allocate the bits of each user in
the sense of minimizing the MSE that results from each scheme.

On the other hand, in order to properly design robust precoders, it is necessary to
obtain an adequate statistical characterization of the errors in the fed–back CSI. The
following sources of error are considered: channel estimation, truncation (rank reduction),
quantization, and feedback channel delay. Channel estimation and truncation errors are
Gaussian and their analysis follows a conventional MSE approach (e.g. [26]). Since the
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delayed channel versions fed back to the transmitter after estimation and truncation are
also Gaussian, we can also easily obtain their statistical properties. Taking into account an
initial codebook designed according to the Lloyd algorithm, we obtain an expression for
the probability density function of the channel vector according to a Bayesian framework,
i.e. conditional on the delayed, truncated, and quantized channel estimate. The expression
found for this conditional PDF of the channel enables us to find closed-form expressions
for the robust precoders.

1.1 Thesis Overview

This thesis is organized as follows:

In Chapter 2, we introduce the concepts of multipath and fading useful for
understanding the correlated channel model described in this chapter, and which will be
used throughout this work: theSpatial Channel Model(SCM). The signal model for the
downlink of a multiuser system with multiple antennas at thetransmitter is also presented
in this chapter.

We review different types of receive and transmit processing in Chapter 3 where we
assume that perfectChannel State Information(CSI) is available at the transmitter for
precoding and at the receiver for detection.

However, this assumption is not realistic since the transmitter has no full channel
knowledge. In Chapter 4, we describe the error sources appearing as a result of the
estimation and CSI compression performed by each user to limit the overhead of the
feedback channel.

In Chapter 5, we derive the MMSE robust precoder design to compensate the
mismatch between the true channel and the erroneous channelavailable at the transmitter,
in order to construct the precoder filters. Additionally, the MMSE receivers used instead
of the common weights obtained from the optimizations are derived in this chapter for
each type of precoder.

In Chapter 6, we investigate the design of the limited feedback, i.e. how to take into
account the estimation, truncation, quantization, and feedback delay processes, in order
to minimize the MSE between the true channel and the erroneous channel available at the
transmitter.

Chapter 7 includes the precoder design in the MMSE joint feedback optimization, so
that now the MSE between the transmitted symbols and the recovered symbols at each
user is minimized.

Finally, Chapter 8 is dedicated to the conclusions and futurework.
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1.2 Assumptions and Notation

All derivations are based on the assumption of perfect knowledge of the second-order
statistics of the noise, the symbols, and the channels. However, these parameters have to
be estimated in practice, although we will not deal with thisproblem in this work. Finally,
we assume that all random variables are zero–mean and stationary.

Vectors and matrices are denoted by lower case bold and capital bold letters,
respectively. TheK × K identity matrix is denoted byIK and0K is aK-dimensional
zero vector. We useE[•], ℜ(•), ℑ(•), tr(•), (•)∗, (•)T, (•)H, det(•), ⊗, ∗, ‖ • ‖2,
and‖ • ‖F for expectation, real and imaginary part of the argument, trace of a matrix,
complex conjugation, transposition, conjugate transposition, determinant of a matrix,
Kronecker product, convolution, Euclidean norm, and Frobenius norm, respectively. The
i-th element of a vectorx is xi. With fG(x,µx,Cx), we refer to a circularly symmetric
complex Gaussian distribution ofx ∈ Cm with the meanµx ∈ Cm and the covariance
matrixCx ∈ Cm×m, i.e.

fG (x,µx,Cx) =
exp

(

− (x− µx)
H

C−1
x (x− µx)

)

πm det(Cx)
.



Chapter 2

Signal Model

In wireless communications systems the channel is time-variant, and it is thus very hard to
find out how to predict future variations. This does not happen in wired communications
where the channel remains almost unchanged. In this work, wefocus on outdoor channels,
whose analysis is no easy matter. The task of channel modeling is one of the most
difficult parts in the design of wireless systems. The channel can be statistically modeled
based on experimental measurements that are performed adapted to a given propagation
environment. Since we exploit spatial and time correlations of the channel to design the
optimum limited feedback, we introduce in this chapter characteristics common to most of
the radio propagation environments, so we can talk about some general channel features.

A signal propagating through a wireless channel arrives at the destination along
different paths. This phenomenon is known as multipath effect. The different paths
arise from scattering, reflection, and diffraction of the radiated energy of objects in
the environment or refraction in the medium. Multipath propagation results in the
spreading of the signal over the different dimensions: time, frequency, and arrival angle.
Correspondingly we have delay spread, Doppler spread and angle spread.

Additionally, the received signal level exhibits fluctuations, termedfading. Variations
in the signal are due to three effects: mean path loss, macroscopic fading, and microscopic
fading. The mean path loss depends on the distance between the transmitter and
the receiver; on the antenna characteristics; and on the average attenuation introduced
by the channel. Macroscopic fading, also termedlong-term channel variationsor
shadowing, results from the type of scenario between the transmitter and the receiver,
while microscopic fading results from destructive and constructive combination of the
different paths, and is also known asshort-term fading.

Mean path loss, macroscopic fading, microscopic fading, delay spread, Doppler
spread, and angle spread are the main channel effects, and are described below.

5



6 Chapter 2 Signal Model

2.1 Multipath Effects

In wireless communication systems, the transmitted signaltypically propagates via
several different paths from the transmitter to the receiver. This effect, termedmultipath
propagation, is caused by reflections of the radio waves from the surrounding obstacles.
Let the transmitted signal in continuous time domain be given by [27–29]

s(t) = ℜ
{
u(t)ej 2πfct

}
= ℜ{u(t)} cos(2πfct)−ℑ{u(t)} sin(2πfct) (2.1)

wheret is time in seconds,u(t) is the equivalent lowpass signal fors(t), andfc is the
carrier frequency in Hz.ℜ(•) andℑ(•) denote, respectively, the real and imaginary part
of its argument. If we neglect the noise, the received signalis obtained by convolving the
equivalent lowpass input signalu(t) with the equivalent lowpass time-varying channel
response to an impulse at timet, h(t), and then upconverting to the carrier frequency:

r(t) = ℜ
{
[u(t) ∗ h (t)] ej 2πfct

}
. (2.2)

The equivalent lowpass time-varying channelh(t) is modeled as the sum of theLine-Of-
Sight(LOS) path and each of the multipath components, i.e.

h (t) =
M∑

m=0

αm(t)e− jψm(t)δ(t− τm(t)) (2.3)

where the phase shiftψm(t) is given by

ψm (t) = 2πfcτm(t)− ψD,m. (2.4)

Hence,ψD,m is theDoppler phase shiftfor each multipath component obtained as

ψD,m =

∫

t

2πfD,m (t) dt

with fD,m(t) known asDoppler frequency shiftand expressed as follows

fD,m (t) =
vcos(θm(t))

λ
(2.5)

wherev is the velocity of the mobile andλ is the wavelength.θm(t) is the angle of
arrival of each multipath component relative to the direction of motion. Note that the
componentm = 0 in Eq. (2.3) corresponds to the LOS path. The number of multipath
components is given byM . In general, each path has different relative propagation delays
(given byτm(t) in Eq. (2.3)), different amplitudes or attenuations for each path (αm(t))
and different phases (given byψm(t) in Eq. (2.3)). We assume thatαm(t), τm(t), and
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ψm(t) are stationary and ergodic. Thus, the received signal will also be a stationary and
ergodic random process.

Remember that the convolution of two functionsf andg is defined asf(t) ∗ g(t) =
∫∞
−∞ f(τ)g(t− τ)dτ . Substituting Eq. (2.3) into Eq. (2.2), we obtain the received signal

r(t) = ℜ
{[∫ ∞

−∞
h(τ, t)u (t− τ) dτ

]

ej 2πfct

}

= ℜ
{[

M∑

m=0

αm(t)e− jψm(t)δ(τ − τm(t))u (t− τ) dτ

]

ej2πfct

}

= ℜ
{[

M∑

m=0

αm(t)e− jψm(t)

(∫ ∞

−∞
δ(τ − τm(t))u (t− τ) dτ

)]

ej 2πfct

}

= ℜ
{[

M∑

m=0

αm(t)e− jψm(t)u (t− τm(t))

]

ej 2πfct

}

(2.6)

whereτ is the variable of delay andh(τ, t) represents the equivalent lowpass response of
the channel at timet to an impulse at timet− τ as follows

h (τ, t) = h (t) ∗ δ (t− τ) =
M∑

m=0

αm(t)e− jψm(t)δ(τ − τm(t)). (2.7)

Last equality in Eq. (2.6) is obtained from the shift property of the Dirac distribution
∫ ∞

−∞
δ(τ − τm(t))u (t− τ) dτ = δ(t− τm(t)) ∗ u (t) = u (t− τm(t)) .

Multiple antennas at the transmitter and/or the receiver isbecoming a common feature
of wireless systems since diversity and capacity benefits increase with the number of
antennas. Systems with multiple antennas require channel models to characterize both
spatial and temporal correlations of the channel. Therefore, we now consider a multipath
environment in which the receiver or transmitter has an antenna array withP elements.
And also assuming that theAngle-of-Arrival (AoA, given by θm(t)) is stationary and
identically distributed for all multipath components, anddenoting this random AoA with
respect to the origin of the array byθ, we can introduce the angle dimension in Eq. (2.7)
as follows

h (τ, t, θ) =
M∑

m=0

αm(t)e− jψm(t)ap (θ (t)) δ(τ − τm(t)) (2.8)

whereap(θ(t)) ∈ C is thep–th element of the antenna array vector expressed as

ap (θ (t)) = e− j 2π
λ

(xpcosθ(t)+ypsinθ(t)) (2.9)
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for (xp, yp) indicating the antenna location relative to the origin of the array.
Then, the received signal in Eq. (2.2) can be expressed as

r(t) = ℜ
{[
∫ ∞

−∞

M∑

m=0

αm(t)e− jψm(t)a (θ (t)) δ(τ − τm(t))u (t− τ) dτ

]

ej2πfct

}

= ℜ
{[

M∑

m=0

αm(t)e− jψm(t)a (θ (t))u (t− τm(t))

]

ej 2πfct

}

. (2.10)

We assume some conditions about the channel impulse responseh(τ, t, θ) in Eq. (2.8).
First, we consider that the channel isWide Sense Stationary(WSS), i.e. the temporal
channel autocorrelation depends only on time difference, i.e.

Rh (τ, t, θ) = E [h (τ, t0, θ)h
∗ (τ, t0 + t, θ)] = E [h (τ, 0, θ)h∗ (τ, t, θ)]

for all τ and θ. We also assume that fading corresponding to different obstacles is
uncorrelated (this is calledUncorrelated Scattering, US), i.e.

E [h (τ1, t, θ)h
∗ (τ2, t, θ)] = 0 if τ1 6= τ2

for all t and θ. When the channel satisfies both conditions, it is termedWide Sense
Stationary Uncorrelated Scattering(WSSUS).

We can define the Fourier transform of the time autocorrelation of the channel
responseh(τ, t, θ) as the function given by

φ (τ, f, θ) =

∫ ∞

∞
Rh (τ, t, θ) e− j 2πftdt.

This functionφ(τ, f, θ) is the channel description in the frequency, time, and angle
domain. In this context, the variablef is termedDoppler frequency. The average channel
power as a function of the Doppler frequency is obtained as

φD (f) =

∫ π

−π

∫ τmax

0

φ (τ, f, θ) dτdθ (2.11)

which is calledDoppler power spectrum. The time interval between the instant of
arrival of the first multipath component and that of the last one is denoted byτmax. θ

is regarded as a uniform variable on[−π, π]. The spectral spreading covers the range
f ∈ [fc − fD, max, fc + fD, max], where the maximum Doppler frequency,fD, max, is related
to the relative velocity between the transmitter and the receiver and is obtained when
cos(θm(t)) = 1 in Eq. (2.5) which leads to

fD, max = fc
v

c
(2.12)
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φd (τ)
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Figure 2.1: Space-, Frequency- and Time-Selective Fading.

wherec is the constant for the speed of light.
Similarly, we obtain thedelay power spectrumor average channel power as a function

of the delay (τ ) taking the marginal integral over the other two variables,i.e.

φd (τ) =

∫ π

−π

∫ fc+fmax

fc−fmax

φ (τ, f, θ) dfdθ. (2.13)

The delay power spectrum is also commonly referred to as multipath intensity profile.
Finally, the average power as a function of the angle of arrival is obtained as follows,

φA (θ) =

∫ fc+fmax

fc−fmax

∫ τmax

0

φ (τ, f, θ) dτdf (2.14)

which denotes theangle power spectrum.

2.1.1 Delay Spread and Frequency-Selective Fading

In a multipath propagation environment, the receiver gets some scaled and delayed
versions of the transmitted signal. If the signal only suffers from attenuation (i.e. there are
no delayed components), all frequency components of the signal will experience the same
magnitude of fading. This effect is termedflat fading. If several delayed signals arrive
at the receiver, then different frequency components of thesignal experience decorrelated
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fading, which is typically termedfrequency-selective fading(see Fig. 2.1). Thedelay
spread, τRMS, is defined as theRoot Mean Square(RMS) delay ofφd(τ) (Fig. 2.1), i.e.

τRMS =
√

E
[
(τ − τ̄)2] =

√∫ τmax

0
(τ − τ̄)2 φd (τ) dτ
∫ τmax

0
φd (τ) dτ

whereτ̄ is the average delay defined as

τ̄ =

∫ τmax

0
τφd (τ) dτ

∫ τmax

0
φd (τ) dτ

andφd(τ) is the delay power spectrum defined in Eq. (2.13). When the distance between
two frequencies is greater than the inverse of the delay spread, these two frequencies
experience a totally different attenuation by the channel.If the separation is less than
the inverse of the delay spread, then they suffer from similar attenuation. Therefore, the
frequency-selective channel characteristic depends on the bandwidth of the transmit signal
compared to the inverse of the delay spread, the so calledchannel coherence bandwidth,
Bc, i.e.

Bc ≈
1

τRMS
.

Signals with bandwidth smaller than the channel coherence bandwidth suffer from flat
frequency attenuation. Signals with bandwidth greater than the channel coherence
bandwidth experience different attenuations according tothe frequency, i.e. they
experience frequency-selective fading.

2.1.2 Doppler Spread and Time-Selective Fading

Another important channel characteristic is concerned with the relative mobility between
the transmitter and the receiver. When a user (or scatterers in the surroundings) is in
motion, the user’s velocity causes a shift in the frequency of the signal transmitted along
each signal path.

Signals traveling along different paths can have differentDoppler frequency shifts
and, therefore, different Doppler phase shifts. The difference in Doppler shifts between
different channel components is known asDoppler spread. The Doppler spread is a result
of the mobile terminal movement during the communication. To be precise, the Doppler
spread, similarly to delay spread, is defined as the RMS bandwidth ofφD(f) (see Fig. 2.1),
i.e.

fRMS =

√

E
[(
f − f̄

)2
]

=

√
√
√
√

∫ fc+fmax

fc−fmax

(
f − f̄

)2
φD (f) df

∫ fc−fmax

fc−fmax
φD (f) df
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wheref̄ is the average frequency of the Doppler spectrum defined as

f̄ =

∫ fc+fmax

fc−fmax
fφD (f) df

∫ fc−fmax

fc−fmax
φD (f) df

andφD(f) is the Doppler power spectrum given by Eq. (2.11). This causes the overall
radio channel to be time-variant, i.e. with time-varying delays and attenuations for the
individual multipath components. This phenomenon is generally termedtime-varyingor
time-selective fading. Thecoherence time, denoted byTc, is the time during which the
channel behavior remains approximately unchanged. The coherence timeTc is inversely
proportional to the Doppler spread, i.e.

Tc ≈
1

fRMS
.

Tc measures the minimum time required for the channel magnitude to become
decorrelated from its previous value. According to its time-selectivity, the channel is said
to beslow fadingif its coherence time is much greater than the frame duration. Otherwise,
the channel is said to befast fading, meaning that the channel changes considerably from
one transmission frame to another.

The frequency- and time-selective nature of mobile wireless channels is one of
the most critical elements from the point of view of overall wireless link quality.
Various transmitter and/or receiver signal processing techniques are utilized in practice
to overcome the time- and frequency-selective fading effects in practical communications
systems, including, for example, various channel equalization, coding, and diversity
transmission schemes.

2.1.3 Angle Spread and Space-Selective Fading

Angle spreadat the receiver refers to the spread inAngles of Arrival (AoA) of the
multipath components at the receive antenna array. Similarly, angle spread at the
transmitter refers to the spread inAngles of Departure(AoD) for those multipath signals
that finally reach the receiver (see Fig. 2.1). Note that we are talking only about AoAs,
and not AoDs (Angles of Departure), since the downlink of a wireless communication
system is considered. We define the RMS angle spread,θRMS, as

θRMS =

√

E
[(
θ − θ̄

)2
]

=

√
√
√
√

∫ π

−π
(
θ − θ̄

)2
φA (θ) dθ

∫ π

−π φA (θ) dθ
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whereφA(θ) is the angle power spectrum defined according to Eq. (2.14) and θ̄ is the
average angle defined as

θ̄ =

∫ π

−π θφA (θ) dθ
∫ π

−π φA (θ) dθ
.

Angle spread causesspace selective fadingwhich means that the received signal
amplitudes depend on the antennas’ spatial location. Spaceselective fading is
characterized by thecoherence distance, Dc, which is inversely proportional to the angle
spread, i.e.

Dc ∝
1

θRMS
.

Larger angle spreads imply shorter coherence distances. Ifthe separation among the
antenna elements is higher than the coherence time, the signal amplitude depends on
the antenna location, and vice versa, i.e. if the separationis smaller than the coherence
distance, signals arriving at the different antennas suffer from similar attenuations.

Although space-selectivity has not been as widely studied as time- or frequency-
selectivity, this topic has achieved greater prominence inrecent years due to the increasing
number of antennas at both the transmitter and the receiver side.

2.2 Mean Path Loss

The path loss is the ratio between the transmitted power and the received power (see
Fig. 2.2) given by

Pr

Pt
= GtGr

λ2

(4π)2 dγL
(2.15)

wherePt andPr are the transmitted and received powers, respectively,d is the distance
between the transmitter and the receiver, andGt andGr are the power gains for the
transmit and receive antenna, respectively.L is related to the loss due to the antenna
characteristics and the average channel attenuation.γ is the slope index from a value of
2 for free space to6 depending on the environment. Some values forγ depending on
the environment are shown in Table 2.1. Several empirical path loss models have been
developed for microcellular and macrocellular systems, such as Okumura, Hata or Cost-
231 models [30].

2.3 Fading

In Section 2.1 we explained that fading is the fluctuation in the received signal level caused
by multipath propagation. Fading is due to two multiplicative phenomenons: microscopic
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Environment γ

Free space 2
Flat rural 3

Rolling rural 3.5
Suburban, low rise 4

Dense urban, skyscrapers4.5

Table 2.1: Path Loss Exponents.

and macroscopic effects (see Fig. 2.2). They are also referred to asshort termand long
termchannel variations, respectively, which are described in the following subsections.

2.3.1 Macroscopic Fading

Macroscopic fading is caused by changes in the scenario, i.e. alterations in the
surrounding environment (rural, suburban, urban...) or asa result of the terrain
configuration (open, flat, hilly, mountain...). The deviation of macroscopic fading about
the mean propagation loss is treated as a random variable that is considered to be
lognormal. Its probability density function is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (2.16)

wherex is the random variable expressed in decibels (dB) that represents the long-term
signal power level fluctuation over the mean path loss. The variablesµ andσ are the
mean and standard deviation ofx, respectively. Both,µ andσ, are expressed in dB. The
mean value,µ, is equal to the mean propagation loss discussed in the previous section.
The standard deviation,σ, may have values around8 dB for some environments (see the
parameterσSF in Tables A.3, A.4, and A.5).

2.3.2 Microscopic Fading

In many practical situations the transmitter and the receiver are not within direct sight of
each other. This situation is referred to asNon-Line-Of-Sight(NLOS) propagation. The
received signal is the sum of multiple signals produced by reflection from the elements
that surround the transmitter and the receiver. This produces rapid fluctuations over the
mean of the received signal, this effect being calledmicroscopic fading[27,31].

To characterize the random scale factor caused by multipath, we chooses(t) to
become an unmodulated carrier given by

s(t) = ℜ
{

ej 2πfct
}

= cos(2πfct)
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Figure 2.2: Macroscopic and Microscopic Fading.

and, therefore,u(t) in Eq. (2.1) is equal to1, for all t. Under most delay spread
characterizations, the channel coherence bandwidth is much smaller than the inverse
of the delay spread (see Subsection 2.1.1) which implies that the delay associated with
them–th multipath componentτm(t) ≤ τRMS for all m and, then, we can consider a
narrowband fading modelwhereu(t − τm(t)) ≈ u(t) for all m andh(t) in Eq. (2.3) is
now expressed as

h (t) =
M∑

m=0

αm(t)e− jψm(t)δ(t). (2.17)

Therefore, Eq. (2.6) can be rewritten as

r(t) = ℜ
{[

M∑

m=1

αm(t)e− jψm(t)

]

ej 2πfct

}

= rI (t) cos(2πfct)− rQ (t) sin(2πfct)

where the in-phase and quadrature components are given by

rI (t) =
M∑

m=1

αm(t)cos(ψm(t))

rQ (t) =
M∑

m=1

αm(t)sin(ψm(t))

with the phase termψm(t) given by Eq. (2.4).
For largeM we can apply the central limit theorem together with the factthatαm(t)

andψm(t) are independent for different components in order to approximaterI andrQ as a
jointly Gaussian random process. The Gaussian property also holds ifαm(t) is Rayleigh
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Figure 2.3: Microscopic Fading: (a) Rayleigh PDF; (b) Rice PDFwith µ = 1.

distributed andψm(t) is uniformly distributed over[−π, π]. Let σ2 be the variance for
both in-phase and quadrature components. Then, the signal envelope

x (t) = |r (t)| =
√

r2
I (t) + r2

Q(t)

follows a Rayleigh distribution with density function (see Fig. 2.3):

f (x) =
2x

P̄r
e−

x2

P̄r =
x

σ2
e−

x2

2σ2 x ≥ 0

whereP̄r =
∑

m E[α2
m] = 2σ2 is the average received signal power.

If there is a direct path present between the transmitter andthe receiver, the signal
envelope is no longer Rayleigh and the statistics of the signal amplitude follow a Rician
distribution. Rician fading is formed by the sum of a Rayleigh distributed signal and
a direct or line-of-sight signal. Now, the modulus ofr(t) is said to follow a Rician
distribution and its PDF is given by (see Fig. 2.3)

f (x) =
x

σ2
e−

x2+µ2

2σ2 I0

(xµ

σ2

)

x ≥ 0

whereI0(•) is the modified Bessel function of zero-th order.µ2 = α2
0 is the power of

the LOS component and2σ2 =
∑

m,m6=0 E[α2
m] is the average power of the non-LOS

multipath components. The average received power for Ricianfading is obtained as

P̄r =

∫ ∞

0

x2f(x)dx = µ2 + 2σ2.
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Thus, the Rician distribution can be alternatively expressed in terms of theK factor
defined as the ratio of the power in the LOS component to the power of the scattered
components, i.e.

K =
µ2

2σ2

which leads to the alternative expression for the PDF of the Rician distribution,

f(x) =
2 (K + 1)x

P̄r
e

(

−K− (K+1)x2

P̄r

)

I0



2

√

K (K + 1)

P̄r
x



 x ≥ 0

by making the substitutionsµ2 = KP̄r/(K + 1) and2σ2 = P̄r/(K + 1). SinceI0(0) = 1,
the Rician distribution reduces to the Rayleigh distributionwhenK = 0. On the contrary,
whenK →∞ we have no fading, i.e. there is no multipath but only a LOS component.

2.4 MIMO Systems

Fig. 2.4 shows a communication system employingNt transmit antennas andNr

receive antennas, which is called aMultiple-Input Multiple-Output(MIMO) system. In
MIMO communication systems [27, 28, 31, 32], the multiple data streams can be sent
simultaneously from a transmitter employing multiple antennas to a receiver that employs
multiple receive antennas. The goal of a MIMO system is to increase the data rate
through spatial multiplexing and improving the error rate performance by increasing
signal diversity (this being achieved by increasing the number of transmit or receive
antennas, given that the probability of a fade at the same time in all the paths is reduced)
to combat fading.

A MIMO system can be seen as a single-user point-to-point communication system.
The special case withNt = Nr = 1 is called aSingle-Input Single-Output(SISO) system.
A second special case is whenNt = 1 andNr ≥ 2 and is called aSingle-Input Multiple-
Output(SIMO) system. Lastly, there exists another special case ifNr = 1 andNt ≥ 2,
called aMultiple-Input Single-Output(MISO) system.

In MIMO systems withNt transmit antennas andNr receive antennas, we denote the
equivalent lowpass channel impulse response between thej–th transmit antenna and thei–
th receive antenna ashi,j(τ, t). Thus, the randomly time-varying channel is characterized
by theNr ×Nt matrixH(τ, t) defined as

H(τ, t) =








h1,1(τ, t) h1,2(τ, t) · · · h1,Nt(τ, t)
h2,1(τ, t) h2,2(τ, t) · · · h2,Nt(τ, t)

...
...

. ..
...

hNr,1(τ, t) hNr,2(τ, t) · · · hNr,Nt(τ, t)







.
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Figure 2.4: System with Precoding over Flat MIMO Channel.

Suppose that the transmitted signal from thei–th transmit antenna isxi(t). Then, the
receive signal at thej–th receive antenna is given by

yj(t) =
Nt∑

i=1

hj,i(τ, t) ∗ xi(t) + ηj(t)

whereηj(t) is the additive noise. In matrix notation, this equation canbe rewritten as

y(t) = H(τ, t) ∗ x(t) + η(t)

wherex(t) = [x1(t), . . . , xNt(t)]
T ∈ CNt, y(t) = [y1(t), . . . , yNr(t)]

T ∈ CNr , and
η(t) = [η1(t), . . . , ηNr(t)]

T ∈ CNr [see Eq. (2.1)]. For flat fading channels (see Subsection
2.1.1), the channel matrixH(τ, t) is transformed into the matrixH(t) given by

H(t) =








h1,1(t) h1,2(t) · · · h1,Nt(t)
h2,1(t) h2,2(t) · · · h2,Nt(t)

...
...

. . .
...

hNr,1(t) hNr,2(t) · · · hNr,Nt(t)








and the received signal is now

yj(t) =
Nt∑

i=1

hji(t)xi(t) + ηj(t)

which can be expressed in matrix form as

y(t) = H(t)x(t) + η(t). (2.18)

In general, if we letf [n] = f(nTs +∆) denote samples off(t) everyTs seconds with∆
being the sampling delay andTs the symbol time, then samplingy(t) everyTs seconds
yields the discrete time signaly[n] = y(nTs +∆) given by

y[n] = H [q]x[n] + η(n) (2.19)
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wheren = 0, 1, 2, . . . corresponds to samples spaced withTs andq denotes the slot time.
The channel remains unchanged during a block ofNB symbols, i.e, over the data frame.
Note that this discrete time model is equivalent to the continuous time model in Eq. (2.18)
only if ISI between samples is avoided, i.e. if theNyquist criterionis satisfied. In that
case, we will be able to reconstruct the original continuoussignal from the samples by
means of interpolation. This channel model is known astime-varying flat block fading
channels(Subsection 2.1.1) and this assumption is made in the following.

2.5 Multiuser-MISO Systems

This work focuses on complex scenarios with multiple users and multiple communication
links [27, 32]. We can distinguish between several types of multiuser communication
systems. One type is the multiple access channel in which a large number of users
share a common communication channel to transmit information to a single receiver.
The common channel can represent the uplink in a cellular or asatellite communication
system; or a cable to which a number of terminals are connected to access a central
computer. For the example of a mobile cellular system, the users are the mobile terminals
in a cell and the receiver side is the base station of the particular cell.

The second most common type of multiuser communication system is a broadcast
channel in which a single transmitter sends information to multiple receivers (see
Fig. 2.5). Examples of broadcast systems include the commonradio and TV broadcast
systems as well as the downlink of cellular and satellite communication systems. In this
work, we focus on broadcasting methods for multiuser communications, in particular
on the downlink of a cellular communication system where a base station with multiple
antennas serves the corresponding cell and sends information to a number of mobile
terminals in that area.

We consider aMulti-User Multiple-Input Single-Output(MU-MISO) system with
Nt = N transmit antennas andK users equipped with a single antenna (i.e.Nr = 1)
as depicted in Fig. 2.5. As mentioned above, such a system is often referred to as the
broadcastchannel. Note that we work with the discrete model that is equivalent to the
continuous one described in the previous section. Channel time variance is on a different
scale to signal time variance since we consider ablock fadingchannel, i.e. one that
is considered to remain unchanged during the transmission of a frame ofNB symbols.
Therefore, we will henceforth useq to indicate the time slot whilen will be used to
denote each one of theNB time samples spaced with the symbol period,Ts, inside each
slot.

The precoder generates the transmitted signalx[n] from all data symbols
{u1[n], . . . , uK [n]} belonging to the different users1, . . . , K. The signalxℓ[n] from
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Figure 2.5: Vector BC withK Receivers.

transmit antennaℓ propagates over the channel with the coefficienthk,ℓ[n] to the k-th
receiver, superimposes with the signals of the other transmit antennas, and is perturbed
by the additive white Gaussian noiseηk[n] with varianceσ2

η, i.e.

yk[n] =
N∑

ℓ=1

hk,ℓ[q]xℓ[n] + ηk[n] = hT
k [q]x[n] + ηk[n] (2.20)

where hk[q] = [hk,1[q], . . . , hk,N [q]]T ∈ CN represents the flat block fading vector
channel corresponding to thek-th user andx[n] = [x1[n], . . . , xN [n]]T ∈ CN is the
transmit signal. The transmit signalx[n] must satisfy an average total transmit power
constraint, i.e.E[‖x[n]‖22] = Etx. By combining Eq. (2.20) fork = 1, . . . , K, we get

y[n] = H [q]x[n] + η[n]

with theK ×N channel matrixH [q] given by

H [q] = [h1[q], . . . ,hK [q]]T (2.21)

wherehk[q] ∈ CN is the channel vector for userk. y[n] = [y1[n], . . . , yK [n]]T ∈ CK

is the received vector andη[n] = [η1[n], . . . , ηK [n]]T ∈ CK is the noise vector with
fη(η) = fG(η,0K ,Cη).

2.6 Channel Model

We model thek-th user’s channel vectorhk as a stationary zero-mean circularly
symmetric (i.e. diag(ejφ1 , . . . ,ejφN ) has the same distribution ashk for all φi) and
complex Gaussian random vector with covariance matrixCh,k, i.e.

fhk
(hk) = fG (hk,0N ,Ch,k) . (2.22)
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We assume that the channels corresponding to the different users are statistically
independent.

In theq-th time slot, our model for thek-th user’s channel vector is

hk[q] = C
1/2
h,khw,k[q] (2.23)

with hw,k[q] being a vector of independent stationary circularly symmetric complex
white Gaussian processes (with unit variance) and where(•)1/2 represents the Cholesky
decomposition. According to the modified Jakes model [33, 34] described in [35],
temporal channel correlations are modeled byhw,k[q], i.e.

Chw,k[D] = E[hw,k[q]h
H
w,k[q −D]] = J0

(

2π
fD,max,k

fslot
D

)

IN . (2.24)

Here, the time scale of channel variations is in slot duration with D being the number
of delay slots,J0 denotes the zero–th order Bessel function of the first kind,fD,max,k is
the maximumDoppler frequency [see Eq. (2.12)], andfslot is the slot rate. The spatial
correlations are introduced by the multiplication byC

1/2
h,k .

Notice that, according to our model, the channelhk is stationary becausehw,k is
stationary. Realistic channels are usually non-stationary, i.e. either the location of the
receiver or the scenario geometry can change. Thus, the channel covariance matrix has to
be tracked in real situations. However, since the covariance matrix changes very slowly
in comparison with the channel itself, it is realistic to assume that it is constant and
perfectly known at both the receiver and the transmitter. Nevertheless, the feedback rate
is limited and the feedback of the channel realizations for the precoder design must thus
be optimized.

2.6.1 Spatial Channel Correlations

The development of more realistic channel models is of greatinterest to predict the
performance of a wireless system, in particular to test the limited feedback designs
proposed in this work.

It is important to stress here that for single-sensor narrowband receivers we
can consider only the received signal power and/or time-varying amplitude (fading)
distribution of the channel to acceptably approximate the channel variations. To this
end, we use theThird Generation Partnership Project’s Spatial Channel Model (3GPP-
SCM) [36, 37], which is briefly described in Appendix A. Thus, the covariance matrix
Ch,k in Eq. (2.23) results from considering 3GPP-SCM. This spatial channel model
defines a stochastic channel model for MIMO systems. Although the description is for a
downlink system where the Base Station (BS) transmits to several Mobile Stations (MS),
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which reproduces exactly our assumption of a multiuser system, most of the aspects may
also be applied to the uplink.

The SCM is also calledgeometricor ray-based modelbecause it is based on stochastic
modeling of scatterers. It defines three environments:suburban macrocell(approximately
3 Km. from BS to MS);urban macrocell(approximately3 Km. from BS to MS); and
urban microcell(less than1 Km. from BS to MS). We refer to these environments asSCM
1, SCM 2, andSCM 3, respectively. These channels will be used in all the simulations
shown throughout this work. The main spatial parameters related to each scenario (e.g.
delay spread, angles of departure and arrival, average power) are defined in the 3GPP
standard, and are shown in Table A.3 for SCM1, Table A.4 for SCM2, Table A.5 for
SCM3 and Table A.2 for all of them.

The procedure to generate the channel covariance matrices for each user according
to the SCM is as follows. First, we specify the environment, i.e. we have to choose
between suburban macro, urban macro, or urban microcell scenarios. After that, we
obtain the corresponding parameters according to Tables A.2, A.3, A.4, and A.5. Finally,
the channel coefficientshSCM,k[q] are generated based on the parameters and, as a result,
the spatial correlations for each user given by its covariance matrixCh,k are obtained as
Ch,k = E[hSCM,k[q]h

H
SCM,k[q]] [cf. Appendix A].

2.6.2 Temporal Channel Correlations

Additionally to the spatial correlations modeled by SCM, thechannel also has temporal
correlations modeled as described in [35]. This model is based on the sum of sinusoids of
the Jakes model [33], which leads to the classical U-shape for the Doppler power spectrum
(see Fig. 2.1) corresponding to spherically distributed scattering around the terminals. The
detailed simulation model is described as follows [35].

Let hk[q] be the complex channel realization for userk in the time slotq, whosei–th
component is given by [see Eq. (2.20)]

hk,i[q] =
1√
2

(hk,i,R[q] + jhk,i,I[q]) .

Both real and imaginary parts are generated as

hk,i,R[q] =
2√
S

S∑

s=1

cos(ψs) · cos(2πivcos(αs) + φs)

hk,i,I[q] =
2√
S

S∑

s=1

sin(ψs) · cos(2πivcos(αs) + φs)
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Figure 2.6: Obtaining CSIT using Reciprocity.

with

αs =
2πs− π + φ

4S
for s ∈ 1, . . . , S

whereφ, φs, andψs are independent and uniformly distributed over[−π, π] for all s.
For the numerical simulations, the number of interfering paths is fixed atS = 20 [36].
Because of the central limit theorem whenS → ∞ and the independence of allψs and
φs, the real and imaginary channel parts are normally distributed, which ensures that
modulus ofhk,i[q] approximately follows a Rayleigh distribution (cf. Subsection 2.3.2)
for all velocitiesv, even forv = 0.

2.7 Channel Estimation in FDD and TDD Systems

It is clear that the transmitter can only acquire the CSI indirectly, since the signal goes
into the channel only after leaving the transmitter [32]. Therefore, the CSI can be obtained
either by using thereciprocity principleor by usingfeedbackfrom the receiver.

The reciprocity of the wireless channel implies that the channel from antennaA to
antennaB can be estimated during the transmission in the opposite direction (B to A)
since it is identical to the transpose of the channel fromB to A (e.g. [17, 18]) as shown
in Fig. 2.6. Pilot symbols are often used for channel estimation. The reciprocity holds
if both forward and reverse links are located at the same frequency, the same time, and
the same antenna locations. In practical systems, however,the forward and reverse links
cannot use identical frequency, time, and spatial locations. In spite of that, the reciprocity
principle can still hold approximately in some situations.For example, in the temporal
dimension, the reciprocity principle is held if any time lag∆t between the forward and
reverse transmission is much smaller than the channel coherence timeTc. Similarly, in
the frequency dimension, any frequency offset∆f must be much smaller than the channel
coherence bandwidthBc, and in the spatial dimension the antenna location differences on
the two links must be much smaller than the channel coherencedistanceDc [28].

Since most communication systems are bi-directional, the uplink and downlink
channels must be separated into orthogonal signaling dimensions. This separation is
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Figure 2.7: Obtaining CSIT using Feedback.

calledduplexing.

Practical channel acquisition based on reciprocity may be applicable in TDD-TDMA
(Time-Division Duplex-Time-Division Multiple Access) systems [27, 32, 38, 39]. TDMA
consists of dividing the frame durationTf into T non-overlapping subintervals, each of
durationTf/T . Each user who wants to transmit has to use a particular subinterval within
each frame. In TDD systems, orthogonal time slots are assigned to each user to transmit
to the base station and to receive from the base station. WhileTDD-TDMA systems have
identical forward and reverse frequency bands and antennas, there is a time lag between
the forward and reverse links. As mentioned above, such timelags must be negligible
compared to the channel coherence time. Even in this case, reciprocity is difficult to
accomplish due to the need for very good calibration (e.g. [24]).

In Frequency-Division Multiple Access(FDMA) systems (commonly used to
accommodate multiple users for voice and data), the available channel bandwidth is split
into a number ofF frequency non-overlapping subchannels. Each subchannel is assigned
to a user on demand. WithFrequency-Division Duplex(FDD), separate frequency bands
are assigned to each user for transmitting to or receiving from the base station. Therefore,
FDD-FDMA systems often have identical temporal and spatialchannel dimensions,
but the frequency offset between the forward and reverse links is usually much larger
than the channel coherence bandwidth. Therefore, reciprocity is usually not applicable
in FDD systems. Instead, a feedback channel should be used tosend theChannel
State Information(CSI) from the transmitter to the receiver, as illustrated inFig. 2.7.
The channel response is estimated at the receiverB during the forward link (A to B)
transmission, and the information is sent to the transmitter A on the reverse-link.

The same is true in a multiuser system. The transmitter is unable to obtain the
CSI during reception in FDD systems because the channels are not reciprocal. This
information must be sent from the users to the transmitter bymeans of a feedback or
reverse channel, as plotted in Fig. 2.8 for a multiuser MISO system. Such reverse channels
are actually implemented in most of the standards [40–42]. In this case, calibration errors
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are estimated as part of the CSI and no special problems arise from calibration as for
TDD. However, the time lag,D, between the channel measurement at the receivers and
its use at the transmitter is a source of error (which will be modeled in this work by means
of the feedback delay error) unless it is much smaller than the channel coherence time.

Moreover, the data rate of the feedback channel is highly limited. One drawback of
feedback is the possible overhead of the reverse channel andthe increasing consumption
of transmit resources. Therefore, methods of reducing feedback overhead in a simple way,
such as quantization or truncation of the feedback information, are crucial for practical
implementations. As a consequence of the quantization, anysystem with limited rate CSI
feedback suffers from erroneous CSI at the transmitter. Thus, the quantization operation
has to be carefully designed, as done in this work.

Feedback can also be used to send channel statistics that change very slowly compared
to the channel itself. In [17, 43, 44], the estimation of the statistics of the channel is
discussed. As the time horizon for estimating the statistics is very large, we assume error-
free knowledge of the statistics of the channel. Additionally, we assume that the channel
statistics are constant and known at both the transmitter and receiver side. Nevertheless,
the time lag requirement for feeding back the channel statistics is not as strong as for the
feedback of the channel coefficients.
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2.8 Conclusions

The goal of this chapter is the description of the radio propagation environment that
exists in wireless communication systems. The main characteristics of a radio channel
have been examined: mean path loss, macroscopic and microscopic fading, and signal
spreading multipath effects. This analysis provides a channel model valid in general
wireless environments. The 3GGP Spatial Channel Model is used to describe its spatial
characteristics and time variations are modeled accordingto the Jakes model, so the
resulting channel can be expressed as a linear and time-variant system.
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Chapter 3

Multiuser MISO Transmit and SIMO
Receive Processing with Perfect CSI

The main task when transmitting over channels with multipleantennas at the transmitter
and/or the receiver side is the separation or equalization of the transmitted data. Thejoint
optimizationof transmit and receive filters was first proposed by [45] in 1952 and was
widely studied in the past [46,47]. However, this approach bears little relation to the goal
of this work, since we focus on simplifying one side of the link in order to avoid filter
operations at both the transmitter and the receiver side. Ascan be seen in [48], receive
and transmit processing are outperformed by the respectivejointly optimized approaches,
since both receive and transmit approaches are suboptimum solutions obtained from the
additional restriction that one filter is scalar. This scalar degree of freedom can be used
to fulfill the transmit energy constraint and allows for closed–form solution, as has been
demonstrated in [48]. Although many authors have dealt withtransmit filters without this
transmit energy constraint, such a constraint is necessaryto avoid the dependence of the
resulting transmit energy on the channel realization. So, the transmit energy constraint
might be above the maximum value for bad channel realizations and thus the respective
precoder solution is not valid. The transmitter may also notuse the whole available
transmit energy, and therefore the final quality is not as good as possible, since it could
be improved by using more transmit energy. For receive processing, this constraint is
also introduced to ensure the maximum transmit energy. In this case, we can make
comparisons between the dual transmit and receive processing problems. Therefore,
by restricting the transmit filter to being scalar we obtain the optimization for receive
processing and by restricting the receive filter to being scalar the optimization for transmit
processing is derived. These restrictions lead to useful schemes for the uplink or the
downlink of wireless communications systems, respectively.

The goal ofreceive processingis to eliminate the distortion introduced by the channel
at the receiver. The complexity of receive processing is located at the base station for the

27
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uplink of wireless communications systems. For the downlink, however, this complexity
is located at the users. It is known that the capacity in single–user MISO channels
increases logarithmically with the number of antennas. In multi–user MISO systems as
the considered downlink, capacity grows linearly with the number of users as long as
the number of antennas is higher than the number of users. However, a single–antenna
receiver is unable to separate the transmitted signals due to the lack of degrees of freedom,
and also faces the problem that the requirements for the userdevices become higher and
infeasible. In other words, when we have non-cooperative receivers, as in the downlink of
cellular communications systems, the users cannot cooperatively transform the received
signals. Therefore, transmit filters are necessary to separate signals from different users
before transmission through the fading channel. For all these reasons, neither joint
optimization of transmit and receive filters nor receive approaches are applicable or
recommendable for the downlink of multiuser MISO systems, which is the focus of this
work. Thus, in many practical situations, the distortion introduced by the channel has
to be compensated in advance at the transmitter instead of atthe receiver as in classical
single–user communications.Transmit processing, also termedprecoding, is a powerful
technique to reduce the tasks traditionally performed at the receiver side.

The objective of this chapter is to review most of the schemescommonly employed
for transmit and receive processing. We summarize previouswork as a starting point for
the new contributions shown later in this thesis. We assume that the exact instantaneous
channel information is known at both the transmitter and thereceiver side. Therefore,
channel estimation is not implemented at the receiver, whilst at the transmitter there is no
need to consider the existence of a feedback channel to obtain the CSI from the different
users. Although obtaining the instantaneous CSI for receiveprocessing is relatively easy
via estimation by transmitting known pilot symbols together with the unknown data, for
transmit processing the major difficulty is the availability of instantaneous CSI at the
transmitter, and the focus of this work is to determine optimal feedback information
to be sent from the users to the transmitter [25]. Chapter 5 is exclusively dedicated
to transmit processing approaches that are robust against erroneous CSI. The design of
limited feedback multiuser systems is not a trivial problemin a multiuser MISO system,
since the different users work in a decentralized way. This will be studied in Chapters 6
and 7.

In this chapter, we cover both linear and nonlinear systems in order to compare
different schemes. We always include a constraint for the total transmit energy, since
only such a formulation ensures valid solutions. We start with an analysis of different
schemes for linear transmit and receive processing over MU-MISO and MU–SIMO
channels, respectively. For the receive filters, we identify three filter types:Matched
Filter (MF) [49–53],Zero-Forcing Filter(ZF) [52, 54], andWiener Filter(WF) [55–57].
These three fundamental filter types were also found for transmit processing:Matched
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Figure 3.1: System with Linear Transmit and Receive Filters.

Filter (MF) [20, 58–60], Zero-Forcing Filter (ZF) [20, 48, 60, 61], andWiener Filter
(WF) [19, 48, 60, 62, 63]. Regarding nonlinear filters, we next focus our attention on the
traditionalDecision Feedback Equalizer(DFE) originally proposed by Austin [64], which
is based on feeding back decisions in order to eliminate the interference of the previously
detected symbols. DFE is a suboptimal approach toMaximum-Likelihood Detection
(MLD), since the search over the possible data inherent to MLD is restricted so as to be
successively computed. On the other hand, a search similar to that performed by MLD is
done byVector Precoding(VP) at the transmitter [65]. The non–linearity of VP is enabled
by modulo operators introduced at the receivers. Again, when computed successively, the
VP search gives us the suboptimal approach termedTomlinson-Harashima Precoding
(THP) [66, 67]. There also exists a close connection betweenDFE and THP, since the
filters obtained for DFE are very similar to that of THP. The advantage of THP is that
it avoids the error propagation due to the feedback of wrong decisions inherent to DFE,
since for THP the fed–back signal depends exclusively on thedata signal which is known
to the transmitter. We focus on the standard approaches of MSE minimization with or
without a Zero-Forcing (ZF) constraint together with a constraint of the total average
transmit energy, given that these optimizations are based on the respective linear transmit
processing optimizations.

3.1 MU-MISO Linear Transmit and MU–SIMO Linear
Receive Processing

Fig. 3.1 shows the block diagram of a joint linear optimization scheme where the data
signalu[n] ∈ CB is passed through the transmit filterF ∈ CN×B to obtain the transmitted
signalx[n] = Fu[n] ∈ CN . After propagation over the channelH ∈ CK×N and the
addition of the Gaussian noiseη[n] ∈ CK , the resulting signal is transformed by the
receive filterG ∈ CB×K to obtain the received signalû[n] [20]:

û[n] = GHFu[n] + Gη[n] ∈ CB. (3.1)

Note thatQ(•) in Fig. 3.1 represents the quantizer operator that maps to the set of the
transmitted symbols and delivers̃u[n].
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Our objective is the joint optimization of the transmit and receive filterF andG,
respectively. The most widely used criteria for selectingF andG are the following:

• Joint Wiener optimization: based on the MSE minimization with only a transmit
energy constraint, i.e.

{FWF,GWF} = argmin
{F ,G}

E[‖u[n]− û[n]‖22] s.t.: E[‖x[n]‖22] ≤ Etx. (3.2)

• Joint ZF optimization: based on the MSE minimization together with a zero-forcing
and a transmit energy constraint, i.e.

{FZF,GZF} = argmin
{F ,G}

E
[
‖u[n]− û[n]‖22

]

s.t.:GHF = I and E[‖x[n]‖22] ≤ Etx. (3.3)

Note thatGHF = I can only be fulfilled ifB ≤ min(K,N).

• Eigenprecoder: based on theSignal-to-Noise Ratio(SNR) maximization, i.e.

{FMF,GMF} = argmax
{F ,G}

∣
∣E
[
uH[n]û[n]

]∣
∣
2

E[‖u[n]‖22] E[‖Gη[n]‖22]
s.t.: E[‖x[n]‖22] ≤ Etx. (3.4)

As mentioned above, the restriction of either the transmit or the receive filter in Fig. 3.1
to being scalar leads to receive or transmit processing, respectively.

3.1.1 MU-SIMO Linear Receive Processing

As a result of restricting the transmit filter to being a weighted identity matrix, i.e.
F = pI, the scheme depicted in Fig. 3.2 is obtained. As every scalarof the data signal
is simply weighted with the scalarp and then applied to a transmit antenna, we conclude
thatB = N for receive processing. The joint receive filterG implies that the receivers
have to cooperate (which is calledcentralized receivers) to recover the transmitted signal.
Such a setup can be found in the uplink of a cellular system, for example. However, as
discussed before, for the downlink of a multiuser wireless system this assumption is not
valid, and thus the channel equalization is performed at thetransmitter instead of at the
receiver side (see Subsection 3.1.2).

With the scalar transmit filter of Fig. 3.2, the channel is equalized only at the receiver
side by means of the filterG ∈ CN×K [49,50,52,60]. The estimated symbols are obtained
as

û[n] = pGHu[n] + Gη[n] ∈ CN . (3.5)
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Figure 3.2: MU–SIMO System with Linear Receive Filter.

In the MU–SIMO setup, the channel matrix can be written as

H = [h1, . . . ,hN ]

wherehi ∈ CK is the vector channel of thei–th user to the centralized receiver.
With the constraintF = pI for the transmit filter, the optimizations for receive

processing evolving from Eqs. (3.2), (3.3), and (3.4) are examined in the following
sections.

MU-SIMO Receive Wiener Filter (RxWF)

The receive filterG ∈ CN×K and the transmit weightp ∈ C are obtained by means of the
following MSE minimization under a transmit energy constraint [20,49,55,60], i.e.

{pWF,GWF} = argmin
{p,G}

E[‖u[n]− û[n]‖22] s.t.: |p|2 tr(Cu) ≤ Etx. (3.6)

Taking into account thatE[‖z‖22] = E[tr(zzH)] = tr(E[zzH]), wherez is a column
vector, we construct the Lagrangian function in this way:

L (p,G, λ) = tr (Cu)− tr
(
p∗CuHHGH

)
− tr (pGHCu) + tr

(
|p|2 GHCuHHGH

)

+ tr
(
GCηGH

)
+ λ

(
|p|2 tr (Cu)− Etx

)

with the Lagrangian multiplierλ ∈ R0,+. The covariance matrices of the zero–mean
transmit symbols and the zero–mean channel noise are given by Cu = E[u[n]uH[n]] and
Cη = E[η[n]ηH[n]], respectively.

Considering thattr(A) = tr(AT) (see Appendix B.2), we equate the derivatives with
respect top andG to zero (cf. Appendix C), which leads to the following KKT (Karush-
Kuhn-Tucker) optimality conditions [68–71]:

∂L (•)
∂G∗ = −p∗CuHH + |p|2 GHCuHH + GCη = 0

∂L (•)
∂p

= − tr (GHCu) + p∗ tr
(
GHCuHHGH

)
+ λp∗ tr (Cu) = 0

|p|2 tr (Cu) ≤ Etx

λ
(
|p|2 tr (Cu)− Etx

)
= 0 with λ ≥ 0.
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Note that these KKT conditions are only necessary conditions to find a global optimum
solution since the MSE in Eq. (3.6) is not convex, as demonstrated in [48], and is therefore
a nonconvex programming problem (see Appendix C).

From the first equation, we obtain the following expression for the receive filterG:

G = p∗CuHH
(
|p|2 HCuHH + Cη

)−1
.

By plugging this result into the second KKT condition, it is easy to demonstrate that
λ > 0, and therefore the energy transmit constraint is maintained. To ensure a unique
solution, we restrictp ∈ R+. Thus,p is obtained from the energy transmit constraint and

we have thatp =
√

Etx
tr(Cu)

. Then, the solution for the RxWF is as follows

GWF = pWFCuHH
(
p2

WFHCuHH + Cη

)−1

pWF =

√

Etx

tr (Cu)
. (3.7)

Applying the matrix inversion lemma (see Appendix B.1) to theabove expression for the
receive filterGWF, it can be demonstrated that

GWF = pWFCuHH
(

C−1
η −C−1

η H
(
p−2

WFI + CuHHC−1
η H

)−1
CuHHC−1

η

)

= pWF

(

Cu−CuHHC−1
η H

(
p−2

WFI + CuHHC−1
η H

)−1
Cu

)

HHC−1
η

= pWF

(
C−1

u + p2
WFH

HC−1
η H

)−1
HHC−1

η

and therefore Eq. (3.7) is rewritten as follows

GWF = pWF

(
C−1

u + p2
WFH

HC−1
η H

)−1
HHC−1

η

pWF =

√

Etx

tr (Cu)
.

(3.8)

MU-SIMO Receive Zero-Forcing Filter (RxZF)

Receive zero-forcing processing is based on the MSE minimization with an additional
zero-forcing constraint. Again, we have a transmit energy restriction, so the scalar weight
p ∈ R and the receive filterG ∈ CN×K should minimize the following expression
[20,49,54,60]:

{pZF,GZF} = argmin
{p,G}

E
[
‖u[n]− û[n]‖22

]

s.t.:pGH = I and |p|2 tr(Cu) ≤ Etx. (3.9)
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Applying the zero-forcing constraint to the cost function,the MSE simplifies to the
noise power at the receive filter output [54]:

{pZF,GZF} = argmin
{p,G}

tr
(
GCηGH

)
s.t.:pGH = I and |p|2 tr(Cu) ≤ Etx

and the Lagrangian function reads as

L (p,G, λ) = tr
(
GCηGH

)
+ 2ℜ (tr (Λ (pGH − I))) + λ

(
|p|2 tr (Cu)− Etx

)

with Λ ∈ CN×N being the Lagrangian multiplier matrix andλ ∈ R0,+. The zero-forcing
constraint is included in the Lagrangian function as2ℜ(tr(Λ(pGH − I))) since

2ℜ (tr (Λ (pGH − I))) = tr (Λ (pGH − I)) + tr
((
p∗HHGH − I

)
ΛH
)

= 2 tr (ℜ (Λ)ℜ (pGH − I))− 2 tr (ℑ (Λ)ℑ (pGH − I))

i.e. the complex-valued constraint is split into its real and imaginary part and each of the
two real–valued constraints gets a real–valued Lagrangianmultiplier.

When we set the derivatives with respect top andG to zero, we obtain the following
KKT conditions that are only necessary to find the solution since the zero-forcing
constraint is bi-linear in the variablesp andG:

∂L (•)
∂G∗ = GCη + p∗ΛHHH = 0

∂L (•)
∂p

= tr (ΛGH) + λp∗ tr (Cu) = 0

pGH = I

|p|2 tr (Cu) ≤ Etx

λ
(
|p|2 tr (Cu)− Etx

)
= 0 with λ ≥ 0.

With G obtained from the first KKT condition, and replacing it into the third equation,
we obtain that

Λ = − |p|−2 (
HHC−1

η H
)−1

. (3.10)

From this result forΛ, we can infer that the receive zero-forcing filter only exists if
HHC−1

η H is invertible. Therefore, a necessary condition for the existence of the RxZF
GZF is thatK ≥ N . Plugging the above expression forΛ into the first KKT condition
leads to

GZF =
1

p

(
HHC−1

η H
)−1

HHC−1
η . (3.11)

It is easy to see that when both expressions forG and Λ in Eqs. (3.10) and (3.11),
respectively, are substituted into the second condition, it is obtained thatλ > 0 and thus
the transmit energy constraint is active.
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Restrictingp to being positive real, a unique solution is ensured, and theweight p
is directly obtained from the transmit energy constraint. Then, we obtain that the RxZF
solution to Eq. (3.9) is given by

GZF = p−1
ZF (HHC−1

η H)−1HHC−1
η

pZF =

√

Etx

tr (Cu)
.

(3.12)

It is easy to see that whentr(Cη )

Etx
→ 0, i.e, SNR→ ∞, the RxWF in Eq. (3.8) converges

to the RxZF in Eq. (3.12).

MU-SIMO Receive Matched Filter (RxMF)

The receive matched filter is also known in the CDMA literatureas the rake or
conventional receiver [31]. To obtain the receive matched filter we use the eigenprecoder
criterion in Eq. (3.4) to derive the optimization for the receive matched filter [20,49,60],
i.e.

{pMF,GMF} = argmax
p,G

| tr(pGHCu|2
tr(Cu) tr(GCηGH)

s.t.: |p|2 tr(Cu) ≤ Etx.

(3.13)

We can form the Lagrangian function as follows,

L (p,G, λ) =
| tr(pGHCu)|2

tr(Cu) tr(GCηGH)
+ λ

(
|p|2 tr(Cu)− Etx

)
(3.14)

with λ ∈ R0,−. We set the derivatives with respect top andG to zero, which yields the
following KKT optimality conditions:

∂L (•)
∂G∗ =

tr (pGHCu) p∗CuHH

tr (Cu) tr (GCηGH)
− |tr (pGHCu)|2 GCη

tr (Cu) tr2 (GCηGH)
= 0

∂L (•)
∂p

=
p∗| tr(GHCu)|2

tr(Cu) tr(GCηGH)
+ λp∗ tr (Cu) = 0

|p|2 tr(Cu) ≤ Etx

λ
(
|p|2 tr(Cu)− Etx

)
= 0 with λ ≤ 0 (3.15)

which are only necessary conditions since we maximize a non-concave function.
According to the second KKT condition,λ < 0, sinceCu andCη are positive definite.

Then, the energy transmit constraint is satisfied with equality [see the last condition in
Eq. (3.15)]. From the first KKT equation, we have

G = αCuHHCη
−1 with α ∈ C



3.1 MU-MISO Linear Transmit and MU–SIMO Linear Receive Processing 35

and, therefore, the solution is not unique. We setα =
√

Etx/ tr(Cu) andp ∈ R+. Thus,
the resulting MF solution is expressed as

GMF = pMFCuHHC−
η

pMF =

√

Etx

tr(Cu)
.

(3.16)

It is easy to see that for low SNR (i.e.tr(Cη )

Etx
→∞), the RxWF in Eq. (3.8) converges

to RxMF in Eq. (3.16).

3.1.2 MU-MISO Linear Transmit Processing

As mentioned above, the equalization task can be performed at the transmitter, so the
channel is pre-equalized orprecodedbefore transmission with the goal of simplifying
the user requirements. Such an operation prior to transmission is only possible for a
centralized transmitter as in the downlink of a cellular system for example. In this
subsection, we assume that the receive filter is an identity matrix (multiplied by a scalarg,
with g ∈ C) allowing for decentralized receivers. The goal is to find theoptimum transmit
filter F . Therefore, the transmit and receive filter are given by the matricesF ∈ CN×K

andG = gI ∈ CK×K , respectively. In other words, the number of scalar data streams is
B = K. The resulting communications system is shown in Fig. 3.3. It can be seen from
the figure how the data symbolsu[n] are passed through the transmit filterF to form the
transmit signalx[n] = Fu[n] ∈ CN . Note that the constraint for the transmit energy
must be fulfilled, i.e.

E
[
‖x[n]‖22

]
= tr

(
FCuF H

)
≤ Etx.

The received signal is given by

y[n] = HFu[n] + η[n] ∈ CK

whereH ∈ CK×N andη[n] ∈ CK is theAdditive White Gaussian Noise(AWGN). In the
MU-MISO setup, the channel can be written as

H = [h1, . . . ,hK ]T

where hT
i ∈ C1×N is the channel from the centralized transmitter to thei–th user.

Therefore, the channelH must be equalized by the transmit filterF prior to transmission.
After multiplying by the receive gaing, we get the estimated symbols

û[n] = gHFu[n] + gη[n] ∈ CK . (3.17)
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u[n] x[n]

η[n]

F H gI û[n]
Q(•) ũ[n]

Figure 3.3: MU–MISO System with Linear Transmit Filter (Linear Precoding).

Similarly to receive processing, the optimizations for transmit processing are
performed according to the three criteria described in Eqs.(3.2), (3.3), and (3.4) by
restrictingG = gI as was done in [20,60].

Clearly, the restriction that all the receivers apply the same scalar weightg is not
necessary for decentralized receivers. ReplacingG by a diagonal matrix suffices (e.g.
[72]). However, usually no closed form can be obtained for the precoder ifG is diagonal.
Fortunately,F can be found in closed form forG = gI. Thus, we useG = gI in the
following.

MU-MISO Transmit Wiener Filter (TxWF)

Although Wiener filtering for precoding has been dealt with by only a few authors [63] in
comparison with other criteria for precoding, it is a very powerful transmit optimization
that minimizes the MSE with a transmit energy constraint [19,48,60,62], i.e.

{FWF, gWF} = argmin
{F ,g}

E
[
‖u[n]− û[n]‖22

]
s.t.: tr(FCuF H) ≤ Etx. (3.18)

We form the following Lagrangian function

L (F , g, λ) = tr (Cu)− tr
(
g∗CuF HHH

)
− tr (gHFCu) + |g|2 tr

(
HFCuF HHH

)

+ |g|2 tr (Cη) + λ
(
tr
(
FCuF H

)
− Etx

)
.

Setting the derivatives with respect toF andg to zero, and taking into account that
the MSE in Eq. (3.18) is not convex, we obtain the necessary KKT conditions:

∂L (•)
∂F ∗ = −g∗HHCu + |g|2 HHHFCu + λFCu = 0

∂L (•)
∂g

= − tr (HFCu) + g∗ tr
(
HFCuF HHH

)
+ g∗ tr (Cη) = 0

tr
(
FCuF H

)
≤ Etx

λ
(
tr
(
FCuF H

)
− Etx

)
= 0 with λ ≥ 0. (3.19)
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The gaing∗ obtained from the second equation is given by

g∗ =
tr (HFCu)

tr (HFCuF HHH + Cη)
. (3.20)

Multiplying the first KKT condition byF H from the right and applying the trace operator,
we get the following:

g∗ tr
(
HHCuF H

)
− |g|2 tr

(
HFCuF HHH

)
= λ tr

(
FCuF H

)
.

And now, combining this result with the expression forg∗ in Eq. (3.20) yields

λ tr
(
FCuF H

)
=

tr (HFCu)

tr (HFCuF HHH + Cη)
tr
(
HHCuF H

)

− |tr (HFCu)|2
tr2 (HFCuF HHH + Cη)

tr
(
HFCuF HHH

)

= |g|2 tr (Cη) (3.21)

sincetr∗(HFCu) = tr(HHCuF H). From the above result,λ = |g|2 tr(Cη )

tr(FCuFH)
> 0 if the

trivial solution F = 0 is not allowed. Therefore, the transmit energy constraint is an
equality, i.e.tr(FCuF H) = Etx and consequently,λ = |g|2 ξ where, for brevity, we have
introduced the notation to be used in the sequel:

ξ =
tr (Cη)

Etx
. (3.22)

If we plug this result forλ into the first KKT condition, we get

F =
1

g

(
HHH + ξI

)−1
HH. (3.23)

By considering the transmit energy constrainttr(FCuF H) = Etx and the above
expression forF , it is obtained that

|g|2 =
tr
((

HHH + ξI
)−2

HHCuH
)

Etx

which leads to a unique solution if we restrictg to being positive real. Then, if we consider
g ∈ R+, the solution for the Wiener filter is given by

FWF = g−1
WF

(
HHH + ξI

)−1
HH

gWF =

√

tr
(
(HHH + ξI)−2

HHCuH
)

Etx
.

(3.24)
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MU-MISO Transmit Zero-Forcing Filter (TxZF)

The transmit zero-forcing filter eliminates global interference at the output of the receive
filter, and is based on the following MSE minimization under atransmit energy constraint
[20,48,60,61],

{FZF, gZF} = argmin
{F ,g}

E
[
‖u[n]− û[n]‖22

]

s.t.:gHF = I and tr(FCuF H) ≤ Etx (3.25)

where the MSE including that zero-forcing constraint is given by

E
[
‖u[n]− û[n]‖22 | gHF = I

]
= |g|2 tr (Cη) .

Then, we can construct the Lagrangian function as follows,

L (F , g, λ) = |g|2 tr (Cη) + 2ℜ (Λ (gHF − I)) + λ
(
tr
(
FCuF H

)
− Etx

)

with Λ ∈ CK×K andλ ∈ R0,+. This function enables us to obtain the following KKT
conditions:

∂L (•)
∂F ∗ = g∗HHΛH + λFCu = 0

∂L (•)
∂g

= g∗ tr (Cη) + tr (ΛHF ) = 0

gHF = I

tr
(
FCuF H

)
≤ Etx

λ
(
tr
(
FCuF H

)
− Etx

)
= 0 with λ ≥ 0.

Again, the above KKT conditions are only necessary to find thesolution to Eq. (3.25)
because the zero-forcing constraint is bilinear ing andF .

By multiplying the first KKT condition byF H from the right and applying the trace
operator, we get

λ tr
(
FCuF H

)
= |g|2 tr (Cη)

where we have incorporated the equalitytr(ΛHF ) = −g∗ tr(Cη) obtained from the
second KKT condition. Therefore,λ > 0 if F 6= 0 and the transmit energy constraint is
active with an equality.

From the first KKT condition it is obtained that the transmit filter F is

F = −g
∗

λ
HHΛHCu

−1. (3.26)
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Multiplying by gH from the left and applying the zero-forcing constraint yields

ΛH = − λ

|g|2
(
HHH

)−1
Cu.

PluggingΛH into Eq. (3.26) leads to the following transmit filter

F =
1

g
H
(
HHH

)−1
.

The weightg is derived from substituting the above expression for the transmit filterF
into the transmit energy constraint, obtaining the following result

|g|2 =
tr
((

HHH
)−1

Cu

)

Etx

which leads to a unique solution ifg is restricted to being positive real. Then, the solution
for the TxZF is as follows

FZF = g−1
ZF HH(HHH)−1

gZF =

√

tr((HHH)−1Cu)

Etx
.

(3.27)

By applying the matrix inversion lemma to the TxWF solution in Eq. (3.24), it is
easy to demonstrate that the TxWF converges to the TxZF forξ = tr(Cη )

Etx
→ 0, i.e. for

SNR→∞.

MU-MISO Transmit Matched Filter (TxMF)

The TxMF was intuitively introduced by Esmailzadeh etal. in [58] by moving the channel
matched filterHH from the receiver to the transmitter. The transmit matched filter, also
known asprerake filter[58,59], maximizes the SNR and is obtained as follows [20,60],

{FMF, gMF} = argmax
{F ,g}

∣
∣E
[
uH[n]û[n]

]∣
∣
2

E
[
‖u[n]‖22

]
E
[
‖gη[n]‖22

]

s.t.: E [‖x[n]‖] ≤ Etx (3.28)

it being advantageous for systems where the transmit energyor the SNR are low, since it
is based on the maximization of desired signal portion in thereceived signal.

The above objective function can be rewritten as
∣
∣E
[
u[n]Hû[n]

]∣
∣
2

E
[
‖u[n]‖22

]
E
[
‖gη[n]‖22

] =
|tr (gHFCu)|2

tr (Cu) tr
(
|g|2 Cη

) .
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Note that the above equation does not depend ong. Also the transmit energy constraint is
independent fromg. Therefore, the solution for the transmit matched filter is not unique.

The Lagrangian function is expressed as

L (F , g, λ) =
|tr (HFCu)|2
tr (Cu) tr (Cη)

+ λ
(
tr
(
FCuF H

)
− Etx

)

which enables us to derive the following KKT conditions by setting the corresponding
derivatives to zero:

∂L (•)
∂F ∗ =

tr (HFCu)

tr (Cu) tr (Cη)
HHCu + λFCu = 0

∂L (•)
∂g

= 0

tr
(
FCuF H

)
≤ Etx

λ
(
tr
(
FCuF H

)
− Etx

)
= 0 with λ ≤ 0. (3.29)

Note that we maximize a non–concave objective function. Thus, the KKT conditions
are not sufficient to find the solution (see Appendix C). After multiplying the first KKT
condition byF H from the right and by rejecting the trivial solutionF = 0, the Lagrangian
multiplier λ is given by

λ tr
(
FCuF H

)
= − |tr (HFCu)|2

tr (Cu) tr (Cη)

which is smaller than zero, showing that the transmit energyconstraint is active with an
equality, i.e.tr(FCuF H) = Etx. We also obtain from the first KKT condition that

F = αHH (3.30)

with α = − 1
λ

tr(HFCu)
tr(Cu) tr(Cη )

∈ C. Plugging the above result into the transmit energy
constraint yields:

|α|2 =
Etx

tr (HHCuH)
.

Therefore, the solution for the precoderF is not unique unlessα is restricted to being
positive real, for example. With this restriction,α is expressed as

α =

√

Etx

tr (HHCuH)

and the solution for the TxMF is given by

FMF =

√

Etr
tr(HHCuH)

HH

gMF ∈ C.

(3.31)



3.1 MU-MISO Linear Transmit and MU–SIMO Linear Receive Processing 41

Figure 3.4: QPSK Constellation.

Note that the TxWF in Eq. (3.24) converges to the TxMF in Eq. (3.31) for low SNR
scenarios, i.e,ξ = tr(Cη )

Etx
→∞.

3.1.3 Simulation Results

In this section, we show some computer simulations in order to illustrate theBit Error
Rate(BER) performance of the schemes discussed. The number of transmit antennas is
equal to the number of users, i.e.N = K = 4, and the results are averaged over5,000

channel realizations. The information bits areQuadrature Phase Shift Keying(QPSK)
modulated (Fig. 3.4). The modulation constellation is given asA = {±

√
2/2± j

√
2/2}.

A frame length ofNB = 50 symbols is considered. We assume thatCu = I and
Cη = σ2

ηI, whereσ2
η is the noise variance. We set the transmit energy toEtx = N .

We use for the simulations theSCM 2described in Chapter 2 due to its intermediate BER
performance and diversity.

Figs. 3.5 and 3.6 depict some results obtained from the comparison between the
transmit and receive processing schemes described above. The results indicate that the
performance of Wiener filters is always better compared to matched or zero-forcing filters.
The performance of ZF schemes is worse than the corresponding MF designs for low
SNR, but is better for high SNR, where the matched filters show a very poor performance.
The same conclusions are obtained for receive processing.

It is apparent that the performance achieved with correlated channels, as plotted in
Fig. 3.6, is worse than for uncorrelated channels, as depicted in Fig. 3.5. However,
we can observe basically the same behavior as before for all the types of precoders. A
slight difference can be seen between the transmit and receive processing due to the noise
coloring at the receiver in receive processing. As this difference is small, we see that the
application of the same filter type (e.g. RxZF in the uplink andTxZF in the downlink)
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Figure 3.5: Uncoded BER vs. SNR for Linear Receive and TransmitFilters: QPSK
Transmission over Uncorrelated Flat Fading MU-SIMO and MU-MISO Channels with
Four Transmitting Antenna Elements and Four Users.
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Figure 3.6: Uncoded BER vs. SNR for Linear Receive and TransmitFilters: QPSK
Transmission over Correlated Flat Fading MU-SIMO and MU-MISO Channels (SCM 2)
with Four Transmitting Antenna Elements and Four Users.
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leads to similar results in the up- as in the downlink. So, there is no asymmetry of error
performance.

3.2 MU-SIMO Nonlinear Receive Processing

In this section, we focus on various nonlinear systems with transmit or receive channel
equalization with the goal of recovering the data at the receivers. Nonlinear receive
processing requires cooperation between the receivers, this being known ascentralized
receivers. This is no limitation for the uplink of a wirelesscommunications system, since
the transmitters are located at the base station. However, we should recall that signal
processing at the receiver side is quite useful for the uplink, but not for the downlink
under study in this work. Moreover, transmit processing simplifies the requirements in
the user devices, which implies an important reduction in terms of cost and complexity.
The interest of studying these nonlinear schemes is to verify the performances obtained
from both receive and transmit processing ignoring issues concerning their practical
implementation.

It is known thatMaximum Likelihood Detection(MLD) leads to full diversity and is
the optimum detection scheme in the sense that it minimizes the probability of a symbol
being erroneously detected. The search over all the possible data inherent to MLD can
be seen as a lattice search and computed bysphere decoding[73–77]. However, its
computational complexity is prohibitive in many cases because it grows exponentially
and thus nonpolynomically. Contrary to MLD, suboptimum detection schemes such as
the Decision-Feedback Equalizer(DFE) have been widely used in recent years. DFE,
however, suffers from the major drawback of error propagation derived from feeding
back erroneous decisions. This effect can be solved by performing the equalization
similarly to DFE but at the transmitter side instead of the receiver side. This idea leads
to Tomlinson-Harashima Precoding(THP), which, again, is a suboptimum approach of
Vector Precoding(VP). Similarly to MLD, VP consists of a lattice search carried out at
the transmitter instead of the receiver side. There is thus adouble parallelism MLD vs.
VP, and DFE vs. THP and, on the other hand, between MLD vs. DFE and VP vs. THP.
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3.2.1 MU-SIMO Maximum Likelihood Detection (MLD)

MLD decides for the signal̂u[n] that maximizes the likelihood of the received signal
y[n] = Hu[n] + η[n] [78,79], i.e.

ûMLD [n] = argmax
u[n]∈AN

fy (y[n]; u[n])

= argmax
u[n]∈AN

fη (y[n]−Hu[n])

= argmin
u[n]∈AN

(y[n]−Hu[n])H
C−1

η (y[n]−Hu[n]) (3.32)

whereA denotes the alphabet of the data signal, that is,u[n] ∈ AN . Assuming that
the noise is spatially white1, i.e. Cη = σ2

ηI, and introducing the QR decomposition
H = QR, whereQ is unitary andR is upper triangular, we can write Eq. (3.32) as

ûMLD [n] = argmin
u[n]

‖y[n]−Hu[n]‖22 = argmin
u[n]

‖y[n]−QRu[n]‖22

= argmin
u[n]

‖ỹ[n]−Ru[n]‖22 (3.33)

whereỹ[n] = QHy[n]. Therefore, the minimization for the case of a QAM constellation
is a closest point search in a subset of anN -dimensional lattice. In spite of being
the optimum detector for equiprobable data, MLD is often infeasible on account of
its enormous complexity.Sphere decoding[73–77] performs this search in a more
sophisticated manner than just doing a full search over the subset of a lattice, but still
requires exponential complexity. In fact, sphere decodingonly searches over the lattice
points lying in a certain hypersphere of radiusr centered on the received signaly[n].
However, sorting out the points outside the sphere leads to the exponential worst case
complexity.

Due to the upper triangular structure ofR, thei–th summand of the Euclidean norm
‖ỹ[n]−Ru[n]‖22 =

∑N
i=1 λi is

λi =

∣
∣
∣
∣
∣
ỹi[n]− ri,iui[n]−

N∑

j=i+1

ri,juj[n]

∣
∣
∣
∣
∣

2

(3.34)

whereri,j corresponds to the element of thei-th row andj-th column ofR.
When this search is computed successively, i.e.ui[n] is found for fixed

ui+1[n], . . . , uN [n], we meet the idea of theVertical Bell Labs Layered Space-Time
architecture (V-BLAST) which was based on this successive interference cancellation.

1Such a setup can be achieved by left–multiplyingy[n]−Hy[n] by C
−1/2
η .
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The decoding algorithm presented in the first works about BLAST [80, 81] was based
on interference nulling, interference cancellation, and ordering. Indeed, this decoding
process is equivalent to the zero-forcingDecision-Feedback Equalization(ZF-DFE)
[82, 83], where the interference nulling is performed by a socalled feedforward filter
and the interference cancellation by thefeedback filter. The original BLAST ordering
algorithm was based on an SNR criterion, although differentordering algorithms have
been proposed since this first proposal. In fact, the DFE ordering studied throughout this
work is based on an MSE criterion.

3.2.2 MU-SIMO Decision-Feedback Receiver (DFE)

The block diagram of a MU-MISO system employing DFE is depicted in Fig. 3.7. Given
that we work with flat fading channels, there is no need to dealwith the temporal decision-
feedback equalizer [48], and therefore we henceforth only refer to spatial DFE. Again,
note that the scheme depicted in Fig. 3.7 implies cooperation between the receivers.
For the downlink, i.e. a multiuser MISO system, this cooperation between the users is
infeasible, and therefore DFE is not a practical choice for separating the signals from
the different users. This task, however, can be performed bythe transmitter where a
centralized base station makes this separation before transmission by means ofprecoding
(see Section 3.3). Contrary to the downlink, DFE is really useful for the uplink since the
base station can easily obtain the filters to be used by the DFEstrategy.

The DF equalizer has been widely used in wireless communications systems to avoid
the noise amplification problem in linear equalizers. Although initially proposed to
equalize SISO communication links with IIR filters, DFE has been extended to multiuser
MIMO channels, whilst IIR filters have been restricted to being FIR due to practical
implementations. The DF equalizer uses feedback from past decisions to cancel the
interference of the symbols that have already been detected. It consists of two linear
filters: the feedforward filter, whose input is the received sequence, and the feedback
filter, whose input is the previously detected sequence. Thefeedforward filter provides
spatial causality and ensures that the error is white. The feedback filter, however,
exploits causality for the feedback loop and ISI cancellations due to its strictly lower
triangular structure [21, 84]. For achieving optimum performance, the symbols have
to be detected according to a specific ordering. This issue has an enormous influence
on the performance, as we will see from some computer simulations at the end of this
section. However, the decision feedback receiver suffers from the major drawback of
error propagation, which will be solved when the feedback and the feedforward filters are
moved to the transmitter (to end up with THP, see Subsection 3.3.2).

As can be seen in Fig. 3.7, the received signals can be concisely expressed in matrix–
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u[n] H

η[n]

y[n] F

I −B

P T

Q(•)
û[n] ũ[n] ũp[n]

Figure 3.7: MU–SIMO System with DFE.

vector notation as
y[n] = Hu[n] + η[n] ∈ CK (3.35)

whereu[n] ∈ AN are the transmitted symbols andA denotes the modulation alphabet.
H ∈ CK×N is the flat fading channel introduced in Subsection 3.1.1 andη[n] ∈ CK

is the received noise. We optimize the estimated signalû[n] in Fig. 3.7, which can be
expressed as

û[n] = Fy[n] + (I −B) ũ[n] (3.36)

with y[n] in Eq. (3.35) and̃u[n] ∈ AN denoting the quantized symbols.
We introduce the permutation matrix to be used in the sequel as follows

P =
N∑

n=1

eie
T
ki
∈ {0, 1}N×N (3.37)

where {k1, . . . , kN} with ki ∈ {1, . . . , N}�{k1, . . . , ki−1} determine the detection
ordering. Thei-th column of theN × N identity matrixIN is denoted byei ∈ {0, 1}N .
Thus, the recovered symbolsũ[n] are permuted byP T to getũp[n]. Given thatPP T = I,
we have that̃u[n] = P ũp[n]. Then, Eq. (3.36) can be rewritten as

û[n] = Fy[n] + (I −B) P ũp[n].

MU–SIMO Wiener Decision Feedback Receiver (WF-DFE)

As the quantized symbols̃u[n] are reordered byP T to get the detected symbols̃up[n],
the desired value for the estimatesû[n] is Pu[n]. Assuming that decisions made prior
to every detection are correct (i.e.̃up[n] = u[n]), we have the error vector defined as
follows [48,85],

ǫp[n] = Pu[n]− û[n] = Pu[n]− Fy[n]− (I −B) Pu[n] = BPu[n]− Fy[n].

The WF-DFE feedforward and feedback filters are found by minimizing the MSE and
restricting the feedback filterB to being lower triangular, i.e.
{
P DFE

WF ,F
DFE
WF ,B

DFE
WF

}
= E

[
‖Pu[n]− û[n]‖22

]
s.t.:B is unit lower triangular (3.38)
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where the MSEεDFE
WF (P ,B,F ) = E[‖ũ[n]− û[n]‖22] is calculated as

εDFE
WF (P ,B,F ) = E

[
‖Pu[n]− û[n]‖22

]
= E

[
‖BPu[n]− FHu[n]− Fη[n]‖22

]

= tr
(
BPCuP TBH

)
− tr

(
BPCuHHF H

)
− tr

(
FHCuP TBH

)

+ tr
(
FHCuHHF H

)
+ tr

(
FCηF H

)
. (3.39)

This allows us to construct the Lagrangian function

L (P ,F ,B,µ1, . . . ,µk) = tr
(
BPCuP TBH

)
− tr

(
BPCuHHF H

)

− tr
(
FHCuP TBH

)
+ tr

(
FHCuHHF H

)
+ tr

(
FCηF H

)

+ 2ℜ
(

tr

(
N∑

i=1

(
eT
i BST

i − eT
i ST

i

)
µi

))

(3.40)

where the equalityeT
i BST

i = eT
i ST

i , for i = 1, . . . , N , must hold because of the
unit lower triangular structure ofB 2. To mathematically formulate this restriction, we
included the selection matrixSi defined as

Si = [0N−i+1×i−1, IN−i+1] ∈ {0, 1}N−i+1×N (3.41)

which cuts out the lastN−i+1 rows of a matrix withN rows, when applied from the left.
The Lagrangian multiplierµi, i = 1, . . . , N , is a column vector of dimensionN − i+ 1.
Note that we need2ℜ(•) in Eq. (3.40) to assure that the structural constraint is fulfilled
for both the real and the imaginary part ofB.

By setting its derivatives with respect toF andB to zero, we obtain the following
sufficient KKT conditions that lead to a unique global minimum with respect toF andB

because the MSE in Eq. (3.38) is strictly convex (cf. [48] andAppendix C):

∂L (•)
∂F ∗ = −BPCuHH + FHCuHH + FCη = 0

∂L (•)
∂B∗ = BPCuP T − FHCuP T +

N∑

i=1

eiµ
H
i Si = 0

eT
i BST

i = eT
i ST

i ∀i ∈ {1, . . . , N}. (3.42)

From the second KKT condition, we obtain

B = FHP T −
(

N∑

i=1

eiµ
H
i Si

)

PC−1
u P T. (3.43)

2The lefthand side cuts out the lastN − i + 1 elements of thei–th row ofB and the righthand side sets
the first of those elements (thei–th diagonal element ofB) to one and the others to zero (triangularity of
B).
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Plugging this expression forB into the first KKT condition, we get

(
N∑

i=1

eiµ
H
i Si

)

PHH + FCη = 0

and therefore

F = −
(

N∑

i=1

eiµ
H
i Si

)

PHHC−1
η . (3.44)

Substituting into Eq. (3.43) we obtain

B = −
(

N∑

i=1

eiµ
H
i Si

)

P
(
HHC−1

η H + C−1
u

)
P T. (3.45)

Applying the restriction concerned with the unit lower triangular structure ofB to the
above result leads to

eT
i BST

i = −eT
i

(
N∑

j=1

ejµ
H
j Sj

)

P
(
HHC−1

η H + C−1
u

)
P TST

i = eT
i ST

i .

Then, witheT
i ej = 0, for j 6= i, and1, otherwise,µH

i reads as

µH
i = −eT

i ST
i

[
SiP

(
HHC−1

η H + C−1
u

)
P TST

i

]−1
.

This result forµH
i gives us the following expressions for the filtersF andB of Fig. 3.7:

F =
N∑

i=1

eie
T
i ST

i

[
SiP

(
HHC−1

η H + C−1
u

)
P TST

i

]−1
SiPHHC−1

η

B =
N∑

i=1

eie
T
i ST

i

[
SiP

(
HHC−1

η H + C−1
u

)
P TST

i

]−1
SiP

(
HHC−1

η H + C−1
u

)
P T.

(3.46)

In order to simplify calculation, let us defineΦ = (HHC−1
η H + C−1

u )−1. Since this
matrix is Hermitian, there exists a permutation matrixP , a unit lower triangular matrix
L, and a diagonal matrixD, which satisfy the following relationship [85,86]

PΦP T = LDLH (3.47)
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which will be termedCholesky factorization with symmetric permutation[86]. Bearing
in mind this factorization, the feedforward filter in Eq. (3.46) reduces to

F =
N∑

i=1

eie
T
i ST

i

(
SiL

−HD−1L−1ST
i

)−1
SiPHHC−1

η

=
N∑

i=1

eie
T
i ST

i

(
SiL

−HD−1ST
i SiL

−1ST
i

)−1
SiPHHC−1

η

=
N∑

i=1

eie
T
i ST

i SiLST
i SiDLHST

i SiPHHC−1
η

=
N∑

i=1

eie
T
i DLHST

i SiPHHC−1
η =

N∑

i=1

eie
T
i DLHPHHC−1

η

= DLHPHHC−1
η (3.48)

where in the derivations we have used the following properties for the selection matrix
Si:

SiN = SiNST
i Si, eT

i ST
i SiMST

i Si = eT
i , and eT

i NST
i Si = eT

i N

with N being an upper triangular matrix andM a unit lower triangular matrix.
Comparing this result with Eq. (3.44) leads to the conclusionthat−∑N

i=1 eiµ
H
i Si =

DLH. Hence, the feedback filter reduces to [cf. Eq. (3.45)]

B = DLHL−HD−1L−1 = L−1. (3.49)

Therefore, the filtersB andF in Fig. 3.7 corresponding to the WF-DFE solution are
given by

F DFE
WF = DLHPHHC−1

η

BDFE
WF = L−1.

(3.50)

Finally, the MSE in Eq. (3.39) reads as

εDFE
WF = tr (D) =

N∑

k=1

di (3.51)

whereHHC−1
η H = P TL−HD−1L−1P − C−1

u was used. Solving Eq. (3.38) would
imply that theN ! different factorizations in Eq. (3.47) corresponding to all possible
permutations must be computed and that the permutation minimizing Eq. (3.51) must
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be taken. As in [85], we avoid this very complex procedure andinstead implement a
successive computation to choose the optimum order, where theki-th entry is given by

ki = argmin
k/∈{k1,...,ki−1}

dk. (3.52)

This optimization implies that the data stream corresponding to the minimum MSE entry
of the MSE matrix in Eq. (3.51) is decoded first in order to minimize the effect of error
propagation inherent to DFE. This algorithm was proposed in[85] and is summarized as
a pseudo code in Table 3.1. The algorithm is a Cholesky factorization (e.g. [86]) where a
reordering according to Eq. (3.52) is included. Compared to previous ordering proposals,
as shown in [11], its complexity order is less than the complexity related to the ordering
based on BLAST described in [81] without any penalization with respect to the BER
performance.

Φ←
(
HHC−1

η H + C−1
u

)−1

P ← IN , D ← 0N×N
for i = 1, . . . , N

q ← argmin
q′=1,...,N

Φ(q′, q′)

Pi ← IN whosei-th andq-th rows are exchanged
P ← PiP

Φ← PiΦP T
i

D(i, i)← Φ(i, i)
Φ(i : N, i)← Φ(i : N, i)/D(i, i)
Φ(i + 1 : N, i + 1 : N)← Φ(i + 1 : N, i + 1 : N)
−Φ(i + 1 : N, i)Φ(i + 1 : N, i)HD(i, i)

L← lower triangular part ofΦ
B ← L−1, F ←DLHPHHCη

−1

Table 3.1: Calculation of WF-DFE Filters with Ordering.

MU-SIMO Zero-Forcing Decision Feedback Receiver (ZF-DFE)

Under the ZF constraintBP = FH, i.e. the feedback filterI −B removes the residual
interference at the output of the feedforward filterF , the MSE of Eq. (3.39) reduces
to [48,85]

εDFE
ZF (F ) = tr

(
FCηF H

)
. (3.53)
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Therefore, the optimization problem can be expressed as
{
P DFE

ZF ,F DFE
ZF ,BDFE

ZF

}
= argmin

{P ,F ,B}
tr
(
FCηF H

)

s.t.:BP = FH with B unit lower triangular. (3.54)

This enables us to construct the following Lagrangian function,

L (P ,F ,B, λ,µ1, . . . ,µK) = tr
(
FCηF H

)
+ 2ℜ

(

tr

(
N∑

i=1

(
eT
i BST

i − eT
i ST

i

)
µi

))

+ 2ℜ (tr (Λ (BP − FH))) (3.55)

where Λ ∈ CN×N is the Lagrangian matrix. The selection matrixSi is given by
Eq. (3.41).

Setting the derivatives of Eq. (3.55) to zero, we get the following sufficient KKT
conditions since the constraint in Eq. (3.54) is linear:

∂L (•)
∂F ∗ = FCη −ΛHHH = 0

∂L (•)
∂B∗ =

N∑

i=1

eiµ
H
i Si + ΛHP T = 0

eT
i BST

i = eT
i ST

i

P TBT = HTF T. (3.56)

From the second KKT condition, we obtain that

ΛH = −
(

N∑

i=1

eiµ
H
i Si

)

P

and after plugging it into the first KKT condition in Eq. (3.56), the feedforward filterF
is expressed as

F = ΛHHHC−1
η = −

(
N∑

i=1

eiµ
H
i Si

)

PHHC−1
η .

From the ZF constraint, we haveB = FHP T. Multiplying from the left byeT
i and

from the right byST
i , and then applying the constraint to ensure the unit lower triangular

structure of the feedback matrixB, we obtain that

eT
i BST

i = eT
i FHP TST

i = −eT
i

(
N∑

j=1

ejµ
H
j Sj

)

PHHC−1
η HP TST

i = eT
i ST

i
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and then
µH
i = −eT

i ST
i

(
SiPHHC−1

η HP TST
i

)−1
i = 1, . . . , N

sinceeT
i ej = 0, for j 6= i, and1 otherwise. Then, the feedforward and feedback filters

are expressed as

F =
K∑

i=1

eie
T
i ST

i

(
SiPHHC−1

η HP TST
i

)−1
SiPHHC−1

η

B =
K∑

i=1

eie
T
i ST

i

(
SiPHHC−1

η HP TST
i

)−1
SiPHHC−1

η HP T (3.57)

respectively.
We now define a matrixΦ = (HHC−1

η H)−1. SinceΦ is Hermitian and positive
definite, there exists a unit lower triangular matrixL and a diagonal matrixD such that
the following decomposition is satisfied [85,86]

PΦP T = LDLH (3.58)

with the permutation matrixP introduced in Eq. (3.37). Taking into account the
properties satisfied by the selection matrixSi in Eq. (3.41), it is easy to get the ZF-DFE
solution similarly to Eqs. (3.48) and (3.49), which resultsin

F DFE
ZF = DLHPHHC−1

η

BDFE
ZF = L−1.

(3.59)

With the above expressions for the precoding filters, the MSEin Eq. (3.53) reads as

εDFE
ZF = tr (D) =

N∑

k=1

di (3.60)

i.e. the same result based on Eq. (3.58) as for WF-DFE based on Eq. (3.47) is obtained.
The proposal for ordering is similar to the Wiener approach,but the starting matrix in
Table 3.1 is nowΦ = (HHC−1

η H)−1 instead ofΦ = (HHC−1
η H + C−1

u )−1.

3.2.3 Simulation Results

Again, we show some results obtained via computer simulations forN = 4 transmitting
antenna elements andK = 4 receiving users. We average5,000 channel realizations
andNB = 50 symbols are considered per channel realization. These symbols are QPSK
modulated.
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Figure 3.8: Uncoded BER vs. SNR for Receive Filters: QPSK Transmission over
Correlated Flat Fading MU-SIMO Channels (SCM 2) with Four Transmitting Antenna
Elements and Four Users.
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Figure 3.9: Uncoded BER vs. SNR for Receive Filters: QPSK Transmission over
Correlated (SCM 2) and Uncorrelated Flat Fading MU-SIMO Channels with Four
Transmitting Antenna Elements and Four Users.
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Fig. 3.8 depicts a comparison between different types of receive filters: MLD, ZF-
DFE and WF-DFE, and the RxZF and RxWF schemes described in Section3.1.1. It
can be seen that MLD is the optimum receive processing, although its computational
complexity is too high for many practical systems. It is obvious that the Wiener filters are
always superior to the respective zero-forcing filters. However, the WF-DFE approach
shows a slight loss in performance for low SNR compared to thelinear Wiener receive
processing, due to the effect of error propagation.

Fig. 3.9 shows the uncoded BER performance for DFE with and without ordering.
Obviously, an optimized ordering improves the final resultssubstantially, as can be seen
when comparing the curves marked with circles to the curves marked with squares, even
for the case of correlated channels, where for a BER of10−3 a gain of about7.5 dB is
obtained.

3.3 MU-MISO Nonlinear Transmit Processing

Research on transmit processing has received a great deal of interest in recent years
due to the lack of degrees of freedom in the downlink and the limitations of power
and complexity in the receivers of wireless communicationssystems. In multiuser
MISO systems cooperation is not often to be found between thereceivers, and transmit
processing is mandatory if we wish to implement efficient filtering methods that remove
interference. This filtering process prior to transmissionis referred to asprecoding. In
this section we focus on nonlinear precoding due to its superior performance compared to
that of the linear precoders explained in Section 3.1.2.

Assuming the CSI is available at the transmitter, a lattice search similar to that of
MLD can be performed at the transmitter, resulting in the precoding scheme calledVector
Precoding(VP). A perturbation vector is directly added to the data signal and this signal
is then precoded by linear filtering [23]. In fact,Tomlinson-Harashima Precoding(THP)
is a constrained type of vector precoding where the elementsof the perturbation vector
are successively computed. THP is based on a feedforward anda feedback filter, as
in DFE, but with both located at the transmitter side insteadof the receiver side. The
error propagation of DFE is avoided by moving the filters to the transmitter, since the
transmitter knows the signal to be fed back. Ordering strategies improve the achieved
THP performance so we will apply successive algorithms to find the optimum ordering,
in a similar manner for the algorithms shown for DFE.
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Figure 3.10: MU–MISO System with Vector Precoding.

3.3.1 MU-MISO Vector precoding (VP)

Fig. 3.10 shows the block diagram of a MU-MISO system with vector precoding. The
transmitter has the freedom to add an arbitrary perturbation signala[n] ∈ τZK + j τZK

to the data signal prior to linear transformation with the filter F ∈ CN×K , since the
receivers apply the modulo operatorM(•). Here,τ denotes a constant that depends on
the modulation alphabet, so we setτ = 2

√
2 for QPSK modulation (see Fig. 3.11) and

τ = 8/
√

10 for 16QAM modulation [83]. This constant is associated withthe modulo
operatorM(•). This nonlinear operation is defined as

M (x) = x−
(⌊ℜ (x)

τ
+

1

2

⌋

τ + j

⌊ℑ (x)

τ
+

1

2

⌋

τ

)

∈ V (3.61)

where⌊•⌋ denotes the floor operator which gives the largest integer smaller than or equal
to the argument. The corresponding fundamental Voronoi region is

V =
{

x ∈ C | − τ

2
≤ ℜ (x) <

τ

2
,−τ

2
≤ ℑ (x) <

τ

2

}

which means that the modulo operator constrains the real andimaginary part ofx to the
interval [−τ/2, τ/2] by adding integer multiples ofτ and j τ to the real and imaginary
part, respectively. For example, forx = 3.4− 1.5 j andτ = 2, when the modulo operator
is applied we getM(x) = −0.6 + 0.5 j. Note that if we apply the modulo operator to a
multidimensional vectorx = [x1, . . . , xK ]T, it is satisfied that

M(x) = [M(x1), . . . ,M(xK)]T ∈ VK

whereM(xi), i = 1, . . . , K is defined as in Eq. (3.61).
As can be seen from Fig. 3.10, the data vectoru[n] ∈ CK is first superimposed with

the perturbation vectora[n], and the resulting vector is then processed by the linear filter
F to form the transmit vector

x[n] = Fd[n] ∈ CN , n = 1, . . . , NB

whered[n] is the desired signal given byu[n]+a[n] andn is the symbol index in a block
size ofNB data symbols.
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Figure 3.11: Modulo Operator. (a) QPSK, (b) 16QAM.

Similar to linear precoding filters, we impose a transmit power constraint. Since the
statistics of the transmit symbols are unknown, we average over the block instead of
taking the expected value, i.e.

1

NB

NB∑

n=1

‖x[n]‖22 ≤ Etx.

After passing through the channel and by superimposing the AWGN noise, the
received signal is given by

y[n] = HFd[n] + η[n].

The weightg in Fig. 3.10 is assumed to be constant throughout the block ofNB symbols.
Note that we use a common weight for all the users. Thus, the weighted estimated signal
is given by

d̂[n] = gHFd[n] + gη[n]. (3.62)

The modulo operator at the receiver is used to compensate theeffect of adding the
perturbationa[n] at the transmitter.

The MSE can be expressed as [22,23]

εVP
WF (a[n],x[n], g) =

1

NB

NB∑

n=1

E

[∥
∥
∥d[n]− d̂[n]

∥
∥
∥

2

2

∣
∣
∣
∣
u[n]

]

=
1

NB

NB∑

n=1

E
[
‖d[n]− gHx[n]− gη[n]‖22 |u[n]

]
. (3.63)
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Note that the expectation is conditioned on the full knowledge of the symbolsu[n] by
the transmitter. But since the statistics ofa[n] are unknown, we average the symbol MSE
over the whole block.

Sincea[n] is discrete, we cannot derive with respect toa. The optimization procedure
is as follows. We start by fixinga, after whichx andg are optimized taking into account
the transmit power constraint. For these optimumx andg we choose the besta according
to the MSE criterion. Although we optimize the continuous and discrete part separately,
this procedure leads to the optimum minimization of Eq. (3.63) [23].

MU-MISO Wiener Spatial Vector Precoding (WF-VP)

We have to find the joint optimum of all the perturbation vectors a[n], all the transmit
vectorsx[n], and the gain factorsg for n = 1, . . . , NB:

{
aVP

WF[n],xVP
WF[n], gVP

WF

}
= argmin

{a[n],x[n],g}
εVP

WF (a[n],x[n], g) s.t.:
1

NB

NB∑

n=1

‖x[n]‖22 ≤ Etx.

(3.64)
The MSEεVP

WF(a[n],x[n], g) is given by Eq. (3.63) [22,23] and can be rewritten as

εVP
WF (a[n],x[n], g) =

1

NB

NB∑

n=1

(
dH[n]d[n]− g∗xH[n]HHd[n]− gdH[n]Hx[n]

+ |g|2 xH[n]HHHx[n] + |g|2 tr (Cη)
)

(3.65)

where we useE[‖d[n]‖22 |u[n] ] = ‖d[n]‖22 andE[‖x[n]‖22 |u[n] ] = ‖x[n]‖22, since the data
signalu[n], the perturbation signala[n] and consequently, the transmitted signalx[n] are
known to the transmitter.

The Lagrangian function can be expressed as

L (a[n],x[n], g, λ) = εVP
WF (a[n],x[n], g) + λ

(

1

NB

NB∑

n=1

xH[n]x[n]− Etx

)

(3.66)

whereλ ∈ R0,+. Now, we set its derivative with respect tox[n], n = 1, . . . , NB andg to
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zero, which leads to the necessary KKT conditions

∂L (•)
∂x∗[n]

=
1

NB

(
−g∗HHd[n] + |g|2 HHHx[n]

)
+

λ

NB
x[n] = 0

∂L (•)
∂g

=
1

NB

(
−dH[n]Hx[n] + g∗xH[n]HHHx[n]

+g∗ tr (Cη)) = 0

1

NB

NB∑

n=1

xH[n]x[n] ≤ Etx

λ

(

1

NB

NB∑

n=1

xH[n]x[n]− Etx

)

= 0 with λ ≥ 0 (3.67)

since the optimization problem in Eq. (3.64) is not a convex programming problem.
Then, the transmit symbols are directly obtained from the first KKT condition and are

given by

x[n] =
1

g

(

HHH +
λ

|g|2
I

)−1

HHd[n]. (3.68)

First of all, we have to show thatλ > 0, i.e. the power constraint as active. Multiplying
the second KKT condition byg, we have

1

NB

(
−gdH[n]Hx[n] + |g|2 xH[n]HHHx[n] + |g|2 tr (Cη)

)
= 0 (3.69)

and multiplying the Hermitian of the first KKT condition byx[n] from the right, we have

1

NB

(
−gdH[n]Hx[n] + |g|2 x[n]HHHHx[n]

)
+

λ

NB
xH[n]x[n] = 0. (3.70)

With Eq. (3.69) and the transmit energy constraint, the Lagrangian multiplierλ is given
by

λ = |g|2 tr (Cη)
1
NB

∑NB
n=1 xH[n]x[n]

. (3.71)

Therefore, it becomes clear thatλ > 0 for the non–trivial case that∃n : x[n] 6= 0. Thus,
the transmit energy constraint is active andλ = |g|2 ξ with ξ = tr(Cη)/Etx.

Then, we reach the following solution for the WF-VP:

xVP
WF[n] =

1

gVP
WF

(
HHH + ξI

)−1
HHd[n]

gVP
WF =

√
∑NB

n=1 dH[n]H (HHH + ξI)−2
HHd[n]

EtxNB

(3.72)
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where gVP
WF is directly obtained from the transmit energy constraint and ξ = tr(Cη )

Etx
.

Remember thatg is chosen only once in each block.
We define a matrixΦ = (HHH + ξI)−1. Applying the matrix inversion

lemma to Eq. (3.72) shows thatxVP
WF[n] = 1

gVP
WF

HHΦd[n] and then, gVP
WF =

√
∑NB

n=1(d
H[n]ΦHHHHΦd[n])/(EtxNB). Thus, when we plug these results into the

MSE expression in Eq. (3.65) we obtain that

εVP
WF (a[n],x[n], g) =

ξ

NB

NB∑

n=1

dH[n]Φd[n]. (3.73)

SinceΦ is positive definite, we can use the Cholesky factorization toobtain a lower
triangular matrixL and a diagonal matrixD with the following relationship [22],

Φ =
(
HHH + ξI

)−1
= LHDL.

Thus, the perturbation signal can be found by the following search [22]

aVP
WF[n] = argmin

a[n]∈τZK+j τZK

(u[n] + a[n])HΦ(u[n] + a[n])

= argmin
a[n]∈τZK+j τZK

||D1/2L(u[n] + a[n])||22
(3.74)

This search can be solved by means of the Schnorr-Euchner sphere decoding [87, 88]
where the use of real-valued notation to represent vectors and matrices has been
considered to run the final computer simulations (see Appendix B.5).

Note that due to the unit lower triangular structure ofD1/2L, thei–th summand of the
Euclidean norm||D1/2Lu[n] + D1/2La[n]||22 =

∑K
i=1 λi is given by

λi = di,i

∣
∣
∣
∣
∣
ui[n] + ai[n] +

i−1∑

j=1

li,j (uj[n] + aj[n])

∣
∣
∣
∣
∣

2

(3.75)

whereli,j corresponds to the element of thei-th row andj-th column ofL anddi,i is the
i-th entry of the diagonal matrixD.

When the off-diagonal elements ofL are approximately zero, i.e.li,j = 0, for j 6= i,
we have

a[n] = argmin
a[n]∈τZK+j τZK

||u[n] + a[n]||22 (3.76)

which leads toa[n] = 0, i.e. we obtain the linear precoding approach described in
Subsection 3.1.2.
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u[n] P

a[n]

d[n] v[n] x[n]

I −B

F

Figure 3.12: Linear Representation of Tomlinson Harashima Precoding.

When a1[n], . . . , aK [n] are computed successively, i.e.ai[n] is found for fixed
a1[n], . . . , ai−1[n], thei–th element ofa[n] is obtained as

ai[n] = −QτZK+j τZK

(

ui[n] +
i−1∑

j=1

li,j (uj[n] + aj[n])

)

. (3.77)

This successive computation ofa[n] enables us to obtain the scheme depicted in Fig. 3.12,
which corresponds to the linear representation of THP. According to the definition of the
modulo operator asM(x) = x− (⌊ℜ(x)

τ
+ 1

2
⌋τ + j⌊ℑ(x)

τ
+ 1

2
⌋τ), it is straightforward to see

that the quantizerQτZK+j τZK (x) is equivalent to the term⌊ℜ(x)
τ

+ 1
2
⌋τ + j⌊ℑ(x)

τ
+ 1

2
⌋τ and

then we can writeQτZK+j τZK (x) = x − M(x). Therefore, the perturbation signala[n]

can easily be included inside the feedback loop (as can be seen in Fig. 3.13) by means
of the modulo operatorM(x). This leads to the well-known suboptimum approach of
Tomlinson-Harashima precoding described in the followingsubsection.

The above result fora[n] can be transformed to

aVP
WF[n] = argmin

a[n]∈τZK+j τZK

||D1/2Lu[n] + D1/2La[n]||22

= argmin
λ[n]∈ZK+j ZK

||τD1/2Lλ[n]− (−D1/2Lu[n])||22

= argmin
λ[n]∈ZK+j ZK

||Gλ[n]− z[n]||22 (3.78)

whereG = τD1/2L andz[n] = −D1/2Lu[n]. This is the called aclosest point search
in the lattice generated by the matrixG [89].

According to theLenstra-Lenstra-Lov́asz(LLL) algorithm [90], this matrixG can be
decomposed into a matrixΓ and a unimodular integer matrixT , i.e. the absolute value
of its determinant is equal to one, as follows

G = ΓT−1.

Note that the inverse ofT is also unimodular integer.
Thus,Gλ[n] = ΓT−1λ[n] = Γλ′[n] with integerλ′[n] ∈ ZK + j ZK . Based on

the above factorization of the generator matrixG, the lattice search of Eq. (3.78) can be
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rewritten as follows

λopt[n] = T argmin
λ′[n]∈ZK+j ZK

||Γλ
′

[n]− x[n]||22 = Tλ′
opt[n].

Since the columns ofΓ are closer to orthogonal than those of the originalG, this search
can be solved more efficiently than in Eq. (3.78).

In order to findλ′
opt[n] we employ the Schnorr-Euchner algorithm [87, 88], where a

sphere decoder performs this lattice search. Then, the vector aVP
WF[n] is simply given by

aVP
WF[n] = τλopt[n] ∈ τZK + j τZK .

Note that the complexity of the sphere decoder grows exponentially with the number
of users [89] which implies that the implementation of VP in real systems may be
questionable.

MU-MISO Zero-Forcing Spatial Vector Precoding (ZF-VP)

By considering the ZF constraintE[d̂[n] | d[n]] = gHFd[n], for n = 1, . . . , NB, with
[cf. Eq. (3.63)]

d̂[n] = gHFd[n] + gη[n]

the MSE in Eq. (3.63) reduces to

εVP
ZF (a[n],x[n], g) = |g|2 tr (Cη) . (3.79)

Thus, the optimization problem is expressed as

{
aVP

ZF[n],xVP
ZF[n], gVP

ZF

}
= argmin

{a[n],x[n],g}
|g|2 tr (Cη)

s.t.:
1

NB

NB∑

n=1

‖x[n]‖22 ≤ Etx and E[d̂[n] | d[n]] = d[n].

(3.80)

We can form the Lagrangian function as follows,

L (x[n],µ[n], g, λ) = εVP
ZF (a[n],x[n], g) + 2ℜ

(

tr

(

1

NB

NB∑

n=1

µT[n] (gHx[n]− d[n])

))

+ λ

(

1

NB

NB∑

n=1

xH[n]x[n]− Etx

)

(3.81)

whereλ ∈ R0,+ andµ[n] ∈ CK , n = 1, . . . , NB.
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From the Lagrangian function, we can obtain the following KKT conditions:

∂L (•)
∂x∗[n]

=
1

NB

(
g∗HHµ∗[n]

)
+

λ

NB
x[n] = 0

∂L (•)
∂g

= g∗ tr (Cη) + tr

(

1

NB

NB∑

n=1

µ[n]THx[n]

)

= 0

gHx[n] = d[n] ∀n ∈ {1, . . . , NB}
1

NB

NB∑

n=1

tr
(
x[n]xH[n]

)
≤ Etx

λ

(

1

NB

NB∑

n=1

xH[n]x[n]− Etx

)

= 0 with λ ≥ 0

that are only necessary to find the solution including the zero-forcing constraint.
It is easy to show that the transmit energy constraint is active. Indeed, multiplying the

first KKT condition byxH[n] from the left, summing overn = 1, . . . , NB, and taking into
account again the transmit energy constraint, we get

λ
1

NB

NB∑

n=1

xH[n]x[n] = − 1

NB

NB∑

n=1

g∗xH[n]HHµ∗[n] = − 1

NB

NB∑

n=1

dH[n]µ∗[n]

where the last equality is obtained from the ZF constraint [third KKT condition in
Eq. (3.81)]. With this result and the second KKT condition, we get

λ =
|g|2 tr (Cη)

1
NB

∑NB
n=1 xH[n]x[n]

and thereforeλ > 0 as long as|g|2 6= 0. So, the transmit energy constraint is always
active.

Combining the first KKT condition with the third and with the transmit energy
constraint, we can obtain, respectively, the transmit symbols and the receive weights as
follows

xVP
ZF[n] =

1

g
H†d[n] =

1

g
HH

(
HHH

)−1
d[n]

gVP
ZF =

√
1
NB

∑NB
n=1 dH[n] (HHH)−1

d[n]

Etx

(3.82)

whereH† = HH(HHH)−1 denotes the pseudo inverse ofH. Note that for the existence
of the zero–forcing solution, i.e.HHH is regular or the zero–forcing condition can be
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u[n] P v[n] x[n]

I −B η[n]

F H gI
M(•)M(•) d̂[n] û[n]

Q(•) ũ[n]

Figure 3.13: MU–MISO System with Tomlinson Harashima Precoding.

fulfilled, it is necessary thatN ≥ K. We assume thatg is real and positive to ensure
a unique solution. Note that by applying the matrix inversion lemma to Eq. (3.72),
we get that(HHH + ξI)−1HH = HH(HHH + ξI)−1 and it is easy to see that for
ξ = tr(Cη)/Etx → 0 the Wiener VP solution converges to the ZF approach.

Pluggingg into the MSE in Eq. (3.79) yields

εVP
ZF (a[n],x[n], g) =

ξ

NB

NB∑

n=1

dH[n]
(
HHH

)−1
d[n].

Due tod[n] = u[n] + a[n], the optimum perturbation vectors are found by the following
closest point search in a lattice [23,91]

aVP
ZF[n] = argmin

a[n]∈τZK+jτZK

∥
∥
∥H

H
(
HHH

)−1
(u[n] + a[n])

∥
∥
∥

2

2
(3.83)

since(HHH)−1 = (HHH)−1HHH(HHH)−1 andzHAHAz = ‖Az‖22.

3.3.2 MU-MISO Tomlinson-Harashima Precoding (THP)

Fig. 3.13 shows the block diagram of a MU-MISO system with THP. The basic equation
for the computation of the perturbation signal of THP is Eq. (3.77), i.e. it is computed
successively. Based on Eq. (3.77), WF–THP can be obtained fromWF–VP and ZF–THP
from ZF–VP. However, the performance of THP is heavily dependent on the precoding
order. Therefore, the goal of this subsection is to find the appropriate precoding order
based on a THP specific optimization.

At the transmitter, the feedforward filterF linearly suppresses parts of the
interference, whereas the feedback loop with the strictly lower triangular feedback filter
nonlinearlyI −B subtracts the remaining interference. The feedforward matrix forces
spatial causality (i.e. outputs depend on current and past entries, but not on future entries)
and, additionally, the feedback filter must be strictly lower triangular to ensure causality
for the feedback loop and ISI cancellation. Since the order of precoding has an important
effect on the performance [21, 92], the data signalu[n] ∈ CK is reordered by means of
the permutation filterP =

∑K
i=1 eie

T
ki
∈ {0, 1}K×K , whereei is thei-th column of the
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v ← Pu

for i = 1, . . . , K
v(i)← M(2v(i)−B(i, :)v)

Table 3.2: Computing the Feedback Loop Output from the Permuted Data.

identity matrixIK andki is the index of thei-th data stream to be precoded. Remember
that the permutation matrixP satisfiesP−1 = P T.

The signalPu[n] is passed through the feedback loop to get the outputv[n], which
can be computed from the pseudo code in Table 3.2. The entriesof v[n] have statistical
properties which approximately only depend on the modulo constantτ (see e.g. [83]).
Remember thatτ depends on the modulation alphabet (see Fig. 3.11). Interestingly, the
covariance matrix ofv[n] is approximately given by a diagonal matrix

Cv = E
[
v[n]vH[n]

]
= diag

(
σ2
v,1, . . . , σ

2
v,K

)
(3.84)

whose entries are given byσ2
v,i = τ 2/6, i = 2, . . . , K andσ2

v,1 = σ2
u = 1. The modulo

operatorM(•) of the feedback loop limits the amplitude ofv[n] [83,93,94] and, thus, the
power of the transmit signalx[n].

The signalv[n] obtained from Table 3.2 is then transformed by the feedforward filter
F ∈ CN×K to get the transmit signalx[n] ∈ CN , which must satisfy an average total
transmit power constraint, i.e.E[‖x[n]‖22] = Etr. The estimated signal is expressed in
matrix–vector notation as

d̂[n] = gHFv[n] + gη[n] ∈ CK . (3.85)

Note that we restrictg to being common to all the users so that it acts as an automatic
gain control. Then, the modulo operator is applied again at the receiver to invert the effect
of the modulo operator at the transmitter [83,93,94]. The most appropriate interpretation
of the modulo operator is that it gives the transmitter degrees of freedom, since the same
output can be generated with different inputs. The THP feedback loop with the modulo
operator at the transmitter is simply a suboptimal means of exploiting these degrees of
freedom.

The linear representation of THP [95] is depicted in Fig. 3.12. The desired signal is
denoted byd[n] and from this figure it is easy to see that

d[n] = P TBv[n]. (3.86)
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MU-MISO Wiener Spatial Tomlinson-Harashima Precoding (WF-THP)

The Wiener THP for flat fading channels results from the minimization of the mean square
error and the restriction of a spatially causal feedback filtering. The MSE can be expressed
as [11,60,92,96]

εTHP
WF (P ,B,F , g) = E

[∥
∥
∥d[n]− d̂[n]

∥
∥
∥

2

2

]

= E
[∥
∥P TBv[n]− gHFv[n]− gη[n]

∥
∥

2

2

]

= tr
(
P TBCvB

HP
)
− g∗ tr

(
P TBCvF

HHH
)

− g tr
(
HFCvB

HP
)

+ |g|2 tr
(
HFCvF

HHH
)

+ |g|2 tr (Cη) .
(3.87)

With this MSE, the WF-THP optimization can be expressed as

{
F THP

WF ,B
THP
WF , g

THP
WF ,P

THP
WF

}
= argmin

{F ,B,g,P}
εTHP

WF (P ,B,F , g)

s.t.: E
[
‖x‖22

]
≤ Etx andB is unit lower triangular.

(3.88)

The restriction for the unit lower triangular structure ofB can be written as

SiBei = Siei, i = 1, . . . , K

whereSi is a selection matrix defined as [cf. Eq. (3.41)]

Si =
[
Ii,0i×(K−i)

]
∈ {0, 1}i×K (3.89)

which cuts out the firsti rows of a matrix withK rows when applied from the left.
Therefore, we haveK linear constraints that are defined usingK Lagrangian vectors
µi ∈ C, i = 1, . . . , K.

Then, the MSE in Eq. (3.87) enables us to construct the Lagrangian function as follows

L (P ,B,F , g, λ,µ1, . . . ,µK) = εTHP
WF (P ,B,F , g) + λ

(
tr
(
FCvF

H
)
− Etx

)

+ 2ℜ
(

K∑

i=1

tr
(
µT
i (SiBei − Siei)

)

)

(3.90)

with λ ∈ R0,+, µi ∈ Ci, i = 1, . . . , K, and2ℜ(
∑K

i=1 tr(µT
i (SiBei−Siei))) comes from

the restriction for the unit lower triangular structure of the feedback matrixB.
The solution of Eq. (3.87) can be obtained by setting the derivatives of the Lagrangian

function with respect toB, F , andg to zero. Then, we have a nonconvex programming
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problem and the following KKT conditions are necessary for the global solution (see
Appendix C):

∂L (•)
∂F ∗ = −g∗HHP TBCv + |g|2 HHHFCv + λFCv = 0

∂L (•)
∂B∗ = BCv − gPHFCv +

K∑

i=1

ST
i µ∗

ie
T
i = 0

∂L (•)
∂g

= − tr
(
HFCvB

HP
)

+ g∗ tr
(
HFCvF

HHH
)

+ g∗ tr (Cη) = 0

SiBei = Siei

tr
(
FCvF

H
)
≤ Etx

λ
(
tr
(
FCvF

H
)
− Etx

)
= 0 with λ ≥ 0. (3.91)

We first demonstrate that the transmit energy constraint in Eq. (3.88) is always active, i.e.
λ > 0. To this end, the weightg∗ resulting from the third KKT condition is expressed as

g∗ =
tr
(
HFCvB

HP
)

tr (HFCvF HHH + Cη)
. (3.92)

If we multiply the first KKT condition from the right byF H and afterwards apply the
trace operator we get

λ tr
(
FCvF

H
)

= g∗ tr
(
HHP TBHCvF

H
)
− |g|2 tr

(
HFCvF

HHH
)
.

Plugging Eq. (3.92) into the above equation, we can easily derive that

λ tr
(
FCvF

H
)

= |g|2 tr (Cη)

and then,λ = |g|2 tr(Cη)/ tr(FCvF
H) > 0 if we omit the trivial solutionF = 0.

Therefore, the transmit energy constraint is active, i.e.tr(FCvF
H) = Etx andλ = |g|2 ξ

with ξ = tr(Cη)/Etx.
Thus, the resulting feedforward filterF obtained from the first equality in Eq. (3.91)

is given by

F =
1

g

(
HHH + ξI

)−1
HHP TB =

1

g
HH

(
HHH + ξI

)−1
P TB (3.93)

where we applied the matrix inversion lemma to get the last equality (see Appendix B.1).
Remember thatξ = tr(Cη )

Etx
.
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By plugging the above result into the second KKT condition, weobtain that

∂L (•)
∂B∗ = BCv − PHHH

(
HHH + ξI

)−1
P TBCv +

K∑

i=1

ST
i µ∗

ie
T
i

= ξP
(
HHH + ξI

)−1
P TBCv +

K∑

i=1

ST
i µ∗

ie
T
i = 0.

Therefore, the feedback filterB is expressed as

B = −ξ−1P
(
HHH + ξI

)
P T

K∑

i=1

ST
i µ∗

ie
T
i σ

−2
v,i (3.94)

where we included the assumption that the entries ofv[n] are uncorrelated [see
Eq. (3.84)].

Multiplying this result bySi from the left and byei from the right, we have

SiBei = −ξ−1SiP
(
HHH + ξI

)
P TST

i µ∗
iσ

−2
v,i = Siei

where for the last equality the constraint for the unit lowertriangular structure ofB is
applied and we used thateT

j σ
−2
v,jei = 0, j 6= i, andeT

i σ
−2
v,i ei = σ−2

v,i , otherwise. Then, the
Lagrangian multipliersµ∗

i , i = 1, . . . , K are given by

µ∗
i = −σ2

v,iξ
(
SiP

(
HHH + ξI

)
P TST

i

)−1
Siei. (3.95)

We can now substituteµ∗
i of Eq. (3.95) into Eqs. (3.93) and (3.94) so we have the

following expressions for the feedforward and feedback filters:

F =
1

g
HHP T

K∑

i=1

ST
i

(
SiP

(
HHH + ξI

)
P TST

i

)−1
Sieie

T
i

B = P
(
HHH + ξI

)
P T

K∑

i=1

ST
i

(
SiP

(
HHH + ξI

)
P TST

i

)−1
Sieie

T
i (3.96)

respectively.
We introduce the matrixΦ = (HHH + ξI)−1 similar to [92], which is factorized by

using the following symmetrically permuted Cholesky decomposition

PΦP T = LHDL (3.97)

which exists sinceΦ is positive definite by definition. The matricesL and D are,
respectively, unit lower triangular and diagonal.
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Taking into account this factorization, the precoder filters in Eq. (3.96) can be
rewritten as

F =
1

gWF−THP
HHP T

K∑

i=1

ST
i

(
SiL

−1D−1L−HST
i

)−1
Sieie

T
i

=
1

gWF−THP
HHP T

K∑

i=1

ST
i SiL

HST
i SiDLST

i Sieie
T
i

=
1

gWF−THP
HHP T

K∑

i=1

ST
i SiL

HST
i SiDLeie

T
i

=
1

gWF−THP
HHP T

K∑

i=1

ST
i SiL

HDeie
T
i =

1

gTHP
HHP TLHD

B = L−1D−1L−HLHD = L−1

by considering the following properties of the selection matrix Si in Eq. (3.89)

SiM = SiMST
i Si, ST

i SiMei = ei and ST
i SiNei = Nei (3.98)

with M being a unit lower triangular matrix and withN having an upper triangular
structure.

To summarize the previous derivation, the WF-THP solution toEq. (3.88) is given by

F THP
WF =

1

gTHP
WF

HHP TLHD

BTHP
WF = L−1.

(3.99)

The receive weightgTHP
WF directly follows from the transmit energy constraint. Assuming

that it is real and positive, it is given by

gTHP
WF =

√

tr (HHP TLHD2CvLPH)

Etx
. (3.100)

Plugging the above results into the cost function in Eq. (3.87), it can be demonstrated that

εTHP
WF (P ,B,F , g) = ξ tr (CvD) = ξ

K∑

i=1

σ2
v,idi,i. (3.101)

As can be seen from Eq. (3.96), the filters are determined column by column, and
each column requires one matrix inverse which results in a total complexity order of
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O(K4) as proposed in [96]. For a large number of users, the filter computation becomes
quite complex. Note that this high complexity is for some permutationP . With the
decomposition in Eq. (3.97), the complexity was reduced toO(K3). Nevertheless, allK!

possible user permutations must be tested to find the optimumof Eq. (3.88) with respect to
P . For this reason, some heuristic ordering strategies basedon Eq. (3.96) were developed
in [92] that include the ordering optimization in the computation of the decomposition in
Eq. (3.97). Contrary to DFE, where the latter detection stages are less constrained, the
precoding filter optimization for the latter precoding stages are more constrained, because
after each stage, one additional transmit signal is subjectto precoding. Therefore, in
each iteration the algorithm finds the minimum weighted diagonal entry ofΦ (i.e. the
entry corresponding to the minimum MSE) to be precoded first.So, the precoding filter
optimization corresponding to that entry is computed last.Therefore, the precoding filter
optimization is performed in the opposite direction to the precoding ordering (in Table 3.3,
for i = K, . . . , 1, compare with Table 3.1) [92]. This greedy MSE minimizationleads
to an ordering algorithm that achieves an excellent trade-off between performance and
complexity for computing the symmetrically permuted factorization in Eq. (3.97) [11,92].
The pseudo code for the filter calculation according to Eq. (3.101) is shown in Table 3.3.

Φ← (HHH + ξI)−1

P ← IK , D ← 0K×K
for i = K, . . . , 1

q ← argmin
q′=1,...,i

Φ(q′, q′)

Pi ← IK whosei-th andq-th rows are exchanged
P ← PiP

Φ← PiΦP T
i

D(i, i)← Φ(i, i)
Φ(1 : i, i)← Φ(1 : i, i)/D(i, i)
Φ(1 : i− 1, 1 : i− 1)← Φ(1 : i− 1, 1 : i− 1)
−Φ(1 : i− 1, i)Φ(1 : i− 1, i)HD(i, i)

LH ← upper triangular part ofΦ
B ← L−1, F ←HHP TLHD

Table 3.3: Calculation of THP Filter with Optimum Ordering.
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MU-MISO Zero-Forcing Spatial Tomlinson-Harashima Precoding (ZF-THP)

The MSE optimization for ZF-THP can be expressed as (cf. [11,60,92,96])

{
F THP

ZF ,BTHP
ZF , gTHP

ZF ,P THP
ZF

}
= argmin

{F ,B,g,P}
E

[∥
∥
∥d[n]− d̂[n]

∥
∥
∥

2

2

]

s.t.: E
[
‖x‖22

]
≤ Etx and E[d̂[n] | d[n]] = d[n]

with B unit lower triangular (3.102)

whered̂[n] andd[n] are given by Eqs. (3.85) and (3.86), respectively. Due to thezero–
forcing constraint

E[d̂[n] | d[n]] = gHFv[n] = P TBv[n] = d[n]

which implies thatgHF = P TB, the MSE reduces to

E

[∥
∥
∥d[n]− d̂[n]

∥
∥
∥

2

2

]

= |g|2 tr (Cη) .

We construct the Lagrangian function corresponding to Eq. (3.102):

L (F ,B, g,P , λ,Λ,µ1, . . . ,µK) = |g|2 tr (Cη) + 2ℜ
(
tr
(
Λ
(
P TB − gHF

)))

+ λ
(
tr
(
FCvF

H − Etx

))
+ 2ℜ

(
K∑

i=1

tr
(
µT
i (SiBei − Siei)

)

)

(3.103)

whereλ ∈ R0,+, Λ ∈ CK×K , andµi ∈ Ci, i = 1, . . . , K. The selection matrixSi has
already been defined in Eq. (3.89).

By setting the derivatives with respect toF , B, andg to zero, we get

∂L (•)
∂F ∗ = λFCv − g∗HHΛH = 0

∂L (•)
∂B∗ =

K∑

i=1

ST
i µ∗

ie
T
i + PΛH = 0

∂L (•)
∂g

= g∗ tr (Cη)− tr (ΛHF ) = 0

P TB = gHF

SiBei = Siei

tr
(
FCvF

H
)
≤ Etx

λ
(
tr
(
FCvF

H − Etx

))
= 0 with λ ≥ 0. (3.104)
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The above equations are the necessary KKT conditions for theglobal solution to the
nonconvex programming problem of Eq. (3.102).

The third KKT condition directly leads to

g∗ =
tr (ΛHF )

tr (Cη)

and plugging this result into the first KKT condition yields

λFCv =
tr∗ (ΛHF )

tr (Cη)
HHΛH. (3.105)

Multiplying now the above equation from the right byF H and applying the trace operator
we have

λ tr
(
FCvF

H
)

=
|tr (ΛHF )|2

tr (Cη)

where we are taking into account thattr(HHΛHF H) = tr∗(FΛH) (see Appendix B.2).
Therefore,λ > 0 and the transmit energy constraint is always active if we omit the trivial
solutionF = 0.

From the second KKT condition in Eq. (3.104) we obtain the following,

ΛH = −P T

K∑

i=1

ST
i µ∗

ie
T
i . (3.106)

When we plug this result into the first KKT condition we obtain that

F = −g
∗

λ
HHP T

(
K∑

i=1

ST
i µ∗

ie
T
i

)

C−1
v .

With the zero–forcing constraint, this result shows that

B = −|g|
2

λ
PHHHP T

K∑

i=1

ST
i µ∗

ie
T
i σ

−2
v,i

due to Eq. (3.84). Substituting this expression for the feedback filter into the constraint
for unit lower triangularity, we get

−|g|
2

λ
SiPHHHP TST

i µ∗
iσ

−2
v,i = Siei

and consequently,

µ∗
i = − λ

|g|2
σ2
v,i

(
SiPHHHP TST

i

)−1
Siei.
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This result forµ∗
i leads to the optimal feedforward and feedback filter

F =
1

g
HHP T

K∑

i=1

ST
i

(
SiPHHHP TST

i

)−1
Sieie

T
i

B = PHHHP T

K∑

i=1

ST
i

(
SiPHHHP TST

i

)−1
Sieie

T
i (3.107)

respectively.
The receive gain factorg is directly obtained from the transmit energy constraint, i.e.

g =

√
√
√
√

∑K
i=1 tr

(

σ2
v,ie

T
i ST

i (SiPHHHP TST
i )

−1
Siei

)

Etx

where we consider thatg is positive and real to guarantee a unique solution.
The Cholesky factorization with symmetric permutation ofΦ = P (HHH)−1P T can

be computed as [11,92]

PΦP T = P
(
HHH

)−1
P T = LHDL (3.108)

whereL and D are a unit lower triangular and a diagonal matrix, respectively. This
factorization leads to an algorithm achieving a trade-off between performance and
complexity, as shown in [92]. With the factorization in Eq. (3.108), the feedback and
feedforward filters are obtained similarly to the WF-THP formulation as

F THP
ZF =

1

gTHP
HHP TLHD

BTHP
ZF = L−1

(3.109)

using the properties for the selection matrixSi pointed out in Eq. (3.89). The common
gaingTHP

ZF is directly obtained from the transmit energy constraint assuming that it is real
and positive as follows

gTHP
ZF =

√

tr (CvD)

Etx
. (3.110)

This leads to the MSE in Eq. (3.102)

εTHP
ZF = ξ tr (CvD) = ξ

K∑

i=1

σ2
v,idi. (3.111)

Note that this MSE is not equal to the MSE for WF-THP since the matrix D is obtained
via Eq. (3.108) [for WF–THP, we use Eq. (3.97)]. WF-THP converges to ZF-THP for
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Figure 3.14: 16QAM Constellation.

high SNR scenarios, i.e. forξ → 0, since the respective matricesΦ converge. As a result
of this MSE, the ordering algorithm to compute the filters is similar to the algorithm
explained for WF-THP, but changing the initial matrix in Table 3.3 toΦ = (HHH)−1.

3.3.3 Simulation Results

In this subsection we present the results of some computer simulations carried out
to illustrate the performance of the previously described nonlinear transmit processing
techniques. We consider a MU-MISO system withN = 4 transmit antennas and
K = 4 receiving users. A frame length ofNB = 50 symbols is considered and
5,000 channel realizations are averaged. We assume that the transmitted symbols are
either QPSK or 16QAM modulated. The QPSK modulation constellation is given as
A = {±

√
2/2 ± j

√
2/2} (see Fig. 3.4) and the alphabet in the case of 16QAM is

A = {±3± j 3,±3± j,±1± j 3,±1± j} normalized by the factor1/
√

10 (see Fig. 3.14).
Fig. 3.15 depicts the BER performance vs. SNR for the zero-forcing nonlinear

approaches: MLD, DF equalizer, TH precoding, and vector precoding. As can be seen
from the figure, there is some advantage for the receive DF filter at low SNR and for the
transmit filters THP and VP at high SNR. Transmit processing suffers from some loss at
low SNR due to the modulo operator at the receiver since the modulo operation introduces
more allowed constellation points. Since the number of constellation points in 16QAM is
larger than in QPSK, the impact of the modulo operator is not so pronounced for 16QAM.
Moreover, given that this effect depends on the noise, it will be more important for low
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Figure 3.15: Uncoded BER vs. SNR for Nonlinear ZF Transmit andReceive Filters:
QPSK and 16QAM Transmission over Uncorrelated Flat Fading MU-MISO Channels
with Four Transmitting Antenna Elements and Four Users.
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Figure 3.16: Uncoded BER vs. SNR for Nonlinear WF Transmit and Receive Filters:
QPSK and 16QAM Transmission over Uncorrelated Flat Fading MU-MISO Channels
with Four Transmitting Antenna Elements and Four Users.
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Figure 3.17: Uncoded BER vs. SNR for Transmit Filters: QPSK Transmission over
Uncorrelated Flat Fading MU-MISO Channels with Four Transmitting Antenna Elements
and Four Users.
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Figure 3.18: Uncoded BER vs. SNR for Nonlinear Transmit Filters: QPSK Transmission
over Uncorrelated and Correlated (SCM 2) Flat Fading MU-MISO Channels with Four
Transmitting Antenna Elements and Four Users.
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Figure 3.19: Uncoded BER vs. SNR for Transmit Filters: QPSK Transmission over
Correlated Flat Fading MU-MISO Channels with Four Transmitting Antenna Elements
and Four Users.

SNR. For high SNR scenarios, however, transmit processing shows better performan-
ce than DFE since error propagation is smaller. As expected,the performance achieved
with Wiener filters instead of ZF filters is much better because zero-forcing amplifies
the channel noise, as also shown in Fig. 3.16. From this figurethe same conclusions as
before can be extracted, but at lower SNR values for the same BERs. Figs. 3.15 and 3.16
also show the BER performance obtained when we directly perform ML detection at the
receivers. As expected, MLD is the best technique for separating the signals from the
different users, in spite of its lower performance for low scenarios with respect to the
vector precoding approach caused by the effect of VP modulo operator at the receivers.

Fig. 3.17 shows a comparison between ZF and Wiener linear andnonlinear transmit
processing for QPSK transmission. ZF approaches are clearly outperformed by the
respective Wiener approaches. A small loss in performance is observed for the nonlinear
approaches THP and VP for very low SNR with respect to linear transmit processing due
to the modulo operators at the receiver. However, both THP and VP show an important
gain for medium and high SNR scenarios.

Fig. 3.18 represents the uncoded BER vs. SNR for different nonlinear transmit
processing approaches. For uncorrelated channels, there is a gain of about1.5 dB when
comparing ordered and non-ordered THP schemes at the practical operation point in
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coded transmission corresponding to BER=10−2. This gain is even greater for correlated
channels such asSCM 2, where the difference is larger than5 dB for this point. However,
the ordering optimization shows a slight performance degradation in the low uncoded
BER region, although this loss is negligible. The enormous advantage of this suboptimum
ordering solution proposed in [92] is in fact its complexity, which is comparable to linear
zero-forcing or WF filters.

Finally, Fig. 3.19 plots the BER performance achieved for thethree spatial channel
models considered throughout this work. SCM1, corresponding to the suburban
macrocell environment, shows the worst performance due to its small diversity since
spatial correlations are larger than in the other two types of channels. On the other
hand, SCM3, corresponding to an urban microcell environment, obviously shows the
best performance since all the eigenvalues of its covariance matrix are not negligible,
i.e. SCM 3 is the most spatially uncorrelated channel compared to the others. The
channel correlations are affected by the angle spread at thebase station, which is larger
in microcell than in macrocell environments [37]. The same is true when comparing
urban and suburban areas, since the scattering process in the vicinity of the base station is
increased due to its location usually being at the same height as the surrounding scatterers
in urban areas [36,37]. For all the types of channels, nonlinear transmit techniques exhibit
better performance than linear precoding with VP being the best solution at the cost of
increasing the computational complexity at the transmitter caused by the lattice search.
However, at low SNR, linear precoding outperforms the other two nonlinear schemes due
to the presence of the modulo operators at the receiver sidesfor both THP and VP.

3.4 Conclusions

In this chapter we have reviewed most of the commonly implemented approaches for
transmit and receive processing in multiuser MISO and SIMO systems. In general, we
have shown that nonlinear schemes lead to better performance in terms of BER. Moreover,
transmit processing shows better performance compared to receive processing for high
SNR scenarios, with the enormous advantage of simplifying the receiver side of the
downlink. Although MLD and VP achieve the full diversity of the channel they typically
suffer from much higher complexity. For this reason, given the superiority of nonlinear
schemes over linear ones and the need to perform the signal separation at the transmitter
in the downlink due to the absence of cooperation between thedifferent users, THP is the
best choice as a trade-off between performance and complexity.
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Chapter 4

Imperfect CSI: Error Sources

Most recent standards in wireless communication systems include feedback channels for
sending information relating to different link parametersfrom the users to be used by
the transmitter. However, the data rate of these feedback channels is naturally limited
(e.g. [25]). When the transmitter has no full knowledge aboutthe channel necessary to
construct the precoding filters, this information has to be supplied by the users. Therefore,
this CSI must be compressed to ensure that the tight scheduling constraints on the limited
date rate of the feedback channel are satisfied. It is still a subject of research to determine
what kind of information has to be sent from the receivers to the transmitter and the way
of recovering it at the transmitter side. Therefore, the main contribution of this work
is the design of this limited CSI feedback to minimize the meansquared error with the
minimum number of bits of fed–back information. This topic is henceforth calledlimited
feedback.

Erroneous CSI at the transmitter involves a performance degradation due to the
mismatch between the true channel and the erroneous channelused for the design of
the precoder filters. Therefore, we have to incorporate a robust design of these filters
to compensate this mismatch effect, which is termedrobust precoding[17, 43, 44]. In
the next chapter we derive the design of the transmit processing schemes studied in this
work to be robust against errors occurring on the channel information available at the
transmitter. Our ultimate objective will be the design of the limited feedback channel by
taking into account the CSI errors that are introduced below in this chapter.

Fig. 4.1 plots the block diagram of the limited feedback channel that we will be
assuming throughout this work. The chapter starts by estimating the channel at the
receivers using pilot symbols sent from all the transmit antennas. This enables the
receivers to estimate their respective vector channels. Then, we reduce the estimates
to a low-dimensional representation, which is also calledrank reductionor truncation, by
projecting them onto a basis. This basis depends only on the channel statistics and the
projection leads tod coefficients per user, withd ≤ N . It is assumed that the channel

79
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Figure 4.1: Model of Limited Feedback: Channel Estimation, Truncation, Quantization,
and Feedback Delay.

statistics are known at both the transmitter and the receiver side. Thed coefficients are
quantized prior to transmission over the feedback channel which also introduces a delay.
However, we assume that the feedback channel does not sufferfrom transmission errors.

For brevity, the errors due to the estimation process will betermedType A errors; the
errors including estimation and rank reduction will be calledType B errors; and finally,
all the errors without feedback delay will be termedType C errors. We describe all the
error sources in the following sections.

4.1 Channel Estimation

Fig. 4.2 depicts the estimation process performed at the receiver side. We use linear
estimators at the receivers based onNtr ×N pilot symbols per user to enable the channel
vector estimation for thek-th user. The vector comprising theNtr received symbols for
thek–th user at the time slotq reads as

yk[q] = Shk[q] + ηk[q] ∈ CNtr (4.1)

where the matrixS contains the training symbols and is given by

S =






S1,1 . . . S1,N
...

. ..
...

SNtr,1 . . . SNtr,N




 ∈ CNtr×N

with hk[q] = [h1,k[q], . . . , hN,k[q]]
T ∈ CN corresponding to the channel vector for user

k andyk[q] = [y1,k[q], . . . , yNtr,k[q]]
T ∈ CNtr andηk[q] = [η1,k[q], . . . , ηNtr,k[q]]

T ∈ CNtr
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hk[q]
S

ηk[q]

yk[q]
Gk ĥes,k[q]

Figure 4.2: Type A Error: Estimation.

being, respectively, the received pilot signal and the additive white Gaussian noise with
covariance matrixCηk

= E[ηk[q]η
H
k [q]]. Remember that we have a fading block channel

with q denoting the time slot of sizeNB symbols spaced withTs. As shown in Fig. 4.2,
the above received signalyk[q] is passed through a linear filterGk ∈ CN×Ntr to produce
the linear channel estimate

ĥes,k[q] = Gkyk[q] ∈ CN . (4.2)

As mentioned before, it is assumed that the channel statistics are known at the
transmitter and the receiver side. If not, the information from the training channel can
be exploited to estimate the channel and noise covariance matrices. These covariance
matrices can be communicated to the transmitter without significantly increasing the
overhead of the feedback channel since these statistics change very slowly. For example,
when a MIMO testbed is employed (see Chapter 8), it is apparentthat we need to know
the channel statistics and, therefore, it is mandatory to use some method to estimate these
second order moments [97].

Note that the error due to estimation cannot be neglected even though the number of
pilot symbols is increased, as we illustrate in Chapter 6. Therefore, perfect CSI is not
even available at the receivers and erroneous CSI is sent to the transmitter. Supervised
techniques for channel tracking, such as Kalman filtering [98–102], were employed
as initial trials to illustrate the effect of that erroneousCSI caused by estimation on
the final performance. Also some blind techniques, as explained in [100–103] or in
[104, 105] where particle filtering or adaptive blind sourceseparation algorithms such
asEquivariant Adaptive Separation via Independence(EASI) were implemented, have
been tested to follow the channel variations by means of estimating and predicting the
channel coefficients at the cost of increasing the loss in performance compared to the
previous non-blind methods.

We describe in the following subsections the channel estimation methods used
throughout this work: theLeast-Squares(LS) and theLinear Minimum Mean Square
Error (LMMSE) channel estimators. The LS estimation is based on the minimization
of the sum of the squared errors between the observations,yk[q], and the desired signal
Shk[q]. However, for MMSE estimation, the channel estimate is found such that the
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estimateGkyk[q] is the most similar signal to the channelhk[q] in the MMSE sense.
There exists a strong connection between the LS and MMSE criteria. The MMSE filter,
which is also calledWienerfilter, is obtained by minimizing the mean square error, and
is therefore a stochastic criterion. The LS solution, however, is obtained by minimizing
the squared error on a given block of data, which constitutesa deterministic problem. But
when the noise is white, i.e.Cη,k = σ2

η,kI, and the noise variance converges to zero, the
MMSE solution converges to the LS solution. Therefore, LS estimation can be considered
as a practical alternative to the MMSE method, since no statistics of any signal must be
available to design the estimator.

4.1.1 Least-Squares (LS) Channel Estimation

As mentioned above, the LS channel estimator minimizes the following squared error
quantity

ĥ
(LS)
es,k [q] = argmin

hk[q]

‖yk[q]− Shk[q]‖22 (4.3)

whereyk[q] is the received signal in Eq. (4.1).
The expression for the gradient of the squared errorε = ‖yk[q] − Shk[q]‖22 with

respect toh∗
k[q] is

∂ε

∂h∗
k[q]

= −SHyk[q] + SHShk[q].

As the second gradient ∂2ε
∂h∗

k
[q]∂hT

k
[q]

1 with respect tohT
k [q] is given bySHS, which is

positive definite, the cost function of Eq. (4.3) is strictlyconvex. Therefore, there exists a
unique global minimum solution to Eq. (4.3) that can be obtained via the above gradient.

The least-squares estimate sets this gradient to zero to produce the solution [97, 106,
107]

ĥ
(LS)
es,k [q] = GLS-estim,kyk[q] =

(
SHS

)−1
SHyk[q] = S†yk[q] (4.4)

where the last equality is obtained from the pseudo inverse definition of S, denoted as
S† = (SHS)−1SH. GLS-estim,k is implicitly defined in Eq. (4.4) and is given by

GLS-estim,k =
(
SHS

)−1
SH. (4.5)

Note that the LS estimation matrixS† is common to all the users. Also note that the
expression(SHS)−1SH for the Moore–Penrose pseudo inverseS† is only valid if SHS

1More precisely, the definiteness of the Hessian matrix ∂2ε

∂




h∗

k[q]
hk[q]



∂[hT
k
[q],hH

k
[q]]

has to be checked. Since

the Hessian matrix isI ⊗ SHS, and thus positive definite, the errorε is convex.
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is regular. Under the assumption of linear independent columns ofS, this leads to the
conditionNtr ≥ N . The matrixSHS is called theGrammianor Grammatrix ofS [107].

The error covariance matrix derived from LS channel estimation is easily obtained as
follows

C
(LS)
e,k = E

[

(hk[q]−GLS-estim,k (Shk[q] + ηk[q])) (hk[q]−GLS-estim,k (Shk[q] + ηk[q]))
H
]

=
(
SHS

)−1
SHCη,kS

(
SHS

)−1
. (4.6)

4.1.2 Linear Minimum Mean Squared Error (LMMSE) Channel
Estimation

Let us assume that the estimator ofhk[q] is constrained to be a linear function ofyk[q].
The problem is to find the matrixGk that minimizes the mean squared error between
hk[q] and the linear estimatêhes,k = Gkyk[q]. The mean-squared error betweenhk[q]

andĥes,k is given by [83,107],

ε (Gk) = E
[
‖hk[q]−Gkyk[q]‖22

]
= E

[

tr
(

(hk[q]−Gkyk[q]) (hk[q]−Gkyk[q])
H
)]

= E
[
tr
(
hk[q]h

H
k [q]− hk[q]y

H
k [q]GH

k −Gkyk[q]h
H
k [q] + Gkyk[q]y

H
k [q]GH

k

)]

= tr
(
Ch,k −Chy,kG

H
k −GkCyh,k + GkCy,kG

H
k

)
(4.7)

where the covariance matricesCh,k, Chy,k, Cyh,k, andCy,k are implicitly defined. Notice
that the MSE is strictly convex inGk. Therefore, its solution is unique.

By setting the derivative ofε(Gk) with respect toG∗
k to zero, we obtain

∂ε (Gk)

∂G∗
k

= −Chy,k + GkCy,k = 0

which leads to the final expression for the MMSE linear filter

GMMSE-estim,k = Chy,kC
−1
y,k. (4.8)

Bearing in mind Eq. (4.1), the resulting LMMSE filter is expressed as

GMMSE-estim,k = Ch,kS
H(SCh,kS

H + Cη,k)
−1 ∈ CN×Ntr (4.9)

by incorporatingChy,k = E[hk[q]y
H
k [q]] = Ch,kS

H and Cy,k = E[yk[q]y
H
k [q]] =

SCh,kS
H + Cη,k into Eq. (4.8).

Thus, the MMSE channel estimate is obtained as

ĥ
(MMSE)
es,k [q] = GMMSE-estim,kyk[q]. (4.10)
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Figure 4.3: Rank reduction: Truncation at the Receiver and Reconstruction at the
Transmitter.

Note that the MMSE solution (after applying the inversion lemma) reduces to the LS
approach for white noise (Cη,k = σ2

η,kI) and low noise scenarios (σ2
η,k → 0). Therefore,

the LS approach will be clearly suboptimum for the case of correlated noise.
Finally, it is easy to demonstrate using the inversion lemma(Appendix B) that the

error associated with the linear estimatorGMMSE-estim,kyk[q] has the following covariance
matrix

C
(MMSE)
e,k = E

[
‖hk[q]−GMMSE-estim,kShk[q]−GMMSE-estim,kηk[q]‖22

]

= Ch,k −Ch,kS
H
(
SCh,kS

H + Cη,k

)−1
SCh,k =

(
C−1

h,k + SHC−1
η,kS

)−1
.

(4.11)

4.2 Rank Reduction

In wireless communications, the feedback channel is often limited in terms of data rate.
It is interesting, then, to compress the CSI in order to reducethe amount of information
sent from the users to the transmitter. To this end, in this section we explain how the CSI
estimation can be compressed by truncating theKarhunen-Lòeve(KL) transformation.
The basic premise of the truncated KL transform is that it is optimum in the sense that
it provides dimensionality reduction with the smallest possible MSE. The robust designs
proposed in this work are based on this decomposition, although the starting point matrix
may be different from the matrix used in the Karhunen-Loève truncation.

Fig. 4.4 plots the block diagram that includes the rank reduction and quantization
process. The procedure to obtain the truncation filters depicted in the figure is based on
the eigenvalue decomposition of the channel covariance matrix of userk, Ch,k, which
reads as

Ch,k = E[hk[q]h
H
k [q]] =

rk∑

i=1

λk,iv
′

k,iv
′H
k,i = V

′

kΛkV
′H
k (4.12)

whererk is the rank ofCh,k andv
′

k,i andλk,i are, respectively, thei-th eigenvector (or
thei–th column of the matrixV

′

k ) and thei-th eigenvalue ofCh,k (or thei–th entry of the
diagonal matrixΛk). Note thatV

′

k is a unitary matrix that satisfies thatV
′

kV
′H
k = IN .
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The KL transform defines a vector whose coefficients are called coefficients of the KL
transformgiven by

h̃k[q] = V
′H
k ĥes,k[q] ∈ CN .

So, the transmitter can reconstruct the channel vector by multiplying these channel
coefficients from the left withV

′

k , i.e.

ĥk[q] = V
′

k h̃k[q] ∈ CN .

Note that no errors are added to our channel estimation if allthe coefficients of the KL
transform are employed sinceV

′

k is anN -dimensional orthonormal basis.
Taking into account the good energy compaction properties of the KL decomposition,

we can reduce the number of KL coefficients sent from each userby means of a basisVk

(see Fig. 4.4) that gives the following KL coefficients

h̃T,k[q] = V H
k ĥes,k[q] ∈ Cd (4.13)

where the new basisVk is defined asVk = [v′
k,1, . . . ,v

′
k,d] ∈ CN×d and d ≤ N

denotes the number of KL coefficients sent from the receiver after truncation, i.e. the
dimensionality of the rank reduction. The subindexT highlights that the CSI errors are
due to the truncation of the KL coefficients at the receiver, together with the errors due
to the estimation process, which are always considered, as shown in Fig. 4.2. Note that
now Vk, the so calledrank reduction basis, satisfiesV H

k Vk = Id, butVkV
H
k 6= IN . This

leads to errors resulting from the compression of the information due to the coefficient
truncation. Finally, the vector channel recovered at the transmitter is given by

ĥT,k[q] = Vkh̃T,k[q] ∈ CN . (4.14)

Fig. 4.3 depicts this overall rank reduction process as willbe used throughout this work.
Under the assumption that the channel statistics do not depend on time, the modal

matrix obtained from the eigenvalue decomposition in Eq. (4.12) is also constant over
time. With this assumption, only the coefficients of the reduced rank approximation have
to be sent from the receiver to the transmitter to capture thefast variations of the channel
(referred to asshort–termvariations).

4.3 Quantization Error

Quantization is the process of constraining some quantity from a continuous set of values
to a discrete one. It is widely used in image and speech processing, for example, and
also some compression schemes related to music use quantization, leading to lossy data
compression. In the context of this work, quantization is motivated by the need to reduce
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ĥes,k[q]

Q(•)
h̃T,k[q] h̃Q,k[q]

VkV H
k ĥQ,k[q]

Figure 4.4: Type B and C Errors: Truncation and Quantization.

the amount of data necessary to represent the CSI sent from theusers to the transmitter.
We distinguish between scalar and vector quantization (both depicted asQ(•) in Fig. 4.2).
Both methods will be applied to compress the fed–back CSI throughout this work.

The quantization process is described by the following errors model,

ĥQ,k[q] = ĥes,k[q] + ηQ,k[q] (4.15)

whereĥQ,k[q] ∈ CN denotes the quantized version ofĥes,k[q] and is equal to one of the
codebook entries. Additionally, the errorsηQ,k[q] ∈ CN are assumed to be mutually
independent and independent with the channel estimatesĥes,k[q]. Note that we directly
quantize the channel estimates without performing rank reduction after estimation. This
model is appropriate forRandom Vector Quantization(RVQ), which is explained below.

Alternatively, if the quantizer is applied after the rank reduction of the channel
estimates, Eq. (4.15) can be rewritten as

h̃Q,k[q] = h̃T,k[q] + η̃Q,k[q] (4.16)

where h̃Q,k[q] ∈ Cd comprises the representants or codebook entries, as plotted in
Figs. 4.1 and 4.4. Again, the errorsη̃Q,k[q] ∈ Cd are assumed to be mutually independent
and independent of the truncated channel estimatesh̃T,k[q] ∈ Cd. For this setup, each
of the scalar coefficients of̃hT,k[q] is scalarly quantized as is shown in the following
subsection.

4.3.1 Scalar Quantization

The scalar quantizer (as any quantizer) can be explicitly separated into two parts, an
encoder and a decoder. The encoder mapsE : R → I, whereR are the real numbers
and I is the index set for partition cells. The decoder is the mapping D : I → R, so
the quantizer can be written asQ(x) = D(E(x)). Note that we restrict ourselves to real
scalar quantizers, since the scalar quantization of a complex number is in fact the vector
quantization of two real–valued quantities.

The output set orcodebookC = {y1, y2, y3, . . . , yM} with yi ∈ R for the decoder
process satisfies thaty1 ≤ y2 ≤ . . . yM , with the codebook size|C| = M . Therefore,
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Figure 4.5: Structure of a Scalar Quantizer.

the number of bits needed to specify the quantized value is given by log2M , the so–
called resolution. The resolution indicates the accuracy with which the original analog
amplitude is described.

The encoder operation can be modeled by means of a selector function Si(y). The
selector functionSi(y) is 1 if y ∈ Ri, i.e. thei–th partition region, and0 elsewhere, and
the quantization task can be expressed as

Q(y) =
M∑

i=1

yi Si(y). (4.17)

Note that for any given input valuex, only one term of the sum is nonzero. In the sequel,
we will use this notation for scalar quantization. Fig. 4.5 depicts the structure of a scalar
quantizer according to this notation.

The main goal of the quantizer design is to select the representants and the partition
regions or cells to provide the minimum possible average distortionE[d(•, •)] for a fixed
number of levelsM . In general, this problem has no explicit, closed-form solution but
some efficient algorithms can be used.

By assuming that one part (the encoder or the decoder) is fixed,it becomes easy to
specify a condition for optimality of the other part. Specifically, the encoder part of
an optimal quantizer must be optimal for the given decoder while the decoder must be
optimal for the given encoder [108]. The two conditions are necessary for a quantizer to
be optimal.

The best encoder for a given codebook satisfies thenearest neighbor condition. This
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requires that thei–th region of the partition consists of all input values closer toyi than to
any other output level, i.e. the partition cells satisfy

Ri ⊆ {x ∈ R : d(x, yi) ≤ d(x, yj) ∀j}

that is,
Q(x) = yi only if d(x, yi) ≤ d(x, yj) ∀j.

Thus, given the decoder, the encoder minimizes the distortion:

d(x,Q(x)) = min
yi∈C

d(x, yi). (4.18)

This result holds in general if the goal of the quantizer is the minimization of the average
distortion. The most convenient and widely used measure of distortion between an inputx
and its quantized valueQ(x) is thesquared erroror squared Euclidean distancebetween
two scalar values, defined as

d(x,Q(x)) = |x−Q(x)|2 . (4.19)

We now examine the second necessary condition for optimality which is obtained
by fixing the encoder (partition) and optimizing the decoder(codebook). Thecentroid
condition is found based on this optimization provided that the squared error distortion
measure is used. The centroid condition is simply the condition that the optimal output
level,yi, for thei–th cell of the partition is thecentroid, or center of mass, of that part of
the input PDF that lies in the regionRi, i.e.

yi = E[x|x ∈ Ri] =

∫

R

x
fx,x∈Ri

(x, x ∈ Ri)

Pr[x ∈ Ri]
dx =

E [xSi(x)]

E [Si(x)]
. (4.20)

When the quantizer satisfies the centroid condition, the following properties are fulfilled

E [Q (x)] = E [x]

E [xQ (x)] = E
[
Q (x)2]

E
[
Q (x)2] = E

[
x2
]
− E

[
(x−Q (x))2] . (4.21)

Uniform Quantizer

The most common of all scalar quantizers is the uniform quantizer whose principle is
rather simple (see [108]). A uniform quantizer is a quantizer where the boundary points
x1, . . . , xM−1 defining the partition cellsRi are equally spaced and the representants
are the midpoints of the quantization interval. The first condition implies that with
step size∆, xi − xi−1 = ∆, for i = 2, 3, . . . ,M − 1, whilst the second implies that
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Figure 4.6: Lloyd Iteration for Codebook Improvement.

yi = (xi−1 + xi)/2, for i = 2, 3, . . . ,M − 1. Consider the case of a uniform quantizer
where the input is bounded with values lying in the range(a, b). When the input PDF is
uniformly distributed over the region, the quantizer errorǫ = Q(x) − x has a uniform
PDF on[−∆/2, ∆/2], where∆ = (b− a)/M is the step size. Given the cell, the average
distortion is simply the variance of a random variable that is uniformly distributed on
an interval of width∆, that is ∆2

12
. Obviously, the mean of the quantizer error is zero.

Although the input distribution might not be uniform, the uniform quantizer gives a
reasonably good performance for a wide variety of input signals. In fact, due to this
reason and also for simplicity, the uniform quantizer is widely used in A/D conversion.

In the context of this work we have the coefficients of the rank-reduced representation
h̃T,k[q] in Eq. (4.13). As we will see, although the input PDF is not uniform but Gaussian,
we make the simplifying assumption that the input is bounded, i.e. we assume that the real
and imaginary parts of every entry ofh̃T,k[q] lie in some interval(a, b) (see Chapter 6).
The overload region has a very low probability (less than5 %) of containing an input
sample. Thus, we choose representants betweena andb to construct an initial codebook
that is stored at both transmitter and receiver. After transmission, every receiver performs
a search to find for each component of the coefficients (real and imaginary part) the
element in the corresponding codebook that is closest. Then, the codebook index is
fed back to the transmitter. Finally, the transmitter simply looks into its codebook and
reconstructs the estimated channel from the selected codeword [103]. This estimate will
be used to obtain the precoder filters.

Non-uniform Quantizer based on Gaussian Inputs and Lloyd Algorithm

When considering non-uniform quantizers, we have to select the quantizer step sizes to fit
the input distribution (Gaussian in our case) employing non–uniformly spaced levels. We
employ the Lloyd algorithm based not on a training sequence,but rather on the known
exact input distribution. Note that it is crucial to avoid a new training sequence from the
point of view of efficiency and performance. Given a codebookCm, the Lloyd algorithm
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Figure 4.7: Lloyd Algorithm for Quantizer Design.

finds the optimal partition by means of using the nearest neighbor condition. The partition
cells are thus defined as

Ri ⊂ {x ∈ R : d(x, yi) ≤ d(x, yj) ∀j 6= i}.

Basically, the procedure is as follows. We begin with an initial codebookC1(m = 1),
for example, the uniform codebook. Then, in the next step, given the codebookCm, we
perform the Lloyd algorithm to generate the improved codebook Cm+1. After that, we
compute the average distortion forCm+1. If it is less than a fixed threshold, we stop.
Otherwise, we setm + 1 → m and repeat the previous step. In this way, we get a
locally optimal codebook for the Gaussian input with the minimum average distortion
(see Figs. 4.6 and 4.7).2

This quantization scheme is modified when considering the final approach shown in

2The nearest neighbor condition and the centroid condition are only necessary but not sufficient for
global optimality. Therefore, only local optimality is ensured by the Lloyd algorithm.
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Chapter 7, where the codebook entries are not the channel coefficients but the employed
precoders. Therefore, the index fed back by each user corresponds to a set of precoders
and the intersection of the sets gives us the best precoder (see Chapter 7).

4.3.2 Vector Quantization

Vector quantization (VQ) is a lossy data compression methodbased on the principle of
block coding. Vector quantization is the generalization ofscalar quantization to higher
dimensions. Although many of the ideas of scalar quantization can be applied to the more
general scheme of vector quantization, VQ offers much greater compressing potential
than scalar quantization. Again, the main goal when designing vector quantizers is to find
a codebook, i.e. the decoder, and a partition or encoding rule. As for scalar quantization,
the coefficients of the rank-reduced representation are theinput to the quantizer

Q(y) =
M∑

i=1

yiSi(y)

whereyi ∈ Cd, i = 1, . . . ,M are the codebook entries. Note that this structure is
equivalent to the scalar one in Fig. 4.5 and is depicted in Fig. 4.8. The disjoint partition
cellsRi fulfill

⋃M
i=1Ri = Cd andRi

⋂Rj = ∅, i.e. Q(y) is regular (e.g. [108]).
We assume that the codebook sizeM is given; thed–dimensional input random vector

x (i.e. the channel coefficient) is statistically specified; and a particular distortion measure
d(•, •) has been selected. As for the scalar quantizer, we choose thesquared Euclidean
distancebetween two complex vectors defined as

d (x,Q (x)) = ‖x−Q(x)‖22 = (x−Q(x))H (x−Q(x)) =
d∑

i=1

|xi −Q(xi)|2 .

We wish to determine the necessary conditions for a quantizer to be optimal in the
sense that it minimizes the average distortion for the givenconditions. Recall that the
encoder is completely specified by the partition cells and the decoder is completely
specified by the codebookC. For a given codebook, an optimal partition is one specifying
thenearest neighbor condition: for eachi, all input points closer to code vectoryi than to
any other code vector should be assigned to regionRi. Thus, by considering thenearest
neighbor conditionwe have that the optimal partition cells satisfy

Ri ⊂ {x ∈ Cd : d(x,yi) ≤ d(x,yj) ∀j}

for a given codebookC = {y1,y2, . . . ,yM}, that is,

Q(x) = yi only if d(x,yi) ≤ d(x,yj) ∀j.
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Figure 4.8: Structure of a Vector Quantizer.

Thus, given the decoder, the encoder is a minimum distortionor nearest neighbor
mapping, and hence

d(x,Q(x)) = min
yi∈C

d(x,yi).

We next consider the optimality of the codebook for a given partition. This leads to
thecentroid conditionfor specifying the code vector associated with each partition region.
For a given partitionRi, i = 1, . . . ,M , the optimal code vectors satisfy

yi = cent(Ri) = E[x|x ∈ Ri] =
E[x Si(x)]

E[Si(x)]
.

A vector quantizer which satisfies the centroid condition for the squared error
distortion measure has the following properties

E[Q(x)] = E[x]

E[xH Q(x)] = E[‖Q(x)‖2]
E[‖Q(x)‖2] = E[‖x‖2]− E[‖x−Q(x)‖2].

The result is an exact generalization of the conditions for scalar quantizers explained
above [cf. Eq. (4.21)].

Random Vector Quantization (RVQ)

In the context of this work, the codebook entries of each userare generated such that

yk,i ∼ NC(0,Ch,k) i = 1, . . . ,M (4.22)
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whereCh,k is the channel covariance matrix of userk. Note that the codebook entries
now contain channel vectors of dimensionN as opposed to the channel coefficients of
dimensiond ≤ N stored in the scalar codebook explained in Subsection 4.3.1. These
codebooks are simply randomly selected according to the distribution ofyk,i in Eq. (4.22).
We henceforth refer to this method for quantizing the vectorinputs asRandom Vector
Quantization(RVQ).

The procedure for RVQ is as follows. The estimated channelĥes,k[q] in Eq. (4.2)
constitutes the input to the random vector quantizer. The RVQ tries to approximatêhes,k[q]

by one of theM entriesyk,i of the codebook, so the squared error between the estimated
channel and the codebook entries is minimized, i.e.

imin,k = min
i

∥
∥
∥ĥes,k[q]− yk,i

∥
∥
∥

2

2
(4.23)

where imin,k is the index for thek-th user corresponding to the codebook entry that
minimizes the above squared error. Finally, this index is transmitted over the error-free
feedback channel. The transmitter collects the indices of all the users and recovers the
corresponding codebook entries to construct the erroneouschannel matrix that will be
used for the design of the precoder filters. Note that rank reduction is not performed before
vector quantization given that the channel vectors, ratherthan the channel coefficients, are
quantized.

4.4 Feedback Delay Error

The transmission over the feedback channel introduces a certain delay ofD slots, where
the precoder is designed during the time slotq and the most recent channel estimate was
obtained during the time slotq −D. The feedback delay error is modeled by the Dirac’s
delta shown in Fig. 4.1. This delay can equivalently be modeled as follows. The channel
estimate is obtained from outdated training data, i.e. the observation of the estimator is
delayed byD slots and, then, the respective feedback channel has no delay.

Bearing in mind the temporal correlation properties ofhk[q] andhw,k[q] described in
Chapter 2, we have that

E
[
hk[q]h

H
k [q −D]

]
= J0 (αkD) Ch,k = rkCh,k (4.24)

whererk is implicitly defined.J0(•) denotes the zero–th order Bessel function of the first
kind andαk = 2π

fD,max,k

fslot
, wherefD,max,k is themaximumDoppler frequency of userk and

fslot is the slot rate [34].
As we showed in [109], a performance improvement is obtainedwhen channel

prediction takes into account a greater number of delayed channel vectors from each user
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instead of only one outdated estimate. LetL be the number of delayed vectors processed
at the transmitter, withL ≥ 1. When the transmitter processes multiple feedback vectors,
the channel information vector has to be stacked as

h̄k[q] =
[
hT
k [q −D1], · · · ,hT

k [q −DL]
]T ∈ CdL (4.25)

whereDi, i = 1, . . . , L, is the delay expressed as the number of slots for thei-th vector.
The covariance matrix of̄hk is given byCh̄,k = Ctemp,k ⊗Ch,k, whereCtemp,k comprises
the temporal correlations and itsi-th element in thej-th column is

[Ctemp,k]i,j =

{

J0 (αk (Di −Dj)) j 6= i

1 j = i.
(4.26)

Remember thatαk = 2πfD,max,k/fslot as given in Eq. (2.24). Moreover, we have that

E
[
h̄k[q]h

H
k [q]

]
= βk ⊗Ch,k (4.27)

whereβk is defined asβk = [J0(αkD1), . . . , J0(αkDL)]T ∈ RL.
The effect of delay is quite important, especially in real systems or MIMO testbeds

(cf. Chapter 8). Performance can be strongly degraded when the channel varies while
CSI is sent through the feedback channel, since we would be designing our precoder with
an outdated channel estimate. Therefore, it is crucial to ensure that the delay introduced
by the feedback channel is less than the channel coherence time (cf. Chapter 2). It could
be interesting to determine the maximum delay that the system can support before losing
channel tracking.

4.5 Simulation Results

Some computer simulations were carried out to illustrate the performance degradation
caused by the mismatch between the true channel and the erroneous channel available
at the transmitter. The results are the mean of5,000 channel realizations and50 symbols
were transmitted per channel realization. The input bits are QPSK modulated. A feedback
delay ofD = 2 slots is considered for all the users. The slot duration wasTslot = 6.67 ms
at a carrier frequency of2 GHz. We use the second channel described in Chapter 2 for the
simulations due to its intermediate BER performance and diversity. The velocity of each
user is set tov = 10 km/h. The results are obtained for a system withN = 4 antennas
at the transmitter andK = 4 single antenna users. Figs. 4.9, 4.10, and 4.11 show the
BER performance achieved when respectively linear precoding, Tomlinson-Harashima
precoding, or vector precoding are implemented according to the Wiener criterion.
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Figure 4.9: Effect of Different Types of Errors on the TxWF Scheme in an Urban
Macrocell Environment. Error A: Estimation; Error B: Rank Reduction; Error C:
Quantization; All Errors: Estimation, Rank Reduction, Quantization, and Delay.

First, one can see the effect of different lengths of the training sequence. The figures
illustrate the performance degradation caused by channel estimation errors when this is
the only source of errors in the system. As a compromise between training sequence
length and performance degradation, we pick for our subsequent simulations the value
Ntr = 6, which implies a loss of about1 dB at BER=10−2 for the TxWF and of2 dB
for THP and VP at this same operation point with respect to thecase of perfect CSI
knowledge. A comparison between both LS and MMSE estimationmethods forNtr = 6

can also be observed and, as expected, the MMSE solution clearly outperforms the LS
approach in an urban macrocell environment, i.e. for correlated channels.

Then, rank reduction is applied so that the number of coefficients sent from each
user to the transmitter is reduced fromd = N = 4 to d = 3 or d = 2. In spite of
an important deterioration in performance when the number of coefficients is reduced,
we have the enormous advantage of reducing the overhead of the feedback channel,
especially for a high number of antennas at the transmitter.After the quantizer, only the
codebook indices corresponding to the real and imaginary part of each user’s coefficients
are transmitted through the feedback channel. These coefficients are scalarly quantized
in these simulations using8 bits (4 bits per complex dimension), which yields16 bits
per user (ford = 2); or 6 bits (3 bits per complex dimension), which yields12 bits per
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Figure 4.10: Effect of Different Types of Errors on the WF-THPScheme in an Ur-
ban Macrocell Environment. Error A: Estimation; Error B: RankReduction; Error C:
Quantization; All Errors: Estimation, Rank Reduction, Quantization, and Delay.
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Figure 4.11: Effect of Different Types of Errors on the WF-VP Scheme in an Ur-
ban Macrocell Environment. Error A: Estimation; Error B: RankReduction; Error C:
Quantization; All Errors: Estimation, Rank Reduction, Quantization, and Delay.
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user. When the codebook is larger it is obvious that the results are much better at the
cost of decreasing the compression for the CSI sent through the feedback channel and
greatly extending the storage capability necessary at the users. The figures also plot the
uncoded BER when random vector quantization (RVQ) feeding back 12 bits is applied
instead of scalar quantization. As expected, the system performance is better when VQ
is used. This is because VQ carries out a joint quantization that uses a much larger
codebook (212 = 4,096 entries per user) and compares anN -dimensional vector with
4,096 complex vectors to choose the closest one for each channel realization. Therefore,
its computational complexity is much greater than that of scalar quantization, where the
search is reduced to a comparison with23 = 8 scalar values for the real and imaginary
parts of each fed–back coefficient. For the considered number of 12 fed–back bits per
user, it is clear that the vector quantization performance for medium and high SNR is
better than that of scalar quantization.

Finally, one can see the influence on the uncoded BER of the feedback delay in the
figures. Even though it is obvious that each new error source degrades the system more
and more, note the strong performance degradation when moving fromd = 3 truncated
coefficients tod = 2.

It can also be seen how the curves go up for high SNR due to imperfect CSI. This effect
can be explained by the convergence of the WF designs to the ZF precoders, which are
highly sensitive to CSI errors. Moreover, the effect of imperfect CSI is more pronounced
for THP or VP than for LP due to the modulo operators. We will see in the following
chapters how an improvement in performance can be achieved when robust designs are
considered.

4.6 Conclusions

In this chapter, we introduced the errors of the CSI availableat the transmitter side instead
of full CSI knowledge. In that case, it is crucial to determinewhat kind of information is
sent from the different users and how this information can beobtained by the transmitter.
First, we considered the effect of estimating the channel using supervised methods. To
this end, we briefly discussed the least-squares and the linear MMSE channel estimation
approaches. Although the least-squares approach shows less quality than the LMMSE
channel estimator when full knowledge about the statistical second order moments is
assumed, this LS estimator is quite useful due to its simplicity and relatively good
performance. We also explained how we can compress the channel information sent
through the feedback channel by means of the Karhunen-Loève decomposition. Then,
we quantized the KL resulting coefficients in order to ensurethat the feedback channel
overhead is strongly reduced. We introduced scalar and vector quantization as different
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methods for compressing the CSI. The issue about the superiority of vector quantization
over scalar quantization for random input vectors is evident from the increased freedom
in choosing the partition geometry for VQ compared to the highly restrictive geometry in
the case where each vector element is scalarly quantized andthe resulting quantization
cells are rectangles. Thus, scalar quantization is simply arestricted special case of VQ.
Indeed, scalar quantization will be very useful for us due toits simpler partition regions
that produce robust designs for the optimized limited feedback. Finally, we introduced the
feedback delay error that adds a new mismatch between the true channel and the erroneous
channel resulting from the estimation, rank reduction and quantization processes.

We showed by means of some computer simulations how each typeof error degrades
the system more and more at the cost of reducing the overhead of the feedback channel.
However, there exists an important effect at high SNR consisting of increasing BER. This
effect may be corrected by an adequate limited feedback design combined with the robust
precoders shown in the next chapter.



Chapter 5

Robust Wiener Precoders for Imperfect
CSI

In FDD systems, the transmitter is unable to obtain the CSI by estimating the uplink
channels in a wireless communication system since the channels at different frequencies
are not reciprocal. Therefore, this CSI has to be obtained at the receiver side by the
users to be sent to the transmitter by means of a feedback channel that often suffers from
limited bandwidth. The CSI is affected by different sources of errors, so that all the
precoding parameters are designed with an erroneous version of the channel instead of
the true channel. Errors in the available CSI have a significant impact on the performance
of precoding. In this chapter, we present a newrobustprecoder design based on the error
model described in the previous chapter. The objective is tocompensate this mismatch
between the true channel and the erroneous channel sent fromreceivers by means of an
adequate design for precoding that involves the error modelto mitigate its effect, i.e. to
be morerobustagainst errors in CSI.

We first focus our attention on the general statistical errormodel to be used for the
robust proposals throughout this work. The chapter continues with the MMSE derivation
of the different types of precoders shown in Chapter 3 to be robust against CSI errors.
As opposed to the receive coefficients arising from the precoder optimization as used
in Chapter 3, we next include a brief discussion about the MMSEcoefficients that are
employed instead in order to compensate the mismatch between perfect and erroneous
CSI available at the transmitter side. The chapter concludeswith some comments about
the training symbols that must be sent to enable the proposedsystems to work properly.

We focus on the MMSE criterion since precoders based on this criterion clearly
outperform precoders based on the ZF criterion, as seen in Chapter 3 for the perfect CSI
case. Since an erroneous channel version can be seen as the sum of the true channel and
some noise, there is no sense in using ZF precoders in such a situation because the effect
of noise amplifying inherent to ZF worsens its performance in the presence of errors in
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CSI when compared to an MMSE precoder design.

5.1 Statistical Errors Model

The basic premise of our channel error model is the interpretation of the true channelH as
a matrix of random variables, whereas the channel estimateĤ available at the transmitter
is deterministic. The relationship betweenH andĤ is given by [17,43,44]

H [q] = Ĥ [q] + Θ[q] (5.1)

whereΘ[q] = H [q] − Ĥ [q] is the CSI error at the transmitter. The matrix̂H [q] =

[ĥQ,1[q], . . . , ĥQ,K [q]]T ∈ CK×N comprises the estimates obtained from the feedback of
the quantized coefficients of the rank reduced channel andΘ[q] = [θ1[q], . . . ,θK [q]]T ∈
CK×N collects the CSI error vectors of the different users. Each row of this matrix can be
written as the column vector

θk[q] = hk[q]− ĥQ,k[q] ∈ CN , k = 1, . . . , K.

The error covariance matrix of the zero–mean matrixΘ[q] is given by

CΘ = E
[
ΘH[q]Θ[q]

]
= E

[

(θ∗
1[q], . . . ,θ

∗
k[q]) (θ1[q], . . . ,θk[q])

T
]

=
K∑

k=1

E
[(

h∗
k[q]− ĥ∗

Q,k[q]
)(

hT
k [q]− ĥT

Q,k[q]
)]

=
K∑

k=1

C∗
Θ,k

whereCΘ,k = E[(hk[q] − ĥQ,k[q])(hk[q] − ĥQ,k[q])
H] is the error covariance matrix of

userk.
Taking into account the above error model and assumingE[Θ[q]] = 0, the channel

mean and the channel Gram mean are given by

EΘ [H [q]] = Ĥ [q]

EΘ

[
HH[q]H [q]

]
= ĤH[q]Ĥ [q] + CΘ (5.2)

respectively. The subindexΘ for the expectation denotes that the expectation is taken only
over this matrix of random variables sincêH is deterministic.

In this chapter, we optimize each type of precoder for a MU-MISO system according
to the MMSE criterion, but incorporating the model for errors of Eq. (5.1) to compensate
the effect due to erroneous CSI at the transmitter.

Note that for the sake of brevity we will henceforth omit the time slot indexq used in
Chapter 2.
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5.2 MU–MISO Robust Linear Wiener Precoding

Fig. 5.1 depicts the block diagram of a MU-MISO system with linear precoding. The
transmitted signalx[n] ∈ CN results from a linear transformation of the symbols
u[n] ∈ CK , i.e. x[n] = Fu[n] as explained in Subsection 3.1.2. For robust linear MMSE
precoding,F ∈ CN×K together with the common receive weightg ∈ R minimizes the
mean of the MSE under a transmit power constraint, i.e.

{FRlin, gRlin} = argmin
{F ,g}

EΘ

[
E
[
‖u[n]− gHFu[n]− gη[n]‖22

]]

s.t.: E
[
‖x[n]‖22

]
≤ Etx.

(5.3)

This optimization can be solved following similar steps as for the standard MMSE
precoder in Subsection 3.1.2. First of all, we develop the MSE cost function in Eq. (5.3)
as

ε (F , g) = EΘ

[
E
[
‖u[n]− gHFu[n]‖22

]]
+ EΘ

[
E
[
‖gη[n]‖22

]]

= EΘ

[
tr (Cu)− tr

(
g∗CuF HHH

)
− tr (gHFCu) + tr

(
|g|2 HFCuF HHH

)]

+ |g|2 tr (Cη) (5.4)

whereCu = E[u[n]uH[n]] ∈ CK×K andCη = E[η[n][η]H[n]] ∈ CK×K are the spatial
covariance matrices of symbols and noise. The transmit power constraint can be written
asE[‖x[n]‖22] = tr(FCuF H) ≤ Etx. Substituting Eq. (5.2) into Eq. (5.4), we get

ε (F , g) = tr (Cu)− tr
(

g∗F HĤHCu

)

− tr
(

gFCuĤ
)

+ tr
(

|g|2 ĤFCuF HĤH
)

+ tr
(
|g|2 FCuF HCΘ

)
+ |g|2 tr (Cη) (5.5)

where the property of the trace operatortr(A) = tr(AT) (see Appendix B.2) has been
applied.

The above results enable us to construct the Lagrangian function for the MSE
optimization in Eq. (5.3) as follows

L (F , g, λ) = ε (F , g) + λ
(
tr
(
FCuF H

)
− Etx

)
(5.6)

where the Lagrangian multiplier isλ ∈ R0,+.

By setting the derivatives of Eq. (5.6) with respect toF ∗ andg to zero, we obtain the
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u[n] x[n]

η[n]

F H gI û[n]

Figure 5.1: MU–MISO System with Linear Precoding.

necessaryKarush-Kuhn-Tucker(KKT) optimality conditions [cf. Eq. (3.19)]

∂L (•)
∂F ∗ = −g∗ĤHCu + |g|2 ĤHĤFCu + |g|2 CΘFCu + λFCu = 0

∂L (•)
∂g

= − tr
(

FCuĤ
)

+ g∗ tr
(

ĤFCuF HĤH
)

+ g∗ tr
(
FCuF HCΘ

)
+ g∗ tr (Cη) = 0

tr
(
FCuF H

)
≤ Etx

λ
(
tr
(
FCuF H

)
− Etx

)
= 0 with λ ≥ 0 (5.7)

where the property of the trace operator∂ tr(AB)
∂A

= BT (see Appendix B.3) has been
applied.

First of all, note that the constraint in Eq. (5.3) is always active, i.e. λ > 0. Indeed,
from the second KKT condition we have

g∗ =
tr
(

FCuĤ
)

tr
(

ĤFCuF HĤH + FCuF HCΘ + Cη

) . (5.8)

Additionally, the first KKT condition can be expressed as

λFCu = g∗ĤHCu− |g|2 ĤHĤFCu− |g|2 CΘFCu.

Multiplying by F H and taking the trace yields

λ tr
(
FCuF H

)
= g∗ tr

(

ĤHCuF H
)

− |g|2 tr
(

ĤHĤFCuF H + CΘFCuF H
)

.
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By plugging Eq. (5.8) into the last expression, we obtain that

λ tr
(
FCuF H

)
=

∣
∣
∣tr
(

FCuĤ
)∣
∣
∣

2

tr
(

ĤFCuF HĤH + FCuF HCΘ + Cη

)

−

∣
∣
∣tr
(

ĤFCu

)∣
∣
∣

2

· tr
(

ĤHĤFCuF H + CΘFCuF H
)

tr2
(

ĤFCuF HĤH + FCuF HCΘ + Cη

)

=

∣
∣
∣tr
(

ĤFCu

)∣
∣
∣

2

tr (Cη)

tr2
(

ĤFCuF HĤH + FCuF HCΘ + Cη

) . (5.9)

Thus, we conclude that
λ tr

(
FCuF H

)
= |g|2 tr (Cη)

and thereforeλ = |g|2 tr(Cη )

tr(FCuFH)
> 0 if the trivial solutionF = 0 is not allowed. As a

consequence, the transmit energy constraint is an equality[see Eq. (5.7)], i.e.

tr
(
FCuF H

)
= Etx.

Next, let us substituteλ = |g|2 tr(Cη )

Etx
into the first KKT condition:

−g∗ĤHCu + |g|2 ĤHĤFCu + |g|2 CΘFCu +
|g|2 tr (Cη)

Etx
FCu = 0.

Solving this equation forF leads to the following expression for the robust linear precoder

F =
1

g

(

ĤHĤ + CΘ + ξI
)−1

ĤH (5.10)

where we introduced the quantityξ = tr(Cη)/Etx already defined in Eq. (3.22). Note
that the matrix inside the parentheses is always positive definite since tr(Cη )

Etx
> 0, and

therefore the inverse always exists.
Now, bearing in mind Eq. (5.10), the following equality holds

|g|2 FCuF H =
(

ĤHĤ + CΘ + ξI
)−1

ĤHCuĤ
(

ĤHĤ + CΘ + ξI
)−1

.

Applying the trace operator to the above equation, and considering thattr(FCuF H) =

Etx, we finally have that the optimum value for the receive weightg must obey

|g|2 =

tr

((

ĤHĤ + CΘ + ξI
)−2

ĤHCuĤ

)

Etx
. (5.11)
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Finally, if we assume thatg is real and positive, the optimum value forg is unique and
we arrive at

gRlin =

√
√
√
√
√

tr

((

ĤHĤ + CΘ + ξI
)−2

ĤHCuĤ

)

Etx
. (5.12)

Therefore, the optimum robust linear precoder that solves the optimization problem in
Eq. (5.3) reads as

FRlin =
1

gRlin

(

ĤHĤ + CΘ + ξIN

)−1

ĤH. (5.13)

It is interesting to compare Eq. (5.13) for the optimum robust linear precoder with
Eq. (3.24) corresponding to the conventional linear precoder. We also see that the
statistical structure and the magnitude of CSI errors have a strong influence on the
final precoder. For very small errors, i.e.CΘ → 0, we obtain the classical linear
MMSE precoder (TxWF) as in Eq. (3.24) and for very large CSI errors, we getFRlin →

1
gRlin

(CΘ + ξIN)−1ĤH, i.e. FRlin acts in a similar manner to a matched filter (TxMF) as in
Eq. (3.31). Note that the regularization withCΘ due to the robust design is not necessarily
diagonal, since no assumption was made that the entries of the errorΘ[q] in Eq. (5.1) are
uncorrelated. Thus, not only the amount of error but also thestructural properties of the
error have an impact on the precoder.

The optimum robust linear precoding parametersFRlin andgRlin can be expressed in a
more compact way if we define the regularization matrix

T = CΘ + ξIN ∈ CN×N (5.14)

and the positive definite matrix

Φ =
(

ĤT−1ĤH + IK

)−1

∈ CK×K . (5.15)

Indeed, applying the matrix inversion lemma (see Appendix B.1) to Eq. (5.13) we have
that

(

ĤHĤ + T
)−1

ĤH =

(

T−1 − T−1ĤH
(

I + ĤT−1ĤH
)−1

ĤT−1

)

ĤH

= T−1ĤH

(

I −
(

I + ĤT−1ĤH
)−1

ĤT−1ĤH

)

= T−1ĤH
(

I + ĤT−1ĤH
)−1

= T−1ĤHΦ. (5.16)

Thus, Eqs. (5.12) and (5.13) corresponding to the scalar weightgRlin and the linear robust
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u[n]

a[n]

d[n] x[n]

η[n]

F H gI

M(•)
d̂[n] û[n]

Figure 5.2: MU–MISO System with Vector Precoding.

precoderFRlin, respectively, can be rewritten as

FRlin =
1

gRlin
T−1ĤHΦ

gRlin =

√
√
√
√tr

(

T−1ĤHΦCuΦĤT−1
)

Etx
.

(5.17)

5.3 MU-MISO Robust Wiener Vector Precoding

Fig. 5.2 plots the block diagram of a MU–MISO system with Vector Precoding (VP). In
vector precoding, the transmitter adds a perturbation signal a[n] ∈ τZK + j τZK to the
data signalu[n] ∈ CK prior to linear transformation with the filterF ∈ CN×K . At the
receiver, the symbols are scaled with the common weightg and then passed through a
modulo operator. This modulo operator enables the additionof the perturbation signal by
the transmitter, since the same output can be generated by different inputs for the modulo
operator. The constant associated with the modulo operatoris denoted byτ . We consider
the transmission of one block of data symbols of lengthNB during which the scaling factor
g is constant. The data symbols of the blocku[1], . . . , u[NB] are known at the transmitter.

Following similar steps as in Subsection 3.3.1, the freedomof addinga[n] is optimally
exploited by VP whose robust MMSE optimization reads as

{aRVP[n],xRVP[n], gRVP} = argmin
{a[n],x[n],g}

EΘ

[

1

NB

NB∑

n=1

E

[∥
∥
∥d[n]− d̂[n]

∥
∥
∥

2

2
|u[n]

]]

s.t.:
1

NB

NB∑

n=1

‖x[n]‖22 ≤ Etx

(5.18)

whered̂[n] are the scaled received symbols at the users given by

d̂[n] = gHx[n] + gη[n]. (5.19)

The aim of VP is to choose thevirtual desired symbols

d[n] = u[n] + a[n] (5.20)
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for n = 1, . . . , NB, so thatd̂[n] approximatesd[n] according to the MMSE criterion, as
expressed in Eq. (5.18). Note that the expectation is conditioned on the full knowledge of
the symbolsu[n] at the transmitter. However, since the statistics of the perturbation vector
a[n] are unknown, we average the symbol MSE over the whole block. And to robustify
the optimization, an expectation over the CSI errorsΘ was introduced [cf. Eq. (5.18)
with Eq. (3.64)].

The MSE in Eq. (5.18) can be expressed as

ε (a[n],x[n], g) = EΘ

[

1

NB

NB∑

n=1

E

[∥
∥
∥d[n]− d̂[n]

∥
∥
∥

2

2
|u[n]

]]

=
1

NB

NB∑

n=1

( dH[n]d[n]− g∗xH[n]ĤHd[n]− gdH[n]Ĥx[n]

+ |g|2 xH[n]ĤHĤx[n] + |g|2 xH[n]CΘx[n] + |g|2 tr (Cη) ) (5.21)

whereE[‖d[n]‖22 |u[n] ] = ‖d[n]‖22 andE[‖x[n]‖22 |u[n] ] = ‖x[n]‖22 were applied.
We form the Lagrangian function as

L (a[n],x[n], g, λ) = ε (a[n],x[n], g) + λ

(

1

NB

NB∑

n=1

xH[n]x[n]− Etx

)

(5.22)

whereλ ∈ R0,+. Now, we set its derivative with respect tox∗[n], n = 1, . . . , NB, andg∗

to zero, which leads to the KKT conditions

∂L (•)
∂x∗[n]

=
1

NB

(

−g∗HHd[n] + |g|2 ĤHĤx[n] + |g|2 CΘx[n]
)

+
λ

NB
x[n] = 0 (5.23)

∂L (•)
∂g∗

=
1

NB

NB∑

n=1

(

−xH[n]ĤHd[n] + gxH[n]ĤHĤx[n]

+ g xH[n]CΘx[n]
)

+ g tr (Cη) = 0 (5.24)

1

NB

NB∑

n=1

xH[n]x[n] ≤ Etx

λ

(

1

NB

NB∑

n=1

xH[n]x[n]− Etx

)

= 0 with λ ≥ 0. (5.25)

From the first KKT condition, we conclude that the transmit symbols are given by

x[n] =
1

g

(

ĤHĤ + CΘ +
λ

|g|2
I

)−1

ĤHd[n]. (5.26)
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Then, we have to show thatλ > 0, i.e. the power constraint is active. We can rewrite
the second KKT condition in Eq. (5.24) by equating to zero∂L(•)

∂g∗
g∗. This produces the

result

|g|2 tr (Cη) =
1

NB

NB∑

n=1

( g∗xH[n]ĤHd[n]− |g|2 xH[n]ĤHĤx[n]

− |g|2 xH[n]CΘx[n] ) . (5.27)

On the other hand, multiplying Eq. (5.23) byxH[n] from the left and summing over
n = 1, . . . , NB, yields

λ

NB

NB∑

n=1

xH[n]x[n] =
1

NB

NB∑

n=1

( g∗xH[n]ĤHd[n]− |g|2 xH[n]ĤHĤx[n]

− |g|2 xH[n]CΘx[n] ) . (5.28)

By combining Eqs. (5.27) and (5.28), we obtain that the value for the Lagrangian
multiplier

λ = |g|2 tr (Cη)
1
NB

∑NB
n=1 xH[n]x[n]

.

Therefore, it becomes clear thatλ > 0 for the non–trivial case that∃n : x[n] 6= 0. Hence,
the transmit energy constraint is always active and we define

ξ =
tr (Cη)

Etx

and correspondingly,λ = |g|2 ξ.
Bearing in mind that the transmit energy constraint in Eq. (5.18) is active and taking

into account the expressions for the transmit symbols in Eq.(5.26), we reach the following
solution for the robust WF-VP:

xRVP[n] =
1

gRVP

(

ĤHĤ + CΘ + ξI
)−1

ĤHd[n]

gRVP =

√
√
√
√

∑NB
n=1 dH[n]Ĥ

(

ĤHĤ + CΘ + ξI
)−2

ĤHd[n]

EtxNB
. (5.29)

Equivalently, we can reformulate the above equations usingthe matricesT andΦ

already defined in Eqs. (5.14) and (5.15), so Eq. (5.29) can berewritten as

xRVP[n] =
1

gRVP
T−1ĤHΦd[n]

gRVP =

√
∑NB

n=1 dH[n]ΦĤT−2ĤΦd[n]

EtxNB
.

(5.30)
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It is important to note that the scalar gaingRVP is only chosen once in each block.
Next, we proceed to find the perturbation signala[n]. First, we plug the optimum

transmit vectorsxRVP[n] and the optimum gaingRVP into the MSE expression. Following
similar steps as those taken to arrive at Eq. (3.73), we get

ε (a[n],x[n], g) =
1

NB

NB∑

n=1

d[n]HΦd[n]. (5.31)

Note that whenCΘ → 0 and, therefore,Ĥ → H, we obtain thatε(a[n],x[n], g) →
ξ
NB

∑NB
n=1 dH[n](HHH + ξI)−1d[n], which corresponds to the MSE for the non–robust

WF-VP approach shown in Subsection 3.3.1 for the case of perfect CSI available at the
transmitter.

Φ← (ĤT−1ĤH + IK)−1

factorize: Φ← LHDL

for n = 1, . . . , NB :

aRVP[n]← argmina[n]∈τZK+j τZK ||D1/2L(u[n] + a[n])||22
x[n]← T−1ĤHΦ(u[n] + aRVP[n])

gRVP←
√

1
EtxNB

∑NB
n=1 xH[n]x[n]

for n = 1, . . . , NB :

x[n]← g−1
RVPx[n]

Table 5.1: Calculation of WF-VP Robust Filters.

Finally, taking into account that every summand of Eq. (5.31) can be minimized
separately, the perturbation signal can be found via the closest point search in a lattice

aRVP[n] = argmin
a[n]∈τZK+j τZK

(u[n] + a[n])HΦ(u[n] + a[n])

= argmin
a[n]∈τZK+j τZK

||D1/2L(u[n] + a[n])||22 (5.32)

where the second line in Eq. (5.32) is obtained after introducing the Cholesky
decompositionΦ = LHDL, whereL is a unit lower triangular matrix andD is a diagonal
matrix. We will minimize the cost function in Eq. (5.32) without another constraint
using the Schnorr–Euchner algorithm [87, 88]. Note that when large errors occur,Φ is
the identity matrix leading toaRVP[n] = 0, i.e. robust VP converges to robust linear
precoding.

To summarize, in order to calculate the robust WF-VP we do the following: first,
we factorizeΦ = (ĤT−1ĤH + IK)−1 to find the perturbation vectors by means of the
lattice search in Eq. (5.32); second, the unscaled transmitvectors are computed by means
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u[n] P v[n] x[n]

I −B η[n]

F H gI
M(•) M(•)d̂[n] û[n]

Figure 5.3: MU–MISO System with Tomlinson Harashima Precoding.

u[n] P

a[n]

v[n]d[n] x[n]

I −B η[n]

F H gI
M(•)d̂[n] û[n]

Figure 5.4: Linear Representation of Tomlinson Harashima Precoding.

of linear filtering; and third, the whole block is scaled withgRVP. The pseudo code for the
robust WF-VP is given in Table 5.1.

5.4 MU–MISO Robust Wiener Tomlinson–Harashima
Precoding

Tomlinson–Harashima Precoding(THP) with partial CSI at the transmitter has been
investigated by Fischeret al. [110], Simeoneet al. [111], and Dietrichet al [18]. As
discussed in Section 3.3, in order to avoid the high complexity of the robust VP rule in
Eq. (5.32) we can employ THP as depicted in Fig. 5.3, where theperturbation signala[n]

is implicitly computed in a successive manner. The standardassumption for THP design
is that the covariance matrix of the modulo operator output at the transmitter is diagonal
[see Eq. (3.84)], i.e.

Cv = E[v[n]vH[n]] = diag
(
σ2
v,1, . . . , σ

2
v,K

)
.

Additionally, the feedback filterI−B must be strictly lower triangular. The optimization
for robust THP can be expressed as [cf. Eq. (3.88)]

{FRTHP,BRTHP, gRTHP,PRTHP} = argmin
{F ,B,g,P}

EΘ

[

E
[∥
∥P TBv[n]− gHFv[n]− gη[n]

∥
∥

2

2

]]

s.t.: E
[
‖x[n]‖22

]
≤ Etx and B is unit lower triangular (5.33)

whered[n] = P TBv[n] is the desired value for the inputs of the modulo operators atthe
receivers [see Eq. (3.86)], i.e. it is the sum of the symbolsu[n] and the perturbationa[n]

added by the modulo operator at the transmitter, as shown in Fig. 5.4. Remember that the
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permutation matrixP =
∑K

k=1 eie
T
ki

satisfiesP−1 = P T with the indexki of the i–th
data stream to be precoded.

Similarly to Eq. (3.87), we have that

ε (P ,B,F , g) = EΘ

[

E
[∥
∥P TBv[n]− gHFv[n]− gη[n]

∥
∥

2

2

]]

= tr
(
P TBCvB

HP
)
− g∗ tr

(

P TBCvF
HĤH

)

− g tr
(

ĤFCvB
HP
)

+ |g|2 tr
(

CvF
HĤHĤF

)

+ |g|2 tr
(
CvF

HCΘF
)

+ |g|2 tr (Cη)

(5.34)

where the model for errors described at the beginning of thischapter is implicitly applied.
The restriction for the unit lower triangular structure ofB in Eq. (5.33) can be

expressed as
SiBei = Siei, i = 1, . . . , K

whereSi is the selection matrixSi = [Ii,0i×(K−i)] defined as in Eq. (3.89).
The Lagrangian function corresponding to the constrained optimization problem in

Eq. (5.33) is

L (P ,B,F , g, λ,µ1, . . . ,µK) = ε (P ,B,F , g) + λ
(
tr
(
FCvF

H
)
− Etx

)

+ 2ℜ
(

K∑

i=1

tr
(
µT
i (SiBei − Siei)

)

)

(5.35)

with µi ∈ Ci, i = 1, . . . , K and where2ℜ(
∑K

i=1 tr(µT
i SiBei − Siei)) comes from the

restriction concerning the unit lower triangular structure of feedback matrixB.
The solution to Eq. (5.33) can be obtained by setting the derivatives of the Lagrangian

L(P ,B,F , g, λ,µ1, . . . ,µK) with respect toB∗, F ∗, andg to zero. The first necessary
KKT condition is obtained when we equate the derivative withrespect toF ∗ to zero, i.e.

∂L (•)
∂F ∗ = −g∗ĤHP TBCv + |g|2 ĤHĤFCv + |g|2 CΘFCv + λFCv = 0 (5.36)

with tr(FCvF
H) ≤ Etx andλ(tr(FCvF

H) − Etx) = 0 with λ ≥ 0. The resulting
optimum value forF is the following

F =
1

g

(

ĤHĤ + CΘ +
λ

|g|2
I

)−1

ĤHP TB.

Next, let us demonstrate that the inequality constraint in Eq. (5.35) is always active,
i.e. λ > 0. To this end, the derivative of the Lagrangian function withrespect tog is
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equated to zero, i.e.

∂L (•)
∂g

= − tr
(

ĤFCvB
HP
)

+ g∗ tr
(

CvF
HĤHĤF

)

+ g∗ tr
(
CvF

HCΘF
)

+ g∗ tr (Cη) = 0

and the optimum value for the gain factorg∗ is accordingly

g∗ =
tr
(

ĤFCvB
HP
)

tr
(

CvF HĤHĤF + CvF HCΘF + Cη

) . (5.37)

Now, we multiply Eq. (5.36) byF H from the right and apply the trace operator to get

λ tr
(
FCuF H

)
= g∗ tr

(

ĤP TBHCvF
H
)

− |g|2 tr
(

ĤHĤFCvF
H + CΘFCvF

H
)

.

Plugging Eq. (5.37) into the above equation, we obtain that

λ tr
(
FCuF H

)
=

∣
∣tr
(
HFCvB

HP
)∣
∣
2

tr
(

CvF HĤHĤF + CvF HCΘF + Cη

)

−

∣
∣
∣tr
(

ĤFCvB
HP
)∣
∣
∣

2

tr
(

CvF
HĤHĤF + CvF

HCΘF
)

tr2
(

CvF HĤHĤF + CvF HCΘF + Cη

)

=

∣
∣
∣tr
(

ĤFCvB
HP
)∣
∣
∣

2

tr2
(

CvF HĤHĤF + CvF HCΘF + Cη

) tr (Cη) = |g|2 tr (Cη) .

Then, it is apparent thatλ > 0 and the energy restriction is active, i.e.tr(FCuF H) = Etx

andλ = |g|2 ξ with ξ = tr(Cη )

Etx
.

Applying the matrix inversion lemma to the above expressionfor the feedforward
filter F and considering the above result forλ, the optimum feedforward filter can be
rewritten as

F =
1

g
T−1ĤH

(

I + ĤT−1ĤH
)−1

P TB =
1

g
T−1ĤHΦP TB (5.38)

with the matricesT andΦ defined in Eqs. (5.14) and (5.15), respectively.
Finally, setting the derivative of Eq. (5.35) with respect to B∗ to zero, we have the

KKT condition

∂L (•)
∂B∗ = BCv − gPĤFCv +

K∑

i=1

ST
i µ∗

ie
T
i = 0.



112 Chapter 5 Robust Wiener Precoders for Imperfect CSI

Plugging Eq. (5.38) into the above equation we have

∂L (•)
∂B∗ = BCv − PĤT−1ĤH

(

I + ĤT−1ĤH
)−1

P TBCv +
K∑

i=1

ST
i µ∗

ie
T
i

= P
(

I + ĤT−1ĤH
)−1

P TBCv +
K∑

i=1

ST
i µ∗

ie
T
i = 0.

Therefore, the feedback filterB can be expressed as

B = −PΦ−1P T

K∑

i=1

ST
i µ∗

ie
T
i σ

−2
v,i (5.39)

where we exploited the diagonal structure ofCv [see Eq. (3.84)].
Multiplying this equation bySi from the left and byei from the right, we obtain

SiBei = −SiP
(

I + ĤT−1ĤH
)

P TST
i µ∗

iσ
−2
v,i = Siei

where we used the property thateT
j σ

−2
v,jei = 0, j 6= i, andeT

j σ
−2
v,i ei = σ−2

v,i , otherwise.
The above equation allows us to find the Lagrangian multipliersµ∗

i , i = 1, . . . , K, which
are given by

µ∗
i = −σ2

v,i

(
SiPΦ−1P TST

i

)−1
Siei. (5.40)

Now, we can substituteµ∗
i of Eq. (5.40) into the expression obtained for the feedback

filter B in Eq. (5.39), and the resulting expression forB into the expression for the
feedforward filterF in Eq. (5.38). We obtain

F =
1

g
T−1ĤHP T

K∑

i=1

ST
i

(
SiPΦ−1P TST

i

)−1
Sieie

T
i

B = PΦ−1P T

K∑

i=1

ST
i

(
SiPΦ−1P TST

i

)−1
Sieie

T
i . (5.41)

With the symmetrically permuted Cholesky factorization proposed in [92]

PΦP T = P
(

I + ĤT−1ĤH
)−1

P T = LHDL (5.42)

whereL is unit lower triangular andD is non-negative diagonal, we can rewrite the
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feedforward and feedback filter expressions in Eq. (5.41) as

F =
1

g
T−1ĤHP T

K∑

i=1

ST
i

(
SiL

−1ST
i SiD

−1ST
i SiL

−HST
i

)−1
Sieie

T
i

=
1

g
T−1ĤHP T

K∑

i=1

ST
i

(
SiL

−HST
i

)−1 (
SiD

−1ST
i

)−1 (
SiL

−1ST
i

)−1
Sieie

T
i

=
1

g
T−1ĤHP T

K∑

i=1

ST
i SiL

HST
i SiDST

i SiLST
i Sieie

T
i

=
1

g
T−1ĤHP T

K∑

i=1

ST
i SiL

HST
i SiDeie

T
i =

1

g
T−1ĤHP T

K∑

i=1

ST
i SiL

HDeie
T
i

=
1

g
T−1ĤHP T

K∑

i=1

LHDeie
T
i =

1

g
T−1ĤHP TLHD

and
B = L−1D−1L−HLHD = L−1 (5.43)

respectively. To obtain this result, we used the propertiesfor the selection matrixSi given
by Eq. (3.98).

In summary, we can conclude that the solution to Eq. (5.33) for a given permutation
matrixP can be concisely written as

FRTHP =
1

gRTHP
T−1ĤHP TLHD

BRTHP = L−1

(5.44)

wheregRTHP follows from tr(FRTHPCvF
H
RTHP) = Etx, i.e.

gRTHP =

√
√
√
√tr

(

PĤT−2ĤHP TLHDCvDL
)

Etx
. (5.45)

Plugging the above results into Eq. (5.34), we arrive at an expression similar to
Eq. (3.101), namely

ε (P ,B,F , g) = ξ
K∑

i=1

σ2
v,idi,i. (5.46)

To avoid the tough combinatorial optimization with respectto the permutation matrixP ,
we propose a greedy optimization based on the MSE expressionin Eq. (5.46). In the
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i–th step, the indexki is chosen such that the respective MSE is minimized, i.e.di,i
is minimized. Fortunately, this minimization can easily beincluded in the Cholesky
factorization in Eq. (5.42). This can be seen in Table 5.2, which is very similar to
Table 3.3. Note that onlyΦ is defined differently and the feedforward filter computation
is changed.

Φ←
(

I + ĤT−1ĤH
)−1

P ← IK , D ← 0K×K
for i = K, . . . , 1

q ← argmin
q′=1,...,i

Φ(q′, q′)

Pi ← IK whosei-th andq-th rows are exchanged
P ← PiP

Φ← PiΦP T
i

D(i, i)← Φ(i, i)
Φ(1 : i, i)← Φ(1 : i, i)/D(i, i)
Φ(1 : i− 1, 1 : i− 1)← Φ(1 : i− 1, 1 : i− 1)
−Φ(1 : i− 1, i)Φ(1 : i− 1, i)HD(i, i)

LH ← upper triangular part ofΦ
B ← L−1, F ← T−1ĤHP TLHD

Table 5.2: Calculation of WF-THP Robust Filters with Ordering.

5.5 MMSE Receive Weights

We use a very simple receiver model for the precoder design where all receivers apply the
same real scalar weight contrary to [18]. This assumption ensures closed-form solutions
for the precoders. As was demonstrated in [18], the phase correction at the receivers is
especially crucial for a system with erroneous CSI at the transmitter. In that case, the
receivers must correct the wrong amplitudes and phases of the received signals due to the
errors in the CSI at the transmitter. This objective is achieved by using MMSE receive
coefficients. So, our system design is as follows. Based on thepartial CSI, the transmitter
designs the precoders under the assumption that the receivers apply the same weight and
have the same errors in their CSI as the transmitter. This conservative assumption of the
receivers is compensated by the application of the MMSE receive weights introduced in
this section. Therefore, we have a slight mismatch between the receive weights model
arising from the precoder design and the MMSE weights used instead.

In order to obtain this scalar MMSE coefficient for userk, we formulate a general
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MSE ε(gk) depending on the scalar weightgk:

ε (gk) = E
[
|xk − gkyk|22

]
= E [xkx

∗
k − g∗kxky∗k − gkykx∗k + gkyky

∗
kg

∗
k]

= cxx,k − g∗kcxy,k − gkcyx,k + |gk|2 cyy,k
wherexk andyk are, respectively, the desired and the received signals. The correlation
coefficients are defined ascxx,k = E[|xk|2] andcyy,k = E[|yk|2], and the crosscorrelation
between the received signal and the desired signal is obtained ascxy,k = E[xky

∗
k]. When

we compute the derivative with respect tog∗k and set it to zero, we obtain

∂ε (gk)

∂g∗k
= −cxy,k + gkcyy,k = 0

which leads to the linear MMSE coefficient for userk given by

gMMSE,k = cxy,kc
−1
yy,k. (5.47)

The estimation ofcyy,k is straightforward, i.e. it can be found via averaging over time, but
the estimation ofcxy,k is more delicate and depends on the type of precoder. Therefore,
we distinguish the type of precoder to obtain the crosscorrelation cxy,k in the following
subsections.

5.5.1 MMSE Weights for MU–MISO Linear Precoding

As mentioned above, MMSE receive weights are used instead ofthe weights directly
obtained from the MSE optimization in Eq. (5.3) to correct the mismatch of the phase and
the amplitude caused by the non-perfect CSI available at the transmitter. For userk the
crosscorrelationcxy,k in Eq. (5.47) between the desired signaluk[n], whereuk[n] denotes
thek–th element of the transmitted symbolsu[n] corresponding to thek–th user, and the
received signal given by

yk[n] = hT
kFRlinu[n] + ηk[n]

is expressed as

cxy,k = E [uk[n]y∗k[n]] = E
[
uk[n]

(
uH[n]F H

Rlinh
∗
k + η∗k[n]

)]
= eT

kF H
Rlinh

∗
k (5.48)

where we assume thatCu = E[u[n]uH[n]] = IK andek denotes thek–th column of the
identity matrixIK .

On the other hand, the variance of the received signalcyy,k in Eq. (5.47) is simply
given by

cyy,k = E
[
|yk[n]|2

]
= E

[(
hT
kFRlinu[n] + ηk[n]

) (
uH[n]F H

Rlinh
∗
k + η∗k[n]

)]

= hT
kFRlinF

H
Rlinh

∗
k + σ2

η,k
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whereσ2
η,k is the noise variance for the userk and we usedCu = IK .

Therefore, the MMSE receive weight is given by

gMMSE-LP,k = eT
kF H

Rlinh
∗
k

(
hT
kFRlinF

H
Rlinh

∗
k + σ2

η,k

)−1
. (5.49)

5.5.2 MMSE Weights for MU–MISO Vector Precoding

Similarly to the case of the robust linear precoder explained in the previous subsection,
it is more appropriate to use MMSE receive coefficients distinct from the common
gain assumed in the VP design in Section 5.3 due to their superior performance in the
presence of CSI errors at the transmitter. Remember that the desired signal for thek–
th user in the case of VP isuk[n] + aRVP,k[n] and that the received signal is obtained as
yk[n] = hT

kxRVP[n] + ηk[n]. Therefore, the crosscorrelationcxy,k in Eq. (5.47) is

cxy,k =
1

NB

NB∑

n=1

E [(uk[n] + aRVP,k[n]) yk[n]∗|u[n]]

=
1

NB

NB∑

n=1

E
[
(uk[n] + aRVP,k[n])

(
hH
k x∗

RVP[n] + η∗k[n]
)∣
∣u[n]

]

=
1

NB

NB∑

n=1

hH
k x∗

RVP[n] (uk[n] + aRVP,k[n])

= hH
k

1

NB

NB∑

n=1

x∗
RVP[n] (uk[n] + aRVP,k[n]) (5.50)

where we average over the whole block ofNB symbols since the statistics ofaRVP[n] are
unknown. Moreover, the variance of the received signal is easily obtained as

cyy,k = E
[
|yk|2

]
=

1

NB

NB∑

n=1

E
[(

hT
kxRVP[n] + ηk[n]

) (
xH

RVP[n]h∗
k + η∗k[n]

)∣
∣u[n]

]

=
1

NB

NB∑

n=1

∣
∣hT

kxRVP[n]
∣
∣
2
+ σ2

η,k. (5.51)

Thus, the MMSE coefficients are given by

gMMSE-VP,k =

(

hH
k

1

NB

NB∑

n=1

x∗
RVP[n]dk[n]

)(

1

NB

NB∑

n=1

∣
∣hT

kxRVP[n]
∣
∣
2
+ σ2

η,k

)−1

(5.52)

wheredk[n] = uk[n] + aRVP,k[n].
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5.5.3 MMSE Weights for MU–MISO Tomlinson–Harashima
Precoding

Following a similar reasoning as in linear and vector robustprecoding, once again it is
preferable to use the MMSE coefficients at the receiver rather than the real weightgRTHP

given by Eq. (5.45). This is because the MMSE coefficients arecapable of correcting
not only the amplitude but also the phase mismatch caused by the errors in the CSI when
computing the TH precoder filters. In THP, the received signal for the userk is yk[n] =

hT
kFRTHPv[n]+ηk[n], while the desired signal is given byeT

kP TBRTHPv[n]. Therefore, the
crosscorrelationcxy,k between these desired and received signals is expressed as follows

cxy,k = E
[(

eT
kP TBRTHPv[n]

) (
vH[n]F H

RTHPh
∗
k + η∗k[n]

)]

= eT
kP TBRTHPCvF

H
RTHPh

∗
k (5.53)

whereas the variance of the received signal is

cyy,k = E
[
|yk|2

]
= hT

kFRTHPCvF
H
RTHPh

∗
k + σ2

η,k.

Thus, the MMSE coefficients to be used together with the robust THP schemes are

gMMSE-THP,k =
(
eT
kP TBRTHPCvF

H
RTHPh

∗
k

) (
hT
kFRTHPCvF

H
RTHPh

∗
k + σ2

η,k

)−1
. (5.54)

5.6 Training data

It is important to point out that the proposed system with robust precoding is based on
two training signals that must be sent frequently.

First, common pilot signals must be transmitted from the transmit antennas to enable
an estimation of the vector channels at the single-antenna receivers (see Section 4.1).
With these vector channel estimates, the receivers find the channel covariance matrices
via time averaging. Since the covariance matrices only change slowly, the feedback of the
information that allows us to know the channel covariance matrix at the transmitter does
not cost much data rate. We assume, however, that the channelstatistics are perfectly
known at both the transmitter and the receiver side. Based on the fed–back and erroneous
CSI, the transmitter is able to perform a robust precoder design as described in this
chapter.

Second, distinct dedicated pilot signals must be sent to each receiver to allow an
estimation of the overall precoder and channel filter. This estimate is necessary for the
design of the MMSE receivers which correct the phase and the amplitude of the received
signal [18]. Clearly, the receivers are unable to directly estimate this quantity, since they
know neither the precoder nor the channel. Therefore, the training symbols are precoded
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such that the total channel, i.e. the combination of the channel and the precoder for
the pilot symbols, is equal tocxy,k. For example, the vector-valued precoder for the
dedicated pilot channel of robust VP ispRVP,pilot,k = 1

NB

∑NB
n=1 xRVP[n](u∗k[n] + a∗RVP,k[n]),

which gives, after transmission overhT
k , the complex–conjugate of the desiredcxy,k in

Eq. (5.50). Similarly to the VP case, the complex–conjugateof the desiredcxy,k in
Eqs. (5.48) and (5.53) is obtained with the vector–valued precoderspRlin,pilot,k = FRlinek
and pRTHP,pilot,k = FRTHPCvB

H
RTHPPek for robust linear precoding and robust THP,

respectively.

5.7 Conclusions

In this chapter, we have derived the expressions for robust linear and nonlinear Wiener
precoders in order to compensate the mismatch between the true channel and the
erroneous channel at the transmitter when no full channel information is available.
We have mathematically derived the precoder filters for linear precoding, THP, and
VP, taking into account the errors in the CSI introduced by channel estimation, rank
reduction, quantization, and feedback delay discussed in Chapter 4. Basically, the
robust designs incorporate an error matrixCΘ (the so–calledregularization matrix)
into the final expressions obtained for the precoders, whichenables us to avoid the
enormous degradation in performance with increasing errors in CSI when non-robust
schemes are used. We have also introduced receive MMSE weights different from the
weights resulting from the optimizations with the objective of correcting the mismatch in
amplitude and phase due to non-perfect CSI. This leads to different weights for each user,
which clearly must be better than a common gain for all users.

An optimized limited feedback design combined with these robust schemes will lead
to an improvement of the BER performance with limited feedback rate. This is in fact
an open issue at present and is still the subject of much research. The objective of the
following chapters is to find the best limited feedback design to be used together with
the robust precoders of this chapter so as to make it possibleto implement these limited
feedback schemes in practice.



Chapter 6

Feedback Design based on CSI MSE

In the vectorbroadcast channel(BC), the centralized transmitter has more degrees of
freedom than the receivers. Therefore, it is appropriate toseparate the signals by applying
precoding at the transmitter. To be able to design precoding, the transmitter needs
knowledge about the channel states of the different receivers. In the case ofFrequency
Division Duplex(FDD) systems, this knowledge can be obtained by feedback (at least
partially), where theChannel State Information(CSI) of the receiver is quantized to meet
the limited rate conditions of the feedback channel. This feedback channel is assumed
to be error-free, but it introduces a delay. CSI can be obtained by different mechanisms
at the receiver side, which gives rise to a greater or lesser amount of degradation in the
final information sent through the feedback channel. Each user estimates the channel and
reduces it to a low-dimensional representation for data compression that is possible due
to the channel correlations. Before the feedback, the CSI is quantized and only the index
of the codebook entry is sent to the transmitter. Fig. 6.1 plots the block diagram of the
limited feedback channel including the different steps forchannel estimation, coefficient
truncation, quantization, and feedback delay.

The standard assumption for feedback design is error-free CSI at the receivers [1–5].
The receivers, however, get their CSI after estimation and thus it contains errors. In this
case, a feedback design based on mutual information is difficult to achieve [112,113] and
we therefore resort to a design based on the precoding MSE.

In this chapter, we propose some limited feedback designs with the objective of
optimizing the quality of the CSI exploiting the low data rateof the feedback channel
as efficiently as possible. These feedback designs also enable us to obtain adequate
statistical characterizations of the errors in the fed–back CSI that lead to closed-form
expressions for the resulting robust precoders. In particular, we provide three limited
feedback designs based on a CSI–MSE metric, i.e. on the mismatch between the true
channel and the erroneous channel eventually available at the transmitter. The proposals
are the following.

119
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• A preliminary design of the limited feedback that consistsof a basic modeling of
errors that is quite intuitive but less than optimum when it comes to minimizing the
CSI-MSE metric.

• A non-Bayesian error modeling of errors based on an MSE feedback optimization.
This MSE optimization based on a CSI metric does not include the quantizer
parameters. For simplicity, the quantizer is the uniform quantizer explained in
Chapter 4 and the errors due to the quantization process are considered as additive
and independent noise that follows a uniform distribution.

• A Bayesian modeling of errors based on a joint MSE feedback optimization.
Now, the MSE optimization based on the CSI also includes the parameters of
the quantizer (partition cells and codebook entries), i.e.the MSE optimization
involves the parameters for whole system, which leads to an optimum feedback
design. Another novel issue is that the closed-form solutions obtained for the error
matrices of the robust design are based on a Bayesian modelingof errors. Since the
delayed channel versions fed back to the transmitter after estimation and truncation
and also the quantization errors are assumed to be Gaussian distributed, unlike in
the previous approaches, we can obtain the expressions for the probability density
function of the channel vector conditional on the delayed, truncated, and quantized
channel estimate according to a Bayesian framework. The number of bits allocated
to quantize each channel vector resulting from truncation and estimation processes
also has an important influence on the final performance achieved by the proposed
limited feedback design. In this sense, we propose an algorithm to allocate the bits
in real time so as to minimize the final MSE with a negligible increase in terms of
computational complexity.

Note that all the schemes proposed above are based on separate optimizations of
feedback and precoding, i.e. there is no unique and joint optimization that also includes
the design of the precoder filters. Such a design is proposed in Chapter 7. Therefore, we
first optimize the limited feedback and then the optimum precoders are designed taking
into account the errors of the optimum CSI sent from the receivers.

6.1 Preliminary Design of Limited Feedback

We start by estimating the channels at the receivers using the observations of the pilot
symbols. Then, we project the resulting channel estimationonto the eigenvectors of the
channel covariance matrix to obtain the Karhunen-Loève transformation of the channel
vector which optimally provides a dimensionality reduction with the smallest possible
MSE (see Section 4.2). The coefficients of the truncated KL expansion are then quantized
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Shk[q]

ηk[q]

yk[q]
Gk

Vk

h̃T,k[q]
V H
k

ĥk[q] = ĥQ,k[ν]

δ[q −D] Q (•)

quantizerfeedback

estimator truncation

Figure 6.1: Model of Limited Feedback: Channel Estimation, Truncation, Quantization,
and Feedback Delay.

prior to transmission over the feedback channel, which introduces a delay. We incorporate
this delay into our model, considering a system without feedback delay but a delayed
observation for the channel estimator. This partial CSI is then used at the transmitter to
reconstruct the channel vector and to design the precoders.The proposed limited feedback
design models the errors in a quite intuitive way but it is obvious that the MSE is not
minimized, since no MSE optimization is performed in order to optimize the fed–back
CSI. Nevertheless, this approach is quite illustrative due to its simplicity and its acceptable
performance in terms of BER, as shown later by means of computersimulations.

In the following subsections, we describe this process in more detail and obtain the
statistical description of the errors incurred at each step. Throughout this section we will
assume that the signals and errors are uncorrelated.

6.1.1 Estimator and Rank Reduction Designs

As shown in [114, 115], we use linear estimators at the receiver based onNtr × N pilot
symbols per time slotq to enable the channel vector estimation for thek-th user. We
use the least-squares estimator explained in Subsection 4.1.1 of Chapter 4. According to
Eq. (4.4), the least-squares channel estimate is obtained when we consider the estimator
GLS-estim,k = S† = (SHS)−1SH. Therefore, the channel estimate is given by

ĥes,k[q] = S†yk[q] = hk[q] + S†ηk[q] = hk[q] + ηes,k[q] (6.1)

where [see Eq. (4.1)]

yk[q] = Shk[q] + ηk[q] ∈ CNtr
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with S ∈ CNtr×N containing the training symbols for all users,hk[q] ∈ CN as the channel
vector for userk, andηk[q] ∈ CNtr being the AWGN with varianceσ2

η. We also have that
[cf. Eq. (4.6)]

ηes,k[q] ∼ NC(0, σ2
η(S

HS)−1) (6.2)

since we assumeηk[q] ∼ NC(0, σ2
ηI).

The transmission over the feedback channel, however, introduces a delay ofD = q−ν
slots. This delay can equivalently be modeled as follows. The estimator gets outdated
training data, i.e. the observation of the estimator is delayed byD slots. Then, the
respective feedback channel has no delay. In other words, the precoder is designed during
the time slotq and the channel estimate is obtained during the time slotν = q−D. Thus,
the channel estimate for delayed training data reads as

ĥes,k[ν] = hk[ν] + ηes,k[ν] (6.3)

whereηes,k[ν] has the statistical properties described in Eq. (6.2). Clearly, ĥes,k[ν] can be
rewritten as

ĥes,k[ν] = hk[q] + hk[ν]− hk[q] + ηes,k[ν] = hk[q] + η
′

es,k[ν] (6.4)

beingη
′

es,k[ν] = hk[ν] − hk[q] + nes,k[ν]. With the temporal correlation properties of
hk[q] [see Eq. (4.24)], remember that

Ch,k[D] = E[hk[q]h
H
k [ν]] = J0 (αkD) Ch,k (6.5)

with αk = 2πfD,max,k/fslot, whereJ0(•) denotes the zero–th order Bessel function of the
first kind,fD,max,k is themaximumDoppler frequency for userk, andfslot is the slot rate.
Thus, we obtain witheD = hk[ν]− hk[q]

E[eDeH
D] = 2Ch,k − E[hk[ν]h

H
k [q]]− E[hk[q]h

H
k [ν]] = 2 (1− rk) Ch,k (6.6)

whererk = J0(αkD).
Hence, the new LS estimation error has the property

η
′

es,k[ν] ∼ NC

(

0,C
′

)

(6.7)

with C
′

= σ2
η(S

HS)−1 + 2(1 − rk)Ch,k. Note thatη
′

es,k[ν] is correlated withhk[q].
Nevertheless, we will neglect this correlatedness and assume thathk[q] and the error
η

′

es,k[ν] are uncorrelated.
After channel estimation, restrictions on the data rate of the feedback channel force

us to compress the CSI to be sent to the transmitter from the users through the feedback
channel. TheKarhunen-Lòeve(KL) decomposition that enables us to obtain the rank
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reduction basisVk ∈ CN×d from the channel covariance matrix was described in
Section 4.2. Remember that the channel coefficients are givenby [see Eq. (4.13)]

h̃T,k[ν] = V H
k ĥes,k[ν] ∈ Cd.

Therefore, from Eq. (6.4) we obtain that the estimate of the channel vector after rank–
reduction in the time slotν = q −D is

ĥT,k[ν] = Vkh̃T,k[ν] = VkV
H
k ĥes,k[ν] = VkV

H
k hk[q] + VkV

H
k η

′

es,k[ν] (6.8)

with the reduction basisVk ∈ CN×d assumed to be known at the transmitter. Note that
the noiseVkV

H
k η

′

es,k[ν] and the signalVkV
H
k hk[q] lie in the same subspace spanned by

the columns ofVk. Therefore,ĥT,k[ν] gives us no information about the properties of
hk[q] lying in the orthogonal subspaceV ⊥

k . This information was lost during the rank–
reduction. The resulting error contribution due to the KL truncation reads as

ηKL ,k[q] = (I − VkV
H
k )hk[q] ∼ NC(0, (I − VkV

H
k )Ch,k(I − VkV

H
k )). (6.9)

Note that VkV
H
k η

′

es,k[ν] is orthogonal toηKL ,k[q] becauseVkV
H
k η

′

es,k[ν] lies in the
subspace spanned by the columns ofVk andηKL ,k[q] lies in the subspace orthogonal to the
columns ofVk, since the covariance matrix ofηKL ,k[q] is (I − VkV

H
k )Ch,k(I − VkV

H
k )

[107]. Thus, we have that the CSI available at the transmitterin the time slotq (neglecting
the quantization) is given bŷhk[q] obtained as

ĥk[q] = ĥnoQ,k[ν] = ĥT,k[ν] + ηKL ,k[q] (6.10)

with
ĥT,k[ν] = VkV

H
k hk[q] + ηT,k[ν] (6.11)

where [see Eq. (6.8)]

ηT,k[ν] = VkV
H
k η

′

es,k[ν] ∼ NC

(
0,VkV

H
k

(
σ2
η(S

HS)−1 + 2(1− rk)Ch,k

)
VkV

H
k

)
.

(6.12)

6.1.2 Quantizer Design

The uniform quantizer is the most common of the scalar quantizers. Note that even though
the input is Gaussian and not uniform, we can assume that the input PDF is very smooth
if the number of levels for uniform quantization is large (orequivalently, the quantizer
step is very small). Therefore, the analysis of uniform quantization is simple [108] and
the use of uniform quantizers gives reasonably good performance with the enormous
advantage of simplicity in terms of practical implementation. The principle of the scalar
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quantizer was explained in Subsection 4.3.1. The KL coefficients h̃T,k[ν] of the rank
reduced channel estimate are unfortunately not uncorrelated. Nevertheless, we assume
they are uncorrelated and white (i.e.E[h̃T,k[ν]] = 0 and E[h̃T,k[ν]h̃

H
T,k[ν]] = I) to

be able to design a uniform quantizer independently from thechannel statistics. This
scalar uniform quantizer based on the assumption of white coefficients has the advantage
of remaining unchanged for varying channel statistics. Additionally, we assume that
the input is bounded, with real and imaginary parts independently quantized and lying
in the range included between−

√
2 and

√
2, so the overload region has a very low

probability (≤ 0.05) of containing any input sample as long as the input is distributed
as a unit Gaussian distribution. The simplicity of the proposed quantizer enables us
to store initial codebooks at both the transmitter and receiver sides that need not be
adapted to changing channel conditions. These codebooks might not be common to all
the users since each user can use a different number of bits per coefficient to send the
CSI to the transmitter. However, the scalar uniform quantizer can be computed before
transmission without being recomputed in real time (just switch between look–up tables).
The computer simulations in Section 6.4 show how normalizing each coefficient by the
corresponding entry of the diagonal matrix resulting from the KL factorization of the
channel covariance matrix in order to obtain thatE[h̃T,k[ν]h̃

H
T,k[ν]] = I improves the

performance. The improvement in terms of BER is noticeable, especially for high SNR
values, since we approximately get a unit variance Gaussiandistribution. Afterwards, this
operation is inverted at the output of the quantizer by multiplying the quantized channel
version by this scaling factor available at the receivers.

The process of quantization is as follows. Before transmission, we design uniform
quantizers with representants between−

√
2 and

√
2 for each user’s coefficient that have

different sizes (Mi) according to the importance of the channel coefficient to bequantized.
The step size for thei–th coefficient is given byγi = 2

√
2

Mi
, which is assumed to be the same

for both the real and imaginary part. This initial codebook is stored at both the transmitter
and receiver sides. The receivers perform a search to find theelement in the codebook
that is closest to the real or imaginary inputs corresponding to the real or imaginary parts
of the KL coefficients obtained at time slotν = q−D. Then, the corresponding codebook
index is fed back to the transmitter. Finally, the transmitter simply looks into its codebook
and builds the precoder parameters from the selected codeword [103].

We consider the following simple model for the quantizationerror

h̃T,k[ν] = h̃Q,k[ν] + η̃Q,k[ν] ∈ Cd (6.13)

where h̃Q,k[ν] is the quantized version of the rank-reduced channel coefficients and
η̃Q,k[ν] is the additive error introduced by the quantizer. Additionally, we assume that
the quantization error̃ηQ,k[ν] is uniformly distributed within the cell corresponding to
a codebook entry (neglecting the different cell size for therepresentants±

√
2). The
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resulting error variance isγ2
i /12 for the real or imaginary part of thei–th coefficient [108].

Assuming additionally that the KL coefficients are uncorrelated with the zero–mean
quantization errors, we get for the covariance matrix of thequantization noisẽηQ,k[ν]

of userk

Cη̃Q,k
= E

[
η̃Q,k[ν]η̃

H
Q,k[ν]

]
= diag

(
γ2

1

6
, . . . ,

γ2
d

6

)

∈ Rd×d (6.14)

whereγ2
i /6 with i = 1, . . . , d, also comes from the fact that the quantization errors for

each real and imaginary input are independent and given byγ2
i /12 [108].

Finally, bearing in mind Eq. (6.13), we have

ĥT,k[ν] = Vkh̃T,k[ν] = Vk

(

h̃Q,k[ν] + η̃Q,k[ν]
)

= ĥQ,k[ν] + ηQ,k[ν] ∈ CN . (6.15)

For notational brevity, we have introducedηQ,k[ν] = Vkη̃Q,k[ν]. Therefore, we get the
rank deficient covariance matrix for the quantization error

CηQ,k
= E[ηQ,k[ν]η

H
Q,k[ν]] = Vk diag

(
γ2

1

6
, . . . ,

γ2
d

6

)

V H
k . (6.16)

In summary, Eqs. (6.10), (6.11), and (6.15) enable us to express the CSI at the
transmitter side in the time slotq as

ĥk[q] = ĥQ,k[ν] = ĥnoQ,k[ν] + ηQ,k[ν]

= VkV
H
k hk[q] + ηT,k[ν] + ηKL ,k[q] + ηQ,k[ν] (6.17)

whereηT,k[ν] is the error due to channel estimation [see Eq. (6.12)],ηKL ,k[q] stands for
the error due to truncation [see Eq. (6.9)], andηQ,k[ν] denotes the quantization error [see
Eq. (6.16)].

6.1.3 MSE Error Matrix for Robust Multi-User Precoder Design

Robust designs have been explained in Chapter 5 for implementing precoding schemes
in scenarios where no perfect CSI is available at the transmitter. On the other hand, the
cause of this erroneous CSI has been introduced in Chapter 4 with a brief discussion about
the error sources that have an influence on the CSI. As seen in Chapter 5, we can reduce
the impairments of the channel state information at the transmitter side by introducing
a regularization given by an additional matrix in the designof the different precoders as
shown in Eqs. (5.17), (5.30), and (5.44). Next, we spell out this matrix of regularization
against errors in CSI according to the limited feedback developed in this section.

Remember that in Eq. (5.1) we introduced the channel matrix model as follows

H [q] = Ĥ [q] + Θ[q].
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SShk[q]hk[q]

ηk[q]ηk[q]

GkGk h̃T,k[q]
Vk ĥk[q]

feedback

estimation
and
truncation

reconstruction

Figure 6.2: Feedback Design for a Non–Bayesian Error Modeling based on CSI MSE.

For the approach considered in this section,Ĥ [q] is the quantized version of the channel
matrix andΘ[q] is the error matrix given by

CΘ =
K∑

k=1

C∗
Θ,k

where the error matrix for userk, which reduces the effects of the mismatch between the
perfect and the imperfect CSI recovered at the transmitter given by Eq. (6.17), is expressed
as

CΘ,k = VkV
H
k (σ2

η(S
HS)−1 + 2 (1− rk) Ch,k)VkV

H
k + (I − VkV

H
k )Ch,k(I − VkV

H
k )

+ CηQ,k
. (6.18)

6.2 Non-Bayesian Error Modeling based on CSI MSE

In this section, we propose a joint MSE optimization of the channel estimation and the
rank reduction basis, where the quantizer is modeled as a data independent additive noise
source. Fig. 6.2 depicts the feedback model based on CSI MSE described in this section.
Note that the quantizer is not explicitly shown since its parameters are not included into
the MSE optimization. Interestingly, the resulting reduction basis is different from the
eigenbasis of the channel covariance matrix (i.e. the Karhunen-Lòeve basis as used in
the previous section). Besides the design of the components of the feedback system, the
joint MSE optimization also delivers the error covariance matrix, which is necessary for
a robust precoder design.

As in the last section, we start by estimating the channel at the receivers using the
observations of different pilot symbols sent from the transmit antennas. Then, the estimate
is reduced to a low-dimensional representation of the channel by projecting the estimate
onto a basis which depends only on the statistics of the channel. The coefficients are
then quantized prior to transmission over the feedback channel, which is assumed to be
error-free but introduces a delay.
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6.2.1 Estimator and Rank Reduction Designs

The feedback link introduces a delay that is modeled by meansof estimation via an
outdated version of the observation of the training channel. When only one past training
period is considered, the receiver is as simple as possible,since only one observation
vector has to be processed. However, the receiver could use several observation vectors to
consider more than one outdated version of the channel, thereby improving the estimation
quality. Accordingly, we can stack the channel informationto be processed as follows
[109,116]

h̄k[q] =
[
hk[q −D1]

T, · · · ,hk[q −DL]T
]T ∈ CNL (6.19)

whereL is the number of delayed vectors to be processed, andDi, i = 1, . . . , L, is the
delay expressed as the number of slots for thei-th vector. We have that the crosscovariance
matrix between the channelhk[q] and the stacked channelh̄k[q] of Eq. (6.19) is given by
[see Eq. (4.27)]

Ch̄h,k = E
[
h̄k[q]h

H
k [q]

]
= βk ⊗Ch,k ∈ CN×NL (6.20)

where βk = [J0(αkD1), . . . , J0(αkDL)]T ∈ RL with αk = 2πfD,max,k/fslot (see
Section 4.4). From Eq. (6.5), we have

Ch̄,k = E
[
h̄k[q]h̄

H
k [q]

]
= Ctemp,k ⊗Ch,k ∈ CNL×NL (6.21)

where the matrixCtemp,k comprises the temporal correlations and itsi-th element in the
j-th column is

[Ctemp,k]i,j =

{

J0 (αk (Di −Dj)) j 6= i,

1 j = i.
(6.22)

The final CSI recovered at the transmitter fromh̄k[q] in Eq. (6.19) is given by

ĥk[q] = VkGkS̄h̄k[q] + VkGkη̄k[q] + ηQ,k[q] (6.23)

whereS̄ = IL ⊗ S ∈ CNtr×NL contains the training symbols1 and η̄k[q] ∈ CNtrL ∼
NC(0,Cη̄,k) is the noise for channel estimation, beingCη̄,k = IL ⊗ Cη,k ∈ CNtrL×NtrL.
The zero–mean quantization errorηQ,k[q] is assumed to be uncorrelated with the input
of the quantizer and has the covariance matrixCηQ,k

[q] as given in Eq. (6.16). The
filter Gk ∈ Cd×NtrL performs joint channel estimation and rank reduction and the rank
reduction basis is given byVk ∈ CN×d (see Section 4.2).

The channel estimation and rank reduction withGk together with the basisVk are
jointly optimized to end up with a channel estimate at the transmitter with minimum
MSE

{GMMSE,k,VMMSE,k} = argmin
{Gk,Vk}

MSEk(Gk,Vk) s.t.:V H
k Vk = Id (6.24)

1We assume the same training symbols in every time slot to simplify notation.
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with the MSE of userk given by [see Eq. (6.23)]

MSEk(Gk,Vk) = E

[∥
∥
∥hk[q]− ĥk[q]

∥
∥
∥

2

2

]

= tr (Ch,k) + tr
(
VkGkCη̄,kG

H
k V H

k

)

− 2ℜ
(
tr
(
VkGkS̄Ch̄h,k

))
+ tr

(
VkGkS̄Ch̄,kS̄

HGH
k V H

k

)
+ tr

(
CηQ,k

)

(6.25)

whereCh̄h,k is the crosscovariance matrix ofh̄k[q] andhk[q] given by Eq. (6.20),Ch̄,k

is the covariance matrix of̄h[q] in Eq. (6.21), andCηQ,k
is the covariance matrix of the

quantization error given in Eq. (6.16). In the optimizationproblem of Eq. (6.24) we also
included the constraint for orthonormality of the columns of Vk.

In order to solve the constrained optimization problem of Eq. (6.24), we construct the
Lagrangian function

L (Gk,Vk,Λk) = MSEk(Gk,Vk) + tr
(
Λk

(
V H
k Vk − Id

))
(6.26)

where Λk ∈ Cd×d is the Lagrangian multiplier for the constraint. Note thatΛk is
Hermitian, since the constraint is Hermitian by definition.

The filterGk is readily found by setting the derivative of the Lagrangianfunction in
Eq. (6.26) with respect toG∗

k to zero, i.e.

∂L (•)
∂G∗

k

= −V H
k Ch̄h,kS̄

H + GkS̄Ch̄,kS̄
H + GkCη̄,k = 0. (6.27)

Here, we employedV H
k Vk = I for the last two terms. Therefore, the filterGk is given by

GMMSE,k = V H
k CH

h̄h,kS̄
H
(
S̄Ch̄,kS̄

H + Cη̄,k

)−1
. (6.28)

Substituting the optimumGMMSE,k into the cost function of Eq. (6.25) yields

MSEk(Vk) = tr (Ch,k)− tr
(

VkV
H
k CH

h̄h,kS̄
H
(
S̄Ch̄,kS̄

H + Cη̄,k

)−1
S̄Ch̄h,kVkV

H
k

)

+ tr
(
CηQ,k

)
. (6.29)

Now, the above optimization only depends onVk and can be solved using Lagrangian
multipliers. The Lagrangian function of Eq. (6.26) reducesto

L (Vk,Λk) = tr (Ch,k)− tr
(

V H
k CH

h̄h,kS̄
H
(
S̄Ch̄,kS̄

H + Cη̄,k

)−1
S̄Ch̄h,kVk

)

+ tr
(
Λ
(
V H
k Vk − Id

))
+ tr

(
CηQ,k

)
(6.30)

and by setting the derivative of the Lagrangian function with respect toV ∗
k to zero we

obtain

∂L (Vk,Λk)

∂V ∗
k

= −CH
h̄h,kS̄

H
(
S̄Ch̄,kS̄

H + Cη̄,k

)−1
S̄Ch̄h,kVk + VkΛ

H
k = 0.
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This equation can be rewritten as follows

WkVk = VkΛ
H
k . (6.31)

where the matrixWk is given by

Wk = CH
h̄h,kS̄

H
(
S̄Ch̄,kS̄

H + Cη̄,k

)−1
S̄Ch̄h,k ∈ CN×Ntr . (6.32)

After multiplying byV H
k from the left, we see thatΛk is not only Hermitian but also non-

negative definite. Thus, the EVD (EigenValue Decomposition) of Λk is Λk = QkΦ
2
kQ

H
k

with the unitary matrixQk ∈ Cd×d and the non-negative diagonal matrixΦ2
k ∈ Cd×d.

Then, Eq. (6.31) can be rewritten as

WkV
′
k = V ′

kΦ
2
k (6.33)

whereV ′
k = VkQk is a matrix with orthonormal columns asVk, sinceQk is unitary.

Thus, we see thatΛk in Eq. (6.31) can be replaced by a diagonal matrixΦ2
k without loss

of generality. After multiplying Eq. (6.33) byV
′H
k from the left, we have that

V
′H
k WkV

′

k = Φ2
k (6.34)

i.e. V
′

k is the matrix that diagonalizesWk. Thus, the columns ofV
′

k = VkQk are
eigenvectors ofWk and not those ofCh,k as we intuitively used in Section 6.1. With
this intermediate result for the rank reduction basisV

′

k , the cost function of Eq. (6.24) is
given by

MSEk = tr (Ch,k)−
∑

i∈I

ϕ2
k,i + tr

(
CηQ,k

)
(6.35)

whereI denotes the set of eigenvectors indices collected inVkQk andϕ2
k,i is the i-th

eigenvalue ofWk. Clearly, MSEk(GMMSE,k,Vk) is independent ofQk. Therefore, we can
setQk = Id andVk ∈ CN×d containsd eigenvectors ofWk. Note that since the rank
reduction is focused onV H

k , the bit allocation of each user can be decided off-line taking
into account its maximum number of bits to be sent through thefeedback channel. The
term

∑

i∈I
ϕ2
k,i in Eq. (6.35) is fixed because it only depends ond. Taking into account

that the former coefficient is larger than the latter, the allocation of a higher number of
bits to the larger eigenvalue reduces the final MSE. Therefore, it can easily be seen that
the termtr(CηQ,k

) in Eq. (6.35) is minimized when we distribute the total number of bits
as uniformly as possible. For example, when we considerd = 2 and12 bits per user, the
best result corresponds to allocating6 bits for each coefficient (i.e.3 bits for each real
or imaginary part), or, alternatively, when we have10 bits per user the best choice is6

and4 bits for the first and second coefficient, respectively2. This counter–intuitive result

2The number of bits used for quantization must be two times a cardinal number to end up with a cardinal
number of bits for the real and imaginary part.
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follows from neglecting the correlations between the inputand the output of the quantizer.
Also note that no errors due to rank reduction are added to thechannel estimation if all
the eigenvectors are employed. The set of indicesI must minimize the MSE in Eq. (6.35),
i.e. the sum

∑

i∈I
ϕ2
k,i has to be maximized. Since the eigenvalues ofWk in Eq. (6.32)

are sorted in non–increasing order, i.e.ϕ2
k,1 ≥ ϕ2

k,2 ≥ · · ·ϕ2
k,N , the setI will contain the

indices corresponding to the firstd eigenvalues ofWk.
In the following, we consider the special case withL = 1 andD1 = D, i.e. only one

observation vector in Eq. (6.19) is processed. Then, the above expressions are reduced as
shown below [117]. Letq be the time slot corresponding to the design of the precoder and
ν = q−D the time slot in which the outdated version of the channel estimate is obtained.

The cost function in Eq. (6.25) can be rewritten as follows

MSEk(Gk,Vk) = E

[∥
∥
∥hk[q]− ĥk[q]

∥
∥
∥

2

2

]

= E

[∥
∥
∥hk[q]− ĥQ,k[ν]

∥
∥
∥

2

2

]

= tr (Ch,k) + tr
(
VkGkCη,kG

H
k V H

k

)
− 2ℜ (tr (rkVkGkSCh,k))

+ tr
(
VkGkSCh,kS

HGH
k V H

k

)
+ tr

(
CηQ,k

)
(6.36)

with rk = J0(αkD) as explained in Eq. (6.5). Following similar steps to those in the case
L > 1, the filterGk is readily found by setting the derivative of the cost function with
respect toG∗

k to zero:

GMMSE,k = rkV
H
k Ch,kS

H
(
SCh,kS

H + Cη,k

)−1
= rkV

H
k GMMSE-estim,k (6.37)

where it can be seen thatGMMSE,k has the ordinary MMSE channel estimatorGMMSE-estim,k

as the first stage. The term with the projection onto the basisV H
k produces uncorrelated

outputs and the factorrk is due to the inherent channel prediction. Substituting the
optimumGMMSE,k into the cost function of Eq. (6.36) yields

MSEk(Vk) = tr (Ch,k)− tr
(
V H
k WkVk

)
+ tr

(
CηQ,k

)
(6.38)

with the non-negative definite matrixWk given by

Wk = r2
kCh,kS

H
(
SCh,kS

H + Cη,k

)−1
SCh,k ∈ CN×N . (6.39)

Again, the matrixVk diagonalizesWk as follows

V H
k WkVk = Φ2

k (6.40)

which enables us to arrive at a similar result for the final MSEas obtained in Eq. (6.35),
i.e.

MSEk = tr (Ch,k)−
∑

i∈I

ϕ2
k,i + tr

(
CηQ,k

)
(6.41)

althoughϕ2
k,i is now thei-th entry of the diagonal matrix in Eq. (6.40) obtained fromWk

in Eq. (6.39) and not from Eq. (6.32).
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6.2.2 Quantizer Design

Our work is focused on scalar quantizers that allow us to obtain closed-form solutions
for robust designs with low impact on the complexity required by the user’s devices.
However, we also implement a vector quantizer to be robust against errors in CSI, which
has the enormous disadvantage of considerably increasing the computational complexity
since it implies a larger dimensionality of the search than scalar quantizers. For scalar
quantization, we simply use uniform quantizers, and for vector quantization, the approach
termedRandom Vector Quantization(RVQ) (see Chapter 4). Both quantizers as used for
the design in this section are described below.

Uniform Quantization Error

The truncated channel coefficients can be quantized using the same scalar uniform
quantizer as described in Subsection 6.1.2. Again, we make the assumption that the input
is bounded but now, contrary to the previous approach, the rank reduced channel estimate
is uncorrelated since its covariance matrix is diagonal, i.e. Ch̃T,k

= Φ2
k. Thus, we consider

that both real and imaginary parts of itsi-th entry lie in the interval[−
√

2ϕk,i,+
√

2ϕk,i].
Each coefficient is normalized to ensure unit variance at thequantizer’s input, multiplying
the result of rank reduction byΦ−1

k before quantization. Multiplying the codebook
entry again byΦk, we can fix the boundaries corresponding to a unit variance Gaussian
distribution[−

√
2,
√

2], as done in Subsection 6.1.2. As a result, each entry of the rank
reduced channel estimate is standard Gaussian and this interval selection ensures that the
overload probability is less than5 %. Then, a common uniform codebook with cell size
γi = 2

√
2/Mi, whereMi is the size of the codebook, is stored at the transmitter and

the codebooks remain unchanged throughout the transmission, even though the channel
characteristics may suffer variations due to the wireless environment (see Chapter 2).

Random Vector Quantization Error

As described in Subsection 4.3.2, the delayed outputĥes,k[ν = q −D] of the estimator is
the input to therandom vector quantizer(RVQ), whereĥes,k[ν] is given by

ĥes,k[ν] = GMMSE-pred,kShk[ν] + GMMSE-pred,kηk[ν] (6.42)

with S ∈ CNtr×N containing the training data andGMMSE-pred,k being the MMSE predictor
of Eq. (4.9) given byGMMSE-pred,k = rkCh,kS

H(SCh,kS
H +Cη,k)

−1 ∈ CN×Ntr where the
factor rk produced by the outdated estimation has been included. The random vector
quantizer approximateŝhes,k[ν] by one of theM entriesyk,i, with i = 1, . . . ,M , by
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minimizing the squared error as follows

imin = min
i

∥
∥
∥ĥes,k[ν]− yk,i

∥
∥
∥

2

2
(6.43)

where the codebook entries are such that

yk,i ∼ NC(0,Ch,k) i = 1, . . . ,M. (6.44)

Consequently, the error corresponding to thei–th codebook entry obeys

ǫi = ĥes,k[ν]− yk,i ∼ NC(0,Cĥ,k + Ch,k) (6.45)

since the codebook generation is independent of the estimate ĥes,k[ν]. Note that this
distribution is independent of the indexi. Cĥ,k is the covariance matrix of̂hes,k[ν] in
Eq. (6.42) given by

Cĥ,k = r2
kCh,kS

H
(
SCh,kS

H + Cη,k

)−1
SCh,k. (6.46)

Therefore, we assume that the structure of the error is givenby Cĥ,k + Ch,k but
weighted by a factorζk ∈ R0,+, i.e.

CQ,k = ζk

(

Cĥ,k + Ch,k

)

. (6.47)

The factorζk results from the selection process and is the ratio of the MSEwith selection
over the MSE without selection:

ζk =
E[mini ||ĥes,k[ν]− yk,i||22]

E[||ĥes,k[ν]− yk,i||22]
=

E[mini ||ĥes,k[ν]− yk,i||22]
tr
(

Cĥ,k + Ch,k

) . (6.48)

Note that this model for the quantization error is conservative, i.e. the error is over–
estimated, since we neglect the transmitter knowledge about the codebook entry that is
selected and also about the structure of the corresponding partition cell, which is known
since the codebook is stored at both the transmitter and the receivers.

In Appendix E we explain in detail how to solve the integral inthe numerator of
Eq. (6.48), which is a by no means trivial procedure.

6.2.3 MSE Error Matrix for Robust Multi-User Precoder Design

For the robust precoder design, we again interpret the channel as a random variable and
the given fed–back CSI as deterministic, i.e.

H [q] = Ĥ [q] + Θ[q]
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SShk[q]hk[q]

ηk[q]ηk[q]

GkGk h̃k[q]
Vk ĥk[q]

Q(•)

estimation
and
truncation

reconstruction

Figure 6.3: Feedback Design for a Bayesian Error Modeling based on CSI MSE.

whereĤ [q] = [ĥ1[q], . . . , ĥK [q]]T ∈ CK×N comprises the channel estimates obtained
from the quantized coefficients of the rank reduced channel that have been fed back. The
covariance matrix of the errorΘ is

CΘ = E
[
ΘH[q]Θ[q]

]
=

K∑

k=1

C∗
Θ,k

whereCΘ,k is given by

CΘ,k = Ch,k − Vopt,kΦ
2
kV

H
opt,k + CηQ,k

(6.49)

for the uniform quantizer shown in Subsection 6.2.2. Here, the diagonal matrixΦ2
k

contains thed dominant eigenvalues ofWk in Eqs. (6.32) and (6.39), for the casesL > 1

andL = 1, respectively, on its diagonal.
However, for the random vector quantizer also explained in Subsection 6.2.2, the MSE

error matrixCΘ,k is given by

CΘ,k = Ch,k − Vopt,kΦ
2
kV

H
opt,k + CQ,k. (6.50)

6.3 Bayesian Error Modeling based on Joint CSI MSE

In this section, we propose a feedback design for correlatedchannels that jointly considers
the estimation, the rank reduction, and the quantization steps [116, 118]. Fig. 6.3 depicts
the feedback model for this approach where the quantizer is explicitly included since
codebook entries and partition cells are considered into the joint MSE optimization,
as opposed to the optimization of Section 6.2. Therefore, the new formulation is a
considerable extension to that of Section 6.2, where we onlyoptimized the estimation
and rank reduction. Our goal is the joint optimization of theorthonormal basisVk, the
estimatorGk, the codebook entriesyk,i, and the partition cellsRk,i, i = 1, . . . ,M, by
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minimizing the MSE, i.e.
{
Vk,Gk, {yk,i}Mi=1, {Rk,i}Mi=1

}

opt
= argmin

{Vk,Gk,{yk,i}M
i=1,{Rk,i}M

i=1}
MSEk

s.t.: V H
k Vk = Id (6.51)

with MSEk given by

MSEk
(
Vk,Gk, {yk,i}Mi=1, {Rk,i}Mi=1

)
= E

[∥
∥
∥hk[q]− ĥk[q]

∥
∥
∥

2

2

]

(6.52)

whereĥk[q] is the CSI recovered at the transmitter given by

ĥk[q] = Vk Qk

(

h̃k[q]
)

= Vkh̃Q,k[q] ∈ CN . (6.53)

Remember that the feedback channel introduces a delay given by D = q − ν time slots
considered as an estimation delay instead.h̃k[q] in Eq. (6.53) collects the coefficients of
the rank reduced representation as follows

h̃k[q] = h̃T,k[ν = q −D] = Gk (Shk[ν] + ηk[ν]) ∈ Cd (6.54)

with the covariance matrix given by

Ch̃,k = E
[

h̃k[q]h̃
H
k [q]

]

= Gk

(
SCh,kS

H + Cη,k

)
GH
k . (6.55)

Therefore, Eq. (6.53) can be rewritten as

ĥk[q] = Vkh̃k[q] + Vkη̃Q,k[q] = Vk Qk (Gk (Shk[ν] + ηk[ν])) . (6.56)

As we will see below, the main difficulty is the derivation ofVk and Gk. The
conditions foryk,i andRk,i are standard. Note thatVkV

H
k 6= IN (althoughV H

k Vk = Id),
sinced ≤ N .

6.3.1 Codebook Entries

Substituting Eq. (6.53) and the definition ofQk(•) =
∑M

i=1 yk,i Sk,i(h̃k[q]) into the MSE
of Eq. (6.52) we have

MSEk = E[||hk[q]− ĥk[q]||22] = E[||hk[q]− Vk

M∑

i=1

yk,i Sk,i(h̃k[q])||22]

= tr(Ch,k)− 2ℜ(
M∑

i=1

yH
k,iV

H
k E[Sk,i(h̃k[q])hk[q]]) +

M∑

i=1

yH
k,iyk,i E[Sk,i(h̃k[q])].

(6.57)



6.3 Bayesian Error Modeling based on Joint CSI MSE 135

By setting the derivative with respect toyk,i to zero we obtain that

−V H
k E

[

Sk,i(h̃k[q])hk[q]
]

+ yk,i E
[

Sk,i(h̃k[q])
]

= 0

which leads to

yk,i =
(

E
[

Sk,i(h̃k[q])
])−1

V H
k E

[

Sk,i(h̃k[q])hk[q]
]

(6.58)

which is the well known centroid condition [108]. The rank-reduced estimatẽhk[q] was
previously found and is given in Eq. (6.54). Thus, the MSE expression in Eq. (6.57) can
be rewritten as

MSEk = tr (Ch,k)−
M∑

i=1

E[Sk,i(h̃k[q])h
H
k [q]]VkV

H
k E[Sk,i(h̃k[q])hk[q]]

E[Sk,i(h̃k[q])]
. (6.59)

Remember that the channelhk[q] and the noiseηk[q] are Gaussian. Therefore,hk[q]

and h̃k[q] are jointly Gaussian because they are related throughh̃k[q] = G(Shk[ν] +

η[ν]), i.e.

[
hk[q]

h̃k[q]

]

∼ NC

(
0,

[
Ch,k rkCh,kS

HGH
k

rkGkSCh,k Gk

(
SCh,kS

H + Cη,k

)
GH
k

]
)

(6.60)

whererk = J0(αkD) [see Eq. (4.24)]. In addition, it is not difficult to find the mean of
hk[q] conditional onh̃k[q] using the Theorem10.2 of [26]. Indeed, given the zero-mean
joint Gaussian vectorsx andy with covariance matricesCx andCy, respectively, and the
crosscovariance matrixCyx = E[yxH], the mean and the covariance matrix describing
fy|x(y|x) = fG(y,µy|x,Cy|x) are

µy|x = E[y|x] = CyxCx
−1x

Cy|x = E[yyH|x]− µy|xµH
y|x = Cy −CyxCx

−1Cxy (6.61)

respectively. Letµhk[q]|h̃k[q] be the mean ofhk[q] conditional oñhk[q] andChk[q]|h̃k[q] the

covariance matrix ofhk[q] conditional oñhk[q]. According to Eq. (6.61), we obtain that

µhk[q]|h̃k[q] = E
[

hk[q]|h̃k[q]
]

= rkCh,kS
HGH

k C−1

h̃,k
h̃k[q] (6.62)

Chk[q]|h̃k[q] = E

[(

hk[q]− µhk[q]|h̃k[q]

)(

hk[q]− µhk[q]|h̃k[q]

)H

|h̃k[q]

]

= Ch,k − r2
kCh,kS

HGH
k C−1

h̃,k
GkSCh,k (6.63)

whereCh̃,k can be found in Eq. (6.55).
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Next, let us remember that̃hk[q] can be modeled as̃hk[q] = C
1/2

h̃,k
w with w ∼

NC(0, I) [similar to Eq. (2.23)]. Moreover, bearing in mind the equality E[hk[q]] =

E[E[hk[q]|h̃k[q]]] provided by the dependence betweenhk[q] and h̃k[q] that gives us
E[Sk,i(h̃k[q])hk[q]] = E[Sk,i(h̃k[q]) E[hk[q]|h̃k[q]]], we obtain with Eq. (6.62) that

E
[

Sk,i(h̃k[q])hk[q]
]

= rkCh,kS
HGH

k C
−1/2

h̃,k
E
[

Sk,i

(

C
1/2

h̃,k
w
)

w
]

.

Substituting this result into Eq. (6.59) we obtain for the MSE

MSEk = tr (Ch,k)− r2
k tr
(

V H
k Ch,kS

HGH
k C

−1/2

h̃,k
CQ,kC

−1/2

h̃,k
GkSCh,kVk

)

(6.64)

with

CQ,k =
M∑

i=1

E[Sk,i(C
1/2

h̃,k
w)w] E[Sk,i(C

1/2

h̃,k
w)wH]

E[Sk,i(C
1/2

h̃,k
w)]

. (6.65)

6.3.2 Estimator and Rank Reduction Designs

In this subsection, we derive the expression for the estimator Gk ∈ Cd×Ntr that performs
estimation and rank reduction at the same time. Given that the covariance matrixCh̃,k

can be expressed asGk(SCh,kS
H + Cη,k)G

H
k [see Eq. (6.55)] and the unknown matrix

Xk ∈ CNtr×d, which has orthonormal columns, is introduced to simplify the notation in
the following derivation, we get for the estimator

Gk = C
1/2

h̃,k
XH

k

(
SCh,kS

H + Cη,k

)−1/2 ∈ Cd×Ntr (6.66)

where it is easy to show that Eq. (6.55) is fulfilled, sinceXH
k Xk = Id.

Let us defineAk = rkCh,kS
H(SCh,kS

H + Cη,k)
−1/2 ∈ CN×Ntr . We must solve

{Vopt,k,Xopt,k} = argmax
{Vk,Xk}

tr
(
V H
k AkXkCQ,kX

H
k AH

k Vk

)
(6.67)

subject toV H
k Vk = Id andXH

k Xk = Id in order to minimize the MSE in Eq. (6.64). We
construct the Lagrangian function as follows

L (Vk,Xk,Λ1,Λ2) = tr
(
V H
k AkXkCQ,kX

H
k AH

k Vk

)

− tr
(
Λ1

(
V H
k Vk − Id

))
− tr

(
Λ2

(
XH

k Xk − Id

))

with Λ1 = ΛH
1 ∈ Cd×d andΛ2 = ΛH

2 ∈ Cd×d. The derivative of the Lagrangian function
with respect toX∗

k is

∂L(•)
∂X∗

k

= AH
k VkV

H
k AkXkCQ,k −XkΛ

H
2 = 0
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and multiplying both terms from the left byXH
k , we have

XH
k AH

k VkV
H
k AkXkCQ,k = ΛH

2 .

From this result and taking into account thatΛ2 = ΛH
2 , we conclude that

XH
k AH

k VkV
H
k AkXkCQ,k = CQ,kX

H
k AH

k VkV
H
k AkXk.

With the EVDCQ,k = UkΞkU
H
k , we can rewrite the above expression as follows

UH
k XH

k AH
k VkV

H
k AkXkUkΞk = ΞkU

H
k XH

k AH
k VkV

H
k AkXkUk.

SinceΞk is diagonal,UH
k XH

k AH
k VkV

H
k AkXkUk must be diagonal to fulfill this equation,

i.e. UH
k XH

k AH
k VkV

H
k AkXkUk = Φ2

k whereΦk = QkV
H
k AkXkUk is diagonal with

some unitary matrixQk ∈ Cd×d. Therefore, the cost function reduces to

MSEk = tr (Ch,k)− tr
(
ΞkΦ

2
k

)

which does not depend on the unitary matrixQk. Thus, we setQk = I. In order to
maximize this resulting objectivetr(ΞkΦ

2
k) under the assumption that the diagonal entries

of Ξk are sorted in non–increasing order, we must choose thei-th column ofVk and
Wk = XkUk to be thei-th dominant left and right singular vector ofAk, respectively.
Thus, Φk has thed dominant singular values ofAk on its diagonal. We see that the
optimal basisVopt,k contains thed dominant left singular vectors ofA or, equivalently,
the d dominant eigenvectors ofAkA

H
k . Interestingly, we also obtained this result for

the case where onlyVk andGk had been optimized as in Section 6.2 [cf. Eq. (6.40)].
Note thatVopt,k andWopt,k are fixed for given statisticsCh,k andCη,k. Therefore, the
maximization of Eq. (6.67) is solved byXopt,k = Wopt,kU

H
k , i.e. the MSE is minimized,

whereUk is the modal matrix ofCQ,k of Eq. (6.65).
SinceWopt,k = Xopt,kUk contains the principal right singular vectors ofAk, we have

thatV H
opt,kAk = ΦkU

H
k XH

opt,k. Accordingly, the estimator can be written as [cf. Eq. (6.66)]

Gopt,k = C
1/2

h̃,k
UkΦ

−1
k V H

opt,kGMMSE-pred,k ∈ Cd×Ntr (6.68)

where GMMSE-pred,k is the conventional linear MMSE predictor given by (cf.
Subsection 4.1.2)

GMMSE-pred,k = rkCh,kS
H
(
SCh,kS

H + Cη,k

)−1 ∈ CN×Ntr .

The estimator is then followed by the rank reduction performed by V H
opt,k. V H

opt,k also
produces decorrelation since the output ofGopt,k has the diagonal covariance matrixΦ2

k.
These two stages constitute the solution for the estimator of Eq. (6.37) for the case that
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L = 1. However, when the quantizer is included in the optimization as in Eq. (6.51), an
additional transformation withC1/2

h̃,k
UkΦ

−1
k appears for the estimator. Note thatΦ−1

k aims
at normalizing every entry to unit variance,Uk applies some unitary rotation that does not
affect the distribution (see Appendix D.2) and, finally,C

1/2

h̃,k
again introduces coloring to

ensure thatCh̃,k = Gopt,k(SCh,kS
H + Cη,k)G

H
opt,k.

6.3.3 Quantizer Design

Having obtained the preliminary result of Eq. (6.58) for thecodebook entries, we will
describe in the following subsections how to obtain the quantizer parameters using the
Lloyd algorithm, i.e. the codebook entries and the decisionboundaries arising from the
joint MSE optimization in Eq. (6.51).

Partition Cells

The MSE is the average distortion, i.e.

E
[

dk

(

h̃k[q],Qk(h̃k[q])
)]

= E

[

E

[∥
∥
∥hk[q]− ĥk[q]

∥
∥
∥

2

2

∣
∣
∣h̃k[q]

]]

.

With µhk[q]|h̃k[q] = E[hk[q]|h̃k[q]] and Chk[q]|h̃k[q] = E[(hk[q] − µhk[q]|h̃k[q])(hk[q] −
µhk[q]|h̃k[q])

H], we get

dk

(

h̃k[q],Qk(h̃k[q])
)

= E

[∥
∥
∥hk[q]− Vk Qk

(

h̃k[q]
)∥
∥
∥

2

2

∣
∣
∣h̃k[q]

]

= E
[

‖hk[q]‖22
∣
∣
∣h̃k[q]

]

− 2ℜ
(

E
[

hH
k [q]

∣
∣
∣h̃k[q]

]

Vk Qk

(

h̃k[q]
))

+
∥
∥
∥Vk Qk

(

h̃k[q]
)∥
∥
∥

2

2

= tr
(

C
hk[q]|h̃k[q]

)

+ µH
hk[q]|h̃k[q]

µ
hk[q]|h̃k[q] − 2ℜ

(

µH
hk[q]|h̃k[q]

Vk Qk

(

h̃k[q]
))

+
∥
∥
∥Vk Qk

(

h̃k[q]
)∥
∥
∥

2

2

= ck +
∥
∥
∥µhk[q]|h̃k[q] − Vk Qk

(

h̃k[q]
)∥
∥
∥

2

2

whereck = tr(Ch,k − Ch,kS
HGH

k C−1

h̃,k
GkSCh,k) is the trace of the covariance matrix

of hk[q] conditional onh̃k[q]. Note that the termtr(Chk[q]|h̃k[q]) + µH
hk[q]|h̃k[q]

µhk[q]|h̃k[q]

comes fromE[‖hk[q]‖22 |h̃k[q]] = tr(E[hk[q]h
H
k [q]|h̃k[q]]). Substituting Eq. (6.62) leads

to

dk

(

h̃k[q],Qk(h̃k[q])
)

= ck +
∥
∥
∥rkCh,kS

HGH
k C−1

h̃,k
h̃k[q]− Vk Qk(h̃k[q])

∥
∥
∥

2

2
.
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Due to Eq. (6.68), we have thatrkCh,kS
HGH

opt,kC
−1

h̃,k
= Vopt,kΦkU

H
k C

−1/2

h̃,k
. Hence, under

the assumption thatGopt,k andVopt,k are used, we get for the distortion

dk

(

h̃k[q],Qk(h̃k[q])
)

= ck +
∥
∥
∥ΦkU

H
k C

−1/2

h̃,k
h̃k[q]−Qk(h̃k[q])

∥
∥
∥

2

2
. (6.69)

Since the MSEE[dk(h̃k[q],Qk(h̃k[q]))] is minimized, the partition cells must be chosen
to minimizedk(h̃k[q],Qk(h̃k[q])) for every h̃k[q], i.e. Rk,i = {x ∈ Cd| d(x,yk,i) ≤
d(x,yk,j),∀j}, which is the nearest neighbor condition [108].

Suggested Codebook Design

The expression in Eq. (6.69) for the distortion can be further simplified. AsQk(y) =
∑M

i=1 yk,i Sk,i(y), we have to rewrite Eq. (6.58) by incorporating Eqs. (6.62) and (6.68).
Thei-th codebook entry then reads as

yk,i =
(

E
[

Sk,i(h̃k[q])
])−1

V H
k E

[

Sk,i(h̃k[q])
]

E
[

hk[q]|h̃k[q]
]

=
(

E
[

Sk,i(h̃k[q])
])−1

rkV
H

opt,kCh,kS
HGH

opt,kC
−1

h̃,k
E
[

Sk,i(h̃k[q])h̃k[q]
]

=
(

E
[

Sk,i(h̃k[q])
])−1

ΦkU
H
k C

−1/2

h̃,k
E
[

Sk,i(h̃k[q])h̃k[q]
]

where

rkV
H
k Ch,kS

HGH
k C−1

h̃,k
=

Φk
︷ ︸︸ ︷

V H
k rkCh,kS

H
(
SCh,kS

H + Cη,k

)−1/2

︸ ︷︷ ︸

Ak

XkUk UH
k C

1/2

h̃,k
C−1

h̃,k

= ΦkU
H
k C

−1/2

h̃,k
.

It is useful to redefine the quantizer as

Qk(y) = Φk Q′
k

(

UH
k C

−1/2

h̃,k
y
)

(6.70)

to eliminate the uncertainty due to the first two terms of the filterGopt,k of Eq. (6.68). Note
that h̃k[q] has the same statistical properties asC

1/2

h̃,k
w = C

1/2

h̃,k
Ukw, since the unitary

rotation withUk does not change the statistical properties ofw (see Appendix D.2) where
w ∼ NC(0, I) as before. The redefined quantizerQ′

k(•) is given by

Q′
k(y) =

M∑

i=1

y′
k,i S

′
k,i(y) (6.71)
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yk[q] GMMSE-pred,k V H
opt,k Φ−1

k C
1/2

h̃,k
Uk h̃k[q]h̆k[q] h̃Q,k[q]

Qk(•)

Figure 6.4: Preliminary Quantizer Design for Limited Feedback.

yk[q] GMMSE-pred,k V H
opt,k Φ−1

k Φkh̆k[q] h̃Q,k[q]
Q′
k(•)

Figure 6.5: Proposed Quantizer Redesign for Limited Feedback.

whereS′
k,i(y) = Sk,i(C

1/2

h̃,k
Uky) due to Eq. (6.70). The new codebook entries are

y′
k,i = Φ−1

k yk,i =
(
E
[
S′
k,i (w)

])−1
E
[
S′
k,i (w) w

]
. (6.72)

Then, we get for the distortion [cf. Eq. (6.69)]

dk

(

h̃k[q],Qk

(

h̃k[q])
))

= dk

(

C
1/2

h̃,k
Ukh̆k[q],Qk(C

1/2

h̃,k
Ukh̆k[q])

)

= ck +
∥
∥
∥Φk

(

h̆k[q]−Q′
k(h̆k[q])

)∥
∥
∥

2

2
(6.73)

whereh̆k[q] = UH
k C

−1/2

h̃,k
h̃k[q] ∈ Cd. Remember thatΦk is diagonal. Thus, the distortion

to be minimized for the design ofQ′
k(•) has a very simple structure. Additionally,

h̆k[q] ∼ NC(0, I) which leads to the simple centroid condition in Eq. (6.72).
Note that we can concentrate on the design ofQ′

k(•), becauseQk(h̃k[q]) =

Φk Q′
k(h̆k[q]) with the output̆hk[q] of

G′
opt,k = Φ−1

k V H
opt,kGMMSE-pred,k. (6.74)

Figs. 6.4 and 6.5 depict the quantizer design previously proposed in comparison with the
quantizer redefinition shown in this subsection, in which the inputs to the quantizerQ′

k(•)
are white vectors of Gaussian random variables.

Then, the resulting CSI of the transmitter isVopt,kΦk Q′
k(G

′
opt,kyk[q]). Also note that

the estimatorG′
opt,k and the basisVopt,k only depend on the channel statistics. Hence, they

can be computed independently of the choice forQ′
k(•).

To summarize, we obtained from the joint optimization in Eq.(6.51) that the received
training symbolsyk[q] are passed through the ordinary MMSE predictorGMMSE-pred,k,
rank reduced withV H

opt,k, and weighted withΦ−1
k to obtain uncorrelated unit-variance

entries. Then, the indexℓk found by the quantizerQ′
k(•) is fed back and the CSI at the

transmitter isVopt,kΦky
′
k,ℓ. Note thatAk = rkCh,kS

H(SCh,kS
H + Cη,k)

−1/2 depends
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only on the channel statisticsCh,k andCη,k, which change very slowly. Therefore,Vopt,k

can be communicated to the transmitter with negligible overhead and we assume a perfect
knowledge ofVopt,k andΦk at the transmitter. Despite the simplicity of Eq. (6.73), we

1. Setm = 1
2. Initial codebookC1 = {yi} and partition cellsRi with the uniform scalar quantizer

of Subsection 6.2.2
3. Set the threshold to stop the iterationsǫmin and setǫ =∞
while ǫ > ǫmin do

4. Given the codebookCm, the Lloyd algorithm gives the improved codebookCm+1

Nearest Neighbor Condition: The distortion of the scalar quantizer is given by
d (x,Q(x)) = (x−Q (x))2 =

∑M
i=1 (x− yi) Si (x)

The new partition cell is easily obtained by applying this distortion measure as
Ri = {αi ≤ x < βi} with αi = yi−1+yi

2 andβi = yi+yi+1

2
5. Centroid Condition: Applying the centroid condition, the new codebook is

yi = (E [Si (x)])−1 E [Si (x)x]
with x ∼ NR

(
0, 1

2

)
. The above expectations are obtained as

E [Si (x)] =
∫ βi

αi
fG (x, 0, 1/2) dx = 1

2 (erfc (αi)− erfc (βi))

= Φ(
√

2αi)− Φ(
√

2βi)
and

E [Si (x)x] =
∫ βi

αi
xfG (x, 0, 1/2) dx = 1

2
√
π

(
exp

(
−α2

i

)
− exp

(
−β2

i

))

whereerfc (•) is the complementary error function defined aserfc (x) = 2√
π

∫∞
x e−t

2
dt

andΦ (x) , 1√
2π

∫∞
x e−t

2/2dt. Thus,erfc (x) = 2 Φ
(√

2x
)

The codebook entries ofCm+1 are given by

yi = 1√
π

exp(−α2
i )−exp(−β2

i )
erfc(αi)−erfc(βi)

= 1
2
√
π

exp(−α2
i )−exp(−β2

i )
Φ(

√
2αi)−Φ(

√
2βi)

, i = 1, . . . , M

6. We compute the average distortion (MSE) forCm+1 as follows

ǫ = E [d (x,Q (x))] =
∑M

i=1 E
[

(x− yi)
2 | x ∈ Ri

]

p(x ∈ Ri)

= 1
2 −

∑M
i=1

1
2π

(exp(−α2
i )−exp(−β2

i ))
2

erfc(αi)−erfc(βi)

whereM is the number of codebook entries of the scalar quantizer
7. m← m + 1

end while

Table 6.1: Codebook Optimization of a Scalar Quantizer for a Real–Valued Gaussian
Input with Variance0.5.

suggest separating the scalar quantization for every entry(real and imaginary parts are
also split), i.e. the partition cellsR′

k,i are hyperrectangles (transform coding, [108]).
With this restriction, the design ofQ′

k(•) is independent ofΦk or any other quantity
related to our system. The scalar quantizer for any of the2d real-valued scalars is the
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MMSE optimal scalar quantizer for a real-valued Gaussian random variable with variance
0.5. Due to this property, there is no need to compute the parameters for Q′

k(•) in
real time. Instead, they can be computed in advance (with theLloyd algorithm [108])
and stored. Moreover, the restriction of separating scalarquantization enables closed-
form expressions for the conditional moments to design the precoder, as can be seen in
Subsection 6.3.5.

Initial Codebook

Although the estimators and the quantizers are jointly optimized by minimizing the CSI–
MSE [e.g. Eq. (6.35)], we can compute the codebook parameters in advance before the
data transmission since the estimators are independent of the choice of the codebook.
Therefore, we construct the initial codebook off-line to bestored at both the transmitter
and receiver side with no need to recompute its parameters for varying channel statistics
since it is based on a real–valued standard Gaussian distribution with variance0.5. This
codebook is much more appropriate than the codebooks of the previous subsections, since
we do not have uniform inputs, but rather unit variance complex Gaussian inputs. As a
consequence, this initial codebook is easily obtained by means of the Lloyd algorithm
[108,119] as shown in Table 6.1. Since its calculation is nottrivial, note that the average
distortion shown in step6 of this table is obtained as follows

ǫ (log2 (M)) =
M∑

i=1

E
[
(x− yi)2 | x ∈ Ri

]
p(x ∈ Ri)

=
M∑

i=1

E
[
x2 | x ∈ Ri

]
p(x ∈ Ri) +

M∑

i=1

(∫ βi

αi
x′fx(x

′)dx′
∫ βi

αi
fx(x′)dx′

)2 ∫ βi

αi

fx(x)dx

− 2
M∑

i=1

E [x|x ∈ Ri]

∫ βi

αi
x′fx(x

′)dx′
∫ βi

αi
fx(x′)dx′

∫ βi

αi

fx(x)dx

=
1

2
−

M∑

i=1

(∫ βi

αi
x′fx(x

′)dx′
∫ βi

αi
fx(x′)dx′

)2 ∫ βi

αi

fx(x)dx

=
1

2
−

M∑

i=1

1

2π

(exp (−α2
i )− exp (−β2

i ))
2

erfc (αi)− erfc (βi)
(6.75)

wherefx(x) = 1√
π

exp(−x2),
∑M

i=1 E[x2 | x ∈ Ri]p(x ∈ Ri) = E[x2] = 1
2
, yi =

E[x′ Sk,i(x
′)]

E[Sk,i(x′)]
=

∫ βi
αi
x′fx(x′)dx′

∫ βi
αi
fx(x′)dx′

, E[x|x ∈ Ri] = yi, and p(x ∈ Ri) =
∫ βi

αi
fx(x)dx. This

average distortion as a function of the number of iterationsis plotted in Fig. 6.6.
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Figure 6.6: Average Distortion vs. Number of Iterations.

6.3.4 Bit Allocation

When using scalar quantization (transform coding, [108]) instead of vector quantization,
the available bits have to be allocated to the different scalar coefficients. Since in real
systems the bandwidth of feedback channels is very limited,the total number of bitsNbit

should be very small and, therefore, strategies such as optimum bit allocation can greatly
improve the performance with a negligible increase in computational complexity.

The average distortion or MSE is given by Eq. (6.73). Leth̆Re
k,i[q] and h̆Im

k,i[q] be the

real or imaginary part of thei–th element of̆hk[q]. With Φk = diag(ϕk,1, . . . , ϕk,d) and
using scalar quantizers, Eq. (6.73) can be expressed as

εk = ck + E

[
d∑

i=1

ϕ2
k,i

((

h̆Re
k,i[q]−Q

′

k,i

(

h̆Re
k,i[q]

))2

+
(

h̆Im
k,i[q]−Q

′

k,i

(

h̆Im
k,i[q]

))2
)]

= ck +
d∑

i=1

ϕ2
k,iεh̆k,i

(6.76)

whereεh̆k,i
= E[|h̆k,i[q]−Q

′

k,i(h̆
Re
k,i[q])− j Q

′

k,i(h̆
Im
k,i[q])|2] is the MSE between̆hk,i[q] and

its quantized version. Remember thatd is the number of coefficients resulting from the
rank reduction process to be sent from each user to the transmitter. Note thatεh̆k,i

is fixed
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for a given number of bitsbk,i sinceh̆k[q] ∼ NC(0, I). Therefore, for a given number
of bits, we can calculateεh̆k,i

off-line to be stored at the users prior to transmission. Let
εh̆k,i

= 2MSE(bk,i) be the function that determines the mean squared error in terms of the
number of bits used to quantize the real or imaginary part of each channel coefficient [see
Eq. (6.75)]. Then, the bit allocation problem can be solved by means of the optimization
problem

{bopt,k,1, . . . , bopt,k,d} = argmin
{bk,1,...,bk,d}

d∑

i=1

ϕ2
k,i2MSE(bk,i) s.t.:

d∑

i=1

2bk,i = Nbit (6.77)

whereNbit is the number of bits per user sent through the feedback channel. It should
be mentioned that we provide the same number of bits to quantize both the real and
the imaginary part of each coefficient and, therefore, it is obvious that each quantized
coefficient uses an even number of bits.

In principle, we would have to test all the possible bit allocations whose total number
of bitsNbit is fixed, which can make the search difficult when the number ofbits to be
allocated is high. However, the MSE of each quantizer decreases with a higher number
of bits and, due toϕk,1 ≥ . . . ≥ ϕk,d, the total MSE is always smaller when more bits
are allocated to quantize the coefficients with lower indices. Thus, we only have to test
bit allocations whose number of bits decreases or stays constant with the coefficient index
(see Table 6.2). In the sequel, we refer to this bit allocation algorithm asoptimum bit
allocation.

6.3.5 MSE Error Matrix for Robust Multi-User Precoder Design

For the robust precoder design, we must find the conditional momentsE[hk[q]|h̃Q,k[q]]

andE[hk[q]h
H
k [q]|h̃Q,k[q]] of the probability density functionfhk[q]|h̃Q,k[q](hk[q]|h̃Q,k[q]),

since the transmitter only knows̃hQ,k[q], but the cost function depends onhk[q]
3. The

closed-form expressions will be obtained for the special case thatQ′
k(•) performs separate

scalar quantization as assumed in the previous two subsections. Remember that the
transmission over the feedback channel introduces a delay of D = q − ν slots, i.e. the
precoder is designed during the time slotq and the channel estimate is obtained during
the time slotν = q−D. Remember also that̆hk[q] ∼ NC(0, Id) is the input vector to the
quantizer given by̆hk[q] = G′

opt,kyk[q], whereG′
opt,k is the estimator that results from the

quantizer redefinition andyk[q] is the received pilot signal (see Subsection 6.3.3).

3For example, the precoder in Eq. (5.17) depends onĤ andT . The row ofĤ corresponding to userk is
E[hT

k [q]|h̃Q,k[q]] andCΘ in T [see Eq. (5.14)] containsE[hk[q]hH
k [q]|h̃Q,k[q]] in the Bayesian framework

employed in this section.
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Bits per user d = 2 d = 3 d = N = 4

Nbit = 8 [4, 0]T, [3, 1]T [4, 0, 0]T, [3, 1, 0]T [4, 0, 0, 0]T, [3, 1, 0, 0]T

4 for real part [2, 2]T [2, 2, 0]T, [2, 1, 1]T [2, 2, 0, 0]T, [2, 1, 1, 0]T

4 for imaginary part [1, 1, 1, 1]T

Nbit = 12 [6, 0]T, [5, 1]T [6, 0, 0]T, [5, 1, 0]T [6, 0, 0, 0]T, [5, 1, 0, 0]T

6 for real part [4, 2]T, [3, 3]T [4, 2, 0]T, [4, 1, 1]T [4, 2, 0, 0]T, [4, 1, 1, 0]T

6 for imaginary part [3, 3, 0]T, [3, 2, 1]T [3, 3, 0, 0]T, [3, 2, 1, 0]T

[2, 2, 2]T [3, 1, 1, 1]T, [2, 2, 2, 0]T

[2, 2, 1, 1]T

Nbit = 16 [8, 0]T, [7, 1]T [8, 0, 0]T, [7, 1, 0]T [8, 0, 0, 0]T, [7, 1, 0, 0]T

8 for real part [6, 2]T, [5, 3]T [6, 2, 0]T, [6, 1, 1]T [6, 2, 0, 0]T, [6, 1, 1, 0]T

8 for imaginary part [4, 4]T [5, 3, 0]T, [5, 2, 1]T [5, 3, 0, 0]T, [5, 2, 1, 0]T

[4, 4, 0]T, [4, 3, 1]T [5, 1, 1, 1]T, [4, 4, 0, 0]T

[4, 2, 2]T, [3, 3, 2]T [4, 3, 1, 0]T, [4, 2, 2, 0]T

[4, 2, 1, 1]T, [3, 3, 2, 0]T

[3, 3, 1, 1]T, [3, 2, 2, 1]T

[2, 2, 2, 2]T

Table 6.2: Number of Bits Assigned per User Coefficient for CSI–MSE Metric.
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Taking into account that the conditional moments needed forthe robust design
E[h[q]|h̃Q,k[q] andE[hk[q]h

H
k [q]|h̃Q,k[q]] can be further obtained as

E
[

h[q]|h̃Q,k[q]
]

= E
[

E
[

hk[q]|h̆k[q]
]

|h̃Q,k[q]
]

E
[

h[q]hH
k [q]|h̃Q,k[q]

]

= E
[

E
[

hk[q]h
H
k [q]|h̆k[q]

]

|h̃Q,k[q]
]

(6.78)

and sinceh̃Q,k[q] = Q′
k(h̆k[q]), we start by deriving the expressions for the moments

E[hk[q]|h̆k[q]] andE[hk[q]h
H
k [q]|h̆k[q]].

Sincehk[q] andh̆k[q] are jointly Gaussian, we have with Eqs. (6.54) and (6.74) that
[
hk[q]

h̆k[q]

]

∼ NC

(
0,

[
Ch,k rkCh,kS

HG
′H
opt,k

rkG
′

opt,kSCh,k G
′

opt,k

(
SCh,kS

H + Cη,k

)
G

′H
opt,k

]
)

∼ NC

(
0,

[
Ch,k Vopt,kΦk

ΦkV
H

opt,k I

]
)

(6.79)

where rk = J0(αkD) [see Eq. (4.24)]. Hence, applying Eq. (6.61) yields for the
conditional mean

µhk[q]|h̆k[q] = E
[

hk[q]|h̆k[q]
]

= Vopt,kΦkh̆k[q] (6.80)

and for the conditional covariance matrix

Chk[q]|h̆k[q] = Ch,k − Vopt,kΦ
2
kV

H
opt,k. (6.81)

Therefore, the conditional momentE[hk[q]h
H
k [q]|h̆k[q]] is given by

E
[

hk[q]h
H
k [q]|h̆k[q]

]

= Chk[q]|h̆k[q] + µhk[q]|h̆k[q]µ
H
hk[q]|h̆k[q]

= Ch,k − Vopt,kΦ
2
kV

H
opt,k + Vopt,kΦkh̆k[q]h̆

H
k [q]ΦkV

H
opt,k. (6.82)

Thus, both the conditional mean and the conditional correlation matrix in Eq. (6.78),
henceforth denoted respectively byµhk[q]|h̃Q,k[q] andRhk|[q]h̃k[q], can be written as

µhk[q]|h̃Q,k[q] = Vopt,kΦk E
[

h̆k[q]|h̃Q,k[q]
]

= Vopt,kΦkmk (6.83)

and

Rhk[q]|h̃Q,k[q] = Ch,k − Vopt,kΦ
2
kV

H
opt,k + Vopt,kΦkMkΦkV

H
opy,k (6.84)

respectively. Here, we introduced

mk =
1

κk

∫

Sℓk

wfw(w) dw

Mk =
1

κk

∫

Sℓk

wwHfw(w) dw
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with κk =
∫

Sℓk

fw(w) dw (see Appendix F.1). Note thatmk = yk,ℓk [cf. Eq. (6.72)] and

µhk[q]|h̃Q,k[q] = ĥQ,k[q]. The regionSℓk is the hyperrectangle given by

Sℓk =
{
x ∈ Cd,∀i : αRe

k,i (ℓk) ≤ ℜ(xi) ≤ βRe
k,i (ℓk) , α

Im
k,i (ℓk) ≤ ℑ(xi) ≤ βIm

k,i (ℓk)
}

(6.85)
whereαRe

k,i(ℓk) andβRe
k,i(ℓk) are the lower and upper limits, respectively, of the partition

cells of the quantizerQ′
k,i(•) applied to the real part of̃hk,i[q] corresponding to the fed–

back indexℓk of userk. Similarly, αIm
k,i(ℓk) andβIm

k,i (ℓk) are the lower and upper limits,
respectively, of the partition cells of the quantizerQ′

k,i(•) applied to the imaginary part
of h̃k,i[q] when the indexℓk is fed back to the transmitter by the userk. Note that
w ∼ NC(0, I) is used instead of̆hk[q] for brevity.

Taking into account thatCh̆,k = Id, the above expressions can be written as

mk= µRe
k + j µIm

k (6.86)

Mk= mkm
H
k + Σk (6.87)

with µRe
k = [µRe

k,1, . . . , µ
Re
k,d]

T. In Appendix F.2, it is shown that

µRe
k,i =

1

2
√
π

exp
(

−αRe,2
k,i (ℓk)

)

− exp
(

−βRe,2
k,i (ℓk)

)

Φ
(√

2αRe
k,i (ℓk)

)
− Φ

(√
2βRe

k,i (ℓk)
) . (6.88)

Correspondingly,µIm
k = [µIm

k,1, . . . , µ
Im
k,d]

T with

µIm
k,i =

1

2
√
π

exp
(

−αIm,2
k,i (ℓk)

)

− exp
(

−βIm,2
k,i (ℓk)

)

Φ
(√

2αIm
k,i (ℓk)

)
− Φ

(√
2βIm

k,i (ℓk)
) . (6.89)

The second term ofMk in Eq. (6.87) is diagonal, i.e.

Σk = diag (σk,1, . . . , σk,d)

whosei-th diagonal element can be expressed as (see Appendix F.3)

σk,i = τRe
k,i + τ Im

k,i (6.90)

with

τRe
k,i =

1

2
− µRe,2

k,i +
1

2
√
π

αRe
k,i (ℓk) exp

(

−αRe,2
k,i (ℓk)

)

− βRe
k,i (ℓk) exp

(

−βRe,2
k,i (ℓk)

)

Φ
(√

2αRe
k,i (ℓk)

)
− Φ

(√
2βRe

k,i (ℓk)
)
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Figure 6.7: Effect of Estimation Error on the Proposed RobustWF–THP with Approach
III from Section 6.3 as a Function of Different Training Lengths in an Urban Macrocell
Environment.

and, correspondingly,

τ Im
k,i =

1

2
− µIm,2

k,i +
1

2
√
π

αIm
k,i (ℓk) exp

(

−αIm,2
k,i (ℓk)

)

− βIm
k,i (ℓk) exp

(

−βIm,2
k,i (ℓk)

)

Φ
(√

2αIm
k,i (ℓk)

)
− Φ

(√
2βIm

k,i (ℓk)
) .

The above results enable us to compute the conditional covariance matrix

Chk[q]|h̃Q,k[q] = Rhk[q]|h̃Q,k[q] − µhk[q]|h̃Q,k[q]µ
H
hk[q]|h̃Q,k[q]

= Ch,k − Vopt,kΦ
2
kV

H
opt,k + Vopt,kΦ

2
kΣkV

H
opt,k

= Ch,k + Vopt,kΦ
2
kΥkV

H
opt,k (6.91)

whereΥk = Σk − Id. Note that the non-zero elements of the diagonal matrixΥk ∈ Rd×d
0,+

only depend on the properties ofQ′
k(•). They can therefore be computed in advance

and stored as parameters ofQ′
k(•). The first and the second term in the second line of

Eq. (6.91) come from the erroneous knowledge abouthk, if we hadh̃k. But since we only
haveh̃Q,k available, the variance of the error is increased by the third term in Eq. (6.91).

As seen in this section, the uncertain knowledge about the channel at the transmitter is
modeled by the conditional probability density functionfhk[q]|h̃Q,k[q](hk[q]|h̃Q,k[q]) whose
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covariance matrix is given by Eq. (6.91). Therefore, although we consider the channel as
being random we are able to exploit the statistical dependence between the channel and
the fed–back information (see Chapter 4). This goal can be achieved by extending the
classical precoder optimization with a mean with respect tothe channel conditional on the
fed–back information. The conditional mean introduces a regularization of the solution
that makes it more robust to CSI errors.

When taking the conditional mean of the MSE, we always encounter the conditional
mean of the channel and the conditional mean of the channel Gram [see Chapter 5, e.g.
Eq. (5.10)] which can be written respectively as [see Eqs. (6.83) and (6.91)]

E
[

H
∣
∣
∣H̃Q

]

=
[

µh1[q]|h̃Q,1[q], . . . ,µhK [q]|h̃Q,K [q]

]T

= Ĥ (6.92)

E
[

HHH
∣
∣
∣H̃Q

]

= ĤHĤ + CΘ (6.93)

whereH̃Q = [h̃Q,1[q], h̃Q,2[q], . . . , h̃Q,k[q]] andCΘ =
∑K

k=1 C∗
Θ,k =

∑K
k=1 C∗

hk[q]|h̃Q,k[q]
.

Notice that for MMSE designs, no other conditional moments of the channel are
necessary.

6.4 Simulations

This section presents the results of several computer simulations carried out to assess
the proposed MU-MISO system with robust precoding and limited feedback channels
as shown in Fig. 6.18. In this section, we study the BER performance achieved with the
three precoding schemes depicted in this figure: robust Wiener linear precoding (rob. WF-
LP), robust Wiener Tomlinson-Harashima precoding (rob. WF-THP), and robust Wiener
vector precoding (rob. WF-VP). Note that we only use the MMSE criterion instead of
the zero-forcing criterion since zero-forcing clearly leads to suboptimum solutions, as
demonstrated in Chapter 3.

We consider a MU-MISO system withN = 4 antennas at the transmitter andK = 4

single antenna users. Performance is evaluated in terms of uncodedBit Error Rate(BER)
versusSignal to Noise Ratio(SNR). The results are the mean of5,000 channel realizations
with 50 QPSK modulated symbols being transmitted in each channel realization. A delay
of D = 2 slots is considered for all the users, which are not fixed-located but moving at
a given speed. The Doppler frequency is normalized with respect to the slot period and
is calculated by taking into account thatfslot is 1,500 Hz and that the center frequency is
2 GHz. We consider three different environments following the 3GPPSpatial Channel
Model(SCM) [36]:

• channel1 (SCM1): suburban macrocell environment;
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• channel2 (SCM2): urban macrocell environment;

• channel3 (SCM3): urban microcell environment.

We consider channel2 in most of the results presented in this section due to its
intermediate BER performance and diversity. The BER curves are obtained after
averaging100 channel covariance matrices. Finally, for reasons of simplicity we assume
perfect CSI at the receiver for calculating the MMSE coefficients.

The first results in Figs. 6.7– 6.13 were obtained using the third feedback design
discussed in Section 6.3.

First, we carry out some preliminary simulations to select the size of the training
sequence. Fig. 6.7 shows the uncoded BER for robust THP over anurban macrocell
environment (channel 2) and different training sequence lengths in order to illustrate
the performance degradation caused by channel estimation errors. In this computer
experiment, this is the only error source in the system. As a compromise between
training sequence length and performance degradation, we pick the valueNtr = 6 for our
subsequent simulations, which introduces a2 dB loss at the BER operation point10−2

with respect to the case of perfect CSI, as can be seen in Fig. 6.7.
The performance of robust THP schemes in channel 2 for different user speeds is

plotted in Fig. 6.8. Rank reduction is applied and onlyd = 2 complex coefficients per user
are transmitted through the feedback channel. These coefficients are scalarly quantized
using6 bits (3 bits per real dimension) which yields12 bits per user. Fig. 6.8 considers the
speed values of10, 30, and60 km/h which correspond to normalized Doppler frequencies
of 0.0123, 0.0370, and0.0741, respectively. It is apparent that, as expected, the faster
the fading, the more the performance degrades. Fig. 6.8 alsoplots the uncoded BER
whenRandom Vector Quantization(RVQ) is applied instead of scalar quantization with
the same number of12 bits per user. Each user moves at a speed of30 km/h for the
RVQ curve. Note that in RVQ the stored user’s codebook contains channel vectors. As
expected, the system performance is better when RVQ is used.This is because RVQ
carries out a joint quantization that uses a much larger codebook (212 = 4,096 entries
per user) and compares anN -dimensional vector with4,096 complex vectors in order to
choose the closest one for each channel realization and eachchannel covariance matrix.
Its computational complexity is thus much higher than that of scalar quantization, where
the search is reduced to a comparison with23 = 8 scalar values for the real and imaginary
parts of each fed–back coefficient. For the considered number of 12 fed–back bits per
user, it is clear that the performance of RVQ for medium and high SNR must be better
than that obtained with scalar quantization.

Fig. 6.9 shows the influence of the different errors sources considered throughout
this work on the uncoded BER. Again, robust THP over channel 2 with a user speed of
30 km/h is considered. Obviously, each new error source adds a greater degradation in
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Figure 6.8: Effect of User Speed on the Proposed Robust WF–THP with Approach III
from Section 6.3 in an Urban Macrocell Environment with All Errors and 12 Bits per
User.

performance to the previous one. Note the performance degradation when moving from
d = 3 to d = 2 truncated coefficients. Also, note the performance loss as the number
of bits per user decreases. Nevertheless, truncation tod = 2 coefficients andL = 12

fed–back bits per user ensure a suitable system performance(BER is about7×10−2 at an
SNR of10 dB) with the enormous advantage of noticeably reducing the feedback channel
overhead. This overhead reduction becomes even more appreciable as the number of
transmitting antennas increases. In the subsequent computer experiments in this section,
we will used = 2 andL = 12 as system parameters.

Fig. 6.10 plots the performance ofLinear Precoding(LP), Tomlinson-Harashima
Precoding (THP), andVector Precoding(VP) robust schemes for the three different
scenarios described in [36]. All error sources are considered, i.e. estimation, quantization,
truncation, and delay errors inherent to the feedback transmission. Obviously, the
performance for channel1 (suburban macrocell) is much better than that for channel2

(urban macrocell). And the performance for channel2 is again better than that for channel
3 (urban microcell). This is because the spatial correlationin channel1 is considerably
larger than in channel3 (with channel2 in between), i.e. the third and fourth channel
eigenvalues are negligible in the case of channel1 whereas they have significant values
for channel3 and even for channel2. Thus, performance degradation due to truncation to



152 Chapter 6 Feedback Design based on CSI MSE

−10 −5 0 5 10 15 20 25 30
10

−2

10
−1

SNR in dB

u
n

c
o

d
e

d
 B

E
R

 

 
all errors, D=2 slots, 8 bits, WF−THP
all errors, D=1 slot, 8 bits, WF−THP
errors A, B, C, 8 bits, WF−THP
errors A, B, C, 12 bits, WF−THP
errors A, B, C, 16 bits, WF−THP
errors A, B, d=1, WF−THP
errors A, B, d=2, WF−THP
errors A, B, d=3, WF−THP
error A, Ntr=6, WF−THP
perf. CSI, WF−THP

Figure 6.9: Effect of Different Types of Error on the Proposed Robust WF–THP with
Approach III from Section 6.3 in an Urban Macrocell Environment. Error A: Estimation;
Error B: Rank Reduction; Error C: Quantization; All Errors: Estimation, Rank Reduction,
Quantization, and Delay.
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Figure 6.10: BER Performance for Different Types of 3GPP Channel Model with the
Proposed Robust Precoding and Approach III from Section 6.3 with 12 Bits per User.
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Figure 6.11: BER vs. SNR for MU–MISO Wiener Linear Precoding with Approach III
from Section 6.3 in an Urban Macrocell Environment.
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Figure 6.12: BER vs. SNR for MU–MISO Wiener THP with Approach III from
Section 6.3 in an Urban Macrocell Environment.
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Figure 6.13: BER vs. SNR for MU–MISO Wiener VP with Approach III from Section 6.3
in an Urban Macrocell Environment.
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Figure 6.14: BER Performance Improvement with Approach II from Section 6.2 for
Limited Feedback as a Function of the Number of Delayed Channels.
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Figure 6.15: BER Performance vs. SNR with Approach III from Section 6.3 for Limited
Feedback.
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Figure 6.16: BER Comparison vs. SNR of Approaches I, II, and IIIin Sections 6.1, 6.2,
and 6.3, respectively.
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Figure 6.17: BER Comparison vs. SNR of Approaches II and III (see Sections 6.2 and
6.3).
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d = 2 is more severe in channel3 than in channel1. When comparing the three precoding
schemes considered, LP exhibits the worst performance for the robust design, as is also
the case for perfect CSI. The achieved performance of VP is always better than that of
THP, although it is quite similar. Note that the complexity of VP is considerably greater
(due to the search in the lattice), which motivates the utilization of the suboptimum robust
THP schemes instead.

Figs. 6.11, 6.12, and 6.13 show the improvement of our robustschemes with respect
to the non–robust ones. It is apparent from these figures thatthe non–robust curves go up
for high SNR due to the sensitivity of these schemes to imperfect CSI. The advantage of
using the robust schemes, which provide a performance improvement and compensate the
imperfect CSI knowledge caused by the different error sources, is also apparent. In these
simulation results, different scalar codebooks (a codebook of m = 4 entries for coding
the real and imaginary part of the first coefficient and ofm = 2 entries for the second
one, andm = 4,m = 8, orm = 16 codebook entries for coding each real and imaginary
part of the two coefficients sent to the transmitter) have been used, i.e. we are employing
6, 8, 12, and16 bits per user, respectively. Clearly, if the number of bits isincreased,
the BER reduces because the errors due to the quantization process are smaller. However,
with a codebook of reasonable size, for example with only8 entries or12 bits per user, we
already obtain a good BER performance. Moreover, the improvement in BER is almost
negligible for larger codebooks, which have the enormous disadvantage of reducing the
compression rate for the CSI sent through the feedback channel and at the same time
considerably increasing the storage capability required at the receivers [103].

Fig. 6.14 shows the improvement in BER performance when usingthe second
feedback design discussed in Section 6.2. Moreover, the results are shown when we
consider more past channel versions for the robust design asfound in Subsection 6.2.1.
It is obvious that the usage of a higher amount of CSI reduces the mismatch between the
true channel and the erroneous channel since the uncertainty is decreased.

Fig. 6.15 shows the BER performance corresponding to the third approach, i.e. for
the joint MSE optimization that includes the quantizer parameters in the optimization
(see Section 6.3). As expected, no bit allocation (the bits are spread uniformly over the
coefficients) leads to worse performance than optimum bit allocation, since this latter
strategy allocates the bits in the sense of minimizing the MSE. Again, the gain due
to vector quantization compared to scalar quantization is apparent, but at the cost of
substantially increasing the computational complexity atthe user end.

Finally, Figs. 6.16 and 6.17 show a comparison related to theBER performance for the
limited feedback THP approaches described in this chapter.Clearly, the two approaches
that perform some MSE optimization lead to better performance than the first approach
from Section 6.1. Moreover, the gains depend on the number offed–back bits (see
Fig. 6.17).
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6.5 Conclusions

In this chapter, we have investigated the compression ofChannel State Information(CSI)
data in a MU-MISO system with precoding and limited feedbackchannel. Three different
types of precoder have been considered:Linear Precoding(LP), Tomlinson-Harashima
Precoding(THP), andVector Precoding(VP). The fed–back CSI is employed to design
a robust non-zero-forcing precoder, i.e. a robustminimum MSE(MMSE) precoder. Four
sources of error have been considered: channel estimation,truncation for rank reduction,
quantization, and feedback delay. The error modeling has allowed us to formulate robust
designs for each precoding scheme with a performance considerably better than that of
conventional non–robust schemes. All the designs proposedin this chapter are based on
the mismatch between the full CSI knowledge and the erroneousCSI knowledge at the
transmitter.

First, we investigated a very basic limited feedback designthat does not minimize
the final BER performance since it is not based on an MSE minimization. However, the
results are excellent taking into account the simplicity ofthe error model developed. Next,
we introduced an MSE minimization that included all the aspects of feedback with the
exception of the quantizer parameters. Thus, we considereda uniform quantizer with the
errors produced by the quantization process being modeled as an additive and independent
noise. The results of the previous approach are improved on by this new approach,
although it is still not optimum since we are not including the codebook entries and the
decision boundaries into a joint MSE optimization. Finally, we focused on a Bayesian
framework together with a joint MSE optimization based on a CSI metric that allows us to
obtain an adequate statistical characterization of the errors on fed–back CSI. We obtained
the very useful result that the optimal estimator and rank reduction only depend on the
channel statistics and are independent of the quantizer used. The distortion is a diagonally
weighted squared error, and thus the Lloyd algorithm can be employed to compute the
quantizer. As shown with some computer simulations, this latter approach achieves better
BER performance than the approach that does not include the quantizer parameters in the
MSE optimization. Moreover, the trade-off between computational complexity and final
performance is reasonable and the bit allocation strategy presented, resulting from the
joint MSE optimization, clearly outperforms all the previous approaches.

Therefore, the simulation results show how these techniques work well in MU-
MISO time-varying channels with limited feedback, given that a minimum amount of
information is transmitted through the reverse channel, leading to good BER performance
nevertheless. One of the major contributions of this chapter is to have found the channel
vector PDF conditional on the fed–back coefficients, which is the basis of our robust
precoding, i.e. to achieve a Bayesian approach for error modeling. Moreover, the
advantage of the new robust design proposed is even greater if we exploit, by means
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of an adequate procedure, the fact that the input is Gaussianin order to design the initial
codebook according to the Lloyd algorithm.
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Chapter 7

Feedback Design based on Precoding
MSE

Signal separation in the vectorBroadcast Channel(BC) requires some information about
the channel state at the transmitter. In many cases, such as FDD systems, thisChannel
State Information(CSI) must be fed back from the receivers to the transmitter bymeans
of a feedback channel, as already introduced in the previouschapter.

In this chapter, we jointly design the channel estimators and the quantizers at the
receivers together with the precoder at the transmitter based on a precoder-centric
criterion, i.e. the minimization of an MSE metric appropriate for the precoder design
[120]. This is in contrast to Chapter 6, where the quantizer design was based on a CSI-
MSE metric.

The procedure is as follows. First, the estimator is designed to minimize the MSE
between the transmitted symbols and the symbols recovered by the users including
the precoder averaged over all possible channel realizations, where a given quantizer
is assumed. Interestingly, the estimators resulting from this joint formulation are
independent of the codebook used and are equal to the estimators obtained previously,
even though the design is no longer based on a CSI-MSE metric.

On the other hand, the codebook entries are the precoders employed. These precoders
are found by minimizing the precoder-MSE conditional on thefed–back index. The use of
white estimates (by dropping the coloring and the square root of the respective covariance
matrix) and a restriction to rectangular regions leads to a simple computation of the
conditional means necessary for the precoding design step.The most difficult part of
the proposed scheme is the design of the partition cells. Thecell boundaries are designed
by minimizing the precoder-MSE conditional on the quantizer input. Finally, each user
feeds back the index of a set of precoders and the intersection of the sets performed
at the transmitter gives the appropriate precoder to be usedduring the transmission.
Since the quantizers of the different receivers have to workseparately, the metric for the

161
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Figure 7.1: MU–MISO System Model for Linear Precoding.

computation of the partition cells cannot be expressed as a simple squared error depending
on the quantizer output and its computation is quite complexas shown in this chapter.

To this end, we firstly introduce the proposed system for linear precoding and
the feedback system to be optimized in order to reduce the overhead of the reverse
channel. Next, we obtain the optimum estimators, partitioncells, codebook entries, and
linear precoders from the joint optimization based on a metric that includes the overall
parameters. We also focus on how to implement bit allocationin this case, and on how
we can solve the problems related to its computational complexity by means of a heuristic
strategy. Finally, some computer simulations are carried out to illustrate the performance
of this approach in terms of BER.

For the sake of brevity, we omit in this chapter the indexq to indicate the time slot
related to the block fading channel and also the indexn to denote each one of theNB time
samples spaced with the symbol period,Ts, inside each slot (see Chapter 2).

7.1 System Model

Our final goal is the design of a precoder for the vector BC setup, where a centralized
transmitter withN antennas communicates data toK decentralized single antenna
receivers. For reasons of simplicity, we restrict ourselves to linear precoding in this
chapter. Fig. 7.1 shows the block diagram of a MU–MISO systemwith linear precoding.
Fig. 7.2 depicts the block diagram for the same system but employing a more compact
form, i.e. by using a notation that results from the combination of the signals from all
users. As shown in this figure, the zero-mean data signalu ∈ CK with unit covariance
matrix, i.e. Cu = I, is linearly transformed by the precoderP ∈ CN×K to obtain the
transmit signaly ∈ CN , which propagates over the channelhk ∈ CN to thek-th receiver
and is perturbed by the additive noiseηk. The receiver applies the common receive weight
g ∈ C to get the estimatêuk. As shown in Fig. 7.2, combining the signals of the different
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Figure 7.2: System Model for MU–MISO Linear Precoding combining Signals from All
Users.

receivers yields
û = gHPu + gη (7.1)

whereû = [û1, . . . , ûK ]T ∈ CK , η = [η1, . . . , ηK ] ∈ CK with η ∼ NC(0,Cη), and
H = [h1, . . . ,hK ]T ∈ CK×N .

The constraint for the average total transmitted energy must be satisfied, i.e.

E
[
‖Pu‖22

]
= Etx.

The receive weightg is directly derived from this constraint taking into account that the
precoderP is factorized as follows

P = g−1F with F ∈ CN×K . (7.2)

Accordingly, we have that

g =

√
1

Etx
tr (FF H). (7.3)

7.2 Limited Feedback Model: Channel Estimation and
Quantization

Fig. 7.3 depicts the block diagram of the proposed limited feedback system. In order
to obtain the information about the channel state needed to select the precoder, the
centralized transmitter sends a sequence ofNtr pilot symbols from all transmit antennas.
The received noisy pilot symbols are passed through the estimatorGk ∈ CN×Ntr to obtain
the input

zk = Gk (Shk + ηk) ∈ CN (7.4)

of the quantizerQk(•) of userk. Here,S ∈ CNtr×N comprises the pilot symbols and
ηk ∼ NC(0,Cη,k) is the noise of the pilot channel to thek-th receiver. For reasons of
simplicity, the feedback channel is assumed to be error-free and without delay. The delay
effect has already been studied in the previous chapter and it would be relatively easy
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Figure 7.3: System Model for Feedback.

to correct this error, as we will see in the next section, but at the cost of unnecessarily
complicating our notation. The channelhk ∈ CN is assumed to be zero-mean complex
Gaussian, i.e.hk ∼ NC(0,Ch,k) with the channel covariance matrix of thek-th user
Ch,k = E[hkh

H
k ] ∈ CN×N . Note that the rank reduction is not explicitly included in the

notation. This is not necessary since a rank reduction, where a coefficient is dropped, is
equivalent to setting the number of partitions corresponding to this coefficient to one. For
this reason, we usezk to denote the information recovered after the estimator in ageneral
way, instead of̃hk used in the previous chapter.

After estimation, it is necessary to implement some type of quantizer in order to
compress all the information sent through the feedback channel, which is often limited
in bandwidth. Contrary to the quantizers used in Chapter 6 where the codebook entries
were white channel coefficients, the entries for the quantizers proposed in this chapter
contain the precoders of Fig. 7.2, i.e. the quantizer is based on precoders and not on CSI.

Let us initially assume an ideal MU–MISO system where all theusers work in a
cooperative way, thus making it possible to design the quantizer jointly. In this case, the
operation of the overall quantizer is

Q (z) =
M∑

i=1

Pi Si (z) (7.5)

wherez = [zT
1 , . . . ,z

T
K ]T ∈ CKN is the overall CSI and the selector functionSi(•) is 1 if

the argument lies in the partition cellRi, and0 elsewhere. Each of theM codebook entries
Pi ∈ CN×K is a precoder andPi is chosen ifz ∈ Ri. However, a joint quantization is
impossible, since each receiver only has access to its own CSIzk since we have non-
cooperative users in the downlink of a MU–MISO system. Therefore, the partition cell
Ri ⊆ CKN must be decomposed into subregionsRk,i ⊆ CN , i.e.Ri = R1,i×· · ·×RK,i,
where× denotes the Cartesian product defined as

Ri = R1,i × · · · × RK,i = {(x1,i, . . . ,xK,i) | x1,i ∈ R1,i, . . . ,xK,i ∈ RK,i}. (7.6)

Here,Ri denotes the total partition cell corresponding to thei–th codebook entry and
Rk,i, with k = 1, . . . , K corresponds to the cell of userk for the i–th codebook entry.
The quantizerQk(•) of thek-th user identifies the regionRk,i in which the CSIzk lies.
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Taking into account that we will restrict ourselves to scalar quantization in a later step,
we have that

Rk,i = R(1)
k,i × · · · × R

(N)
k,i

with the rectangular regionR(n)
k,i ⊆ C andN being the maximum number of coefficients

sent from userk to the transmitter. When the real and imaginary part of then-th entry
zk,n of zk corresponding to thek-th user’s quantizerQk(•) lies in the cellsC(Re,n)

k,j
(Re,n)
k

and

C(Im,n)

k,j
(Im,n)
k

, respectively, the conditionsα(Re,n)

k,j
(Re,n)
k

≤ ℜ(zk,n) < β
(Re,n)

k,j
(Re,n)
k

or α(Im,n)

k,j
(Im,n)
k

≤
ℑ(zk,n) < β

(Im,n)

k,j
(Im,n)
k

are respectively fulfilled. In that case, a setP
(Re,n)

k,j
(Re,n)
k

or P
(Im,n)

k,j
(Im,n)
k

of indices is chosen, for which it holds that

P
(Re,n)

k,j
(Re,n)
k

=

{

i = 1, . . . ,M | Re
(

R(n)
k,i

)

= C(Re,n)

k,j
(Re,n)
k

}

and

P
(Im,n)

k,j
(Im,n)
k

=

{

i = 1, . . . ,M | Im
(

R(n)
k,i

)

= C(Im,n)

k,j
(Im,n)
k

}

.

The fed–back information of userk are the indicesj(Re,n)
k andj(Im,n)

k with n = 1, . . . , N .
To obtain the output of the quantizerQk(•), the quantized results for the different
real and imaginary parts of the entrieszk,n, n = 1, . . . , N , i.e. j

(Re,n)
k and j(Im,n)

k ,
must be combined by simply intersecting the setsP

(1)

k,j
(1)
k

, . . . ,P
(N)

k,j
(N)
k

, whereP
(n)

k,j
(n)
k

=

P
(Re,n)

k,j
(Re,n)
k

∩ P
(Im,n)

k,j
(Im,n)
k

:

Qk(zk) =
N⋂

n=1

P
(n)

k,j
(n)
k

.

So, the fed–back information of userk, i.e. the output of its quantizerQk(zk), is
equivalent to a set of indices referring to the precoders that best fit its current channel
state. When collecting the fed–back information from all users, the transmitter in the
BC finds the index of the final precoder by intersecting the setsof indices of all users.
Therefore, the selector function of the overall quantizer in Eq. (7.5) is finally defined as

Si(z) =

{

1 for i ∈ ⋂K
k=1 Qk(zk)

0 else.

Note that the above intersection gives a set with cardinality one due to the properties
of the Cartesian product used to splitRi into R1,i, . . . ,RK,i [see Eq. (7.6)]. Fig. 7.4
illustrates how the precoder is selected from the indices sent by each user. This design
is totally necessary since the users are not cooperative and, therefore, no single user has
information about the others. Remember that the codebook entries are the precoders and
the receive weights and not the CSI.
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Ri, i = 1, . . . , 16

R1 : C(Re,1)
1,1 , C(Im,1)

1,1 , C(Re,1)
2,1 , C(Im,1)

2,1

R2 : C(Re,1)
1,1 , C(Im,1)

1,1 , C(Re,1)
2,1 , C(Im,1)

2,2

R3 : C(Re,1)
1,1 , C(Im,1)

1,1 , C(Re,1)
2,2 , C(Im,1)

2,1

R4 : C(Re,1)
1,1 , C(Im,1)

1,1 , C(Re,1)
2,2 , C(Im,1)

2,2

R5 : C(Re,1)
1,1 , C(Im,1)

1,2 , C(Re,1)
2,1 , C(Im,1)

2,1

R6 : C(Re,1)
1,1 , C(Im,1)

1,2 , C(Re,1)
2,1 , C(Im,1)

2,2

R7 : C(Re,1)
1,1 , C(Im,1)

1,2 , C(Re,1)
2,2 , C(Im,1)

2,1

R8 : C(Re,1)
1,1 , C(Im,1)

1,2 , C(Re,1)
2,2 , C(Im,1)

2,2

R9 : C(Re,1)
1,2 , C(Im,1)

1,1 , C(Re,1)
2,1 , C(Im,1)

2,1

R10 : C(Re,1)
1,2 , C(Im,1)

1,1 , C(Re,1)
2,1 , C(Im,1)

2,2

R11 : C(Re,1)
1,2 , C(Im,1)

1,1 , C(Re,1)
2,2 , C(Im,1)

2,1

R12 : C(Re,1)
1,2 , C(Im,1)

1,1 , C(Re,1)
2,2 , C(Im,1)

2,2

R13 : C(Re,1)
1,2 , C(Im,1)

1,2 , C(Re,1)
2,1 , C(Im,1)

2,1

R14 : C(Re,1)
1,2 , C(Im,1)

1,2 , C(Re,1)
2,1 , C(Im,1)

2,2

R15 : C(Re,1)
1,2 , C(Im,1)

1,2 , C(Re,1)
2,2 , C(Im,1)

2,1

R16 : C(Re,1)
1,2 , C(Im,1)

1,2 , C(Re,1)
2,2 , C(Im,1)

2,2

Fopt,1, gopt,1

Fopt,2, gopt,2

Fopt,3, gopt,3

Fopt,4, gopt,4

Fopt,5, gopt,5

Fopt,6, gopt,6

Fopt,7, gopt,7

Fopt,8, gopt,8

Fopt,9, gopt,9

Fopt,10, gopt,10

Fopt,11, gopt,11

Fopt,12, gopt,12

Fopt,13, gopt,13

Fopt,14, gopt,14

Fopt,15, gopt,15

Fopt,16, gopt,16

User1 :R(1)
1,j1

, j1 = 1, . . . , 4

User2 :R(1)
2,j2

, j2 = 1, . . . , 4

P
(1)
1,1 ∩ P

(1)
2,4 = {4}

R(1)
1,1 : C(Re,1)

1,1 , C(Im,1)
1,1

R(1)
1,2 : C(Re,1)

1,1 , C(Im,1)
1,2

R(1)
1,3 : C(Re,1)

1,2 , C(Im,1)
1,1

R(1)
1,4 : C(Re,1)

1,2 , C(Im,1)
1,2

R(1)
2,1 : C(Re,1)

2,1 , C(Im,1)
2,1

R(1)
2,2 : C(Re,1)

2,1 , C(Im,1)
2,2

R(1)
2,3 : C(Re,1)

2,2 , C(Im,1)
2,1

R(1)
2,4 : C(Re,1)

2,2 , C(Im,1)
2,2

codebook

Figure 7.4: Example of Precoder Assignment withK = 2 Users,d = 1 Coefficient and
Nbit = 2 Bits per User. (Note thatP(1)

1,1 = P
(Re,1)
1,1 ∩ P

(Im,1)
1,1 = {1, 2, 3, 4} andP

(1)
2,4 =

P
(Re,1)
2,4 ∩P

(Im,1)
2,4 = {4, 8, 12, 16}. The Number of Codebook Entries is2K×Nbit = 24 = 16.

The Index of the Overall QuantizerQ(•) is i = 4(j1 − 1) + j2).
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7.3 Proposed MMSE Optimization

All parts of the feedback system, viz. the estimators{Gk}Kk=1 and the quantizers
{Qk(•)}Kk=1 (i.e. the partition cells{Ri}Mi=1 and the precoders{Pi}Mi=1 together with
the weights{gi}Mi=1), minimize the precoding MSE

MSE = E
[
‖u− û‖22

]
=

M∑

i=1

pi E
[
‖u− û‖22

∣
∣ z ∈ Ri

]
(7.7)

=
M∑

i=1

pi
(
tr (Cu)− 2giℜ (tr (E [H|z ∈ Ri] PiCu)) + g2

i tr (Cη)

+g2
i tr
(
E
[
HHH|z ∈ Ri

]
PiCuP H

i

))

=
M∑

i=1

pi
(
K − 2giℜ (tr (E [H|z ∈ Ri] Pi)) + g2

i tr (Cη)

+g2
i tr
(
E
[
HHH|z ∈ Ri

]
PiP

H
i

))
.

Here, pi denotes the probability thatz ∈ Ri. We assume thatu is zero–mean and
uncorrelated with unit-variance, i.e.Cu = I for the last equality. Remember that the
received signal is given bŷu = g(HPu + η) [see Eq. (7.1)], whereP is the precoder
obtained from the overall quantizer, i.e.P = Q(z) =

∑M
i=1 Pi Si(z). Note again that we

neglect the delay of the feedback in our system model for the sake of brevity.
The optimization problem that we have to solve is

{{Gk}Kk=1, {Pi}Mi=1, {Ri}Mi=1} = argmin
{{Gk}K

k=1,{Pi}M
i=1,{Ri}M

i=1}
E
[
‖u− û‖22

]
. (7.8)

Unfortunately, no closed form expressions can be obtained for both the estimators and the
quantizers of the feedback systems. However, an alternating optimization can be used to
minimizeE

[
‖u− û‖22

]
, because closed form expressions for the separate minimizations

are available, while the other quantities are kept fixed. Therefore, we start by fixingRi

andPi and try to get the closed-form solution for the estimatorGk. After that we use
the Lloyd algorithm to iteratively optimize the partition cells and codebook entries of the
quantizers of each user.

7.3.1 Estimators

In this subsection, the estimatorGk is optimized for given codebook entries (precoders),
partition cells, and other estimators, i.e.Gopt,k = argminGk

MSE (see Eq. (7.7)). Due to
[cf. Eq. (7.4)]

Cz,k = E
[
zkz

H
k

]
= Gk

(
SCh,kS

H + Cη,k

)
GH
k
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we get the following alternative parameterization of the estimator

Gk = C
1/2
z,kXH

k

(
SCh,kS

H + Cη,k

)−1/2
(7.9)

where the unknownXk ∈ CNtr×N has orthonormal columns, i.e.XH
k Xk = IN . It

is very easy to see that this expression forGk leads toCz,k when we substitute into
Gk(SCh,kS

H + Cη,k)G
H
k . Note that the transformation ofShk + ηk with (SCh,kS

H +

Cη,k)
−1/2 leads to an uncorrelated signal with unit covariance matrixand the additional

transformation withXH
k again gives an uncorrelated signal with unit covariance matrix

irrespective of the choice forCz,k. Therefore, the optimization with respect toGk can be
split into an optimization with respect toXk and a subsequent optimization with respect
to Cz,k.

Before the minimization ofE
[
‖u− û‖22

]
with respect toXk can be performed, the

MSEE
[
‖u− û‖22

]
must be rewritten by using the matrixAk defined as

Ak = Ch,kS
H
(
SCh,kS

H + Cη,k

)−1/2 ∈ CN×Ntr (7.10)

and by obtaining the conditional momentsE[H|z ∈ Ri] andE[HHH|z ∈ Ri]. Taking
into account thathk andzk are jointly Gaussian, we have

[
hk

zk

]

∼ NC

(

0,

[
Ch,k CH

zh,k

Czh,k Cz,k

])

whereCzh,k is given by

Czh,k = E
[
zkh

H
k

]
= C

1/2
z,kXH

k

(
SCh,kS

H + Cη,k

)−1/2
SCh,k. (7.11)

Thus, the following conditional moments read as (e.g. [121])

E[hk|zk] = CH
zh,kC

−1
z,kzk = Ch,kS

H
(
SCh,kS

H + Cη,k

)−1/2
XkC

−1/2
z,k zk

= AkXkC
−1/2
z,k zk

E[hkh
H
k |zk] = Ch,k −CH

zh,kC
−1
z,kCzh,k + E[hk|zk] E[hk|zk]H

= Ch,k −AkXkX
H
k AH

k + AkXkC
−1/2
zk

zkz
H
k C

−1/2,H
z,k XH

k AH
k .

Clearly, it holds thatE[H|z ∈ Ri]) = E[E[H|z]|z ∈ Ri]. Therefore, taking into account
thatH = [h1, . . . ,hK ]T, we have

E[H|z ∈ Ri] = [A1X1µ1,i, . . . ,AKXKµK,i]
T (7.12)

E[HHH|z ∈ Ri] =
K∑

k=1

(
Ch,k −AkXk (I−Rk,i) XH

k AH
k

)T
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with

µk,i = E
[

C
−1/2
z,k zk

∣
∣
∣ zk ∈ Rk,i

]

Rk,i = E
[

C
−1/2
z,k zkz

H
k C

−1/2,H
z,k

∣
∣
∣ zk ∈ Rk,i

]

.

Note thatµk,i andRk,i only depend on the choice ofRk,i which are assumed to be given
in this subsection. The above results forE[H|z ∈ Ri] andE[HHH|z ∈ Ri] can be
substituted into Eq. (7.7). Thus, the MSE for the given codebook entries{Pi, gi}Mi=1 and
partition cells{Ri}Mi=1 is expressed as

MSE = E
[
‖u− û‖22

]
=

M∑

i=1

pi E
[
‖u− û‖22

∣
∣ z ∈ Ri

]
(7.13)

=
M∑

i=1

pi

(

K − 2giℜ
(

tr
(

[A1X1µ1,i, . . . ,AKXKµK,i]
T

Pi

))

+ g2
i tr (Cη)

+g2
i

K∑

k=1

tr
((

Ch,.k −AkXk (I−Rk,i) XH
k AH

k

)T
PiP

H
i

)
)

.

As mentioned above, when introducing the alternative representation of the estimatorGk

in Eq. (7.9), we first find the basisXk by minimizing the above MSE for fixedCz,k, i.e.

Xopt,k = argmin
Xk

MSE s.t.: XH
k Xk = IN .

The constraint ensures the sub–unitarity ofXk ∈ CNtr×N . The corresponding Lagrangian
function reads as

L(Xk,Λk) = MSE+ tr
(
Λk

(
XH

k Xk − I
))

with the Lagrangian multiplierΛk ∈ CN×N , which is Hermitian by definition, as the
constraint is Hermitian. A necessary condition for optimality is that

∂L(Xk,Λk)

∂XT
k

=
∂MSE
∂XT

k

+ ΛkX
H
k = 0.

From this KKT condition we obtain that [cf. Eq. (7.13)]

−piµk,ie
T
kP T

i giAk − piXH
k AH

k g
2
iP

∗
i P T

i Ak + piRk,iX
H
k AH

k g
2
iP

∗
i P T

i Ak + ΛkX
H
k = 0.

Since the range of the first three summands reachable for row vectors multiplied from the
left is the span of the rows ofAk, the space spanned by the rows ofXH

k must be the same
to fulfill the above condition. Thus,

range(Xk) = range
(
AH
k

)
. (7.14)
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By considering theSingular Value Decomposition(SVD) of a matrixB = MDNH,
whereD is a square diagonal matrix andM and N are unitary or sub–unitary, it is
satisfied that the range ofB is equal to the range ofM [107]. With this property and the
SVD of Ak given by

Ak = VkΦkW
H
k

with unitaryVk ∈ CN×N , diagonalΦk ∈ RN×N whose diagonal elements are positive,
and sub–unitaryWk ∈ CNtr×N , we have that range(AH

k ) = range(Wk). We can conclude
that the optimal basis is expressed as

Xopt,k = WkU
H
k ∈ CNtr×N (7.15)

to fulfill the condition in Eq. (7.14). The so far undefined unitary Uk ∈ CN×N must be
chosen to minimize the precoding MSE in Eq. (7.13). AsΦkW

H
k = V H

k Ak, the optimal
estimator must have the form [cf. Eq. (7.9)]

Gopt,k = C
1/2
z,kXH

k

(
SCh,kS

H + Cη,k

)−1/2

= C
1/2
z,kUkΦ

−1
k V H

k Ak

(
SCh,kS

H + Cη,k

)−1/2

= C
1/2
z,kUkΦ

−1
k V H

k GMMSE-estim,k (7.16)

where the conventional linear MMSE estimator is given by

GMMSE-estim,k = Ch,kS
H(SCh,kS

H + Cη,k)
−1.

The output ofV H
k in Eq. (7.16) is uncorrelated and withΦ−1

k , the estimate is white, i.e.
with unit variance. Again, as in Chapter 6, some rotation withUk is applied that does not
change the property of unit covariance. Finally, the estimate is colored withC1/2

z,k . This
result is quite surprising, since we do not optimize the meansquared error between the
true channel and the channel recovered at the transmitter. Instead, the precoding MSE
E
[
‖u− û‖22

]
is minimized [see Eq. (7.8)]. Additionally, the notation introduced in the

previous chapter, where the MSE between the true channel andthe CSI at the transmitter
was minimized, explicitly included a rank reduction. We choose a different formulation
now, since a rank reduction can be included by an appropriaterestriction of the partition
cellsRk,i (i.e. by bit allocation). Therefore,Vk in Eq. (7.16) is square and is not used for
rank reduction.

We also see from Eq. (7.16) that the optimal estimatorGopt,k can be obtained in closed
form except for the covariance matrixCz,k and the unitary matrixUk. The optimization
of these parts of the estimator is difficult and cannot be found analytically. However,
the last stages of the estimatorGopt,k can be moved into the quantizerQk(•) as we have
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already done in Chapter 6. Thanks to this step, the partition cellsRk,i are just redefined
and optimality is not spoilt. Therefore, we can set without loss of optimality that

Gopt,k = Φ−1
k V H

k GMMSE-estim,k ∈ CN×Ntr . (7.17)

Note that the optimal estimator is independent of any properties of the codebook and the
other estimators. Additionally, note that the outputzk of the estimatorGopt,k is white
Gaussian. Then, we rename the output of the estimator aswk ∼ NC(0, I). Due to the
relationship ofXopt,k andAk [see Eq. (7.15)], we have

Ch,k −AkXkX
H
k AH

k = Ch,k −AkWkU
H
k UkW

H
k AH

k

= Ch,k − VkΦkW
H
k WkW

H
k WkΦkV

H
k = Ch,k − VkΦ

2
kV

H
k

and

AkWkU
H
k Rk,iUkW

H
k AH

k = AkWk
︸ ︷︷ ︸

VkΦk

Rk,i W
H
k AH

k
︸ ︷︷ ︸

ΦkV H
k

because Gaussian distributions are invariant to unitary rotations (see Appendix D.2).

Bearing in mind the above results, the conditional moments from Eq. (7.12) can be
rewritten as

E [H|z ∈ Ri] = [µ1,i, . . . ,µK,i]
T

E
[
HHH|z ∈ Ri

]
=

K∑

k=1

((
Ch,k − VkΦ

2
kV

H
k

)T
+ RT

k,i

)

=
K∑

k=1

(
Ch,k − VkΦ

2
kV

H
k + Rk,i

)T

whereµk,i andRk,i are redefined as

µk,i = VkΦk E [wk |wk ∈ Rk,i ]

Rk,i = VkΦk E
[
wkw

H
k |wk ∈ Rk,i

]
ΦkV

H
k .

(7.18)
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Now, E[HHH|z ∈ Ri] can be further written as

E
[
HHH|z ∈ Ri

]
=

K∑

k=1

(
Ch,k − VkΦ

2
kV

H
k + VkΦk E

[
wkw

H
k |wk ∈ Rk,i

]
ΦkV

H
k

)T

=
K∑

k=1

(
Ch,k − VkΦ

2
kV

H
k + µk,iµ

H
k,i

+VkΦk E
[(

wk −Φ−1
k V H

k µk,i

) (
wk −Φ−1

k V H
k µk,i

)H |wk ∈ Rk,i

]

ΦkV
H
k

)T

=
K∑

k=1

(Ch,k − VkΦ
2
kV

H
k

︸ ︷︷ ︸

Cestim,k

+µk,iµ
H
k,i + VkΦkCQ,k,iΦkV

H
k

︸ ︷︷ ︸

Cquantize,k,i

)T (7.19)

=
K∑

k=1

(
Ch,k + µk,iµ

H
k,i − VkΦkΓk,iΦkV

H
k

)T
(7.20)

where the relationshipCy|x = E[(y − µy|x)(y − µy|x)H|x] = E[yyH|x] − µy|xµH
y|x is

applied.Cestim,k is the MSE error matrix due to the estimation error andCquantize,k,i is the
error covariance matrix due to the quantization error. The matrix Γk,i = I−CQ,k,i ∈ R0,+

depends only on the quantizer parameters. Note that when we assume perfect channel
knowledge at the receiver, i.e. when there are no errors caused by estimation,Cestim,k = 0,
and when there is no limited rate for the feedback, i.e. no quantization errors, we have
thatCquantize,k,i = 0. Therefore, the regularization that is introduced due to imperfect CSI
at the transmitter is given byCestim,k + Cquantize,k,i. Remember that the effect of feedback
delay is omitted in Eq. (7.19). In the event that we assume a simple Jakes model, we
would have that [cf. Eq. (6.5)]

E
[
hk[q]h

H
k [ν]

]
= J0(2πfD,max,kD/fslot)Ch,k = rkCh,k

with the slot indexq, the delay in slotsD = q−ν, the maximum Doppler frequency of the
k-th userfD,max,k, the slot ratefslot, and the zero-th order Bessel function of the first kind
J0(•) [34]. The factorrk in the last equality is implicitly defined. Note that the delay can
be neglected by considering a speed value ofv = 0 km/h (rk = 1). As done in Chapter 6,
the only impact is that this termrk must be included into the expression ofAk in
Eq. (7.10) since the input of the quantizerzk given by Eq. (7.4) is obtained from outdated
channel vectors and thereforeCzh,k = rkC

1/2
z,kXH

k

(
SCh,kS

H + Cη,k

)−1/2
SCh,k [cf.

Eq. (7.11)].



7.3 Proposed MMSE Optimization 173

For the sake of notational brevity, we introduce

Mi = [µ1,i, . . . ,µK,i]
T ∈ CK×N

Cestim =
K∑

k=1

Ch,k − VkΦ
2
kV

H
k ∈ CN×N

Cquantize,i =
K∑

k=1

VkΦkCQ,k,iΦkV
H
k ∈ CN×N . (7.21)

The precoding MSE for the optimal estimators is therefore

MSE =
M∑

i=1

pi

(

K − 2ℜ (tr (MigiPi)) + g2
i tr (Cη)

+ g2
i tr
((

MH
i Mi + CT

estim+ CT
quantize,i

)
PiP

H
i

))

. (7.22)

In the following, we assume that the optimal estimatorsGopt,k, k = 1, . . . , K are
employed, i.e. the precoding MSE of Eq. (7.22) has to be minimized by the parameters
of the quantizers.

Notice that the conditional moments provided by this schemeare equal to the
conditional moments obtained for the joint optimization based on a CSI-metric (see
Chapter 6), which is not especially remarkable since we obtained the same estimator
for both approaches.

7.3.2 Codebook Entries: Precoders

The precoderPi and the receiver weightgi minimize the precoding MSE of Eq. (7.22)
under a transmit power constraint for given partition cellsRi, i = 1, . . . ,M

{Popt,i, gopt,i} = argmin
{Pi,gi}

MSE s.t.:E
[
‖Piu‖22

]
≤ Etx. (7.23)

Without destroying optimality, we make a change of variables and setPi = g−1
i Fi.

Consequently, the Lagrangian function reads as

L (Fi, gi, λ) =
M∑

i=1

pi

(

K − 2ℜ (tr (MiFi)) + g2
i tr (Cη)

+ tr
((

MH
i Mi + CT

estim+ CT
quantize,i

)
FiF

H
i

)
+ λ

(
g−2
i ‖Fi‖2F− Etx

)

(7.24)

with the Lagrangian multiplierλ ∈ R0,+.
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One KKT condition is obtained by deriving with respect tog∗i , which is assumed to
be real. Equating this derivative to zero yields

∂L (•)
∂g∗i

= 2gi tr (Cη)− 2λg−3
i ‖Fi‖2F = 0

which leads toλ = g2
i

tr(Cη )

g−2
i ‖Fi‖2

F
> 0. Excluding the trivial solution, we can follow that the

transmit energy constraint is active, and thereforeg−2
i ‖Fi‖2F = Etx andλ = g2

i
tr(Cη )

Etx
.

When we set the derivative with respect toF ∗
i to zero, we obtain the following KKT

condition

∂L (•)
∂F ∗

i

= −MH
i +

(
MH

i Mi + CT
estim+ CT

quantize,i

)
Fi +

λ

g2
i

Fi

= −MH
i +

(
MH

i Mi + CT
estim+ CT

quantize,i + ξIN
)
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whereξ = tr(Cη)/Etx. This result together with the transmit power constraint leads to
the optimal precoder (codebook entry) corresponding to thei-th partition cellRi given by

Fopt,i =
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MH

i Mi

)

.
(7.26)

This result is thecentroid condition. Although the optimization of Eq. (7.23) gives the
weightgopt,i, we use MMSE receiver weights instead to correct the phase asdescribed in
Section 5.5 and get an approximately coherent detection.

Note that the solution for the precoder is inherently robustagainst errors, since the
respective error covariance matrices regularize the pseudo inversion in the definition of
Fopt,i.

Due to the expectationsE [wk |wk ∈ Rk,i ] for k = 1, . . . , K [see Eqs. (7.18)
and (7.21)], the computation of the precoderFi is difficult for general partition cells
R1,i, . . . ,RK,i, i.e. usingvector quantization. However, by restricting ourselves toscalar
quantization, the integration over the rectangular regionsR(n)

k,i can be solved in closed
form (see Appendix F, [118]). Note that this precoder is basically the same precoder as
that obtained for the approach in Chapter 6, based on the CSI MSEmetric. Both linear
precoders are robust against errors in CSI by means of regularization terms. Contrary
to the CSI MSE metric, however, where the precoder is based on already optimized and
fixed partition cells that are independent from the channel statistics1, the joint design
according to the precoder MSE metric shown in this chapter optimizes the precoder and

1Neglecting the effect of bit allocation.
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the partition cells using the Lloyd algorithm. The Lloyd algorithm switches between
the precoder design and the partition cell computation and converges to locally optimum
precoders and regions since every step reduces the MSE, and the MSE is lower bounded.
Note that now both precoders and partition cells must be recomputed as soon as channel
statistics change, which is more appropriate in the sense ofMSE minimization.

7.3.3 Partition Cells

Since the other estimators’ inputs are unknown to the quantizer of userℓ, the regions
Rℓ,i of the ℓ-th quantizer minimize the distortiondℓ = E[‖u − û‖22|zℓ] for the given
codebook entriesPi andgi, i = 1, . . . ,M . Motivated by the fact thatzℓ ∼ NC(0, I),
i.e. its entries are uncorrelated, and that the computationof the precoders is difficult for
vector quantization, we restrict ourselves to scalar quantization, i.e. the entries ofzℓ are
quantized separately. In this case, the partition cellsC(Re,n)

ℓ,j
(Re,n)
k

andC(Im,n)

ℓ,j
(Im,n)
k

(that is, their

corner coordinatesα(Re,n)
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) of the scalar quantizers for,

respectively, real and imaginary parts of then-th entryzℓ,n of zℓ minimize the distortions
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and

d
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respectively. Here,M (n)
ℓ is the number of codebook entries for the quantizer ofℜ[zℓ,n] and

ℑ[zℓ,n] (in our example of Fig. 7.4:M (n)
ℓ = 2); S

(Re,n)
ℓ,j (ℜ[zℓ,n]) is one forℜ[zℓ,n] ∈ C(Re,n)

ℓ,j

and zero elsewhere; andS(Im,n)
ℓ,j (ℑ[zℓ,n]) is one forℑ[zℓ,n] ∈ C(Im,n)

ℓ,j and zero elsewhere.

As a result of computing these expressions for eachzℓ,n, we can obtain the indicesj(Re,n)
ℓ

andj(Im,n)
ℓ that minimize these distortions. Note that, given then–th quantizer input of

userℓ, zℓ,n, we assume that the other quantizer inputszk,n, with k 6= ℓ, are unknown
and, therefore, it is necessary to average over all the possible zk,n. Although the other
entrieszℓ,ν with ν 6= n are known to receiverℓ, also over these quantities is averaged,
since scalar quantizers are used. However, their corresponding cells are given since the
codebook design is centralized at the transmitter and stored at both the transmitter and all
the receivers.
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The distortions due to thej-th codebook entry for both real and imaginary entries of
the inputzℓ,n read respectivley as
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and
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whereFi = giPi andek denotes thek-th column of theK × K identity matrix. p(Re,n)
ℓ,j

andp(Im,n)
ℓ,j are the probabilities ofℜ[zℓ,n] ∈ C(Re,n)

ℓ,j andℑ[zℓ,n] ∈ C(Im,n)
ℓ,j , respectively.

Additionally, the conditional momentsµℓ,i and Rℓ,i under the conditionsℜ[zℓ,n] and
ℑ[zℓ,n], denoted byµ(Re,n)

ℓ,i , µ
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ℓ,i , R
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ℓ,i , andR

(Im,n)
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Following the nearest neighbor condition, the partition cellsC(Re,n)
ℓ,j must be chosen

such that for any inputℜ[zℓ,n] the minimum distortiond(Re,n)
ℓ,j (ℜ[zℓ,n]) is picked by the

quantizer. Equivalently, for the imaginary part, the partition cells C(Im,n)
ℓ,j are chosen

such that for any inputℑ[zℓ,n] the quantizer uses the minimum distortiond
(Im,n)
ℓ,j (ℑ[zℓ,n]).

Sinceµ
(Re,n)
ℓ,i andµ

(Im,n)
ℓ,i are linear, andR(Re,n)

ℓ,i andR
(Im,n)
ℓ,i are quadratic functions of

ℜ[zℓ,n] andℑ[zℓ,n], respectively, the distortionsd(Re,n)
ℓ,j (ℜ[zℓ,n]) andd

(Im,n)
ℓ,j (ℑ[zℓ,n]) are
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Figure 7.5: Example of Precoder Assignment withd = 1 Coefficient and2 Bits per User.

also quadratic functions. Thus, for the real part ofzℓ,n the optimal cell bordersα(Re,n)
ℓ,j ,

α
(Im,n)
ℓ,j , β(Re,n)

ℓ,j , andβ(Im,n)
ℓ,j are simply the roots of the quadratic polynomial equations
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ℓ,j+1 (ℜ[zℓ,n]). Again, similarly

for the imaginary part ofzℓ,n, the region boundaries are given by the roots of the quadratic
polynomials d

(Im,n)
ℓ,j (ℑ[zℓ,n]) − d

(Im,n)
ℓ,j−1 (ℑ[zℓ,n]) and d

(Im,n)
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(Im,n)
ℓ,j+1 (ℑ[zℓ,n]).

Fig. 7.5 illustrates the method above proposed for obtaining those optimal cell borders
from the roots of quadratic functions.

7.3.4 Codebook Computation

Although the estimators and the quantizers are jointly optimized by minimizing the
precoding MSE in Eq. (7.7), we only have to compute the codebook parameters iteratively,
since the estimators are independent of the choice of codebook and can be found in
Eq. (7.17). For the computation of the codebook parameters,we use the Lloyd algorithm
(e.g. [108,119]), i.e. we alternately optimize the precoders by using the centroid condition
in Eq. (7.26) and optimize the partition cells following thenearest neighbor condition as
discussed in the previous subsection. Since the MSE in Eq. (7.22) is reduced in every step
and the MSE is non-negative, the iteration converges.

The Lloyd algorithm is initialized with the solution of Chapter 6, where the
quantization was designed by minimizing the CSI MSE and whosequantizers are based
on codebooks appropriate for unit variance complex Gaussian inputs. Therefore, the
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parameters of these scalar quantizers can be stored and do not have to be recomputed for
varying channel statistics. As a consequence, the initialization of the proposed feedback
scheme based on the precoding MSE of Eq. (7.22) is very cheap.

Table 7.1 summarizes the overall design procedure for computing the codebook,
which is basically a modified version of the Lloyd algorithm.Note that this new codebook
has to be recomputed each time that the channel statistics vary.

1. Setm = 1
2. Initial codebookC1 and regions{Ri}Mi=1 (obtained as in Chapter 6)
3. Set the threshold to stop the iterationsǫmin and setǫ =∞
while ǫ > ǫmin do

4. obtain the quadratic functions:

d
(Re,n)
ℓ,j (ℜ[zℓ,n])

d
(Im,n)
ℓ,j (ℑ[zℓ,n])

5. (Nearest Neighbor Condition) solve the quadratic functions:

d
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d
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ℓ,j−1 (ℑ[zℓ,n]) = 0 andd

(Im,n)
ℓ,j (ℑ[zℓ,n])− d

(Im,n)
ℓ,j+1 (ℑ[zℓ,n]) = 0

to get the new partition regions{Ri}Mi=1

6. compute the new conditional channel moments:
E [H|z ∈ Ri]
E
[
HHH|z ∈ Ri

]

7. (Centroid condition) compute the new precoders{Pi}Mi=1

8. compute the precoder MSE metric for the new codebook (precoders){Pi}Mi=1

and the new partition regions{Ri}Mi=1

9. m← m + 1
end while

Table 7.1: Codebook Optimization.

7.3.5 Bit Allocation

When using scalar quantization (transform coding, [108]) instead of vector quantization,
the available bits have to be allocated to the different scalar coefficients. Contrary to the
case of CSI MSE based feedback as in Eq. (6.76), the distortionfunction obtained for the
case that the precoders are included in the optimization given by

MSE =
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(7.33)
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has a very complicated structure since all the parameters are mixed together and it is
impossible to separate the influence relative to each user and each scalar quantizer, thus
making an efficient optimum bit allocation very difficult to find. We can therefore decide
the optimum bit allocation by trying out all the possible bitallocation combinations and
taking as a result the best one in terms of minimizing the MSE in Eq. (7.33).

The bit allocation optimization is expressed as

B = argmin
B

MSE(B) s.t.: B = [b1, . . . , bK ] ∈ Bd×K , bk = [bk,1, . . . , bk,d]
T

with B = 0, 2, 4, ... and
d∑

n=1

bk,n = Nbit (7.34)

whereB is the matrix that determines the bit allocation corresponding to the coefficients
of each user,Nbit is the number of bits available for each user, andd ≤ N is the
number of coefficients under consideration that directly implies the rank reduction that
was introduced in the previous chapter by means of the rank reduction basisV H

k . Notice
that only an even number of bits is used to quantize each coefficient, since both real and
imaginary parts of each coefficient make use of the same number of bits. Initially, we use
the scalar quantizers (codebook entries and partition cells) obtained from the CSI metric
as explained in Subsection 6.3.3 for a unit-variance input.

When the number of bits is low, there are no serious problems arising from the
computational complexity, but the search for optimum bit allocation becomes infeasible
as the number of bits increases. Therefore, we propose a heuristic solution to the problem
by reducing the number of combinations to be tested on the MSE. It seems that a uniform
distribution over all the coefficients without implementing rank reduction is the most
likely allocation in the sense of minimizing the MSE. Thus, afirst trial consists of
distributing the bits over all the coefficients as uniformlyas possible. On the other hand, it
is obvious that the coefficients with more energy, i.e. thosewhose eigenvalues are larger,
have more impact on the final MSE performance and, therefore,we must tend to allocate
more bits to the first coefficients in order to minimize the MSE. Bearing this fact in mind,
successive combinations will move the bits from the initialbit allocation to the coefficients
with larger eigenvalues. Therefore, the MSE of Eq. (7.33) issequentially computed by
following this ordering for bit allocation so the process isstopped when, given a certain
bit allocation, the MSE is greater than the previous one in the list. This will be termed
optimum bit allocation.

To illustrate this idea, suppose that we have to distribute8 bits for each user (see
Table 7.2). According to the heuristic bit allocation shownabove, the chain of possible
bit allocations is given by[2, 2, 2, 2]T → [4, 2, 2, 0]T → [4, 4, 0, 0]T → [6, 2, 0, 0]T →
[8, 0, 0, 0]T. Imagine the combination given by[4, 2, 2, 0]T gives us less MSE than
[2, 2, 2, 2]T. In that case, we have to test the result when[4, 4, 0, 0]T is considered. As
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Bits per user No bit allocation Rank reduction Bit allocation

Nbit = 6 [2, 2, 2, 0]T [4, 2, 0, 0]T Select the optimal from:
3 for real part [2, 2, 2, 0]T, [4, 2, 0, 0]T

3 for imaginary part [6, 0, 0, 0]T

Nbit = 8 [2, 2, 2, 2]T [4, 4, 0, 0]T Select the optimal from:
4 for real part [2, 2, 2, 2]T, [4, 2, 2, 0]T

4 for imaginary part [4, 4, 0, 0]T, [6, 2, 0, 0]T

[8, 0, 0, 0]T

Nbit = 10 [4, 2, 2, 2]T [4, 4, 2, 0]T Select the optimal from:
5 for real part [4, 2, 2, 2]T, [4, 4, 2, 0]T

5 for imaginary part [6, 4, 0, 0]T, [8, 2, 0, 0]T

[10, 0, 0, 0]T

Table 7.2: Number of Bits Assigned per User’s Coefficient for Precoding MSE Metric.

long as the new MSE obtained is less than the previous one, we have to continue with the
search until the last possibility embodied by[8, 0, 0, 0]T. If not, we choose[4, 2, 2, 0]T as
the optimum bit allocation for our joint approach based on precoder MSE metric. This
heuristic solution significantly reduces the computational complexity of the search with
negligible loss in performance.

7.4 Simulation Results

Given the enormous computational complexity due to the calculation of the distortions
in Subsection 7.3.3, we consider a system with a transmitterequipped withN = 4

antennas that servesK = 2 users using QPSK modulation. We use the urban micro
Spatial Channel Model(SCM) described in Chapter 2, which of the three spatial channel
models introduced in that chapter is the most difficult for precoding, because the second
and the third channel eigenvalues have a non-negligible magnitude. The results for the
CSI metric are the mean of100 channel realizations with1,000 symbols being transmitted
per channel realization. The number of averaged channel settings or channel covariance
matrices is100. Due to the high complexity, these quantities are reduced for the approach
shown in this chapter in the sense that only10 channel settings are averaged. The
training sequence hasNtr = 16 symbols. In the figures, the number of bits per user is
given. We use the MMSE weights shown in Chapter 5 at the receiver instead of common
weights arising from the optimization, which allows us to get better performance with
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Figure 7.6: MU–MISO System with Robust Linear Precoding,N = 4 Antennas,K = 2
Users, and8 Bits per User.

appropriate correction of the phase and amplitude mismatchcaused by imperfect CSI at
the transmitter.

In the simulations, we useVk to reduce the rank of the estimated signal in order to
decrease the number of possible combinations at the input ofthe quantizers, for reasons
of complexity. We also implement three different types of bit allocation. First,no bit
allocation, which tries to spread the bits as uniformly as possible (in the event that any
bits are left over, e.g. with10 bits for 4 dimensions, the dimension corresponding to the
largestφk,i gets an additional bit). Second,rank reduction, which allocates as evenly as
possible the bits to the firstd dimensions. And third, theoptimum bit allocation, which
tries out different bit allocations and takes the result of the best one. Remember that we do
not try all the possible combinations and the heuristic search explained in Subsection 7.3.5
is performed instead. To illustrate the different strategies, Table 7.2 summarizes the bit
allocation strategies for different number of bits per user.

In Fig. 7.6, the feedback design based on CSI discussed in Chapter 6 is compared
to the scheme proposed in this chapter for8 bits fed back per user. As expected, bit
allocation has a considerable impact on the BER performance and the feedback design
based on the precoder MSE outperforms the CSI MSE feedback.

As demonstrated in Fig. 7.7, we obtained similar results fora higher and lower number
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of bits per user. Not surprisingly, a higher number of bits per user improves the BER
performance of all schemes. Additionally, it seems that theadvantage of the precoder
MSE based design compared to the CSI MSE based design becomes more pronounced
for a higher number of bits as the degrees of freedom increase.

Note that, independently from the number of bits fed back peruser, rank reduction
always shows a loss in performance with respect to optimum bit allocation since the
information contained on some coefficients is dropped.

7.5 Conclusions

In this chapter, we have shown how we obtain the robust precoder parameters, the
estimator, and the quantizer parameters in a joint optimization by means of a metric not
based on CSI-MSE, i.e. minimizing the MSE between the transmitted symbols and the
estimated symbols.

Interestingly, the estimators and precoders obtained withthe metric oriented to the
precoder are equal to the estimators and precoders resulting from the joint optimization
based on a CSI-metric presented in Chapter 6. However, the crucial part of the scheme
proposed in this chapter is the design of the partition cellsof each user, which are designed
by minimizing its own distortion but averaging over the quantizer inputs for the other
users, since there is no cooperation between users in the downlink of a multiuser MISO
system.

As a result, we get better BER performance with a negligible increase of the overhead
of the feedback channel. This negligible overhead is due to the fact that each user does
not feed back only one single index, which, for the CSI-metriccase, was the quantized
version of the reduced rank channel estimate. Instead of that, the precoding scheme
developed in this chapter is based on the feedback of severalindices from each user so
that one additional task of the transmitter is performing the intersection of the indices
received from all the users to find out the optimal entry of thequantizer that leads to
the optimal precoder to be used during the transmission. It is important to note that
the codebook entries are now the precoders rather than the white channel coefficients.
Therefore, it is obvious that the design of the quantizer parameters (i.e. the codebook
entries and the partition cells) becomes the hardest part ofthis new precoding approach,
with the advantage of minimizing the MSE by including the precoder in the optimization.
This improvement is even more significant when the number of fed–back bits per user is
increased, albeit at the cost of much higher computational complexity. For this reason,
we have to think about an efficient computation approach thatreduces this complexity
in order to make good use of the optimum performance achievedwith the final proposed
scheme. As also demonstrated with some computer simulations, the simple idea of an
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optimum bit allocation even improves the final performance,regardless of whether the
CSI-metric or the precoding-metric are used.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

The main objective of this work is to obtain a limited feedback design to be used together
with MMSE robust precoder designs when no full channel knowledge is available at the
transmitter. We have shown that the proposed designs clearly outperform non-robust
designs, especially in the high SNR regime. At the same time,the proposed limited
feedback ensures that the feedback rate is limited and therefore easy to implement in real
environments.

We started by introducing the signal model and the channel characteristics for the
downlink of a MU-MISO wireless communications system. We focused on one of the
most widely used channel models, theSpatial Channel Model(SCM), which was used
throughout this work instead of uncorrelated channels due to its greater similarity to real
channels.

We examined and compared the different types of transmit andreceive processing
for MU-MISO and MU–SIMO systems, respectively, assuming that the transmitter and
the receiver side have full knowledge about the channel and its second-order statistics.
First, we focused on linear processing and both receive and transmit processing were
compared via computer simulations. While the matched-filters outperformed the zero-
forcing filters for low SNR, their behavior was clearly the worst for high SNR. The
Wiener filters, however, were always superior compared to the other two filter types. We
were able to observe a difference between linear receive andtransmit processing due to
the noise coloring at the receiver. Thus, there is a small advantage for the receive filters
at low SNR and for the transmit filters at high SNR. Then, we compared receive and
transmit nonlinear processing, focusing on some relevant schemes. Clearly, the nonlinear
schemes outperformed the respective linear ones. The optimum nonlinear technique is
maximum likelihooddetection, which has an exponential complexity and, for this reason,

185
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is prohibitive in many cases. Vector precoding takes the procedure of maximum likelihood
detection to find the perturbation signal. As a result, a small loss in performance of
vector precoding for low SNR but certain gains for high SNR scenarios can be observed
compared to maximum likelihood detection, due to the modulooperator at the receiver
side. Decision feedback equalizer (DFE) and Tomlinson-Harashima precoding can be
seen as suboptimum nonlinear techniques of maximum likelihood detection and vector
precoding, respectively. Therefore, their performance was clearly inferior to that of the
other two schemes. Again THP outperformed DFE for high SNR but not for low SNR,
due to the effect of the modulo operators at the transmitter and receiver. We obtained as a
conclusion that transmit processing behaves in a similar way as receive processing when
we base the comparison on the BER performance and, therefore,it is quite interesting
to compensate the channel effects in advance at the transmitter, in order to exploit the
degrees of freedom at the transmitter and to simplify the requirements of the receivers.

We introduced the error sources concerned with the CSI available at the transmitter
to be considered throughout this work. Each user estimates the channel and reduces it to
a low-dimensional representation for data compression. Compression is feasible thanks
to the channel correlations of SCM and every realistic channel. Before the feedback, the
CSI is quantized and only the index of the codebook entry is sent to the transmitter, since
the data rate of the feedback channel is limited. We also considered that the feedback
channel introduces some delay during the transmission.

After that, we extended the study to the situation where no full channel knowledge is
available at the transmitter. We derived the robust Wiener linear and nonlinear transmit
processing in order to compensate the mismatch between the true channel and the
erroneous channel resulting from estimation, truncation,quantization, and feedback delay.
By applying the proposed robust designs, we greatly improvedthe BER performance,
avoiding the BER increasing effect observed for high SNR in non-robust schemes.

Then, we investigated the limited feedback design to be usedtogether with these
robust precoders in order to optimize the MSE between the true channel and the erroneous
channel recovered by the transmitter. First, we developed avery simple feedback
design where no MSE optimization is considered. Here, we considered LS estimation,
truncation, uniform quantization, and feedback delay. Theerrors were modeled separately
and then the resulting error covariance matrix was directlyintroduced into our robust
designs. Next, we proposed a joint MSE optimization of the channel estimation and the
rank reduction basis, where the quantizer was modeled as a data independent additive
noise source. This approach, however, was improved when thequantizer was included in
the MSE optimization and the Lloyd algorithm was used to construct the codebook and
the partition regions. We also proposed a bit allocation algorithm to optimize the bits
assigned to each coefficient in real time, enabling the performance to be increased further.

Finally, we devoted the last chapter to the joint design of the channel estimators
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and the quantizers at the receivers together with the precoder at the transmitter, based
on a precoder-centric criterion, i.e. to minimize an MSE metric appropriate for the
precoder design. To this end, we optimized the MSE between the transmitted symbols
and the recovered data for each user. This is in contrast to our previous work, where the
quantizer design was based on an MSE metric based on the channel information. The
proposed system based on a joint optimization clearly outperformed previous designs that
separately optimized feedback and precoding at the cost of increasing the computational
complexity at the transmitter. But this is not so important when we consider the downlink
of wireless communications systems.

8.2 Future Work

Precoding is a technique of growing importance, e.g. it is being incorporated
into recent wireless standards, such as theWorldwide Interoperability for Microwave
Access(WiMAX) or 3GPP Long-Term Evolution(LTE) standards. WiMAX is the
name commonly used for the telecommunications technology that provides wireless
transmission of data based on the IEEE 802.16 family of standards. IEEE 802.16 is an
IEEE standard for wirelessMetropolitan Area Networks(MAN). In WiMAX, a feedback
loop is included based on a codebook where the mobile stations indicate to the base
station the optimum precoding matrix to be used based on the entries of a predefined
codebook. The information to be sent from the users to the transmitter is a quantized
version of the channel so the transmitter uses this quantized MIMO channel to calculate
an optimum precoding matrix. For channel sounding, the MS obtains the CSI by using a
dedicated and predetermined signal. On the other hand, LTE,which is intended to be a
mobile-communication system in the 2020s, uses a unitary precoding matrix selected
from a predefined codebook which is known at both the transmitter and the receiver
side. The mobile station estimates the radio channel and selects the optimum precoding
matrix that offers maximum capacity. But neither WiMAX nor LTE standards optimize
the feedback in any sense, and, obviously, the studied robust Wiener precoding has not
yet been incorporated. Therefore, further research in thisdirection is vindicated and we
propose some topics to be developed in the future.

8.2.1 Design of Capacity Approaching Codes for Precoded MU-
MISO Systems

A noisy channel poses a limit on the rate at which informationcan be transferred through
it without errors. This limit is known as channel capacity, and it was first introduced by
Shannon in 1948 [122]. For many channels, their noisiness can be measured by a single
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parameter (for example, the relation between the strength of the transmitted signal and
the noise power, termedSignal-to-Noise Ratio(SNR)), and the value of this parameter
uniquely determines the maximum data transfer rate that canbe achieved under the
constraint of error-free transmission. Correspondingly, there is also a lower bound for
the channel parameter (e.g. SNR) to achieve a given transmission rate (without errors).

Since Shannon demonstrated the existence of this limit, much of the effort in the field
of digital communications has been devoted to the search forpractical channel codes
capable of approaching it. Shannon’s theorem only proved that infinitely long random
codewords could achieve the limit, but using that approach to design a real code was
believed to be impossible. Members of the University of A Coruña staff proposed a
technique for obtaining good capacity approaching codes using Extrinsic Information
Transfer(EXIT) functions in a novel way. Up to now, no such codes have been optimized
for precoding schemes. The combination of optimized codes with precoding will result
in a scheme that is able to achieve a higher performance than schemes without coding.

8.2.2 MU-MIMO Systems

We propose to extend our MU-MISO environment to a MU-MIMO one, whereN transmit
antennas andM receive antennas per user are considered. The results will be improved
since diversity is increased with a growing number of receive antennas at the cost of
complicating the design of the limited feedback channel.

8.2.3 Wideband Frequency Selective Channels

In frequency-selective fading, the coherence bandwidth ofthe channel is smaller than
the bandwidth of the signal, which leads towidebandsystems instead of thenarrowband
systems studied in this work. Contrary to widebandsingle–carriersystems based onCode
Division Multiple Access(CDMA), the available frequency band can be divided into a
number of subbands, each having a bandwidth lower than the coherence bandwidth of the
channel, so that signals transmitted in each subband experience flat fading. This leads
to widebandmulti–carrier systems such asOrthogonal Frequency Division Multiplexing
(OFDM). OFDM has been adopted as the downlink transmission scheme for LTE and
is also used for several other radio technologies such as WiMAX. Therefore, another
open issue to be studied further, even for the limited feedback design proposed in this
work, is the case of OFDM precoding systems. Moreover, OFDM is quite robust
against multipath, frequency-selectivity, andRadio Frequency(RF) interferences. While
narrowband analysis can be relatively easy to develop, it isnot so clear how to avoid the
overhead of the limited feedback channel when we have to transmitNB bits for each of the
NM OFDM tones. To reduce the amount of information to be sent from the receivers we
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Figure 8.1: Schematic Diagram of the4× 4 MIMO Textbed.

could also think about not feeding back information relatedto some tones, which might
be recovered at the transmitter by applying interpolation techniques.

8.2.4 Improvement of Limited Feedback Design based on the
Precoding MSE Metric

Up to now, the limited feedback design involving the precoding into the MSE optimization
that is described in Chapter 7 shows a good performance at the cost of increasing
computational complexity and, therefore, the processing time at the signal processors. We
have to work in the sense of reducing these time requirementsby means of optimizing the
code or moving from MATLAB to C programming in order to extendthe results obtained
to a greater number of transmit and receive antennas, also with larger codebooks for the
quantization process.

On the other hand, in this work we have only derived the optimum limited feedback
design oriented to the precoding MSE according to the linearWiener precoding approach.
It is known that the performance achieved by the nonlinear schemes, such as THP or VP, is
superior to that of the linear schemes, and for this reason wecould apply the ideas shown
for the linear case to the other two types of filter studied, even though the derivation may
be quite complex.

8.2.5 Precoding on Testbeds

We can focus on the evaluation of several of the above limitedfeedback schemes over
realistic indoor scenarios. To this end, we could make use ofa MIMO testbed which
would give us an idea of the real performance of these schemesover real-world channels.
In recent years, a MIMO testbed has been developed by the University of A Corũna. The
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schematic diagram of this testbed is depicted in Fig. 8.1 anda picture is shown in Fig. 8.2.
It is basically composed of two PCs, one for the transmitter and one for the receiver. Each
PC contains the baseband hardware plus theRadio Frequency Front-End(RF-FE). The
baseband hardware is composed of fast memories that can be accessed at the speed of
the A/D and D/A converters, thus allowing the transmission and subsequent acquisition
of signals in real-time while the signal processing at both transmitter and receiver sides
is performed off-line. The testbed uses modern RF-FE equipment allowing wideband
transmissions (up to40 MHz) at both2.4 and5 GHz bands.

It is important to note that the main difference between testbeds and other types
of hardware implementation, such as prototypes or demonstrators, is that only the
transmissions take place in real-time, while the rest of theprocessing operations are
carried out off-line. This could be seen as an inconvenience, since the time required
for such operations is larger than in the case of real-time implementations. Moreover,
this issue is especially critical in the case of precoding because the time consumed in
the calculations and feedback has to be taken into account and compared to the channel
coherence time. However, the off-line implementation presents major advantages such
as floating point precision, high flexibility, and minimum effort needed to translate the
algorithms from the simulations to the testbed. Therefore,the task of obtaining CSI at the
receiver to be sent using a control link (e.g. a socket network connection) to the transmitter
could be optimally performed by dedicated and powerful resources in the receiver in order
to reduce the time consumption as far as possible. Then, the transmitter generates the
signals to be transmitted according to that feedback information and finally, the precoded
signals are sent by the transmitter hardware, acquired at the receiver side and buffered for
later evaluation. With this approach only the feedback calculation at the receiver and the
subsequent signal precoding at the transmitter take place in quasireal-time, while the rest
of the operations are kept off-line.

Some preliminary trials were performed using only basebandsignals while the
channel was emulated by software. In that case all operations took place off-line and
the evaluation of the resulting data was simplified because the channel coherence time
was under control. Therefore, a major effort is still required to achieve the final objective
of implementing a precoding system with limited feedback which ensures that the overall
time consumption, including the calculations related to obtaining the CSI at the receiver
and to building the optimum precoder at the transmitter, does not exceed the coherence
time of the channel.
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Figure 8.2: A Picture of the4× 4 MIMO Testbed.

8.2.6 Design of Limited Feedback based on maximizing Mutual
Information

Intuitively, mutual information measures the informationthat X and Y share, i.e. it
measures how much knowing one of these variables reduces ouruncertainty about the
other. For example, ifX andY are independent, then knowingX does not give any
information aboutY and vice versa, so their mutual information is zero. At the other
extreme, ifX andY are identical then all information conveyed byX is shared with
Y and, therefore, knowingX determines the value ofY and vice versa. As is known,
Shannon proved that the channel capacity equals the mutual information of the channel
maximized over all the possible input distributions [122],i.e.

C = max
p(x)

I (X;Y ) = max
p(x)

∑

x,y

p (x, y) log

(
p (x, y)

p (x) p (y)

)

.

Therefore, we could think about optimizing the precoders for the proposed limited
feedback in order to maximize the input-output mutual information and thus come closer
to the channel capacity.
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8.2.7 Feedback of Long-Term Channel Variations

We assume throughout this work that the second order channelstatistics are known at
both the receiver and the transmitter side. But this situation is not realistic. We can
estimate the channel covariance matrix using supervised methods, although it is a matter
of discussion how often the pilot symbols have to be transmitted or how we can detect
changes in these long-term channel variations and, even more importantly, how we can
feed back this information through the reverse channel without significantly increasing
the amount of information sent from all the users to the transmitter. The impact of errors
on second order channel statistics may strongly degrade theoverall system performance
and, again, it could be interesting to derive a robust precoding system against this new
type of errors.



Appendix A

Spatial Channel Model (SCM)

The proposed limited feedback system is based on channel correlations and it is therefore
important to obtain models for correlated channels that areas realistic as possible. In
this sense, we use the 3GPP Spatial Channel Model (SCM). The 3GPP channel model
includes a fixed number ofM = 6 paths in each environment so the received signal at
the mobile station consists ofM -delayed multipath replicas of the transmitted signal.
TheseM paths are defined by powers and delays randomly obtained as explained
below. Each path consists ofS = 20 subpaths with the goal of including the fading
effect. All paths and subpaths are assumed to be statistically independent. Fig. A.1
depicts the most important angular parameters used to describe each SCM environment
(suburban macrocell, urban macrocell or urban microcell),whose meaning is summarized
in Table A.1. The parameters related to each scenario are summarized in Tables A.3, A.4,
and A.5, respectively. Table A.2 includes the subpath AoD and AoA offsets for macrocell
and microcell setups.

For each pathm (m = 1, 2, . . . , 6), the channel attenuation corresponding to the

θBS LOS AoD direction between the BS and MS with respect to
the BS antenna array orientation

δm,AoD AoD for them–th path with respect to the LOS AoD
∆m,s,AoD Offset for thes–th subpath of them–th path with respect toδm,AoD

θm,s,AoD AoD for thes–th subpath with respect to the BS antenna array orientation
θMS Angle between the BS–MS LOS and the MS antenna array orientation
δm,AoA AoA for them–th path with respect to the LOS AoA
∆m,s,AoA Offset for thes–th subpath of them–th path with respect toδm,AoA

θm,s,AoA AoA for thes–th subpath of them–th path at the MS with respect to
the MS antenna array orientation

Table A.1: Angular Parameters for SCM.
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Subpath Offset for a 2°AS Offset for a 5°AS Offset for a 35°AS
s at BS (Macrocell) at BS (Microcell) at MS

∆m,s,AoD (°) ∆m,s,AoD (°) ∆m,s,AoA (°)

1, 2 ±0.0894 ±0.2236 ±1.5649
3, 4 ±0.2826 ±0.7064 ±4.9447
5, 6 ±0.4984 ±0.2461 ±8.7224
7, 8 ±0.7431 ±1.8578 ±13.0045
9, 10 ±1.0257 ±2.5642 ±17.9492
11, 12 ±1.3594 ±3.3986 ±23.7899
13, 14 ±1.7688 ±4.4220 ±30.9538
15, 16 ±2.2961 ±5.7403 ±40.1824
17, 18 ±3.0389 ±7.5974 ±53.1816
19, 20 ±4.3101 ±10.7753 ±75.4274

Table A.2: Subpath AoD and AoA Offsets. Last Column Corresponds to Multiple
Antennas at the Receiver Side.

transmit antennat and the receive antennar is given by

cr,t,m (t) = A
S∑

s=1

√

GBS (θm,s,AoD) ej(Kdtsin(θm,s,AoD)+φm,s)

√

GMS (θm,s,AoA) ej(Kdrsin(θm,s,AoA))

(A.1)

with A =
√

PmσSF
S

, wherePm is the power of them–th path,σSF is the lognormal

fading deviation,S = 20 is the number of subpaths per path, andGBS(θm,s,AoD) and
GMS(θm,s,AoA) are the antenna gains for each BS and MS antenna depending on the angle-
of-departureθm,s,AoD and the angle-of-arrivalθm,s,AoA, respectively. The phase of thes–th
subpath of them–th path is given byφm,s, a random variable uniformly distributed over
[0, 2π]. The distancedt is the distance in meters from the BS antenna elements to the
reference (t = 1) antenna. Note thatd1 = 0 for the reference antenna. The distance in
meters from the MS antenna elements to the reference (r = 1) antenna is denoted bydr.
Again,d1 = 0 for the reference antenna. The wavelength in meters is givenby λ, which
leads to the wave numberK defined as2π/λ. For the MU-MISO scenario considered in
this work, we havedr = 0, withNr = 1 and, therefore, the last exponential term vanishes.

Each coefficient of theN -dimensional MISO channel vector corresponding to the
userk is obtained according to the expression in Eq. (A.1), which leads to the channel
vector corresponding to them-th path given byck,m(t) = [c1,1,m(t), . . . , c1,N,m(t)]T and,
since the channel vector is the sum of the signal received through all the paths (remember
that the number of paths is6), we have the narrowband channel impulse response [cf.
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Eq. (2.3)]

hSCM,k (t) =
6∑

m=1

ck,m (t) δ (t− τm(t)) .

The channel covariance matrix that models the channel spatial correlations is then
obtained as follows

Ch,k = E
[
hSCM,k (t) hH

SCM,k (t)
]

(A.2)

where we assume that the channel is stationary, and therefore thatCh,k is constant. We
also assume thatCh,k is known a priori.
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Figure A.1: BS and MS Angle Parameters.
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Channel Scenario Suburban Macro

Paths M=6
Subpaths per path S=20

Angular spread E[σAS] = 5°
at BS ǫAS = 0.13

σAS = 10(ǫASx+µAS) µAS = 0.69
x ∼ N (0, 1)

rAS = σAoD/σAS 1.2
Per-path AS at BS 2°
BS per-path AoD δ

′

m = N (0, σ2
AoD)

δm,AoD |δ′(1)| ≤ . . . ≤ |δ′(M)|
δm,AoD = δ

′

(m)

σAoD = rASσAS

Offset of thes–th Fixed (Table A.2)
subpath∆m,s,AoD

AoD of the θm,s,AoD = θBS + δm,AoD +∆m,s,AoD

s–th subpath

Angular spread (AS) 35°
per path at MS

Delay spread E[σDS] = 0.17µs
σDS = 10(ǫDSx+µDS) µDS = −6.8
x ∼ N (0, 1) ǫDS = 0.288

rDS 1.4

Distribution for τ
′

m = −rDSσDSlnzm
path delays zm ∼ U(0, 1)

Power of the P
′

m = e(1−rDS)(τ
′

(m)
−τ ′

(1)
)/rDSσDS · 10−ξm/10

m– path ξm ∼ N (0, σRND), σRND =3 dB
Pm = Pm

∑6
j=1 Pj

AoA for the δm,AoA ∼ N (0, σ2
m,AoA)

m–th path σm,AoA = 104.12(1− exp(−0.2175|Pm(dB)|))
Offset of thes–th Fixed (Table A.2)
subpath∆m,s,AoA

AoA for the θm,s,AoA = θMS + δm,AoA +∆m,s,AoA

s–th subpath

Lognormal shadowing 8 dB
deviationσSF

Table A.3: Environment Parameters. SCM 1: Suburban Macrocell.
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Channel Scenario Urban Macro

Paths M=6
Subpaths per path S=20

Angular spread E[σAS] = 8°, 15°
at BS 8°: ǫAS = 0.34, µAS = 0.810

σAS = 10(ǫASx+µAS) 15°: ǫAS = 0.21, µAS = 1.18
x ∼ N (0, 1)

rAS = σAoD/σAS 1.3
Per-path AS at BS 2°
BS per-path AoD δ

′

m = N (0, σ2
AoD)

δm,AoD |δ′(1)| ≤ . . . ≤ |δ′(M)|
δm,AoD = δ

′

(m)

σAoD = rASσAS

Offset of thes–th Fixed (Table A.2)
subpath∆m,s,AoD

AoD of the θm,s,AoD = θBS + δm,AoD +∆m,s,AoD

s–th subpath

Angular spread (AS) 35°
per path at MS

Delay spread E[σDS] = 0.65µs
σDS = 10(ǫDSx+µDS) µDS = −6.18
x ∼ N (0, 1) ǫDS = 0.18

rDS 1.7

Distribution for τ
′

m = −rDSσDSlnzm
path delays zm ∼ U(0, 1)

Power of the P
′

m = e(1−rDS)(τ
′

(m)
−τ ′

(1)
)/rDSσDS · 10−ξm/10

m– path ξm ∼ N (0, σRND), σRND =3 dB
Pm = Pm

∑6
j=1 Pj

AoA for the δm,AoA ∼ N (0, σ2
m,AoA)

m–th path σm,AoA = 104.12(1− exp(−0.2175|Pm(dB)|))
Offset of thes–th Fixed (Table A.2)
subpath∆m,s,AoA

AoA for the θm,s,AoA = θMS + δm,AoA +∆m,s,AoA

s–th subpath

Lognormal shadowing 8 dB
deviationσSF

Table A.4: Environment Parameters. SCM 2: Urban Macrocell.
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Channel Scenario Urban micro

Paths M=6
Subpaths per path S=20

Angular spread N/A
at BS

σAS = 10(ǫASx+µAS)

x ∼ N (0, 1)
rAS = σAoD/σAS N/A

Per-path AS at BS 2°
BS per-path AoD U(−40°,+40°)

δm,AoD

Offset of thes–th Fixed (Table A.2)
subpath∆m,s,AoD

AoD of the θm,s,AoD = θBS + δm,AoD +∆m,s,AoD

m–th subpath

Angular spread (AS) 35°
per path at MS

Delay spread E[σDS] = 0.251µs
σDS = 10(ǫDSx+µDS) N/A
x ∼ N (0, 1)

rDS N/A
Distribution for τm ∼ U(0, 1.2µs)

path delays
Power of the P

′

m = 10−(τm+zm/10)

m– path zm Gaussian zero-mean with deviation of3 dB
Pm = Pm

∑6
j=1 Pj

AoA for the δm,AoA ∼ N (0, σ2
m,AoA)

m–th path σm,AoA = 104.12(1− exp(−0.265|Pm(dB)|))
Offset of thes–th Fixed (Table A.2)
subpath∆m,s,AoA

AoA for the θm,s,AoA = θMS + δm,AoA +∆m,s,AoA

s–th subpath

Lognormal shadowing NLOS:10 dB
deviationσSF LOS:4 dB

Table A.5: Environment Parameters. SCM 3: Urban Microcell.
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Appendix B

Useful Matrix Properties

B.1 Matrix Inversion Lemma

Consider the partitioned square matrix [107]

M =

[
A B

C D

]

where it is assumed thatA andD are square matrices and the inversesA−1, D−1, and
M−1 exist. Under these assumptions, the matrixM can be factorized as follows:

M =

[
A 0

C I

] [
I A−1B

0 D −CA−1B

]

.

Notice thatM has been factorized as the product of two matrices that have one diagonal
block submatrix equal to the identity matrix and one off-diagonal submatrix equal to zero.
Exploiting this product, it is straightforward to obtain the inverse of each of these factors
as follows

[
A 0

C I

]−1

=

[
A−1

0

−CA−1
I

]

[
I A−1B

0 D −CA−1B

]−1

=

[
I −A−1B (D −CA−1B)

−1

0 (D −CA−1B)
−1

]

.
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Thus, we get for the inverse of the matrixM

M−1 =

[
I A−1B

0 D −CA−1B

]−1 [
A 0

C I

]−1

=

[
I −A−1B (D −CA−1B)

−1

0 (D −CA−1B)
−1

] [
A−1

0

−CA−1
I

]

=

[
A−1 + A−1B (D −CA−1B)

−1
CA−1 −A−1B (D −CA−1B)

−1

− (D −CA−1B)
−1

CA−1 (D −CA−1B)
−1

]

.

(B.1)

This result is called thematrix inversion lemma for partitioned matrices.
We can obtain the alternative form factorizingM as follows

M =

[
A−BD−1C BD−1

0 I

] [
I 0

C D

]

.

Exploiting again the fact that each factor has one diagonal block submatrix equal to
the identity matrix and an off-diagonal submatrix that is zero, the inverse ofM can be
rewritten in an alternative way

M−1 =

[
(A−BD−1C)

−1 − (A−BD−1C)
−1

BD−1

−D−1C (A−BD−1C)
−1

D−1 + D−1C (A−BD−1C)
−1

BD−1

]

.

(B.2)

By comparing the upper left elements of Eqs. (B.1) and (B.2), we obtain the following
relationship

(
A−BD−1C

)−1
= A−1 + A−1B

(
D −CA−1B

)−1
CA−1 (B.3)

which is thematrix inversion lemma[107].

B.2 Properties of the Trace Operator

The trace of a square matrixA ∈ Cn×n is the sum of its diagonal elements:

tr (A) =
n∑

i=1

ai,i

whereai,i denotes the element corresponding to thei-th diagonal entry of the matrixA.
Obviously, the trace is invariant to the transposition of the argument:

tr
(
AT
)

=
n∑

i=1

ai,i = tr (A) . (B.4)
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On the other hand, the trace is not invariant to the conjugateof its argument. In that case,
the trace holds

tr (A∗) =
n∑

i=1

a∗i,i =

(
n∑

i=1

ai,i

)∗

= tr∗ (A) . (B.5)

Combining Eqs. (B.4) and (B.5), we obtain thattr(AH) = tr∗(A).
Directly from the definition of the trace of a square matrix, it can be seen that

tr (BC) =
m∑

i=1

n∑

j=1

bi,jcj,i =
n∑

j=1

m∑

i=1

cj,ibi,j = tr (CB) (B.6)

whereB ∈ Cm×n andC ∈ Cn×m. From the above result, we can conclude that the trace
is equal to the sum of eigenvalues

tr (A) = tr
(
U∆UH

)
= tr

(
UHU∆

)
= tr (∆) =

n∑

i=1

λi. (B.7)

Here,U ∈ Cn×n is the modal matrix ofA containing its normalized eigenvectors. It is
well known thatU is a unitary matrix, i.e.,UHU = I. The diagonal matrix∆ comprises
the eigenvalues ofA, i.e. ∆ = diag(λ1, . . . , λn).

B.3 Derivatives of Vector and Matrix Functions

The derivatives with respect to vectors or matrices of scalar functions that involve the
trace operator are widely employed throughout this work. This appendix collects the
definitions of these derivatives, as well as some results that have been used in previous
chapters.

B.3.1 Real Derivatives

Let f : Rm → R,x 7→ f(x) with x ∈ Rm. The derivative off(x) with respect tox is
the column vector

∂f(x)

∂x
=






∂f(x)
∂x1
...

∂f(x)
∂xm




 ∈ Rm

and supposing now thatX ∈ Rm×n is transformed by the functiong : Rm×n → R,X 7→
g(X), the derivative ofg(X) with respect toX is defined as

∂g(X)

∂X
=

∣
∣
∣
∣
∣
∣
∣
∣

∂g(X)
∂x1,1

. . . ∂g(X)
∂x1,n

...
. . .

...
∂g(X)
∂xm,1

. . . ∂g(X)
∂xm,n

∣
∣
∣
∣
∣
∣
∣
∣

∈ Rm×n
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wherexi,j denotes thei–th element in thej–th column ofX.

B.3.2 Complex Derivatives

Suppose thatz = [z1, ..., zm]T = [x1 + jy1, ..., xm + jym]T ∈ Cm andZ ∈ Cm×n are
transformed by the functionsf : Cm → C,z 7→ f(z) andg : Cm×n → C,Z 7→ g(Z),
respectively. The derivative off(z) with respect toz is defined as the column vector

∂f(z)

∂z
=






∂fz)
∂z1
...

∂fz)
∂zm




 =

1

2






∂f(z)
∂x1
− j ∂f(z)

∂y1
...

∂f(z)
∂xm
− j ∂f(z)

∂ym




 ∈ Cm.

The derivative with respect to the complex conjugate ofz is obtained as follows

∂f(z)

∂z∗ =







∂f(z)
∂z∗1
...

∂f(z)
∂z∗m







=
1

2






∂f(z)
∂x1

+ j ∂f(z)
∂y1

...
∂f(z)
∂xm

+ j ∂f(z)
∂ym




 ∈ Cm.

On the other hand, the derivative ofg(Z) with respect to the matrixZ is them × n
matrix given by

∂g(Z)

∂Z
=







∂g(Z)
∂z1,1

· · · ∂g(Z)
∂z1,n

...
. ..

...
∂g(Z)
∂zm,1

· · · ∂g(Z)
∂zm,n







=
1

2







∂g(Z)
∂x1,1

· · · ∂g(Z)
∂x1,n

...
.. .

...
∂g(Z)
∂xm,1

· · · ∂g(Z)
∂xm,n






− j

2







∂g(Z)
∂y1,1

· · · ∂g(Z)
∂y1,n

...
. . .

...
∂g(Z)
∂ym,1

· · · ∂g(Z)
∂ym,n






∈ Cm×n

and, similarly, with respect toZ∗

∂g(Z)

∂Z∗ =
1

2







∂g(Z)
∂x1,1

· · · ∂g(Z)
∂x1,n

...
.. .

...
∂g(Z)
∂xm,1

· · · ∂g(Z)
∂xm,n







+
j

2







∂g(Z)
∂y1,1

· · · ∂g(Z)
∂y1,n

...
. ..

...
∂g(Z)
∂ym,1

· · · ∂g(Z)
∂ym,n






∈ Cm×n.

Examples

Let A ∈ Cm×m andw ∈ Cm. During the mathematical derivations throughout this work,
the following relationships are used
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• ∂‖z‖2
2

∂z
= z∗

•
∂(tr(zHAz))

∂z
= ATz∗

•
ℜ(wTz)

∂z
= 1

2
w

• ∂ tr(AZ)
∂Z

= AT

• ∂ tr(AZ∗)
∂Z

= 0

•
∂ tr(AZH)

∂Z∗
= A

•
∂ tr(AZH)

∂Z
= 0

• ∂ℜ(tr(AZ))
∂Z

= 1
2
∂ tr(AZ)
∂Z

+ 1
2
∂ tr(A∗Z∗)

∂Z
= 1

2
AT

•
∂(tr(ZHAZ))

∂Z
= ATZ∗

•
∂(tr(ZHAZ))

∂Z∗
= AZ.

B.4 Kronecker Product

The Kronecker product betweenA ∈ Cm×n andB ∈ Cp×q is a matrix operation defined
as

A⊗B =






a1,1 · · · a1,n
...

.. .
...

am,1 · · · am,n




⊗B =






a1,1B · · · a1,nB
...

.. .
...

am,1B · · · am,nB




 ∈ Cmp×nq. (B.8)

The following properties hold for the Kronecker product of Eq. (B.8) (see [123]):

(A⊗B)T = AT ⊗BT ∈ Cnq×mp

A⊗ α = α⊗A ∈ Cm×n

aT ⊗ b = b⊗ aT = baT ∈ Cp×m

(A⊗B) (C ⊗D) = (AC)⊗ (BD) ∈ Cmp×rs

(b⊗A) C = b⊗ (AC) ∈ Cpm×r

(A⊗ b) C = (AC)⊗ b ∈ Cpm×r

(E ⊗ F )−1 = E−1 ⊗ F−1 ∈ Cmn×mn

tr (E ⊗ F ) = tr(E) tr(F ) ∈ C. (B.9)

Here,α ∈ C, a ∈ Cm, b ∈ Cp, C ∈ Cn×r, D ∈ Cq×s, E ∈ Cm×m, andF ∈ Cn×n.
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B.5 Real-Valued Notation

Systems can be transformed from the complex-valued notation to the real-valued one
according to the following rule

ARV =

(
1 0
0 1

)

⊗ℜ (A) +

(
0 −1
1 0

)

⊗ℑ (A)

=

(
ℜ (A) −ℑ (A)
ℑ (A) ℜ (A)

)

∈ R2m×2n (B.10)

where⊗ denotes the Kronecker product (see Section B.4), the prefixℜ andℑ denote the
real and imaginary part of its argument, respectively, andA ∈ Cm×n. It is important to
note that the transformation given by Eq. (B.10) preserves all the properties of complex
numbers.

The transformation rule for signals is

bRV =

(
1
0

)

⊗ℜ (b) +

(
0
1

)

⊗ℑ (b) =

(
ℜ (b)
ℑ (b)

)

∈ R2n (B.11)

where the signal vectorb is a complex column vector of dimensionalityn.
Considering the transmission over MIMO channels, if theK-dimensional received

signaly is given by
y = Hx + η

whereH ∈ CK×N represents the flat fading channel,x ∈ CN represents the transmit
signal, andη ∈ CK is the additive white Gaussian noise, the equivalent2K-dimensional
real valued transmission model is

(
ℜ (y)
ℑ (y)

)

=

(
ℜ (H) −ℑ (H)
ℑ (H) ℜ (H)

)(
ℜ (x)
ℑ (x)

)

+

(
ℜ (η)
ℑ (η)

)

(B.12)

which can be written as
yRV = HRVxRV + ηRV. (B.13)

As shown in [124], real-valued processing can provide a gainin performance for
certain applications.



Appendix C

Karush-Kuhn-Tucker Conditions

Let us consider the following possibly nonlinear optimization problem with equality and
inequality constraints:

Xopt = argmin
X

f(X)

subject to:gi(X) ≤ 0 andhj(X) = 0 ∀i ∈ {1, . . . , l}, j ∈ {1, . . . , p} (C.1)

whereX andXopt ∈ Cm×n. The functionsf(X), gi(X), i = 1, . . . , l, andhj(X),
j = 1, . . . , p, are real-valued with complex-valued arguments, i.e.

f : Cm×n → R

gi : Cm×n → R, i = 1, . . . , l

hj : Cm×n → R, j = 1, . . . , p.

The function to be minimized isf(X); gi(X) is thei–th inequality constraint; andhj(X)

is thej–th equality constraint, withl andp being the number of inequality and equality
constraints, respectively.

Necessary optimality conditions of the optimization in Eq.(C.1) can be found with
the Lagrangian function

L (X, λ1,1, . . . , λ1,l, λ2,1, . . . , λ2,p) = f(X) +
l∑

i=1

λ1,igi(X) +

p
∑

j=1

λ2,jhj(X)

with λ1,i ∈ R0,+, for i = 1, . . . , l, andλ2,j ∈ R, for j = 1, . . . , p.
The Karush-Kuhn-Tuckerconditions (also known asKKT conditions) are necessary

for any solution of an optimization problem [68–71]. It is a generalization of the method
of Lagrangian multipliers to inequality constraints. These necessary first–order conditions

207
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for the optimization problem of Eq. (C.1) are given by

∂L (X, λ1,1, . . . , λ1,l, λ2,1, . . . , λ2,p)

∂X
= 0

gi(X) ≤ 0 i = 1, . . . , l

λ1,igi(X) = 0 i = 1, . . . , l and

λ1,i ≥ 0 i = 1, . . . , l

hj(X) = 0 j = 1, . . . , p.

Any optimizer for Eq. (C.1) must fulfill these KKT conditions.However, since the
KKT conditions are not sufficient in general, not all candidates obtained from the KKT
conditions are optimal.

A functionf(X) (or gi(X)) is convex if its domaindomf is a convex set, i.e. ifdomf
contains the line segment joining any two of its points, and if for all X,Y ∈ domf ,
θ ∈ [0, 1]

f (θX + (1− θ) Y ) ≤ θf(X) + (1− θ) f(Y ). (C.2)

The convexity of a twice differentiable function is also characterized by its second
derivative∇2f(X), i.e. a twice differentiable function is convex if and only if its Hessian
is positive semidefinite on its domain, and is strictly convex when the Hessian is positive
definite.

If the objective and inequality constraint functions are convex and the equality
constraint functions are linear (or, more generally, affine), the problem is then aconvex
optimization problem(or convex program) [125]. In the case of a convex optimization
problem, the KKT conditions are not only necessary but also sufficient, i.e. any candidate
is globally optimal. If the cost function in Eq. (C.1) is strictly convex, then this global
solution is unique. In this case, the KKT conditions are alsosufficient to solve the given
convex programming problem.



Appendix D

Multivariate Normal Distribution

D.1 Mean Vector, Covariance Matrix, and PDF of a
Multivariate Normal Distribution

The multivariate normal distribution is the most importantdistribution in science and
engineering. Letx = [x1, . . . , xm]T ∈ Cm. The mean value ofx is

µx = E[x] = [µ1, . . . , µm]T ∈ Cm (D.1)

whereµi = E[xi]. Therefore, the mean vectorµx is a vector of means.
The covariance matrix ofx is

Cx = E[(x− µx)(x− µx)H] = {cij} ∈ Cm×m (D.2)

where{cij} denotes the covariance matrix whose elementscij are given byE[(xi −
µi)(xj − µj)∗], i.e. the covariance matrixCx is a matrix of covariancescij.

The random vectorx is said to be multivariate normal (so–calledGaussian) if its
Probability Density Function(PDF) is given by

fG (x,µx,Cx) =
exp

(

− (x− µx)H
C−1

x (x− µx)
)

πm det(Cx)
. (D.3)

where the notationdet(Cx) is used for the determinant ofCx.

D.2 Invariance of Uncorrelated Complex Gaussian
Distribution to Unitary Rotations

Let W ∈ Cm×n be random, whose elements are i.i.d., zero-mean circularlysymmetric
complex Gaussian distributed, i.e.w = vec(W ) ∼ NC(0mn, σ

2Imn). Equivalently,
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when denoting thei–th column ofW aswi ∈ Cm, we have thatwi ∼ NC(0m, σ
2Im),

∀i, andE[wiw
H
j ] = 0m×m for i 6= j. Suppose a unitary matrixU ∈ Cm×m is applied to

W from the left leading to
V = UW ∈ Cm×n.

Clearly, V is zero-mean circularly symmetric complex Gaussian distributed asW ,
since a linear transformation applied toW gives V . Clearly, the columns ofV are
uncorrelated just as the columns ofW are. As the columns are zero-mean complex
Gaussian distributed, we only have to investigate their covariance matrices

E[viv
H
i ] = E[Uwiw

H
i UH] = U E[wiw

H
i ]UH = Uσ2ImUH = σ2Im

wherevi ∈ Cm denotes thei–th column ofV . We see that the entries of the columns are
independent, that is, the entries ofV are i.i.d. zero-mean circularly symmetric complex
Gaussian with varianceσ2. Thus, we have thatv = vec(V ) ∼ NC(0mn, σ

2Imn), i.e. the
distribution ofV is the same as the distribution ofW . Therefore, the distribution ofW
is invariant to a unitary rotation from the left. It is also easy to see that the distribution of
W is invariant to a unitary rotation from the right (just consider the Hermitian ofW ).



Appendix E

Error Covariance Matrix for Random
Vector Quantization

In this appendix, we show how to solveE[mini ||ĥes,k[ν] − yk,i||22] of Eq. (6.48) to find
a closed-form solution for modeling the error matrix for robust precoder designs when
random vector quantization is performed instead of scalar quantization.

We have that||ǫi||22 with ǫi ∼ NC(0,Cĥ,k + Ch,k) has the same distribution as
βi = ||zi||22 with zi ∼ NC(0,Λ), where Λ is the diagonal matrix containing the
eigenvalues ofCĥ,k + Ch,k. In the following steps, we demonstrate how to obtain the
Probability Density Function(PDF) ofβi ∈ R0,+ for N = 4 transmit antennas and also
the mean ofmini βi. Clearly, we can exploit the independence of the entries ofzi, sincezi
is complex Gaussian. It is known that ifx ∼ NC(0, σ2

x), |x|2 is exponentially distributed,
i.e.

f|x|2(y) =

{

0 y < 0
1
σ2

x
exp

(

− y
σ2

x

)

otherwise.

In other words, the squares of the entries ofzi areχ2-distributed with two degrees of
freedom and the variance of thej–th entryzi,j of zi is λj. Therefore, the sum of the
squares of the first two entries ofzi has the PDF

f|zi,1|2+|zi,2|2(y) =

∫ ∞

−∞
f|zi,1|2(y − x)f|zi,2|2(x)dx

=

∫ y

0

1

λ1λ2

exp

(

−y − x
λ1

)

exp

(

− x

λ2

)

dx

=
1

λ1λ2

exp

(

− y

λ1

)∫ y

0

exp

(
λ2 − λ1

λ1λ2

x

)

dx

=
1

λ1 − λ2

(

exp

(

− y

λ1

)

− exp

(

− y

λ2

))
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for y ≥ 0 and is zero otherwise. Similarly, the PDF for the third and the fourth entry of
zi can be written as

f|zi,3|2+|zi,4|2(y) =

{

0 y < 0
1

λ3−λ4

(

exp
(

− y
λ3

)

− exp
(

− y
λ4

))

otherwise.

These results help to find the PDF ofβi =
∑4

j=1 |zi,j|2, because

fβi
(y) =

∫ y

0

f|zi,1|2+|zi,2|2(y − x)f|zi,3|2+|zi,4|2(x)dx =
1

λ1 − λ2

1

λ3 − λ4

×
(

exp

(

− y

λ1

)∫ y

0

exp

(
λ3 − λ1

λ1λ3

x

)

dx− exp

(

− y

λ1

)∫ y

0

exp

(
λ4 − λ1

λ1λ4

x

)

dx

+ exp

(

− y

λ2

)∫ y

0

exp

(
λ4 − λ2

λ2λ4

x

)

dx− exp

(

− y

λ2

)∫ y

0

exp

(
λ3 − λ2

λ2λ3

x

)

dx

)

=
4∑

k=1

λ2
k

∏4
j=1,j 6=k (λk − λj)

exp

(

− y

λk

)

.

TheCumulative Distribution Function(CDF) ofβi is found by integration

Fβi
(β) = Pr[βi ≤ β] =

∫ β

0

fβi
(y)dy =

4∑

k=1

λ2
k

∏4
j=1,j 6=k (λk − λj)

∫ β

0

exp

(

− y

λk

)

dy

=
4∑

k=1

λ3
k

∏4
j=1,j 6=k (λk − λj)

(

1− exp

(

− β

λk

))

.

Note thatfβi
(y) is independent of the indexi. Since we take the minimum ofM

square errorsβi and the errors are independent (remember that the codebook entries
are independent), the complementary cumulative distribution of βmin = mini βi can be
expressed as

1− Fβmin(β) =
M∏

i=1

(1− Fβi
(β))

=

(

1−
4∑

k=1

λ3
k

∏4
j=1,j 6=k (λk − λj)

(

1− exp

(

− β

λk

)))M

. (E.1)

Therefore, the mean ofβmin can be found as (see [126], (5-27))

E[βmin] = E[min
i
||ĥes,k[ν]− yi||22] =

∫ ∞

0

(1− Fβmin(β))dβ. (E.2)

An analytical integration is in principle possible, but theresulting number of terms even
for moderateM (M = 210 = 1024) is huge. Therefore, we cannot obtain a closed-form
solution for this integral and we have to solve it by means of anumerical integration.
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Rectangular Multivariate Gaussian
Integrals

F.1 Rectangular Multivariate Gaussian Probability

With ωk = ℜ(h̆k) andχk = ℑ(h̆k), the PDF of̆hk can be decomposed as follows

κk = fh̆k

(

h̆k = ωk + j χk

)

= fωk
(ωk)fωk

(χk).

Let the coefficients definingSℓk [see Eq. (6.85)] be renamed asαRe
i , βRe

i , αIm
i , andβIm

i

(the indexk and the argumentℓk are dropped). Then, we have that

κk =

∫ βRe
1

αRe
1

dωk,1 · · ·
∫ βRe

d

αRe
d

dωk,d
1

(
√
π)

d
exp

(

−
d∑

j=1

ω2
k,j

)

×
∫ βIm

1

αIm
1

dχk,1 · · ·
∫ βIm

d

αIm
d

dχk,d
1

(
√
π)

d
exp

(

−
d∑

j=1

χ2
k,j

)

=
d∏

j=1

∫ βRe
j

αRe
j

1√
π

exp
(
−ω2

k,j

)
dωk,j

∫ βIm
j

αIm
j

1√
π

exp
(
−χ2

k,j

)
dχk,j

=
d∏

j=1

(

Φ
(√

2αRe
j

)

− Φ
(√

2βRe
j

))(

Φ
(√

2αIm
j

)

− Φ
(√

2βIm
j

))

(F.1)

where we use
∫ b

a
1√
2π

exp(−t2/2) dt = Φ(a)− Φ(b) for the last equality.
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F.2 Rectangular Multivariate Gaussian Centroid

Due to the symmetry of the real and imaginary part ofmk, it suffices to find the real
part of mk to prove Eq. (6.86). Let us split up̆hk into its real and imaginary part, i.e.
ωk = ℜ(h̆k) andχk = ℑ(h̆k), as we did in Section F.1. Thus, we have that

µk =
1

κk

∫

Sℓk

1

πd
(ωk + j χk) exp

(

−
d∑

j=1

(
ω2
k,j + χ2

k,j

)

)

dωk dχk

whereκk is the same integral as the one considered in Section F.1. From Eq. (6.86), we
have thatmk = µRe

k + j µIm
k . Let µRe

k,i be thei–th entry ofµRe
k . Taking into account that

each entry ofωk is a standard Gaussian with variance1/2, µRe
k,i is given by

µRe
k,i =

d∏

j=1

(

Φ
(√

2αRe
j

)

− Φ
(√

2βRe
j

))−1

×
∫ βRe

1

αRe
1

dωk,1 · · ·
∫ βRe

d

αRe
d

dωk,d
ωk,i√

2 (
√
π)

d
exp

(

−
d∑

j=1

ω2
k,j

)

=

∏d
j=1,j 6=i

(
Φ
(√

2αRe
j

)
− Φ

(√
2βRe

j

))

∏d
j=1

(
Φ
(√

2αRe
j

)
− Φ

(√
2βRe

j

))

∫ βRe
i

αRe
i

1√
2π
ωk,i exp

(
−ω2

k,i

)
dωk,i

=
(

Φ
(√

2αRe
i

)

− Φ
(√

2βRe
i

))−1
∫ √

2βRe
i

√
2αRe

i

1

2
√
π
t exp

(
−t2/2

)
dt

=
1

2
√
π

exp
(

−αRe,2
i

)

− exp
(

−βRe,2
i

)

Φ
(√

2αRe
i

)
− Φ

(√
2βRe

i

) . (F.2)

Following similar steps forµIm
k,i, we obtained that

µIm
k,i =

1

2
√
π

exp
(

−αIm,2
i

)

− exp
(

−βIm,2
i

)

Φ
(√

2αIm
i

)
− Φ

(√
2βIm

i

) (F.3)

and thus, we have obtained a closed-form solution to Eq. (6.86).

F.3 Rectangular Multivariate Gaussian Covariance

That Eq. (6.87) holds for the off-diagonal elements can be easily shown with similar steps
as in Section F.2. So, we only have to obtain the expression for σk,i that can be found in
Eq. (6.90). Due to Eq. (6.87), we have that

σk,i = [Mk]i,i − |mk,i|2
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where[Mk]i,i denotes thei-th diagonal element ofMk. With ωk = ℜ(h̆k), χk = ℑ(h̆k),
andλk,i = [Mk]i,i, we have that

λk,i =
1

κk

∫

Sℓk

1

πd
(ωk,i + jχk,i) (ωk,i − jχk,i) exp

(

−
d∑

j=1

(
ω2
k,j + χ2

k,j

)

)

dωk dχk.

As shown in Appendix F.1,κk =
∏d

j=1(Φ(
√

2αRe
j ) − Φ(

√
2βRe

j ))(Φ(
√
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where
∫
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respectively.
From Eq. (6.86),|mk,i|2 = µRe,2

k,i + µIm,2
k,i and thus [cf. Eq. (6.90)]

σk,i = τRe
k,i + τ Im

k,i

whereτRe
k,i = λRe

k,i − µRe,2
k,i andτ Im

k,i = λIm
k,i − µIm,2

k,i .
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Appendix G

List of Acronyms

AoA Angle of Arrival

AoD Angle of Departure

AS Angular Spread

AWGN Additive White Gaussian Noise

BC Broadcast Channel

BER Bit Error Rate

BS Base Station

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CSI Channel State Information

CSIR Receiver Channel State Information

CSIT Transmitter Channel State Information

dB Decibels

DFE Decision Feedback Equalization

DPC Dirty Paper Coding

DS Delay Spread

EASI Equivariant Adaptive Separation via Independence
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218 Appendix G List of acronyms

EXIT EXtrinsic Information Transfer

FDD Frequency-Division Duplex

FDMA Frequency-Division Multiple Access

3GPP Third Generation Partnership Project

iid independent and identically distributed

ISI Intersymbol Interference

KKT Karush-Kuhn-Tucker

LLL Lenstra-Lenstra-Lov́asz

LOS Line of Sight

LP Linear Precoding

LS Least Squares

LTE Long-Term Evolution

MAN Metropolitan Area Networks

MF Matched Filter

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MS Mobile Station

MSE Mean Square Error

MU Multi-User

NLOS Non Line of Sight

OFDM Orthogonal Frequency Division Multiplexing

PDF Probability Density Function
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QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

RF-FE Radio Frequency Front-End

RMS Root Mean Square

RVQ Random Vector Quantization

RxMF Receive Matched Filter

RxWF Receive Wiener Filter

RxZF Receive Zero-Forcing Filter

SCM Spatial Channel Model

SINR Signal-to-Interference-plus-Noise-Ratio

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

ST Space Time

SU Single-User

SVD Singular-Value Decomposition

TDD Time-Division Duplex

TDMA Time-Division Multiple Access

THP Tomlinson-Harashima Precoding

TxMF Transmit Matched Filter

TxWF Transmit Wiener Filter

TxZF Transmit Zero-Forcing Filter

US Uncorrelated Scattering

VP Vector Precoding
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VQ Vector Quantizer

WF Wiener Filter

WiMAX Worldwide Interoperability for Microwave Access

WSS Wide Sense Stationary

ZF Zero–Forcing
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para sistemas MISO multiusuario con predicción de canal,” inProc. of XXIII Simposium
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