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Resumen

En este trabajo consideramos un sistema multiusuario cahiples antenas en
transmisbn y unadnica antena en cada uno de los usuarios receptores y queca de
por brevedad como MU-MISO, del ineg Multi-User Multiple—Input/Single—Output
Este modelo MU-MISO se ajusta perfectamente al enlace d@gsot de un sistema
de comunicaciones awviles, donde naltiples antenas situadas en la estaddbase erian
informacibn a varios usuarios dentro de su zona de cobertura y cuyns#des noviles
disponen generalmente de u@ca antena. Este canal descendente se denomingtambi
canal de difugin (BC, del ingésBroadcast Channgl Cuando se considera un canal de
difusion, el transmisor centralizado tiene claramentesgrados de libertad que cada
uno de los receptores descentralizados, por lo queassapropiado separar ladisées
aplicandoprecodificacbn en transmigin. Para poder realizar el disede los pametros
del precodificador, el transmisor necesita conocer lainémidbn de canal (CSI, en ing$
Channel State Informatigncorrespondiente a los distintos usuarios receptores. | En e
caso de sistemas FDD (del iggl Frequency Division Duplgx esta informa@n puede
obtenerse (al menos parcialmente) mediante realimémtasiempre tras haber aplicado
un proceso de cuantificari de la informadin enviada con el objetivo de adaptarse a las
condiciones de ancho de banda limitado del canal de retorno.

La asunadn eséndar para el dis® del retorno es CSl libre de errores en los usuarios
receptores (e.g., [1-5]), pero los receptores consigugbiSdunediante estiman, por
lo que, evidentement&sta contiene errores. Agara optimizar la CSI realimentada
sea necesario obtener una adecuada caractedizagstadstica de los errores. A lo
largo de esta trabajo se consida@ratas siguientes fuentes de error: estirbade canal,
truncamiento (reducon de rango), cuantificamn, y retardo inherente al elavde la
informacin por el canal de retorno. Consideramos, sin embargo, quaaal de retorno
no sufre errores durante la transraisi

Como primera aproximagn, planteamos un difie basado en una étrica CSI-
MSE, es decir, los pametros de la realimentéci se van a obtener mediante la
minimizacbn del error cuadttico medio (MSE, del ingls Mean Squared Errgrentre
el canal verdadero y el canal éneo o ruidoso enviado desde cada uno de los usuarios
receptores al transmisor. Los filtros del precodificadoresnbargo, se obtienen a partir
de una optimizaén MSE independiente de la anterior. Se propone, por lo tamta
optimizacbn conjunta de la estimami, la reducdn de rango y los pametros de la
libreria, disponible tanto en el transmisor como en el receptor. élontendremos el
interesante resultado de que tanto la estibraciomo la reducéin de rango obtenidas
de esta formulaéin son independientes de la lilgry queésta va a poder computarse
off-line mediante el algoritmo de Lloyd. El rendimiento final @émnbinos de BER (del
inglés,Bit Error Rate) puede mejorarse, como veremos, mediante el algoritmaipsip



para la asignadin diramica de los bits asociados al proceso de cuantibioaevaluando
de forma sencilla su impacto en el MSE obtenido.

Como segunda aproxima&ei, presentamos el dise conjunto de los estimadores
de canal y los cuantificadores junto con el precodificadoad@®n uninico criterio
orientado al precodificador en lugar del criterio CSI-MSEicaplo en los primeros
esquemas. Por lo tanto, la optimizatiplanteada consiste en minimizar el MSE entre
los dmbolos transmitidos y losimbolos recuperados en recepti Las entradas de
la librefia son ahora los posibles filtros de precodifibacide forma que cada usuario
realimenta eindice correspondiente a un conjunto de precodificadorasntérsecdn
de estos conjuntos realizada en transbmisia a proporcionar el precodificad@ptimo
empleado mientras no van los estaigticos del canal.

Las simulaciones realizadas con MATLAB nos muestran queréeaalificacbn
robusta basada en CSl imperfecta enviada desde los usiengggaores presenta un claro
mejor rendimiento que la precodificaai convencional que no tiene en cuenta esos errores
en la CSI. Tamk@n se observa que estos dige robustos son especialmente cruciales
en sistemas que emplean precodifibacho lineal con un canal de retorno limitado,
puesto que son &s sensibles a errores en la CSI. Si efectuamos una conpaeatie
las dos aproximaciones propuestas, claramente umalisgentado al precodificador
lleva a mejores resultados e#rminos de BER a costa de incrementar notablemente la
complejidad computacional del algoritmo robusto.

La metodologa de trabajo seguida en el desarrollo de la presente Tesi®iabha
consistido fundamentalmente en definir una lista de tateagndo en cuenta tanto los
trabajos previos como los recursos disponibles; detemairntinuadn su secuencia
u orden de ejecuon, estableciendo una duraniaproximada; organizar estas tareas por
bloques de cierta entidad que definan etapas; y, finalmgatdpf objetivos concretos de
cada etapa y la metodolzgde trabajo a emplear para alcanzarlos. En la Tesis Déctora
se ha realizado una exhaustiva remsibibliogiafica y, tras evaluar las aportaciones
realizadas durante lgdtimos dlos por la autora de la misma en congresos y revistas
del ambito de conocimiento 680 aquellas ras relevantes han sido incluidas finalmente
en este trabajo. Tal y como se ha mencionado antes, losadgsiltie simuladn por
ordenador realizados sobre uristier del0 PCs del Laboratorio de &culo del grupo
GTEC de la Universidad de A Cdia han sido obtenidos utilizando el lenguaje de
programadn tcnica de alto nivel MATLAB.
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Summary

In this work, we consider a multiuser system with a transmigiquipped with multiple
antennas and only one antenna at each receiver user. Ttesnsyshich is termed MU-
MISO (Multi-User Multiple—Input/Single—Outpytis of use to model the downlink of a
wireless communications system, where multiple antenngedase station transmit to
several users with usually only one antenna at each regawiit. This downlink channel
is also calledBroadcast Channe{BC). When considering this broadcast channel, the
centralized transmitter clearly has more degrees of fnr@eth@n each of the receivers.
Therefore, itis appropriate to separate the signals byappprecoding at the transmitter.
To be able to design precoding, the transmitter needs kuig®labout the channel states
of the different receivers. In the case Bfequency Division DuplexFDD) systems,
this knowledge can be obtained by feedback (at least ggjtialhere theChannel State
Information(CSI) of the receivers is quantized to adapt to the limited cainditions of
the feedback channel.

The standard assumption for feedback design is error-frdeatCiBe receivers (e.g.
[1-5]), but the receivers get their CSI by estimation. Thuasgantains errors. In
order to properly design the limited feedback, it is necgssa obtain an adequate
statistical characterization of the CSl errors. The follogwsources of error are considered
throughout this work: channel estimation, truncation Kreeduction), quantization, and
feedback channel delay. It is assumed, however, that tlbée& channel does not suffer
from errors during the transmission.

As a first approach, we propose a design based on a CSI-MSEcmietti the
feedback parameters are found by means of the minimizatittredlean Squared Error
(MSE) between the true channel and the erroneous channefrgenthe receiver side
to the transmitter. The precoder filters, however, are obthby means of a different
minimum squared error optimization. In other words, we ps®a joint optimization
of the estimation, the rank reduction, and the codebook teitie feedback, available
at both the transmitter and the receiver side. Interegtirige estimator and the rank
reduction resulting from this formulation are independeithe codebook used, which
can be computed off-line with the generalized Lloyd aldont As we will see, the
results in terms oBit Error Rate (BER) can be improved by the algorithm proposed to
dynamically allocate the bits associated to the quantimgbrocess by means of easily
computing the obtained MSE.

As a second approach, we jointly design the channel estimatad the quantizers
at the receivers together with the precoder at the transnbtised on a single criterion
oriented to the precoder instead of the CSI-MSE criterioriegbor the first approach.
Therefore, this optimization consists of minimizing the M®etween the symbols
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transmitted and recovered by each user. The codebook ®matree now the possible
precoder filters so that each receiver feeds back the indeesponding to a set of
precoders and the intersection of the sets gives the optiprecoder to be used while
channel statistics remain unchanged.

Several simulations carried out using MATLAB show that refqorecoding based on
fed—back information clearly outperforms conventionaqading that does not take into
account the errors in the CSI. Additionally, we observe thatbaist design is especially
crucial for systems employing non-linear precoders witarse feedback rate. Some
comparisons between the above—mentioned approaches bBhabw timited feedback
design involving the precoder in the MSE optimization exsilbetter performance

compared to the isolated precoder optimization, althobghcomputational complexity
is much higher.
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Chapter 1

Introduction

This work focuses onMultiuser MISO (MU-MISO) systems where a centralized
transmitter equipped with multiple antennas communicaiiéls several single antenna
decentralized receivers. MU-MISO systems typically ansthe downlink of cellular
communication systems. The transmitter is iezeess Poin{AP) or Base Statior{BS),
which admits more complexity and can support several aatenrnThe receivers are
Mobile StationgMS) with limited power consumption, size, and processiagabilities,
and they will support a single antenna at the most. Recentiygd been shown that the
Dirty Paper Coding(DPC) [6] signaling technique designed according to3igmal-to-
Interference-plus-Noise Rat{@&INR) criteria is able to approach the sum capacity of a
broadcast channel [7,8]. These contributions, howevdy,camsider the ideal case where
the CSl at the transmitter is perfectly known, similar to [2}-1n the more practical case,
where only an estimate of the CSl is available, the capadaiigneof the broadcast channel
has not yet been found. Furthermore, the application of BPguestionable, since it is
unclear up to now how to systematically include the unceties in the SINR criterion
(see the discussion in [12] and the attempt in [13] for the cdstatistical CSI).

As shown in [14], the SINR and the MSE achievable regions fa-MISO systems
are closely related. Additionallyninimum MSEMMSE) allows for a robust precoder
design by considering a conditional expectation of the fiosttion [15-18]. Hence, we
concentrate on MMSE precoder design. Based on the MMSE d&si¢jnear precoding
as in [19, 20], for THP in [11, 21], and for VP in [22, 23], we @dop robust linear
precoding, robust THP, and robust VP, taking the expectatioMSE conditional on
the available CSI.

Most of the work on precoding with erroneous CSI was motivatgd Time Division
Duplex(TDD) setup, where the transmitter can estimate the CSI duhie transmission
in the opposite direction (e.g. [17, 18]). This approachyéwer, is difficult due to the
need for very good calibration (e.g. [24]). Contrarily, wetdis on the more difficult case,
where the CSI is obtained by the receivers and fed back to d@inesrritter. In this case,

1



2 Chapter 1 Introduction

calibration errors are estimated as being part of the CSltrerdfore no special problems
arise from calibration. Additionally, the feedback of CShétes precoding ikrequency
Division Duplex(FDD) systems, where the transmitter is unable to obtairCtBkeduring
reception, because the channels are not reciprocal.

Since the data rate of the feedback channels is limited [254), the CSI must be
compressed to ensure that the tight scheduling constiaiatsatisfied. Moreover, when
the CSl is not perfectly known, it is a matter of discussion tiad of information has
to be sent from the receiver to the transmitter and the wayrédovered at the transmitter
side.

In the limited feedback systems proposed in this work, wet i@ estimating the
channel at the receivers using the observations of pilotgysnsent from all transmit
antennas. This enables the receivers to estimate thega®sp vector channels. Then,
we reduce the estimates to a low-dimensional representhjigrojecting them onto a
basis, which depends only on the channel statistics. Werasthat the channel statistics
are also known to the transmitter. The coefficients are @geghprior to transmission
over the feedback channel which also introduces a delay.edfeict ourselves to scalar
quantization (uniform and non-uniform quantization) irder to obtain closed-form
solutions for the robust designs. However, in order to itate the trade-off between
performance and complexity achieved with scalar quardjase also show how vector
guantization can be applied in our limited feedback design.

Basically, we consider two types of limited feedback systemmely, those systems
that are based on minimizing the MSE between the true chamdehe erroneous channel
available at the transmitter, i.e. based on a CSI metric, laoskt systems that are based
on a metric oriented to the precoder, i.e. that minimize tf&8Wbetween the transmitted
symbols and the symbols recovered by the users and thatdheereclude the precoder
in the MSE optimization. The idea of the limited feedbackdzhen CSI is to jointly
optimize the estimator and the quantizer parameters (@éelmook entries and partition
cells), although the precoders must be obtained by meansepfaaate MSE optimization.
Contrary to this idea, we find the second type based on a nevicrifedt is not derived
from the MSE of the CSI, but from the MSE of the data transmissioVe derive
expressions for the optimum estimators, quantizer paensieand precoders obtained
from this joint optimization that clearly outperform theepious approaches based on the
MSE of the CSI. We also develop a strategy to optimally alle¢hé bits of each user in
the sense of minimizing the MSE that results from each scheme

On the other hand, in order to properly design robust prespdeis necessary to
obtain an adequate statistical characterization of ther®in the fed—back CSI. The
following sources of error are considered: channel estonatruncation (rank reduction),
guantization, and feedback channel delay. Channel estimatid truncation errors are
Gaussian and their analysis follows a conventional MSE @gugr (e.g. [26]). Since the
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delayed channel versions fed back to the transmitter aftttmation and truncation are
also Gaussian, we can also easily obtain their statistroglgrties. Taking into account an
initial codebook designed according to the Lloyd algorithme obtain an expression for
the probability density function of the channel vector adatg to a Bayesian framework,
i.e. conditional on the delayed, truncated, and quantihadicel estimate. The expression
found for this conditional PDF of the channel enables us t ¢insed-form expressions
for the robust precoders.

1.1 Thesis Overview

This thesis is organized as follows:

In Chapter 2, we introduce the concepts of multipath and tadiseful for
understanding the correlated channel model describedsrthiapter, and which will be
used throughout this work: tHgpatial Channel Mod€lSCM). The signal model for the
downlink of a multiuser system with multiple antennas attthesmitter is also presented
in this chapter.

We review different types of receive and transmit procesginChapter 3 where we
assume that perfe€@hannel State Informatio(CSI) is available at the transmitter for
precoding and at the receiver for detection.

However, this assumption is not realistic since the trattemhas no full channel
knowledge. In Chapter 4, we describe the error sources appeas a result of the
estimation and CSI compression performed by each user to tiaioverhead of the
feedback channel.

In Chapter 5, we derive the MMSE robust precoder design to eosgie the
mismatch between the true channel and the erroneous creamil@ble at the transmitter,
in order to construct the precoder filters. Additionallye MMSE receivers used instead
of the common weights obtained from the optimizations améveé in this chapter for
each type of precoder.

In Chapter 6, we investigate the design of the limited feekibiae. how to take into
account the estimation, truncation, quantization, andldaek delay processes, in order
to minimize the MSE between the true channel and the erranelmannel available at the
transmitter.

Chapter 7 includes the precoder design in the MMSE joint faeklloptimization, so
that now the MSE between the transmitted symbols and theseeed symbols at each
user is minimized.

Finally, Chapter 8 is dedicated to the conclusions and fuiumex.
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1.2 Assumptions and Notation

All derivations are based on the assumption of perfect kadge of the second-order
statistics of the noise, the symbols, and the channels. wEawihese parameters have to
be estimated in practice, although we will not deal with firigblem in this work. Finally,
we assume that all random variables are zero—mean andstiatio

Vectors and matrices are denoted by lower case bold andatdmtd letters,
respectively. Thel x K identity matrix is denoted b¥, and0y is a K-dimensional
zero vector. We us&[e|, R(e), S(e), tr(e), (o), (o)T, (o)1, det(e), ®, *, || o ||,
and || e ||r for expectation, real and imaginary part of the argumeatetrof a matrix,
complex conjugation, transposition, conjugate transfrsi determinant of a matrix,
Kronecker product, convolution, Euclidean norm, and Fnilie norm, respectively. The
i-th element of a vectat is x;. With fs(x, u., C.), we refer to a circularly symmetric
complex Gaussian distribution af € C™ with the mearu,, € C™ and the covariance
matrix C, € C™ ™ i.e.

exp (— (@ — )" C;' (@ — o)

fo (@ o Ca) = 7 det(Cyp)




Chapter 2

Signal Model

In wireless communications systems the channel is timeuvgiand it is thus very hard to
find out how to predict future variations. This does not hapipenvired communications

where the channel remains almost unchanged. In this worfQeus on outdoor channels,
whose analysis is no easy matter. The task of channel mgdslione of the most

difficult parts in the design of wireless systems. The chhoae be statistically modeled
based on experimental measurements that are performetedda@ given propagation
environment. Since we exploit spatial and time correlaiohthe channel to design the
optimum limited feedback, we introduce in this chapter aelgristics common to most of
the radio propagation environments, so we can talk abouegmmeral channel features.

A signal propagating through a wireless channel arriveshatdestination along
different paths. This phenomenon is known as multipathceffelThe different paths
arise from scattering, reflection, and diffraction of thelisded energy of objects in
the environment or refraction in the medium. Multipath @gation results in the
spreading of the signal over the different dimensions: tifreguency, and arrival angle.
Correspondingly we have delay spread, Doppler spread arie syoigead.

Additionally, the received signal level exhibits fluctuats, termedading Variations
in the signal are due to three effects: mean path loss, mampasfading, and microscopic
fading. The mean path loss depends on the distance betweetratismitter and
the receiver; on the antenna characteristics; and on thageeattenuation introduced
by the channel. Macroscopic fading, also termledg-term channel variation®r
shadowing results from the type of scenario between the transmitidrthe receiver,
while microscopic fading results from destructive and ¢arcdive combination of the
different paths, and is also known sisort-term fading

Mean path loss, macroscopic fading, microscopic fadindaydspread, Doppler
spread, and angle spread are the main channel effects,addsuribed below.

5
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2.1 Multipath Effects

In wireless communication systems, the transmitted sigyyically propagates via
several different paths from the transmitter to the receiVais effect, termednultipath
propagation is caused by reflections of the radio waves from the surrmgnobstacles.
Let the transmitted signal in continuous time domain bermgive [27-29]

s(t) = R{u(t)@*'} = R {u(t)} cos(2m fet) — S {u(t)} sin (27 fct) (2.2)

wheret is time in secondsy(t) is the equivalent lowpass signal feft), and f. is the
carrier frequency in HzR(e) and(e) denote, respectively, the real and imaginary part
of its argument. If we neglect the noise, the received signalbtained by convolving the
equivalent lowpass input signal¢) with the equivalent lowpass time-varying channel
response to an impulse at time:(t), and then upconverting to the carrier frequency:

r(t) = R{u(t) = h (t)] &2} (2.2)
The equivalent lowpass time-varying chanhél) is modeled as the sum of théne-Of-

Sight(LOS) path and each of the multipath components, i.e.

M

h(t) =) an(t)e 106t — 7,,(t)) (2.3)

m=0

where the phase shift,,(t) is given by
Ym () = 27 feTin () — YD m- (2.4)

Hencep ., is theDoppler phase shiffior each multipath component obtained as

77Z)D,m = /27TfD,m (t) dt

with fp,,,(t) known asDoppler frequency shitind expressed as follows

vCOS(6,, (1))

foun (1) = S22 25)

wherew is the velocity of the mobile and is the wavelength.6,,(¢) is the angle of
arrival of each multipath component relative to the di@ctof motion. Note that the
componentn = 0 in Eq. (2.3) corresponds to the LOS path. The number of rmathip
components is given by/. In general, each path has different relative propagatabenys
(given by7,,(t) in Eq. (2.3)), different amplitudes or attenuations fortegath ¢,,(t))
and different phases (given by, (¢) in Eq. (2.3)). We assume that,(t), 7,,(t), and
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¥, (t) are stationary and ergodic. Thus, the received signal Veitl be a stationary and
ergodic random process.

Remember that the convolution of two functiofisindg is defined asf () * g(t) =
[22 f(7)g(t — 7)dr. Substituting Eq. (2.3) into Eq. (2.2), we obtain the reedigignal

r(t) =% { [/Z h(r, tyu (t —7) df} ei%fct}
R { i o (£)€ 008 (1 — 7, ())u (t — ) dr eﬂﬂfct}
" { :i ()€ ¥ (/_Z O(r = T (t))u (t — 7) m)] eﬂﬂfet}
- %{ Za et (¢ - Tm(t)>] e”’”“} (2.6)

wherer is the variable of delay ankl(r, ¢) represents the equivalent lowpass response of
the channel at timeto an impulse at timeé — 7 as follows

M
h(r,t)=h(@t)*xd(t—7)= Z (1)€Y OS5 (7 — 7, (1)). (2.7)
m=0
Last equality in Eq. (2.6) is obtained from the shift propet the Dirac distribution

/_OO 5(r — m(D))u (t — 7)o = 6(t — 7 () % (t) = w (t — 7 (1))

Multiple antennas at the transmitter and/or the receiviee®ming a common feature
of wireless systems since diversity and capacity benefiease with the number of
antennas. Systems with multiple antennas require chanoéélsito characterize both
spatial and temporal correlations of the channel. Theegfoe now consider a multipath
environment in which the receiver or transmitter has anrargearray withP elements.
And also assuming that th&ngle-of-Arrival (AoA, given by 6,,(t)) is stationary and
identically distributed for all multipath components, atehoting this random AoA with
respect to the origin of the array I8y we can introduce the angle dimension in Eq. (2.7)
as follows

(1,t,0) Za e 1V (0 (1)) (1 — T (t)) (2.8)
wherea,(0(t)) € Cis thep—th element of the antenna array vector expressed as

a, (0 (1)) = I 3 (@peod(O)+ypsind(1)) (2.9)
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for (x,,y,) indicating the antenna location relative to the origin & tiray.
Then, the received signal in EqQ. (2.2) can be expressed as

. M

r(t) = 8%{ / t)e 19 Wa (0 (1)) (1 — T (t))u (t — 7) dr

ejZTrfct }

zgre{ Za Jgivm(t (9(t))u(t—¢m(t))]ei?ﬂfcf}. (2.10)

We assume some conditions about the channel impulse respans, 6) in Eq. (2.8).
First, we consider that the channelWide Sense StationaWssS), i.e. the temporal
channel autocorrelation depends only on time differenee, i

Ry (7,t,0) = E[h(7,t0,0) h* (1,t0 + t,0)] = E[h(7,0,0) h* (7,t,0)]

for all 7 andf#. We also assume that fading corresponding to differentachest is
uncorrelated (this is calledncorrelated ScatterindJS), i.e.

E[h(ﬁ,t,é’)h* (Tg,t,e)]zo |f 7'17&7'2

for all ¢t and#. When the channel satisfies both conditions, it is termiéde Sense
Stationary Uncorrelated Scatterif@VSSUS).

We can define the Fourier transform of the time autocoramabf the channel
responsé(7,t, #) as the function given by

6(r.0.0) = [ Ra(r.t.0)e ek
This function ¢(7, f,0) is the channel description in the frequency, time, and angle
domain. In this context, the variabfeis termedDoppler frequencyThe average channel
power as a function of the Doppler frequency is obtained as

_ / G 1 0) dr (2.11)
—m JO

which is calledDoppler power spectrum The time interval between the instant of
arrival of the first multipath component and that of the lasé @s denoted by ax. 0

is regarded as a uniform variable a7, 7]. The spectral spreading covers the range
f € [fe — fo, max fc + fo, may, Where the maximum Doppler frequeng, max iS related

to the relative velocity between the transmitter and theixvee and is obtained when
cog6,,(t)) = 1in Eg. (2.5) which leads to

fD, max — fc% (2.12)
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Time-selective - . K Doppler spread

fDmax fc fc"‘fDmax
a (T)

Frequency-selectve —— > | T T T Delay spread

0 Tmax
¢ (9)
T Angle spread

Space-selective - > T [

=T ™

Figure 2.1: Space-, Frequency- and Time-Selective Fading.

wherec is the constant for the speed of light.
Similarly, we obtain thelelay power spectrumr average channel power as a function
of the delay t) taking the marginal integral over the other two variabies,

/ ,, /f .0 df b, (2.13)

Jmax

The delay power spectrum is also commonly referred to asatit intensity profile.
Finally, the average power as a function of the angle of akrs/obtained as follows,

fc+fmax Tmax
/ / o (1, f,0)drdf (2.14)
fe 0

fmax

which denotes thangle power spectrum

2.1.1 Delay Spread and Frequency-Selective Fading

In a multipath propagation environment, the receiver getses scaled and delayed
versions of the transmitted signal. If the signal only sisfieom attenuation (i.e. there are
no delayed components), all frequency components of tmakigll experience the same
magnitude of fading. This effect is termddt fading If several delayed signals arrive
at the receiver, then different frequency components o$itpeal experience decorrelated
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fading, which is typically termedrequency-selective fadin@ee Fig. 2.1). Thelelay
spread Trus, IS defined as thRoot Mean SquaréRMS) delay ofpqy(7) (Fig. 2.1), i.e.

Jo(r—7) ¢d( )dr
TRMS = 7'—7' Tmax d7'

wherer7 is the average delay defined as

o T (7)dr
OT"’% (r)dr

andgq(7) is the delay power spectrum defined in Eq. (2.13). When thamistbetween

two frequencies is greater than the inverse of the delayadprihese two frequencies
experience a totally different attenuation by the chaniiethe separation is less than
the inverse of the delay spread, then they suffer from smaienuation. Therefore, the
frequency-selective channel characteristic dependssoethdwidth of the transmit signal
compared to the inverse of the delay spread, the so celleadnel coherence bandwidth,
B, i.e.

ll

1
TRMS
Signals with bandwidth smaller than the channel cohereacelwidth suffer from flat
frequency attenuation. Signals with bandwidth greaten ttiee channel coherence
bandwidth experience different attenuations accordingh® frequency, i.e. they
experience frequency-selective fading.

Be ~

2.1.2 Doppler Spread and Time-Selective Fading

Another important channel characteristic is concernet thieé relative mobility between
the transmitter and the receiver. When a user (or scattaretsei surroundings) is in
motion, the user’s velocity causes a shift in the frequeridh® signal transmitted along
each signal path.

Signals traveling along different paths can have diffei@appler frequency shifts
and, therefore, different Doppler phase shifts. The diffiee in Doppler shifts between
different channel components is knownzsppler spread The Doppler spread is a result
of the mobile terminal movement during the communicatiom b& precise, the Doppler
spread, similarly to delay spread, is defined as the RMS battdwi¢p () (see Fig. 2.1),

ie.
fc+fmax
F=Foo(f
_ g A2 — frnax (
fRMS [(f f) :| J f]zi;:;xqu (f) df
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wheref is the average frequency of the Doppler spectrum defined as

o St oo (f) df

T I g (f) df

and¢p(f) is the Doppler power spectrum given by Eq. (2.11). This csutise overall
radio channel to be time-variant, i.e. with time-varyindays and attenuations for the
individual multipath components. This phenomenon is gahetermedtime-varyingor
time-selective fadingThe coherence timedenoted byrt, is the time during which the
channel behavior remains approximately unchanged. Thereobe timel. is inversely
proportional to the Doppler spread, i.e.

1
o™ Tews
T, measures the minimum time required for the channel magmittal become
decorrelated from its previous value. According to its tissectivity, the channel is said
to beslow fadingf its coherence time is much greater than the frame dura@herwise,
the channel is said to Hast fading meaning that the channel changes considerably from
one transmission frame to another.

The frequency- and time-selective nature of mobile wieleBannels is one of
the most critical elements from the point of view of overalireless link quality.
Various transmitter and/or receiver signal processingregies are utilized in practice
to overcome the time- and frequency-selective fading &ffexpractical communications
systems, including, for example, various channel equadiza coding, and diversity
transmission schemes.

2.1.3 Angle Spread and Space-Selective Fading

Angle spreadat the receiver refers to the spread Angles of Arrival(AoA) of the
multipath components at the receive antenna array. Sigilangle spread at the
transmitter refers to the spreadAmgles of Departur¢AoD) for those multipath signals
that finally reach the receiver (see Fig. 2.1). Note that weetalking only about AoAs,
and not AoDs (Angles of Departure), since the downlink of aeleiss communication
system is considered. We define the RMS angle spriad, as

o S (0-8) ga ()
oo = B[00 =\ =
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where ¢a(0) is the angle power spectrum defined according to Eq. (2.1d)Yda the
average angle defined as
I 06 (0) do
SO oa(0)d0

Angle spread causespace selective fadingshich means that the received signal
amplitudes depend on the antennas’ spatial location. Spatective fading is

characterized by theoherence distan¢é., which is inversely proportional to the angle
spread, i.e.

0_:

1

Orms

Larger angle spreads imply shorter coherence distancethe Iseparation among the

antenna elements is higher than the coherence time, thal sagmplitude depends on

the antenna location, and vice versa, i.e. if the separaismaller than the coherence

distance, signals arriving at the different antennas sfriéen similar attenuations.
Although space-selectivity has not been as widely studedirae- or frequency-

selectivity, this topic has achieved greater prominencedent years due to the increasing

number of antennas at both the transmitter and the receder s

D¢ x

2.2 Mean Path Loss

The path loss is the ratio between the transmitted power ladeceived power (see
Fig. 2.2) given by
B T un)?aL

where P, and F, are the transmitted and received powers, respectivalythe distance
between the transmitter and the receiver, ahdand GG, are the power gains for the
transmit and receive antenna, respectivelyis related to the loss due to the antenna
characteristics and the average channel attenuatiathe slope index from a value of
2 for free space t® depending on the environment. Some valuesyfatepending on
the environment are shown in Table 2.1. Several empirictil lsss models have been
developed for microcellular and macrocellular systemshsas Okumura, Hata or Cost-
231 models [30].

(2.15)

2.3 Fading

In Section 2.1 we explained that fading is the fluctuatiomareceived signal level caused
by multipath propagation. Fading is due to two multipligatphenomenons: microscopic
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| Environment IEH
Free space 2
Flat rural 3
Rolling rural 3.5

Suburban, low rise 4
Dense urban, skyscraperd.5

Table 2.1: Path Loss Exponents.

and macroscopic effects (see Fig. 2.2). They are also egf¢or asshort termandlong
termchannel variations, respectively, which are describetderfollowing subsections.

2.3.1 Macroscopic Fading

Macroscopic fading is caused by changes in the scenario, a#erations in the
surrounding environment (rural, suburban, urban...) oraagesult of the terrain
configuration (open, flat, hilly, mountain...). The dewatiof macroscopic fading about
the mean propagation loss is treated as a random variabiastl@nsidered to be
lognormal. Its probability density function is given by

1 _(e=p)?

flz) = e 5 (2.16)

2ro

wherez is the random variable expressed in decibels (dB) that repteshe long-term
signal power level fluctuation over the mean path loss. Th@bkes, ando are the
mean and standard deviation:afrespectively. Bothy ando, are expressed in dB. The
mean valuey, is equal to the mean propagation loss discussed in theguegection.
The standard deviatiom, may have values aroursddB for some environments (see the
parametebsg in Tables A.3, A.4, and A.5).

2.3.2 Microscopic Fading

In many practical situations the transmitter and the resseave not within direct sight of
each other. This situation is referred toNsn-Line-Of-Sigh{NLOS) propagation. The
received signal is the sum of multiple signals produced figcBon from the elements
that surround the transmitter and the receiver. This presluapid fluctuations over the
mean of the received signal, this effect being caitedroscopic fading27, 31].

To characterize the random scale factor caused by multipgghchooses(t) to
become an unmodulated carrier given by

s(t) = R{&*'} = cos(2r fet)



14 Chapter 2 Signal Model

Mean path loss

/

Macroscopic fading

Signal level (dB)

Distance

Figure 2.2: Macroscopic and Microscopic Fading.

and, thereforeu(t) in Eqg. (2.1) is equal tal, for all t. Under most delay spread
characterizations, the channel coherence bandwidth idhreowller than the inverse
of the delay spread (see Subsection 2.1.1) which impligstiieadelay associated with
the m—th multipath component,,(t) < 7rus for all m and, then, we can consider a

narrowband fading modekdhereu(t — 7,,,(t)) =~ u(t) for all m andh(t) in Eq. (2.3) is
now expressed as

M
h(t) =) am(t)e 7*mO5(1). (2.17)
m=0
Therefore, EqQ. (2.6) can be rewritten as

r(t) = §R{ [Z ozm(t)e_jwm(t)] ej2”f°t} =1 (t) cos(2nm fet) — rq (t) sin(27 fct)

where the in-phase and quadrature components are given by

g

r(t) = Q (£)COS(Pp (1))

3
I

NE

rQ(t) = ) am(t)sin(ym(t))

3
Il

with the phase termp,, (¢) given by Eq. (2.4).

For largeM we can apply the central limit theorem together with the that«,,(t)
andi,,(t) are independent for different components in order to apprater; andrq as a
jointly Gaussian random process. The Gaussian propeyhalsls if «,,(¢) is Rayleigh
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Figure 2.3: Microscopic Fading: (a) Rayleigh PDF; (b) Rice Ridth 1, = 1.

distributed andy,,(t) is uniformly distributed ovef—n, xr]. Let o* be the variance for
both in-phase and quadrature components. Then, the sigvelbpe

z(t) = r(t)] = /ri(t) + r3(t)
follows a Rayleigh distribution with density function (seig 2.3):
2r _2? T %
f(x):?rel’r:;e22 ZEZO

whereP, = > E[a?] = 20 is the average received signal power.

If there is a direct path present between the transmittertia@deceiver, the signal
envelope is no longer Rayleigh and the statistics of the sgmalitude follow a Rician
distribution. Rician fading is formed by the sum of a Rayleigstributed signal and
a direct or line-of-sight signal. Now, the modulus «qf) is said to follow a Rician
distribution and its PDF is given by (see Fig. 2.3)

where,(e) is the modified Bessel function of zero-th orde = o is the power of
the LOS component angb* = 3 . Ela;,] is the average power of the non-LOS

m

multipath components. The average received power for Rfaiding is obtained as

P = / 22 f(x)dr = p* + 20°.
0
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Thus, the Rician distribution can be alternatively exprdsseterms of theK factor
defined as the ratio of the power in the LOS component to theepoivthe scattered
components, i.e.

_u

202
which leads to the alternative expression for the PDF of tlegaRidistribution,

2(K +1)x (-Kk-Ut0:2 K(K+1
fay = 2D (o) 0 R )

B B
by making the substitutions® = K 5 /(K + 1) and20? = P /(K +1). Sincely(0) = 1,
the Rician distribution reduces to the Rayleigh distributidren ' = 0. On the contrary,
when K — oo we have no fading, i.e. there is no multipath but only a LOS ponent.

2.4 MIMO Systems

Fig. 2.4 shows a communication system employiNg transmit antennas andV,
receive antennas, which is calledviultiple-Input Multiple-OutputMIMO) system. In
MIMO communication systems [27, 28, 31, 32], the multipléadstreams can be sent
simultaneously from a transmitter employing multiple aim&s to a receiver that employs
multiple receive antennas. The goal of a MIMO system is todase the data rate
through spatial multiplexing and improving the error raerfprmance by increasing
signal diversity (this being achieved by increasing the bemof transmit or receive
antennas, given that the probability of a fade at the same itinall the paths is reduced)
to combat fading.

A MIMO system can be seen as a single-user point-to-pointheconication system.
The special case with; = N, = 1 is called aSingle-Input Single-OutpSISO) system.
A second special case is whéih = 1 and NV, > 2 and is called &ingle-Input Multiple-
Output(SIMO) system. Lastly, there exists another special casg & 1 and Ny > 2,
called aMultiple-Input Single-OutpufMISO) system.

In MIMO systems with/V; transmit antennas an, receive antennas, we denote the
equivalent lowpass channel impulse response betwegrthéransmit antenna and tie
th receive antenna ds ;(7, ). Thus, the randomly time-varying channel is characterized
by the N; x Ny matrix H (7, t) defined as

hii(7,t)  hia(r,t) -+ hin(7,1)

ho1(m,t)  hoo(T,t) -+ hon(7,t
o= | ) Pt ()

th,l(Tv t) th,2(7-7 t) T th,Nt<T7 t)
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Figure 2.4: System with Precoding over Flat MIMO Channel.

Suppose that the transmitted signal from théh transmit antenna is;(¢). Then, the
receive signal at thg-th receive antenna is given by

Zhﬂ (7,t) * 2;(t) + n;(¢)

wheren); (t) is the additive noise. In matrix notation, this equation bamrewritten as

y(t) = H(r,t) x2(t) +n(t)

wherex(t) = [z1(t),...,zn0)]" € CM, y(t) = [yi(t),...,yn. ()] € CM, and
n(t) = [m(t),...,nn(t)]T € CN [see Eq. (2.1)]. For flat fading channels (see Subsection
2.1.1), the channel matrik (7, t) is transformed into the matrild(¢) given by

hia(t)  hia(t) -+ hiw(?)
H(1) hz,l:(t) hz,?(t) h2,z\:ft(t)
Pt (t) o) o hld)

and the received signal is now

Zhﬂ £) + n;(t)

which can be expressed in matrix form as

y(t) = H(t)z(t) +n(t). (2.18)

In general, if we letf[n] = f(nTs + A) denote samples of(t) everyT; seconds withA
being the sampling delay arid the symbol time, then sampling(¢) everyTs seconds
yields the discrete time signg[n| = y(nTs+ A) given by

y[n] = Hlgle[n] +n(n) (2.19)
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wheren = 0,1, 2, ... corresponds to samples spaced Wifandq denotes the slot time.
The channel remains unchanged during a blockgfsymbols, i.e, over the data frame.
Note that this discrete time model is equivalent to the camus time model in Eq. (2.18)
only if ISI between samples is avoided, i.e. if tNgquist criterionis satisfied. In that
case, we will be able to reconstruct the original continusigeal from the samples by
means of interpolation. This channel model is knowrtiae-varying flat block fading
channelgSubsection 2.1.1) and this assumption is made in the follgw

2.5 Multiuser-MISO Systems

This work focuses on complex scenarios with multiple usedsraultiple communication
links [27,32]. We can distinguish between several types oftimser communication
systems. One type is the multiple access channel in whichige laumber of users
share a common communication channel to transmit infoonattb a single receiver.
The common channel can represent the uplink in a cellularsatellite communication
system; or a cable to which a number of terminals are conddote@ccess a central
computer. For the example of a mobile cellular system, tieesusre the mobile terminals
in a cell and the receiver side is the base station of theqodati cell.

The second most common type of multiuser communicatioresyss a broadcast
channel in which a single transmitter sends information toltiple receivers (see
Fig. 2.5). Examples of broadcast systems include the conmautio and TV broadcast
systems as well as the downlink of cellular and satellite mamication systems. In this
work, we focus on broadcasting methods for multiuser comoations, in particular
on the downlink of a cellular communication system where selstation with multiple
antennas serves the corresponding cell and sends informi@tia number of mobile
terminals in that area.

We consider aMulti-User Multiple-Input Single-Outpu(MU-MISO) system with
Ny = N transmit antennas anll users equipped with a single antenna (i/é. = 1)
as depicted in Fig. 2.5. As mentioned above, such a systerfteis meferred to as the
broadcastchannel. Note that we work with the discrete model that isvedent to the
continuous one described in the previous section. Chammeluariance is on a different
scale to signal time variance since we considdilack fadingchannel, i.e. one that
is considered to remain unchanged during the transmisgianfame of Ng symbols.
Therefore, we will henceforth usg to indicate the time slot whilex will be used to
denote each one of th¥g time samples spaced with the symbol peridg,inside each
slot.

The precoder generates the transmitted sigmat| from all data symbols
{ui[n], ..., ux[n|} belonging to the different users..., K. The signalz,[n] from



2.6 Channel Model 19

mn]
N (4]
— y1[n]
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Figure 2.5: Vector BC with’ Receivers.

transmit antennd propagates over the channel with the coefficieptn| to the k-th
receiver, superimposes with the signals of the other tréresmennas, and is perturbed
by the additive white Gaussian noiggn| with variances?, i.e.

N
ukln] = Y hwelaleen] + miln] = hi gz [n] + miln] (2.20)
/=1
where hy[q] = [hxalql,- .-, henlg)]t € CV represents the flat block fading vector
channel corresponding to thieth user ande[n] = [z1[n],...,zx[n]]T € CV is the

transmit signal. The transmit signa[n| must satisfy an average total transmit power
constraint, i.eE[||z[n]||3] = Ew. By combining Eq. (2.20) fok =1, ..., K, we get

y[n] = Higlz[n] + nn]
with the K’ x N channel matrixH [¢] given by

Hlg] = [hu[g],. ... hxlq]]" (2.21)
whereh;[q] € CV is the channel vector for usét y[n] = [yi[n], ..., yx[n]]T € CK
is the received vector angl[n] = [ni[n],...,nx[n]]* € CK is the noise vector with

fn("?) = fo(n, Ok, Cn)-

2.6 Channel Model

We model thek-th user's channel vectoh, as a stationary zero-mean circularly
symmetric (i.e. diag(e'?!,...,€%~) has the same distribution s, for all ¢;) and
complex Gaussian random vector with covariance métjy,, i.e.

I, (hi) = fo (hi, On, Chyp) - (2.22)
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We assume that the channels corresponding to the differestsuare statistically
independent.
In the ¢g-th time slot, our model for th&-th user’s channel vector is

hild) = Cphuild] (2.23)

with h, x[q] being a vector of independent stationary circularly symimetomplex
white Gaussian processes (with unit variance) and wheré® represents the Cholesky
decomposition. According to the modified Jakes model [33,&%cribed in [35],
temporal channel correlations are modeledy.[¢], i.e.

Cha i [D] = Elhui[glhll,Ja — D]] = Jo (QWhLIZ’kD) Ty. (2.24)
S
Here, the time scale of channel variations is in slot duratigth D being the number
of delay slots,J, denotes the zero—th order Bessel function of the first kfathax: is
the maximumDoppler frequency [see Eq. (2.12)], anig is the slot rate. The spatial
correlations are introduced by the muItipIication(ﬁ%f.

Notice that, according to our model, the chanhglis stationary becausk,, . is
stationary. Realistic channels are usually non-statigriay either the location of the
receiver or the scenario geometry can change. Thus, th@eheovariance matrix has to
be tracked in real situations. However, since the covaeianatrix changes very slowly
in comparison with the channel itself, it is realistic to @®® that it is constant and
perfectly known at both the receiver and the transmittenvedéeless, the feedback rate
is limited and the feedback of the channel realizationstiergrecoder design must thus
be optimized.

2.6.1 Spatial Channel Correlations

The development of more realistic channel models is of gm#atrest to predict the
performance of a wireless system, in particular to test timitdd feedback designs
proposed in this work.

It is important to stress here that for single-sensor ndveowl receivers we
can consider only the received signal power and/or timgirgramplitude (fading)
distribution of the channel to acceptably approximate thanoel variations. To this
end, we use th&hird Generation Partnership Project’'s Spatial Channel Mb(BGPP-
SCM) [36, 37], which is briefly described in Appendix A. Thukgtcovariance matrix
Chy in Eg. (2.23) results from considering 3GPP-SCM. This spateannel model
defines a stochastic channel model for MIMO systems. Althahg description is for a
downlink system where the Base Station (BS) transmits to abMmbile Stations (MS),
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which reproduces exactly our assumption of a multiuseesysimost of the aspects may
also be applied to the uplink.

The SCM is also calledeometricor ray-based modddecause it is based on stochastic
modeling of scatterers. It defines three environmeguburban macroce(lapproximately
3Km. from BS to MS);urban macrocell(approximately3 Km. from BS to MS); and
urban microcellless than Km. from BS to MS). We refer to these environmentS&M
1, SCM 2 andSCM 3 respectively. These channels will be used in all the sitiaria
shown throughout this work. The main spatial parameteegedlto each scenario (e.qg.
delay spread, angles of departure and arrival, averagerp@ane defined in the 3GPP
standard, and are shown in Table A.3 for SCMTable A.4 for SCM2, Table A.5 for
SCM3 and Table A.2 for all of them.

The procedure to generate the channel covariance matocesaEh user according
to the SCM is as follows. First, we specify the environmerd, iwe have to choose
between suburban macro, urban macro, or urban microcellasos. After that, we
obtain the corresponding parameters according to Tab2sAa3, A.4, and A.5. Finally,
the channel coefficientsscm [¢] are generated based on the parameters and, as a result,
the spatial correlations for each user given by its covaganatrixC}, ,, are obtained as
Ch.. = Elhscmr[alhscw,lal] [cf. Appendix A].

2.6.2 Temporal Channel Correlations

Additionally to the spatial correlations modeled by SCM, tannel also has temporal
correlations modeled as described in [35]. This model iethas the sum of sinusoids of
the Jakes model [33], which leads to the classical U-shapgbdédoppler power spectrum
(see Fig. 2.1) corresponding to spherically distributedtecing around the terminals. The
detailed simulation model is described as follows [35].

Let h;[q] be the complex channel realization for ugdn the time sloty, whosei—th
component is given by [see Eq. (2.20)]

hi,ilq] = % (hrirla] + ] heinla]) -

Both real and imaginary parts are generated as

2 S

hiirlg) = —= cos(1),) - cos(2mivcos(ay) + ¢s)
kiR \/E;
S

hiald] = % S sin(y,) - cos(2rivcos(a,) + 6.)

1

S
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Figure 2.6: Obtaining CSIT using Reciprocity.

with

_2ms—T+ ¢
B 48
where ¢, ¢, and, are independent and uniformly distributed overr, 7] for all s.
For the numerical simulations, the number of interferinthpas fixed atS = 20 [36].
Because of the central limit theorem wh&n— oo and the independence of all and
¢s, the real and imaginary channel parts are normally digedhuwhich ensures that
modulus ofh ;[q] approximately follows a Rayleigh distribution (cf. Subsent2.3.2)
for all velocitiesv, even forv = 0.

Qg forsel,.... S

2.7 Channel Estimation in FDD and TDD Systems

It is clear that the transmitter can only acquire the CSI mtly, since the signal goes
into the channel only after leaving the transmitter [32]efidfore, the CSI can be obtained
either by using theeciprocity principleor by usingfeedbackrom the receiver.

The reciprocity of the wireless channel implies that thencteh from antennal to
antennaB can be estimated during the transmission in the opposiéetthn (B to A)
since it is identical to the transpose of the channel fidrto A (e.g. [17,18]) as shown
in Fig. 2.6. Pilot symbols are often used for channel esionatThe reciprocity holds
if both forward and reverse links are located at the sameu&egy, the same time, and
the same antenna locations. In practical systems, howteeifprward and reverse links
cannot use identical frequency, time, and spatial locatitmspite of that, the reciprocity
principle can still hold approximately in some situatiorir example, in the temporal
dimension, the reciprocity principle is held if any time ldg between the forward and
reverse transmission is much smaller than the channel enbertimel,.. Similarly, in
the frequency dimension, any frequency offdgtmust be much smaller than the channel
coherence bandwidtB., and in the spatial dimension the antenna location difiegeron
the two links must be much smaller than the channel coherdistanceD,. [28].

Since most communication systems are bi-directional, thénki and downlink
channels must be separated into orthogonal signaling dilmes. This separation is
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Figure 2.7: Obtaining CSIT using Feedback.

calledduplexing

Practical channel acquisition based on reciprocity maydpéieable in TDD-TDMA
(Time-Division Duplex-Time-Division Multiple Accésystems [27, 32,38, 39]. TDMA
consists of dividing the frame duratidhj into 7" non-overlapping subintervals, each of
duration7;/T'. Each user who wants to transmit has to use a particular teutséh within
each frame. In TDD systems, orthogonal time slots are asdigmeach user to transmit
to the base station and to receive from the base station. Wb TDMA systems have
identical forward and reverse frequency bands and antethere is a time lag between
the forward and reverse links. As mentioned above, such lage must be negligible
compared to the channel coherence time. Even in this casiyaeity is difficult to
accomplish due to the need for very good calibration (e 4j])[2

In Frequency-Division Multiple Acces§FDMA) systems (commonly used to
accommodate multiple users for voice and data), the avaitdtannel bandwidth is split
into a number of’ frequency non-overlapping subchannels. Each subchanassigned
to a user on demand. Witfrequency-Division DupletDD), separate frequency bands
are assigned to each user for transmitting to or receivimg the base station. Therefore,
FDD-FDMA systems often have identical temporal and spati@nnel dimensions,
but the frequency offset between the forward and reverse li; usually much larger
than the channel coherence bandwidth. Therefore, recdipriscusually not applicable
in FDD systems. Instead, a feedback channel should be usednid theChannel
State InformationCSI) from the transmitter to the receiver, as illustratedrig. 2.7.
The channel response is estimated at the recéiveuring the forward link 4 to B)
transmission, and the information is sent to the transmitten the reverse-link.

The same is true in a multiuser system. The transmitter iblent obtain the
CSI during reception in FDD systems because the channelsadreeciprocal. This
information must be sent from the users to the transmittemlegns of a feedback or
reverse channel, as plotted in Fig. 2.8 for a multiuser MI$€desn. Such reverse channels
are actually implemented in most of the standards [40—42hik case, calibration errors
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Figure 2.8: Multi-user MISO System with CSI Feedback and &ule over Flat MISO
Channels.

are estimated as part of the CSI and no special problems aoisedalibration as for
TDD. However, the time lagD, between the channel measurement at the receivers and
its use at the transmitter is a source of error (which will eied in this work by means

of the feedback delay error) unless it is much smaller tharcttannel coherence time.

Moreover, the data rate of the feedback channel is highlitdisn One drawback of
feedback is the possible overhead of the reverse chann¢handcreasing consumption
of transmit resources. Therefore, methods of reducingd@eldoverhead in a simple way,
such as quantization or truncation of the feedback infoienatare crucial for practical
implementations. As a consequence of the quantizationsystgm with limited rate CSI
feedback suffers from erroneous CSI at the transmitter. ,Tthesquantization operation
has to be carefully designed, as done in this work.

Feedback can also be used to send channel statistics timgiechery slowly compared
to the channel itself. In [17, 43, 44], the estimation of thatistics of the channel is
discussed. As the time horizon for estimating the staissiwery large, we assume error-
free knowledge of the statistics of the channel. Additibhate assume that the channel
statistics are constant and known at both the transmitreceiver side. Nevertheless,
the time lag requirement for feeding back the channel sizgis not as strong as for the
feedback of the channel coefficients.
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2.8 Conclusions

The goal of this chapter is the description of the radio pgapian environment that

exists in wireless communication systems. The main chanatts of a radio channel
have been examined: mean path loss, macroscopic and napiodading, and signal

spreading multipath effects. This analysis provides a sehmodel valid in general

wireless environments. The 3GGP Spatial Channel Model id tesdescribe its spatial

characteristics and time variations are modeled accorttinifpe Jakes model, so the
resulting channel can be expressed as a linear and timaavagistem.
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Chapter 3

Multiuser MISO Transmit and SIMO
Receive Processing with Perfect CSI

The main task when transmitting over channels with multggigennas at the transmitter
and/or the receiver side is the separation or equalizafitmedransmitted data. Theint
optimizationof transmit and receive filters was first proposed by [45] iB2@nd was
widely studied in the past [46,47]. However, this approaeérb little relation to the goal
of this work, since we focus on simplifying one side of theklin order to avoid filter
operations at both the transmitter and the receiver sidecafishe seen in [48], receive
and transmit processing are outperformed by the respgotivity optimized approaches,
since both receive and transmit approaches are suboptirolunioss obtained from the
additional restriction that one filter is scalar. This scalegree of freedom can be used
to fulfill the transmit energy constraint and allows for @dsform solution, as has been
demonstrated in [48]. Although many authors have dealt tkathsmit filters without this
transmit energy constraint, such a constraint is nece$sayoid the dependence of the
resulting transmit energy on the channel realization. Be,ttansmit energy constraint
might be above the maximum value for bad channel realizataomd thus the respective
precoder solution is not valid. The transmitter may also uee the whole available
transmit energy, and therefore the final quality is not adga® possible, since it could
be improved by using more transmit energy. For receive [@og, this constraint is
also introduced to ensure the maximum transmit energy. iB1dase, we can make
comparisons between the dual transmit and receive procegsoblems. Therefore,
by restricting the transmit filter to being scalar we obtdie pptimization for receive
processing and by restricting the receive filter to beindpsthe optimization for transmit
processing is derived. These restrictions lead to usehgrses for the uplink or the
downlink of wireless communications systems, respegtivel

The goal ofreceive processinig to eliminate the distortion introduced by the channel
at the receiver. The complexity of receive processing iatled at the base station for the

27
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uplink of wireless communications systems. For the dovknlimowever, this complexity
is located at the users. It is known that the capacity in sigter MISO channels
increases logarithmically with the number of antennas. Ultiruser MISO systems as
the considered downlink, capacity grows linearly with themier of users as long as
the number of antennas is higher than the number of users.e¥oywa single—antenna
receiver is unable to separate the transmitted signalsodhe tack of degrees of freedom,
and also faces the problem that the requirements for thedes#res become higher and
infeasible. In other words, when we have non-cooperativeivers, as in the downlink of
cellular communications systems, the users cannot cogayatransform the received
signals. Therefore, transmit filters are necessary to agpargnals from different users
before transmission through the fading channel. For aldheeasons, neither joint
optimization of transmit and receive filters nor receive rapgphes are applicable or
recommendable for the downlink of multiuser MISO systemisic is the focus of this
work. Thus, in many practical situations, the distortiotraduced by the channel has
to be compensated in advance at the transmitter insteadtlo¢ aeceiver as in classical
single—user communication$ransmit processingalso termegrecoding is a powerful
technique to reduce the tasks traditionally performedeatéaeiver side.

The objective of this chapter is to review most of the scheamesmonly employed
for transmit and receive processing. We summarize prewiauk as a starting point for
the new contributions shown later in this thesis. We assimaethe exact instantaneous
channel information is known at both the transmitter andréeeiver side. Therefore,
channel estimation is not implemented at the receiver,sivhtithe transmitter there is no
need to consider the existence of a feedback channel tanadb&iCSI from the different
users. Although obtaining the instantaneous CSI for req@igeessing is relatively easy
via estimation by transmitting known pilot symbols togetivth the unknown data, for
transmit processing the major difficulty is the availalildf instantaneous CSI at the
transmitter, and the focus of this work is to determine optifieedback information
to be sent from the users to the transmitter [25]. Chapter Xatusively dedicated
to transmit processing approaches that are robust agamsteeus CSI. The design of
limited feedback multiuser systems is not a trivial probi@na multiuser MISO system,
since the different users work in a decentralized way. Thilsb& studied in Chapters 6
and 7.

In this chapter, we cover both linear and nonlinear systemsrder to compare
different schemes. We always include a constraint for ti& toansmit energy, since
only such a formulation ensures valid solutions. We stathwan analysis of different
schemes for linear transmit and receive processing overMIS© and MU-SIMO
channels, respectively. For the receive filters, we idgnhfee filter types:Matched
Filter (MF) [49-53], Zero-Forcing Filter(ZF) [52, 54], andWiener Filter(WF) [55-57].
These three fundamental filter types were also found foristréinprocessingMatched
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Figure 3.1: System with Linear Transmit and Receive Filters.

Filter (MF) [20, 58-60], Zero-Forcing Filter (ZF) [20, 48, 60, 61], andViener Filter
(WF) [19, 48, 60,62, 63]. Regarding nonlinear filters, we nexus our attention on the
traditionalDecision Feedback Equaliz€éDFE) originally proposed by Austin [64], which
is based on feeding back decisions in order to eliminateriteeference of the previously
detected symbols. DFE is a suboptimal approactMeximum-Likelihood Detection
(MLD), since the search over the possible data inherent t@Ni_restricted so as to be
successively computed. On the other hand, a search similaat performed by MLD is
done byector PrecodingVP) at the transmitter [65]. The non—linearity of VP is eleab
by modulo operators introduced at the receivers. Againjwdoenputed successively, the
VP search gives us the suboptimal approach terif@dlinson-Harashima Precoding
(THP) [66, 67]. There also exists a close connection betviziele and THP, since the
filters obtained for DFE are very similar to that of THP. Thevaaatage of THP is that
it avoids the error propagation due to the feedback of wraasibns inherent to DFE,
since for THP the fed—back signal depends exclusively odl&te signal which is known
to the transmitter. We focus on the standard approaches & Mi&imization with or
without a Zero-Forcing (ZF) constraint together with a constraint of the total ager
transmit energy, given that these optimizations are basedeorespective linear transmit
processing optimizations.

3.1 MU-MISO Linear Transmit and MU-SIMO Linear
Receive Processing

Fig. 3.1 shows the block diagram of a joint linear optimiaatscheme where the data
signalu[n] € C# is passed through the transmit fillre C"*? to obtain the transmitted
signalz([n] = Fuln] € CV. After propagation over the channBl € C¥*" and the
addition of the Gaussian noisgn] € CX, the resulting signal is transformed by the
receive filterG € CP*¥ to obtain the received signaln| [20]:

a[n] = GHFuln] + Gn[n] € C5. (3.1)

Note thatQ(e) in Fig. 3.1 represents the quantizer operator that mapseteeh of the
transmitted symbols and deliveisn)|.
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Our objective is the joint optimization of the transmit areteive filter FF and G,
respectively. The most widely used criteria for selectihngndG are the following:

 Joint Wiener optimizatianbased on the MSE minimization with only a transmit
energy constraint, i.e.

{Fuwr. Gwe} = a{rgmi}nE[HU[n} —afn)l3] stiE(lz[]))] < Ex.  (32)
F.G
* Joint ZF optimizationbased on the MSE minimization together with a zero-forcing
and a transmit energy constraint, i.e.
{Fze, Gz} = argmin E [[|luln] — a[n]|3]
{F.G}
St:GHF =1and E[||z[n]|5] < Fu (3.3)
Note thatG H F' = I can only be fulfilled if B < min(K, N).

» Eigenprecoderbased on th&ignal-to-Noise Rati§SNR) maximization, i.e.

= argmax |E [u"[n]a[n]] ‘2
Ueioe. Ge ) = g P RG]

s.t.: E[Hm[n]Hg] < Ey. (3.4)
As mentioned above, the restriction of either the transnth@receive filter in Fig. 3.1
to being scalar leads to receive or transmit processingentisely.

3.1.1 MU-SIMO Linear Receive Processing

As a result of restricting the transmit filter to being a weeghidentity matrix, i.e.

F = pI, the scheme depicted in Fig. 3.2 is obtained. As every soéldre data signal

is simply weighted with the scalarand then applied to a transmit antenna, we conclude
that B = N for receive processing. The joint receive fil@rimplies that the receivers
have to cooperate (which is calledntralized receivejgo recover the transmitted signal.
Such a setup can be found in the uplink of a cellular systemexample. However, as
discussed before, for the downlink of a multiuser wirelgggesm this assumption is not
valid, and thus the channel equalization is performed atrresmitter instead of at the
receiver side (see Subsection 3.1.2).

With the scalar transmit filter of Fig. 3.2, the channel isamed only at the receiver
side by means of the filt&&# ¢ CV** [49,50,52,60]. The estimated symbols are obtained
as

a[n] = pGHuln] + Gnln] € CV. (3.5)
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Figure 3.2: MU-SIMO System with Linear Receive Filter.

In the MU-SIMO setup, the channel matrix can be written as
H = |hy,..., hy]

whereh; € CX is the vector channel of theth user to the centralized receiver.

With the constraintF" = pI for the transmit filter, the optimizations for receive
processing evolving from Egs. (3.2), (3.3), and (3.4) arangxed in the following
sections.

MU-SIMO Receive Wiener Filter (RXWF)

The receive filteiG ¢ CV*¥ and the transmit weight € C are obtained by means of the
following MSE minimization under a transmit energy constr§20, 49, 55, 60], i.e.
{pwr, Gwr} = aﬁgm}%n El|Juln] — a[n]|Z] s.t:|p*tr(Cu) < Ex. (3.6)
»,G
Taking into account tha[||z|3] = E[tr(z2z")] = tr(E[z2"]), wherez is a column
vector, we construct the Lagrangian function in this way:

L(p,G,\) = tr (Cy) — tr (pC, H'"G") — tr (pGHC,,) + tr (|p| GHC , H"G")
+tr (GC,GM) + A (|pf* tr (Cu) — Ex)

with the Lagrangian multipliesn € R%*. The covariance matrices of the zero—-mean
transmit symbols and the zero—mean channel noise are givéh, b= E[u[n|u'[n]] and
C,, = E[n[n]n"[n]], respectively.

Considering thatr(A) = tr(AT) (see Appendix B.2), we equate the derivatives with
respect tg andG to zero (cf. Appendix C), which leads to the following KKT (Kesh-
Kuhn-Tucker) optimality conditions [68—71]:

L
. a](o.> = —tr (GHC,) +p" tr (GHC,H"G") + \p* tr (Cy,) = 0

p*tr (Cu) < By
A(lp]*tr (Cw) — Ex) =0 with X > 0.
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Note that these KKT conditions are only necessary condittorfind a global optimum
solution since the MSE in Eq. (3.6) is not convex, as dematesdrin [48], and is therefore
a nonconvex programming problem (see Appendix C).

From the first equation, we obtain the following expressiartiie receive filteG:

G=p'C H" (p? HC,H" + C,)) .

By plugging this result into the second KKT condition, it issgao demonstrate that
A > 0, and therefore the energy transmit constraint is maintaine ensure a unique
solution, we restrich € R*. Thus,p is obtained from the energy transmit constraint and

we have thap = tr(Egu). Then, the solution for the RXWF is as follows

GWF = pWFCuHH (p\%VFHCuHH + Cn)_l

Eix
tr (Ch)’

PWF = (3.7)
Applying the matrix inversion lemma (see Appendix B.1) to #fveve expression for the
receive filterGg, it can be demonstrated that

1

Gwr = pwrC H" <C’,;1 —C.'H (pyl + C,H"C,'H) CuHHC;1>

= pwe (Cu — CLH'C, H (i + C,HYC, ' H) ™' C,) H'C,)!
_ _ -1 —
= PWE (Cul -I—p\QNFHHCan) HHCnl

and therefore Eq. (3.7) is rewritten as follows

Gwr = pwr (C,' + peH''C,'H) " H'C,!
B Ex (3.8)
PWE=A e (Cy)

MU-SIMO Receive Zero-Forcing Filter (RxZF)

Receive zero-forcing processing is based on the MSE mintraizavith an additional
zero-forcing constraint. Again, we have a transmit eneegyriction, so the scalar weight
p € R and the receive filtetlG € C¥*X should minimize the following expression
[20,49,54,60]:

{pzr, Gzr} = argmin E [Hu[n} — u[n] H;]
{r.G}

st:pGH =1 and |p|* tr(Cy,) < Ex. (3.9)
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Applying the zero-forcing constraint to the cost functitime MSE simplifies to the
noise power at the receive filter output [54]:

{pzr, Gzr} = argmin tr (GC,,GH) s.t.pGH =1 and |p]*tr(C,) < Ex
{r.G}

and the Lagrangian function reads as
L(p,G,\) = tr (GC,,G™) + 2R (tr (A (pGH —1))) + A (|p|* tr (Cw) — Ex)

with A € CY*¥ being the Lagrangian multiplier matrix ande R%*. The zero-forcing
constraint is included in the Lagrangian functior2atr(A(pGH — I))) since

2R (tr (A (pGH —1))) = tr (A (pGH — 1)) + tr ((p"H"G" — I) A")
=2tr (R(A)R(PGH —1)) — 2tr (3 (A) S (pGH —1))

i.e. the complex-valued constraint is split into its readl @maginary part and each of the
two real—-valued constraints gets a real-valued Lagranygiahplier.

When we set the derivatives with respecptandG to zero, we obtain the following
KKT conditions that are only necessary to find the solutiomcsithe zero-forcing
constraint is bi-linear in the variablesandG:

OL(e) « AHpgH _

plex =GC,+p'A"H" =0

3[5_(0) =tr(AGH) + A\p™tr (Cy) =0
P

pGH =1

’P‘%T(Cu) < B
A(|p|*tr (Cu) — Ex) =0 with A > 0.

With G obtained from the first KKT condition, and replacing it inbetthird equation,
we obtain that
A=—|p|*(H"C,'H) . (3.10)

From this result forA, we can infer that the receive zero-forcing filter only exitt
HHC’,;lH is invertible. Therefore, a necessary condition for thestexice of the RxZF
Gz isthat K > N. Plugging the above expression fdrinto the first KKT condition
leads to

1 .
Gz = (H'c,'H) 'H"C,". (3.11)

It is easy to see that when both expressionsGband A in Egs. (3.10) and (3.11),
respectively, are substituted into the second condittas,abtained thaf > 0 and thus
the transmit energy constraint is active.
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Restrictingp to being positive real, a unique solution is ensured, andambight p
is directly obtained from the transmit energy constrairfter, we obtain that the RxZF
solution to Eqg. (3.9) is given by

Gz = pi:l(HHCJIH)_IHHCJI
B Jom (3.12)
bzr = tr (Cy)’

It is easy to see that Whetﬁ]%’) — 0, i.e, SNR— oo, the RXWF in Eg. (3.8) converges
to the RxZF in Eq. (3.12).

MU-SIMO Receive Matched Filter (RxMF)

The receive matched filter is also known in the CDMA literat@® therake or
conventional receiver [31]. To obtain the receive matchiéet five use the eigenprecoder
criterion in Eq. (3.4) to derive the optimization for the ed@ matched filter [20, 49, 60],
i.e.

2
{pMF7 GMF} = argmax ’tr<pGch’ H
nc  tr(Cy) tr(GC,G") (3.13)

s.t.:|pl* tr(Cy) < Ey.
We can form the Lagrangian function as follows,
| tr(pGHC,,)?
tr(C,) tr(GC,G"Y)
with A € R%~. We set the derivatives with respectjt@ndG to zero, which yields the
following KKT optimality conditions:

OL(e) tr(pGHC,)p*C, H" |tr(pGHC,)]’GC,

L(p,G,\) =

A (bl tx(Cu) — Ex) (3.14)

0G*  tr(Cy,)tr(GC,GY)  tr(C,) tr*(GC,GY) 0
OL(e)  p*|tr(GHC,)|? . B
I w(Cy) (GO, Gm T (C) =0
pl* tr(Cu) < Exx
A(|p)*tr(Cu) — Ex) =0 with A <0 (3.15)

which are only necessary conditions since we maximize agooicave function.

According to the second KKT condition, < 0, sinceC,, andC,, are positive definite.
Then, the energy transmit constraint is satisfied with etyupdee the last condition in
Eq. (3.15)]. From the first KKT equation, we have

G = 04(Z’uHHC',7_1 with o € C
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and, therefore, the solution is not unique. Weeset \/Ei/ tr(C,,) andp € R*. Thus,
the resulting MF solution is expressed as

Gvr = pMFCuHHC’;l

B Ey (3.16)
PMF = r(Cy)’

Itis easy to see that for low SNR (i.8{52) — o0), the RXWF in Eq. (3.8) converges
to RxMF in Eq. (3.16).

3.1.2 MU-MISO Linear Transmit Processing

As mentioned above, the equalization task can be performétearansmitter, so the
channel is pre-equalized @recodedbefore transmission with the goal of simplifying
the user requirements. Such an operation prior to trangmiss only possible for a
centralized transmitter as in the downlink of a cellularteys for example. In this
subsection, we assume that the receive filter is an idenatyix(multiplied by a scalag,
with g € C) allowing for decentralized receivers. The goal is to finddhgmum transmit
filter F. Therefore, the transmit and receive filter are given by tlagricesF ¢ CV*X
andG = gI € CE*X respectively. In other words, the number of scalar datasts is
B = K. The resulting communications system is shown in Fig. 3.8ah be seen from
the figure how the data symbalgn| are passed through the transmit fil#rto form the
transmit signate[n] = Fu[n] € CV. Note that the constraint for the transmit energy
must be fulfilled, i.e.

E [||z[n]|3] = tr (FC.FY) < Ex..

The received signal is given by
yln] = HFu[n] +nln] € C*

whereH € C5*N andn[n] € C¥ is theAdditive White Gaussian Noi¢8WGN). In the
MU-MISO setup, the channel can be written as

H = [hlv"'7hK]T

where bl € C"V is the channel from the centralized transmitter to thth user.
Therefore, the channéf must be equalized by the transmit filtErprior to transmission.
After multiplying by the receive gain, we get the estimated symbols

a[n] = gH Fuln] + gn[n] € C*. (3.17)
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Figure 3.3: MU-MISO System with Linear Transmit Filter (e&r Precoding).

Similarly to receive processing, the optimizations fornsmit processing are
performed according to the three criteria described in E8<2), (3.3), and (3.4) by
restrictingG = ¢gI as was done in [20, 60].

Clearly, the restriction that all the receivers apply the sawalar weightyy is not
necessary for decentralized receivers. Repla@hgy a diagonal matrix suffices (e.g.
[72]). However, usually no closed form can be obtained ferghecoder il is diagonal.
Fortunately,F' can be found in closed form fa& = ¢gI. Thus, we usé&s = g¢I in the
following.

MU-MISO Transmit Wiener Filter (TXWF)

Although Wiener filtering for precoding has been dealt wigtoinly a few authors [63] in
comparison with other criteria for precoding, it is a veryygoful transmit optimization
that minimizes the MSE with a transmit energy constraint B960, 62], i.e.

{Fwr, gwr} = argmin E [Hu[n] — '&,[n]H;] s.t.: tr(FC,FY) < Ey. (3.18)
{F.g}

We form the following Lagrangian function

L(F,g,)\) =tr(Cy) —tr (¢"C, F"H") — tr (¢HFC,,) + |g|* tr (HFC, F"H")
+ g tr (Cy) + A (tr (FCLFM) — Ey) .

Setting the derivatives with respect o and g to zero, and taking into account that
the MSE in Eg. (3.18) is not convex, we obtain the necessary B#énhditions:

aép(—:) = —g"H"Cy + |y H"HFC, + \FC,, = 0
L) (HEC) 4 gt (HECF Y + g 1(C) =0
g

tr (FC,F") < Ey
A(tr (FC F") — Ey) =0 with A > 0. (3.19)
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The gaing* obtained from the second equation is given by

. tr (HFC,,)

- tr(HFC,FHHY + C,)’ (3.20)

9

Multiplying the first KKT condition byF™ from the right and applying the trace operator,
we get the following:

g tr (H'C F") — |g|*tr (HFC,F"H") = A\ tr (FC,F").
And now, combining this result with the expression §oin Eg. (3.20) yields
tr (HFC,,)
tr (HFC,FYH" + C,)
B tr (HFC,)|?
tr? (HFC,FYH" + C,))
= |g]* tr (Cy) (3.21)

Ar (FC F") = tr (H"'C,F")

tr (HFC, F"H")

sincetr*(HFC,,) = tr(H'C,F™). From the above resulf, = t‘rg(‘;g% > ( if the
trivial solution F' = 0 is not allowed. Therefore, the transmit energy constrardn
equality, i.e.tr(FC,F") = E, and consequentlyy = |g|* ¢ where, for brevity, we have

introduced the notation to be used in the sequel:

tr (Cy)
= —7 3.22
=% (3.22)
If we plug this result for\ into the first KKT condition, we get
1 _
F=-(H"H+¢1) H". (3.23)
g
By considering the transmit energy constraintFC,F") = E, and the above

expression foi, it is obtained that
tr ((H"H +¢1) " H'C,H )
Exx

which leads to a unique solution if we restrgdib being positive real. Then, if we consider
g € R*, the solution for the Wiener filter is given by

lg” =

Fue = gui (H'H +¢1) " H"

\/ tr (H"H + €1) > HYC,, H) (3.24)
IwF = Fo .
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MU-MISO Transmit Zero-Forcing Filter (TxZF)

The transmit zero-forcing filter eliminates global integfiece at the output of the receive
filter, and is based on the following MSE minimization undéraesmit energy constraint
[20,48,60,61],

{Fzr, gz¢} = argminE [[|uln] — a[n]|3]
{F.g}
stigHF =1 and tr(FC,F") < Ey (3.25)
where the MSE including that zero-forcing constraint isegivy
E [|uln] — a5 | gHF =1] = |g]" tr (Cy).
Then, we can construct the Lagrangian function as follows,

L(F,g,\) = g tr (Cy) + 2R (A (¢HF — 1)) + A (tr (FC,F") — Ey)

with A € CE*E and\ € R%*. This function enables us to obtain the following KKT
conditions:

8L(o)_ « r7H 2 H _

S =g¢g'H" A" +\FC, =0

8[5(0) =g"tr (Cy) +tr (AHF) =0
g

gHF =1

tr (FC,F") < Ey
A(tr (FCLF") — Ey) =0 with A > 0.

Again, the above KKT conditions are only necessary to findsihletion to Eq. (3.25)
because the zero-forcing constraint is bilineag snd F'.
By multiplying the first KKT condition byF! from the right and applying the trace
operator, we get
Ar (FC,F") = > tr (Cy)

where we have incorporated the equalityAH F') = —g*tr(C,,) obtained from the
second KKT condition. Thereforg, > 0 if F' # 0 and the transmit energy constraint is
active with an equality.

From the first KKT condition it is obtained that the transmitefi F' is

F= —%HHAHCu‘l. (3.26)
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Multiplying by ¢ H from the left and applying the zero-forcing constraint gigel
A
gl

A" = -~ (HH") ' C,.

PluggingA! into Eq. (3.26) leads to the following transmit filter
F-'H(HHEY)
g

The weightg is derived from substituting the above expression for taagmit filter F°
into the transmit energy constraint, obtaining the follogviesult

w (HHY) ™ C,)
Ex

which leads to a unique solutiongfis restricted to being positive real. Then, the solution
for the TxZF is as follows

9" =

Fpr =g 7H'(HH")™!

¢HQHHHVML) (3.27)
gzFr = Fo .

By applying the matrix inversion lemma to the TXWF solution iq. £3.24), it is
easy to demonstrate that the TXWF converges to the TxZE fer™.C2) — 0, i.e. for
SNR — oc.

MU-MISO Transmit Matched Filter (TXMF)

The TxMF was intuitively introduced by Esmailzadelaktin [58] by moving the channel
matched filtetH™ from the receiver to the transmitter. The transmit matchiégt fialso
known asprerake filter[58,59], maximizes the SNR and is obtained as follows [2Q), 60

= argmax B [w" e ]”2
Ui, g} = arg e alnl 2] E [lgm (]
st E[|znlll] < Ew (3.28)

it being advantageous for systems where the transmit ereripne SNR are low, since it
is based on the maximization of desired signal portion inréoeived signal.
The above objective function can be rewritten as

[E [uln"aln]]|"  |u(@HFC)P
E [lu[n]] } Hlgnlalls]  tr(Cu)tr (191" Cy)
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Note that the above equation does not depeng @&xiso the transmit energy constraint is
independent frong. Therefore, the solution for the transmit matched filterasumique.
The Lagrangian function is expressed as

tr (HFC,)|?
L(F,g,\) =
(F.9.0) = e (C)
which enables us to derive the following KKT conditions bytisg the corresponding
derivatives to zero:

+ A (tr (FCLF") — Ey)

OL(e)  tr(HFC,)
OF*  tr(Cy)tr (Cy)
OL (e)

H"C,+\FC,=0

dg =0
tr (FC,F") < Ey
A(tr (FCuF") — Ex) =0 with A <0. (3.29)

Note that we maximize a non—concave objective function. sThine KKT conditions
are not sufficient to find the solution (see Appendix C). Afterdtiplying the first KKT
condition byF™ from the right and by rejecting the trivial solutidn = 0, the Lagrangian
multiplier \ is given by

tr (HFC,)|?
e (Cy) tr (Cy)
which is smaller than zero, showing that the transmit eneamstraint is active with an
equality, i.e.tr(FC,F") = Ey. We also obtain from the first KKT condition that

F=oH" (3.30)

Ar (FC F") =

with o = —%% € C. Plugging the above result into the transmit energy
constraint yields:
| ‘2 — o Bx
tr (HCo H)

Therefore, the solution for the precodEris not unique unless is restricted to being
positive real, for example. With this restrictiam,is expressed as

o B
tr (HEC H)
and the solution for the TXMF is given by
Etr H
Fve=\\|——+—H
MF tr(HIC,H) (3.31)

gvr € C.
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»
»

Figure 3.4: QPSK Constellation.

Note that the TXWF in Eq. (3.24) converges to the TXMF in Eg313for low SNR

scenarios, i.& = 17 — oo,

3.1.3 Simulation Results

In this section, we show some computer simulations in ordeliustrate theBit Error
Rate(BER) performance of the schemes discussed. The number sfrifeantennas is
equal to the number of users, i.8. = K = 4, and the results are averaged ov&i00
channel realizations. The information bits &eadrature Phase Shift Keyin@PSK)
modulated (Fig. 3.4). The modulation constellation is gias. A = {++/2/2 4+ j+/2/2}.

A frame length of Ng = 50 symbols is considered. We assume thhigf = I and
C, = af]I, Whereag is the noise variance. We set the transmit energ§fo= N.

We use for the simulations tf#&CM 2described in Chapter 2 due to its intermediate BER
performance and diversity.

Figs. 3.5 and 3.6 depict some results obtained from the cosgmabetween the
transmit and receive processing schemes described abdwvere$ults indicate that the
performance of Wiener filters is always better compared tiwheal or zero-forcing filters.
The performance of ZF schemes is worse than the corresppiindesigns for low
SNR, but s better for high SNR, where the matched filters shograpoor performance.
The same conclusions are obtained for receive processing.

It is apparent that the performance achieved with corrélatennels, as plotted in
Fig. 3.6, is worse than for uncorrelated channels, as dapict Fig. 3.5. However,
we can observe basically the same behavior as before fdneatlypes of precoders. A
slight difference can be seen between the transmit andveepeacessing due to the noise
coloring at the receiver in receive processing. As thisedéhce is small, we see that the
application of the same filter type (e.g. RxZF in the uplink 8x&F in the downlink)
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Figure 3.5: Uncoded BER vs. SNR for Linear Receive and TranBitigrs: QPSK
Transmission over Uncorrelated Flat Fading MU-SIMO and MUEO Channels with
Four Transmitting Antenna Elements and Four Users.

uncoded BER

—6— RXMF, SCM 2
—}— RxzF, sCM 2
—H— RxWF, SCM 2
—¥— TXMF, SCM 2
—%— TxZF, SCM 2

| L= TwF, scm 2
T

L I L L ! I
-10 -5 0 5 10 15 20 25 30
SNRin dB

Figure 3.6: Uncoded BER vs. SNR for Linear Receive and Tranbitigrs: QPSK
Transmission over Correlated Flat Fading MU-SIMO and MU-RIShannels$CM 2
with Four Transmitting Antenna Elements and Four Users.
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leads to similar results in the up- as in the downlink. Sore¢he no asymmetry of error
performance.

3.2 MU-SIMO Nonlinear Receive Processing

In this section, we focus on various nonlinear systems wahdamit or receive channel
equalization with the goal of recovering the data at theivece. Nonlinear receive
processing requires cooperation between the receivasshéimg known asentralized
receivers. This is no limitation for the uplink of a wirelessmmunications system, since
the transmitters are located at the base station. Howeweshould recall that signal
processing at the receiver side is quite useful for the Wplout not for the downlink
under study in this work. Moreover, transmit processingpdifies the requirements in
the user devices, which implies an important reduction imgeof cost and complexity.
The interest of studying these nonlinear schemes is toyvrd performances obtained
from both receive and transmit processing ignoring issw@serning their practical
implementation.

It is known thatMaximum Likelihood DetectiofMLD) leads to full diversity and is
the optimum detection scheme in the sense that it minimeegtobability of a symbol
being erroneously detected. The search over all the pesddib inherent to MLD can
be seen as a lattice search and computedghere decoding73—77]. However, its
computational complexity is prohibitive in many cases hseait grows exponentially
and thus nonpolynomically. Contrary to MLD, suboptimum @d&t;n schemes such as
the Decision-Feedback Equaliz€d DFE) have been widely used in recent years. DFE,
however, suffers from the major drawback of error propagaterived from feeding
back erroneous decisions. This effect can be solved by meirig the equalization
similarly to DFE but at the transmitter side instead of theereer side. This idea leads
to Tomlinson-Harashima Precodin@HP), which, again, is a suboptimum approach of
Vector PrecodindVP). Similarly to MLD, VP consists of a lattice search cadiout at
the transmitter instead of the receiver side. There is thdsuble parallelism MLD vs.
VP, and DFE vs. THP and, on the other hand, between MLD vs. DieB/& vs. THP.
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3.2.1 MU-SIMO Maximum Likelihood Detection (MLD)

MLD decides for the signali[n] that maximizes the likelihood of the received signal
y[n] = Huln| + n[n| [78,79], i.e.

Ump [n] = al"[g}mAaf Ty (y[n]; uln])

= argmax f, (y[n] — Huln|)

u[n]eAN

= argmin (y[n] — Hu[n]))" C-' (y[n] — Huln)) (3.32)

n
u[n]eAN

where A denotes the alphabet of the data signal, thats] € AY. Assuming that
the noise is spatially whité, i.e. C, = 0.1, and introducing the QR decomposition
H = QR, whereQ is unitary andR is upper triangular, we can write Eq. (3.32) as

Umio[n] = arg[rr}in lyln] — Huln]|l; = arg[rr}in ly[n] — QRu[n]|;

— argmin || g[n] — Ru[n]||; (3.33)

uln]

whereg[n] = Q"y[n]. Therefore, the minimization for the case of a QAM constila
is a closest point search in a subset of /drdimensional lattice. In spite of being
the optimum detector for equiprobable data, MLD is oftereasiible on account of
its enormous complexity. Sphere decoding73-77] performs this search in a more
sophisticated manner than just doing a full search over tihset of a lattice, but still
requires exponential complexity. In fact, sphere decodinly searches over the lattice
points lying in a certain hypersphere of radiugentered on the received signaln|.
However, sorting out the points outside the sphere leadsea@xponential worst case
complexity.

Due to the upper triangular structure Bf thei—th summand of the Euclidean norm
lgln] — Ruln]|3 = 305, Avis

2

N
)\i = gjz[n] - Tmui[n] — Z T Uj [77,] (334)

j=it+1

wherer; ; corresponds to the element of théh row and;-th column ofR.

When this search is computed successively, i.eu;[n] is found for fixed
uit1nl, ..., uy[n], we meet the idea of th¥ertical Bell Labs Layered Space-Time
architecture (V-BLAST) which was based on this successiterfierence cancellation.

1Such a setup can be achieved by left-multiplyisig] — Hy[n] by C;l/z.
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The decoding algorithm presented in the first works about BLASD, 81] was based
on interference nulling, interference cancellation, andedng. Indeed, this decoding
process is equivalent to the zero-forciecision-Feedback Equalizatio(ZF-DFE)
[82, 83], where the interference nulling is performed by acatied feedforward filter
and the interference cancellation by teedback filter The original BLAST ordering
algorithm was based on an SNR criterion, although diffecedering algorithms have
been proposed since this first proposal. In fact, the DFErmglstudied throughout this
work is based on an MSE criterion.

3.2.2 MU-SIMO Decision-Feedback Receiver (DFE)

The block diagram of a MU-MISO system employing DFE is deggian Fig. 3.7. Given
that we work with flat fading channels, there is no need to déhalthe temporal decision-
feedback equalizer [48], and therefore we henceforth osfigrrto spatial DFE. Again,
note that the scheme depicted in Fig. 3.7 implies cooperdietween the receivers.
For the downlink, i.e. a multiuser MISO system, this coofierabetween the users is
infeasible, and therefore DFE is not a practical choice &pasating the signals from
the different users. This task, however, can be performethbytransmitter where a
centralized base station makes this separation beforentiasion by means g@recoding
(see Section 3.3). Contrary to the downlink, DFE is reallyfuider the uplink since the
base station can easily obtain the filters to be used by thedbiaEegy.

The DF equalizer has been widely used in wireless commuaoiasystems to avoid
the noise amplification problem in linear equalizers. Altbb initially proposed to
equalize SISO communication links with lIR filters, DFE hagb extended to multiuser
MIMO channels, whilst IIR filters have been restricted torgeFIR due to practical
implementations. The DF equalizer uses feedback from pagsidns to cancel the
interference of the symbols that have already been detedtetbnsists of two linear
filters: the feedforward filter, whose input is the receivediience, and the feedback
filter, whose input is the previously detected sequence. féaéforward filter provides
spatial causality and ensures that the error is white. Tleelfack filter, however,
exploits causality for the feedback loop and ISI cancelfeidue to its strictly lower
triangular structure [21, 84]. For achieving optimum periance, the symbols have
to be detected according to a specific ordering. This issseahaenormous influence
on the performance, as we will see from some computer simokat the end of this
section. However, the decision feedback receiver sufiens fthe major drawback of
error propagation, which will be solved when the feedbaaktae feedforward filters are
moved to the transmitter (to end up with THP, see Subsect®2)3

As can be seen in Fig. 3.7, the received signals can be chneigaressed in matrix—
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Figure 3.7: MU-SIMO System with DFE.

vector notation as

y[n] = Huln] + n[n] € C* (3.35)
whereu[n] € AV are the transmitted symbols adddenotes the modulation alphabet.
H € CK*V s the flat fading channel introduced in Subsection 3.1.1gind € C*
is the received noise. We optimize the estimated sigta] in Fig. 3.7, which can be
expressed as

uln] = Fy[n] + (I — B) u[n] (3.36)
with y[n] in Eq. (3.35) andi[n] € A" denoting the quantized symbols.

We introduce the permutation matrix to be used in the sequlws

N
P=> ee {0, 1} (3.37)
n=1
where {ki,..., ky} with k; € {1,..., N\\{ky,...,ki_1} determine the detection
ordering. The-th column of theNV x N identity matrixI is denoted by; € {0,1}V.
Thus, the recovered symbals$n] are permuted by?™ to getu, [n]. Given thatP PT =1,
we have thati[n| = Pu,[n]. Then, Eq. (3.36) can be rewritten as

u[n] = Fy[n| + (I — B) Puy[n|.

MU-SIMO Wiener Decision Feedback Receiver (WF-DFE)

As the quantized symbol&[n] are reordered by to get the detected symbois,[n],
the desired value for the estimate$:| is Pu[n|. Assuming that decisions made prior
to every detection are correct (i.€,[n] = wu[n]), we have the error vector defined as
follows [48, 85],

€,[n] = Pu[n] — u[n| = Puln| — Fy[n| — (I — B) Pu[n| = BPu[n| — Fy[n|.

The WF-DFE feedforward and feedback filters are found by miimg the MSE and
restricting the feedback filteB to being lower triangular, i.e.

{PYEE, FREE, BOEFL = E [||Puln] — a[n]|3]  s.t.: B is unit lower triangular (3.38)
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where the MSEQE(P, B, F) = E|||a[n] — a[n]||}] is calculated as

ewr (P, B, F) =E[|Puln] — a[n]|;] = E[| BPu[n] — FHuln] — Fn[n|;]
= tr (BPC,P"'B") — tr(BPC,H"F") — tr (FHC,P"B")
+tr (FHC,H"F") + tr (FC,F"). (3.39)

This allows us to construct the Lagrangian function

L(P,F,B,p,..., )= tr (BPC,P'B") —tr(BPC,H"F")
—tr (FHC,P"B") + tr (FHC,H"F") + tr (FC,F")

N
+ 2R <tr (Z (el BST —el'S)) u)) (3.40)

i=1

where the equalite] BST = efST, fori = 1,..., N, must hold because of the
unit lower triangular structure aB 2. To mathematically formulate this restriction, we
included the selection matri&; defined as

Si = [On—it1xi—1,In—it1] € {0, 1}N_i+1XN (3.41)

which cuts out the lasV —i+ 1 rows of a matrix withV rows, when applied from the left.
The Lagrangian multiplier;, i = 1, ..., N, is a column vector of dimensiaN — i + 1.
Note that we need¥R(e) in Eq. (3.40) to assure that the structural constraint ifliad
for both the real and the imaginary partBf

By setting its derivatives with respect # and B to zero, we obtain the following
sufficient KKT conditions that lead to a unique global minimwith respect taF' and B
because the MSE in Eq. (3.38) is strictly convex (cf. [48] &mpgpendix C):

aaLF(,:) — _BPC,H" + FHC,H" + FC, = 0
OL (e) T T = H
~—~—— - BPC,P'-FHC,P S =
B C C + ; eipn; S;i =0
e;BS =e!S" Vie{l,...,N}. (3.42)

From the second KKT condition, we obtain

N
B=FHP" - (Z eiu?&-) PC;'P". (3.43)
i=1

2The lefthand side cuts out the last— i + 1 elements of thé—th row of B and the righthand side sets
the first of those elements (tlieth diagonal element aB) to one and the others to zero (triangularity of
B).
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Plugging this expression fdB into the first KKT condition, we get

N
(Z eiy,z-HSZ) PH" + FC, =0
=1
and therefore
N
F=— (Z eiu?Sz) PH"C,". (3.44)
=1

Substituting into Eq. (3.43) we obtain
N
B=— (Z ei,u,ZHSi> P(H"C,'H+C,") P". (3.45)
i=1

Applying the restriction concerned with the unit lower frgaular structure ofB to the
above result leads to

N
elBST = —e! (Z eju;isj) P (H"C,'H+C,')P"S] =¢S].
j=1

Then, withel'e; = 0, for j # i, and1, otherwise u!! reads as
pl' = el ST [s,p(H'C,'H + C,') P"ST] "
This result foru!! gives us the following expressions for the filtdfsand B of Fig. 3.7:
N
F =Y eelS'[sP(H"C,"H +C;") P'S!]"' s;PH"C,’
=1
N
B =Y eelsS![s;P(H"C,'H +C,") P"S!] " s,P (H"C,'H + C,") P".

i=1

(3.46)
In order to simplify calculation, let us define = (H"C,_'H + C,')"". Since this
matrix is Hermitian, there exists a permutation matftxa unit lower triangular matrix

L, and a diagonal matrif?, which satisfy the following relationship [85, 86]

pPosP" = LDLY (3.47)
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which will be termedCholesky factorization with symmetric permutat{86]. Bearing
in mind this factorization, the feedforward filter in Eq.48) reduces to

N
F=Y eels' (s,L"D'L'SI) " s;pH"C,!
=1

N
= el ST (S,LMD'STS,LST) ' s, PHYC,!

=1
N
=> ee/S'S,LS'S,DL"S]S,PH"C,'
i=1
N N
=> e/ DL"S'S,PH"C,' =) e e/ DL"PH"C,"
=1 =1

H H~—
= DLUPH'C,! (3.48)

where in the derivations we have used the following propsrtor the selection matrix
Si:

SN =S;NS!'S;, e/S'SMSS,=e/, and e/NS/S,=e/N
with N being an upper triangular matrix and a unit lower triangular matrix.
Comparing this result with Eq. (3.44) leads to the conclughoat — ZZ-N:l epnllS; =
DL". Hence, the feedback filter reduces to [cf. Eq. (3.45)]
B=DIL "D 'L =L (3.49)

Therefore, the filterdB and F' in Fig. 3.7 corresponding to the WF-DFE solution are
given by

Frff=DL"PH"C!
BDFE _ L—l K (350)
WF — :
Finally, the MSE in Eq. (3.39) reads as
N
e =tr(D) =) d; (3.51)
k=1

where H'"C,'H = P'L™"D'L™'P — C,' was used. Solving Eg. (3.38) would
imply that the N! different factorizations in Eq. (3.47) corresponding tb @dssible
permutations must be computed and that the permutatiormzimg Eq. (3.51) must
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be taken. As in [85], we avoid this very complex procedure exstead implement a
successive computation to choose the optimum order, wherg-th entry is given by

k; = argmin d. (3.52)
k¢{ki,....ki—1}

This optimization implies that the data stream correspamth the minimum MSE entry

of the MSE matrix in Eq. (3.51) is decoded first in order to mmize the effect of error

propagation inherent to DFE. This algorithm was proposg8%and is summarized as
a pseudo code in Table 3.1. The algorithm is a Cholesky faetoin (e.g. [86]) where a
reordering according to Eq. (3.52) is included. Comparedawgipus ordering proposals,
as shown in [11], its complexity order is less than the coxipteaelated to the ordering

based on BLAST described in [81] without any penalizationhwispect to the BER
performance.

¢ — (H'C,'H+C,")™"

P«—1Iy,D <« Oyxn
fori=1,...,N
q «— argmin ®(¢,q)
qg'=1,...,.N
P, — Iy whosei-th andg-th rows are exchanged
P— PP
¢ — P,dPT
D(i,i) — ®(i, 1)
PD(i: N,i) — DP(i: N,i)/D(i,1)
S(i+1:Ni+1:N)—d(i+1:N,i+1:N)
~®(i+1:N,i)®@i+1:N,i)"D(i,q)
L — lower triangular part ofp
B~ LY F—DL"PH"C,!

Table 3.1: Calculation of WF-DFE Filters with Ordering.

MU-SIMO Zero-Forcing Decision Feedback Receiver (ZF-DFE)

Under the ZF constrailBP = F'H , i.e. the feedback filtet — B removes the residual
interference at the output of the feedforward fili#®r the MSE of Eq. (3.39) reduces
to [48, 85]

et (F) =tr (FC,F"). (3.53)
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Therefore, the optimization problem can be expressed as
{PZDFFE, F2E BYFl = argmin tr (FC’nFH)
{P,F,B}
s.t.. BP = F H with B unit lower triangular (3.54)

This enables us to construct the following Lagrangian fiomGt

N
L(P,F,B\p,...,px)=tr (FC,F") + 2R (tr (Z (e; BS —e!S!) u))

i=1

+ 2R (tr (A (BP — FH))) (3.55)

where A € CV*V is the Lagrangian matrix. The selection mat$ is given by
Eqg. (3.41).

Setting the derivatives of Eq. (3.55) to zero, we get theofwihg sufficient KKT
conditions since the constraint in Eq. (3.54) is linear:

L
a@ F(‘.) ~ FC, - A"H" =0
OL () i H HpT
- = eip; Si+ AP =0
0B —
e!BS' =¢e'S'
P'BY=H'F". (3.56)

From the second KKT condition, we obtain that

N
=1

and after plugging it into the first KKT condition in Eg. (3)56he feedforward filted’
is expressed as

N
F=A"H"C,' = - (Z eiu?5i> PH"C,".
i=1

From the ZF constraint, we hau8 = FH P™. Multiplying from the left bye! and
from the right byS’", and then applying the constraint to ensure the unit loviengular
structure of the feedback matri2, we obtain that

N
elBST = el FHP"S] = —e! (Z ejp,;{sj> PH"C,'HP"S! = e S
j=1
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and then
pl' = —e'ST (S, PH"C,'HP"ST)"" i=1,...,N

sinceele; = 0, for j # i, and1 otherwise. Then, the feedforward and feedback filters
are expressed as

K
F =Y eelS! (S;,PH"C,'HP"S])" S,;PH"C,’
=1

K
B=Y eels (s;,pH"C,'"HP"S")"' s;PH"C,'HP" (3.57)
=1
respectively.
We now define a matrid = (H"C,'H)~'. Since® is Hermitian and positive

definite, there exists a unit lower triangular matfixand a diagonal matriD such that
the following decomposition is satisfied [85, 86]

PoP' = LDILY (3.58)

with the permutation matrixP introduced in Eq. (3.37). Taking into account the
properties satisfied by the selection matsixin Eq. (3.41), it is easy to get the ZF-DFE
solution similarly to Egs. (3.48) and (3.49), which resiuits

FZDFFE _ DLHPHHC,,;l

3.59
BxE=L". (3:59)

With the above expressions for the precoding filters, the MSE]. (3.53) reads as
et =tr(D)=> d; (3.60)

i.e. the same result based on Eq. (3.58) as for WF-DFE based.of327) is obtained.
The proposal for ordering is similar to the Wiener approdult, the starting matrix in
Table 3.1 is nowp = (H"C,'H)" instead o = (H"C,'H + C;')".

3.2.3 Simulation Results

Again, we show some results obtained via computer simulatior N = 4 transmitting
antenna elements and = 4 receiving users. We avera@ge00 channel realizations
and Ng = 50 symbols are considered per channel realization. Thesedgrate QPSK
modulated.
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Figure 3.8: Uncoded BER vs. SNR for Receive Filters: QPSK Trasson over

Correlated Flat Fading MU-SIMO ChannelSQM 2 with Four Transmitting Antenna
Elements and Four Users.
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Fig. 3.8 depicts a comparison between different types daivecfilters: MLD, ZF-
DFE and WF-DFE, and the RxZF and RxXWF schemes described in S&fidh It
can be seen that MLD is the optimum receive processing, @fnats computational
complexity is too high for many practical systems. It is a@ws that the Wiener filters are
always superior to the respective zero-forcing filters. Ewesv, the WF-DFE approach
shows a slight loss in performance for low SNR compared tditlear Wiener receive
processing, due to the effect of error propagation.

Fig. 3.9 shows the uncoded BER performance for DFE with anbowit ordering.
Obviously, an optimized ordering improves the final ressilibstantially, as can be seen
when comparing the curves marked with circles to the curvaked with squares, even
for the case of correlated channels, where for a BEROof a gain of abouf.5dB is
obtained.

3.3 MU-MISO Nonlinear Transmit Processing

Research on transmit processing has received a great deafeoést in recent years
due to the lack of degrees of freedom in the downlink and thtditions of power
and complexity in the receivers of wireless communicatisgstems. In multiuser
MISO systems cooperation is not often to be found betweemebeivers, and transmit
processing is mandatory if we wish to implement efficienefiig methods that remove
interference. This filtering process prior to transmisgwnreferred to aprecoding In
this section we focus on nonlinear precoding due to its sopperformance compared to
that of the linear precoders explained in Section 3.1.2.

Assuming the CSI is available at the transmitter, a lattiG@de similar to that of
MLD can be performed at the transmitter, resulting in thepdeng scheme calledector
Precoding(VP). A perturbation vector is directly added to the datanalgand this signal
is then precoded by linear filtering [23]. In fadomlinson-Harashima Precodin@HP)
is a constrained type of vector precoding where the elendrtse perturbation vector
are successively computed. THP is based on a feedforwarch daddback filter, as
in DFE, but with both located at the transmitter side insteathe receiver side. The
error propagation of DFE is avoided by moving the filters te transmitter, since the
transmitter knows the signal to be fed back. Ordering graseimprove the achieved
THP performance so we will apply successive algorithms to fire optimum ordering,
in a similar manner for the algorithms shown for DFE.
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Figure 3.10: MU-MISO System with Vector Precoding.

3.3.1 MU-MISO Vector precoding (VP)

Fig. 3.10 shows the block diagram of a MU-MISO system withteeprecoding. The
transmitter has the freedom to add an arbitrary perturbaignala|n] € 72X + j 2%

to the data signal prior to linear transformation with théefilFF ¢ CY*¥, since the
receivers apply the modulo operafdi(e). Here,r denotes a constant that depends on
the modulation alphabet, so we set= 2v/2 for QPSK modulation (see Fig. 3.11) and
7 = 8/4/10 for 16QAM modulation [83]. This constant is associated wvifia modulo
operatoM(e). This nonlinear operation is defined as

we oo (|29 222 e e

where| e | denotes the floor operator which gives the largest integaflenthan or equal
to the argument. The corresponding fundamental Voronaoreig

o T T T o~ T
V—{mEC| —§§§R($)<§,—§§\S(:E)<§}
which means that the modulo operator constrains the reainaaginary part ofr to the
interval [—7/2, 7/2] by adding integer multiples of andj r to the real and imaginary
part, respectively. For example, for= 3.4 — 1.5j andt = 2, when the modulo operator
is applied we geM(z) = —0.6 + 0.5j. Note that if we apply the modulo operator to a
multidimensional vecto = [z, ..., zx]", it is satisfied that

M(z) = [M(z1),..., M(zg)]" € VE

whereM(z;),i =1,..., K is defined as in Eq. (3.61).

As can be seen from Fig. 3.10, the data veetpt] € CX is first superimposed with
the perturbation vectat[n], and the resulting vector is then processed by the linear filt
F to form the transmit vector

xz[n] = Fdn) € CY, n=1,...,Ng

whered|[n| is the desired signal given hy{n| + a[n] andn is the symbol index in a block
size of Ng data symbols.
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Figure 3.11: Modulo Operator. (a) QPSK, (b) 16QAM.

Similar to linear precoding filters, we impose a transmit powonstraint. Since the
statistics of the transmit symbols are unknown, we average the block instead of
taking the expected value, i.e.

1 &
2
FBZ [z[n]]l; < Ei.
n=1

After passing through the channel and by superimposing &GN noise, the
received signal is given by
y[n] = HFd[n| + n[n).

The weightg in Fig. 3.10 is assumed to be constant throughout the bloé%afymbols.
Note that we use a common weight for all the users. Thus, thghtexl estimated signal
is given by

d|n] = gHFd|[n]| + gnn|. (3.62)
The modulo operator at the receiver is used to compensateftbet of adding the

perturbationa[n] at the transmitter.
The MSE can be expressed as [22, 23]

2
2

Vi (aln], @[ g) = NiiE Mdm ~ dn

u[n]}

_ NLB S E[|ldln] - gHaln] — gnln]|? [uln]] . (3.63)
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Note that the expectation is conditioned on the full knowkedf the symbolai[n| by
the transmitter. But since the statisticsadf,| are unknown, we average the symbol MSE
over the whole block.

Sincealn]| is discrete, we cannot derive with respectitol he optimization procedure
is as follows. We start by fixing, after whicha andg are optimized taking into account
the transmit power constraint. For these optimuigindg we choose the beataccording
to the MSE criterion. Although we optimize the continuous @iscrete part separately,
this procedure leads to the optimum minimization of Eq. 33[@3].

MU-MISO Wiener Spatial Vector Precoding (WF-VP)

We have to find the joint optimum of all the perturbation vesta[n|, all the transmit

vectorsz[n|, and the gain factorgforn = 1,..., Ng:
Ng
VP VP VP : VP L 2
{aVizn], 2\ [n], gur + = aremin < (a[n],z[n],g) st o > llzfn]|3 < By
aln|,z|n|,g n—1

(3.64)
The MSEe\iz(a[n], z[n], g) is given by Eq. (3.63) [22, 23] and can be rewritten as

ewr (aln], z[n], g) = NLB Z (d"[n]d[n] — g* =" [n] H"d[n] — gd" [n] Hzxz[n]
+ ]9]2 azH[n]HHH:B[n] + |g|2 tr (Cn)) (3.65)
where we us&|||d[n]||; |u[n]] = ||d[n]||> andE[||x[n]|| |u[n]] = ||z[n]|3, since the data

signalu[n], the perturbation signai[n] and consequently, the transmitted signal] are
known to the transmitter.

The Lagrangian function can be expressed as

L (aln], 2[n], g, \) = el (aln], z[n]. g) + A (Ni S " nfaln] - E) (3.66)

where) € R%*. Now, we set its derivative with respect4dn],n = 1,..., Ng andg to
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zero, which leads to the necessary KKT conditions

gif[;)] _ NLB (—g"H"d[n] + |g H"Hz[n]) + Nin[n] —0
a[é;’) _ NLB (—d"[n]Hz[n] + g°c" [n] H" He|n]
g tr (Cy)) = 0
NLB imH[n]a}[n] < B
A <NLB§a;H[n]x[n] — Etx) =0 withA >0 (3.67)

since the optimization problem in Eg. (3.64) is not a convegpamming problem.
Then, the transmit symbols are directly obtained from tle¢ KKT condition and are
given by
1/ AN
x[n] = ; (H H + WI) H"d[n]. (3.68)
First of all, we have to show that> 0, i.e. the power constraint as active. Multiplying

the second KKT condition by, we have

1
o (—gd"[n)Hz[n] + |g|* " [n] HY Hz[n] + |g” tr (Cy)) = 0 (3.69)
B
and multiplying the Hermitian of the first KKT condition ky{n| from the right, we have
1
— (—gdH[n]Hm[n] + g az[n]HHHHm[n]) + i:BH[ Jz[n] = 0. (3.70)
NB NB

With Eq. (3.69) and the transmit energy constraint, the aagian multiplier) is given
by
tr (Cy)
N onty &iin]z[n]
Therefore, it becomes clear that> 0 for the non—trivial case thain : x[n] # 0. Thus,
the transmit energy constraint is active ane- ]g]2 ¢ with § = tr(C,,) / Ex.
Then, we reach the following solution for the WF-VP:

A= gl (3.71)

xuen] = e (HHH+£I) " HYd[n]

No i 0 Epy— (3.72)
S Ve di[n]H (HUH + 1) HUd|n]
gWF_

EthB
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tr(Cn)

where g\ is directly obtained from the transmit energy constraind an= oot

Remember thag is chosen only once in each block.
We define a matrix® = (HHY + ¢I)~'. Applying the matrix inversion
lemma to Eg. (3.72) shows thatyz[n] = Q%HH@d[n] and then, gur =
WF

\/nyjl(dH[n]dSHHHHQSd[n])/(EtXNB). Thus, when we plug these results into the
MSE expression in Eq. (3.65) we obtain that

W alnl.aln.g) = = Y d"lnl@dn) (3.73)

Since @ is positive definite, we can use the Cholesky factorizatiootitain a lower
triangular matrixL and a diagonal matriD with the following relationship [22],

&= (HH" +¢I) ' = L'DL.

Thus, the perturbation signal can be found by the followiearsh [22]

aVeln] =  axgmin (uln] + a[n])"B(uln] + aln])
an|eTZE +jTZK (3 74)
=  argmin ||D1/2L(u[n] +aln))||3 '
aln]|eTZE +jTZK

This search can be solved by means of the Schnorr-Euchneresplecoding [87, 88]
where the use of real-valued notation to represent vectods raatrices has been
considered to run the final computer simulations (see Appedi).

Note that due to the unit lower triangular structurd®f/ L, thei—th summand of the
Euclidean norm| D'/?Lu(n] + D'/?Laln]||? = 32, \; is given by

Jj=1

wherel; ; corresponds to the element of thiéh row andj-th column of L andd, ; is the
i-th entry of the diagonal matri.

When the off-diagonal elements éfare approximately zero, i.é,; = 0, for j # 4,
we have

aln] = argmin ||lu[n] + a[n]||3 (3.76)
aln)erZK +j 77K

which leads toa[n] = 0, i.e. we obtain the linear precoding approach described in
Subsection 3.1.2.
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a[n] I-B

Figure 3.12: Linear Representation of Tomlinson Harashineadtling.

When a,[n|,...,ax[n] are computed successively, i.eq;[n] is found for fixed
ai[nl, ..., a;_1[n], thei—th element of[n] is obtained as
i—1
ai[n] = — Q,zx i,z (Uz[n] + Zli,j (uj[n] + a; [”])) . (3.77)
j=1

This successive computation@fin| enables us to obtain the scheme depicted in Fig. 3.12,
which corresponds to the linear representation of THP. Ating to the definition of the
modulo operator asl(z) = = — (L@ + 17 +] L@ + 1]7), itis straightforward to see
that the quantize®, ;« , .z« () is equivalent to the term@ +1]7+] L@ +1]rand
then we can writé) ;« ;. zx(z) = » — M(x). Therefore, the perturbation signajn|

can easily be included inside the feedback loop (as can beisdég. 3.13) by means

of the modulo operatoM(z). This leads to the well-known suboptimum approach of
Tomlinson-Harashima precoding described in the followsngsection.

The above result foe[r] can be transformed to
awe[n] = argmin  ||DY?Lu[n] + D?Laln]||
a[n)eTZE +jrK

= argmin |[7DY2L\[n] — (—DY?Luln))||?
Aln|ezZK +j 7K

= argmin ||GA[n] — z[n]|[5 (3.78)
An|€ZK +j 7K
whereG = 7D'?L andz[n] = —D'?Lu[n]. This is the called &losest point search

in the lattice generated by the matx[89].

According to the_enstra-Lenstra-Lo&sz(LLL) algorithm [90], this matrixG can be
decomposed into a matrik and a unimodular integer matrik, i.e. the absolute value
of its determinant is equal to one, as follows

G=I1T1"

Note that the inverse dF is also unimodular integer.
Thus,GA[n] = I'T~'A[n] = I'X[n] with integerX'[n] € ZX + jZX. Based on
the above factorization of the generator matdxthe lattice search of Eq. (3.78) can be
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rewritten as follows

Xopn] =T argmin ||[TX[n] — x[n]||; = TAgun].

N[nlezZK +j7K

Since the columns of" are closer to orthogonal than those of the origiGalthis search
can be solved more efficiently than in Eq. (3.78).

In order to findX'qx{n] we employ the Schnorr-Euchner algorithm [87, 88], where a
sphere decoder performs this lattice search. Then, thene}t ] is simply given by

awe[n] = TAopn] € TZ® + 7L

Note that the complexity of the sphere decoder grows expgaignwith the number
of users [89] which implies that the implementation of VP &alr systems may be
guestionable.

MU-MISO Zero-Forcing Spatial Vector Precoding (ZF-VP)

By considering the ZF constraifit{d[n] | d[n]] = gHFd|n), forn = 1,..., Ng, with
[cf. Eq. (3.63)]

~

d[n] = gHFdn] + gn[n]
the MSE in Eq. (3.63) reduces to

£¥E (aln], z[n], g) = |gI* tr (Cy). (3.79)
Thus, the optimization problem is expressed as

{a¥Eln], @¥Elnl, ) — argmin [gf*tr (C)
{a[n], m[]g}

Shi —lea3 Il < Bx and  Eld[n]| d[n]] = d[n].
(3.80)

We can form the Lagrangian function as follows,
L(z[n], p[n], g, \) = e3¢ (a[n], z[n], g) + 2R (tr ( Z n'[n] (9Hx[n d[ﬂ])))

+ A ( Np 2 Z x Etx) (3.81)

wherel € R%" andu[n] € CX,n=1,..., Ng.



62 Chapter3 Multiuser MISO Transmit and SIMO Receive Proogssith Perfect CSI

From the Lagrangian function, we can obtain the followingK&onditions:

Gt = - 0 ]) + Sl =0
OL (e)

99 =g "tr (Cy) +tr <NLB ;u[n]THm[n]> =0

gHx[n| =d[n] Vne{l,...,Ng}

NLBNgBltr (z[n]z"[n]) < By
A (NLB nzsle[n]:n[n] - Etx> =0 withA>0

that are only necessary to find the solution including the-fercing constraint.

It is easy to show that the transmit energy constraint is@ctndeed, multiplying the
first KKT condition byz[n] from the left, summing over = 1, ..., Ng, and taking into
account again the transmit energy constraint, we get

A Sl Zg W H o] = 5> dfnlu

where the last equality is obtained from the ZF constraihirdt KKT condition in
Eqg. (3.81)]. With this result and the second KKT conditiore get

gl tr (Cy)

o af )]

and therefore\ > 0 as long as1g|2 # 0. So, the transmit energy constraint is always
active.

Combining the first KKT condition with the third and with theatrsmit energy
constraint, we can obtain, respectively, the transmit syimmand the receive weights as
follows

mVPn:lTn:lH H—ln
z¢ 1] ng[] gH (HH") d[n]

v [N s diin] (HH™) ™ d[n]

gZF - Etx

(3.82)

whereH' = H"(H H™)~! denotes the pseudo inverseldt Note that for the existence
of the zero—forcing solution, i.eH H" is regular or the zero—forcing condition can be
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S

wlnl P vn] Fx[n] H Ldn n uln
g M(e) [ ]>D) [ 1>D> % 5} d[n] M(e) [n] Q(e) [n]
nlnl

Figure 3.13: MU-MISO System with Tomlinson Harashima Pd#cg.

fulfilled, it is necessary thatv > K. We assume thaj is real and positive to ensure

a unique solution. Note that by applying the matrix invemslemma to Eq. (3.72),

we get thatt HYH + ¢1)'HY = HY(HH" + ¢I)~! and it is easy to see that for

¢ =tr(C,)/Ex — 0 the Wiener VP solution converges to the ZF approach.
Pluggingyg into the MSE in Eq. (3.79) yields

32 (alnl. ). ) = > '] (HLH") ' ol

Due tod[n| = u[n] + a[n], the optimum perturbation vectors are found by the follavin
closest point search in a lattice [23,91]

ayf[n] =  argmin HHH (HHH)f1 (u[n] + a[n])H2 (3.83)

a[n)eTZE +jTZK 2

since( HH")"' = (HH") '"HH"(HH")"' andz"A"Az = || Az|];.

3.3.2 MU-MISO Tomlinson-Harashima Precoding (THP)

Fig. 3.13 shows the block diagram of a MU-MISO system with THi®e basic equation
for the computation of the perturbation signal of THP is E2j77), i.e. it is computed
successively. Based on Eg. (3.77), WF—THP can be obtainedW&rVP and ZF-THP
from ZF-VP. However, the performance of THP is heavily dejggm on the precoding
order. Therefore, the goal of this subsection is to find ther@griate precoding order
based on a THP specific optimization.

At the transmitter, the feedforward filteF' linearly suppresses parts of the
interference, whereas the feedback loop with the strictiyel triangular feedback filter
nonlinearlyl — B subtracts the remaining interference. The feedforwardimtrces
spatial causality (i.e. outputs depend on current and péisées, but not on future entries)
and, additionally, the feedback filter must be strictly lowrgangular to ensure causality
for the feedback loop and ISI cancellation. Since the orflerecoding has an important
effect on the performance [21, 92], the data sigmpl] € C* is reordered by means of
the permutation filte®® = S e;e; € {0,117, wheree; is thei-th column of the
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v «— Pu
fori=1,....K
v(i) «— M(2v(i) — B(i,:)v)

Table 3.2: Computing the Feedback Loop Output from the PexdhiData.

identity matrixI andk; is the index of the-th data stream to be precoded. Remember
that the permutation matri® satisfiesP—! = PT.

The signalPu[n| is passed through the feedback loop to get the outpuit which
can be computed from the pseudo code in Table 3.2. The epfrigs| have statistical
properties which approximately only depend on the modulustantr (see e.g. [83]).
Remember that depends on the modulation alphabet (see Fig. 3.11). Ihiteges the
covariance matrix ob[n| is approximately given by a diagonal matrix

C, = E [v[n]v"'[n]] = diag (o7,,...,0, ) (3.84)

whose entries are given by, = 7°/6,i = 2,..., K ando}, = o, = 1. The modulo
operatoV(e) of the feedback loop limits the amplitude ©fin] [83,93,94] and, thus, the
power of the transmit signai[n|.

The signalv|n| obtained from Table 3.2 is then transformed by the feedfoitier
F ¢ CV*K to get the transmit signat[n] € CV, which must satisfy an average total
transmit power constraint, i.eE[||z[n]||3] = Ey. The estimated signal is expressed in
matrix—vector notation as

d[n] = gHFvn] + gnn] € C¥. (3.85)

Note that we restricy to being common to all the users so that it acts as an automatic
gain control. Then, the modulo operator is applied agaihate&ceiver to invert the effect
of the modulo operator at the transmitter [83, 93, 94]. Thetappropriate interpretation
of the modulo operator is that it gives the transmitter degi& freedom, since the same
output can be generated with different inputs. The THP faekitboop with the modulo
operator at the transmitter is simply a suboptimal meanxploding these degrees of
freedom.

The linear representation of THP [95] is depicted in Fig23.The desired signal is
denoted byl[n| and from this figure it is easy to see that

d[n] = P Bvn]. (3.86)
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MU-MISO Wiener Spatial Tomlinson-Harashima Precoding (WF-THP)

The Wiener THP for flat fading channels results from the miration of the mean square
error and the restriction of a spatially causal feedbaddiiig. The MSE can be expressed
as[11,60,92,96]

~

G (P.B.F.g) = | |di] - i

j _E |:||PTB,U[n] — gHFv[n| — gn[n]m

=tr (P"BC,B"P) — g" tr (P"BC,F"H")
—gtr (HFC,B"P) + |g|* tr (HFC,F"H") + |g|*tr (Cy,) .

(3.87)
With this MSE, the WF-THP optimization can be expressed as
{FWe", Bue ,gwr - Pag } = argmin eye (P, B, F,g)
{F7B7g7P}
s.t.. E [||lz|3] < Ex andB is unit lower triangular
(3.88)
The restriction for the unit lower triangular structureBfcan be written as
SiBei:Sieia 221,,K
whereS; is a selection matrix defined as [cf. Eq. (3.41)]
SZ' - |:Iz>01><(K7z)j| € {O, 1}Z><K (389)

which cuts out the firsi rows of a matrix with X' rows when applied from the left.
Therefore, we have( linear constraints that are defined usiAgLagrangian vectors
w,eCi=1,... K.

Then, the MSE in Eq. (3.87) enables us to construct the Lggrarfiunction as follows

L(P,B,F,g.\p,.... ) =cewp (P,B,F,g)+ \(tr (FC,F") — Ey)

+ 2R <Z tr (uf (S;Be; — Siei))> (3.90)

with A € RO*, pu; € Ci = 1,..., K, and2R(3. 5, tr(u] (S; Be; — S;e;))) comes from
the restriction for the unit lower triangular structure létfeedback matrixB.

The solution of Eqg. (3.87) can be obtained by setting thevdgvies of the Lagrangian
function with respect t@3, F', andg to zero. Then, we have a nonconvex programming
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problem and the following KKT conditions are necessary fog global solution (see
Appendix C):

L
88 P(f) = —g"H"P"BC, + g H"HFC, + \FC, = 0
OL (o) - T, *,T
= BC, — gPHFC, S'piel =0

aB* g + ; 7 l’l'l el

L
0 a(.) = —tr(HFC,B"P) + g*tr (HFC,F"H")

g
+ g tr (Cy) =0
SiBei = Siei
tr (FC,F") < Ey
A(tr (FC F") — Ey) =0 with A > 0. (3.91)

We first demonstrate that the transmit energy constraingir(E£88) is always active, i.e.
A > 0. To this end, the weighj* resulting from the third KKT condition is expressed as

tr (HFC,B"P)
g = . (3.92)
tr (HFC,FUH" + C,)

If we multiply the first KKT condition from the right by and afterwards apply the
trace operator we get

Atr (FC,FY) = g* tv (H"P"B"C,,F") — |g" tr (HFC,F"H") .
Plugging Eq. (3.92) into the above equation, we can easiiyeléhat
Ar (FC,F") = lg|* tr (Cy)

and then\ = |g|’ tr(C,,)/ tr(FC,F") > 0 if we omit the trivial solutionF' = 0.
Therefore, the transmit energy constraint is active ti@F'C, F"') = Ey and\ = [g|* ¢
with ¢ = tr(C,,)/ Ex.

Thus, the resulting feedforward filtdf obtained from the first equality in Eq. (3.91)
is given by

F = é (H'"H +¢1) H'"P'B = éHH (HH" +¢1) ' P'B (3.93)

where we applied the matrix inversion lemma to get the lasakiy (see Appendix B.1).

Remember thag = “152).
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By plugging the above result into the second KKT condition,ol&ain that

OL (o)
0B*

K
= BC, - PHH" (HH" +¢1) ' P"BC, + Y _ STuje!
=1

K
=¢P(HH" +¢1) ' P'BC, + Y S'ujel =o0.

=1
Therefore, the feedback filtd8 is expressed as

i

K
B=-¢'P(HH"+)P"Y S'uielo,? (3.94)
=1

where we included the assumption that the entriesvpf] are uncorrelated [see
Eq. (3.84)].
Multiplying this result byS; from the left and bye, from the right, we have

S;Be; = —¢('S;P (HH" + (1) PSS pio,? = Sie;

where for the last equality the constraint for the unit lowe&ngular structure oB is
applied and we used thaf'o, ?e; = 0, # i, ande/' o, e; = 0,7, otherwise. Then, the
Lagrangian multipliergs’, i = 1, ..., K are given by

= —02,& (S;P (HH" + ¢1) PTST) ' Sie.. (3.95)

We can now substitutg! of Eq. (3.95) into Egs. (3.93) and (3.94) so we have the
following expressions for the feedforward and feedbackrklt

1

K
- H"PTY" ST (S,P (HH" + ¢1) PTST) ' Sieief

=1

F

K
B=P(HH"+¢I) P ST (S;P (HH" +¢I) P'ST) ' Sieel  (3.96)

i=1

respectively.
We introduce the matrip = (HH" + £I)~! similar to [92], which is factorized by
using the following symmetrically permuted Cholesky decosifion

PP = L'DL (3.97)

which exists since® is positive definite by definition. The matricds and D are,
respectively, unit lower triangular and diagonal.
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Taking into account this factorization, the precoder fdtem Eqg. (3.96) can be
rewritten as

1

GWF-THP

F =

K
H'"PTY ST (S,L'D'L™MS) ' Sieie]
=1
1 K
= H"P"Y S'S,L"S!S,DLSS;e;ef
GWF—THP Py

K

1

= H"P"Y S'S,L"S!S;DLe;e]
JWF—-THP ;

K
1 1
= H"P" § S!S, L"Deel = — H"P'L"D

GWF—THP i1 gtHp

B=L'D'L"L"D=1Lr""

by considering the following properties of the selectiortn®aS; in Eq. (3.89)

with M being a unit lower triangular matrix and witlv having an upper triangular
structure.
To summarize the previous derivation, the WF-THP solutioBdo(3.88) is given by

—H"PTLED
ng'?:P (3.99)
Byr=L""

THP _
Fye =

The receive weightii- directly follows from the transmit energy constraint. Assng
that it is real and positive, it is given by

tr (HEPTLED2C,LPH
ngH.:Pz\/ ( 5 ), (3.100)
X

Plugging the above results into the cost function in Eq.1B.8 can be demonstrated that

ewlP(P,B,F,g) = ¢tr (CoD) Za“du (3.101)

As can be seen from Eq. (3.96), the filters are determinednuolby column, and
each column requires one matrix inverse which results inta tmmplexity order of
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O(K*) as proposed in [96]. For a large number of users, the filtempeaation becomes
quite complex. Note that this high complexity is for somerpetation P. With the
decomposition in Eqg. (3.97), the complexity was reduce@ & ™). Nevertheless, alk’!
possible user permutations must be tested to find the optiofiy. (3.88) with respect to
P. For this reason, some heuristic ordering strategies baséd. (3.96) were developed
in [92] that include the ordering optimization in the comgtidn of the decomposition in
Eq. (3.97). Contrary to DFE, where the latter detection stage less constrained, the
precoding filter optimization for the latter precoding sta@re more constrained, because
after each stage, one additional transmit signal is sultgeptrecoding. Therefore, in
each iteration the algorithm finds the minimum weighted dred entry of® (i.e. the
entry corresponding to the minimum MSE) to be precoded fist. the precoding filter
optimization corresponding to that entry is computed [&kerefore, the precoding filter
optimization is performed in the opposite direction to theqoding ordering (in Table 3.3,
fori = K,...,1, compare with Table 3.1) [92]. This greedy MSE minimizatleads
to an ordering algorithm that achieves an excellent trdtibeiween performance and
complexity for computing the symmetrically permuted faization in Eq. (3.97) [11,92].
The pseudo code for the filter calculation according to EQ.(B) is shown in Table 3.3.

& — (HH" 4 ¢1)7!
P —1Ig, D« Ogxg
fori=K,...,1
q — argmin®(q’, ¢)
q'=1,...;0
P; — I whosei-th andg-th rows are exchanged
P— PP
¢ — P,oP!
D(i,i) «— D(i,i)
D(1:i,0) «— P(1:4,1)/D(i,1)
S(1l:i—1,1:i—1)—P(1:i—1,1:i—1)
~®d(1:i—1,0)P(1:i—1,i)1D(5,4)
LY — upper triangular part ob
B—L 'Y F—H'PTLID

Table 3.3: Calculation of THP Filter with Optimum Ordering.
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MU-MISO Zero-Forcing Spatial Tomlinson-Harashima Precoding (ZF-THP)
The MSE optimization for ZF-THP can be expressed as (cf.42]192, 96])

N 2
(F", BE". " PR") = oxgin & | din] ~ dio]|
{F7B7g7P} 2

st: E[|z|;] <Ex and E[d[n]]|d[n]] = d[n]
with B unit lower triangular (3.102)

whereci[n] andd|n] are given by Egs. (3.85) and (3.86), respectively. Due taz#re—
forcing constraint

Eld[n] | d[n]] = gH Fv[n] = P"Bon] = dn]

which implies thay HF = PT B, the MSE reduces to

2

2

B ||ate] - dial}] =19 ex ().

We construct the Lagrangian function corresponding to E4.02):

L(F,B,g, P\ A, pi,...,px) =g/’ tr (Cp) + 2R (tr (A (P"B — gHF)))

i=1

+ A (tr (FC,F" — Ey)) + 2% (Z tr (p; (S;Be; — Siei))> (3.103)

wherel € R%*, A € CE*K andu; € C', i = 1,..., K. The selection matrixs; has
already been defined in Eqg. (3.89).
By setting the derivatives with respectky B, andg to zero, we get

OL) _\FC, - g H"A" =0

OL (o) _ = T % T H_
B —;Si piel + PAM =0
L

0 a;” = g tr (Cy) — tr (AHF) =0
P'B=gHF

SZ-Bei = Siei

tr (FC,F") < Ey
A(tr (FCLF" — Ey)) =0 with A > 0. (3.104)
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The above equations are the necessary KKT conditions foglibieal solution to the
nonconvex programming problem of Eqg. (3.102).
The third KKT condition directly leads to

., W (AHF)
tr (Cy)
and plugging this result into the first KKT condition yields
MFC, = MHHAH. (3.105)
tr (Cy)

Multiplying now the above equation from the right /! and applying the trace operator
we have
ltr (AH F)|?

tr (Cy)
where we are taking into account thatH" A" F1) = tr*(FAH) (see Appendix B.2).
Therefore \ > 0 and the transmit energy constraint is always active if wet dimei trivial
solutionF' = 0.

From the second KKT condition in Eq. (3.104) we obtain théofeing,

Ar (FC,F") =

K
A= —P"Y " S'prel. (3.106)

i=1

When we plug this result into the first KKT condition we obtdiat

N 9" Lt T T 1
F=—-"H"P (ZS pie Z)Cv

With the zero—forcing constraint, this result shows that

B = |9A| PHH"P" Z Stuelo,?

=1

due to Eqg. (3.84). Substituting this expression for the lieed filter into the constraint
for unit lower triangularity, we get

|9A| S,;PHH"P"'S! 0,7 = Se;
and consequently,

p=——"502,(SSPHH"P'ST) ' Se,.
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This result foru; leads to the optimal feedforward and feedback filter

K
1 .
F=-H"P"Y " S'(S;PHH"P'S!) ' Sie;e]
9 =1
K
B=PHH"P"Y S!(S;PHH"P'S])"' Sie;ef (3.107)

i=1

respectively.
The receive gain factay is directly obtained from the transmit energy constraiet, i

S tr (02,e7 ST (S PHHYPTS]) " Sie,)
Ex

g:

where we consider thatis positive and real to guarantee a unique solution.
The Cholesky factorization with symmetric permutationfof= P(H H")~' P* can
be computed as [11,92]

P#P" = P(HH") P"=L"DL (3.108)

where L and D are a unit lower triangular and a diagonal matrix, respettiv This
factorization leads to an algorithm achieving a trade-adtween performance and
complexity, as shown in [92]. With the factorization in E.X08), the feedback and
feedforward filters are obtained similarly to the WF-THP fotation as

1
P — — HYPTLYD

gTHP (3.109)
B~ L'

using the properties for the selection matxpointed out in Eqg. (3.89). The common
gain gJfF is directly obtained from the transmit energy constraisuasing that it is real
and positive as follows

tr (C, D
X

This leads to the MSE in Eq. (3.102)
K
ent =&t (CuD) =&Y o7 d;. (3.111)
=1

Note that this MSE is not equal to the MSE for WF-THP since thérisnd) is obtained
via Eq. (3.108) [for WF-THP, we use Eq. (3.97)]. WF-THP conesrtp ZF-THP for
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Figure 3.14: 16QAM Constellation.

high SNR scenarios, i.e. fgr— 0, since the respective matricésconverge. As a result
of this MSE, the ordering algorithm to compute the filtersimmikr to the algorithm
explained for WF-THP, but changing the initial matrix in Teld.3 to® = (HH")!.

3.3.3 Simulation Results

In this subsection we present the results of some computeunlaiions carried out
to illustrate the performance of the previously describedlinear transmit processing
techniques. We consider a MU-MISO system with = 4 transmit antennas and
K = 4 receiving users. A frame length afg = 50 symbols is considered and
5,000 channel realizations are averaged. We assume that themittet symbols are
either QPSK or 16QAM modulated. The QPSK modulation colateh is given as
A = {£Vv2/2 +£j/2/2} (see Fig. 3.4) and the alphabet in the case of 16QAM is
A = {#+3+j3,+£3+j,+1+j3,+1+j} normalized by the factar//10 (see Fig. 3.14).
Fig. 3.15 depicts the BER performance vs. SNR for the zercifigr nonlinear
approaches: MLD, DF equalizer, TH precoding, and vectocquiang. As can be seen
from the figure, there is some advantage for the receive Odf &ltlow SNR and for the
transmit filters THP and VP at high SNR. Transmit processirifgsifrom some loss at
low SNR due to the modulo operator at the receiver since thduto@peration introduces
more allowed constellation points. Since the number of dlasion points in 16QAM is
larger than in QPSK, the impact of the modulo operator is agrenounced for 16QAM.
Moreover, given that this effect depends on the noise, itlv@lmore important for low
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Figure 3.15: Uncoded BER vs. SNR for Nonlinear ZF Transmit Redeive Filters:
QPSK and 16QAM Transmission over Uncorrelated Flat Fading-MISO Channels
with Four Transmitting Antenna Elements and Four Users.
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Figure 3.16: Uncoded BER vs. SNR for Nonlinear WF Transmit andeRe Filters:
QPSK and 16QAM Transmission over Uncorrelated Flat Fading-WMISO Channels
with Four Transmitting Antenna Elements and Four Users.
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Figure 3.17: Uncoded BER vs. SNR for Transmit Filters: QPSKn$mission over

Uncorrelated Flat Fading MU-MISO Channels with Four Trartng Antenna Elements
and Four Users.
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Figure 3.18: Uncoded BER vs. SNR for Nonlinear Transmit Blt€PSK Transmission

over Uncorrelated and Correlate8GM 2 Flat Fading MU-MISO Channels with Four
Transmitting Antenna Elements and Four Users.
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Figure 3.19: Uncoded BER vs. SNR for Transmit Filters: QPSEn&mission over
Correlated Flat Fading MU-MISO Channels with Four TransmgitAntenna Elements
and Four Users.

SNR. For high SNR scenarios, however, transmit processiongshetter performan-
ce than DFE since error propagation is smaller. As expethedperformance achieved
with Wiener filters instead of ZF filters is much better be@msro-forcing amplifies
the channel noise, as also shown in Fig. 3.16. From this fithe@esame conclusions as
before can be extracted, but at lower SNR values for the sanRsBEgs. 3.15 and 3.16
also show the BER performance obtained when we directly parfdL detection at the
receivers. As expected, MLD is the best technique for séparéhe signals from the
different users, in spite of its lower performance for lovesarios with respect to the
vector precoding approach caused by the effect of VP modcadoator at the receivers.

Fig. 3.17 shows a comparison between ZF and Wiener lineanankihear transmit
processing for QPSK transmission. ZF approaches are gleatperformed by the
respective Wiener approaches. A small loss in performanobserved for the nonlinear
approaches THP and VP for very low SNR with respect to lineardmit processing due
to the modulo operators at the receiver. However, both THP\& show an important
gain for medium and high SNR scenarios.

Fig. 3.18 represents the uncoded BER vs. SNR for differentimear transmit
processing approaches. For uncorrelated channels, thargdin of about.5 dB when
comparing ordered and non-ordered THP schemes at the gaiaoperation point in
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coded transmission corresponding to BER=>. This gain is even greater for correlated
channels such &8CM 2 where the difference is larger thawB for this point. However,
the ordering optimization shows a slight performance digfian in the low uncoded
BER region, although this loss is negligible. The enormowsathge of this suboptimum
ordering solution proposed in [92] is in fact its complexiishich is comparable to linear
zero-forcing or WF filters.

Finally, Fig. 3.19 plots the BER performance achieved forttiree spatial channel
models considered throughout this work. SCM corresponding to the suburban
macrocell environment, shows the worst performance duéstsmall diversity since
spatial correlations are larger than in the other two typeshannels. On the other
hand, SCM3, corresponding to an urban microcell environment, obujogiows the
best performance since all the eigenvalues of its covagiamatrix are not negligible,
i.e. SCM3 is the most spatially uncorrelated channel compared to there The
channel correlations are affected by the angle spread diatbe station, which is larger
in microcell than in macrocell environments [37]. The samédrue when comparing
urban and suburban areas, since the scattering process\itithity of the base station is
increased due to its location usually being at the same hagythe surrounding scatterers
in urban areas [36,37]. For all the types of channels, nealitransmit techniques exhibit
better performance than linear precoding with VP being tb& Bolution at the cost of
increasing the computational complexity at the transma#ised by the lattice search.
However, at low SNR, linear precoding outperforms the otiverrionlinear schemes due
to the presence of the modulo operators at the receiver fdbsth THP and VP.

3.4 Conclusions

In this chapter we have reviewed most of the commonly impleeek approaches for
transmit and receive processing in multiuser MISO and SIM&esns. In general, we
have shown that nonlinear schemes lead to better perfoematerms of BER. Moreover,
transmit processing shows better performance compareectve processing for high
SNR scenarios, with the enormous advantage of simplifyireg receiver side of the
downlink. Although MLD and VP achieve the full diversity dfé¢ channel they typically
suffer from much higher complexity. For this reason, giviea superiority of nonlinear
schemes over linear ones and the need to perform the sigrakdi®on at the transmitter
in the downlink due to the absence of cooperation betweeditfegent users, THP is the
best choice as a trade-off between performance and corplexi
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Chapter 4

Imperfect CSI: Error Sources

Most recent standards in wireless communication systeohsda feedback channels for
sending information relating to different link parametéem the users to be used by
the transmitter. However, the data rate of these feedbaakneis is naturally limited
(e.g. [25]). When the transmitter has no full knowledge alibatchannel necessary to
construct the precoding filters, this information has tolggpéied by the users. Therefore,
this CSI must be compressed to ensure that the tight schgdudimstraints on the limited
date rate of the feedback channel are satisfied. It is stilbgest of research to determine
what kind of information has to be sent from the receiverditottansmitter and the way
of recovering it at the transmitter side. Therefore, themwntribution of this work
is the design of this limited CSI feedback to minimize the msguared error with the
minimum number of bits of fed—back information. This tomdienceforth calletimited
feedback

Erroneous CSI at the transmitter involves a performanceadiegion due to the
mismatch between the true channel and the erroneous chaseelfor the design of
the precoder filters. Therefore, we have to incorporate astobesign of these filters
to compensate this mismatch effect, which is termmulist precoding17, 43, 44]. In
the next chapter we derive the design of the transmit praagsshemes studied in this
work to be robust against errors occurring on the channermmétion available at the
transmitter. Our ultimate objective will be the design of thmited feedback channel by
taking into account the CSI errors that are introduced befothis chapter.

Fig. 4.1 plots the block diagram of the limited feedback cterthat we will be
assuming throughout this work. The chapter starts by estigmahe channel at the
receivers using pilot symbols sent from all the transmiteanas. This enables the
receivers to estimate their respective vector channelseenTtve reduce the estimates
to a low-dimensional representation, which is also caléetk reductionor truncation by
projecting them onto a basis. This basis depends only onhthenel statistics and the
projection leads tal coefficients per user, with < N. It is assumed that the channel

79
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estimator ', truncation !
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Figure 4.1: Model of Limited Feedback: Channel Estimatiomntation, Quantization,
and Feedback Delay.

statistics are known at both the transmitter and the recside. Thed coefficients are
guantized prior to transmission over the feedback chanhalhnalso introduces a delay.
However, we assume that the feedback channel does not Boffetransmission errors.

For brevity, the errors due to the estimation process witidomedType A errorsthe
errors including estimation and rank reduction will be edlType B errors and finally,
all the errors without feedback delay will be term&gpe C errors We describe all the
error sources in the following sections.

4.1 Channel Estimation

Fig. 4.2 depicts the estimation process performed at theivercside. We use linear
estimators at the receivers based'gnx N pilot symbols per user to enable the channel
vector estimation for thé-th user. The vector comprising thé, received symbols for
the k—th user at the time slgtreads as

yrlg] = Shilq] + milq) € C (4.1)

where the matribXS contains the training symbols and is given by

Sl,l ce Sl,N
S — : ., ) : E CNUXN
Sle e SNtr,N
with hy[q] = [hxlql,- .., hyi[g]]t € CV corresponding to the channel vector for user

kandyklg] = [yikldl, - ynild]l" € CM andnylq] = mxlgl, .. nnexlgl]t € CY
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Figure 4.2: Type A Error: Estimation.

being, respectively, the received pilot signal and the tagdwhite Gaussian noise with
covariance matrixC,, = E[nx[qn;'[¢]]. Remember that we have a fading block channel
with ¢ denoting the time slot of siz&s symbols spaced witfls. As shown in Fig. 4.2,
the above received signgl.[¢] is passed through a linear filt€, € CY**r to produce
the linear channel estimate

ilesk:[Q] = Gyilg) € CV. (4.2)

As mentioned before, it is assumed that the channel statistie known at the
transmitter and the receiver side. If not, the informaticonf the training channel can
be exploited to estimate the channel and noise covariantece® These covariance
matrices can be communicated to the transmitter withoutifsigntly increasing the
overhead of the feedback channel since these statistiocgehery slowly. For example,
when a MIMO testbed is employed (see Chapter 8), it is app&nabive need to know
the channel statistics and, therefore, it is mandatory ésosme method to estimate these
second order moments [97].

Note that the error due to estimation cannot be neglected teeigh the number of
pilot symbols is increased, as we illustrate in Chapter 6. r&foee, perfect CSI is not
even available at the receivers and erroneous CSI is seng tivahsmitter. Supervised
techniques for channel tracking, such as Kalman filtering—[®2], were employed
as initial trials to illustrate the effect of that erroneo@$I| caused by estimation on
the final performance. Also some blind techniques, as exptain [100-103] or in
[104, 105] where patrticle filtering or adaptive blind soussparation algorithms such
asEquivariant Adaptive Separation via IndependefEASI) were implemented, have
been tested to follow the channel variations by means ofmesitng and predicting the
channel coefficients at the cost of increasing the loss ifopaance compared to the
previous non-blind methods.

We describe in the following subsections the channel esitbimamethods used
throughout this work: thé.east-Square¢LS) and theLinear Minimum Mean Square
Error (LMMSE) channel estimators. The LS estimation is based enntimimization
of the sum of the squared errors between the observatigfig, and the desired signal
Shlq]. However, for MMSE estimation, the channel estimate is tbsnch that the
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estimateGyy[q] is the most similar signal to the chanriel[¢] in the MMSE sense.
There exists a strong connection between the LS and MMSé&rieritThe MMSE filter,
which is also calledVienerfilter, is obtained by minimizing the mean square error, and
is therefore a stochastic criterion. The LS solution, haveis obtained by minimizing
the squared error on a given block of data, which constimtsterministic problem. But
when the noise is white, i.€C, , = o7 .1, and the noise variance converges to zero, the
MMSE solution converges to the LS solution. Therefore, Lifrestion can be considered
as a practical alternative to the MMSE method, since nossiediof any signal must be
available to design the estimator.

4.1.1 Least-Squares (LS) Channel Estimation

As mentioned above, the LS channel estimator minimizes dhewiing squared error
guantity

h&q] = argmin [|yi[q] — Shyd]; (4.3)

hy[q]
whereyy;[q] is the received signal in Eq. (4.1).
The expression for the gradient of the squared erret ||yx[q] — Shi[q]||3 with
respect tch;[q] is
Oe

Shild] —S"yilq] + S"Shyg).

. 825 . . . . .
As 'Fhe seccl)n.d gradie 7oA L with respe.ct tof.z;f[q} is given by ST S, wh|ch.|s
positive definite, the cost function of Eq. (4.3) is striatlynvex. Therefore, there exists a
unique global minimum solution to Eq. (4.3) that can be ot#divia the above gradient.
The least-squares estimate sets this gradient to zero dugedhe solution [97, 106,
107]

A 9] = Grsesimiyild) = (S1S) ™" SMyilg] = Sty ld] (4.4)

where the last equality is obtained from the pseudo inveesmition of S, denoted as
ST = (S1S)"1SM. Gisestim is implicitly defined in Eq. (4.4) and is given by

1

G'LS-estimlc = (SHS)i SH' (4-5)

Note that the LS estimation matri¥’ is common to all the users. Also note that the
expressior(S™S)~1S™ for the Moore—Penrose pseudo inveeis only valid if S™.S

IMore precisely, the definiteness of the Hessian mati - 9% has to be checked. Since
o| 1)) g g i
hulq]

the Hessian matrix i ® S™S, and thus positive definite, the errors convex.
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is regular. Under the assumption of linear independentnep&iof S, this leads to the
condition Ny, > N. The matrixS™ S is called theGrammianor Grammatrix of S [107].

The error covariance matrix derived from LS channel esiimnat easily obtained as
follows

CLP = B (hild] ~ Gusesimt (Shila) + mula])) (hald] — Gisesimi (Shala] + mila])"
— (s"8)7' s"C, .S (S"S) (4.6)

4.1.2 Linear Minimum Mean Squared Error (LMMSE) Channel
Estimation

Let us assume that the estimatorigf{q| is constrained to be a linear function 9f|q].

The problem is to find the matri&, that minimizes the mean squared error between
hi[q] and the linear estimatke, = Giyilg]. The mean-squared error betwelerq]
andheg,, is given by [83,107],

=(Gy) = E [Ihela) = Gugnlall}] = E [t ((huld) — Granla)) (huld) — Grala)" )|

= E [tr (hilglhy [q] — hildyi [ GY — Gryeldlhy[a] + Gryeldlyy (4 GY) ]
=tr (Ch,lc — Chy,kGI;;I — G,Cyn i + GkCy,kGI,f) (4.7)

where the covariance matric€s, ., Chy 1, Cyn i, andC, ;. are implicitly defined. Notice
that the MSE is strictly convex iGr,. Therefore, its solution is unique.
By setting the derivative of(G}) with respect ta&; to zero, we obtain

Oe (Gk)
0G;

= —Ch/y,k + GkCy,k - 0

which leads to the final expression for the MMSE linear filter
G'MMSE-estimi = Chy,kC;;1€~ (4.8)
Bearing in mind Eqg. (4.1), the resulting LMMSE filter is exped as
Gunst-estimi = Ch ST (SCh S + Cp )t € CVX¥ N (4.9)

by incorporatingChr, . = Elhilqly;'lq]] = ChiS™ and Cy . = Elyildlyilq]] =
SCh i S" + C,, . into Eq. (4.8).
Thus, the MMSE channel estimate is obtained as

ﬁé“s/',;? SE)[Q] = GviMsE-estimk Yk q]. (4.10)
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Figure 4.3: Rank reduction: Truncation at the Receiver and Rstnection at the
Transmitter.

Note that the MMSE solution (after applying the inversiomiea) reduces to the LS
approach for white noiseX,, ;. = o7, ,I) and low noise scenarios}, — 0). Therefore,
the LS approach will be clearly suboptimum for the case ofetated noise.

Finally, it is easy to demonstrate using the inversion len{A@pendix B) that the
error associated with the linear estima€iivse-esimi Y« [¢] has the following covariance
matrix

CIMS®) = B [||hy[q] — Gumise-esimi Shild] — Grmse-estimene[d][3]
= Chy — CppS" (SChS™ + Cn,k)il SChy = (C’:}f T SHC;’ES)A '
(4.11)

4.2 Rank Reduction

In wireless communications, the feedback channel is ofteitdd in terms of data rate.
It is interesting, then, to compress the CSI in order to redneeamount of information
sent from the users to the transmitter. To this end, in tleg@ewe explain how the CSI
estimation can be compressed by truncatingkKhehunen-L@ve (KL) transformation.
The basic premise of the truncated KL transform is that itgroum in the sense that
it provides dimensionality reduction with the smallestgibke MSE. The robust designs
proposed in this work are based on this decomposition, adthohe starting point matrix
may be different from the matrix used in the Karhuneret® truncation.

Fig. 4.4 plots the block diagram that includes the rank rédocand quantization
process. The procedure to obtain the truncation filtersotieghiin the figure is based on
the eigenvalue decomposition of the channel covariancexaftuserk, Cy, ,, which
reads as

Tk
Chi. = Elhilglhy[q)] = Y Meavg vt = Vi AV (4.12)
=1

wherery, is the rank ofC, , and v,” and ) ; are, respectively, théth eigenvector (or
thei—th column of the matri¥;, ) and thei-th eigenvalue o€}, . (or thei—th entry of the
diagonal matrixA;). Note thatV, is a unitary matrix that satisfies thef V, /! = I.
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The KL transform defines a vector whose coefficients aredabefficients of the KL
transformgiven by
hilq] = V" hegi[q] € C™.

So, the transmitter can reconstruct the channel vector bliptying these channel
coefficients from the left with/, , i.e.

hila) = Vihilg] € CN.

Note that no errors are added to our channel estimation thalcoefficients of the KL
transform are employed sindg is an N-dimensional orthonormal basis.

Taking into account the good energy compaction properfidsecKL decomposition,
we can reduce the number of KL coefficients sent from eachhysareans of a basig),
(see Fig. 4.4) that gives the following KL coefficients

hrilg) = Vi hesilq) € C? (4.13)

where the new basi¥, is defined asV, = [v,,,...,v;,] € C¥"*?andd < N
denotes the number of KL coefficients sent from the receitter &runcation, i.e. the
dimensionality of the rank reduction. The subindekighlights that the CSI errors are
due to the truncation of the KL coefficients at the receivegether with the errors due
to the estimation process, which are always consideredy@grsin Fig. 4.2. Note that
now V;, the so calledank reduction basissatisfiesV,'V;, = I, but V; V! £ Iy. This
leads to errors resulting from the compression of the in&diom due to the coefficient
truncation. Finally, the vector channel recovered at taedmitter is given by

hr ilq] = Vihrilg) € CV. (4.14)

Fig. 4.3 depicts this overall rank reduction process ashelused throughout this work.

Under the assumption that the channel statistics do notndepe time, the modal
matrix obtained from the eigenvalue decomposition in EqLZ}is also constant over
time. With this assumption, only the coefficients of the eztirank approximation have
to be sent from the receiver to the transmitter to capturéatevariations of the channel
(referred to ashort—termvariations).

4.3 Quantization Error

Quantization is the process of constraining some quambiy fa continuous set of values
to a discrete one. It is widely used in image and speech psowgsfor example, and

also some compression schemes related to music use qtiantizeading to lossy data
compression. In the context of this work, quantization idivaded by the need to reduce
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Figure 4.4: Type B and C Errors: Truncation and Quantization

the amount of data necessary to represent the CSI sent frooséhe to the transmitter.
We distinguish between scalar and vector quantizatiorh(@epicted a§)(e) in Fig. 4.2).
Both methods will be applied to compress the fed—back CSI girout this work.

The quantization process is described by the followingremaodel,

ho.ila] = heskla] + nq.xd] (4.15)

wherehq [q] € CV denotes the quantized version/af;;,[¢] and is equal to one of the
codebook entries. Additionally, the errorg, ;[¢] € CV are assumed to be mutually
independent and independent with the channel estinhge}@]. Note that we directly
guantize the channel estimates without performing rankataoin after estimation. This
model is appropriate fdRandom Vector QuantizatidiRVQ), which is explained below.

Alternatively, if the quantizer is applied after the raniduetion of the channel
estimates, Eq. (4.15) can be rewritten as

hqild) = hrila) + Tquld] (4.16)

where fzw[q] c C? comprises the representants or codebook entries, as dliotte
Figs. 4.1 and 4.4. Again, the errafs ;.[q] € C? are assumed to be mutually independent
and independent of the truncated channel estirria{g$q] € C9. For this setup, each
of the scalar coefficients dhk[q] is scalarly quantized as is shown in the following
subsection.

4.3.1 Scalar Quantization

The scalar quantizer (as any quantizer) can be explicippaisged into two parts, an
encoder and a decoder. The encoder ntapsR — I, whereR are the real numbers
andl is the index set for partition cells. The decoder is the magp@ : I — R, so
the quantizer can be written &§z) = D(E(xz)). Note that we restrict ourselves to real
scalar quantizers, since the scalar quantization of a eammpimber is in fact the vector
guantization of two real-valued quantities.

The output set ocodebookl = {yi, 42, vs,...,yn} With y; € R for the decoder
process satisfies that < y, < ...y, with the codebook siz&€| = M. Therefore,
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Figure 4.5: Structure of a Scalar Quantizer.

the number of bits needed to specify the quantized valuevisngby log )/, the so—
calledresolution The resolution indicates the accuracy with which the aaganalog
amplitude is described.

The encoder operation can be modeled by means of a seleowidiuS;(y). The
selector functiors;(y) is 1 if y € R;, i.e. thei—th partition region, and elsewhere, and
the quantization task can be expressed as

M
Q(y) = Zyi Si(y). (4.17)

Note that for any given input valug only one term of the sum is nonzero. In the sequel,
we will use this notation for scalar quantization. Fig. 4épitts the structure of a scalar
guantizer according to this notation.

The main goal of the quantizer design is to select the reptasts and the partition
regions or cells to provide the minimum possible averagedien E[d(e, e)] for a fixed
number of levelsV/. In general, this problem has no explicit, closed-form sofubut
some efficient algorithms can be used.

By assuming that one part (the encoder or the decoder) is fixbdcomes easy to
specify a condition for optimality of the other part. Spezafly, the encoder part of
an optimal quantizer must be optimal for the given decoddtenthe decoder must be
optimal for the given encoder [108]. The two conditions aegeessary for a quantizer to
be optimal.

The best encoder for a given codebook satisfiesdaest neighbor conditionThis
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requires that thé-th region of the partition consists of all input values elo®y; than to
any other output level, i.e. the partition cells satisfy

R; C{reR:d(z,y) <d(z,y;) Vj}

that is,
Q(r) =y onlyif d(z,y;) < d(z,y;) Vi
Thus, given the decoder, the encoder minimizes the distorti

d(z, Q(2)) = mind(z, y,). (4.18)
Yi€

This result holds in general if the goal of the quantizer esrfinimization of the average
distortion. The most convenient and widely used measurestidrtion between an input
and its quantized valug(x) is thesquared erroror squared Euclidean distandetween
two scalar values, defined as

d(z,Q(z)) = |z — Q(z)|*. (4.19)

We now examine the second necessary condition for optiynafitich is obtained
by fixing the encoder (partition) and optimizing the deco@edebook). Theentroid
conditionis found based on this optimization provided that the sqliareor distortion
measure is used. The centroid condition is simply the cawdthat the optimal output
level, y;, for thei—th cell of the partition is theentroid or center of massof that part of
the input PDF that lies in the regidR;, i.e.

xfx,xem(%fﬂ €R;) de — E [2S;(z)]
R Prixz € R E[S;(z)]

y; = Elz|z € R;] = (4.20)

When the quantizer satisfies the centroid condition, thevietig properties are fulfilled

ElQ(z)] =Ez]
ElzQ(2)] = E[Q(x)’]
E[Q(z)’] =E[2}] —E[(x — Q(x))?]. (4.21)

Uniform Quantizer

The most common of all scalar quantizers is the uniform gmenivhose principle is
rather simple (see [108]). A uniform quantizer is a quamtizbere the boundary points
x1,...,xp—1 defining the partition cellsR; are equally spaced and the representants
are the midpoints of the quantization interval. The firstdiban implies that with
step sized, x; — x;_1 = A, fori = 2,3,..., M — 1, whilst the second implies that



4.3 Quantization Error 89

Cm Nearest Centroid Cm—l— 1
—— Neighbor . -
Partitioning Computation

Figure 4.6: Lloyd Iteration for Codebook Improvement.

y; = (v +x;)/2,fori = 2,3,..., M — 1. Consider the case of a uniform quantizer
where the input is bounded with values lying in the rafge). When the input PDF is
uniformly distributed over the region, the quantizer eror Q(x) — = has a uniform
PDF on[—A/2, A/2], whereA = (b — a)/M is the step size. Given the cell, the average
distortion is simply the variance of a random variable tisatimiformly distributed on
an interval of width4, that isf—;. Obviously, the mean of the quantizer error is zero.
Although the input distribution might not be uniform, theifonm quantizer gives a
reasonably good performance for a wide variety of input &igin In fact, due to this
reason and also for simplicity, the uniform quantizer iselydused in A/D conversion.

In the context of this work we have the coefficients of the regdkuced representation
izT,k[q] in Eq. (4.13). As we will see, although the input PDF is nofaim but Gaussian,
we make the simplifying assumption that the input is boundedwe assume that the real
and imaginary parts of every entry B,fr,k[q] lie in some intervala, b) (see Chapter 6).
The overload region has a very low probability (less thai) of containing an input
sample. Thus, we choose representants betwestb to construct an initial codebook
that is stored at both transmitter and receiver. After tn@esion, every receiver performs
a search to find for each component of the coefficients (redlis@aginary part) the
element in the corresponding codebook that is closest. ,THencodebook index is
fed back to the transmitter. Finally, the transmitter sinlploks into its codebook and
reconstructs the estimated channel from the selected @ydd03]. This estimate will
be used to obtain the precoder filters.

Non-uniform Quantizer based on Gaussian Inputs and Lloyd Algrithm

When considering non-uniform quantizers, we have to seteagtiantizer step sizes to fit
the input distribution (Gaussian in our case) employing-uiformly spaced levels. We
employ the Lloyd algorithm based not on a training sequehaerather on the known

exact input distribution. Note that it is crucial to avoid @wntraining sequence from the
point of view of efficiency and performance. Given a codeb6gkthe Lloyd algorithm
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Figure 4.7: Lloyd Algorithm for Quantizer Design.

finds the optimal partition by means of using the nearestrmgcondition. The partition
cells are thus defined as

R; C {$ eR: d(xvyz> < d(l‘,yj) Vj 7é 2}

Basically, the procedure is as follows. We begin with an @hitiodeboolC,(m = 1),
for example, the uniform codebook. Then, in the next steyergthe codebook,,, we
perform the Lloyd algorithm to generate the improved codél@,, . After that, we
compute the average distortion f6f, ;. If it is less than a fixed threshold, we stop.
Otherwise, we setn + 1 — m and repeat the previous step. In this way, we get a
locally optimal codebook for the Gaussian input with the imum average distortion
(see Figs. 4.6 and 4.73.

This quantization scheme is modified when considering thed &pproach shown in

2The nearest neighbor condition and the centroid conditienomly necessary but not sufficient for
global optimality. Therefore, only local optimality is ansd by the Lloyd algorithm.
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Chapter 7, where the codebook entries are not the channdiceardk but the employed
precoders. Therefore, the index fed back by each user pomeds to a set of precoders
and the intersection of the sets gives us the best preccekeCfsapter 7).

4.3.2 Vector Quantization

Vector quantization (VQ) is a lossy data compression metyasked on the principle of
block coding. Vector quantization is the generalizatiorscdlar quantization to higher
dimensions. Although many of the ideas of scalar quantratan be applied to the more
general scheme of vector quantization, VQ offers much greaampressing potential
than scalar quantization. Again, the main goal when desgywector quantizers is to find
a codebook, i.e. the decoder, and a patrtition or encodireg Ag for scalar quantization,
the coefficients of the rank-reduced representation armph to the quantizer

Qly) = Z YiSi(y)

wherey; € C? i = 1,..., M are the codebook entries. Note that this structure is
equivalent to the scalar one in Fig. 4.5 and is depicted in&®8 The disjoint partition
cellsR; fulfill Y, R; = C*andR, R, = 0, i.e. Q(y) is regular (e.g. [108]).

We assume that the codebook siZes given; thed—dimensional input random vector
x (i.e. the channel coefficient) is statistically specifiaaj a particular distortion measure
d(e,e) has been selected. As for the scalar quantizer, we choosg|tiaeed Euclidean
distancebetween two complex vectors defined as

d(z,Q(@) = |z - Q@)[; = (x — Q(@))" (z — Q=) = Z i = Q)"

We wish to determine the necessary conditions for a quartiizbe optimal in the
sense that it minimizes the average distortion for the ge@mditions. Recall that the
encoder is completely specified by the partition cells arel decoder is completely
specified by the codeboak For a given codebook, an optimal partition is one speaifyin
thenearest neighbor conditiorior eachi, all input points closer to code vectgythan to
any other code vector should be assigned to reganThus, by considering theearest
neighbor conditiorwe have that the optimal partition cells satisfy

Ri C{x e C':d(z,y) <d(z.y;) Vj}
for a given codebook = {y,vys, ...,y }, thatis,

Q(x) =y, onlyif d(z,y;) <d(z,y;) Vj.
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Figure 4.8: Structure of a Vector Quantizer.

Thus, given the decoder, the encoder is a minimum distortiomearest neighbor

mapping, and hence
d(z, Q(x)) = mind(x, y;).

y;€C

We next consider the optimality of the codebook for a givertipan. This leads to
thecentroid conditiorfor specifying the code vector associated with each pamtitegion.
For a given partitioR;,i = 1, ..., M, the optimal code vectors satisfy

E[Si(z)]

A vector quantizer which satisfies the centroid condition flee squared error

distortion measure has the following properties

y; =cen({R;) = E[z|z € R)] =

E[Q(z)] = Elz]
Elz" Q(z)] = E[|| Q(=)|’]
E[l Q(@)[I"] = Ell|=]]*] - E[llx — Q(=)||).

The result is an exact generalization of the conditions t@la quantizers explained
above [cf. Eq. (4.21)].
Random Vector Quantization (RVQ)

In the context of this work, the codebook entries of each asegenerated such that
Yk,i NNC(Ovch,k) L= 17"-7M (422)
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whereC', ;; is the channel covariance matrix of uger Note that the codebook entries
now contain channel vectors of dimensidhas opposed to the channel coefficients of
dimensiond < N stored in the scalar codebook explained in Subsection.4.Bakse
codebooks are simply randomly selected according to ttielison ofy, ; in Eq. (4.22).
We henceforth refer to this method for quantizing the veatputs asRandom Vector
Quantization(RVQ).

The procedure for RVQ is as follows. The estimated chalfmggll[q] in Eqg. (4.2)
constitutes the input to the random vector quantizer. Th@ Riés to approximatéesk q]
by one of theM entriesy;,; of the codebook, so the squared error between the estimated
channel and the codebook entries is minimized, i.e.
2

hesklq] — Y. (4.23)

Umin,k = MIN
i 2
where iyin i, IS the index for thek-th user corresponding to the codebook entry that
minimizes the above squared error. Finally, this indexassmitted over the error-free
feedback channel. The transmitter collects the indicedlaha users and recovers the
corresponding codebook entries to construct the erroneloasnel matrix that will be
used for the design of the precoder filters. Note that rankatah is not performed before
vector quantization given that the channel vectors, rdttear the channel coefficients, are
guantized.

4.4 Feedback Delay Error

The transmission over the feedback channel introducesairceielay ofD slots, where
the precoder is designed during the time glaind the most recent channel estimate was
obtained during the time slgt— D. The feedback delay error is modeled by the Dirac’s
delta shown in Fig. 4.1. This delay can equivalently be medi@is follows. The channel
estimate is obtained from outdated training data, i.e. theewvation of the estimator is
delayed byD slots and, then, the respective feedback channel has np dela

Bearing in mind the temporal correlation propertiesipfq] andh,, x[¢] described in
Chapter 2, we have that

E [hi[glh)'[q — D]] = Jo (D) Ch . = r,Ch (4.24)

wherery. is implicitly defined.J(e) denotes the zero—th order Bessel function of the first
kind andoy, = 2#%, where fp maxx IS themaximumDoppler frequency of usérand
fsiot is the slot rate [34].

As we showed in [109], a performance improvement is obtaiwbeén channel
prediction takes into account a greater number of delayadredl vectors from each user
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instead of only one outdated estimate. Ldbe the number of delayed vectors processed
at the transmitter, witl, > 1. When the transmitter processes multiple feedback vectors,
the channel information vector has to be stacked as

hilg) = [hflg— Dy, hilg— D] e C (4.25)

whereD;,i = 1,..., L, is the delay expressed as the number of slots foi-thevector.
The covariance matrix df,, is given byCr, . = Crempi ® Ch, i, WhereClemp, comprises
the temporal correlations and it¢h element in theg-th column is

Coumarl, {;1 (ax (D; = D)) jiz (4.26)

Remember thaty, = 27 fp maxk/ fsiot @S given in Eq. (2.24). Moreover, we have that
E [hi[ghi[d]] = B ® Ch (4.27)

whereg, is defined agd, = [Jo(aD1), ..., Jo(arDy)]" € RE.

The effect of delay is quite important, especially in readteyns or MIMO testbeds
(cf. Chapter 8). Performance can be strongly degraded wheenhthnnel varies while
CSl is sent through the feedback channel, since we would bgrileg our precoder with
an outdated channel estimate. Therefore, it is crucial soenthat the delay introduced
by the feedback channel is less than the channel cohereneddf. Chapter 2). It could
be interesting to determine the maximum delay that the systn support before losing
channel tracking.

4.5 Simulation Results

Some computer simulations were carried out to illustragegbrformance degradation
caused by the mismatch between the true channel and theeeu®mthannel available

at the transmitter. The results are the meah, 060 channel realizations arid) symbols
were transmitted per channel realization. The input b3 SK modulated. A feedback
delay of D = 2 slots is considered for all the users. The slot durationTugs= 6.67 ms

at a carrier frequency &fGHz. We use the second channel described in Chapter 2 for the
simulations due to its intermediate BER performance andsitye The velocity of each
user is set ta = 10km/h. The results are obtained for a system with= 4 antennas

at the transmitter and = 4 single antenna users. Figs. 4.9, 4.10, and 4.11 show the
BER performance achieved when respectively linear pregodiomlinson-Harashima
precoding, or vector precoding are implemented accordirigeg Wiener criterion.
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Figure 4.9: Effect of Different Types of Errors on the TXWF 8ote in an Urban
Macrocell Environment. Error A: Estimation; Error B: Rank Retion; Error C:
Quantization; All Errors: Estimation, Rank Reduction, Queatton, and Delay.

First, one can see the effect of different lengths of theningi sequence. The figures
illustrate the performance degradation caused by charstiehaion errors when this is
the only source of errors in the system. As a compromise legtvi)laining sequence
length and performance degradation, we pick for our sule®gsimulations the value
Ny = 6, which implies a loss of aboutdB at BER=0~2 for the TXWF and of2 dB
for THP and VP at this same operation point with respect tocthee of perfect CSI
knowledge. A comparison between both LS and MMSE estimatiethods forNy, = 6
can also be observed and, as expected, the MMSE solutiorlyctedaperforms the LS
approach in an urban macrocell environment, i.e. for cateel channels.

Then, rank reduction is applied so that the number of coeffitsi sent from each
user to the transmitter is reduced framm= N = 4tod = 3 ord = 2. In spite of
an important deterioration in performance when the numbeoefficients is reduced,
we have the enormous advantage of reducing the overheace deduback channel,
especially for a high number of antennas at the transmititer the quantizer, only the
codebook indices corresponding to the real and imaginatyopaach user’s coefficients
are transmitted through the feedback channel. These deetcare scalarly quantized
in these simulations using bits (4 bits per complex dimension), which yield$ bits
per user (ford = 2); or 6 bits (3 bits per complex dimension), which yieldg bits per
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Figure 4.10: Effect of Different Types of Errors on the WF-TI#heme in an Ur-
ban Macrocell Environment. Error A: Estimation; Error B: RaR&duction; Error C:
Quantization; All Errors: Estimation, Rank Reduction, Queatton, and Delay.
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Figure 4.11: Effect of Different Types of Errors on the WF-VEEh8me in an Ur-
ban Macrocell Environment. Error A: Estimation; Error B: RaR&duction; Error C:
Quantization; All Errors: Estimation, Rank Reduction, Queatton, and Delay.
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user. When the codebook is larger it is obvious that the resut much better at the
cost of decreasing the compression for the CSI sent througliedtdback channel and
greatly extending the storage capability necessary atgbesu The figures also plot the
uncoded BER when random vector quantization (RVQ) feedirak bha bits is applied
instead of scalar quantization. As expected, the systeforpsgince is better when VQ
is used. This is because VQ carries out a joint quantizatian tases a much larger
codebook 2 = 4,096 entries per user) and compares Srdimensional vector with
4,096 complex vectors to choose the closest one for each charalaatson. Therefore,
its computational complexity is much greater than that alacquantization, where the
search is reduced to a comparison with= 8 scalar values for the real and imaginary
parts of each fed—back coefficient. For the considered nuwib&2 fed—back bits per
user, it is clear that the vector quantization performamgenfiedium and high SNR is
better than that of scalar quantization.

Finally, one can see the influence on the uncoded BER of thd&skddelay in the
figures. Even though it is obvious that each new error souegeadies the system more
and more, note the strong performance degradation whemgéwomd = 3 truncated
coefficients tal = 2.

It can also be seen how the curves go up for high SNR due to feqae€2SI. This effect
can be explained by the convergence of the WF designs to theetiogers, which are
highly sensitive to CSI errors. Moreover, the effect of infpet CSI is more pronounced
for THP or VP than for LP due to the modulo operators. We wié g&the following
chapters how an improvement in performance can be achietied wobust designs are
considered.

4.6 Conclusions

In this chapter, we introduced the errors of the CSI availabthae transmitter side instead
of full CSI knowledge. In that case, it is crucial to determigat kind of information is
sent from the different users and how this information canlitained by the transmitter.
First, we considered the effect of estimating the channielgusupervised methods. To
this end, we briefly discussed the least-squares and the IMBISE channel estimation
approaches. Although the least-squares approach shosvguesity than the LMMSE
channel estimator when full knowledge about the statisseaond order moments is
assumed, this LS estimator is quite useful due to its sintypliand relatively good
performance. We also explained how we can compress the eharfarmation sent
through the feedback channel by means of the Karhun@&wé.alecomposition. Then,
we quantized the KL resulting coefficients in order to enghed the feedback channel
overhead is strongly reduced. We introduced scalar andwvgoantization as different
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methods for compressing the CSI. The issue about the supenbrector quantization
over scalar quantization for random input vectors is euidiemm the increased freedom
in choosing the partition geometry for VQ compared to thdlyigestrictive geometry in
the case where each vector element is scalarly quantizethangsulting quantization
cells are rectangles. Thus, scalar quantization is simpésticted special case of VQ.
Indeed, scalar quantization will be very useful for us duggsimpler partition regions
that produce robust designs for the optimized limited fee#tb Finally, we introduced the
feedback delay error that adds a new mismatch between theltemnnel and the erroneous
channel resulting from the estimation, rank reduction amahgjzation processes.

We showed by means of some computer simulations how eaclofygyeor degrades
the system more and more at the cost of reducing the overldhd feedback channel.
However, there exists an important effect at high SNR cdéingi®f increasing BER. This
effect may be corrected by an adequate limited feedbackulesimbined with the robust
precoders shown in the next chapter.



Chapter 5

Robust Wiener Precoders for Imperfect
CSl

In FDD systems, the transmitter is unable to obtain the CSldiynating the uplink
channels in a wireless communication system since the eteandifferent frequencies
are not reciprocal. Therefore, this CSI has to be obtainetieatréceiver side by the
users to be sent to the transmitter by means of a feedbackehiwat often suffers from
limited bandwidth. The CSI is affected by different sourcéswors, so that all the
precoding parameters are designed with an erroneous neskithe channel instead of
the true channel. Errors in the available CSI have a signifioapact on the performance
of precoding. In this chapter, we present a metwstprecoder design based on the error
model described in the previous chapter. The objective topensate this mismatch
between the true channel and the erroneous channel sentdomivers by means of an
adequate design for precoding that involves the error mideditigate its effect, i.e. to
be morerobustagainst errors in CSI.

We first focus our attention on the general statistical emodel to be used for the
robust proposals throughout this work. The chapter coemith the MMSE derivation
of the different types of precoders shown in Chapter 3 to begbhgainst CSI errors.
As opposed to the receive coefficients arising from the mtecoptimization as used
in Chapter 3, we next include a brief discussion about the MMBé&ificients that are
employed instead in order to compensate the mismatch betpedect and erroneous
CSIl available at the transmitter side. The chapter concludtbssome comments about
the training symbols that must be sent to enable the proposgdms to work properly.

We focus on the MMSE criterion since precoders based on fiitisrion clearly
outperform precoders based on the ZF criterion, as seen ipt&@hafor the perfect CSI
case. Since an erroneous channel version can be seen astloé the true channel and
some noise, there is no sense in using ZF precoders in sutthatice because the effect
of noise amplifying inherent to ZF worsens its performarncéhie presence of errors in

99
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CSI when compared to an MMSE precoder design.

5.1 Statistical Errors Model

The basic premise of our channel error model is the intespoet of the true channdll as
a matrix of random variables, whereas the channel estifadwailable at the transmitter
is deterministic. The relationship betweghand H is given by [17,43,44]

A~

Hlq| = Hq] + O[q] (5.1)

where®[q] = H|q) — H]|q] is the CSI error at the transmitter. The mati#ik|q] =
lhoildl, ... hoxlg)]T € CE*N comprises the estimates obtained from the feedback of
the quantized coefficients of the rank reduced channel@jgti= [0,[q], . .., 0x[q]]" €
CK*N collects the CSlI error vectors of the different users. Eashafthis matrix can be
written as the column vector

0:lq] = hilq] — ilQ,k[C]] ecV, k=1,.. K.

The error covariance matrix of the zero—mean ma®ix| is given by

Co = E[0"(q0l4)] = E [(67ld]. ... 6;la) (6uld). ... 6ula]) "

=B [(kild - Aiyell) (Ele - Al - i Cor

k=1

whereCo . = E[(hi[q] — hqild)) (hila] — hqxlg)?] is the error covariance matrix of
userk.

Taking into account the above error model and assurii@@[¢|]] = 0, the channel
mean and the channel Gram mean are given by

Eo [H"[q|H]q)] = H"[q]H[q] + Co (5.2)

respectively. The subindexfor the expectation denotes that the expectation is takln on
over this matrix of random variables siné is deterministic.

In this chapter, we optimize each type of precoder for a MUBMIsystem according
to the MMSE criterion, but incorporating the model for esrof Eq. (5.1) to compensate
the effect due to erroneous CSI at the transmitter.

Note that for the sake of brevity we will henceforth omit tirae slot index; used in
Chapter 2.
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5.2 MU-MISO Robust Linear Wiener Precoding

Fig. 5.1 depicts the block diagram of a MU-MISO system withelr precoding. The
transmitted signake[n] € C¥ results from a linear transformation of the symbols
u[n] € C¥,i.e.z[n] = Fuln] as explained in Subsection 3.1.2. For robust linear MMSE
precoding,FF € CV*X together with the common receive weightc R minimizes the
mean of the MSE under a transmit power constraint, i.e.

{ Frin, grin} = argmin Eg [E [||u[n] — ¢H Fuln] — 9”[“]”3”
{F.g} (5.3)
st: E[|z[n]3] < B

This optimization can be solved following similar steps asthe standard MMSE
precoder in Subsection 3.1.2. First of all, we develop th&eM8st function in Eq. (5.3)
as

e(F.9) = Eo [E [|uln] — gHFu[n]|3]] + Ee [E [|lgn[n][;]]
=Eo [tr (Cy) — tr (¢"C . F"H") — tr (¢HFC,,) + tr (|g|° HFC , F'H")]
+ gl tr (C) (5.4)

whereC,, = E[u[n]u'![n]] € CE*F andC,, = E[n[n][n]"[n]] € C**¥ are the spatial
covariance matrices of symbols and noise. The transmit powrestraint can be written
asE[||z[n]|3] = tr(FC,F™) < Ey. Substituting Eq. (5.2) into Eq. (5.4), we get

e(F,g) =tr(Cy) — tr (g*FHﬂHCu) —tr (gFCuﬁ)
+tr (g HFC,F H") + tx (|9 FC,F"Co) + |gI tr (Cy)  (5.5)
where the property of the trace operatofA) = tr(AT) (see Appendix B.2) has been
applied.

The above results enable us to construct the Lagrangiartidnnéor the MSE
optimization in Eq. (5.3) as follows

L(F,g,\) =¢(F,g)+ \(tr (FC,F") — Ey) (5.6)

where the Lagrangian multiplier is€ R .
By setting the derivatives of Eq. (5.6) with respect6 andg to zero, we obtain the



102 Chapter 5 Robust Wiener Precoders for Imperfect CSI

uln] 5} [n] [>H> % gI) '&[n}>
n(n]

Figure 5.1: MU-MISO System with Linear Precoding.

necessariKarush-Kuhn-Tucke(KKT) optimality conditions [cf. EQ. (3.19)]

L kel A A
—6315:) = —g'H"C, + | HY'HFC, + |g|° CoFC, + A\FC, =0
OL (e) B R . . .-

a9 U (FCuH) +g tr (HFCUF H )

+ g tr (FC,F"Co) + g* tr (Cy) =0
tr (FC,F") < Ey
A(tr (FCLF") — Ey) =0 with A >0 (5.7)

where the property of the trace opera@% = B" (see Appendix B.3) has been
applied.

First of all, note that the constraint in Eq. (5.3) is alwagt\ee, i.e. A > 0. Indeed,
from the second KKT condition we have

. tr (FCuﬂ>

. . . (5.8)
tr (HFC,FUH" + FC,F"Co + Cy)

Additionally, the first KKT condition can be expressed as
\FC, =g H"C, — g H'HFC, — |g|° CoFC,.
Multiplying by F*! and taking the trace yields

Air (FC,FY) = g tr (HUCFY) — |gf tr (H*HFC,F" + CoFC, F") .
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By plugging Eq. (5.8) into the last expression, we obtain that

Mr (FC,FY) = i (Fo.) ‘2

tr (HFC,FH" + FC,F'Co + C,)

“ 2 ~ “
tr (HFCu> ’ tr (HHHFCUFH n C@FCuFH)

t? (HFC,FUH" + FC,F''Co + C,)

) r (FIFCU) ‘2 tr (C,) 9
~ w? (HFC,FUHY + FC,FCo + C, ) '

Thus, we conclude that
Ar (FC F") = > tr (Cyy)

and therefore\ — % > 0 if the trivial solution F = 0 is not allowed. As a

consequence, the transmit energy constraint is an eq(sdiyEq. (5.7)], i.e.

tr (FC,F") = Ey.

Next, let us substituta = "”225# into the first KKT condition:
2
. DA tr (C
—¢H"C, + |g H'"HFC, + |g|> CoFC,, + MMFCH =0.
X
Solving this equation foF' leads to the following expression for the robust linear pdsr
1/ ars -1
F—= (HHH +Co + 51) H" (5.10)
9

where we introduced the quantify= tr(C),,)/Ei already defined in Eq. (3.22). Note
that the matrix inside the parentheses is always positiﬁaittesince% > 0, and
therefore the inverse always exists.

Now, bearing in mind Eq. (5.10), the following equality hsld

~ N -1 . N R R -1
g|> FC, F" = <HHH +Co+ 51) HYC, H (HHH +Co+ §1> .

Applying the trace operator to the above equation, and derisig thattr(FC, F") =
Ey, we finally have that the optimum value for the receive weightust obey

~ N -2 N
tr ((HHH +Co+ £I> HHCuH)
2
9] o

(5.11)
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Finally, if we assume thatis real and positive, the optimum value fpis unique and
we arrive at

N ~ -2 . N
r ((HHH 4+ Co+ 51) HHCuH)

5.12
o (5.12)

JRlin =

Therefore, the optimum robust linear precoder that solkesoptimization problem in
Eq. (5.3) reads as

N ~ -1 .
Frin = (HHH +Co+ §IN> =Y. (5.13)

JRlin

It is interesting to compare Eq. (5.13) for the optimum rdblirsear precoder with
Eq. (3.24) corresponding to the conventional linear precodWe also see that the
statistical structure and the magnitude of CSI errors have&ang influence on the
final precoder. For very small errors, i.eCe — 0, we obtain the classical linear
MMSE precoder (TXWF) as in Eq. (3.24) and for very large CSImsirove getFrin —
g;”n (Co+ 5IN)—1I§[H, i.e. FRrjin acts in a similar manner to a matched filter (TxMF) as in
Eg. (3.31). Note that the regularization wiifyp due to the robust design is not necessarily
diagonal, since no assumption was made that the entrieg eftbr@|q| in Eq. (5.1) are
uncorrelated. Thus, not only the amount of error but alscsthectural properties of the
error have an impact on the precoder.

The optimum robust linear precoding parametBgg, andggiin, can be expressed in a
more compact way if we define the regularization matrix

T = Ceo + Iy € CVXN (5.14)
and the positive definite matrix
N N —1
& — (HT—1HH + IK> € CRXK (5.15)

Indeed, applying the matrix inversion lemma (see Appendi¥y B Eq. (5.13) we have
that

“ ~ -1 . “ “ ~ -1 . N
(HHH n T) Y — (Tl _ T lfH (I + HT’1HH> HTl) HH
~ ~ N -1 . ~
_TLHH (I _ (I n HT’lHH) HT1HH>
~ ~ ~ -1 ~
_ T H" (I + HT‘IHH) —T'H'"®. (5.16)

Thus, Egs. (5.12) and (5.13) corresponding to the scalaghwei;, and the linear robust
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S
S

uln] % d[n] DF> x[n] 5; % D@I) d[n] (o)
aln] n(n]

Figure 5.2: MU-MISO System with Vector Precoding.

precoderFgj,, respectively, can be rewritten as

1 N
T 'H"®
9Rlin

tr (T—lPIHspCuspFIT—l)
Jrlin = Fo .

FRijin =

(5.17)

5.3 MU-MISO Robust Wiener Vector Precoding

Fig. 5.2 plots the block diagram of a MU-MISO system with \d&ederecoding (VP). In
vector precoding, the transmitter adds a perturbationasigin] € 7Z% + j 7Z¥ to the
data signalu[n] € CX prior to linear transformation with the filtef' € CV*%. At the
receiver, the symbols are scaled with the common wejghind then passed through a
modulo operator. This modulo operator enables the additidime perturbation signal by
the transmitter, since the same output can be generatedféredt inputs for the modulo
operator. The constant associated with the modulo opdasati@noted by-. We consider
the transmission of one block of data symbols of lenggrduring which the scaling factor
g is constant. The data symbols of the blagk|, . . ., u[Ng| are known at the transmitter.
Following similar steps as in Subsection 3.3.1, the freedbaudinga[n] is optimally

exploited by VP whose robust MMSE optimization reads as

2

ufn H

{a[n],z[n].g}

{arve[n], Trvp([n], grvp} = argmin Eg [NLB gE {Hd[”] —d[n]

| 2 (5.18)
st 5 Z ][} < P
Whered[n] are the scaled received symbols at the users given by
d[n] = gHx[n] + gn[n). (5.19)

The aim of VP is to choose thertual desired symbols

d[n] = u[n| + a[n] (5.20)
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forn = 1,..., Ng, so thatd[n] approximatesi|n] according to the MMSE criterion, as
expressed in Eq. (5.18). Note that the expectation is ciomaitl on the full knowledge of
the symbolsas[n] at the transmitter. However, since the statistics of theupeation vector
a[n| are unknown, we average the symbol MSE over the whole blocid t& robustify
the optimization, an expectation over the CSI er®was introduced [cf. Eq. (5.18)
with Eq. (3.64)].
The MSE in Eq. (5.18) can be expressed as
2
ful]|
(d"[nld[n] — g*z"[n]H"d[n] — gd"[n] Hz[n]

 (aln], 1], 9) = Fe [NLB é B Md[n] — djn]

1
NB n=1

T |yl @ [n H" Haln] + |g* 2" [n]Coln] + |gf tr (Cy) ) (5.21)

whereE[|[d[n]|; [u[n]] = [|d[n]|; andE[||z[n]; |u[n]] = ||z[n]|; were applied.
We form the Lagrangian function as

L (aln], [n], g, \) =  (an], z[n], g) + X (— S 2" [njan] - E) (5.22)

n=1

where) € R%*. Now, we set its derivative with respect4d(n],n = 1,..., Ng, andg*
to zero, which leads to the KKT conditions

OL (o) 1 « rpH 2 £7H 7 2
S = N (o Hdln] ol H"Hwln] + |of* Conln))
A
+ Em[n] =0 (5.23)
8L(o)_ 1 & Hy, 1 £rH Hi, 1 £7H 7
= nzl (—m (] Y d[n) + g™ [n] HY F 2 [n]
+ g 2"[n]Cex[n]) + gtr (Cy) =0 (5.24)
L in[n]w[n] <P
NB n=1 -
1 &
. H _ - i >
A (NB ;ZE [n]x[n] Etx) 0 with A > 0. (5.25)
From the first KKT condition, we conclude that the transmingpls are given by
1 2 H il )\ ! ol H
xzn]=-|H" H+Cg+ WI H"d[n]. (5.26)
g g
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Then, we have to show that> 0, i.e. the power constraint is active. We can rewrite
the second KKT condition in Eq. (5.24) by equating to z%é’—)g*. This produces the

result
Ng

ot (C) = 5 S (9" @ [l E ) |gf” 2" [ " Ea

— |g* " [n]Coz[n] ). (5.27)

On the other hand, multiplying Eq. (5.23) by[n] from the left and summing over
n=1,... NB,yieIds

Ng

Z o infaln] = 303 (2 B ] ~ o' "] F ol

—|g| z"[n]Cezln] ). (5.28)

By combining Egs. (5.27) and (5.28), we obtain that the valethe Lagrangian
multiplier
tr (Cy)

£ 2t n]@(n]

Therefore, it becomes clear that> 0 for the non-trivial case that. : x[n| # 0. Hence,
the transmit energy constraint is always active and we define

_ tr(Cy)
¢= Etx17

A= gl

and correspondingly, = |g|* ¢.

Bearing in mind that the transmit energy constraint in EqL&pis active and taking
into account the expressions for the transmit symbols i{!£86), we reach the following
solution for the robust WF-VP:

~ N -1 .
zrupln] = —— (HHH +Co+ §I> H"d[n]
Jrvp
N N ~ -2 .
S Ne diln] F (HHH 4 Co+ gl) H1d[n]
grRvP = (5.29)
EthB

Equivalently, we can reformulate the above equations usiegmatricesI” and &
already defined in Egs. (5.14) and (5.15), so Eqg. (5.29) caewetten as

1
wRVP = —T 1HH@d[ ]
9rvpP

\/ZNB A1 [n|EET-> Hbd|n|
grvpP = .

(5.30)

EthB
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It is important to note that the scalar gajg,r is only chosen once in each block.

Next, we proceed to find the perturbation signah]. First, we plug the optimum
transmit vectorsgyp[n] and the optimum gaipryp into the MSE expression. Following
similar steps as those taken to arrive at Eq. (3.73), we get

 (aln], z[n], g) = NLB S dn)dd]n). (5.31)

Note that whenCe — 0 and, therefore I — H, we obtain that(a[n], z[n], g) —

5= 202 d'[n)(HH" + ¢T)~'d[n], which corresponds to the MSE for the non—robust
WE-VP approach shown in Subsection 3.3.1 for the case of (getf8l available at the
transmitter.

& — (HT 'H" +1x)!

factorize: & — LYDL

forn=1,...,Ng:
arvp[n] — argmin g e, 75 4z ||DY2L(uln] + a[n])||3
x[n] — TflIA{H@(u[n] + arvp[n])

grve — |/ ks Sh2, @[]z n]

forn=1,...,Ng:
x[n] «— gF;\}P:I: [n]

Table 5.1: Calculation of WF-VP Robust Filters.

Finally, taking into account that every summand of Eq. (.84n be minimized
separately, the perturbation signal can be found via theeskypoint search in a lattice

arve(n] = [ }?EKIHF UL a[n])"®(u[n] + aln])
= argmin ||[DY2L(u[n] + a[n))||? (5.32)

aln|erZK +j 172K

where the second line in Eg. (5.32) is obtained after intcoty the Cholesky
decompositio®® = LY DL, whereL is a unit lower triangular matrix an is a diagonal
matrix. We will minimize the cost function in Eq. (5.32) witht another constraint
using the Schnorr—Euchner algorithm [87, 88]. Note thatwlagge errors occup is
the identity matrix leading t@gyp[n| = 0, i.e. robust VP converges to robust linear
precoding.

To summarize, in order to calculate the robust WF-VP we do tileviing: first,
we factorized = (HT'H" + 1)~ to find the perturbation vectors by means of the
lattice search in Eqg. (5.32); second, the unscaled tranguoibrs are computed by means
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ulnl V(o) [l % Ty P
I - B

Figure 5.3: MU-MISO System with Tomlinson Harashima Precgd

nj %dw DIz v[n] F)m[mDI;I chdw Mi(e) %
a[n] %”IW

Figure 5.4: Linear Representation of Tomlinson Harashinez®ing.

of linear filtering; and third, the whole block is scaled witfp. The pseudo code for the
robust WF-VP is given in Table 5.1.

54 MU-MISO Robust Wiener Tomlinson—Harashima
Precoding

Tomlinson—Harashima Precodin@HP) with partial CSI at the transmitter has been
investigated by Fischest al. [110], Simeoneet al. [111], and Dietrichet al [18]. As
discussed in Section 3.3, in order to avoid the high complexdithe robust VP rule in
Eqg. (5.32) we can employ THP as depicted in Fig. 5.3, wherpdnirbation signat|n|

is implicitly computed in a successive manner. The standasgmption for THP design
is that the covariance matrix of the modulo operator outptiietransmitter is diagonal
[see Eq. (3.84)], i.e.

C, = E[v[n]v"[n]] = diag (07 ,..., 00 ) -

Additionally, the feedback filtef — B must be strictly lower triangular. The optimization
for robust THP can be expressed as [cf. EqQ. (3.88)]

{FRTHP; BRgtHp, gRTHP; PRTHP} = argmin Eg [E [”PTB’U[ ] - QHF’U - 9"7 H ”
{F7B797P}

st: E[|z[n]|;] < Ex and Bis unitlower triangular (5.33)

whered|n] = PT Bwv|n] is the desired value for the inputs of the modulo operatotiseat
receivers [see Eq. (3.86)], i.e. it is the sum of the symldig and the perturbatioa|n|
added by the modulo operator at the transmitter, as showigirbE. Remember that the
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permutation matrixP = S5 e;e; satisfiesP~! = PT with the indexk; of thei—th
data stream to be precoded.
Similarly to Eq. (3.87), we have that

£(P,B,F,g) = Ee [E [||PTBv[n] — gHFvn] - gn[n]Hi”
— tr (P"BC,B"P) - " tr (P"BC,F"H") - gtr (HFC,B"P)

+ |g| tr (CUFHﬂHﬂF> + |g|* tr (C,F"CoF) + 9> tr (Cy)
(5.34)

where the model for errors described at the beginning otcthepter is implicitly applied.
The restriction for the unit lower triangular structure Bf in Eqg. (5.33) can be
expressed as
S;Be;, = S;e;, 1=1,....K

whereS; is the selection matri§; = [I;, 0, (x| defined as in Eq. (3.89).
The Lagrangian function corresponding to the constraingdnization problem in
Eq. (5.33)is

L(PaBaFvgv)‘ap'la"'a“’K> :€(P7B7F79)+)\(tr(FCvFH) _Etx)

K

i=1

with p; € C'i = 1,..., K and wher@R(>_~  tr(ul'S;Be; — Se;)) comes from the
restriction concerning the unit lower triangular struetof feedback matrixB.

The solution to Eq. (5.33) can be obtained by setting thevdtaves of the Lagrangian
L(P,B,F,g,\ p1,...,pr) with respect taB*, F*, andg to zero. The first necessary
KKT condition is obtained when we equate the derivative wipect taF™ to zero, i.e.

OL (e)

S = ~g*H"P"BC, + |g" H'HFC, + |g|* CoFC, + \FC, =0 (5.36)

with tr(FC,FY) < Ey and \(tr(FC,F") — Ey) = 0 with A > 0. The resulting
optimum value forF' is the following

1/ onan A -

F=- <HHH +Co + —21) H"P'B.
g 9]

Next, let us demonstrate that the inequality constraintgn(g.35) is always active,

i.e. A > 0. To this end, the derivative of the Lagrangian function wigspect tog is
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equated to zero, i.e.

aLa—;') — ~tr (HFC,B"P) + ¢ tr (C,F"H"HF) + g’ tr (C,F"'CoF)

+g"tr(Cy) =0
and the optimum value for the gain facigris accordingly

* tr (ﬁFCvBHP)
T (C.F"H"HF + C,F'CoF + Cy) 627

Now, we multiply Eq. (5.36) by from the right and apply the trace operator to get
A (FC,F) = g* tr (HPTBC,F") — |gf u (H*HFC,F" + CoFC,F").
Plugging Eq. (5.37) into the above equation, we obtain that
tr (HFC,B"P)[’
tr (CLF"H'HF + C,F'CoF + Cy)

Ar (FC FY) =

~ 2 ~ ~
tr <HFCUBHP> ‘ tr (C’vFHHHHF n CUFHC@F)

t? (C,FUHUHF + C,F'CoF + C,)

~ 2
tr <HFCDBHP> ‘

= PN tr (Cy) = ’9’2131" (Ch).
12 <C1,FHHHHF + C,FUCoF + C’n>

Then, it is apparent that > 0 and the energy restriction is active, ite( FC, F) = Fy
and = |g|* ¢ with ¢ = *1En),

Applying the matrix inversion lemma to the above expresdmmthe feedforward
fillker F' and considering the above result for the optimum feedforward filter can be

rewritten as

1 - A A\ L 1 -
F—-T'H" <I + HT—1HH> P'B=-T'H"'"$P'B  (5.38)
g g
with the matriced” and® defined in Egs. (5.14) and (5.15), respectively.
Finally, setting the derivative of Eq. (5.35) with respextB* to zero, we have the

KKT condition

OL (e)
0B*

K
=BC, - gPHFC,+ ) _Slulel =0.
=1
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Plugging Eq. (5.38) into the above equation we have

OL (e)
0B*

K
N N N N -1
- BC, - PHT'H" (I + HT—lHH> P'BC,+ Y S'uie]

i=1

K
~ ~ -1
_p (I + HT-1HH> P'BC, +Y_ STuiel =o0.

=1
Therefore, the feedback filtd8 can be expressed as
K
B=-P& 'P") S'uelo,? (5.39)
=1

where we exploited the diagonal structure(df [see Eqg. (3.84)].
Multiplying this equation byS; from the left and bye; from the right, we obtain

i

S;Be, = —S,P (I n IQIT’lIQIH) P'S pio,? = Ses

where we used the property thafo, %e; = 0,j # i, andejo,’e; = 0,7, otherwise.
The above equation allows us to find the Lagrangian multipjief, i = 1, ..., K, which
are given by

pi = —o2, (S,;P&'PTST) " Sie,. (5.40)

Now, we can substitutg; of Eq. (5.40) into the expression obtained for the feedback
filter B in Eq. (5.39), and the resulting expression #8Brinto the expression for the
feedforward filterF' in Eq. (5.38). We obtain

K
F—lpgupt S ST (S P PTST) T Sieiel
g =1
K
B=P&'P"Y ST (S,Ps'P'S) " Sieel. (5.41)

i=1

With the symmetrically permuted Cholesky factorizationgosed in [92]
“ N -1
PPt =P (I + HT’IHH) P =L"DL (5.42)

where L is unit lower triangular andD is non-negative diagonal, we can rewrite the
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feedforward and feedback filter expressions in Eq. (5.41) as

K
1, _
F=-T'H"P'Y ST (S,L7'S!S,D"'SIS,L7S") " Sieief
9 =1
1 K
= -T'H"P"Y ST (S,L7"S") " (SiD7'S) T (SiL7'ST) ! Sieie]
9 =1
1 K
=-T'H"P") SI'S,L"S/S,DSS,LS] Se;e
9 =1
1 * 1 -~
=-T'H"P"Y S!'S,L"S!S;Deie] = -T'H"P"> S'S,L"De;e
9 i=1 g i=1

K
1 . 1 .
=T 'H"PT § L"Desej = -T'H"P"L"D
g — g

and
B=L"'D'L "D =L" (5.43)

respectively. To obtain this result, we used the propeftiethe selection matrixS; given
by Eq. (3.98).

In summary, we can conclude that the solution to Eq. (5.38afgiven permutation
matrix P can be concisely written as

1 .
T'H"P'L"D
9RTHP (5.44)
Brrip= L™

Frrup =

wheregrryp follows from tr( FrrupClp Firnp) = Fix, i.€.

tr (PI%IT”IQ[HPTLHDCDDL)
gRTHP = E . (5-45)
tx

Plugging the above results into Eq. (5.34), we arrive at goression similar to
Eqg. (3.101), namely

K
S(P,B,F,g) = 52037idi,i- (546)
=1

To avoid the tough combinatorial optimization with respecthe permutation matri®,
we propose a greedy optimization based on the MSE expressiBg. (5.46). In the
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i—th step, the indeX; is chosen such that the respective MSE is minimized, d.g.
is minimized. Fortunately, this minimization can easily ibeluded in the Cholesky
factorization in Eq. (5.42). This can be seen in Table 5.2iclwhs very similar to
Table 3.3. Note that onlg is defined differently and the feedforward filter computatio
is changed.

D — <I +ﬁT‘1ﬂH> '
P—1g, D+« Og«x
fori=K,...,1
q «— argmin ®(q’, ¢')
q'=1,...;0
P, — Ix whosei-th andg-th rows are exchange
P— PP
¢ — P,oPT
D(i,i) «— D(i,1)
D(1:i0,1) «— P(1:4,1)/D(i,1)
S(l:i—1,1:i—1)—P(1:i—1,1:i—1)
~&d(1:i—1,0)P(1:i—1,i)1D(,1)
LY — upper triangular part ob
B— L' F—T'HIPTLHD

o

Table 5.2: Calculation of WF-THP Robust Filters with Ordering.

5.5 MMSE Receive Weights

We use a very simple receiver model for the precoder desigmew! receivers apply the
same real scalar weight contrary to [18]. This assumptiGuess closed-form solutions
for the precoders. As was demonstrated in [18], the phageat@an at the receivers is
especially crucial for a system with erroneous CSI at thestratter. In that case, the
receivers must correct the wrong amplitudes and phaseg oéteived signals due to the
errors in the CSI at the transmitter. This objective is adkkely using MMSE receive
coefficients. So, our system design is as follows. Based opahl CSl, the transmitter
designs the precoders under the assumption that the recapply the same weight and
have the same errors in their CSI as the transmitter. Thiseceasve assumption of the
receivers is compensated by the application of the MMSEveageights introduced in
this section. Therefore, we have a slight mismatch betwkendceive weights model
arising from the precoder design and the MMSE weights usstéaal.

In order to obtain this scalar MMSE coefficient for ugerwe formulate a general
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MSE (g, ) depending on the scalar weight

e(gr) = B [|or — gsvl3] = B[22} — Gianyy — gxvsy + 91usyi ;]

_ * 2
= Cez.k — 9kCay,k — JkCyzx,k + |gk| Cyy .k

wherez; andy, are, respectively, the desired and the received signals.colrelation
coefficients are defined as, , = E[|z|’] andc,,» = E[|yx|?], and the crosscorrelation
between the received signal and the desired signal is @dais,, , = E[z,y;]. When
we compute the derivative with respectgpand set it to zero, we obtain

e (gx)

—( . = —Cayk + GrCyyr =0
g y vy

which leads to the linear MMSE coefficient for ugegiven by

IMMSE,E = ny,kC;y{k- (5.47)

The estimation o, . is straightforward, i.e. it can be found via averaging oweet but
the estimation ot,,, , is more delicate and depends on the type of precoder. Thierefo
we distinguish the type of precoder to obtain the crosstadroa c,, ;. in the following
subsections.

5.5.1 MMSE Weights for MU-MISO Linear Precoding

As mentioned above, MMSE receive weights are used insteddeofveights directly
obtained from the MSE optimization in Eq. (5.3) to corre@ thismatch of the phase and
the amplitude caused by the non-perfect CSI available ar#msiitter. For usekt the
crosscorrelatiom,, ;. in Eq. (5.47) between the desired signgaln|, whereu,[n] denotes
the k—th element of the transmitted symbai8:| corresponding to thé—th user, and the
received signal given by

yuln] = Ry Frinw[n] + ni[n]

is expressed as
Coyr = B [ur[n]yi[n]] = E [ux[n] (u"[n] Frinhi + in])] = e Frinhy,  (5.48)

where we assume thét, = E[u[n]u![n]] = Ix ande, denotes thé—th column of the
identity matrixI .

On the other hand, the variance of the received sigpal in Eq. (5.47) is simply
given by

cypte = B [lyn[nl|”] = B [(hil Frinuln] +ni[n]) (u[n] Fginhi, + ni[n])]
== h;fFRIianinhz + Uf],k
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Wherea;k is the noise variance for the useand we used’,, = 1.
Therefore, the MMSE receive weight is given by

* * _]-
IMMSE-LP,k — egFé{"nhk (h’gFR“nFI%inh’k + U%,k) . (549)

5.5.2 MMSE Weights for MU-MISO Vector Precoding

Similarly to the case of the robust linear precoder explimnethe previous subsection,
it is more appropriate to use MMSE receive coefficients wcstifrom the common
gain assumed in the VP design in Section 5.3 due to their Eugsgrformance in the
presence of CSI errors at the transmitter. Remember that #isedesignal for the—

th user in the case of VP ig,[n] + arve[n] and that the received signal is obtained as
yr[n] = hi xrve[n] + nx[n]. Therefore, the crosscorrelatiop, . in Eq. (5.47) is

cons = g 2 F L]+ )l
— - D B[l + anvmaln) (el + niln])| ul]
1 = H, *
A ;hk wryp[n] (ur[n] + arvek([n])
H 1 o *
=hiy ; Trypln] (uk[n] + arvei[n]) (5.50)

where we average over the whole block/é§ symbols since the statistics akyp[n] are
unknown. Moreover, the variance of the received signal sdyeabtained as

Cyyk = U?/k‘ N ZE hkaVP[ ]+ n[n ]) (wRVP[ Jhy, + niln }u }
1 NB 2
- nzl \hixrepln]|” + 02 (5.51)
Thus, the MMSE coefficients are given by

-1
IMMSE-VP,k = <hk N Z:CRVP dk ) ( Z ‘hk vap | +0' ) (552)

Wheredk [n] = Ug [n] + arvpPk [n]
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5.5.3 MMSE Weights for MU-MISO Tomlinson—Harashima
Precoding

Following a similar reasoning as in linear and vector rolpustoding, once again it is
preferable to use the MMSE coefficients at the receiver rattan the real weighjrrip
given by Eq. (5.45). This is because the MMSE coefficientscaggble of correcting
not only the amplitude but also the phase mismatch causduebgrtors in the CSI when
computing the TH precoder filters. In THP, the received difrathe userk is yi[n| =
h{ Frrupv[n]+mni[n], while the desired signal is given ley P Brrypv|n]. Therefore, the
crosscorrelation,, , between these desired and received signals is expresseitbasf

Cayk = B [(€x PT Brrupv[n]) (v" [n] Feryphy, + 15 [n]) ]
= ezPTBRTHPC’vFFI;'HPhZ (553)

whereas the variance of the received signal is
Cyy = B [[ysl”] = i FrrveCo Frrpphis + 03
Thus, the MMSE coefficients to be used together with the robH® schemes are

IMMSE-THPk = (egPTBRTHPCvFI%'HPhZ) (h;fFRTHPCvFFIg{TthZ + 057;{)_1 . (5.54)

5.6 Training data

It is important to point out that the proposed system withusitprecoding is based on
two training signals that must be sent frequently.

First, common pilot signals must be transmitted from thagnait antennas to enable
an estimation of the vector channels at the single-anteec@ivers (see Section 4.1).
With these vector channel estimates, the receivers findhibarel covariance matrices
via time averaging. Since the covariance matrices only ghaftowly, the feedback of the
information that allows us to know the channel covariancérimat the transmitter does
not cost much data rate. We assume, however, that the chstatistics are perfectly
known at both the transmitter and the receiver side. Baseldeofetl-back and erroneous
CSlI, the transmitter is able to perform a robust precodergdeas described in this
chapter.

Second, distinct dedicated pilot signals must be sent th eaceiver to allow an
estimation of the overall precoder and channel filter. TSigngate is necessary for the
design of the MMSE receivers which correct the phase andrtiitaide of the received
signal [18]. Clearly, the receivers are unable to directlyneste this quantity, since they
know neither the precoder nor the channel. Therefore, #ieitig symbols are precoded
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such that the total channel, i.e. the combination of the ocbkand the precoder for
the pilot symbols, is equal te,,,. For example, the vector-valued precoder for the
dedicated pilot channel of robust VPpgye piiot x = NLB fjjl xrvp[n] (ug[n] + agypiln]),
which gives, after transmission ovaj, the complex—conjugate of the desired ;. in

Eqg. (5.50). Similarly to the VP case, the complex—conjugzftéhe desiredc,, ;. in
Egs. (5.48) and (5.53) is obtained with the vector—valued@ierspgiin piotx = Frinex
and prrrppiotk = FirripCo, By pPe;, for robust linear precoding and robust THP,
respectively.

5.7 Conclusions

In this chapter, we have derived the expressions for rolsal and nonlinear Wiener
precoders in order to compensate the mismatch between ukectrannel and the
erroneous channel at the transmitter when no full chanrferrimation is available.
We have mathematically derived the precoder filters fordinprecoding, THP, and
VP, taking into account the errors in the CSI introduced byndeh estimation, rank
reduction, quantization, and feedback delay discussed @pteh 4. Basically, the
robust designs incorporate an error matéi (the so—calledregularization matrix
into the final expressions obtained for the precoders, whithbles us to avoid the
enormous degradation in performance with increasing £nrorCSI when non-robust
schemes are used. We have also introduced receive MMSE twaldferent from the
weights resulting from the optimizations with the objeetof correcting the mismatch in
amplitude and phase due to non-perfect CSI. This leads trdift weights for each user,
which clearly must be better than a common gain for all users.

An optimized limited feedback design combined with thedmisd schemes will lead
to an improvement of the BER performance with limited feedtbate. This is in fact
an open issue at present and is still the subject of muchnasedhe objective of the
following chapters is to find the best limited feedback dedig be used together with
the robust precoders of this chapter so as to make it podsilikeplement these limited
feedback schemes in practice.



Chapter 6
Feedback Design based on CSI MSE

In the vectorbroadcast channe{BC), the centralized transmitter has more degrees of
freedom than the receivers. Therefore, it is appropriaseparate the signals by applying
precoding at the transmitter. To be able to design precodimg transmitter needs
knowledge about the channel states of the different rereiMa the case oFrequency
Division Duplex(FDD) systems, this knowledge can be obtained by feedbadedat
partially), where th&€Channel State InformatiofCSI) of the receiver is quantized to meet
the limited rate conditions of the feedback channel. Theslback channel is assumed
to be error-free, but it introduces a delay. CSI can be obtilnyedifferent mechanisms
at the receiver side, which gives rise to a greater or lesseuat of degradation in the
final information sent through the feedback channel. Eaeh estimates the channel and
reduces it to a low-dimensional representation for datapression that is possible due
to the channel correlations. Before the feedback, the CSlastiped and only the index
of the codebook entry is sent to the transmitter. Fig. 6.1spilee block diagram of the
limited feedback channel including the different stepsdleannel estimation, coefficient
truncation, quantization, and feedback delay.

The standard assumption for feedback design is error-fré@tdBe receivers [1-5].
The receivers, however, get their CSI after estimation and tihcontains errors. In this
case, a feedback design based on mutual information isuiffcachieve [112,113] and
we therefore resort to a design based on the precoding MSE.

In this chapter, we propose some limited feedback desigtis the objective of
optimizing the quality of the CSI exploiting the low data ratiethe feedback channel
as efficiently as possible. These feedback designs alsdesnalto obtain adequate
statistical characterizations of the errors in the fedkb@sl that lead to closed-form
expressions for the resulting robust precoders. In pdaticwe provide three limited
feedback designs based on a CSI-MSE metric, i.e. on the nubrbatween the true
channel and the erroneous channel eventually availabledtansmitter. The proposals
are the following.

119
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» A preliminary design of the limited feedback that consist® basic modeling of
errors that is quite intuitive but less than optimum wheroihes to minimizing the
CSI-MSE metric.

* A non-Bayesian error modeling of errors based on an MSE fsadbptimization.
This MSE optimization based on a CSI metric does not include ghantizer
parameters. For simplicity, the quantizer is the unifornargizer explained in
Chapter 4 and the errors due to the quantization process aseleoed as additive
and independent noise that follows a uniform distribution.

* A Bayesian modeling of errors based on a joint MSE feedbadikmagation.
Now, the MSE optimization based on the CSI also includes thranpaters of
the quantizer (partition cells and codebook entries), tlee MSE optimization
involves the parameters for whole system, which leads topimom feedback
design. Another novel issue is that the closed-form sahstimbtained for the error
matrices of the robust design are based on a Bayesian modékmgprs. Since the
delayed channel versions fed back to the transmitter aftenation and truncation
and also the quantization errors are assumed to be Gaussiabuted, unlike in
the previous approaches, we can obtain the expressionsgqrobability density
function of the channel vector conditional on the delayathdated, and quantized
channel estimate according to a Bayesian framework. The auoilbits allocated
to quantize each channel vector resulting from truncatmahestimation processes
also has an important influence on the final performance aethiey the proposed
limited feedback design. In this sense, we propose an #hgotio allocate the bits
in real time so as to minimize the final MSE with a negligiblergase in terms of
computational complexity.

Note that all the schemes proposed above are based on sepptimhizations of
feedback and precoding, i.e. there is no unique and joininigdtion that also includes
the design of the precoder filters. Such a design is propos€tapter 7. Therefore, we
first optimize the limited feedback and then the optimum pdecs are designed taking
into account the errors of the optimum CSI sent from the recsiv

6.1 Preliminary Design of Limited Feedback

We start by estimating the channels at the receivers usm@liservations of the pilot
symbols. Then, we project the resulting channel estimaiitto the eigenvectors of the
channel covariance matrix to obtain the Karhune@\stransformation of the channel
vector which optimally provides a dimensionality reduntiwith the smallest possible
MSE (see Section 4.2). The coefficients of the truncated Klaasion are then quantized
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Figure 6.1: Model of Limited Feedback: Channel Estimatiomntation, Quantization,
and Feedback Delay.

prior to transmission over the feedback channel, whiclothices a delay. We incorporate
this delay into our model, considering a system without fieett delay but a delayed
observation for the channel estimator. This partial CSI énthsed at the transmitter to
reconstruct the channel vector and to design the precotieesproposed limited feedback
design models the errors in a quite intuitive way but it isiobg that the MSE is not
minimized, since no MSE optimization is performed in ordeioptimize the fed—back
CSI. Nevertheless, this approach is quite illustrative dutstsimplicity and its acceptable
performance in terms of BER, as shown later by means of compuerations.

In the following subsections, we describe this process inenaietail and obtain the
statistical description of the errors incurred at each.stépoughout this section we will
assume that the signals and errors are uncorrelated.

6.1.1 Estimator and Rank Reduction Designs

As shown in [114, 115], we use linear estimators at the recdiased onVy, x N pilot
symbols per time slog to enable the channel vector estimation for théh user. We
use the least-squares estimator explained in Subsectidhaef. Chapter 4. According to
Eq. (4.4), the least-squares channel estimate is obtaihed we consider the estimator
Gisesime = ST = (S1S)~1S". Therefore, the channel estimate is given by

hesila] = STyila] = huiq) + STnila] = huiq] + Nesr[d] (6.1)

where [see Eq. (4.1)]
yilg] = Shilq] +mifg) € C™
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with § € CN*N containing the training symbols for all usets,[q] € CV as the channel
vector for usetk, andny[q] € C™r being the AWGN with variance;. We also have that
[cf. Eq. (4.6)]

Mesild] ~ Ne(0,02(S"S)7Y) 6.2)

since we assumgy[q] ~ N (0, o7T).

The transmission over the feedback channel, howeverdutes a delay ab = ¢—v
slots. This delay can equivalently be modeled as followse &stimator gets outdated
training data, i.e. the observation of the estimator is ydaby D slots. Then, the
respective feedback channel has no delay. In other worelprétoder is designed during
the time sloly and the channel estimate is obtained during the timesstety — D. Thus,
the channel estimate for delayed training data reads as

ilesk[V] = hy[V] + Nesi[V] (6.3)

wherenes,[v] has the statistical properties described in Eq. (6.2). Glehg,[v] can be
rewritten as

hesi[v] = hila] + hilv] — hufg] + Nesk[v] = hula] + Nesi[V] (6.4)

being U;Sk[V] = hy[v] — hyq] + nesk[v]. With the temporal correlation properties of
hi[q) [see Eq. (4.24)], remember that

Ch D] = Elhy[qlhy[V]] = Jo (D) Ch (6.5)

with a, = 27 fo maxk/ fsiot, WhereJy(e) denotes the zero—th order Bessel function of the
first kind, fo maxk IS themaximumDoppler frequency for usér, and fso is the slot rate.
Thus, we obtain witle, = h[v] — hi[q]

Elepel] = 2Ch — Elulvhll[q] - Elhulghi V] = 2(1 = 1) Cu (66)

wherer, = Jo(ay D).
Hence, the new LS estimation error has the property

MoedV] ~ Ne (0, c’) (6.7)

with € = 62(S"S)™! + 2(1 — r;)Chy. Note thatn [v] is correlated withh[q].
Nevertheless, we will neglect this correlatedness andnasghath,[q] and the error
Nes JV] are uncorrelated.

After channel estimation, restrictions on the data ratéheffeedback channel force
us to compress the CSI to be sent to the transmitter from ths tle®ugh the feedback
channel. TheKarhunen-L&ve (KL) decomposition that enables us to obtain the rank
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reduction basisV, € CV*? from the channel covariance matrix was described in
Section 4.2. Remember that the channel coefficients are Qiv¢see Eq. (4.13)]

hy[v] = Vilhegi[v] € C2

Therefore, from Eq. (6.4) we obtain that the estimate of th@noel vector after rank—
reduction inthe time slat = ¢ — D is

hiwlv] = Vihrilv] = ViV hesi[v] = ViV R[] + ViV, v]  (6.8)

with the reduction basi¥},, € CV*¢ assumed to be known at the transmitter. Note that
the noiseV,CVan'esk[y] and the signa¥;, V," h;[q| lie in the same subspace spanned by
the columns ofV,. Thereforeflm[y] gives us no information about the properties of
h[q] lying in the orthogonal subspadé-. This information was lost during the rank—
reduction. The resulting error contribution due to the Kinication reads as

kL kla] = (I = ViVihhalg] ~ Ne(0, (I = ViV ) Cri(I = ViVi1)). (6.9)

Note that V,,V;!'n,[v] is orthogonal tomw. x[q] becauseV,V'n.,[v] lies in the
subspace spanned by the column¥pandnx. «[g] lies in the subspace orthogonal to the
columns ofV;, since the covariance matrix @f_ x[q] is (I — V,V;I')Cri(I — Vi VH)
[107]. Thus, we have that the CSI available at the transmittére time slot; (neglecting
the quantization) is given b, [¢] obtained as

hild] = Pnoqu[V] = A ilv] + nkL ld] (6.10)

with
h1i[v] = ViViBhi[q] + nrilv] (6.11)

where [see Eq. (6.8)]

M ilV] = ViVi'negi V] ~ Ne (0, ViV (03(S™S) ™! + 2(1 — 1) Chi) Vi V') -
(6.12)

6.1.2 Quantizer Design

The uniform quantizer is the most common of the scalar gmargi Note that even though
the input is Gaussian and not uniform, we can assume thanbhe PDF is very smooth
if the number of levels for uniform quantization is large @muivalently, the quantizer
step is very small). Therefore, the analysis of uniform quation is simple [108] and
the use of uniform quantizers gives reasonably good pedgoom with the enormous
advantage of simplicity in terms of practical implemerdati The principle of the scalar
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quantizer was explained in Subsection 4.3.1. The KL coefiisihr ;[v] of the rank
reduced channel estimate are unfortunately not uncoectlalevertheless, we assume
they are uncorrelated and white (i.&[hr[v]] = 0 and E[hri[v]hl, [V]] = I) to
be able to design a uniform quantizer independently fromctinnel statistics. This
scalar uniform quantizer based on the assumption of whifficeents has the advantage
of remaining unchanged for varying channel statistics. if\olohlly, we assume that
the input is bounded, with real and imaginary parts indepatig quantized and lying
in the range included betweeny/2 and v/2, so the overload region has a very low
probability (< 0.05) of containing any input sample as long as the input is disted
as a unit Gaussian distribution. The simplicity of the pregub quantizer enables us
to store initial codebooks at both the transmitter and wecesides that need not be
adapted to changing channel conditions. These codeboaks mdot be common to all
the users since each user can use a different number of bitop#icient to send the
CSI to the transmitter. However, the scalar uniform quanttzen be computed before
transmission without being recomputed in real time (just@wbetween look—up tables).
The computer simulations in Section 6.4 show how normajizach coefficient by the
corresponding entry of the diagonal matrix resulting frdme KL factorization of the
channel covariance matrix in order to obtain tlﬁéizm[u]ﬁ%k[u]] = I improves the
performance. The improvement in terms of BER is noticealspeeially for high SNR
values, since we approximately get a unit variance Gauslssaiibution. Afterwards, this
operation is inverted at the output of the quantizer by mplyling the quantized channel
version by this scaling factor available at the receivers.

The process of quantization is as follows. Before transimissive design uniform
quantizers with representants betweey2 and+/2 for each user’s coefficient that have
different sizes {/;) according to the importance of the channel coefficient tquentized.
The step size for the-th coefficient is given by; = %ﬁ which is assumed to be the same
for both the real and imaginary part. This initial codebo®ktored at both the transmitter
and receiver sides. The receivers perform a search to findlémeent in the codebook
that is closest to the real or imaginary inputs correspantbrthe real or imaginary parts
of the KL coefficients obtained at time slot= ¢— D. Then, the corresponding codebook
index is fed back to the transmitter. Finally, the transenigimply looks into its codebook
and builds the precoder parameters from the selected cod¢®@s].

We consider the following simple model for the quantizatoror

iLTJg[V] = ilQJC[V] + ’f]Q}]f[V] € C? (613)

where hq ;[v] is the quantized version of the rank-reduced channel céite and
nq.x[v] is the additive error introduced by the quantizer. Additithy) we assume that
the quantization errofjq ;[v] is uniformly distributed within the cell corresponding to
a codebook entry (neglecting the different cell size for tepresentants-v/2). The
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resulting error variance ig’ /12 for the real orimaginary part of theth coefficient [108].
Assuming additionally that the KL coefficients are uncatetl with the zero—-mean
quantization errors, we get for the covariance matrix of doantization noisejq [v/|
of userk

2 2
Ciiqr = E [nqivlglv]] = diag (% o %) € R (6.14)

where~?/6 with i = 1,...,d, also comes from the fact that the quantization errors for
each real and imaginary input are independent and giverz b2 [108].
Finally, bearing in mind Eqg. (6.13), we have

iLTJC [l/] = ‘/kjLT,k[V] = ‘/k <iLQ7;§[V] + ’f]Q}]JV]) = i’/Q,kz [l/] + ’I’]Q7k[l/] € (CN. (615)
For notational brevity, we have introduced, »[v] = Vinqx[v]. Therefore, we get the
rank deficient covariance matrix for the quantization error

2 2
(v Y,
Coo. = Elnaulinllv] = Vidiog (. L)V (616)

In summary, Eqgs. (6.10), (6.11), and (6.15) enable us toesgpthe CSI at the
transmitter side in the time slgtas

hilq) = hqulv] = Broqil] + QY]
= ViV hi[q] + mmelv] + mikekla] + molv) (6.17)

whereny ;[v] is the error due to channel estimation [see Eq. (6.52)],.[¢] stands for
the error due to truncation [see Eq. (6.9)], apg.[v] denotes the quantization error [see
Eq. (6.16)].

6.1.3 MSE Error Matrix for Robust Multi-User Precoder Design

Robust designs have been explained in Chapter 5 for implengeptecoding schemes
in scenarios where no perfect CSl is available at the tratesmi®n the other hand, the
cause of this erroneous CSI has been introduced in Chapteln 4 Wwrief discussion about
the error sources that have an influence on the CSI. As seen pté€la we can reduce
the impairments of the channel state information at thestratter side by introducing
a regularization given by an additional matrix in the desafithe different precoders as
shown in Egs. (5.17), (5.30), and (5.44). Next, we spell bist tatrix of regularization
against errors in CSl according to the limited feedback age in this section.
Remember that in Eg. (5.1) we introduced the channel matrotaias follows

Hlq) = H][q] + O|q].
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Figure 6.2: Feedback Design for a Non—Bayesian Error Modgddased on CSI MSE.

For the approach considered in this sectiﬁ'{q] is the quantized version of the channel
matrix and®|q] is the error matrix given by

K
Co =) Co,

k=1

where the error matrix for uséf, which reduces the effects of the mismatch between the
perfect and the imperfect CSl recovered at the transmittenddy Eq. (6.17), is expressed
as

Coi = ViV (02(S"S) ' +2(1 — 1) Chp) Vi Vi + (I — ViV Ch (I — ViV
+ Cor. (6.18)

6.2 Non-Bayesian Error Modeling based on CSI MSE

In this section, we propose a joint MSE optimization of tharumel estimation and the
rank reduction basis, where the quantizer is modeled asartigpendent additive noise
source. Fig. 6.2 depicts the feedback model based on CS| MSffilded in this section.
Note that the quantizer is not explicitly shown since itsgpagters are not included into
the MSE optimization. Interestingly, the resulting redoctbasis is different from the
eigenbasis of the channel covariance matrix (i.e. the KeghtLe@ve basis as used in
the previous section). Besides the design of the componéthe deedback system, the
joint MSE optimization also delivers the error covariancatmnx, which is necessary for
a robust precoder design.

As in the last section, we start by estimating the channéhat¢ceivers using the
observations of different pilot symbols sent from the traitsintennas. Then, the estimate
is reduced to a low-dimensional representation of the abldmyprojecting the estimate
onto a basis which depends only on the statistics of the @larifhe coefficients are
then quantized prior to transmission over the feedbackmlamwhich is assumed to be
error-free but introduces a delay.
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6.2.1 Estimator and Rank Reduction Designs

The feedback link introduces a delay that is modeled by me&restimation via an
outdated version of the observation of the training charMéien only one past training
period is considered, the receiver is as simple as posshilee only one observation
vector has to be processed. However, the receiver coulcenseas observation vectors to
consider more than one outdated version of the channegliiz@mproving the estimation
quality. Accordingly, we can stack the channel informatiorbe processed as follows
[109,116]

hilg) = [hilg— Di]7, - hilg — D))" e CNF (6.19)
where L is the number of delayed vectors to be processed,/anil= 1,..., L, is the
delay expressed as the number of slots fori ttrevector. We have that the crosscovariance
matrix between the channk},[¢] and the stacked channiel[q] of Eq. (6.19) is given by
[see Eq. (4.27)]

Chny. = E [higlh}[q]] = Br ® Chy € CVNE (6.20)
where /Bk = [Jo(ale), . 7J0(OékDL)]T - RL with o = 27TfD,maX,k:/fSlot (See
Section 4.4). From Eq. (6.5), we have

Ch = E [h[g]h}[q]] = Ciempr ® Chy, € CVPNE (6.21)

where the matrixCiemp, cOMprises the temporal correlations and:ith element in the
j-th column is

[Ctemgk]m, _ {io (o (D; — D;)) j f%
J =1

The final CSI recovered at the transmitter frémq] in Eq. (6.19) is given by
hi[q) = ViGrShilq] + ViGimila] + no.xld] (6.23)

whereS = I, ® § € CM>NL contains the training symbofsandj,[q] € CMl ~
Nc(0, Cy) is the noise for channel estimation, bei@ , = I, @ C,,, € CNelxNel,
The zero—mean quantization erngs .[¢] is assumed to be uncorrelated with the input
of the quantizer and has the covariance ma@iy, ,[¢] as given in Eq. (6.16). The
filter G;, € C>Mrl performs joint channel estimation and rank reduction ardrémk
reduction basis is given by, € CV*? (see Section 4.2).

The channel estimation and rank reduction wifh together with the basi¥} are
jointly optimized to end up with a channel estimate at thegnaitter with minimum
MSE

(6.22)

{Gwmser; Vumser ) = e{wgmn}l MSE,(Gy, Vi) st:VIAVi =1, (6.24)
Gy, Vi

We assume the same training symbols in every time slot tolgjnmotation.
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with the MSE of usek: given by [see Eq. (6.23)]

R 2
MSE,(G), Vi) = E [Hhk[q} ~ hulq j = 11 (Ch) + tr (ViGrCru GIVH)

— 2R (tr (ViGrSChpy)) + tr (ViGrSCh SUG V) + tr (Chy, )
(6.25)

whereCy,, ;. is the crosscovariance matrix bf,[¢] andhy[q] given by Eq. (6.20)C},
is the covariance matrix di[q] in Eq. (6.21), and’,,, , is the covariance matrix of the
guantization error given in Eqg. (6.16). In the optimizatfmoeblem of Eq. (6.24) we also
included the constraint for orthonormality of the columhdA.

In order to solve the constrained optimization problem of Gc24), we construct the
Lagrangian function

L(Gy, Vi, A) = MSE(Gy,, Vi) + tr (Ax (V'Vi — 1)) (6.26)

where A, € C% is the Lagrangian multiplier for the constraint. Note that is
Hermitian, since the constraint is Hermitian by definition.

The filter G, is readily found by setting the derivative of the Lagrandianction in
Eq. (6.26) with respect t6r;, to zero, i.e.

oL (o)
0G5,

Here, we employe®,'V;, = I for the last two terms. Therefore, the filt¥; is given by

1

Guvser = %Hcfljh,kS'H (SCﬁkaH +Chy) - (6.28)

Substituting the optimuntuvse » into the cost function of Eq. (6.25) yields

MSE,(V;) = tr (Cpy) — tr (WWHC;I}MSH (SC;,8" + Cpi) ' SC,—WMV;CH>
+tr (Cyoi) - (6.29)

Now, the above optimization only depends ¥ and can be solved using Lagrangian
multipliers. The Lagrangian function of Eq. (6.26) redutes

L(Vi, Ay) = tr (Ch,k:) —tr (V;chgh,kSH (SC;L’,{S'H + Cﬁ,k)il SCRh,kW:)
+tr (A (VIV, = 1)) + tr (Cro s (6.30)

and by setting the derivative of the Lagrangian functiorhwéspect toV,* to zero we
obtain

OL (Vi Ay)

OV * - _Ciljh,kgH (SCriS™ + Cﬁvk’)_l SChn Vi + ViAj! = 0.
k
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This equation can be rewritten as follows
W, Vi = V, A}l (6.31)
where the matrid¥,, is given by
Wi =Cl 8" (5C;, 8" + Cpi) ' SChy € TV, (6.32)

After multiplying by V! from the left, we see thal, is not only Hermitian but also non-
negative definite. Thus, the EVIEigenValue Decompositidf A, is A, = Q,P: Q1!
with the unitary matrixQ, € C%“ and the non-negative diagonal matd#$ < C?*.
Then, Eq. (6.31) can be rewritten as

W,V = V/®} (6.33)

whereV, = V,.Q is a matrix with orthonormal columns &g, sinceQ;, is unitary.
Thus, we see thad;, in Eq. (6.31) can be replaced by a diagonal ma#fxwithout loss
of generality. After multiplying Eq. (6.33) by, " from the left, we have that

VAWV, = &2 (6.34)

i.e. Vk is the matrix that diagonalize®’,. Thus, the columns oi/}c’ = V.Q, are
eigenvectors oW, and not those oC}, ;, as we intuitively used in Section 6.1. With
this intermediate result for the rank reduction bdgjs the cost function of Eq. (6.24) is
given by

MSE; = tr (Chi) — > ¢f; + tr (Cog i) (6.35)

i€l

wherel denotes the set of eigenvectors indices collecte®,i@;. and ¢; ; is thei-th
eigenvalue oW,.. Clearly, MSE,(Guwmse x, Vi) is independent of) .. Therefore, we can
setQ, = I, andV, € CV*? containsd eigenvectors oWV,. Note that since the rank
reduction is focused oW, the bit allocation of each user can be decided off-linertgki
into account its maximum number of bits to be sent throughfékedback channel. The
termy . goz’i in Eq. (6.35) is fixed because it only dependsdonTaking into account
that the former coefficient is larger than the latter, thection of a higher number of
bits to the larger eigenvalue reduces the final MSE. Thegefbcan easily be seen that
the termtr(C,,, , ) in Eq. (6.35) is minimized when we distribute the total numbfebits
as uniformly as possible. For example, when we consider2 and12 bits per user, the
best result corresponds to allocatifidpits for each coefficient (i.e3 bits for each real
or imaginary part), or, alternatively, when we hamMebits per user the best choicefs
and4 bits for the first and second coefficient, respectivelfhis counter—intuitive result

2The number of bits used for quantization must be two timesdimal number to end up with a cardinal
number of bits for the real and imaginary part.
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follows from neglecting the correlations between the irgnd the output of the quantizer.
Also note that no errors due to rank reduction are added totihanel estimation if all
the eigenvectors are employed. The set of indicasist minimize the MSE in Eq. (6.35),
i.e. the sumy ., gp;i has to be maximized. Since the eigenvalue3¥gfin Eq. (6.32)
are sorted in non—increasing order, i§., > ¢, > - ¢ v, the sefl will contain the
indices corresponding to the firgeigenvalues oW,.

In the following, we consider the special case with- 1 andD; = D, i.e. only one
observation vector in Eq. (6.19) is processed. Then, theeabxpressions are reduced as
shown below [117]. Let be the time slot corresponding to the design of the precaur a
v = q— D the time slot in which the outdated version of the channéinede is obtained.

The cost function in EqQ. (6.25) can be rewritten as follows

~ 2 ~ 2
MSEL(Gi. Vi) = B | [mufa] — hull[}| = B |l — ol
=tr (Ch,k’) + tr (‘/;CG]CC"J{;GI,;I%H) — 21 (tl" (T’k‘/kaSChqk))
+tr (ViGrSCLiS"GLV,) + tr (Cyy,,) (6.36)
with r,, = Jo(ay D) as explained in Eq. (6.5). Following similar steps to thasthe case
L > 1, the filter G} is readily found by setting the derivative of the cost fuaitiwvith
respect ta;, to zero:
GMMSE,k = Tk%HCh,kSH (SCh.,kSH + Cn,k)_l = TkV;cHGMMSE-estimk (6-37)

where it can be seen th@use ;. has the ordinary MMSE channel estima€@ivse-estimx

as the first stage. The term with the projection onto the BEsiproduces uncorrelated
outputs and the factor, is due to the inherent channel prediction. Substituting the
optimumGmuse ;. into the cost function of Eq. (6.36) yields

MSE, (Vi) = tr (Chi) — tr (V' Wi Vi) + tr (Chyg, ) (6.38)
with the non-negative definite matrl¥;, given by
Wi, = r2Cp .S (SChixS" + Cpy i)~ SChy € CVAN, (6.39)
Again, the matrixV,, diagonalized¥,, as follows
VWV, = &} (6.40)

which enables us to arrive at a similar result for the final MSEbtained in Eq. (6.35),
i.e.
MSE; = tr (Ch) — > ¢t + tr (Chy,) (6.41)
i€l
althoughgoiﬂ. is now thei-th entry of the diagonal matrix in Eq. (6.40) obtained fré¥,
in Eq. (6.39) and not from Eq. (6.32).
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6.2.2 Quantizer Design

Our work is focused on scalar quantizers that allow us toioltlnsed-form solutions
for robust designs with low impact on the complexity reqdit®y the user’s devices.
However, we also implement a vector quantizer to be robushagerrors in CSI, which
has the enormous disadvantage of considerably incredsengpimputational complexity
since it implies a larger dimensionality of the search thealas quantizers. For scalar
guantization, we simply use uniform quantizers, and fotmeguantization, the approach
termedRandom Vector QuantizatiqiRVQ) (see Chapter 4). Both quantizers as used for
the design in this section are described below.

Uniform Quantization Error

The truncated channel coefficients can be quantized usiagséime scalar uniform
guantizer as described in Subsection 6.1.2. Again, we niekagsumption that the input
is bounded but now, contrary to the previous approach, tileneduced channel estimate
is uncorrelated since its covariance matrix is diagorel (@, , = @7. Thus, we consider
that both real and imaginary parts of itth entry lie in the interval—v/2; i, +v/201.]-
Each coefficient is normalized to ensure unit variance afjtfatizer’s input, multiplying
the result of rank reduction by, ' before quantization. Multiplying the codebook
entry again by®,, we can fix the boundaries corresponding to a unit varianaesian
distribution[—+/2, /2], as done in Subsection 6.1.2. As a result, each entry of tile ra
reduced channel estimate is standard Gaussian and thigilngelection ensures that the
overload probability is less than%. Then, a common uniform codebook with cell size
Vi = 2\/§/Mi, where )M, is the size of the codebook, is stored at the transmitter and
the codebooks remain unchanged throughout the transmjssren though the channel
characteristics may suffer variations due to the wirelesgenment (see Chapter 2).

Random Vector Quantization Error

As described in Subsection 4.3.2, the delayed odigy;[y = ¢ — D] of the estimator is
the input to theandom vector quantizgRVQ), wherehs,[v] is given by

ﬁesk[V] = Gmuvise-predt S hi[V] + Gumvise-predi Tk V] (6.42)

with § € CM*N containing the training data ar@vmvse-pred beiNg the MMSE predictor
of Eq. (4.9) given bYGwuvse-predk = 7-Ch i ST (SCh ST+ C,, 1)t € CV*Nr where the
factor r, produced by the outdated estimation has been included. ardom vector
quantizer approximateéesk[u] by one of theM entriesyy;, withi = 1,..., M, by
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minimizing the squared error as follows

2

Imin = miin ﬁesk[u] ~ Y|, (6.43)
where the codebook entries are such that
Yri ~ Nc(0,Chy) i=1,..., M. (6.44)
Consequently, the error corresponding to#hi codebook entry obeys
€ = hesi[v] — Yri ~ Nc(0, Cj ), + Chy) (6.45)

since the codebook generation is independent of the estimat[v]. Note that this
distribution is independent of the indéx Cj,, is the covariance matrix ofesx[v] in
Eq. (6.42) given by

Cip = 12CnS™ (SCh i S™ + Chi) ' SChy. (6.46)

Therefore, we assume that the structure of the error is gixxeﬁi’;uk + Ch ), but
weighted by a factog, € R%*, i.e.

Caxr = Gk (Cﬁ,k + Ch,k) : (6.47)

The factor¢;, results from the selection process and is the ratio of the MEBEselection
over the MSE without selection:
Efmin, ||fesk[v] — yrall3]  Elmin, ||fesk[v] — yel[3
g, — Blmin hess (] — gl _ Flminellhea] “ i) (g 45
B[l |hesk[v] — vl 3] tr (Ciy+ Cns)

Note that this model for the quantization error is conséveati.e. the error is over—
estimated, since we neglect the transmitter knowledgetaheucodebook entry that is
selected and also about the structure of the correspondirtiign cell, which is known
since the codebook is stored at both the transmitter ancetievers.

In Appendix E we explain in detail how to solve the integraltive humerator of
Eq. (6.48), which is a by no means trivial procedure.

6.2.3 MSE Error Matrix for Robust Multi-User Precoder Design

For the robust precoder design, we again interpret the ehasna random variable and
the given fed—back CSI as deterministic, i.e.

Hlq) = Hl[q] + Olq]
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Figure 6.3: Feedback Design for a Bayesian Error Modelingthas CSI MSE.

where H[g] = [hi]q]. ..., hglq)]" € CK*N comprises the channel estimates obtained
from the quantized coefficients of the rank reduced chaiagltave been fed back. The
covariance matrix of the err@ is

Co =E[0"[¢Oq]] => Cq,

k=1

whereCg  is given by
C@’k = Ch,k — %ptkéi‘/olgt,k + C”IQ,k (649)

for the uniform quantizer shown in Subsection 6.2.2. Hehe, diagonal matrix®?
contains thel dominant eigenvalues &, in Egs. (6.32) and (6.39), for the cases- 1
andL = 1, respectively, on its diagonal.

However, for the random vector quantizer also explainediims8ction 6.2.2, the MSE
error matrixCe 4 is given by

Cor=Chyp — %ppkﬁi%ﬁk + Cq k- (6.50)

6.3 Bayesian Error Modeling based on Joint CSI MSE

In this section, we propose a feedback design for corretdtadnels that jointly considers
the estimation, the rank reduction, and the quantizatiepssfL16,118]. Fig. 6.3 depicts
the feedback model for this approach where the quantizexpbcely included since
codebook entries and partition cells are considered ingojoint MSE optimization,
as opposed to the optimization of Section 6.2. Therefore,néw formulation is a
considerable extension to that of Section 6.2, where we optymized the estimation
and rank reduction. Our goal is the joint optimization of ttéhonormal basid/,, the
estimatorGy, the codebook entrieg,, ;, and the partition cell®R,;, i« = 1,..., M, by
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minimizing the MSE, i.e.

{W: Gy, {yk,i}i]‘ila {Rm}f\il }opt = argmin MSE;
{Vi,.Gr o {y,i L AR L Y
st Vivi=1, (6.51)

with MSE, given by
MSE, (Vi G (g0 {RiHL) = B U(hk[q] - hk[qJHj (6.52)

whereh,,[¢] is the CSI recovered at the transmitter given by

rla) = Vi Qi (Ruld]) = Vihauld] € €, (6.53)

Remember that the feedback channel introduces a delay gwénb ¢ — v time slots
considered as an estimation delay instdagg] in Eq. (6.53) collects the coefficients of
the rank reduced representation as follows

hilg) = hrilv = ¢ — D] = Gy (Shy[v] +ni.[v]) € C¢ (6.54)
with the covariance matrix given by
Ch = E [Bilghl!lo]] = Gy (SCniS™ + Cp) G (6.55)
Therefore, Eq. (6.53) can be rewritten as
hilg) = Vihilg) + Viriqila] = Vi Qi (G (Shy[v] + mi[v])) - (6.56)

As we will see below, the main difficulty is the derivation &, and G,. The
conditions fory, ; andR;; are standard. Note th3§, V! £ Iy (althoughV,'V;. = 1,),
sinced < N.

6.3.1 Codebook Entries

Substituting Eq. (6.53) and the definitionQf () = Zf‘il Yr.: Ski(hilg]) into the MSE
of Eq. (6.52) we have

MSE;, = E[||hx[q] — hxlq)l3] = Elllhxla] — Vi > _ yns Ski(hla))|]3]

i=1

= tr(Ch) — 2%(2 Yi: Vi B[Sk (hu[a]) hila]]) + Z Yi Y B[Sk (hrla)].

(6.57)
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By setting the derivative with respectiq ; to zero we obtain that
~VIE [Su(hila) hula| + v B [Suahula))] = 0
which leads to
s = (B [Sealhula))]) VB [Si(ala) hula] (6.58)

which is the well known centroid condition [108]. The raréduced estimatk,,[¢] was
previously found and is given in Eq. (6.54). Thus, the MSEregpion in Eq. (6.57) can
be rewritten as

MSE; — tr (Chs) — i E[Sk.i(hulq)) R [a)] Vi Vi B[Sy (hala) hula]] (6.59)

Py E[Ski(hi[q))]

Remember that the chanrfet[| and the noisey,[¢] are Gaussian. Therefork[q]
and h;[g] are jointly Gaussian because they are related thrdudfl = G(Sh[v] +

nlv)), i.e.

|:hk:[Q]:| NN@(O |: Ch,k TkCh,kSHGII;I (660)

’ ’I"kaSCh,k Gk (SC}%]{SH + Cn,k) GI,;I )

wherer, = Jo(a D) [see Eq. (4.24)]. In addition, it is not difficult to find the areof
h.[q] conditional onky[q] using the Theoren0.2 of [26]. Indeed, given the zero-mean
joint Gaussian vectors andy with covariance matrice€’,, andC,,, respectively, and the
crosscovariance matri,,, = E[yz"], the mean and the covariance matrix describing

fylz(y|T) = fo(Y, Pyja; Cyja) are

yjo = Elylz] = CpaCa 'z
Cya = E[yyH]:I:] — ,uy|mu2|w =C, — C’ymCx_ley (6.61)

respectively. Ley, 5,1, P€ the mean ok, [g] conditional onf[q] andCy, ,/n, g the
covariance matrix of;,[¢] conditional onh,[¢]. According to Eq. (6.61), we obtain that

P gty = B [hk[CIWMLk[Q]} = 1.Cn.S"GLC;,  huld] (6.62)

H .
Chlallfula = E {(hk la] = “hk[qnhk[q]) (hk[CI] - “hk[qnhk[qﬁ ’hk[q@

= Ch,k — T]%Ch7kSHGI];ICI~:}€GkSCh7k (663)

whereCj, , can be found in Eq. (6.55).



136 Chapter 6 Feedback Design based on CSI MSE

Next, let us remember thdi,[q] can be modeled aB[¢] = Cill{:w with w ~
Ne(0,1) [similar to Eq. (2.23)]. Moreover, bearing in mind the edyak[h[q]] =
E[E[ht[g]|hi[q]]] provided by the dependence betwekfg] and h;[q] that gives us
E[Ski(hxla))hilq]] = E[Sk.i(hxq]) Elhk[q]|hx[q]]], we obtain with Eq. (6.62) that

E Sm(ﬁk[q])hk[q]] = 1,Cn s S"GIC; Y E [sk <Cill’/]jw> w] .

Substituting this result into Eq. (6.59) we obtain for the 1S

MSE, = tr (Ch) — 2 tr (VkHch,kSHGI;CF:;”CQ,kC;{/?G,CSCh,M) (6.64)

with
Cor = i ElSka(Cyw)w] ElSyi (Cyfw)w' (6.65)
© i=1 E[Sk,i(clmw)]

h.k
6.3.2 Estimator and Rank Reduction Designs

In this subsection, we derive the expression for the estin@}, ¢ C4**r that performs
estimation and rank reduction at the same time. Given tleattivariance matrixy, ,
can be expressed &8, (SC . S™ + C,, )G} [see Eq. (6.55)] and the unknown matrix
X, € CM>d which has orthonormal columns, is introduced to simplifg hotation in
the following derivation, we get for the estimator

Gy = CI X[ (SCy 8™+ Cpy) 17 € CNe (6.66)

where it is easy to show that Eq. (6.55) is fulfilled, sink¢ X, = 1,.
Let us defined,;, = ’l"kCh7kSH(SCh7kSH + ka)*l/Q e CN*Ne \We must solve

{‘/Opt,lm Xopt,k:} — argmax tr (‘/kHAkaCkaX,I;IAE‘/k) (667)
{Vi, X1 }
subject toV,!'V;, = I, and X}! X, = 1, in order to minimize the MSE in Eq. (6.64). We
construct the Lagrangian function as follows

L (Vi, Xi, Ay, Ag) = tr (%HAkaCQ,kX?AEW)
—tr (A (V'Vi, = 1)) — tr (Ao (X)) X — L))
with A; = Al € C™*? and A, = All € C¥?. The derivative of the Lagrangian function
with respect taX; is

OL(e)

X} ’
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and multiplying both terms from the left b¥ /!, we have
XAV VEA X, Cq ). = AY.
From this result and taking into account thit = Al, we conclude that
XJAMVIVIA X Cq ). = Cqi XA VIV AL X
With the EVDCq, . = U, E,U}, we can rewrite the above expression as follows
vlxiAlvvia. xu.z, = 5. UX] AV, VEA XU,

SinceZ}, is diagonal U X1 AV, V! A, X,.U,, must be diagonal to fulfill this equation,
ie. UIXTAIV,VHA, X, U, = & where®d, = Q, VA, X, U, is diagonal with
some unitary matrix@, € C?*?. Therefore, the cost function reduces to

MSEk = tr (Ch,k) — tr (E‘k¢i)

which does not depend on the unitary matd. Thus, we se), = L. In order to
maximize this resulting objective (=, $;) under the assumption that the diagonal entries
of =) are sorted in non—increasing order, we must choose-thecolumn ofV}, and
W, = XU to be thei-th dominant left and right singular vector &, respectively.
Thus, @, has thed dominant singular values ofl;, on its diagonal. We see that the
optimal basisVy,, contains thel dominant left singular vectors oA or, equivalently,
the d dominant eigenvectors ofi; A}. Interestingly, we also obtained this result for
the case where only, and G, had been optimized as in Section 6.2 [cf. Eq. (6.40)].
Note thatVg,, and Wy, are fixed for given statistic€’y, , and C,, ;. Therefore, the
maximization of Eq. (6.67) is solved b¥ ot = Wopt UYL, i.e. the MSE is minimized,
whereUy, is the modal matrix o, ;. of Eq. (6.65).

SinceWqp . = Xop Ui contains the principal right singular vectors 4f, we have

thatVyy, A = .U Xy .- Accordingly, the estimator can be written as [cf. Eq. (5166
Gopti = Cill{ljngplzl‘/oIg;kGMMSE-predk € C N (6.68)

where Guwmse-prede 1S the conventional linear MMSE predictor given by (cf.
Subsection 4.1.2)

-1
GMMSE-predk = TkCthSH (SCh,kSH + Cn,k) e CN*Nr

The estimator is then followed by the rank reduction perfednoy V.. Vo, also
produces decorrelation since the outpuGhfy; has the diagonal covariance matd#.

These two stages constitute the solution for the estimdt&igo(6.37) for the case that
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L = 1. However, when the quant|zer is included in the optimizads in Eq. (6.51), an
additional transformation Wlthi’ dei appears for the estimator. Note tiggt' aims

at normalizing every entry to un|t variandég,, applies some unitary rotation that does not
affect the distribution (see Appendix D.2) and, fmat];’/;b/lf again introduces coloring to

ensure thaC;, | = Gopx(SChiS"™ 4 Cp i) Gop.-

6.3.3 Quantizer Design

Having obtained the preliminary result of Eq. (6.58) for ttwebook entries, we will

describe in the following subsections how to obtain the ¢jmanparameters using the
Lloyd algorithm, i.e. the codebook entries and the decisioandaries arising from the
joint MSE optimization in Eq. (6.51).

Partition Cells

The MSE is the average distortion, i.e.

2

E [d (Aull Qulfula)] = B [ ||l ~

ﬁk[q]H |

el = El(held = B, g iig) (Peldl —

ula)|

2

With oy, iig = Elbxldllhelq)] and C,
Pohfallinlg) ) WE g€t

i (hilg), Qu(hela))) = E U\hk[q] Vi Q (Aula)) | \ﬁk[q@ = B | llhlql I}
— o (B [l [l | Vi Qu (Rela)) ) + || Vi (Bula)) |
=tr <Chk[q]!fzk[q]> T “I;k[q]VLk[q} Fohfq|hila) — 2R (uhk[q]|ﬁk[q] k Qu (i”f M))

+ HW Qy, (ﬁk[QD )

- 2
=Ct H“hk[q}\hk[q} —ViQ (hk[‘ﬂ) H2

wherec;, = tr(Chy — Ch,kSHGECg}kaSCh,k) is the trace of the covariance matrix
. ~ X . H 3
of hy[g] conditional onk[g]. Note that the termr(C', (1,1) + o (gl [ Pl o o)

comes fromE|||h[q]||5 |hrlq]] = tr(E[hi[qlhL[q]|hilg]]). Substituting Eq. (6.62) leads
to

2

dy, (ﬁk[C]L Qk(ﬁk[(ﬁ)> = o+

TkCh,kSHGEC;;}CiLk lq) = Vi Qi (i lg))

) .
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Due to Eq. (6.68), we have thatCy, , S GokaC* = Vopu:B1UJIC 1/2 . Hence, under
the assumption tha ., and Vo, are used, we get for the dlstortlon

e (ld), Qulhsla))) = o+ | @UEC, hula) = Qulbula)) [, (6.69)

Since the MS@[dk(ﬁk[q]LQk(ﬁk[q]))} is minimized, the partition cells must be chosen
to minimize d; (h[q], Q. (hi[q])) for every hilql, i.e. Ry = {x € Cd(z,yr;) <
d(x,yx;), Vi}, which is the nearest neighbor condition [108].

Suggested Codebook Design

The expression in Eq. (6.69) for the distortion can be furtimplified. AsQ,(y) =
Zj‘il Yr.i Sr.i(y), we have to rewrite Eq. (6.58) by incorporating Eqgs. (6.68) €.68).
Thei-th codebook entry then reads as

i = (B [Sea(ula))| )‘1 VI'E |Swi(Pula))| B | hulallclg]

= (B[Subuld)]) " nVaCniS Gl Oy B[Sy (ula) ula]

= (B [Selhula)] ) BUPC, B[Sy (hila) hula]

where
Py
Tk‘/kHCh,kSHGI,;ICF:}C = ‘/kH TkCh7kSH (SC’h,kSH + C,,%k) 12 XkUk UEC;/;C;}C
A,
= o, U'C; 1/2.
It is useful to redefine the quantizer as
Quly) = & Q) (UF'C, 1 y) (6.70)

to eliminate the uncertainty due to the first two terms of therfGp. . of Eq. (6.68). Note
that h,.[g] has the same statistical properties@%ﬁw = Cl/QUkw since the unitary
rotation withU), does not change the statistical propertleﬁ;c([see Appendix D.2) where

w ~ N¢(0,1) as before. The redefined quantizgr(e) is given by

M
=> ;S (6.71)
=1
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Yi[q] DCiMMSE-predk optk: >D> hk >D12Uk huq] Qulo) %‘Z]

Figure 6.4: Preliminary Quantizer Design for Limited Feack

yk[q] GMMSE-predk Optk D, h kQ]
/
> {> Qi(s)

Figure 6.5: Proposed Quantizer Redesign for Limited Feddbac

whereS;,(y) = Si..(C;/*Usy) due to Eq. (6.70). The new codebook entries are

Y = P 'y = (B[S (w)]) " E[S, (w)w] . (6.72)

Then, we get for the distortion [cf. Eq. (6.69)]

i (Rula), Q. (Rula))) ) = de (CYURLA), Qu(CY T la) )
=cr+ Hﬁpk (’ulk[ — Qu( hk )H (6.73)

whereh,|q] = U,?C;L/Qﬁk[q] € C?. Remember thab,, is diagonal. Thus, the distortion
to be minimized for the design di),.(e) has a very simple structure. Additionally,
hi[q] ~ Ne(0,1) which leads to the simple centroid condition in Eq. (6.72).

Note that we can concentrate on the designQife), becauseQ, (hilq]) =
@, Q. (hi[q]) with the outputhy,[¢] of

gpt,k = dslzl‘folgngMMSE-predk- (6.74)

Figs. 6.4 and 6.5 depict the quantizer design previouslggsed in comparison with the
quantizer redefinition shown in this subsection, in whiahitiputs to the quantiz&y, ()
are white vectors of Gaussian random variables.

Then, the resulting CSI of the transmitterVig,,, P, Q).(Gop .Yk [q]). Also note that
the estimatot;,,, . and the basi¥4 ;. only depend on the channel statistics. Hence, they
can be computed independently of the choice(p(e).

To summarize, we obtained from the joint optimization in E351) that the received
training symbolsy;[¢| are passed through the ordinary MMSE prediaf&imse-preds;
rank reduced withV,,, and weighted with®, ! to obtain uncorrelated unit-variance
entries. Then, the indef found by the quantize®), (e) is fed back and the CSI at the
transmitter iSVokasty,’M. Note thatAk = TkC}hkSH(SCh,kSH + Cn,k)_1/2 depends
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only on the channel statisti&s;, , andC,, ., which change very slowly. Therefor®&p:
can be communicated to the transmitter with negligible lbgad and we assume a perfect
knowledge ofV,,, and @, at the transmitter. Despite the simplicity of Eq. (6.73), we

1. Setm =1
2. Initial codeboolC; = {y;} and partition cellsk; with the uniform scalar quantizer
of Subsection 6.2.2
3. Set the threshold to stop the iteratieps, and set = oo
while € > emin do
4. Given the codeboog,,, the Lloyd algorithm gives the improved codebatk,
Nearest Neighbor ConditiorThe distortion of the scalar quantizer is given by
d(z,Q(x) = (- Q) =M, (x — 1) Si (2)
The new partition cell is easily obtained by applying this distortion measure as
Ri={a; <z < B} witha; = Y=5 andg; = Yt
5. Centroid Condition Applying the centroid condition, the new codebook is
yi = (BS; (2)]) " E[Si (z) 2]
with z ~ Ng (0, %) The above expectations are obtained as
B [Si ()] = [ fo (2,0,1/2) dz = § (exfe (o;) — exfe (7))
= ®(V2q;) — ©(V283)

and

E[S; (z fﬁla:fc, z,0,1/2)dz = f(exp( oF) —exp (— 52)) 5
whereerfc( ) is the complementary error function defineccas () f [ret
and® (z) f [ e ¥ /2dt. Thus,erfc () = 2@ (V2z)

The codebook entries @f,, 1 are given by
_ 1 ew(—ad)—ep(-B) _ 1 ew(-a?)-ew(-07) . _
Yi = NG erfc(al) erfc(B;)) T~ 27 @(\fal) (\[/Bz) , 1= 17 . ,M
6. We compute the average distortion (MSE)@gy,; as follows

¢=E[d(z,Q(@)] = LY E (- y)*| 7 € Ry pla € Ry)
1Mo (ep(ad)en(a)

2 =127 erfc(a; ) —erfe(B;)
whereM is the number of codebook entries of the scalar quantizer
7.m—m+1

end while

Table 6.1: Codebook Optimization of a Scalar Quantizer for alRé@lued Gaussian
Input with Variance).5.

suggest separating the scalar quantization for every éregaf and imaginary parts are
also split), i.e. the partition cell®; ; are hyperrectangles (transform coding, [108]).
With this restriction, the design d);.(e) is independent off, or any other quantity
related to our system. The scalar quantizer for any of2theeal-valued scalars is the
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MMSE optimal scalar quantizer for a real-valued Gaussiadoan variable with variance
0.5. Due to this property, there is no need to compute the pasméor Q) (e) in
real time. Instead, they can be computed in advance (with_libyd algorithm [108])
and stored. Moreover, the restriction of separating sagl@ntization enables closed-
form expressions for the conditional moments to design tieequler, as can be seen in
Subsection 6.3.5.

Initial Codebook

Although the estimators and the quantizers are jointlyropzed by minimizing the CSI—
MSE [e.g. Eq. (6.35)], we can compute the codebook parasgterdvance before the
data transmission since the estimators are independeheathoice of the codebook.
Therefore, we construct the initial codebook off-line todtered at both the transmitter
and receiver side with no need to recompute its parametexsfging channel statistics
since it is based on a real-valued standard Gaussian distnibwith variance).5. This
codebook is much more appropriate than the codebooks oféveps subsections, since
we do not have uniform inputs, but rather unit variance ce@x@aussian inputs. As a
consequence, this initial codebook is easily obtained bgimsef the Lloyd algorithm
[108,119] as shown in Table 6.1. Since its calculation istriaial, note that the average
distortion shown in step of this table is obtained as follows

M

e(log, (M) =Y E[(z—y)’ |z € R}] p(z € Ry)

i=1

M M Bi 1 / ! 2 8;
=Y E[2’|z € R] p(z € Ry) +Z<fo” Z el ) / fo(z)dz
=1 «;

AC
_zéE[ 2Ry fjﬁff /a fola)de
3£ (5] e
- % a i % (GXZr(fc (:3)__62?;((5?)3))2 (6.75)

=1

where f,(z) = J-exp(—2?), i Ele? |z € Rilpz € Ry) = E[e?] = 4, 4 =
2! (2! ¢! fo () da! .
: [sik;f(n” - fm fi()j  Elzlz € R)) = y;, and iz € Ry) = [ fo(2)dz. This

average distortion as a function of the number of iteratienpdotted in Fig. 6.6.
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Figure 6.6: Average Distortion vs. Number of Iterations.

6.3.4 Bit Allocation

When using scalar quantization (transform coding, [108}ead of vector quantization,
the available bits have to be allocated to the differentascebefficients. Since in real
systems the bandwidth of feedback channels is very limitegltotal number of bitsvy
should be very small and, therefore, strategies such amoptibit allocation can greatly
improve the performance with a negligible increase in cotapenal complexity.

The average distortion or MSE is given by Eq. (6.73). kR[] andA}™[q] be the
real or imaginary part of the-th element ofa,[¢]. With &, = diag(vk1, - - -, ¢ra) and
using scalar quantizers, Eq. (6.73) can be expressed as

i oy <(7l?§ [a] — Q. (55,‘3 [Q]) ) = <7ﬁ§3 [a] — Qr (7&}33 [Q]) ) 2)]

d
=k + D Ph i, (6.76)

i=1

€k:Ck+E

wheres;, = E[|hlq] — Qy,(hF<[q]) — j Q,.(hi[q))|*] is the MSE betweehy,;[q] and
its quantized version. Remember thiais the number of coefficients resulting from the
rank reduction process to be sent from each user to the triaesiote that; is fixed
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for a given number of bit$, ; sincehy[q] ~ Nc(0,1). Therefore, for a given number
of bits, we can calculate;, . off-line to be stored at the users prior to transmission. Let
€5, = 2MSE(by,;) be the function that determines the mean squared erromistef the
number of bits used to quantize the real or imaginary paraohehannel coefficient [see
Eqg. (6.75)]. Then, the bit allocation problem can be solwedieans of the optimization
problem

d d
{boptk.1: - -+ bopuka} = argmin Yy of IMSE(by;) Sti Yy 2by; = N (6.77)
i=1

{bk717--~7bk,d} i=1

where Nyt is the number of bits per user sent through the feedback ehamtnshould
be mentioned that we provide the same number of bits to qeabith the real and
the imaginary part of each coefficient and, therefore, ithgiaus that each quantized
coefficient uses an even number of bits.

In principle, we would have to test all the possible bit adlbans whose total number
of bits Ny is fixed, which can make the search difficult when the numbdaitsfto be
allocated is high. However, the MSE of each quantizer dseaith a higher number
of bits and, due ta,, > ... > ¢4, the total MSE is always smaller when more bits
are allocated to quantize the coefficients with lower inglicéhus, we only have to test
bit allocations whose number of bits decreases or staysamnsith the coefficient index
(see Table 6.2). In the sequel, we refer to this bit allocattgorithm asoptimum bit
allocation

6.3.5 MSE Error Matrix for Robust Multi-User Precoder Design

For the robust precoder design, we must find the conditiomnhentsE[hk[q]LﬁQ,k [q]]
andE[hx[qh} [q]|hq.x[q]] of the probability density functioy, 11 7, 1 (Prelalhailal),

since the transmitter only knows, .[¢], but the cost function depends én[q] 3. The
closed-form expressions will be obtained for the specis¢thal); (o) performs separate
scalar quantization as assumed in the previous two subssctiRemember that the
transmission over the feedback channel introduces a déldy e ¢ — v slots, i.e. the
precoder is designed during the time sjaind the channel estimate is obtained during
the time slotv = ¢ — D. Remember also that,[¢] ~ N¢(0,1,) is the input vector to the
quantizer given by, [q] = GoprYrla], WhereGy . is the estimator that results from the
quantizer redefinition angy[q¢| is the received pilot signal (see Subsection 6.3.3).

3For example, the precoder in Eq. (5.17) depend&foandT’. The row of H corresponding to uséris
E[h} [g]lhq.klgl] andCe in T [see Eq. (5.14)] contairis[hy[q]h}![g]|hq,k[g]] in the Bayesian framework
employed in this section.
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Taki~ng into account that tpe conditional moments neededtlier robust design
E[h[q]|hq.x]q] andE[h[q]hi![q]|hq.x]g]] can be further obtained as

E [hlgllhqslal] = B [ [hulalcla]] hoxld]
B [hlalhll (o) haula)] = E [E [hulglhll(g]hsla)| Iha.la] (6.78)

and sincehq [¢] = Q)(hi[q]), we start by deriving the expressions for the moments
Elhy[q]hi[q]] andE[h[q]hy[q] [hk[q]].
Sincehy[q| andhy[q] are jointly Gaussian, we have with Egs. (6.54) and (6.74) tha

[
klq q { Chi 7.ChpSTGH }
~ N (0 opLk
{ ] (0 "6GopuSChic  Gopy, (SChiS™ + Cri) G, )

Chlc %pt,k?pk
~ N¢ (0, Lﬁk%&k i ) (6.79)

wherer, = Jo(axD) [see Eq. (4.24)]. Hence, applying Eqg. (6.61) yields for the
conditional mean

Hy it = B [PrelallRela]] = Vops®iheld] (6.80)
and for the conditional covariance matrix
Chlglini) = Chie = Vopur i, ‘/;pr,k (6.81)

Therefore, the conditional momeFith,,[q|hH[q]| R ]q]] is given by

H 7 H
B hylglhi gl [ [‘1]] = Cry gl T Fhilql g Pl il
= Ch,k - %ptk‘pz‘/z)lggk + Vépt,k@kilk[qmg [Q]dskv;%pk (6.82)
Thus, both the conditional mean and the conditional caicelanatrix in Eq. (6.78),

henceforth denoted respectively py, andR can be written as

rlallhq,kld] hie|lglhlq]?

Py qliola = Voptk®r E [ﬁk[CIHﬁQ,k[Q]] = Voptrx @i, (6.83)
and
(6.84)

R, Chc — Voprk @i Vopui, + Vopu @i M1, Vo,

Q]|’~1Q,k[¢ﬂ opy,k
respectively. Here, we introduced
1
my = — W fop(w) dw
R Se
1 H
M, = — WW fo(w) dw
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with k), = fS fulw) dw (see Appendix F.1). Note that, = y; ., [cf. Eq. (6.72)] and
Pty [l kg hQ klq]. The regiorsS,, is the hyperrectangle given by

Se, = {x € C*, Vi oS (€) < R(wi) < BES (), ot (0) < (i) < B% () }
(6.85)

wherea}¥(¢,,) and 3;%¢(¢;) are the lower and upper limits, respectively, of the paiti
cells of the quantize), ;(e) applied to the real part dfy.;[q] corresponding to the fed—
back indext;, of userk. Similarly, o} (¢;) and 3, (¢;,) are the lower and upper limits,
respectively, of the partition cells of the quantlxg(,gi(o) applied to the imaginary part
of ilm[q] when the index/;, is fed back to the transmitter by the user Note that
w ~ N¢(0,1) is used instead df,[¢] for brevity.

Taking into account thal’y, , = I,, the above expressions can be written as

my= ple +j pl (6.86)

with gt = [, ..., 9] ™. In Appendix F.2, it is shown that

1 exp ( akaz (ﬁk)> — exp ( Re? (fk)>

SR e (Vo affs () — @ (ﬁﬁk;f( ) o5
Correspondinglyp;™ = [, . .., %] " with

e (ak? () — e (=513 (6) 6.59)

T 0 (V2R (G) - @ (ﬁﬁ,“- (t))
The second term dM,, in Eq. (6.87) is diagonal, i.e.
X, =diag (ok1, ..., 0k4)
whosei-th diagonal element can be expressed as (see Appendix F.3)
Ok = Ths + Thr (6.90)
with
N o1 AR (@)exp (—als? () — B (6) exp (-85 (4)

1
Thi = 9 P T 2\/7 P (\/5045,‘2 (fk)) - (\/_/Bkz (¢ k:))
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Figure 6.7: Effect of Estimation Error on the Proposed RoliB+THP with Approach
[Il from Section 6.3 as a Function of Different Training Lehg in an Urban Macrocell
Environment.

and, correspondingly,

L e 1Al @) e (—al () - B () exp (<55 (0)

5 Hii + 2\/T o (\/504}3 (fk)) -2 (ﬁﬁ}“n’l (gk))

The above results enable us to compute the conditional ieova matrix

Im
Tii —

Ch

~ _ . _ ) H
cldllhgild = Bl ~ Phlalo kld Fhuldlharldl
= Chj, — Voptu®} Vomire + Voptk @1 X1 Vonis
= Ch,k + ‘/optkzéirkvggtk (691)

whereY,, = X, — 1,. Note that the non-zero elements of the diagonal mafxix Rggd
only depend on the properties 6f.(e). They can therefore be computed in advance
and stored as parameters@f(e). The first and the second term in the second line of
Eq. (6.91) come from the erroneous knowledge alquif we hadh,. But since we only
haveBQJg available, the variance of the error is increased by the teirm in Eq. (6.91).

As seen in this section, the uncertain knowledge about theradi at the transmitter is

modeled by the conditional probability density functign, s, ., (P[4l |hq.x]q]) whose
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covariance matrix is given by Eq. (6.91). Therefore, altftowe consider the channel as
being random we are able to exploit the statistical deperelertween the channel and
the fed—back information (see Chapter 4). This goal can b&ewsth by extending the
classical precoder optimization with a mean with respetiiéachannel conditional on the
fed—back information. The conditional mean introducesgalliaization of the solution
that makes it more robust to CSlI errors.

When taking the conditional mean of the MSE, we always en@&suhe conditional
mean of the channel and the conditional mean of the chanrs@h@ee Chapter 5, e.g.
Eq. (5.10)] which can be written respectively as [see Eq83)cand (6.91)]

5 .
£ [H‘HQ} - [uhl[‘J“hQ,l[lﬂ""’l’l’hK[qHﬁQK[q] =H (6.92)

E [HHH ‘ﬁQ} — H"H + Co (6.93)

WhereI:IQ = [i”QJ[Q]a BQ,Q[QL R iLQ,k[QH andCeg = Zszl C*@,k = Zk:K:I C:Lk[q”i,,w[q]'
Notice that for MMSE designs, no other conditional momentsthe channel are
necessary.

6.4 Simulations

This section presents the results of several computer atirook carried out to assess
the proposed MU-MISO system with robust precoding and éohiteedback channels
as shown in Fig. 6.18. In this section, we study the BER perdmce achieved with the
three precoding schemes depicted in this figure: robust&vierear precoding¢b. WF-
LP), robust Wiener Tomlinson-Harashima precodirap( WF-THP) and robust Wiener
vector precodingrob. WF-VB. Note that we only use the MMSE criterion instead of
the zero-forcing criterion since zero-forcing clearlydsao suboptimum solutions, as
demonstrated in Chapter 3.

We consider a MU-MISO system witN' = 4 antennas at the transmitter aRd= 4
single antenna users. Performance is evaluated in termmotledBit Error Rate(BER)
versusSignal to Noise RatiSNR). The results are the mearbgd00 channel realizations
with 50 QPSK modulated symbols being transmitted in each chanakagion. A delay
of D = 2 slots is considered for all the users, which are not fixe@tied but moving at
a given speed. The Doppler frequency is normalized witheaesio the slot period and
is calculated by taking into account that. is 1,500 Hz and that the center frequency is
2GHz. We consider three different environments following 8GPPSpatial Channel
Model (SCM) [36]:

» channell (SCM1): suburban macrocell environment;



150 Chapter 6 Feedback Design based on CSI MSE

e channeb (SCM2): urban macrocell environment;
» channeB (SCM3): urban microcell environment.

We consider channe? in most of the results presented in this section due to its
intermediate BER performance and diversity. The BER curves ddotained after
averagingl00 channel covariance matrices. Finally, for reasons of goitplwe assume
perfect CSI at the receiver for calculating the MMSE coeffitse

The first results in Figs. 6.7— 6.13 were obtained using tlrel tieedback design
discussed in Section 6.3.

First, we carry out some preliminary simulations to seléet size of the training
sequence. Fig. 6.7 shows the uncoded BER for robust THP overltsam macrocell
environment (channel 2) and different training sequenogtles in order to illustrate
the performance degradation caused by channel estimatiorse In this computer
experiment, this is the only error source in the system. A®mpromise between
training sequence length and performance degradationjokelpe valueN; = 6 for our
subsequent simulations, which introduce2dB loss at the BER operation poii6—2
with respect to the case of perfect CSl, as can be seen in Fig. 6.

The performance of robust THP schemes in channel 2 for difteuser speeds is
plotted in Fig. 6.8. Rank reduction is applied and ahb 2 complex coefficients per user
are transmitted through the feedback channel. These deeticare scalarly quantized
using6 bits (3 bits per real dimension) which yieldg bits per user. Fig. 6.8 considers the
speed values dfo, 30, and60 km/h which correspond to normalized Doppler frequencies
of 0.0123, 0.0370, and0.0741, respectively. It is apparent that, as expected, the faster
the fading, the more the performance degrades. Fig. 6.8pdtds the uncoded BER
whenRandom Vector QuantizatiqiRVQ) is applied instead of scalar quantization with
the same number of2 bits per user. Each user moves at a speesodim/h for the
RVQ curve. Note that in RVQ the stored user’s codebook costahannel vectors. As
expected, the system performance is better when RVQ is u$ki is because RVQ
carries out a joint quantization that uses a much larger moale 2'2 = 4,096 entries
per user) and compares andimensional vector witl,096 complex vectors in order to
choose the closest one for each channel realization andobacimel covariance matrix.
Its computational complexity is thus much higher than thiatoalar quantization, where
the search is reduced to a comparison ®ithk= 8 scalar values for the real and imaginary
parts of each fed—back coefficient. For the considered nuwb&2 fed—back bits per
user, it is clear that the performance of RVQ for medium amgh8NR must be better
than that obtained with scalar quantization.

Fig. 6.9 shows the influence of the different errors souraessidered throughout
this work on the uncoded BER. Again, robust THP over channeltB avuuser speed of
30 km/h is considered. Obviously, each new error source addeateg degradation in



6.4 Simulations 151

._‘
o\
L
T

uncoded BER

—¥—v=60km/h, WF-THP

—©—v=30 km/h, WF-THP

—7— v=10km/h, WF-THP

—B~random VQ, v=30 km/h, WF-THP|
| — perf. CSI, v=10km/h, WF-THP

lo I I T AT

-10 -5 0 5 10 15 20 25 30
SNR in dB

Figure 6.8: Effect of User Speed on the Proposed Robust WF-TitilPApproach Il
from Section 6.3 in an Urban Macrocell Environment with Alr&s and 12 Bits per
User.

performance to the previous one. Note the performance datioa when moving from
d = 3tod = 2 truncated coefficients. Also, note the performance loshi@asnitimber
of bits per user decreases. Nevertheless, truncatioh=+02 coefficients and. = 12
fed—back bits per user ensure a suitable system perfornfB&teis abouf x 10~2 at an
SNR of10 dB) with the enormous advantage of noticeably reducingekdthack channel
overhead. This overhead reduction becomes even more #igeeas the number of
transmitting antennas increases. In the subsequent cengyieriments in this section,
we will used = 2 and L = 12 as system parameters.

Fig. 6.10 plots the performance dinear Precoding(LP), Tomlinson-Harashima
Precoding (THP), andVector Precoding(VP) robust schemes for the three different
scenarios described in [36]. All error sources are consifigre. estimation, quantization,
truncation, and delay errors inherent to the feedback mtngsson. Obviously, the
performance for channél (suburban macrocell) is much better than that for cha@nel
(urban macrocell). And the performance for chariislagain better than that for channel
3 (urban microcell). This is because the spatial correlatiochannell is considerably
larger than in channel (with channel2 in between), i.e. the third and fourth channel
eigenvalues are negligible in the case of charinehereas they have significant values
for channeB and even for channél Thus, performance degradation due to truncation to
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Figure 6.9: Effect of Different Types of Error on the Propgdd@obust WF—THP with
Approach Il from Section 6.3 in an Urban Macrocell Enviroam. Error A: Estimation;
Error B: Rank Reduction; Error C: Quantization; All Errors: Bsdition, Rank Reduction,
Quantization, and Delay.
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Figure 6.10: BER Performance for Different Types of 3GPP CkhMuodel with the
Proposed Robust Precoding and Approach Il from Section &8 M Bits per User.
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Figure 6.11: BER vs. SNR for MU-MISO Wiener Linear PrecodinghvApproach I
from Section 6.3 in an Urban Macrocell Environment.
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Figure 6.12: BER vs. SNR for MU-MISO Wiener THP with Approadh from
Section 6.3 in an Urban Macrocell Environment.
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Figure 6.13: BER vs. SNR for MU-MISO Wiener VP with Approachftbm Section 6.3
in an Urban Macrocell Environment.
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Figure 6.14: BER Performance Improvement with Approach éhfrSection 6.2 for
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Figure 6.15: BER Performance vs. SNR with Approach Il froneti®a 6.3 for Limited
Feedback.
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Figure 6.16: BER Comparison vs. SNR of Approaches I, Il, anthiBections 6.1, 6.2,
and 6.3, respectively.
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Figure 6.17: BER Comparison vs. SNR of Approaches Il and llé (Sections 6.2 and
6.3).
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d = 2is more severe in chann&than in channel. When comparing the three precoding
schemes considered, LP exhibits the worst performancédnérabust design, as is also
the case for perfect CSI. The achieved performance of VP iayawetter than that of
THP, although it is quite similar. Note that the complexi\MP is considerably greater
(due to the search in the lattice), which motivates theaailon of the suboptimum robust
THP schemes instead.

Figs. 6.11, 6.12, and 6.13 show the improvement of our rodcls#mes with respect
to the non—robust ones. It is apparent from these figurestteaton—robust curves go up
for high SNR due to the sensitivity of these schemes to ingoei€SI. The advantage of
using the robust schemes, which provide a performance wveprent and compensate the
imperfect CSI knowledge caused by the different error s@jlisealso apparent. In these
simulation results, different scalar codebooks (a codelwdon = 4 entries for coding
the real and imaginary part of the first coefficient andhof= 2 entries for the second
one, andn = 4, m = 8, orm = 16 codebook entries for coding each real and imaginary
part of the two coefficients sent to the transmitter) havenhesed, i.e. we are employing
6, 8, 12, and16 bits per user, respectively. Clearly, if the number of bitnireased,
the BER reduces because the errors due to the quantizatioegsrare smaller. However,
with a codebook of reasonable size, for example with Gréwtries orl2 bits per user, we
already obtain a good BER performance. Moreover, the impneve in BER is almost
negligible for larger codebooks, which have the enormosadiiantage of reducing the
compression rate for the CSI sent through the feedback chandeat the same time
considerably increasing the storage capability requiteldeareceivers [103].

Fig. 6.14 shows the improvement in BER performance when ugiegsecond
feedback design discussed in Section 6.2. Moreover, thdtsesre shown when we
consider more past channel versions for the robust desifpuasl in Subsection 6.2.1.
It is obvious that the usage of a higher amount of CSI redueemibmatch between the
true channel and the erroneous channel since the uncgrisnecreased.

Fig. 6.15 shows the BER performance corresponding to thd #pproach, i.e. for
the joint MSE optimization that includes the quantizer paggers in the optimization
(see Section 6.3). As expected, no bit allocation (the bgssaread uniformly over the
coefficients) leads to worse performance than optimum bitation, since this latter
strategy allocates the bits in the sense of minimizing theEM&gain, the gain due
to vector quantization compared to scalar quantizationpjgaeent, but at the cost of
substantially increasing the computational complexitghatuser end.

Finally, Figs. 6.16 and 6.17 show a comparison related t8&ie performance for the
limited feedback THP approaches described in this chaflearly, the two approaches
that perform some MSE optimization lead to better perforoeatman the first approach
from Section 6.1. Moreover, the gains depend on the numbdedsfback bits (see
Fig. 6.17).
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6.5 Conclusions

In this chapter, we have investigated the compressi@hainnel State InformatiofCSI)
data in a MU-MISO system with precoding and limited feedbett&nnel. Three different
types of precoder have been considerethear Precoding(LP), Tomlinson-Harashima
Precoding(THP), andVector PrecodindVP). The fed—back CSI is employed to design
a robust non-zero-forcing precoder, i.e. a robustimum MSEMMSE) precoder. Four
sources of error have been considered: channel estimatimecation for rank reduction,
guantization, and feedback delay. The error modeling Hawedl us to formulate robust
designs for each precoding scheme with a performance aa$ily better than that of
conventional non—robust schemes. All the designs propostts chapter are based on
the mismatch between the full CSI knowledge and the erron€&liknowledge at the
transmitter.

First, we investigated a very basic limited feedback desigit does not minimize
the final BER performance since it is not based on an MSE mi@itioia. However, the
results are excellent taking into account the simplicittheferror model developed. Next,
we introduced an MSE minimization that included all the atp®f feedback with the
exception of the quantizer parameters. Thus, we consigeugdform quantizer with the
errors produced by the quantization process being modslad additive and independent
noise. The results of the previous approach are improvedyothib new approach,
although it is still not optimum since we are not including ttodebook entries and the
decision boundaries into a joint MSE optimization. Finallse focused on a Bayesian
framework together with a joint MSE optimization based on &@&tric that allows us to
obtain an adequate statistical characterization of the®on fed—back CSI. We obtained
the very useful result that the optimal estimator and rawkicgon only depend on the
channel statistics and are independent of the quantizdr Ii$e distortion is a diagonally
weighted squared error, and thus the Lloyd algorithm cannbel@/ed to compute the
quantizer. As shown with some computer simulations, tliiedl@pproach achieves better
BER performance than the approach that does not include Hrgtigar parameters in the
MSE optimization. Moreover, the trade-off between compatel complexity and final
performance is reasonable and the bit allocation strategyepted, resulting from the
joint MSE optimization, clearly outperforms all the preugapproaches.

Therefore, the simulation results show how these techsiquark well in MU-
MISO time-varying channels with limited feedback, givemttla minimum amount of
information is transmitted through the reverse channadileg to good BER performance
nevertheless. One of the major contributions of this chapte have found the channel
vector PDF conditional on the fed—back coefficients, whighhe basis of our robust
precoding, i.e. to achieve a Bayesian approach for error hmgde Moreover, the
advantage of the new robust design proposed is even gréater exploit, by means
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of an adequate procedure, the fact that the input is Gausst@der to design the initial
codebook according to the Lloyd algorithm.
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Chapter 7

Feedback Design based on Precoding
MSE

Signal separation in the vectBroadcast ChanngBC) requires some information about
the channel state at the transmitter. In many cases, sucbRss¥stems, thihannel
State Informatior{CSI) must be fed back from the receivers to the transmittenbgns
of a feedback channel, as already introduced in the predbapter.

In this chapter, we jointly design the channel estimatord #re quantizers at the
receivers together with the precoder at the transmitteedas a precoder-centric
criterion, i.e. the minimization of an MSE metric appropeidor the precoder design
[120]. This is in contrast to Chapter 6, where the quantizeigiewas based on a CSI-
MSE metric.

The procedure is as follows. First, the estimator is deslgneminimize the MSE
between the transmitted symbols and the symbols recoveyeitheb users including
the precoder averaged over all possible channel realimtiwhere a given quantizer
is assumed. Interestingly, the estimators resulting fréws joint formulation are
independent of the codebook used and are equal to the estenaditained previously,
even though the design is no longer based on a CSI-MSE metric.

On the other hand, the codebook entries are the precodeteyatdpThese precoders
are found by minimizing the precoder-MSE conditional onféee-back index. The use of
white estimates (by dropping the coloring and the squareaiibe respective covariance
matrix) and a restriction to rectangular regions leads tangle computation of the
conditional means necessary for the precoding design sktap. most difficult part of
the proposed scheme is the design of the partition cellscéh&oundaries are designed
by minimizing the precoder-MSE conditional on the quantin@ut. Finally, each user
feeds back the index of a set of precoders and the intersecfithe sets performed
at the transmitter gives the appropriate precoder to be dsedg the transmission.
Since the quantizers of the different receivers have to weparately, the metric for the

161
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Figure 7.1: MU-MISO System Model for Linear Precoding.

computation of the partition cells cannot be expressed ms@esquared error depending
on the quantizer output and its computation is quite comageghown in this chapter.

To this end, we firstly introduce the proposed system fordinprecoding and
the feedback system to be optimized in order to reduce thehead of the reverse
channel. Next, we obtain the optimum estimators, partitielts, codebook entries, and
linear precoders from the joint optimization based on a imé¢iat includes the overall
parameters. We also focus on how to implement bit allocatichis case, and on how
we can solve the problems related to its computational cexitglby means of a heuristic
strategy. Finally, some computer simulations are carrigdmillustrate the performance
of this approach in terms of BER.

For the sake of brevity, we omit in this chapter the ingeto indicate the time slot
related to the block fading channel and also the indeéxdenote each one of thé; time
samples spaced with the symbol peridgl,inside each slot (see Chapter 2).

7.1 System Model

Our final goal is the design of a precoder for the vector BC setdyere a centralized
transmitter with N antennas communicates data &b decentralized single antenna
receivers. For reasons of simplicity, we restrict oursglt@ linear precoding in this
chapter. Fig. 7.1 shows the block diagram of a MU-MISO sysiattn linear precoding.
Fig. 7.2 depicts the block diagram for the same system butafimg a more compact
form, i.e. by using a notation that results from the combarabf the signals from all
users. As shown in this figure, the zero-mean data signal C* with unit covariance
matrix, i.e. C,, = I, is linearly transformed by the precodBr ¢ CV*¥ to obtain the
transmit signaly € C", which propagates over the chanhglc C" to thek-th receiver
and is perturbed by the additive noige The receiver applies the common receive weight
g € Cto get the estimate,. As shown in Fig. 7.2, combining the signals of the different
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Figure 7.2: System Model for MU-MISO Linear Precoding conmitg Signals from All
Users.

receivers yields
u=gHPu+ gn (7.2)

wherew = [dy,...,ix]" € CK, n = [m,...,nx] € CK with n ~ N¢(0,C,,), and
H = [hy,... hg]T € CE*V,
The constraint for the average total transmitted energyt bisatisfied, i.e.

E [|[Pull;] = Fu.

The receive weighy is directly derived from this constraint taking into accothmat the
precoderP is factorized as follows

P=g¢'F with FeCV*¥ (7.2)
Accordingly, we have that
1
g=1/—=tr(FF). (7.3)
Eiy

7.2 Limited Feedback Model: Channel Estimation and
Quantization

Fig. 7.3 depicts the block diagram of the proposed limitegteack system. In order
to obtain the information about the channel state needectlextsthe precoder, the
centralized transmitter sends a sequenc&ppilot symbols from all transmit antennas.
The received noisy pilot symbols are passed through theasiirG,, ¢ CY* M to obtain
the input

zr = Gy, (Shk + ’Uk) ecV (74)

of the quantizeKQ, (o) of userk. Here,S € CM*N comprises the pilot symbols and
. ~ Nc(0,Cy) is the noise of the pilot channel to tlieth receiver. For reasons of
simplicity, the feedback channel is assumed to be errerdrel without delay. The delay
effect has already been studied in the previous chaptertamduld be relatively easy
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to correct this error, as we will see in the next section, lbuha cost of unnecessarily
complicating our notation. The channe} € CV is assumed to be zero-mean complex
Gaussian, i.e.h, ~ N¢(0,Ch ) with the channel covariance matrix of theth user
Ch = E[hihll] € CV*V. Note that the rank reduction is not explicitly included et
notation. This is not necessary since a rank reduction, evaeefficient is dropped, is
equivalent to setting the number of partitions correspogdb this coefficient to one. For
this reason, we use, to denote the information recovered after the estimatorgareeral
way, instead ofy;, used in the previous chapter.

After estimation, it is necessary to implement some type wdmndgizer in order to
compress all the information sent through the feedbackrélamhich is often limited
in bandwidth. Contrary to the quantizers used in Chapter 6 evtier codebook entries
were white channel coefficients, the entries for the quargiproposed in this chapter
contain the precoders of Fig. 7.2, i.e. the quantizer isdbasegprecoders and not on CSI.

Let us initially assume an ideal MU-MISO system where all tisers work in a
cooperative way, thus making it possible to design the geamjointly. In this case, the
operation of the overall quantizer is

M
Q(z) =) PSi(2) (7.5)
=1
wherez = [z, ..., 2}|T € C¥¥ is the overall CSI and the selector functiste) is 1 if

the argument lies in the partition c&l;, and0 elsewhere. Each of the codebook entries
P, ¢ CV*K is a precoder andP, is chosen ifz € R;. However, a joint quantization is
impossible, since each receiver only has access to its ownzCSihce we have non-
cooperative users in the downlink of a MU-MISO system. Tfeeee the partition cell
R; C CEYN must be decomposed into subregi®s; C CV,i.e. R; = Ry X - -+ X R,
wherex denotes the Cartesian product defined as

Ri=Riix - XxRr;={(T14,...,Tr;)| T1; € Ris,...,®x; € R} (7.6)

Here, R; denotes the total partition cell corresponding to tht#h codebook entry and
Ryii, with & = 1,..., K corresponds to the cell of usérfor the i—th codebook entry.
The quantizefy, (o) of the k-th user identifies the regioR,, ; in which the CSlz; lies.
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Taking into account that we will restrict ourselves to scglaantization in a later step,
we have that
Rii =Ry x - x R

with the rectangular reglo’R C C and N being the maximum number of coefficients
sent from usek to the transmltter. When the real and imaginary part ofrtkta entry

2k Of 25, corresponding to thé-th user’s quantize@), (e) lies in the cell R‘fﬁ’?n) and
CS“QIZ,L), respectively, the condltlona(Re(Qc)n) < R(zpn) < 6(Rf§in> or o (hﬁlﬁ}n) <
S(zhn) < BI”(‘IZ, ., are respectively fulfilled. In that case, a §éf‘<r{e ., or IP’S“E;ZRM
of indices is chosen for which it holds that "
(Re,n) . (n)\ _ ~(Re,n)
]P)]C,j](?Re’n) - {Z - 17 R 7M ’ Re (Rk,l) - Ck7j£Re,n)}
and
(Im,n) . (n)\ _ »(Im,n)
P = {z =1, M| (R{)) = cmgmm}.
The fed—back information of usérare the indiceg\"*" and; ™™ withn = 1,..., N.
To obtain the output of the quantiz€},(e), the quantized results for the different
real and imaginary parts of the entries,, n = 1,...,N, ie. j°°" and ;™"
must be combined by simply intersecting the SIESQ(U, o ,IP’(N) WhereIP> ") =
7]k 7.7k k’

(Re,n) (Im,n) .
]P) (Re n) N IED (Im n)*

N

ﬂ k.j <">

So, the fed—back information of usét i.e. the output of its quantize®,(zx), is
equivalent to a set of indices referring to the precoders ltkat fit its current channel
state. When collecting the fed—back information from allras¢he transmitter in the
BC finds the index of the final precoder by intersecting the setadices of all users.
Therefore, the selector function of the overall quantindgq. (7.5) is finally defined as

$,(2) = { 1 forie N, Qulzr)

0 else

Note that the above intersection gives a set with cardjnalite due to the properties
of the Cartesian product used to spkt into R4 ,,..., Rk, [see Eq. (7.6)]. Fig. 7.4
illustrates how the precoder is selected from the indices Isg each user. This design
is totally necessary since the users are not cooperativetlag@fore, no single user has
information about the others. Remember that the codebooiesmire the precoders and
the receive weights and not the CSI.
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Figure 7.4: Example of Precoder Assignment with= 2 Users,d = 1 Coefficient and
Noit = 2 Bits per User. (Note tha!] = P{"*" 0 PI"™" = {1,2 3,4} andP{) =
PV RS = {4,8,12,16}. The Number of Codebook Entries§ Vi = 24 = 16.
The Index of the Overall Quantiz€}(e) isi = 4(j; — 1) + ja).
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7.3 Proposed MMSE Optimization

All parts of the feedback system, viz. the estimaté6,}X , and the quantizers
{Q.(e)}E, (i.e. the partition cells{R;}M, and the precoder§P,}M, together with
the weights{g;}2,), minimize the precoding MSE

MSE = E [||u — a|}] sz [lu—al| z € R/] (7.7)

= sz- (tr (Cu) — 2g:R (tr (E [H|z € R,] P,Cy)) + g} tr (Cy)
+g§ tr (E[H"H|z € R;] P.C,P/"))

= sz — 2g:R (tr (B [H]|z € R P))) + g tr (Cy)
+g; tr (E[H"H|z € R;| P,P[")).

Here, p; denotes the probability that € R;. We assume that is zero—-mean and
uncorrelated with unit-variance, i.a’,, = I for the last equality. Remember that the
received signal is given by = g(H Pu + n) [see Eq. (7.1)], wherd is the precoder
obtained from the overall quantizer, i.2. = Q(z) = 3., P, S;(z). Note again that we
neglect the delay of the feedback in our system model fordke sf brevity.

The optimization problem that we have to solve is

{Gho APYL AR = argmin E [[lu —all;] (7.8)
UG AP ARG}

Unfortunately, no closed form expressions can be obtaioelddth the estimators and the
guantizers of the feedback systems. However, an altegnaptimization can be used to
minimizeE [|ju — ﬁ,Hg] , because closed form expressions for the separate mirtiamnza
are available, while the other quantities are kept fixed.rd@toee, we start by fixingR;
and P, and try to get the closed-form solution for the estimaty. After that we use
the Lloyd algorithm to iteratively optimize the partitiorlts and codebook entries of the
guantizers of each user.

7.3.1 Estimators

In this subsection, the estimat@t, is optimized for given codebook entries (precoders),
partition cells, and other estimators, i@qp, = argming, MSE (see Eq. (7.7)). Due to
[cf. Eq. (7.4)]

Cz,k =E [zkzk} Gk (SCh kS + C77 k) GH
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we get the following alternative parameterization of thinestor

1/2

Gy = CP X (SChyS™ + Cy)~ (7.9)

where the unknownX; € C™>*¥ has orthonormal columns, i.eX X, = Iy. It
is very easy to see that this expression €&y leads toC, ; when we substitute into
G(SChS" + C, )G} Note that the transformation &h. + . with (SCy, . S™ +
C,»)""/? leads to an uncorrelated signal with unit covariance matniat the additional
transformation withX ;' again gives an uncorrelated signal with unit covarianceimat
irrespective of the choice far’,, ;.. Therefore, the optimization with respect@, can be
split into an optimization with respect t&; and a subsequent optimization with respect
to Cz,lc-

Before the minimization of [||u — 11||§} with respect taX; can be performed, the
MSEE [||u — 4/|5] must be rewritten by using the matri, defined as
-1/2

A, = Ch7kSH (SCMSH + an) € CN*Nr (7.10)

and by obtaining the conditional momeitsH |z € R;] andE[H"H |z € R;]. Taking
into account thah, andz; are jointly Gaussian, we have

hk Ch,k C;{h,k
[Zk] ~ NC (0’ |:Czh,k Cz,k

Czh,k: =E [zkhllj} = C;'l/Q)C]C (SCh kSH + an)

whereC,, . is given by

1/2

SCh. (7.11)

Thus, the following conditional moments read as (e.g. [121]

—-1/2

Elhy|zi] = CHh kCz_llczk = Ch,kSH (SC’hkaH + Cn,’f) Xkcz_ilgﬂzk

= AkaCz k/ Zk
Elhihi 2] = Chi — Coy kO Conye + Elhi| 2] Ely |z,

= Chi — X XPAT + A, X, C Pz 210 P X T AL

Clearly, it holds thak[H |z € R;]) = E[E[H |z]|z € R;]. Therefore, taking into account
thatH = [h,, ..., hk|", we have

E[H|Z - 7-\),7,] = [Alel,Ll,i,...,AKXK[J,KJ]T (712)
K
EH"H|z € R = (Chi — A X, (I - Ry;) XF A"
k=1
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with
pi; = E [Cz 11/2216‘ zr € Ry z]
Rk,i =k [C ]1€/2Zk zZy C 1/2H’ ZE € Rkﬂ] .

Note thatu;,; and R, ; only depend on the choice &, ; which are assumed to be given
in this subsection. The above results foiH |z € R;] andE[H"H|z € R;] can be
substituted into Eq. (7.7). Thus, the MSE for the given cadétentries{ P,, g;}£, and
partition cells{R;}, is expressed as

MSE=E [||u — a|3] Zpl [lu—al|z € R] (7.13)
M
Z ( —2g; R ( r ([A1X1N»1,z', A X ] R)) + g7 tr (Cy)

+9 Z tr ((Chi — A X (1 Ry) X[ Af)" R-Pf)) .
k=1
As mentioned above, when introducing the alternative r&ation of the estimat@r),
in Eq. (7.9), we first find the basiX;, by minimizing the above MSE for fixed', 4, i.e.
Xoptr = argmin MSE s.t. X,?Xk =1Iuy.
Xk
The constraint ensures the sub—unitarity}gf € CV*, The corresponding Lagrangian
function reads as
L(Xy, Ar) = MSE+ tr (A, (X' X, — 1))
with the Lagrangian multiplierd, € CY*¥, which is Hermitian by definition, as the
constraint is Hermitian. A necessary condition for optityat that
OL(Xy, Ar)  OMSE

— A XE=o0.
IX] oxT

From this KKT condition we obtain that [cf. Eq. (7.13)]

—pitiriey B gi Ay — pi X[ Al g PPl Ay + piRy X3 AP PP P AL + A X = 0.

Since the range of the first three summands reachable foreotens multiplied from the
left is the span of the rows o4, the space spanned by the rows’6f must be the same
to fulfill the above condition. Thus,

range(X,) = range(A}) . (7.14)
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By considering theSingular Value Decompositiof8VD) of a matrix B = M DN,
where D is a square diagonal matrix andl and N are unitary or sub—unitary, it is
satisfied that the range @ is equal to the range d¥/ [107]. With this property and the
SVD of A, given by

A, =V, &, W}

with unitary V;, € CV*¥ | diagonal®, ¢ RV*N whose diagonal elements are positive,
and sub—unitary¥;, € CN*V we have that rangel}') = rangé W,,). We can conclude
that the optimal basis is expressed as

Xopti = WU} € CNoN (7.15)

to fulfill the condition in Eq. (7.14). The so far undefined tamny U,, € CY*¥ must be
chosen to minimize the precoding MSE in Eq. (7.13). &3V} = V1 A, the optimal
estimator must have the form [cf. Eq. (7.9)]

—-1/2

Gope = CLE X (SCRyS™ + C)
= Ci,/;kaﬁl%HAk (SChS™ + Cr,,k)_l/Q
= Ci//f Ui ®;, 'V, Grmse-estimi (7.16)

where the conventional linear MMSE estimator is given by
GMMSE-estimi = Ch,kSH(SCh,kSH + Cn,k)fy

The output of ;! in Eq. (7.16) is uncorrelated and with, ', the estimate is white, i.e.
with unit variance. Again, as in Chapter 6, some rotation Withis applied that does not
change the property of unit covariance. Finally, the eseniscolored WitI“CZ,f. This
result is quite surprising, since we do not optimize the msguared error between the
true channel and the channel recovered at the transmitistedd, the precoding MSE
E [|u — a|3] is minimized [see Eg. (7.8)]. Additionally, the notatiortrioduced in the
previous chapter, where the MSE between the true channehar@SI at the transmitter
was minimized, explicitly included a rank reduction. We coke a different formulation
now, since a rank reduction can be included by an appropesatection of the partition
cellsRy; (i.e. by bit allocation). Therefordy; in Eq. (7.16) is square and is not used for
rank reduction.

We also see from Eq. (7.16) that the optimal estimélgy;, can be obtained in closed
form except for the covariance matiX, ;, and the unitary matrixJ,. The optimization
of these parts of the estimator is difficult and cannot be doanalytically. However,
the last stages of the estimaiG,,; can be moved into the quantiz&y,(e) as we have
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already done in Chapter 6. Thanks to this step, the partigtls B, ; are just redefined
and optimality is not spoilt. Therefore, we can set withasts| of optimality that

Gopti = P, ' Vi Gumse-estime € CV N (7.17)

Note that the optimal estimator is independent of any pitogseof the codebook and the
other estimators. Additionally, note that the outpytof the estimatoiG o, is white
Gaussian. Then, we rename the output of the estimatar,as: N-(0,I). Due to the
relationship ofX ., and A, [see Eq. (7.15)], we have

Chir — AL X XAl = Cy — AW UFU WAL
= Chp — i® W W W W, B, V" = Cp, — ViV,

and

AWUIR, , UWIA! = AW, R, WA}
~—— ——

Vi Py, &, VH

because Gaussian distributions are invariant to unitaatioms (see Appendix D.2).

Bearing in mind the above results, the conditional momems fEq. (7.12) can be
rewritten as

E[H|z € Ri| = [, iri]

K
E[H"H|zcR] =) ((Ch,k ~ ViV + REJ’)
k=1
K
Z (Ch,k - W@%WH + R’w‘)T
k=

1

wherep,; and Ry ; are redefined as

Wi = Vi@ E [wy, | wy, € Ry

(7.18)
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Now, E[H"H |z € R;| can be further written as

K
E[H"H|z € Ri] =Y (Chi — Vi®i Vi + Vi, E [wiw}! | wy, € Ry ] 8, V)

k=1
K
= (Chi = BV + i,
k=1
_ _ H T
+V, P, E [(’wk — &, Vi) (wi — D'V ) |wy € Rm} SkakH>
K
= (Cnp = ViB V) il + Vi O B V)T (7.19)
k=1 Ce:;mk Cqu;;zek,i
K T
= Z (Ch,k + Hk,iNII;I,i - Wﬁﬁkfk,i?pkWH) (7.20)

M
I

where the relationshify, = E[(y — pyie) (Y — tyz)" @] = Elyy"|z] — pyjobty), iS
applied. Cesiimy. is the MSE error matrix due to the estimation error &\ganizex.; is the
error covariance matrix due to the quantization error. Th&inl},; = I—Cq; € RO
depends only on the quantizer parameters. Note that whersswsre perfect channel
knowledge at the receiver, i.e. when there are no erroredausestimationCesiimi = 0,
and when there is no limited rate for the feedback, i.e. notizaion errors, we have
that Cyuanizer,; = 0. Therefore, the regularization that is introduced due tparfect CSI

at the transmitter is given besimi + Cquanizer,i- R&émember that the effect of feedback
delay is omitted in Eq. (7.19). In the event that we assumengplsi Jakes model, we
would have that [cf. Eq. (6.5)]

E [hk[Q]hE[l/H = JO(QWfD,maka/fslot)Ch,k = TkCh,k

with the slot index;, the delay in slot$) = ¢ — v, the maximum Doppler frequency of the
k-th userfp maxk, the slot ratef o, and the zero-th order Bessel function of the first kind
Jo(e) [34]. The factor in the last equality is implicitly defined. Note that the detan

be neglected by considering a speed value ef0 km/h (-, = 1). As done in Chapter 6,
the only impact is that this term, must be included into the expression df, in
Eq. (7.10) since the input of the quantizgrgiven by Eq. (7.4) is obtained from outdated
channel vectors and therefo€@,, , = rkCi,/,fXE (SChS™ + C’,,,k)_l/2 SCh [cf.

Eq. (7.11)].
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For the sake of notational brevity, we introduce

M,; = [Hl,ia ce »HK,:’]T € CrN

K
Cesim= Y _ Chy — Vid; Vit € CVV
k=1

K
Couantizei = »_ Vi®Copi®i Vi € CVV. (7.21)

k=1
The precoding MSE for the optimal estimators is therefore

M

MSE = Zpi (K — 2R (tr (Mg, P})) + g tr (Cy)
i=1

+ g2t (MM + Cliim+ Cahanizes) PPY)) (7.22)
In the following, we assume that the optimal estimat6Gfs,,, £ = 1,...,K are

employed, i.e. the precoding MSE of Eq. (7.22) has to be magcthby the parameters
of the quantizers.

Notice that the conditional moments provided by this scheare equal to the
conditional moments obtained for the joint optimizatiorséa@ on a CSI-metric (see
Chapter 6), which is not especially remarkable since we pbthithe same estimator
for both approaches.

7.3.2 Codebook Entries: Precoders
The precodet; and the receiver weight; minimize the precoding MSE of Eq. (7.22)

under a transmit power constraint for given partition c&®ls: =1,..., M
{P;.,9i}

Without destroying optimality, we make a change of varialded setP; = g; ' F;.
Consequently, the Lagrangian function reads as

M
L(FigiA) = > pi( K = 2R (tr (M) + g2 tr (Cy)
=1

+tr ((MzHMZ + CEstim"i_ C(}:Jantizei) EEH) + A (952 HEHIQZ - Etx)
(7.24)

with the Lagrangian multipliex € R% .
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One KKT condition is obtained by deriving with respectgig which is assumed to
be real. Equating this derivative to zero yields
OL (e)
9g;

=2gitr (Cyy) — 2)\g; || Fill =0

which leads to\ = gf% > 0. Excluding the trivial solution, we can follow that the
i lF

transmit energy constraint is active, and therefgrg| F;||2 = E and\ = gf%.
When we set the derivative with respectHp to zero, we obtain the following KKT

condition

OL (e)
OF;

A
= _Mz‘H + (MZHM'L + Cezfstim+ Cunantizez‘) F; + ?Fz
= _Mz‘H + (MzHMZ + Cgstim+ C&antizez‘ + gIN) E =0 (7-25)

where{ = tr(C,,)/Ew. This result together with the transmit power constraiatieto
the optimal precoder (codebook entry) corresponding te-theartition cellR; given by

—1
Fopt,z’ = (MZHMz + C;Fstim+ Cc}zjantizei + £I) MiH

1 B N N P (7.26)
Yopti = E_tx tr ((Mz M; + C’estim+ Cquantizei) Mi M,)

This result is thecentroid condition Although the optimization of Eq. (7.23) gives the
weight gopti, We use MMSE receiver weights instead to correct the phadessibed in
Section 5.5 and get an approximately coherent detection.

Note that the solution for the precoder is inherently rolagdinst errors, since the
respective error covariance matrices regularize the msawersion in the definition of
Fopi.

Due to the expectationg (w; |w; € Ry;] for £ = 1,..., K [see Egs. (7.18)
and (7.21)], the computation of the precodg@ris difficult for general partition cells
R ..., R, 1.€. usingvector quantizationHowever, by restricting ourselvessoalar
guantization the integration over the rectangular regidhg? can be solved in closed
form (see Appendix F, [118]). Note that this precoder is el the same precoder as
that obtained for the approach in Chapter 6, based on the CSIm&#&c. Both linear
precoders are robust against errors in CSI by means of régatian terms. Contrary
to the CSI MSE metric, however, where the precoder is basedready optimized and
fixed partition cells that are independent from the chantalssics?®, the joint design
according to the precoder MSE metric shown in this chaptémipes the precoder and

INeglecting the effect of bit allocation.
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the partition cells using the Lloyd algorithm. The Lloyd atghm switches between
the precoder design and the partition cell computation amgterges to locally optimum
precoders and regions since every step reduces the MSEHhy@aMISE is lower bounded.
Note that now both precoders and partition cells must bemn@cibed as soon as channel
statistics change, which is more appropriate in the senB&Sa& minimization.

7.3.3 Partition Cells

Since the other estimators’ inputs are unknown to the geantf user/, the regions
Ry, of the ¢-th quantizer minimize the distortiod, = E[||u — ul|3|z,] for the given
codebook entried?; andg;, ¢ = 1,..., M. Motivated by the fact that, ~ N(0,1),
i.e. its entries are uncorrelated, and that the computatiohe precoders is difficult for
vector quantization, we restrict ourselves to scalar qmatdn, i.e. the entries of, are
guantized separately. In this case, the partition ({éﬁ%eﬂ) andC(h?;ﬂ)n) (that is, their

corner coordlnate&(RfRZ)n) ;RFRZ)M af‘ﬂ‘h’?n), andg| Imh’j )) of the scalar quantizers for,
Ik

respectively, real and imaginary parts of thh entryze » Of z, minimize the distortions

nge,n)(%[Z&n]) =F [Hu — aug\ ER[,ZM Z S Ren or]) él?e n)(gR[ ) (7.27)
and
M
A8 ™ (Szem]) = E [[lu — @3] Slzen] Z S (Sze]) A (Sza]) (7.28)

respectively. HereMé”) is the number of codebook entries for the quantizet(ef ,,] and
Sze.0] (in our example of Fig. 7.40" = 2); S(Re’")(é)%[zg »]) is one forR[z,,| € le?e’”)
and zero elsewhere; a@é}?’”)(%[zm]) is one for(z,,] € C;m” and zero elsewhere.

As a result of computing these expressions for eaghwe can obtain the indiceﬁRe’”)
andjfm’”) that minimize these distortions. Note that, given theh quantizer input of
user’, z;,, we assume that the other quantizer inputs, with £ # ¢, are unknown
and, therefore, it is necessary to average over all the lplessi,,. Although the other
entriesz,,, with v # n are known to receivef, also over these quantities is averaged,
since scalar quantizers are used. However, their corregppieells are given since the
codebook design is centralized at the transmitter anddtrboth the transmitter and all
the receivers.
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The distortions due to thgth codebook entry for both real and imaginary entries of
the inputz,,, read respectivley as

K
e,n Di
A (Rlzen]) = > o <K+ gitr(Cy) = > 2R (uy, Frey)
iep(Rem Fej k=1,k4¢
K
— 2R ( (Re,n), Fieé> + tr (C stiml i —|— Z tr (RgZEF;H)
k=1,k#£¢
Ftr (R(Re T g FH)) (7.29)

and

A (Sl = Y %(K Tt (Cn) = > 2R (uiFier)

icpimm Pe;

K
—2zre< (tm,n), Eeg)+tr(Cst,sz N+ S w(RLEF

Ftr (R“m SR o FH) ) (7.30)

whereF; = g;P; ande;, denotes thé&-th column of theK x K identity matrix. pf{e )
andp(lm” are the probabilities oR[z,,,] € Cge ™ and Sz, € C&I;n " respectively.
Addltlonally, the conditional momentg,; and R,; under the condition®|z,,,] and

3[2,0), denoted by, pi ™, Y™, andREIm") can be found as follows:

ng’n) = Vi@ E [z0| 20 € Rui, R[204)]

s (7.31)
py; = Vi Elze| 20 € Rey, Sze]]

and
R(Re n) W@g E [ZgZZH | zZy & RM’ %[ZE,nH QSKWH (7 32)
RS;“*" = Vi®/E [22{| 20 € Ry, Slzen] ] D0V, '
Following the nearest neighbor conditignthe partition ceIIsC Ren) must be chosen
such that for any inpu[z,,,] the minimum dlstortloni (Rewm) (%[zz »]) is picked by the

(Im,n)

quantizer. Equivalently, for the imaginary part, the nam ceIIsC are chosen
such that for any inpu&(z, ] the quantizer uses the minimum dlstortmﬁ“ Szen))-
Slncep,gRe" and ,uam ™) are linear, and%ﬁe” and RZ;“” are quadratic functions of

R[z0..] and Sz,,], respectively, the distortiondy" ™" (R[z,,]) and ™" (3[z,.]) are
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j=1 j=2 j=3 j=4
I I I I
~ (Re,d) (Re,1)  p(Re,1)  (Re,l)  o(Rel)  (Re,l)  o(Re,d) — (Re)1)
—O0 =y Qe =Py QT =0y Q= Py 00 = Oy y

Figure 7.5: Example of Precoder Assignment with 1 Coefficient an Bits per User.

also quadratic functions. Thus, for the real partpf the optimal cell border&ge’”),
g piten and g™ are simply the roots of the quadratic polynomial equations

A8 (Rlzen]) — it (Rlzen]) andd ™ (Rlze.a)) — At (R]ze.))- Again, similarly

for the imaginary part of, ,,, the region boundaries are given by the roots of the quadrati

polynomials ™" (3[z¢,]) — iV (Slzea]) and diF ™ (Slzen)) — di it (Slzen)).

Fig. 7.5 illustrates the method above proposed for obtgitinose optimal cell borders

from the roots of quadratic functions.

7.3.4 Codebook Computation

Although the estimators and the quantizers are jointlynojed by minimizing the
precoding MSE in Eq. (7.7), we only have to compute the codeparameters iteratively,
since the estimators are independent of the choice of cattelind can be found in
Eq. (7.17). For the computation of the codebook parametersise the Lloyd algorithm
(e.g.[108,119]), i.e. we alternately optimize the preesdyy using the centroid condition
in Eq. (7.26) and optimize the partition cells following thearest neighbor condition as
discussed in the previous subsection. Since the MSE in E2R)i5 reduced in every step
and the MSE is non-negative, the iteration converges.

The Lloyd algorithm is initialized with the solution of Chapt6, where the
guantization was designed by minimizing the CSI MSE and whypseatizers are based
on codebooks appropriate for unit variance complex Ganssijputs. Therefore, the
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parameters of these scalar quantizers can be stored and daveato be recomputed for
scheme based on the precoding MSE of Eq. (7.22) is very cheap.

Table 7.1 summarizes the overall design procedure for ctingpihe codebook,
which is basically a modified version of the Lloyd algorithNote that this new codebook
has to be recomputed each time that the channel statistigs va

1. Setm =1
2. Initial codeboolC; and regiongR;}, (obtained as in Chapter 6)
3. Set the threshold to stop the iteratieps, and set = oo
while € > emin do
4. obtain the quadratic functions:

A (R[z0))

Im,n
A (Szea))
5. (Nearest Neighbor Conditigrsolve the quadratic functions:

A (Rlzga) — dSTY (Rlze.0]) = 0 andd (™ (Rlze.0]) — A (Rlzen)) = 0
0

A (Slze]) — A (Slzea]) = 0 @nddy ™™ (Slzea]) — di ) (Sleea]) =
to get the new partition regionsR; }4,
6. compute the new conditional channel moments:
E [H|z € 'RZ]
E[H"H|z € Ry
7. (Centroid conditiol compute the new precodef#,} M,
8. compute the precoder MSE metric for the new codebook (precogers)!,
and the new partition regionfsR,; } M,
9 m«—m+1
end while

Table 7.1: Codebook Optimization.

7.3.5 Bit Allocation

When using scalar quantization (transform coding, [108})aad of vector quantization,
the available bits have to be allocated to the differentssaadefficients. Contrary to the
case of CSI MSE based feedback as in Eq. (6.76), the distduration obtained for the
case that the precoders are included in the optimizaticandoy

M
=1

+ g2 tr (MPM, + Clyn+ Clhanizes) RRH)) (7.33)
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has a very complicated structure since all the parametersnated together and it is
impossible to separate the influence relative to each uskeeach scalar quantizer, thus
making an efficient optimum bit allocation very difficult tmél. We can therefore decide
the optimum bit allocation by trying out all the possible #lfocation combinations and
taking as a result the best one in terms of minimizing the MSEq. (7.33).

The bit allocation optimization is expressed as

B = argminMSE(B) st. B=[by,...,bg] € B b, = [br1,...,bra"
B

d
with B=0,2,4,.. and Y by, = Nu (7.34)
n=1

whereB is the matrix that determines the bit allocation corresjogtb the coefficients
of each userNy; is the number of bits available for each user, ahd< N is the
number of coefficients under consideration that directlplies the rank reduction that
was introduced in the previous chapter by means of the rahict®n basisV;"'. Notice
that only an even number of bits is used to quantize each ciagifj since both real and
imaginary parts of each coefficient make use of the same nuoflbés. Initially, we use
the scalar quantizers (codebook entries and partitios)celitained from the CSI metric
as explained in Subsection 6.3.3 for a unit-variance input.

When the number of bits is low, there are no serious problensingrfrom the
computational complexity, but the search for optimum Hiv@dtion becomes infeasible
as the number of bits increases. Therefore, we propose stiesolution to the problem
by reducing the number of combinations to be tested on the.MSEems that a uniform
distribution over all the coefficients without implemerginank reduction is the most
likely allocation in the sense of minimizing the MSE. Thusfirst trial consists of
distributing the bits over all the coefficients as uniforraly/possible. On the other hand, it
is obvious that the coefficients with more energy, i.e. thekese eigenvalues are larger,
have more impact on the final MSE performance and, therefgenust tend to allocate
more bits to the first coefficients in order to minimize the M8Earing this fact in mind,
successive combinations will move the bits from the inkighllocation to the coefficients
with larger eigenvalues. Therefore, the MSE of Eq. (7.33eiguentially computed by
following this ordering for bit allocation so the processispped when, given a certain
bit allocation, the MSE is greater than the previous one @ligt. This will be termed
optimum bit allocation

To illustrate this idea, suppose that we have to distrilutets for each user (see
Table 7.2). According to the heuristic bit allocation shoabove, the chain of possible
bit allocations is given by2,2,2,2]T — [4,2,2,0]" — [4,4,0,0]T — [6,2,0,0]T —
8,0,0,0]*. Imagine the combination given b, 2,2,0]* gives us less MSE than
2,2,2,2]. In that case, we have to test the result wiier, 0, 0]T is considered. As
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| Bitsperuser | No bit allocation| Rank reduction Bit allocation |
Npit = 6 2,2,2,0]T [4,2,0,0]T Select the optimal from
3 for real part 2,2,2,0]T,[4,2,0,0]"
3 for imaginary part 6,0,0,0]"
Npit = 8 2,2,2,2]T [4,4,0,0]T Select the optimal from
4 for real part 2,2,2,2]T)[4,2,2,0]T
4 for imaginary part [4,4,0,0]T,[6,2,0,0]T
8,0,0, O]T
Nypir = 10 [4,2,2,2]t [4,4,2,0]T Select the optimal from
5 for real part [4,2,2,2]T,[4,4,2,0]"
5 for imaginary part 6,4,0,0]T,[8,2,0,0]T
[10,0,0,0]"

Table 7.2: Number of Bits Assigned per User’s Coefficient fadeding MSE Metric.

long as the new MSE obtained is less than the previous oneaweeth continue with the
search until the last possibility embodied [8y0, 0, 0]*. If not, we choosé4, 2, 2, 0]* as
the optimum bit allocation for our joint approach based oecpder MSE metric. This
heuristic solution significantly reduces the computati@aenplexity of the search with
negligible loss in performance.

7.4 Simulation Results

Given the enormous computational complexity due to theuwtation of the distortions

in Subsection 7.3.3, we consider a system with a transnetjeipped withN = 4
antennas that servds = 2 users using QPSK modulation. We use the urban micro
Spatial Channel ModgISCM) described in Chapter 2, which of the three spatial cHanne
models introduced in that chapter is the most difficult fazqmding, because the second
and the third channel eigenvalues have a non-negligiblenihate. The results for the
CSI metric are the mean ©60 channel realizations with 000 symbols being transmitted
per channel realization. The number of averaged channelgebr channel covariance
matrices isl00. Due to the high complexity, these quantities are reduceth&approach
shown in this chapter in the sense that omly channel settings are averaged. The
training sequence has, = 16 symbols. In the figures, the number of bits per user is
given. We use the MMSE weights shown in Chapter 5 at the receisgead of common
weights arising from the optimization, which allows us td better performance with
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uncoded BER

—¥— CSl based, no bit allocation
—©—CSl based, rank reduction
=/ CSl based, opt. bit allocation
—+—joint design, no bit allocation
—B—joint design, rank reduction
—O— joint design, opt. bit allocation
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Figure 7.6: MU-MISO System with Robust Linear Precodihg= 4 Antennas K = 2
Users, and Bits per User.

appropriate correction of the phase and amplitude misnzdaked by imperfect CSI at
the transmitter.

In the simulations, we us¥, to reduce the rank of the estimated signal in order to
decrease the number of possible combinations at the ingheajuantizers, for reasons
of complexity. We also implement three different types dfdliocation. First,no bit
allocation, which tries to spread the bits as uniformly as possiblel{@édvent that any
bits are left over, e.g. with0 bits for 4 dimensions, the dimension corresponding to the
largest¢,. ; gets an additional bit). Seconnk reduction which allocates as evenly as
possible the bits to the firgt dimensions. And third, theptimum bit allocationwhich
tries out different bit allocations and takes the resulheflbest one. Remember that we do
not try all the possible combinations and the heuristicdeaxplained in Subsection 7.3.5
is performed instead. To illustrate the different stragegiTable 7.2 summarizes the bit
allocation strategies for different number of bits per user

In Fig. 7.6, the feedback design based on CSI discussed in €&héps compared
to the scheme proposed in this chapter §dboits fed back per user. As expected, bit
allocation has a considerable impact on the BER performanddhe feedback design
based on the precoder MSE outperforms the CSI MSE feedback.

As demonstrated in Fig. 7.7, we obtained similar resultafoigher and lower number
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of bits per user. Not surprisingly, a higher number of bits pger improves the BER
performance of all schemes. Additionally, it seems thatatieantage of the precoder
MSE based design compared to the CSI MSE based design becamnegranounced
for a higher number of bits as the degrees of freedom increase

Note that, independently from the number of bits fed backysar, rank reduction
always shows a loss in performance with respect to optimunallmcation since the
information contained on some coefficients is dropped.

7.5 Conclusions

In this chapter, we have shown how we obtain the robust pexcpdrameters, the
estimator, and the quantizer parameters in a joint optitmzdy means of a metric not
based on CSI-MSE, i.e. minimizing the MSE between the trattecthsymbols and the
estimated symbols.

Interestingly, the estimators and precoders obtained thighmetric oriented to the
precoder are equal to the estimators and precoders regtribim the joint optimization
based on a CSI-metric presented in Chapter 6. However, thetpast of the scheme
proposed in this chapter is the design of the partition oéksich user, which are designed
by minimizing its own distortion but averaging over the gtier inputs for the other
users, since there is no cooperation between users in thelidevef a multiuser MISO
system.

As aresult, we get better BER performance with a negligibtegase of the overhead
of the feedback channel. This negligible overhead is dubeddct that each user does
not feed back only one single index, which, for the CSI-metdse, was the quantized
version of the reduced rank channel estimate. Instead of the precoding scheme
developed in this chapter is based on the feedback of seweliaés from each user so
that one additional task of the transmitter is performing ittersection of the indices
received from all the users to find out the optimal entry of guantizer that leads to
the optimal precoder to be used during the transmissions inportant to note that
the codebook entries are now the precoders rather than the ehtannel coefficients.
Therefore, it is obvious that the design of the quantizeapeters (i.e. the codebook
entries and the partition cells) becomes the hardest pdhnishew precoding approach,
with the advantage of minimizing the MSE by including thequ@er in the optimization.
This improvement is even more significant when the numbeed#lback bits per user is
increased, albeit at the cost of much higher computatiomaptexity. For this reason,
we have to think about an efficient computation approach ri@ices this complexity
in order to make good use of the optimum performance achievtbcthe final proposed
scheme. As also demonstrated with some computer simuatiba simple idea of an
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optimum bit allocation even improves the final performanegardless of whether the
CSI-metric or the precoding-metric are used.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

The main objective of this work is to obtain a limited feedbdesign to be used together
with MMSE robust precoder designs when no full channel kedlgk is available at the
transmitter. We have shown that the proposed designs gleatperform non-robust
designs, especially in the high SNR regime. At the same tifme,proposed limited
feedback ensures that the feedback rate is limited andfthereasy to implement in real
environments.

We started by introducing the signal model and the channalaciteristics for the
downlink of a MU-MISO wireless communications system. Weugsed on one of the
most widely used channel models, t§patial Channel Modg|SCM), which was used
throughout this work instead of uncorrelated channels duts igreater similarity to real
channels.

We examined and compared the different types of transmitraoéive processing
for MU-MISO and MU-SIMO systems, respectively, assuming time transmitter and
the receiver side have full knowledge about the channel &nsleicond-order statistics.
First, we focused on linear processing and both receive mm$mit processing were
compared via computer simulations. While the matched4iltertperformed the zero-
forcing filters for low SNR, their behavior was clearly the wbfor high SNR. The
Wiener filters, however, were always superior comparedemther two filter types. We
were able to observe a difference between linear receivarandmit processing due to
the noise coloring at the receiver. Thus, there is a smabugidge for the receive filters
at low SNR and for the transmit filters at high SNR. Then, we careg receive and
transmit nonlinear processing, focusing on some relevdr@mes. Clearly, the nonlinear
schemes outperformed the respective linear ones. The wptinonlinear technique is
maximum likelihoodletection, which has an exponential complexity and, fa teason,
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is prohibitive in many cases. Vector precoding takes thegutare of maximum likelihood
detection to find the perturbation signal. As a result, a binak in performance of
vector precoding for low SNR but certain gains for high SNBr&rios can be observed
compared to maximum likelihood detection, due to the moduderator at the receiver
side. Decision feedback equalizer (DFE) and Tomlinsonaklaima precoding can be
seen as suboptimum nonlinear techniques of maximum liketidetection and vector
precoding, respectively. Therefore, their performance waarly inferior to that of the
other two schemes. Again THP outperformed DFE for high SN&nbti for low SNR,
due to the effect of the modulo operators at the transmittdiraceiver. We obtained as a
conclusion that transmit processing behaves in a similgragareceive processing when
we base the comparison on the BER performance and, theréf@sequite interesting
to compensate the channel effects in advance at the traagnmit order to exploit the
degrees of freedom at the transmitter and to simplify theireqents of the receivers.

We introduced the error sources concerned with the CSI &laikt the transmitter
to be considered throughout this work. Each user estimh&shannel and reduces it to
a low-dimensional representation for data compression. fZession is feasible thanks
to the channel correlations of SCM and every realistic charBefore the feedback, the
CSlis quantized and only the index of the codebook entry isteethe transmitter, since
the data rate of the feedback channel is limited. We alsoidered that the feedback
channel introduces some delay during the transmission.

After that, we extended the study to the situation where Ha@hannel knowledge is
available at the transmitter. We derived the robust Wielmeral and nonlinear transmit
processing in order to compensate the mismatch betweenrdbkechannel and the
erroneous channel resulting from estimation, truncatioantization, and feedback delay.
By applying the proposed robust designs, we greatly imprdkiedBER performance,
avoiding the BER increasing effect observed for high SNR in-rabust schemes.

Then, we investigated the limited feedback design to be tsgether with these
robust precoders in order to optimize the MSE between tleectnannel and the erroneous
channel recovered by the transmitter. First, we develope@ra simple feedback
design where no MSE optimization is considered. Here, wesidened LS estimation,
truncation, uniform quantization, and feedback delay. diners were modeled separately
and then the resulting error covariance matrix was direictisoduced into our robust
designs. Next, we proposed a joint MSE optimization of thenctel estimation and the
rank reduction basis, where the quantizer was modeled asaardbependent additive
noise source. This approach, however, was improved whequidwetizer was included in
the MSE optimization and the Lloyd algorithm was used to troies the codebook and
the partition regions. We also proposed a bit allocatiom@tigm to optimize the bits
assigned to each coefficient in real time, enabling the padace to be increased further.

Finally, we devoted the last chapter to the joint design & thannel estimators
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and the quantizers at the receivers together with the pezcatdthe transmitter, based
on a precoder-centric criterion, i.e. to minimize an MSE neappropriate for the
precoder design. To this end, we optimized the MSE betweenrédmsmitted symbols
and the recovered data for each user. This is in contrastrtpremious work, where the
guantizer design was based on an MSE metric based on theathaformation. The
proposed system based on a joint optimization clearly atdpeed previous designs that
separately optimized feedback and precoding at the costoéasing the computational
complexity at the transmitter. But this is not so importanewhve consider the downlink
of wireless communications systems.

8.2 Future Work

Precoding is a technique of growing importance, e.g. it isndpeincorporated
into recent wireless standards, such as \Wmldwide Interoperability for Microwave
Access(WIMAX) or 3GPP Long-Term EvolutiofLTE) standards. WIMAX is the
name commonly used for the telecommunications technolbgy provides wireless
transmission of data based on the IEEE 802.16 family of statsd IEEE 802.16 is an
IEEE standard for wireledgletropolitan Area Network@MAN). In WIMAX, a feedback
loop is included based on a codebook where the mobile statiaficate to the base
station the optimum precoding matrix to be used based onritreeg of a predefined
codebook. The information to be sent from the users to thesingtter is a quantized
version of the channel so the transmitter uses this quahkd& O channel to calculate
an optimum precoding matrix. For channel sounding, the M&iob the CSI by using a
dedicated and predetermined signal. On the other hand, WhEh is intended to be a
mobile-communication system in the 2020s, uses a unitaggqaling matrix selected
from a predefined codebook which is known at both the trateménd the receiver
side. The mobile station estimates the radio channel amdtsehe optimum precoding
matrix that offers maximum capacity. But neither WiMAX nor ETstandards optimize
the feedback in any sense, and, obviously, the studied rMdiesier precoding has not
yet been incorporated. Therefore, further research indingction is vindicated and we
propose some topics to be developed in the future.

8.2.1 Design of Capacity Approaching Codes for Precoded MU-
MISO Systems

A noisy channel poses a limit on the rate at which informatan be transferred through
it without errors. This limit is known as channel capacitydat was first introduced by
Shannon in 1948 [122]. For many channels, their noisines$eaneasured by a single
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parameter (for example, the relation between the strenfgtheotransmitted signal and
the noise power, terme8ignal-to-Noise RatigSNR)), and the value of this parameter
uniquely determines the maximum data transfer rate thatbeaachieved under the
constraint of error-free transmission. Correspondindigre is also a lower bound for
the channel parameter (e.g. SNR) to achieve a given transmisge (without errors).

Since Shannon demonstrated the existence of this limithmtithe effort in the field
of digital communications has been devoted to the searclprimetical channel codes
capable of approaching it. Shannon’s theorem only provadittiinitely long random
codewords could achieve the limit, but using that approactessign a real code was
believed to be impossible. Members of the University of A Garstaff proposed a
technique for obtaining good capacity approaching code&sgusxtrinsic Information
Transfer(EXIT) functions in a novel way. Up to now, no such codes haserboptimized
for precoding schemes. The combination of optimized codés pvecoding will result
in a scheme that is able to achieve a higher performance themes without coding.

8.2.2 MU-MIMO Systems

We propose to extend our MU-MISO environment to a MU-MIMO pnbereN transmit
antennas and/ receive antennas per user are considered. The resultsenithjroved
since diversity is increased with a growing number of reeeantennas at the cost of
complicating the design of the limited feedback channel.

8.2.3 Wideband Frequency Selective Channels

In frequency-selective fading, the coherence bandwidtthefchannel is smaller than
the bandwidth of the signal, which leadsviadebandsystems instead of thearrowband
systems studied in this work. Contrary to widebaiyle—carriersystems based ddode
Division Multiple AccesCDMA), the available frequency band can be divided into a
number of subbands, each having a bandwidth lower than therence bandwidth of the
channel, so that signals transmitted in each subband experiflat fading. This leads
to widebandnulti—carrier systems such arthogonal Frequency Division Multiplexing
(OFDM). OFDM has been adopted as the downlink transmissitberse for LTE and
is also used for several other radio technologies such asAXiM herefore, another
open issue to be studied further, even for the limited feekllagesign proposed in this
work, is the case of OFDM precoding systems. Moreover, OFBMyuite robust
against multipath, frequency-selectivity, aRddio FrequencyRF) interferences. While
narrowband analysis can be relatively easy to developniviso clear how to avoid the
overhead of the limited feedback channel when we have teiméamVg bits for each of the
Ny OFDM tones. To reduce the amount of information to be semh fitoe receivers we
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Figure 8.1: Schematic Diagram of the< 4 MIMO Textbed.

could also think about not feeding back information relatedome tones, which might
be recovered at the transmitter by applying interpolatemihiques.

8.2.4 Improvement of Limited Feedback Design based on the
Precoding MSE Metric

Up to now, the limited feedback design involving the preogdnto the MSE optimization
that is described in Chapter 7 shows a good performance atdsteof increasing
computational complexity and, therefore, the processing &t the signal processors. We
have to work in the sense of reducing these time requirentgntseans of optimizing the
code or moving from MATLAB to C programming in order to extethé results obtained
to a greater number of transmit and receive antennas, atedamyer codebooks for the
quantization process.

On the other hand, in this work we have only derived the optmhimited feedback
design oriented to the precoding MSE according to the lidianer precoding approach.
Itis known that the performance achieved by the nonlindagses, such as THP or VP, is
superior to that of the linear schemes, and for this reasocowte apply the ideas shown
for the linear case to the other two types of filter studieénethough the derivation may
be quite complex.

8.2.5 Precoding on Testbeds

We can focus on the evaluation of several of the above linféedback schemes over
realistic indoor scenarios. To this end, we could make usa MiMO testbed which
would give us an idea of the real performance of these schewseseal-world channels.
In recent years, a MIMO testbed has been developed by thestsity of A Cortia. The
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schematic diagram of this testbed is depicted in Fig. 8.lagmdture is shown in Fig. 8.2.
It is basically composed of two PCs, one for the transmitterare for the receiver. Each
PC contains the baseband hardware plusRadio Frequency Front-En(RF-FE). The
baseband hardware is composed of fast memories that carcessad at the speed of
the A/D and D/A converters, thus allowing the transmissiond aubsequent acquisition
of signals in real-time while the signal processing at boéimgmitter and receiver sides
is performed off-line. The testbed uses modern RF-FE equipakowing wideband
transmissions (up t&0 MHz) at both2.4 and5 GHz bands.

It is important to note that the main difference betweenbisds and other types
of hardware implementation, such as prototypes or denatosg;, is that only the
transmissions take place in real-time, while the rest of ghecessing operations are
carried out off-line. This could be seen as an inconvenieso&e the time required
for such operations is larger than in the case of real-timglementations. Moreover,
this issue is especially critical in the case of precodingabise the time consumed in
the calculations and feedback has to be taken into accodnt@npared to the channel
coherence time. However, the off-line implementation enés major advantages such
as floating point precision, high flexibility, and minimunfet needed to translate the
algorithms from the simulations to the testbed. Therefibvetask of obtaining CSI at the
receiver to be sent using a control link (e.g. a socket ndtwonnection) to the transmitter
could be optimally performed by dedicated and powerful ueses in the receiver in order
to reduce the time consumption as far as possible. Thenydahsemitter generates the
signals to be transmitted according to that feedback inddion and finally, the precoded
signals are sent by the transmitter hardware, acquireaattteiver side and buffered for
later evaluation. With this approach only the feedbackwdaton at the receiver and the
subsequent signal precoding at the transmitter take phemqgaisireal-time, while the rest
of the operations are kept off-line.

Some preliminary trials were performed using only basebsigaals while the
channel was emulated by software. In that case all opesatmok place off-line and
the evaluation of the resulting data was simplified becabeechannel coherence time
was under control. Therefore, a major effort is still reqdito achieve the final objective
of implementing a precoding system with limited feedbackohlfensures that the overall
time consumption, including the calculations related ttaoting the CSI at the receiver
and to building the optimum precoder at the transmittersdu® exceed the coherence
time of the channel.
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Figure 8.2: A Picture of thé x 4 MIMO Testbed.

8.2.6 Design of Limited Feedback based on maximizing Mutual
Information

Intuitively, mutual information measures the informatitrat X and Y share, i.e. it

measures how much knowing one of these variables reducesnoertainty about the
other. For example, ifX andY are independent, then knowing does not give any
information aboufY” and vice versa, so their mutual information is zero. At theeot
extreme, if X andY are identical then all information conveyed B§ is shared with

Y and, therefore, knowing determines the value af and vice versa. As is known,
Shannon proved that the channel capacity equals the muilfioaiiation of the channel
maximized over all the possible input distributions [123,

p(x)

= Imax X = Imax X M
€ = (63¥) =~ S e 0 (G55 ).

Therefore, we could think about optimizing the precodenstfe proposed limited
feedback in order to maximize the input-output mutual infation and thus come closer
to the channel capacity.
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8.2.7 Feedback of Long-Term Channel Variations

We assume throughout this work that the second order chateigstics are known at
both the receiver and the transmitter side. But this sitnaionot realistic. We can
estimate the channel covariance matrix using supervisé¢dauds, although it is a matter
of discussion how often the pilot symbols have to be trartechibr how we can detect
changes in these long-term channel variations and, evea imgrortantly, how we can
feed back this information through the reverse channelawitisignificantly increasing
the amount of information sent from all the users to the tradtier. The impact of errors
on second order channel statistics may strongly degradevéirall system performance
and, again, it could be interesting to derive a robust precpgystem against this new
type of errors.



Appendix A
Spatial Channel Model (SCM)

The proposed limited feedback system is based on chanmelations and it is therefore
important to obtain models for correlated channels thatagreealistic as possible. In
this sense, we use the 3GPP Spatial Channel Model (SCM). The 8G&nel model
includes a fixed number o/ = 6 paths in each environment so the received signal at
the mobile station consists df/-delayed multipath replicas of the transmitted signal.
These M paths are defined by powers and delays randomly obtained @aireed
below. Each path consists 6f = 20 subpaths with the goal of including the fading
effect. All paths and subpaths are assumed to be statigticalependent. Fig. A.1
depicts the most important angular parameters used toibesgach SCM environment
(suburban macrocell, urban macrocell or urban microoghjse meaning is summarized
in Table A.1. The parameters related to each scenario armatized in Tables A.3, A.4,
and A.5, respectively. Table A.2 includes the subpath Ao®ADA offsets for macrocell
and microcell setups.

For each pathm (m = 1,2,...,6), the channel attenuation corresponding to the

Oss LOS AoD direction between the BS and MS with respect to
the BS antenna array orientation
Om.A0D AoD for the m—th path with respect to the LOS AoD

Apys AoD Offset for thes—th subpath of thex—th path with respect td,, aop
0m.s,a00 | A0D for the s—th subpath with respect to the BS antenna array orientation
Ovs Angle between the BS—-MS LOS and the MS antenna array orientati
Om.AoA Ao0A for the m—th path with respect to the LOS AoA
Aps AoA Offset for thes—th subpath of the:—th path with respect t,, aon
s AoA AOA for the s—th subpath of thex—th path at the MS with respect to
the MS antenna array orientation

Table A.1: Angular Parameters for SCM.
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Subpath | Offset for a 2°AS | Offset for a 5°AS | Offset for a 35°AS
s at BS (Macrocell) | at BS (Microcell) at MS
Am,s,AOD (o) Am,s,AOD (o) Am,s,AOA (o)
1,2 40.0894 +0.2236 +1.5649
3,4 +0.2826 40.7064 +4.9447
5,6 +0.4984 +0.2461 +8.7224
7,8 +0.7431 +1.8578 +13.0045
9,10 +1.0257 +2.5642 +17.9492
11,12 +1.3594 +3.3986 +23.7899
13,14 +1.7688 +4.4220 +30.9538
15,16 +2.2961 +5.7403 +40.1824
17,18 +3.0389 +7.5974 +53.1816
19,20 +4.3101 +10.7753 +75.4274

Table A.2: Subpath AoD and AoA Offsets.
Antennas at the Receiver Side.

Last Column Corresgotad Multiple

transmit antennaand the receive antenmas given by

s
Crim () =A Z \/GBS (01, 5,A0D) ej(KdtSin(em,s,AoD)+¢m,s)\/GMS (By.s.p0 ) EKdrSiN0nm 5,008))

! (A1)
with A = ,/P"LT”SF, where P,, is the power of then—th path,osg is the lognormal
fading deviation,S = 20 is the number of subpaths per path, a#gs(6,, s aop) and
Gms(0m.s,00n) @re the antenna gains for each BS and MS antenna depending amgle-
of-departurd,,, . aop @and the angle-of-arrivdl,, ; aoa, respectively. The phase of theth
subpath of then—th path is given by, ;, a random variable uniformly distributed over
[0,27]. The distancel, is the distance in meters from the BS antenna elements to the
reference{ = 1) antenna. Note that, = 0 for the reference antenna. The distance in
meters from the MS antenna elements to the referenee {) antenna is denoted hi.
Again, d; = 0 for the reference antenna. The wavelength in meters is diyen which
leads to the wave numbéf defined agx/\. For the MU-MISO scenario considered in
this work, we havel, = 0, with N, = 1 and, therefore, the last exponential term vanishes.

Each coefficient of theV-dimensional MISO channel vector corresponding to the
userk is obtained according to the expression in Eq. (A.1), wheddbk to the channel
vector corresponding to the-th path given byey. ,,,(t) = [c11.m(t), - .., cinm(t)]T and,
since the channel vector is the sum of the signal receivedithr all the paths (remember
that the number of paths &, we have the narrowband channel impulse response [cf.
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Eq. (2.3)] 6
hscwmk (t) = Z Chm (1) 0 (t — T (1)) .

The channel covariance matrix that models the channelapatirelations is then
obtained as follows

Chi = E [hscur (1) hseu (1)] (A.2)
where we assume that the channel is stationary, and theréfatC’, . is constant. We
also assume thdt}, , is known a priori.
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Figure A.1: BS and MS Angle Parameters.



Channel Scenario \

Suburban Macro

Paths M=6
Subpaths per path 5=20
Angular spread Eloas] = 5°
at BS eas = 0.13
oas = 10(easzpas) pas = 0.69
z~N(0,1)
rAS = O'AoD/UAS 1.2
Per-path AS at BS 2°
BS per-path AoD 0 = N0, 0p)
Orm,A0D ‘521)’ <...= WM)‘

!

5m,AoD - 5(m)
OpoD = TASOAS

Offset of thes—th
Su bpatMm@AoD

Fixed (Table A.2)

AoD of the
s—th subpath

O, s.n00 = OBs + OmaoD + Ay s A0D

Angular spread (AS) 35°
per path at MS
Delay spread Elops] = 0.17us
Ops = 10(€Dsw+#Ds) DS = —6.8
z ~N(0,1) eps = 0.288
'Ds 1.4
Distribution for T = —rpsopsiNz,
path delays Zm ~U(0,1)

/

Power of the P = 17798) (T(u)~T(1))/705905 _ 1 ()=6m /10
m— path fm ~ ./\/-(07 URND)) ORND =3dB
P = ?IEPJ‘
AoA for the Om.poa ~ N(0,072, aon)
m—th path Ompoa = 104.12(1 — exp(—0.2175| P,,,(dB)]))

Offset of thes—th Fixed (Table A.2)
subpathA,, s aca

A0A for the

s—th subpath

Orm.s.n0a = Oms + Om.poa + Ains AoA

Lognormal shadowing
deviationosg

8dB

Table A.3: Environment Parameters. SCM 1: Suburban Madrocel
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Channel Scenario \

Urban Macro

Paths M=6
Subpaths per path S=20
Angular spread Eloas] = 8°, 15°

at BS 8% eas = 0.34, puas = 0.810
ops = 1O(€AS$+UAS) 15°: eas = 0.21, Has = 1.18
z~N(0,1)
TAS = OpoD/0AS 1.3
Per-path AS at BS 2°
BS per-path AoD 6, =N(0,02.p)
Sum.AoD |52 |<... < \6@\

1) )
5m7AoD - 5(m)
OpoD = TASOAS

Offset of thes—th
subpathA,,, s aop

Fixed (Table A.2)

AoD of the
s—th subpath

O, s.n0D = OBs + O aoD + A s.A0D

Angular spread (AS) 35°
per path at MS
Delay spread Elops] = 0.65us
opg = 10(cosz+ros) pips = —6.18
z ~N(0,1) eps = 0.18
DS 1.7
Distribution for T = —rpsopsinz,
path delays Zm ~ U0, 1)

/

Power of the P, = e17709) (7 ~7(1))/ 705705 _ 1 )=Em/10
m— path £m ~ N(O, O'RND)7 ORND =3dB
P = ]6}?11 P
A0A for the Om.poa ~ N (0,072, aon)
m~th path Tompon = 104.12(1 — exp(—0.2175| P, (dB)]))

Offset of thes—th Fixed (Table A.2)
SprathAm,s,AoA

AoA for the Om.s,p0n = Oms + Om poa + A s.h0A

s—th subpath

Lognormal shadowing
deviationogr

8dB

Table A.4: Environment Parameters. SCM 2: Urban Macrocell.




| Channel Scenario | Urban micro
Paths M=6
Subpaths per path S=20
Angular spread N/A
at BS
Opas = 10(€As$+#As)
z ~N(0,1)
TAS = OpoD/0AS N/A
Per-path AS at BS 2°

BS per-path AoD

5m,AOD

U(—40°, +40°)

Offset of thes—th
Su bpatMmS’AoD

Fixed (Table A.2)

AoD of the
m~—th subpath

Opm.s,a0D = OBs + Opm.pop + Apis A0D

Angular spread (AS)
per path at MS

35°

Delay spread
Ops = 1((epsz+pps)

Elops] = 0.251us

N/A

z ~ N(0,1)

'Ds N/A

Distribution for Tm ~ U(0,1.2us)
path delays
Power of the P = 10~ (rmFzm/10)
m~— path z,n Gaussian zero-mean with deviation3adB
P = ?ZL Pj

AOoA for the

5m,AOA ~ N(07 J%z,AOA)
m~th path Om.poa = 104.12(1 — exp(—0.265|P,,(dB)|))

Offset of thes—th
su bpatmm,s,AOA

Fixed (Table A.2)

AO0A for the
s—th subpath

O s.h0n = Oms + Ompon + Ains AoA

Lognormal shadowing
deviationogr

NLOS:10dB
LOS:4dB

Table A.5: Environment Parameters. SCM 3: Urban Microcell.
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Appendix B

Useful Matrix Properties

B.1 Matrix Inversion Lemma

Consider the partitioned square matrix [107]

w-fe

C D

where it is assumed that and D are square matrices and the inverses', D!, and
M ! exist. Under these assumptions, the malvixcan be factorized as follows:

=

A 0| I A'B
C 1/|0 D-CA'B|’

Notice thatM has been factorized as the product of two matrices that haseliagonal
block submatrix equal to the identity matrix and one offgtinal submatrix equal to zero.
Exploiting this product, it is straightforward to obtairetimverse of each of these factors
as follows

Aol [ At o0

c 1| ~|-cA! 1
I A'B | [I —A'B(D-CA'B)"’
0 D-CA'B] [0 (D-cA'B)™" '
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202 Appendix B Useful Matrix Properties

Thus, we get for the inverse of the matfid

A'B 17'TA o]!
-1
e et I -]

~A'B(D-CA'B)'|[ A o
(D-CA'B)™" ~CA™' 1
1+ A'B(D-CA'B)'CcA!' —-A'B(D-CA'B)"’
—(D-CA'B) 'cA™! (D-CA'B)"'

b| |O HI |O HI

(B.1)

This result is called thenatrix inversion lemma for partitioned matrices
We can obtain the alternative form factorizidd as follows

A-BD'C BD‘l} {I 0}

M:[ 0 I ||C D

Exploiting again the fact that each factor has one diagot@kbsubmatrix equal to
the identity matrix and an off-diagonal submatrix that isaze¢he inverse of\I can be
rewritten in an alternative way

(A-BD'C)"' —(A-BD'C) 'BD!
-D'C(A-BD'C)' D'+D'C(A-BD'C)"'BD|’
(B.2)

|

By comparing the upper left elements of Egs. (B.1) and (B.2), btain the following
relationship
(A-BD'C)"'=A"'+A'B(D-CA'B) 'CcA™! (B.3)

which is thematrix inversion lemm§L07].

B.2 Properties of the Trace Operator

The trace of a square matrix € C"*" is the sum of its diagonal elements:

n

tr (A) = Z Qg5

=1
whereaq; ; denotes the element corresponding toltle diagonal entry of the matrid.
Obviously, the trace is invariant to the transposition & éingument:

n

tr (A7) =) ai; =tr(A). (B.4)

=1
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On the other hand, the trace is not invariant to the conjugfats argument. In that case,

the trace holds i
tr(A)=> af, = (Z a> = tr* (A). (B.5)

=1 i=1
Combining Egs. (B.4) and (B.5), we obtain thatA) = tr*(A).
Directly from the definition of the trace of a square matrixcan be seen that

tr (BC) = i i bi,jcj,i = i i Cj,ibLj = tr (CB) (B6)
i=1 j=1 j=1 i=1

whereB € C™*" andC € C™™. From the above result, we can conclude that the trace
is equal to the sum of eigenvalues

tr(A) =tr (UAU") =tr (U'UA) =tr(AQ) = Xn: A (B.7)

Here,U € C™" is the modal matrix ofA containing its normalized eigenvectors. It is
well known thatlU is a unitary matrix, i.e U = 1. The diagonal matrixA comprises
the eigenvalues ol, i.e. A = diag(\q, ..., \,).

B.3 Derivatives of Vector and Matrix Functions

The derivatives with respect to vectors or matrices of sdalactions that involve the

trace operator are widely employed throughout this work.is E&ppendix collects the

definitions of these derivatives, as well as some resultshitiee been used in previous
chapters.

B.3.1 Real Derivatives

Let f : R™ — R, — f(x) with x € R™. The derivative off (x) with respect tar is
the column vector

0yt
o5@) | " | gw
Oz 9f(x)

OTm

and supposing now tha& € R™*" is transformed by the functiop: R"*" — R, X
g(X), the derivative of;(X) with respect taX is defined as

Bag(X ) aag(X )
avg(X) — x:l’l . x:l’n e Rmxn
0X 99(X) 99(X)

8l'm,l e al'm,n
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wherez; ; denotes thé-th element in thg—th column ofX.

B.3.2 Complex Derivatives

Suppose that = [z1, ..., 2" = [21 + jy1, ..., Tm + Jym)T € C™ andZ € C™" are
transformed by the functiont: C" — C,z — f(z) andg : C"™*" — C,Z — ¢(Z2),
respectively. The derivative ¢f(z) with respect toz is defined as the column vector

ofz) 0f(z) _ : 9f(2)
ofz) _ | T T ] om
0z af2) 2| o) orm)

O0zm Oxm 8y'm

The derivative with respect to the complex conjugate &f obtained as follows

(2 01(2) - 04(2)
0z of() e L0
82,7” OxTm 6ym

On the other hand, the derivative @¢fZ) with respect to the matriZ is them x n
matrix given by

99(z) .. 09(Z)
5’g(Z) B 0z1,1 Oz1,n
0z 09(2) | 09(2)
azm,l azm,n
99(z) .. 99(2) 99(Zz) .. 09(2)
1 0x1,1 0x1,n J Oy1,1 O0Yy1,n
= 3 : : : 5 : : : eCcm
99(z) .. 99(2) 99(z) .. 99(Z2)
8$m,1 8$m,n aym,l aym,n
and, similarly, with respect t&*
29(z) .. 99(2) 99(z) .. 99(Z2)
8g(Z) B 1 Ox11 Oz j oy1,1 8yll,n .
99(z) ... 99(2) 99(Zz) .. 09(Z2)
axm,l axm,n 8ym,l 8ym,n
Examples

Let A € C™*™ andw € C™. During the mathematical derivations throughout this work
the following relationships are used
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NEIE
. 8(tr(zHAz)) — AT
oz
§R<’sz) 1
¢ 0z - Ew

o Otr(AZ) _ AT
0z =A
dtr(AZ*)
0z =0
8tr(AZH)
oz A
atr(AZH)
0z
OR(t(AZ) _ 1
0z 2

0

Otr(AZ) | 10tr(A*Z*) _ 1 4T
0Z +2 0Z _2A

o(tr(2z1AZ))

Z =A'Z

. o(tr(2"AZ))

22— Az,

B.4 Kronecker Product

The Kronecker product betweet ¢ C™*" and B € CP*? is a matrix operation defined
as

ai1 -0 Q1n aB - a,B
AB=| : .. ! |®B= : : e Ccmrrna, (B.8)
Umi G amiB - am.B
The following properties hold for the Kronecker product af. EB.8) (see [123]):
(A B)' = A" @ B e cnoxme
ARa=a® AeC™"
a'®b=b®a’ =ba’ € CP™
(A B) (C® D)= (AC)® (BD) € C"™P*"*
b A)C=bx(AC)cC™"
(A®b)C =(AC)®be CP™"
(EQ F) ' =E '@ FeCmmmn
tr(E® F)=tr(E)tr(F) € C. (B.9)
Here,a € C,a c C", bec CP,C € C"", D € C?**, E € C™ ™, andF € C"*",
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B.5 Real-Valued Notation

Systems can be transformed from the complex-valued natatidhe real-valued one
according to the following rule

Apy — ((1) ?) 2R (A) + ((1) _01> 23 (A)

_ (9‘% (A4) —3(A)

3 (4) %(A)>ERW" (B.10)

where® denotes the Kronecker product (see Section B.4), the pheéird<s denote the
real and imaginary part of its argument, respectively, ang¢ C™*™. It is important to
note that the transformation given by Eq. (B.10) presendethalproperties of complex
numbers.

The transformation rule for signals is

brv = (é) 2R (b) + ((1)) 93 (b) = @EZD c R> (B.11)

where the signal vectdris a complex column vector of dimensionality
Considering the transmission over MIMO channels, if fiedimensional received
signaly is given by
y=Hx+n

where H € CK*N represents the flat fading channel,c C” represents the transmit
signal, andp € C¥ is the additive white Gaussian noise, the equivaldatdimensional
real valued transmission model is

(R0) - (R ) () (M) e
which can be written as

yrv = Hrvry + MRv. (B.13)

As shown in [124], real-valued processing can provide a gaiperformance for
certain applications.



Appendix C

Karush-Kuhn-Tucker Conditions

Let us consider the following possibly nonlinear optimiaatproblem with equality and
inequality constraints:

Xopt = argmin f(X)
X
subjectto:g;(X) < 0andh;(X)=0Vie{l,...,l},j{l,...,p} (C.1)

where X and X, € C™*". The functionsf(X), ¢:(X), i = 1,...,1, andh;(X),
j=1,...,p, are real-valued with complex-valued arguments, i.e.

f:Cc™m" SR
g :C™" =R, i=1,...,1
hy :C™" =R, j=1,...,p.

The function to be minimized i§(X); g;(X) is thei—th inequality constraint; anfd;(X)
is the j—th equality constraint, witlhandp being the number of inequality and equality
constraints, respectively.

Necessary optimality conditions of the optimization in EQ.1) can be found with
the Lagrangian function

l p
L(X A, M Ao dp) = F(X) + ) Magi(X) + ) Ao ihi(X)
i=1 j=1

with A ; € R, fori =1,...,l,and)\y; € R, forj =1,...,p.

The Karush-Kuhn-Tuckeconditions (also known akKT conditions) are necessary
for any solution of an optimization problem [68—71]. It is @angralization of the method
of Lagrangian multipliers to inequality constraints. Te@egcessary first—order conditions
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for the optimization problem of Eq. (C.1) are given by

oL (X7)\1,17 s 7)\1,la >\2,17 ce )\Q,p)

X =0
g:(X)<0 i=1,...,1
Migi(X)=0 ¢=1,...,] and
AMi>0 i=1,...,1
hi(X)=0 j=1,...,p.

Any optimizer for Eq. (C.1) must fulfill these KKT conditionsHowever, since the
KKT conditions are not sufficient in general, not all candéetaobtained from the KKT
conditions are optimal.

Afunction f(X) (or g;(X)) is convex if its domaimlomf is a convex set, i.e. domf
contains the line segment joining any two of its points, anfi all X,Y € domf,
6 € [0,1]

FOX+(1-0)Y) <Of(X)+(1-6) f(Y). (C.2)

The convexity of a twice differentiable function is also chaerized by its second
derivativeV? f(X), i.e. a twice differentiable function is convex if and onfijts Hessian
is positive semidefinite on its domain, and is strictly coowdnen the Hessian is positive
definite.

If the objective and inequality constraint functions aren@x and the equality
constraint functions are linear (or, more generally, ajfitiee problem is then aonvex
optimization problen{or convex program) [125]. In the case of a convex optimazati
problem, the KKT conditions are not only necessary but aléficgent, i.e. any candidate
is globally optimal. If the cost function in Eq. (C.1) is sthicconvex, then this global
solution is unique. In this case, the KKT conditions are alisficient to solve the given
convex programming problem.



Appendix D

Multivariate Normal Distribution

D.1 Mean Vector, Covariance Matrix, and PDF of a
Multivariate Normal Distribution

The multivariate normal distribution is the most importatribution in science and
engineering. Lett = [zy,...,x,,]T € C™. The mean value cf is

pa=Elx] = [, ..., pm]" € C™ (D.1)

wherey; = E[x;]. Therefore, the mean vectpr, is a vector of means.
The covariance matrix of is

Cr =E[(x — po)(z — #m)H] = {c;;} e C™ (D.2)

where {¢;;} denotes the covariance matrix whose elemeqtsare given byE[(z; —
wi)(z; — py)*], i.e. the covariance matri&’;, is a matrix of covariances;.

The random vector is said to be multivariate normal (so—call&hussial if its
Probability Density FunctiofPDF) is given by

exp (— (@ — )" O (@ — o))

fG (w,ll’m,ca:> — o det(Cm) . (D3)

where the notatiodet(C,,) is used for the determinant @7,

D.2 |Invariance of Uncorrelated Complex Gaussian
Distribution to Unitary Rotations

Let W € C™*™ be random, whose elements are i.i.d., zero-mean circugrymetric
complex Gaussian distributed, i.av = veqW) ~ N¢(0,,,0%1,,,,). Equivalently,
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210 Appendix D Multivariate Normal Distribution

when denoting the-th column of W asw; € C™, we have thatw; ~ N¢(0,,,0°1,,),
Vi, andE[w;w}'] = 0,,x.m for i # j. Suppose a unitary matrié¢ € C™*™ is applied to
W from the left leading to

V=UW (C™".

Clearly, V' is zero-mean circularly symmetric complex Gaussian disted asW,
since a linear transformation applied W gives V. Clearly, the columns oV are
uncorrelated just as the columns Bf are. As the columns are zero-mean complex
Gaussian distributed, we only have to investigate theiagance matrices

E[v;v]] = E[Uww,' U"] = U Ejlw,w!|U" = Us*I,,U" = ¢°I,,

wherev; € C™ denotes thé—th column ofV. We see that the entries of the columns are
independent, that is, the entries¥Wfare i.i.d. zero-mean circularly symmetric complex
Gaussian with variance?®. Thus, we have that = ved V') ~ N¢ (0,0, 02 1,,,), i-€. the
distribution of V' is the same as the distribution W . Therefore, the distribution iV’

is invariant to a unitary rotation from the left. It is alscsgdo see that the distribution of
W is invariant to a unitary rotation from the right (just coshesi the Hermitian oWV).



Appendix E

Error Covariance Matrix for Random
Vector Quantization

In this appendix, we show how to soN&min; ||hes|] — Y| [2] of Eq. (6.48) to find
a closed-form solution for modeling the error matrix for usbprecoder designs when
random vector quantization is performed instead of scalantization.

We have thatle;||3 with €; ~ Nc(0,C}, ;. + Chry) has the same distribution as
B; = ||zl3 with z; ~ N¢(0,A), where A is the diagonal matrix containing the
eigenvalues o”;, , + Cp . In the following steps, we demonstrate how to obtain the
Probability Density FunctiofPDF) of 3; € R%* for N = 4 transmit antennas and also
the mean ofnin; ;. Clearly, we can exploit the independence of the entries,&incez;
is complex Gaussian. It is known thatif~ N (0, 02), |z|? is exponentially distributed,

i.e.
0 <0

- exp (—U%) otherwise.

In other words, the squares of the entrieszpfare y2-distributed with two degrees of
freedom and the variance of theth entryz; ; of z; is A;. Therefore, the sum of the
squares of the first two entries of has the PDF

JiziaP+1z012 (Y) = / Jizn2 (Y = @) flz, o2 (z)d
[ e () e (1)
= exp | — xp | —— | dz
o A PN )P,
= 1 ex (—i)/yex (AQ_)\la:)dx
e PN L TP
Yy




212 Appendix E Error Covariance Matrix for Random Vector Quation

for y > 0 and is zero otherwise. Similarly, the PDF for the third anel fiburth entry of
z; can be written as

0 y<0
Fzsalt+lzial2 () = )\35\4 (exp (—%) — exp (—%)) otherwise.
These results help to find the PDF/@f= Y7 |2, because

Yy 1 1
. — 3-12 Zi22 -z Zi32 Z1'42xdx:
fa.(y) /Of|z,|+|,|(y Mzl 1z, (2) VD W V)

X (exp <—£) /y exp ()\3 — Alx) dr — exp <—£) /y exp ()\4 — Alx) dz
A/ Jo A1 A3 A/ Jo A1y
~+ exp (—i) /y exp (>\4 — Azx) dr — exp (—i) /y exp (/\3 — Azx) dx)
A2 /) Jo A2 g A2 /) Jo A2

- 24: 1T )\ék — ) o (_)‘%) .

k=1 11j=1,j7k

The Cumulative Distribution FunctioCDF) of g; is found by integration

4

Fp,(8) = Prg; < B8] = /05 fo(y)dy =) 0 Aék ) /06 exp (—%) dy

k=1 L1j=1#k

S Y (1_exp (_ﬁ))_
k=1 H?:L#kz (A —Aj) Y

Note that f5,(y) is independent of the index Since we take the minimum af/
square errorgy; and the errors are independent (remember that the codelminkse
are independent), the complementary cumulative distabutf 5y,;, = min; 5; can be
expressed as

= 1—24: s (1—exp (—ﬁ» M. (E.1)
k=1 H?Zl,j;ﬁk ()‘k - )‘j) Ak

Therefore, the mean @i, can be found as (see [126], (5-27))

Bl = Bfmin o] - wlf) = [ (1= Fa ()5 (E2)

An analytical integration is in principle possible, but flesulting number of terms even
for moderateM/ (M = 21° = 1024) is huge. Therefore, we cannot obtain a closed-form
solution for this integral and we have to solve it by means fimerical integration.



Appendix F

Rectangular Multivariate Gaussian
Integrals

F.1 Rectangular Multivariate Gaussian Probability
With wj, = R(hy,) andx;, = S(hy), the PDF ofh, can be decomposed as follows

Let the coefficients defining,, [see Eq. (6.85)] be renamed a¥°, s8¢, o™, andsi™
(the indexk and the argumert, are dropped). Then, we have that

/ﬂ?e Bie 1 zd: )
Ki = dwyq - - / dwy g —exp | — Wk j
ke ot (v/) =il
ﬂ{m lem 1 d
X d d exp | — 2
/ Xk,1 /aI Xk,d (ﬁ)d p Z Xk,j

d

g 1
H/a T eXp wZ,j) dwy, ; /ai,m ﬁ exXp (—xi,j) dXk,j

=1

L1 (o (vaor) —o (va)) (o (v

.

oL

-e(ar) e

.
—_

where we usq exp( —t2/2)dt = ®(a) — (b) for the last equality.
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F.2 Rectangular Multivariate Gaussian Centroid

Due to the symmetry of the real and imaginary partmef, it suffices to find the real
part of m, to prove Eq. (6.86). Let us split up, into its real and imaginary part, i.e.
wy, = N(hy) andx = S(hy), as we did in Section F.1. Thus, we have that

1 1 d

W = — (Wi + jxx) exp (— Z (w,ij + Xz,j)) dwy, dx

d
K (l
ke JSe, J=1

wherery, is the same integral as the one considered in Section F.in Erp (6.86), we
have thatm,, = pi° 4 j . Let 1% be thei—th entry ofyi. Taking into account that
each entry ofv,, is a standard Gaussian with variange, M?fi Is given by

ok = I (0 (vaes) -0 (va))

J=1
Re
1

d ﬁged Wi - 2
_ IT5_1,0 (2 (V2a©) — @ (V25})) /556 1
[T, ( (V2ake) — @ (V26%)) Jare vor

VagRe

- (cb (ﬁa§e> —® (\/ﬁﬁ?"))l /ﬁaRe 2\1/%t exp (—t*/2) dt
1 exp (—%Re’2> — exp (—@Re’2>

Wh,; €XP (—wivi) dwy i

_ F.2
3R @ (Vaal) @ (VIO "o
Following similar steps fop}g};, we obtained that
Im,2 Im,2
exp | —a; ) —exp =05

TR e (Vaal) e (Vai)

and thus, we have obtained a closed-form solution to Eq6)6.8

F.3 Rectangular Multivariate Gaussian Covariance

That Eq. (6.87) holds for the off-diagonal elements can lséyeshown with similar steps
as in Section F.2. So, we only have to obtain the expressiom,fothat can be found in
Eq. (6.90). Due to Eq. (6.87), we have that

Ok,i = [Mk]“ - ’mk,i\Q
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where[M,];; denotes the-th diagonal element al,,. With w, = R(hy), xi = S(hs),
and)\,; = [M];;, we have that

d
1 1 . .
Aki = —7 (Wei +Xki) (Wri = JXki) exp <— > (wiy+ X%,j)) dwy, dx.

Y ™
k JSy, j=1

As shown in Appendix F.lr, = [[1(®(v20F) — O(v285))(®(V2alm) —
@(ﬂﬁ}m)). Taking into account that each entry @f, or x, follows a zero—mean
Gaussian distribution with variandg2, we have that

VIR ] .2

-1
Aki = (CD (\/E%Re> - @ <\/§@Re>> /\@a?e Nor: 2’1 exp (—wi;/2) dwr,
-1 V2T ,
® (v2al™) — @ (V28™ / = X
(o (vaar) e (vai)) | 7
| aleexp (—al*?) - gleexp (- °?)
2ET B (V2 — 0 (VA
1 o™exp (—a%m’2> — M exp <—6§m’2>
2/ (V2om) - @ (V26/)
where [ #aﬁ exp(—2?/2)dz = [ \/LQ? exp(—2?/2) dv — =wexp(—1?/2) is applied.

For brevity, the last equality of Eq. (F.4) will be denoted\d$ + A}, where);s and ;"
are then given by

=14+

(F.4)

+

Re _ 3672 _ ARe _ 3672
R T eXP( a; ) B; exp( Gi )
Aki =51

(F.5)

A=<+
respectively.
From Eq. (6.86)|my.,|” = yi.5” + ;5% and thus [cf. Eq. (6.90)]
Oki = T,}}f + 7']??

Re _ \Re Re,2 Im _ yIm Im,2
wherer,’7 = Ac§ — py,~ andm i = N —
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Appendix G

List of Acronyms

AoA Angle of Arrival

AoD Angle of Departure

AS Angular Spread

AWGN Additive White Gaussian Noise
BC Broadcast Channel

BER Bit Error Rate

BS Base Station

CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
CSI Channel State Information

CSIR Receiver Channel State Information
CSIT Transmitter Channel State Information
dB Decibels

DFE Decision Feedback Equalization
DPC Dirty Paper Coding

DS Delay Spread

EASI Equivariant Adaptive Separation via Independence
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EXIT EXtrinsic Information Transfer

FDD Frequency-Division Duplex

FDMA Frequency-Division Multiple Access
3GPP Third Generation Partnership Project
iid independent and identically distributed
ISI Intersymbol Interference

KKT Karush-Kuhn-Tucker

LLL Lenstra-Lenstra-Laasz

LOS Line of Sight

LP Linear Precoding

LS Least Squares

LTE Long-Term Evolution

MAN Metropolitan Area Networks

MF Matched Filter

MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MS Mobile Station

MSE Mean Square Error

MU Multi-User

NLOS Non Line of Sight

OFDM Orthogonal Frequency Division Multiplexing

PDF Probability Density Function

Appendix G List of acronyms
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QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RF Radio Frequency

RF-FE Radio Frequency Front-End
RMS Root Mean Square

RVQ Random Vector Quantization
RxMF Receive Matched Filter

RxWF Receive Wiener Filter

RxZF Receive Zero-Forcing Filter
SCM Spatial Channel Model

SINR Signal-to-Interference-plus-Noise-Ratio
SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

ST Space Time

SU Single-User

SVD Singular-Value Decomposition
TDD Time-Division Duplex

TDMA Time-Division Multiple Access
THP Tomlinson-Harashima Precoding
TXMF Transmit Matched Filter

TXWF Transmit Wiener Filter

TxZF Transmit Zero-Forcing Filter

US Uncorrelated Scattering

VP Vector Precoding
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VQ Vector Quantizer

WF Wiener Filter

WIMAX Worldwide Interoperability for Microwave Access
WSS Wide Sense Stationary

ZF Zero—Forcing
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