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. Abstract

Describing properties of actions and their effects on the state of the world has long been ĉonsidered

one of the central problems in the theory of knowledge representation (78]. Most of Artificial

Intelligence applications require an almost complete description of an agent's actions and the
action laws that describe the ef^ects of actions that change the domain, which it is a time

consuming task. Machine Learning methods can help to learn the domain specific knowledge
necessary in the development of plans, or to construct the description of a robot's actions and its
environment. The domain to learn is a system that changes its state when acted upon according
to some set of unknown rules or functions. The learner initially knows nothing of the contexts
in which actions produce changes in the environment, nor what those changes are likely to be.
Then, it must infer how properties of the domain are affected by the execution of actions, or
otherwise are subject to the general law of inertia.

In most previous works on action-model learning, the inferred model corresponds to a set of
STRIPS-like operators [36], that was an early attempt to formalize descriptions of actions. Many
extensions have been proposed since then, aiming for theories of actions that are more expressive,
however, most of them are procedural representations. In this thesis we shall propose learning
action models in non-monotonic formalisms for Reasoning abo^t Actions and Change [78]. These

formalisms constitute a formal and expressive representation for action domains, grounded on
a mathematical and computational foundation, where system's behaviors are naturally viewed
as appropriate logical consequences of the domain's description, so that the specification of ac-
tions and their effects is made as intuitive and natural as possible. Any attempt to learn in
these formalisms must cope with various facets such as inertia (and the associated Frame Prob-
lem [81]), constraints and indirect effects (and the associated Qualification [79] and Ramification
problem [58]), non-deterministic and other complex eífects of actions.

Our work differs also from previous approaches in the use of Ind^cctive Logic Prograrrzming [93]
methods, which allow a natural integration with implementations of Action Theories based on
the Logic Programming paradigm. The result is that an action theory is learned in the same way
as it will be used, thus there is no a dif%rent representation for learning and another dif%rent
for reasoning and planning. For this task we adopt Extended Logic Programs [45] as the form of
programs to be learned, where two kinds of negation -negation as failure and classical negation-
are effectively used in the presence of incomplete information.

The use of Action Languages [47] has a significant impact in the generality of the approach, so
that diverse learning tasks can be approached in an homogeneous way and with minimal changes,
for instance, the dual problem, i.e., learning to act, where action-selection rules for guiding the
planning process are learned from solutions to instances of a planning problem. The control rules
learned this way do not make explicit reference to the workings of the planner, but only refer to
the solution space, so that they can be used by fundamentally different planning architectures.
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Chapter 1

Int ro duct ion

1.1 Objectives and Motivation

Describing properties of actions and their effects on the state of the world has long been considered
one of the central problems in the theory of knowledge representation [47]. Actions performed
in a world change its state, for instance, actions of a robot or an agent, updates in a database,
program statements, operations in a supply chain, selections/clicks in an interactive GUI, and
so on. In Artificial Intelligence (AI) the goal is to model and build agents capable of reasoning,
planning and acting in a changing environment. To perform nontrivial reasoning or to take action
in the world, an intelligent agent situated in a changing domain needs the knowledge of causal
laws that describe the effects of actions that change the domain, i.e., it must be able to predict
the results of its actions. For the most part, applications fall into three broad categories that
correspond roughly to the need to predict, explain, and understand physical phenomena [117].

1. predictive, in which the objective is to predict future states of the system from observations
of the past and present states of the system.

2. diagnostic, in which the ob jective is to infer what possible past states of the system might
have led to the present state of the system.

0
3. planning, in which the ob jective is neither to predict the future nor explain the past but

find a sequence of actions that lead the system to a desired state given an initial situation.

Most of ^these applications require an almost complete description of the agent's actions

and its environment which, for moderately complex dynamic systems, it is a time consuming

task. Machine Learning methods can help to learn the domain specific knowledge necessary, for

instance, in the development of plans, or to construct the description of a robot's actions and its
environment.

A domain description consists of a set of fluent names, a set of action names, and a set of
caus^^1 laws that describe the effects of actions that change the domain. Fluents serve to describe
situations and are properties whose truth values may change in the course of time as the result
of performing actions. Let us consider a classical domain, the Blocks world.

Example 1(Blocks world) There is a table and some blocks, such that blocks can be moved
onto other blocks or onto the table, which is large enough to hold all the blocks. For each block,
either it is clear or else there is block sitting on it. The domain contains the action move and the
fluents on and clear to represent the location of blocks and what blocks are clear respectively. q
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0 a
on(A,B) clear(A) on(A,D) clear(A) on(A,D) clear(C)

on(B,C) clear(D) on(B,C) clear(B) on(B,A) clear(B)

on(C,table) on(C,table) on(C,table)

Figure 1.1: Blocks world

The domain to learn is a system that changes its state when acted upon according to some set
of unknown rules or functions. The learner initially knows nothing of the contexts in which actions
produce changes in the environment, nor what those changes are likely to be. An agent in such an
scenario learns to predict the effects of his actions through observation, where inputs correspond
to the actions executed and outputs correspond to the perceptual information available (Fig. 1.1),
and constructs a dynamic system that can predict the future output of the unknown system,
i.e., it must generate theories of how the actions affect the environment. In the blocks world, for
instance, this means to determine the conditions under which blocks can be moved onto other
blocks or onto the table, and predict the effects, i.e., the state of the blocks at the new situation
after executing an action. While such predictions may not be completely accurate since they are
based on incomplete experience, it is possible that they may be good enough to allow an agent to

perform ef%ctively [13]. It is important to notice that a model need not be exactly the same as
the environment from the learner's point of view. In many cases, this is because the perception
ability of the agent is limited.

To address this problem is a non-trivial task, taking into account the range of phenomena to

accommodate, among others [111]:

• The causal laws relating actions to their ef%cts.

• The conditions under which an action can be performed.

• Enviroriments partially known to an agent.

• Exogenous and natural events.

• Complex actions.

• Discrete and continuous time.

• Unreliable sensors.

• Uncertainty.

• Non-Determinism.

Learning of Action Models [13] has been studied in a variety of disciplines including control
theory, neural networks, and automata theory. The inferred model might correspond to a sys-
tem of differential equations, a set of production rules [124], or a set of states and transition
probabilities [13]. Most of previous approaches [87] were based on STRIPS [36] operators that

s
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1.1 Ob jectives and Motivation

were an early attempt to formalize descriptions of actions, consisting of a list of state features
(or postconditions) that are added and another list of features that are removed by applying the
operator, without more "deductive" features. For instance, the description of the operator move
in the blocks world is the following:

(move

(params (<block> <block-from> <block-to>))

(preconds

(clear <block>)

(clear <block-to>))

(effects (

(add (on <block> <block-to>))

(del (on <block> <block-from>))

(add (clear <block-from>))

(del (clear <block-to>)))))

For years, researchers in the nonmonotonic reasoning community aimed for theories of actions
that are more expressive than STRIPS-like systems. Many extensions have been proposed since
then, aiming for theories of actions that are more expressive than STRIPS-like systems or to
alleviate problems in operator representation caused by the STRIPS assumptions, however, most
of them rely on procedural representations.

In this thesis we focus on learning representations of environments that can be characterized
by non-monotonic formalisms for Reasoning abo^ct Actions and Change. These formalisms consti-
tute an eí%rt towards Commonsense Reasoning grounded on a mathematical and computational
foundation. Features as indirect ef%cts of actions (ramifications), implied action preconditions
(qualifications), and concurrent actions are now easily represented. These formalisms are in-
tended to precisely capture the ef%cts that an action produces given the current description of
the world and the Preconditions that specify when the action can be executed. However, they
are interested in temporal reasoning of a more general kind, e.g., explain observations about the
state of the world in terms of what actions might have taken place, or what state the world might
have been before -when the values of some fluents in one or more situations are given and the
goal is to derive other facts about the values of fluents- to make plans and so on.

We focus on Logic Programming (LP) theories of actions, i.e., theories of actions that either
use logic programming directly to formalize some aspects of reasoning about actions or those
that provide translations to logic programs [8]. In particular we deal with a logical approach to
modeling dynamical systems based on a dialect of first order logic called the Sit^cation Calc^c-
lvs [81]. Unlike other formalisms, where observations describe the pre- and post-execution states
of actions, i.e., transitions are considered as independent entities and the concept of situation
is not mentioned explicitly, the Situation Calculus represents explicitly the situation where an
action is executed, i.e., the sequence of actions that led to that situation. This particular feature
is essential for learning in action domains, as we will see in the next chapters. For instance, the
sequence of actions of Fig. 1.1 is represented as the following facts, among others, where so is a
constant that represents the initial situation:

holds(or^(a, d), do(move(a, d), so))

holds(or^(b, a), do(move(b, a), do(move(a, d), so)))

The use of Logic Programming makes it feasible to study the integration of Inductive Logic
Programming (ILP) with logic programming theories of actions. Inductive Logic Programming,
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i.e., Machine Learning methods that use Logic Programming as the representation knowledge-
is an emerging field in the area of Machine Learning. The ability to use a Logic Programming
representation both for examples and rules has contributed to this success. As a result, an action

theory is learned in the same way as it will be used, thus there is no a different representation
for learning and another different for reasoning, planning and so on. Additionally these logic-

based methods for learning provide a high expressivity with respect to propositional methods,
the possibility of including arbitrary logic programs as background knowledge, and other special
techniques, e.g., noise handling techniques, while learning without losing representational power.

We can translate dynamic data into a Logic Programming representation that ILP methods
can manage, where the temporal relationships among components and their states are partly
expressed by the introduction of the variable Time in the training data. However, the use
of first-order features to merely represent the sequence in a set of examples have restricted

ability to model dynamic domains. For instance, non-monotonic reasoning is needed to avoid
the explicit representation of unchanged properties from one particular situation to another
(Frame Problem [81]). In the blocks world, after moving block A onto D in Fig. 1.1, we have
that on(C, table) is not affected by the action, so that approaches that do not consider the inertia
assumption have to explicitly assert it in the input data. As a consequence, non-affected values
of fluents must be part of the information given to the learning algorithm, thus having to deal
with large datasets from which only a small fraction corresponds to effects of actions. Unlike
this, with the inertia assumption, observations need only be explicitly given for those situations
where a fluent changes, whereas inertia propagates non-affected truth values from one situation
to the next one. Thus, the learner must be able to infer how properties of a domain are affected
by the execution of actions, or otherwise are subject to the general law of inertia.

Furthermore, any attempt to learn in these formalisms must cope with other facets apart

from inertia (and the associated Frame Problem), such as constraints and indirect ef^ects (and the
associated Qualification [79] and Ramification [58] problem), nondeterministic and other complex
effects of actions. For instance, previous approaches to learning action models are restricted
to prediĉting a single outcome or eífect of an action. This forces the explicit representation

of all the ef%cts of an action as direct effects, producing the so-called Ramification problem,

which makes the descriptions of actions cumbersome and difficult for complex domains. In

many cases, the eífects of an action are not caused directly by the execution of the action but

indirectly through other changes. Thus, the learner should infer how properties of a domain are

(directly/indirectly.) affected by the execution of actions, or otherwise are subject to the general
law of inertia. Previous approaches also dealt with effects of actions on a world where these
are strictly specified. We show how to incorporate defeas^bility into the specifications, where

negation-as-failure is used to represent absence of information about exceptions. The explicit

use of exceptions allows to learn rules that are more generally applicable, mainly when there

are occasional qualifications or noise in the observations which may decrease the quality of the

learning results, or when a theory must be specialized minimally.

On the other hand, we need to learn a definition for allowed actions, forbidden actions and
actions with an unknown outcome, and therefore we need to learn in a richer three-valued setting.
For this task we adopt Extended Logic Programs (ELP) as the form of programs to be learned,
where two kinds of negation -negation as failure and classical negatión- are eífectively used in
the presence of incomplete information. Let us consider an autonomous agent that has to select
its own actions on the basis of acquired knowledge [63]. As pointed by Lamma et al., if the agent
learns in a two-valued setting, it will not know the diíference between what is true and what is
unknown and, therefore, it can try actions with an unknown outcome. Rather, by learning in a
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three-valued setting, the agent will know which part of the domain needs to be further explored
and will not try actions with an unknown outcome unless it is trying to expand its knowledge.

The learning task studied in this thesis is an old problem in the Machine Learning field.
We argue that this problem is best framed and solved by non-monotonic action theories where
system's behaviors are naturally viewed as appropriate logical consequences of the domain's
description, hence the specification of actions and their effects is made as intuitive and natural
as possible [122]. Furthermore, a language that makes the notion of sit^cation moré central can

provide a more convenient hypothesis space for learning, and a more compact description of
observations, where observed time traces of property values are represented in the Situation

Calculus in an homogeneous and natural way.
Our goal in this thesis is to provide solutions to several representative problems that can be

characterized with these formalisms. While we admit that the real world cannot be modeled by
such theories to any high degree of predictive accuracy, given appropriate percepts and actions, it
makes sense to model system identification in terms of non-monotonic action theories. Actually,
very simple scenarios become significantly complex without an appropriate level of abstraction.
Even if it were possible to construct such a detailed model, this would be absurdly and uselessly
large. Despite these simplifying assumptions, we believe that our models are relevant to a
variety of interesting tasks and environments, for instance, those involving agents with higher
level cognitive functions that involve reasoning about goals, actions, collaborative task execution,

etc..
On the other hand, the use of Action Languages allows that diverse learning tasks can be

approached in an homogeneous way, for instance, learning the ef%cts of actions but also the

dual problem, i.e., learning to act. In AI Planning, a planner is given an initial state and a
goal, and finds a sequence of actions that maps the state into the goal. For instance, turning a
configuration of blocks into another is a planning problem in the Blocks world (Fig. 1.2).

current Goal

Figure 1.2: A planning problem in the Blocks world

Planners generally search through a list of domain actions until a correct sequence of those
actions has been found that can achieve the desired goals. This problem has been tackled by a
number of algorithms and in recent years substantial progress has been made [133]. However,
the problem is still computationally hard and the best algorithms are bound to fail on certain
classes of instances. An alternative that has been proposed is to use knowledge of the planning
domain for guiding the planning process [113, 2, 51] via a set of additional constraints that do
not make explicit reference to the workings of the planner, but only refer to the solution space
like the constraints that define the original problem instance. Search control information for the
blocks-world may say things like:

`pick up a mis^laced block if clear'
`put current block on destination if destination block is clear and well placed'

etc.
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The above control information for the blocks world is not included in the domain description,
because it depends on a planning problem, e.g., well_placed is not used to predict the effects of
moving blocks. Recent results have shown that it is possible to automatically acquire such high
level declarative rules for action selection in planning in a purely declarative way. This problem

has been very recently tackled by Kautz and Selman [52], Geffner [76] and Khardon [60], among
others, using different schemes for representation and learning. More. precisely, they deal with the
problem of learning how to solve a planning problem in a domain, given solutions to a number
of small instances of it. Learned rules select the action to be executed based on the current
situation where the action will be executed and both the initial and the goal situation, so that
control rules encode the solutions to a class of problems that differ on both the initial and the
goal situations. .

In the last part of the thesis, we consider the task of learning action-selection rules where
both plans and the control rules are represented in the Situation Calculus.

1.2 Organization of chapters

This dissertation is organized as follows. In part I, we give a brief overview of formalisms for
reasoning about actions and change (chapter 2), focusing on the Situation Calculus, as well
as of Inductive Logic Programming methods (chapter 3). In part II we show what learning
means in formalisms for reasoning about actions and change (chapter 4) and show that learning
rules about actions and change may be possible using a Logic Programming implementation of
the Situation Calculus and Inductive Logic Programming methods. A prototype to learn action
theories in the Situation Calculus in the form of Extended Logic programs by using ILP methods
is described in chapter 5. In chapter 6 we extend the framework of the previous chapter to deal
with indirect effects of actions as well as with cyclical and recursive dependences, whereas in
chapter 7 we learn defa^clt theories of actions, where rules are allowed to have exceptions. In
part III, we propose some extensions to cope with complex effects of actions (chapter 8) and we
adapt the previous framework for learning declarative control rules that help improving planning
methods by reducing the search (chapter 9). In the last part, we review the most relevant related
work in the field (chapter 10), present some conclusions and outline future work (chapter 11).
Appendix A and B give a brief overview of basic Logic Programming concepts and the stable
model semantics respectively.

^
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Chapter 2

Non-monotonic Action Theories

Action languages are formal models that are used for talking about the effects of actions [47].

These formal theories of actions are needed to describe dynamic behavior of programs, databases,

robots, and other reasoning and actions agents, build agents capable of performing actions and

reasoning in the dynamic world and reason about such agents. There are many existing disciplines

that focus on modeling dynamical systems, including Petri nets, dynamic logic, temporal logic,

finite automata, Markov decision processes, dif%rential equations, STRIPS operators, etc, that

solve problems that arise in sometimes narrowly circumscribed fields of specialization. However,

as pointed by R. Reiter [111], there should be a unifying theory of dynamics, one that subsumes

the many special purpose mechanisms that have been developed in these different disciplines, and

that accommodates all the features of dynamical systems. In this chapter, we give a brief overview

of formalisms for reasoning about actions and change, focusing on the Situation Calculus [81].

2.1 Reasoning about actions and change

One of the goals in reasoning about actions has been to contribute towards the development
of `autonomous agents' that can `perform' in a dynamic environment. For this task the agents
have to sense, reason, plan, and execute actions. For instance, the task might correspond to
the agent being in one of many locations in an office building, in which locations correspond
to junctions where hallways meet [11]. In this case, the observed outputs might correspond to
the number of hallways incident on a junction, and the inputs to actions for traversing incident
hallways. As another example, consider the structure of a voice-mail system. Here the states
might correspond to various menus and services, actions to keys pressed by the user, and outputs
to the announcements made at each state.

There are basic formalisms (referred to as STRIPS-like) -that was an early attempt to for-
malize descriptions of actions- where the knowledge T simply codes the possible answer pairs
(action,ef%ct) without more "deductive" features. For years, researchers in the nonmonotonic
reasoning community aimed for theories of actions that are more expressive than STRIPS-like
systems. Research in nor^-monotor^ic Action Theories constitutes an effort towards Common-
sense Reasoning grounded on a strong mathematical foundation, where system's behaviors are
viewed as appropriate logical consequences of the domain's description.

Most of these formalizations define an entailment relationship (^) between the specifications
(of effects of actions and relations among objects of the world). This ability allows to make
plans that will take us to particular kind of worlds and explain observations aboút the state of
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the world explain observations about the state of the world in terms of what actions might have
taken place, or what state the world might have been before, or both [11]. Features, as indirect
e^ects of actions (ramifications), implied action preconditions (qualifications), and concurrent

actions are easily represented in non-monotonic action theories. Until recently, however, these
theories were of theoretical interest only because of their high computational complexity. The
situation has since changed substantially [67, 128, 101]. In fact, recent works have shown that a
competitive planner can be built directly on top of one of such formalisms.

Formalisms for reasoning about actions and change are intended to precisely capture the
effects that an action produces given the current description of the world and the preconditions
that specify when the action can be executed. That is, they allow to do terraporal projections
to predict the state of the world after the execution of a sequence of actions. In a temporal
pro jection problem, we are given a description of the initial state of the world, and use properties
of actions to determine what the world will look like after a series of actions is performed. Current
formalizations are interested in temporal reasoning of a more general kind, for instance, the cases
when we want to use information about the current state of the world for answering questions
about the past, i.e., when the values of some fluents in one or more situations are given, and the
goal is to derive other facts about the values of fluents.

Recently there has been a lot of progress in formulating theories of actions, particularly in
progressing from simple and/or restricted theories and `example centered approaches', to general
theories that incrementally consider various specification aspects [122]. This allows that more
complex problems can be managed. For instance, Cognitive Robotics is an emerging field aimed
at the construction of robots whose architecture is based on the idea of representing the world by
sentences of formal logic and reasoning about it by manipulating those sentences [122, 11]. Action
formalisms are also used for the diagnosis of dynamic systems [100], where the system behavior
is described in an action formalism. Once diagnosis is defined in an action formalism, faults are
viewed as any other evolving property of the domain, and the solution to the diagnosis problem
provides an explanation for what components failed and when they did. Reiter [69] proposed
specifying transactions in databases describing the evolution of a database under the effect of
an arbitrary sequence of update transactions, like a dynamic system. Expressed in this way it is
possible to pose and answer historical queries, to determine legal or illegal sequences of updates
to the database and so on. Recently it has been shown that action formalisms are appropriate for
Natural Language understanding due to the inferential and representational capabilities [102].

In this chapter, we give a brief overview of these formalisms, focusing specially on the Situ-

ation Calculus because it is the formalism we have selected for learning.

2.2 The Situation Calculus

The most classical formalisms for actions and change are the Situation Calculus and the Event
Calculus. Situation Calculus [81] is a logical approach to modeling dynamical systems based on
a dialect of first order logic. A formal framework to reason about actions and change requires the
basic notion of a sitnation. Situation Calculus conceives of the world as consisting of a sequence
of sit^cations, each of which is a snapshot of the state of the world. Situations are generated
from previous situations by actions. Any aspect of a system which can change as the result of
an action or event is indexed by a situation and represented as a fluent. The next step is to
represent how the world changes from one situation to the next. An action, if executed in some

E
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situation, leads to a"resulting" situation. Situation Calculus uses the function

do(action, sitz^ation)

.

or Res^clt(action,sit^ation) to denote the situation that results from performing an action in some
situation. Fluents serve to describe situations and enable to reason about changes in the truth
value of observations as the result of performing actions.

Holds( f luent, do(action, situation))

A situation argument may be in the form of a constant si or else a situation resulting after
executing an action do(action, sit) . An special situation so is included to represent the initial
situation. A sequence of situations is encoded in the form of chains:

do(actionn, do(actionn_1, . . . , do(actionl, s) . . .))

•

starting from the initial situation. The concept of situation of the Situation Calculus differs from
the concept of state used in automata-based approaches. An state S is a set of fluent literals, i.e.,
expressions of the form f or f, such that each fluent occurs either affirmatively ( f) or negatively
( f) in S. Thus, an state can be mapped to multiple situations.

A narrative is a course of actions about which we might have incomplete information. For-
malisms for reasoning about actions may be divided into those which are narratiye-based, such
as the Event Calculus and those which reason on the level of sequences of actions, e.g., the Sit-
uation Calculus. In narrative formalisms, e.g., the Event Calculus [121], situations are usually
represented by natural numbers, and a predicate happens/2 is added to indicate the actions that
happened at each time point in the narrative. In this case, narratives correspond to a course of
real actions.

Holds(e, n)
Happens(a,^, n), . . . , Happens(al, 1)

Situation Calculus operates at a more abstract level than that of actual actions. It allows
to reason about the hypothetical situation which results from the performance of a sequence
of hypothetical actions [85]. Questions such as "is e an effect after the sequence of actions
(al, a2, ..., an)?" are expressed as formulas by means of the predicate Holds(e, s) and the func-
tion Res^clt(a, s):

Holds(e, Result(an, (. . . (Res^clt(a2, (Resnlt(al, so)))) . . .)))
•

•

Actions are described by stating their effects, that is, we specify the properties of the situation
that results from doing the action. For instance, consider a robot r that can hold, drop and repair
ob jects. The efiect on the fluent brol^en of dropping and repairing something can be expressed
in the form:

Holds(holding(r, ^), s) n f ragile(^) ^ Holds(broken(^), do(drop(r, ^), s))

Holds(hasglue(r), s) n Holds(broken(^), s) ^^Holds(brol^en(^), do(repair(r, ^), s))

where s, ^, y and z are universally quantified variables, and fragile is an static property of objects.
These axioms are called effect a^ioms or action laws, and capture the causal laws of a domain
describing the changes in the values of fluents as a result of performing actions. In this example,
the first axiom states that when the robot drops a fragile ob ject ^ that he was holding, ^ will
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be broken in the resulting situation, whereas the second axiom states that repairing a broken
ob ject ^ is possible provided the robot has glue.

Given the description of a domain and an initial situation so, it is possible to solve projection
problems, where we are interested in the value of a fluent at a particular situation, for instance:

Holds(broken(^), do(repair(r, ^), do(drop(r, ^), so)))?

In a planning problem, we are given the initial situation and a goal condition and have to find
a sequence of actions that lead from the initial situation to a situation where the goal condition
holds, for instance:

Find A and B such that Holds(brol^en(^), do(A, do(B, so)))

In an e^planation problem, we are given one or more observations at one or more situations,
for instance, ^Holds(broken(^), sl), and the objective is to explain observations about the state
of the world in terms of what actions might have taken place, or what state the world might
have been before.

Situation Calculus has several problems that limit its applicability [48]. VVhen there are
multiple agents in the world or when the world can change spontaneously, or there are actions
that have diíferent durations, or whose effects depend on duration, then the Situation Calculus in
its intended form cannot be used at all. Advantages and disadvantages of the Situation Calculus
have been the sub ject of many debates in the knowledge representation community. It is clear
that at least in simple cases -when actions are deterministic and are not executed concurrently-
the language of the Situation Calculus is very attractive. Furthermore, several extensions have
been added that allow to deal with ramifications, qualifications, concurrent actions, exogenous
actions, durative actions and so on [104].

There are other formalisms to reason about actions apart from the Situation Calculus and the
Event Calculus, among others, the family of ,A languages [47], Causal Explanation [77], Temporal
Action Logic [50] based on the concept of occlusion, Pertinence Action Language [101, 21] based
on the concept of pertinence [101], the GOLOG language [65], and so on. Some of them are
based on the Situation Calculus [67, 65], however most of them are narrative formalisms and use
circumscription (80] or completion as the non-monotonic inference method. Many of them can be
implemented in Logic Programming, however this is classically used for the Situation Calculus
and the Event Calculus.

2.3 Challenges for Action Theories

The use of logic-based formalisms raises specific challenges for action theories, of v^^hich the
most famous are, in historical order, the Frame Problem, the Qualification Problem, and the
Ramification Problem. The Frame Problem [81] is the problem of how to express the facts about
the ef%cts of actions and other events in such a way that it is not necessary to explicitly state
for every event, the fluents it does not af%ct. The dynamics of the world are specified by effect
axioms which specify the effect of a given action on the truth value of a given fluent. As has been
long recognized, axioms other than ef^ect axioms are required for formalizing dynamic worlds.
These are called frame a^ioms and they specify the fluents unaífected by the execution of an
action. For instance, in the example of the previous section, we have the following frame axiom:

Holds(holding(r, ^), s) n ^Holds(broken(y), s) n[y ^^ V^ f ragile(y)]

^ ^Holds(broken(y), do(drop(r, ^), s))

•

.

.
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to mean for the conditions under which the fluent broken is not affected by the action drop.

Together, effect axioms and frame axioms provide a complete description of how the world
evolves in response to an agent's actions. The problem associated with the need for frame axioms
is that normally there will be a vast number of them. Normally only relatively few actions will

affect the truth value of a given fluent. All other actions leave the fluent invariant, and will give
rise to frame axioms, one for each such action. This is the Frame problem. When we specify

action laws, we are only interested in describing changes, assuming that all the rest will remain
unaf%cted. Solutions to the Frame problem involve the application of the inertia assumption for
non-changing fluents.

On the other hand, actions often have other ef%cts than those we are immediately inclined
to put in the axioms concerned with the particular action. The Ramification Problem [58] is the
problem of how to express the effects without forcing the explicit representation of all the effects
of an action as direct ef%cts. Let us consider the following example due to Thielscher [128].

Consider the action of toggling a switch, which in the first place causes nothing but
a change of the switch's position. However, the switch is probably part of an electric
circuit so that, say, some light bulb is turned of^j; as side e,f^`ect, which in turn may
cause someone to hurt himself in a suddenly darkened room by running against a

chair that, as a consequence, falls into a television set whose implosion activates the
fire alarm and so on.

The fact that the fire alarm becomes active is not caused directly by toggling a switch,
however it started the sequence of events. As a consequence, there will be an ef%ct axiom that
connects the fire alarm and every possible action that eventually may cause the television to
implode. This makes the descriptions of actions cumbersome and difficult for complex domains.
With respect to the robot's example, if the ob ject is a light bulb, the bulb will be definitely oíf
when it is dropped. Then we need an eífect axiom for the fluent light_ is_ o, f^` and for every action
that eventually breaks the bulb, apart from dropping it. And however, the state of the light does
not depend on the particular action that broke the bulb. Solutions to the Ramification Problem
are based on the use of indirect eíiects, where domain constraints, i.e., general laws describing
dependences between components of the world description, are used apart from the eífect axioms.

The Qualification Problem [79] concerns how to express the preconditions for actions without
having to account for the many conditions which, albeit being unlikely to occur, may prevent the
successful execution of an action. McCarthy poses the following example: that it is necessary to
have a ticket to fly on a commercial airplane is rather common to express. That it is necessary
to be wearing clothes needs to be kept inexplicit unless it somehow comes up. The Qualification
problem is still one of the least understood and with few satisfactory solutions. The main problem
is that in general it is infeasible to represent complete specifications of all the preconditions to
actions which would include all possible qualifications [30]. Solutions to the Qualification problem
are based mainly on the use of defeasible specifications, so that if a new condition is observed
where the action, for instance, drop(r, ^), is disqualified, that is not considered in the effect axiom,
this can be retracted, in the spirit of non-monotonic reasoning, by adding new postulates.

Finally, one of the motivations for action formalisms is to find representations that are elab-
oration tolerant [79], i.e., representations that allow scenario descriptions to be modified and
extended with additional information, to take into account new phenomena or changed circum-
stances, without extensive changes. In formalisms that do not fit with the elaboration tolerant
condition, a single change in the description of the domain leads in many cases to a completely
new representation.
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2.4 Logic Programs to reason about actions

In this section, we focus on logic-based formalisms for reasoning abo^ct actions and change. By
logic programming theories of actions we refer to those theories of actions that either use logic
programming directly to formalize some aspects of reasoning about actions or those that provide

translations to logic programs [46, 9]. Logic programming can be used to represent the effects of
actions by importing the ontology of the Situation Calculus [121], representing effect axioms as

logic program clauses and using negation-as-failure (NAF) as a means of overcoming the frame
problem.

Most previous work on Logic Programming consider definite Horn programs. However, re-
search work on Reasoning about actions has shown that such programs are not adequate to
represent the ef%cts of actions [46]. First formalizations of actions in LP were adequate for only
the simplest kind of temporal reasoning, "temporal pro jection", and only in the cases when the
given description of the initial state is complete. The reason for that is that these formalizations
use the semantics of logic programming which automatically apply the "closed world assumption"
to each predicate. For these reasons, properties of actions are represented by means of Extended
Logic Programs (ELP), i.e., logic programs that use both classical negation and negation as
failure [46, 9] . Negative information is thus represented explicitly to allow the derivation of the
negative value of fluents, whereas negation-as-failure is used for inertia.

Situation Calculus programs are logic programs with a fixed clausal structure. Formally we
have:

Definition 2.1 (Situation Calculus Program) A Situation Calculus program is the conjunction of [121]:

• A finite set of general clauses

[^]Holds(f, so) (2.1)

where so denotes the initial situation.

• A finite set of clauses in the form

Holds( f, do(a, s)) ^ ^r+ (2.2)

^Holds( f, do(a, s)) ^ ^r- (2.3)

where ^+ and ^- does not mention the Affeets predicate and every occurrence of the Holds predicate
in ^r is of the form [-^]Holds(F', s). The description states that, in any situation, if the precondition
holds then the effect will hold in the resulting situation. These axioms are called ef,j`ect a^ioms or
action laws.

• A finite set of A ffects clauses of the form

Affects(a, f, s) ^ ^r (2.4)

where ^r does not mention the Affects predicate and every occurrence of the Holds predicate in ^
is of the form [^]Holds( f', s).

• The universal frame axiom describes how the world stays the same (as opposed to how it changes).

Holds( f, do(a, s)) F-- Holds( f, s) n not Affects(a, f, s) (2.5)

^Holds( f, do(a, s)) ^^Holds( f, s) n not .4ffects(a, f, s) (2.6)

^

♦
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This Logic Programming implementation of the Situation Calculus uses an special predi-

cate af,j`ects/^ and negation as failure to implement inertia. Inertia is tackled in the following
way: a fluent may only change if a cause for the change can be derived from the theory. This
ability to succinctly represent all the actions which leave a given fluent invariant is precisely

the kind of solution to the frame problem we seek. The Universal frame a^iom makes so-called

frame axioms unnecessary. Thus, we can add as many eflect axioms as we like and rely upon

axioms (2.5) and (2.6) to implement inertia.
The description of the robot scenario in section 2.2 would be the following:

Holds(brol^en(^), do(drop(r, ^), s)) F- Holds(holding(r, ^), s), f ragile(^)

^Holds(brol^en(^), do(repair(r, ^), s)) F-- Holds(hasglue(r), s), Holds(brol^en(^), s)

Affects(drop(r, ^), brol^en(^), s) ^ Holds(holding(r, ^), s), f ragile(^)

Affects(repair(r, ^), brol^en(^), s) F- Holds(hasglue(r), s), Holds(broken(^), s)

Lifschitz [46] and Baral [11, 10] extend this LP formalization under the Answer Set seman-
tics [44], to cope with indirect eífects, exceptions, undefinedness and concurrent actions. Fur-
thermore, several extensions have been developed based on the Situation Calculus to cope with
exogenous actions, durative actions and continuous change [104, 86]. We will deal with some of

these extensions in the next chapters.
Some formalizations of the Situation Calculus include a binary predicate Poss, apart from

do, holds and a,f,^ects, such that for any action a and any situation s, Poss(a, s) is true if a is
possible (executable) in s. For instance, in the blocks world, we would write:

Poss(move(^, y), s) ^ holds(clear(^), s), holds(clear(y), s)

E

•

to represent that it is possible to move block ^ onto y provided both ^ and y are clear. Thus,
holds/^ clauses represent the conditional effects whereas Poss represents the qualifications to
the action and acts as a domain constraint forbidding some next states. If an action produces
diíferent eífects in dif%rent situations, clauses for Poss/2 represent the union of the applicability
conditions no matter what the effects are.

Other formalisms use predicates that are somewhat similar to a, f,^ects/^. A dialect of the

Situation Calculus due to F. Lin [67] uses a predicate Caused to capture simultaneously both
the concept of causality and the truth value of the fluent, that constitutes a solution to both the
Frame and the Ramification problems. Tempóral Action Logic [50] uses a predicate Occluded to
solve the Frame Problem, that expresses that a fluent has changed from false to true. Pertinence
Action Language [101] uses a predicate Pertinent that like af^`ects/^ is not related to the truth
value, but it represents a more general concept than simply change of value.

•
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Chapter 3

Induct ive Logic Programming

Inductive Logic Programming [93] (ILP) is a research area formed at the intersection of Machine
Learning and Logic Programming. Unlike classical inductive learning [17], where only proposi-
tional learning systems are used, ILP uses Logic Programming as the representational mechanism
for hypotheses and observations. By doing so, ILP can overcome the two main limitations of
classical machine learning techniques:

• the use of a limited knowledge representation formalism (essentially a propositional logic)

• and the difficulties in using background knowledge in the learning process

The first limitation is important because many domains of expertise can be only expressed in

a FOL, or a variant of first order logic. An ILP method can be used for propositional domains,
however, the utility of ILP is most viewed when dealing with relational domains. As a counter-
part, the task of ILP becomes significantly more complex as the space of solutions is extremely
large. For this reason, additional mechanisms are added to the classic induction methods that
restrict the space of solutions following the user preferences.

ILP can use so-called Backgro^cnd Knowledge (BK), consisting basically of predicate defini-
tions to be used during learning [94, 106]. The fact that both facts, rules and the background
are in the form of Logic Programs is an appealing feature of ILP systems, where for instance,
the background can include domain-independent definitions, e.g., type information, patterns to
indicate what kind of rules will be learned, and so on. This kind of information is not obvious
how could be added to a propositional learning system.

ILP systems have been applied successfully in a number of real-world domains. Presently
successful applications areas for ILP systems include the learning of structure-activity rules
for drug design, finite-element mesh analysis design rules, and so on. In this chapter we give
an overview of ILP methods focusing specially on those features that are relevant for learning
action models.

3.1 General definition of ILP

ILP systems develop predicate descriptions from examples and background knowledge (B). The
examples E_ E+ U E-, background knowledge B and final descriptions are all described as
logic programs. E usually consists of ground unit clauses of a single target predicate. E can
be separated into E+, ground unit definite clauses and E-, ground unit headless Horn clauses.
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The following example, dealing with natural numbers, might be represented using the following
clauses:

E+ _ { even(0), even(2), . . .
E- _ { F- even(1), ^ even(3), . . .

odd(1), odd(3), . . .
B = succ(0, 1), succ(l, 2), succ(2, 3) ... .

zero(0)

As in propositional learning, the objective is to find a most general rule or set of rules that
explain the positive examples and no negative examples. This means that Prolog after consulting
program B will answer:

Note that, the answer is due to the application of negation-as-failure, because actually Prolog
does not know anything about even/2. After learning a correct hypothesis, Prolog will answer:

?- even(4).

yes

?- even(3).

no

Formally we have:

Definition 3.1 (General problem specification of ILP) The general problem specification
of ILP is, given background knowledge BK and examples E, find the simplest consistent hy-
pothesis H such that:

(Prior Necessity) BK ^ E+
(Posterior Sufficiency) BK U H^ E+
(Prior Satisfiability) BK U E- ^ 1
(Posterior Satisfiability) BK U H U E- ^ 1

Prior Necessity states that the positive examples must not be derivable from only the back-
ground, otherwise, learning is not necessary. Prior Satisfiability states that negative examples
do not cause contradiction with background, given that the background consists of predicate
definitions whose validity is previously assumed and cannot be retracted. Posterior Sufficiency
and Satisfiability state that the solution must be a hypothesis that is complete and consistent
respectively.

The result of the learning process in the even/odd example for the predicate even/2 is a
theory in the form:

•

•

even(A) ^ zero(A) (3.1)

even(A) t- succ(B, A), odd(B) (3.2)
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A crucial feature of most advanced ILP algorithms is the possibility of including arbitrary
Prolog programs as background knowledge, and not only ground clauses as in the first meth-
ods (106, 94], e.g., by calling a Prolog interpreter to derive ground atoms from intensionally coded
specifications of background predicates. Some methods like Progol [89], integrate the induction
method into a Prolog interpreter. In the previous example, an intensional definition for the

predicate succ/2 can be provided:

s^ccc(A, B) ^ B is A+ 1.

•

3.2 Testing the generality of hypotheses

A central issue in the definition of any ILP method is the method for testing the coverage of a
hypothesis, i.e., testing whether a hypothesis entails an example e. This can be done extensionally

or intensionally.

Definition 3.2 (Extensional coverage) A hypothesis H under background B e^tensionally

covers an example e(H ^ e), iff there exists a clause c E H and a substitution B such that

head(c) 8 = e

body(c) 6 C M(B)

where M(B) is the least Herbrand model of the Background Knowledge B. q

In the even/odd example, we have that the learned theory covers extensionally even(2) if

there is an instantiation of the rules 3.1 or 3.2, for instance:

even(2) E- s^ccc(1, 2), odd(1)

• Extensional coverage uses 8-subsumption which is computationally more efficient than reso-
lution but that it is known to suf%r from several drawbacks:

• It has been proved that 6-subsumption is sound, e.g., c^ d implies c--^ d. The converse,

however, does not hold for certain types of self-recursive clauses. For instance, the following

clause:

ancestor(X, Y) E- ancestor(X, Z), ancestor(Z, Y)

does not subsume the clause:

ancestor(a, d) ^ ancestor(a, b), ancestor(b, c), ancestor(c, d)

because there is no substitution 9 that makes body(c) 9 C M(B). However, in fact,
the first clause is more general than the second one. Extensional coverage would need
the fact ancestor(b, d). This means, that extensional coverage is very dependent on the
completeness of the training set, i.e., it needs that all intermediate facts to prove an example
are provided.

• Given this extensional coverage test, we have to remove from the search space the clause
p(X ) F- p(X ) because it is always consistent and complete.
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The problems come from the fact that clauses are learned extensionally but then the whole
program is interpreted intensionally (i.e., it is run on a Prolog interpreter). Adopting an inten-
sional ^evaluation of clauses, most of the problems of extensionality are automatically overcome,
since a logic program is learned in the same way as it will be used.

Definition 3.3 (Intensional coverage) A hypothesis H under background B intensionally
covers an example e iff there exists a clause c E H such that

BU{c}^e

O

F^om a practical point of view, logical entailment of a fact e by a theory T= B U {c} can be
verified using a Prolog interpreter with knowledge base T and the query ?- e. With recursive

clauses a hypothesis may have to be executed several times to prove an example. For instance,
in the example above, the clause for ancestor/2 is executed once for ancestor(b, d) and once for
ancestor(a, d).

3.3 Methods in ILP

The theory of ILP is based on proof theory and model theory for the first order predicate calculus,
where inductive hypothesis formation is characterized by techniques including [93]:

• inverse resolution

• relative least general generalization

• inverse entailment

First methods [92] approached the problem from the direction of resolution proof-theory,
where inference rules based on inverse resolution are able to invert one deductive inference step.
Resolution is a sound proof procedure and can be inverted to form a useful inductive inference
procedure. Resolution is diagrammatically shown with a large v.

c2

Figure 3.1: Resolution

There are two operators that carry out inverse resolution, absorption and identification, which
are called V-operators. Each operator builds one of the two parent clauses given the other
parent clause and the resolvent. More precisely, absorption constructs C2 from Cl and R, while
identification constructs Cl from C2 and R. Let us consider the following example given in [82]:

•

•

•
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parent(u ►tri,mury) C2

d a ug h t e ►^( ►nu ry, Q►111)

Figure 3.2: Inverse Resolution

w

•

We could learn the clause C2 = da^eghter(X, Y) ^ parent(Y, X) which would be the most

useful clause. Other solutions include:

daughter(mary, ann) E-
danghter(X, ann) E-

daughter(mary, Y) ^
da^cghter(mary, ann) F-
da^cghter(mary, ann) ^
daughter(mary, ann) ^

In general there exists a vast range of possible

parent(ann, mary)
parent(ann, X )

parent(Y, mary)
parent(Y, mary)
parent(ann, X )
parent(Y, X )

answers of which only a few will be of any
value, which introduces many sources of indeterminacy.

The Golerri system [94] aims at overcoming the search explosion of its predecessors, due to the
high non-determinism of the inverse resolution rules. Golem uses Plotkin's relative least general

generalization [105] (rlgg). In the rlgg operator we are given background knowledge B and two
examples el and e2, and we want to find a clause C such that both B n C ^ el and B n C ^ el
are true, i.e., a generalization of the clauses el ^ B and e2 E- B. To compute the rlgg of the two
examples with respect to B, Golem takes the lgg of these clauses. For instance, for the even/odd
domain, Golem will build from even(8) and even(12) the following clause:

even(a) t- s^ecc(a, b), sncc(c, a), odd(c), succ(d, c), ...

In practice, this process is repeated for several examples until a more general hypothesis is
obtained. The rlgg operator eliminates all indeterminacy of the search, though it suffers from
several problems:

• It requires the background to be given extensionally.

• The two examples contribute to the generation of one clause, hence, they must be part
of the same clause in the target concept. If they correspond to dif%rent clauses, then,
in general, the clause produced by rlgg will be useless. To address this problem, Golem
consider a large sample of pairs and the best of these is selected and generalized.

• In general this rlgg will be large. Some biases must be applied to the clause to reduce it.

The Golem system together with Foil, were the first systems to be considered efficient. In
both, background must be provided as ground facts. The Foil system [106] is an extended
version of the classical C4.5 [107] to deal with relational data, such that, the learning process
remains the same but the specialization process is modified to, learn Horn clauses. The process
of specialization starts from the most general clause and adds literals to the clause -based on an
heuristic measure- until a solution is found (Fig. 3.3).

21
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odd(X) ^

odd(X ^ succ(Y,X)

odd(X) ^ succ(Y,X), even(Y)

odd(X) ^ succ(X,Y)

odd(X) ^ succ(Y,X),succ(X,Z)

Figure 3.3: Foil's search space for the even/odd domain

Current methods consider a model-theory approach. In particular, Inverse Entailment (IE) is
a generalization and enhancement of previous approaches, implemented in the Progol system [89].
Given background B, an example E and a hypothesis H satisfying B n H^ E, we can invert
the entailment relation such that:

BnH^E ^ B^(H^E) (3.3)

a B ^ (^E ^ ^H) (3.4)

a B n ^E ^ ^H (3.5)

•

Steps 3.3 and 3.5 are derived through the deduction theorem, whereas step 3.4 requires the
contrapositive form of a clause. Put 1 as the conjunction of ground literals that are true in every ^
model of B n^E. Then we can write:

^l ^ ^H (3.6)

^ H ^ 1 (3.7)

Such 1 is effective for reducing the hypotheses space, where a possible hypothesis H is
constructed as a clause that subsumes 1, thus, H is derived, in some sense, deductively. For
instance, Progol [89] builds the following clause from even(2) and the background:

1= even(a) E- sncc(b, a), odd(b), succ(a, c), odd(c), ...

which is subsumed by the clause 3.2 for even/2. In practice, Progol performs an A* search in
the space of hypotheses delimited by the most general clause and the bottom clause, until a
consistent hypothesis is found that maximizes a compression measure.

Yamamoto [134] showed that IE is complete for relative subsumption but incomplete for
entailment. The example Yamamoto used -where functions have been removed- is the following:

B _ even(0) ^

even(y) ^ s(^, y), odd(^)

E= odd(3) ^ s(2, 3), s(1, 2), s(0,1)

1= odd(z) E-- even(0), s(y, z), s(^, y), s(0, ^) •

The correct hypothesis H= odd(n) E- s(v, ^c), even(v) does not subsume 1 relative to B
-thus, H cannot be derived by IE under B- and however B n H^ E. In this case, the incomplete-
ness of the background seems to be the cause, as we do not know odd(1), odd(2), even(1), even(2).
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In general, IE is incomplete with recursive clauses, where it needs to use the hypothesis more
than once to prove the example. Yamamoto [134] and Furukawa [42] gave different conditions
that guarantee the completeness of IE. Muggleton showed that enlarging the bottom set leads to
completeness of IE [90], where the bottom clause is enlarged with {a ^ a E HB(BnE)-M(BnE)}

-where HB is the Herbrand base and M is the least Herbrand model- resulting in the following

1-clause:

odd(z); odd(^); ...; even(^); ... E- even(0), s(y, z), s(^, y), s(0, ^)

where ; represents disjunction, from which the intended clause can be derived. We can see that

in order to prove odd(z) the intended clause must be executed twice, once for odd(^) and once
for odd(z).

In general, a notion of abduction is needed to cope with the problems caused by the incom-
pleteness of the background knowledge [56]. More recently, a technique called Theory Completion
using Inverse Entailment (TCIE) [91] based on IE developed by S. Muggleton uses a notion of
abduction. Let us consider the following example of [89].

E+ = hasbeak(tweety) ^
E- _ ^ hasbeak(tweety)
B _ hasbeak(X ) F- bird(X )

bird(X ) F- vulture(X )

1(B, E) _{ hasbeak(tweety), bird(tweety), vulture(tweety) F-

Hl = bird(tz,veety) ^

HZ = bird(X ) E-
H3 = vulture(tweety) F-
H4 = vulture(X) ^

•

•

•

In this case, Hl, H2, H3, H4 are potential hypotheses that allow to prove E+ and however,
the predicate in E+ does not coincide with the head of the hypothesesl. TCIE is given multiple
goal predicates and it uses an standard covering algorithm where each example is generalized
using a multi-predicate search over all the predicates to find the hypothesis that covers the given
example with maximal information compression. TCIE is capable of recovering accuracy to a
substantial degree, even when large sections of the background are missing.

3.4 Declarative bias

The space of solutions when learning in first order predicate calculus has to be reduced by using

some kind of bias. Most learning systems learn function-free Horn clauses and definite programs.

Even so, the space of solutions is still intractable. In this section we review some biases used for

current systems.

First of all, clauses containing functions, must be flattened before learning can be done.
Flattening [116] is a technique that removes constants and functions from the arguments of
clauses by introducing a n+ 1-ary predicate for each n-ary function (n > 0). For instance, the
fact:

odd(succ(succ(succ(0) ) ) )

lIE follows the Observation Predicate Learning (OPL) assumption in which both the examples and hypotheses
define the same predicate.
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can be flattened into:

odd(z) F-- succ(y, z), succ(^, y), sncc(0, ^)

Many different methods exist for declarative bias, each relying on an special formalism.
In these methods, the user can previously establish the form of the clauses to be searched, by
selecting a predicate for the head and predicates that can appear in the body, and so on, adapting
the search to the domain at hand. Language bias imposes certain syntactic restrictions on the
form of clauses allowed in hypotheses. Recent results show that reducing the size of the target
language often makes ILP learning more tractable. The main restrictions are on the introduction
of existentially quantified variables in the bodies of clauses. Most important domain-independent
biases are the following:

Definition 3.4 (Constrained clause) A clause is constrained if all variables in the body also
appear in the head. q

For instance, the following clause:

not f ree(A) E- on(B, A)

stating that a block is not free when any other block is on it, would be non-constrained according
to the definition.

Definition 3.5 (Range-restricted clause) A clause is non-generative or range-restricted if
all variables in the head also appear in the body. q

For instance: this classical definition used in many Prolog books is not range-restricted, as
variable C is not referred to in the head.

grandparent(A, B) ^ parent(A, C), parent(C, B).

Definition 3.6 (Determinate clause) A clause is determinate ifi each of its literals is deter-
minate; a literal is determinate if each of its variables that does not appear in the preceding
literals has only one possible binding given the bindings of its variables that appear in preceding
literals. q

For instance, the relation linked_to in an undirected graph makes that the relation connected
cannot be represented as a set of determinate Horn clauses, because several bindings are possible
for C in linked_to(A, C).

connected(A, B) F- linked_to(A, B)
connected(A, B) ^ linked_to(A, C), connected(C, B)

This restriction is useful in ILP as it simplifies and speeds up the resolution process, however,
it reduces the concepts that can be represented.

Definition 3.? (Depth of a variable) The depth d(v) of a variable v in a clause C is defined
as follows:

d(v) _
0 if v is in the head of C
(minuEU„d(u)) + 1 otherwise

•

•

•

a

where Uv are the variables in atoms in the body of C that contains v. q
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In the following clause, variable z has depth 0, y has depth 1 and ^ has depth 2.

odd(z) ^ succ(y, z), succ(^, y), succ(0, x)

•

.

•

•

Consider asking Prolog what lists 1 is a member of. Clearly there are an infinite number of

answers, and Prolog cannot find all of them. The member/2 predicate was not really written

with those sorts of questions in mind, i.e., the first argument was meant to be the variable, not
the second [18]. This sort of difficulty is prevented by the use of so-called mode declarations that

specify input and output arguments of predicates.

Definition 3.8 (Input/Output variables) Input variables of a literal Li (i < n) in the or-

dered Horn clause A F-- L1i ..., Ln are those appearing in Li that also appear in the clause
A^ L1i ..., Li_1. All other variables are called output variables. q

In mode declarations, + types are used where there is an input argument of a predicate, and
- types are used for an output argument. For instance, in the odd/even domain, new variables
are introduced through predicate succ/2.

{even(+nat), zero(+nat), succ(-nat, +nat), odd(+nat)}

Mode declarations in Progol, combine input/output arguments for every predicate with limits

on the number of alternative solutions (recall) for instantiating an atom. For a predicate such as

succ/2 the recall would be 1 since a number has at most one predecessor, whereas for a predicate

such as square_root/2 the recall would be 2 since a number has at most two square roots. An

alternative approach to language restrictions related to the idea of mode and type declarations,

is the use of templates that describe the form hypotheses must take. This approach is sometimes

referred to as rule-models.

3.5 Recursive programs

Learning recursive programs is an important issue in ILP.

Definition 3.9 (Recursive clause) A clause is recursive if the predicate symbol in its head
appears in any of the literals in its body. q

A recursive program contains at least a base case (non-recursive) and one or more recursive
clauses. For instance, the definition of inember/2 is of the form:

member(A, [A^B]) (3.8)

member(A, [B^C]) E- member(A, C) (3.9)

Unlike non-recursive programs, to check if a hypothesis covers an example e, the proof pro-
cedure actually needs other examples in its recursive execution apart from the background. For

instance, when learning the predicate member/2, the proof of inember ( 3,[4 ,1, 3] ) needs the fact

member(3, [1,3] ) and member(3, [3] ).

The common approach in learning recursive clauses is to include all the positive examples
into the background knowledge. This allows to determine coverage (extensionally) by using these
facts to unify with the recursive literals in the body of the clause. In this case, the recursive
clause can be learned before the base case. However, this introduces several problems, that are
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dealt in a variety of ways. Consider the following example given in [82], with a recursive clause
add(A, B, C) F- add(B, A, C) and the following three instances.

add(1, 2, 3)
add(1,1, 2)
add(2,1, 3)

If we estimate the coverage by adding the positive examples to the background, the clause
will cover extensionally all the examples. However, to cover add(1, 2, 3) we need add(2,1, 3) and
viceversa, and to cover add(1,1, 2) we need again add(1, l, 2). For a more real coverage, we can
keep track of the examples used to prove every example so that cycles are avoided [82] . In this
case, the clause can only cover one of add(1, 2, 3) or add(2,1, 3) but not both. By doing so, the
clause covers just one example.

add(1,2,3)

add(1,1,2)

add(2,1,3)

Figure 3.4: Computing coverage of recursive clauses

A further question concerns whether all intermediate rec^crsive calls are included in the back-

ground, otherwise the extensional proof will fail. For instance, member(3, [4,1, 3]) needs the fact
member(3, [1, 3]). Thus, extensional evaluation will fail to find the solution when some important
examples are missing.

With intensional eval^ation, logical entailment is used to proof every positive example. In

a Prolog interpreter, examples covered are determined by using a SLD resolution proof. A base

case that depends strictly on the background must be learned before, otherwise, the recursive

clauses will be shown to cover no examples, -e.g., the clause for add/3- due to the non-finite

recursion. If no control is added to avoid non-terminating programs, termination must be granted

in some way, e.g., by setting a bound on the depth of the prover, such that false is returned for

every query that overpasses the limit. Intensional evaluation makes learning less sensible to

the incompleteness of the training set. For instance, with respect to the member/2 example,

the proof of inember(3, [4, 1, 3]) successes from the base case member(3, [3]) even without all

intermediate facts.

One of the first systems, Foil, uses more sophisticated methods to assure recursive soundness.
For instance, a recursive literal is added to the current hypothesis only if the program will
terminate normally. This option requires an analysis of the constants in the domain.

3 S^ 2 S^ 1 S^ 0

[4,1, 3] ^-^ [1, 3] ^° ^ [3]

The program for member/2 is granted to terminate because every call to each other is done

with a reduced argument, given that cons/2 imposes an ordering on the constants, so that no

goal will be called twice2. Something similar happens for the predicate succ/2.

•

•

•

•

2Predicate cons/2 is used to represent the list constructor [Head^Tail]



3.6 Multiple predicate learning 27

•

•

•

•

In general, recursion is a quite complex part of ILP and many approaches exist in the literature
to manage it [20]. The interest of learning recursive clauses in the ILP literature is mostly
illustrated with programs like qnicl^sort (and other programs working with lists) where most
popular algorithms have many difficulties. However, these algorithms have not developed special
procedures for this task. It seems that most practical applications of ILP do not require complex
recursive theories.

3.6 Multiple predicate learning

Definition 3.1 corresponds to so-called single-predicate learning (spl) where a single predícate is
learned. In general, multiple predicates have to be learned, for instance, in the even/odd domain,
we have considered that odd/2 is provided in the background for learning even/2, however we
could consider a learning task where a definition for both even/2 and odd/2 has to be learned.

Definition 3.10 (Multiple predicate learning) In a multiple predicate learning (MPL) prob-
lem, training data E contains examples for m predicates pi such that E+ and E- are divided
into m subsets Ep and Epi . ^

Single predicate learning checks only that individual clauses are consistent (locally), not that
the hypothesis as a whole is consistent with the negative examples (globally). That is, when
learning a clause c for a predicate pi, the evaluation is local to c instead of testing the coverage
globally using B U H U{c} ^ e, where H is the hypothesis built so far including clauses for
every pj with j# i. Global properties of hypotheses and clauses are defined in the context of
the entire example set E and the hypothesis H whereas local properties are defined using Epi
and Hpti .

In general, learning multiple predicate definitions is equivalent to learning of recursive pro-
grams and they have similar problems. Classical approaches decompose a mpl problem into
multiple single-predicate learning (spl) tasks using standard ILP methods. But, in general, it is
not possible to solve a mpl problem by putting together the definitions learned for each predicate
pi obtained by a spl system [108]. By learning completely one predicate after another, the success
of a mpl task depends on the order of the spl subtasks, because each spl task uses the clauses
previously learned for other predicates as background.

Extensional evaluation avoids these problems because the examples in the training set are
used as background instead of the clauses previously learned. However, the learned theory can
be:

• Intensionally complete but extensionally incomplete.

• Extensionally complete but intensionally incomplete.

• Extensionally consistent but intensionally consistent.

Firstly, if we try to learn successively a definition for each pi with a spl process, extensional
evaluation means that when learning pi, each predicate pj, with j^ i, has to be considered as
a background predicate, i.e., pj must have been determined extensionally by means of all its
examples. Other clauses for pj (i.e., those learned previously) are not used to try a derivation
for pi. Thus, extensional testing is very sensitive to the incompleteness in the background data,
since each predicate to be learned forms part of the background for the other predicates, and the
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available data for the target predicates may be incomplete (similarly to the example with the
predicate member/2). Thus, the learned theory can be intensionally complete but extensionally
incomplete.

Secondly, care must be taken to avoid non-terminating programs that are extensionally com-
plete. For instance, the following program: ^

C1 even(A) ^ zero(A) •

C2 odd(A) E- succ(A, B), even(B)
C3 even(A) F- succ(B, A), odd(B)

does not terminate and however, every clause taken individually is locally complete and con-
sistent. Martin and Vrain [75] present a way to deal with the drawbacks due to recursive or
mutually recursive definitions that lead to infinite loops. They use extensional evaluation but
distinguish between examples extensionally covered by a clause, and the examples included in

the semantics of the program, and produce a theory that is complete and consistent. Situations
where a theory is extensionally complete and however there are examples not proved, are dealt
with by learning additional clauses -non-recursive- that extensionally cover them. In the theory
above, new clauses are learned:

C3 odd(A) ^ succ(B, A), zero(B)
C4 odd(A) F- succ(B, A), succ(C, B), odd(C)

Thirdly, the problem of theories that are extensionally consistent but intensionally inconsis-
tent, is intimately related to the incompleteness of the training set, i.e., when there are important
examples that are missing in the training set. If the non-derivation of a negative example requires
proving with negation as failure not p(y), where p is a target predicate, any learned hypothesis
together with the theory might entail facts for the target predicate that are not in the evidence,
for instance p(y), so that the whole theory may become globally inconsistent. Let us consider
a very simple MPL task that consists of natural numbers, but the training set is limited to
{1, 2, 3, 4, 5} for the positive and negative examples.

+ p(1),p(3)^ q(1)^ q(3) cl ^ p(^) ^ q(^)
- p(2)^p(4)^4'(5)
B r(1), r(2), r(3)

c2 ^ 4'(^) ^- r(^)

Induction is done with the order {p, q}. Learned rules Cl and C2 are valid taken individually,
however, the whole theory entails p(2), thus it is not a valid solution for the MPL task. The
training set is incomplete wrt. to q(2) -i.e., q(2) is not in E+ or E-- and rule Cl is consistent
because q(2) cannot be proved. The rule for q completes some examples, thus possibly affecting
any previous rule that includes q as a condition. In this case, Cl is inconsistent because q(2) is
intensionally covered.

When intensional evaluation is adopted, most of the above problems are not present, however,
learning to succeed must be done in a particular ordering. A theory is built incrementally, starting
from an empty theory (To), and adding a new clause at each step, thus ^ve get a sequence of
theories:

•

T,^^...^T1^To



• 3.6 Multiple predicate learning 29

such that Ti+l = Ti U{c} for some clause c, where all theories are consistent, every Ti+l covers

more examples than Ti and Tn covers the whole set of examples. The background used for

the first spl task is the initial background, however this is subsequently enlarged with the rules
learned. As a consequence, a base case (Tl ) must be found that is constructed only from the
initial background (e.g., zero/1 or succ/2), i.e., no references are possible to even or odd. By

doing so, learned programs are guaranteed to be globally complete. The underlying idea is that

an example cannot be proved based on another example that has not been proved yet, to avoid

cyclical dependences. However, it is necessary to discover the right order at which predicates

should be learned. If the multiple spl tasks are ordered incorrectly, learning is still possible but

the quality of the results can become drastically low. Once that ordering has been determined, the

problem can be reduced to multiple spl tasks. Kakas et al. [55] adopts an hybrid of extensional

and intensional evaluation, where examples are tested using the Prolog proof procedure, but
examples for other predicates are also used as part of the background, to minimize ordering
effects.

For mutually recursive theories, like in the odd/even example, there is no such ordering (Fig. 3.5),
because the learning of one predicate must be interleaved with the learning of the other ones.
A way to perform such interleaving is to start a multiple search -similarly to [91]- where multi-
ple clauses are searched in parallel one for each predicate t^hat has examples that remain to be
covered [33, 108), such that the selection will be based on the compression measure achieved by
each individual search. Thus, the ordering of the spl tasks is also learned.

zero/1
^ ^J

even/2 ^^ ^ odd/2

Figure 3.5: Dependency graph for even/odd

In this case, we need tó learn in the following ordering (even; odd; even) where the spl task
for even/1 must be considered multiple times, resulting in the following theory:

Cl: even(A) ^ zero(A)

C2 : odd(A) t-- sz^cc(B, A), even(B)
C3 : even(A) F- succ(B, A), odd(B)

However, adding a locally consistent clause to the theory can make any previous clause
globally inconsistent3. In the following example given in [33], C2 becomes inconsistent when the
second rule for p(C3) is added to the theory, because p(c) is now proved and hence q(d).

+ p(a) ^ p(c) ^ p(e) ^ q(b) ci ^ p(^) ^ Ĵ (^)
- q(d) C2 ^ q(y) ^ p(z)^ s(z^ y)
B f(a), s(a, b), s(b, c), s(c, d), s(d, e) C3 : p(^c) F- q(v), s(v, u)

Avoiding global inconsistency requires an expensive retesting of examples, because the con-
sistency of a clause must be checked always globally, i.e., using the negative examples for all the
target predicates. The system MPL uses a backtracking mechanism, where already generated

3Note that the case of global inconsistency we showed with the Progol algorithm, cannot appear now, given
that the clause for q will be always learned before the clause for ^.
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clauses are re-evaluated and potentially deleted. However, when the theory includes mutual
recursion we need to consider not all orderings (e.g., odd even and even odd) but all possible
sequences (e.g., odd even odd ...) where each spl task may have to be considered multiple times,
until all examples are covered. A possible solution is to enlarge the set of negative examples with
those assumptions made for assuring the consistency of a rule [55], e.g., q(2) in the small Progol
domain. The basic idea is similar to the handling of negation in [16] with respect to negative
examples: if the non-derivation of a negative example requires not proving q(2), this is equivalent
to require that T[^ q(2), i.e., q(2) is a new negative example generated on-the-fly. This allows
to check global consistency by testing only the assumptions generated from previous clauses
and not all the negative examples. However, learning is sensitive to the ordering. To reduce
this dependency, a backtracking mechanism is also used in [55] where the rules that caused thé
inconsistency are removed, i.e., those that generated the assumptions that have been violated.

In [98] a theory is revised given a set of positive and negative examples such that the theory
is complete and consistent, based on unfolding as an specialization tool. This approach is also

based on changing the theory to make it consistent. On the other hand, special techniques like
the layering method [32] removes the inconsistency while keeping all positive examples covered.
The insight is to avoid to re-open the question on the validity of clauses added in previous steps,
and accommodating the previously acquired theory with the currently generated hypothesis. In
the example above, by adding a new layer -with a new predicate p'- the new theory is consistent
because the conflicting condition of C2 has been renamed to p', hence it is not af%cted by C3.
An additional rule C4 is added to complete p from p'.

Cl: p'(^)

C2 ^ q(y)

Cs ^ p(n)
c4 ^ P^w^

^ f (^)
E- p(z), s(z, y)

^ q(v), s(v, n)

^ p'(w)

In general, the problem of learning multiple predicates is very costly with respect to spl
problems. The interest of learning multiple predicates in the ILP literature is mostly illustrated
with programs like family relations, where most popular algorithms have many difficulties. Sim-
ilarly to the case of recursion, it seems that most practical applications of ILP do not require
management of multiple predicates.

3.7 Learning Logic programs with negation as failure

Most ILP systems learn definite programs, where only positive atoms are allowed in the body
of hypotheses. Negation-as-failure is introduced in AI to deal with lack of information and it
introduces non-monotonicity into knowledge representation. Indeed, conclusions might not be
solid because the rules leading to them may be defeasible [16]. Let us consider the following
data:

•

•

+ p(1), p(3)

- P(2) ^ p(4)
B q(1), q(3) •

In this case, we see that the candidate rule p(X )^ q(X ) is consistent because q(2) and q(4)
cannot be derived from B. Note that the consistency of the rule is defeasible if some rules are
learned for q.
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It would be also possible to allow the use of negation in the body of learned rules, thus, it
is indeed possible to learn logic programs with negation as failure. Let us consider the following

data:
+ p(1), p(3)

- p(2) ^ p(4)
B q(2), q(4)

In this case, the completeness of the candidate rule p(a) ^ not q(a) is defeasible, if additional

rules are learned for q, i.e., some positive examples previously covered could remain uncovered
after a rule for q is learned. In general, the problem is that inference is no longer monotonic and
it can be the case that an example is inferred by a set of clauses but not by a superset of those

clauses.
In [16], the assumptions made for the coverage of any learned clause are considered as addi-

tional positive or negative examples to avoid the problem. The basic idea is: if the derivation of

a positive example requires proving with negation as failure not P, this is equivalent to require

that T^ P, i.e., P is a negative example. Similarly if the non-derivation of a negative example

requires proving with negation as failure not P, this is equivalent to require that T^ P, i.e., P

is a positive example.

More recently, C. Sakama [118, 119] has studied the properties of inverse resolution and
inverse entailment when learning normal logic programs under the stable model semantics.

3.8 Learning Extended Logic Programs

Most previous work on ILP consider definite Horn programs to be learned in a two-valued setting.
In such a setting, what is not entailed by the learned theory is considered false, on the basis of
the Closed World Assumption (CWA). The application of this CWA in the training set is not
appropriate in many cases as by CWA all facts other than the positive examples are assumed to
be non-instances of the target concept. By doing so, the role of negative examples is not clear
because it is as if we supply a complete classification of all objects [25]. This CWA is applied in
the Foil system. Even when an explicit set of negative examples is presented, a rule is learned
for the positive value and any other object for which the rule does not apply, it is assumed to
be a negative example. Thus, the learned theory returns an answer for the whole universe of

objects (Fig. 3.6 a).

(a) (bl

Figure 3.6: Three-valued learning

• In the real world, we may not know whether some ob jects are positive or negative. Such
undefinedness cannot be represented with normal logic pro ĝrams. In a three-valued setting,
a definition is learned for both the target concept and its opposite, considering positive and
negative examples as instances of two disjoint classes. Explicit negation is used to represent the
opposite concept, while default negation is used to handle exceptions to general rules (chapter 7).



32 Inductive Logic Programming

Any other object not included in either positive or negative examples is considered undefined
until the learned theory says that it must be or not be in the concept, so that the learned rules
do not cover the whole universe of objects (Fig. 3.6 b). By doing so, the learned theory will then
classify instances in three ways:

• Instances covered by the positive definition are positive.

• Instances covered by the negative definition are negative.

• Instances not covered by any definition are unknown.

This also introduces the possibility that positive and negative rules overlap in the observed
part (Fig. 3.7 b) (that can be avoided by using exceptions) or even in the unobserved part of the
universe (Fig. 3.7 a).

(a) (b)

Figure 3.7: Possible overlaps in a three-valued setting

Extended Logic Programs allow to deal separately with classical and default negation, un-

definedness in a predicate, contradictions and exceptions [63]. There exist several semantics

for ELP, the most popular being the stable models semantics [44] and the well-founded seman-

tics [43]. Several authors have proposed to learn Extended Logic programs. In [54, 63] a study

of ILP under the answer sets semantics (system LELP) and well-founded with classical nega-

tion (system LIVE) respectively, is presented. They show the interest of these semantics and

illustrate the approaches with classical domains used in the literature of non-monotonic logic

programming. They both consider the possibility of inducing rules with exceptions.

•

•

•
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Chapter 4

Learning non-monotonic Action
Theories

Formalisms for reasoning about actions and change are intended to precisely capture the eífects
that an action produces given the current description of the world and the preconditions that
specify when the action can be executed. Most of these formalisms encode constraints and
preconditions that can be verified given a state and determine if an action can be executed
and the state that results from the execution of the action. That is, they allow to do temporal
projections to predict the state of the world after the execution of a sequence of actions. As
to learning, the problem is somewhat the contrary. The learner is provided with observed time
traces of property values from an existing dynamic system -starting from an initial world state.
Then, it must infer how properties of the domain are affected by the execution of actions, or
otherwise are sub ject to the general law of inertia, thus enabling the derivation of system values
that hold at future times based upon events that have happened at previous times.

In the next sections, we formally define the problem of learning to predict the eífects of
actions using Machine Leaning methods that are oriented to classification problems and address
the range of phenomena that take part in it.

4.1 Learning action models

The domain to learn is a system that changes its state when acted upon according to some set of
unknown rules or functions. The learner initially knows nothing of the contexts in which actions
produce changes in the environment, nor what those changes are likely to be. Contexts specify
features of the world state that must be present for actions to apply, and effects specify how
features of the context change in response to an action. We also require that the learned theory
describes what changes in response to an action, not what stays the same.

An agent in such an environment learns to predict the effects of his actions through observa-
tion, where inputs correspond to the actions executed and outputs corresp^nd to the perceptual
information available. We assume that actions are separated from their consequences, i.e., an
agent generates commands to the environment that have a nominal correspondence to real ac-
tions, but the corresponding action is not always taken. Thus, an agent can execute its actions
in any environment regardless of which consequence the action might cause. For instance, a con-
traction of one's arm muscle can be executed regardless of whether the arm is free to move [124).

The problem of learning action models is a non-trivial task, taking into account the range of
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phenomena to accommodate, among others [111]:

• Uncertainty

In some cases, the observer cannot determine the value of a fluent, e.g., because the per-

ception ability of the agent is limited, or its value has to be sensed explicitly through a
sensing action.

• Unreliable sensors.

In real scenarios, there can be noise in both the observations and actions.

• Non-Deterministic.

An environment is deterministic if the next state of the environment is completely deter-
mined by the current state and the actions selected by the agents.

• Exogenous and natural events.

In most cases, it is assumed that changes in the values of fluents can only be caused by
execution of actions -i.e., the environment is only manipulated by the agent- otherwise the
state of the system is assumed to be stable. If there are action sources other than the agent
itself, an environment may seem active to an observer (a^tonomo^cs change). However,
in many cases, autonomous changes are quite common, for instance, if the domain has
properties that are non-amenable to manipulation (weather conditions), a second agent
is acting in the domain, and so on. In this case, the learner must distinguish the ef%cts
caused by his actions from those caused by other sources.

• Concurrent actions.

When actions are executed concurrently, an effect may depend on a particular combination
of actions, an action may qualify another action's ef%cts, ef£ects can be cancelled and so
on.

• Complex actions.

Most actions (e.g., picking up a block, going from one location to another) take time. Sim-
ilarly, eífect propagations usually incorporate very small delays. For all practical purposes
these delays can be abstracted away and the effects assumed to be simultaneous and in-
stantaneous. Abstracting small delays is often convenient because the resulting model is
simpler or there is no actual knowledge on the delays for providing an accurate model. In
some cases, however, the delays must be explicitly incorporated into the learning process.

• Discrete and continuous time.

In discrete scenarios, the agent's experience is divided into episodes that consist of the
agent perceiving and then acting, and the environment is assumed to be static between
episodes. Scenarios with continuous change involve continuously varying parameters.

• Environments partially known to an agent.

In most cases, it is assumed that the agent's sensors give it enough information to tell
exactly which state it is in (i.e. the world is accessible). Then it can calculate exactly
which state it will be in after any sequence of actions. In other cases, the environment is
only partially known by the agent. An accessible environment is convenient because the

•

•

•
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agent need not maintain any internal state to keep track of the world. This corresponds to
the concept of episodic and non-episodic scenarios [117]. In episodic scenarios the quality
of an action can depend just on the episode itself, because subsequent episodes do not
depend on what actions occurred in previous episodes.

•

• Probabilistic effects.

In non-deterministic environments or with much noise, efFects of actions can be assigned
a probability [12], so that the learned theory tells when changes in the environment are
associated with particular actions more or less often than we would expect by random
chance.

In the remaining part of this chapter, we consider a basic framework where transitions are
assumed to be instantaneous, deterministic and occur only when some agent executes a single
action. In part III, we study some extensions that allow to deal with more complex phenomena.

4.2 A basic definition

The problem of learning to predict the effects of actions can be posed as a general classification
problem where general rules are learned that classify objects into one of among several possible
concepts. When learning the eí%cts of an action a, instances are given for each situation where
the action is executed and the concepts to be learned are: the action produced (resp. did
not produce) the effect e in the resulting situation. Positive examples are observations of the

shape (s, a, e), where a is an action, e an eí%ct and s the situation where a was executed,
whereas negative examples are negations of observations, representing that action a did not
cause the efFect e. The separation of the evidence into causes and effects contains information
about causality, tlius the agent's experience is divided into episodes that consists of the agent
perceiving and then acting. This separation is common to all action formalisms, however it may
take a dif%rent form in each formalism.

We therefore consider a learning problem where we want to learn a theory H from a(possibly
empty) initial theory T and from a set of positive and negative examples. The next definition
follows the usual definition of induction on logic formalisms [93].

Definition 4.1 (Learning the effects of actions)
Given:

• A set E+ of positive examples in the form (s, a, e) .

• A set E- of negative examples in the form (s, a, e).

• A (possibly empty) theory T.

Find:

• a theory H such that:

• (Prior Necessity) T U{a} ^ e for ( s, a, e) E E+ (4.1)

(Prior Satisfiability) T U {a} ^ 1 (4.2)

(Posterior Sufficiency) T U H U{a} ^ e for (s, a, e) E E+ (4.3)

(Posterior Satisfiability) T U H U{a} [^ e for (s, a, e) E E- (4.4)
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Prior Necessity states that the ef%ct e must not be derivable from only the previous knowl-
edge T. Prior Satisfiability states that action a can be added to T without causing contradiction.
Posterior Sufficiency and Satisfiability state that the solution must be a hypothesis that is com-
plete and consistent respectively, i.e., H derives e when a is executed but only for the positive
examples. This definition is a general framework independent of any particular Action Language.
In the next section, we provide a more detailed definition where action theories are represented
as logic programs.

4.3 Learning Action Theories as Logic Programs

The use of Logic Programming makes it feasible to study the integration of Inductive Logic
Programming (ILP) with logic-based formalisms for reasoning about actions and change [71, 73,
74]. The result is that an action theory is learned in the same way as it will be used, thus there
is no a different representation for learning and another diíferent for reasoning or planning. On

the other hand, ILP provides a high expressivity with respect to propositional methods and the
possibility of including arbitrary logic programs as background knowledge which is essential for
managing, for instance, the Frame problem.

The form of the programs to be learned is that of the Situation Calculus. Situation Calculus

is particularly well suited for the task of learning the effects of actions for several reasons. First

of all, Logic programming can be used by importing the ontology of Situation Calculu ŝ , without

need for a complex formalization. On the other hand, it has been proved sufficient for modeling a

wide range of domains, and several extensions exist that deal with concurrent actions, continuous

change, and so on. Furthermore, the form at which actions, effects and situations are represented

in the Situation Calculus allows that multiple narratives starting from different initial situations,

can be used for learning in an homogeneous and natural way. Let us consider the following

domain.

Example 2(Switches) A sim^le circuit that includes a lam^ and two switches Swl and Sw2,
is controlled by two actions toggle(swl) and toggle(sw2). ^

^ lighr

Figure 4.1: A simple circuit

This example concerns the representation of knowledge about the objects in a circuit, and
how such knowledge is acquired. The circuit is a system that changes its state when acted upon
according to some set of unknown rules or functions. The problem is to identify the eífects of
actions, describing how they change the state of the circuit when they are performed. Machine
learning methods can help to construct the description of the circuit from the actions and the

•

•
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effects produced by these, where measurements accumulated during simulations are the input to
leárning. We used a simple wander program that collects data about the actions while exploring
the environment. With each exploratory step, the program records the action that was taken
and the fluents that changed. We assume that the environment is only manipulated by one agent

and there is no noise in the observations and actions.

Observations taken from the circuit must be converted into a LP form before learning. Ex-

amples are observations of the shape holds( fi, do(a^, s)) and ^holds( fi, do(a^, s')) that represent

the value of a fluent fi after executing an action a^. Observations are given for every sequence of
actions (or narrative) executed. Situations are represented through a sequence of actions starting
from the initial situation and the effects are represented as holds/^ facts of the form:

holds(closed(swl), do(toggle(swi), so))

holds(active(light), do(toggle(swl ), so))

^holds(closed(sw2), do(toggle(sw2), do(toggle(swl ), so)))

^holds(active(light), do(toggle(sw2 ), do(toggle(swl ), so)))

holds(closed(sw2), do(toggle(sw2), do(toggle(sw2), do(toggle(swl), so))))

holds(active(light), do(toggle(sw2), do(toggle(sw2), do(toggle(swl), so))))

•
Observations must include holds/^ facts for the initial situation:

^holds(closed(swl), so)

holds(closed(sw2), so)
^holds(active(light), so)

which represent the initial conditions of the domain. The constant so makes explicit the starting

situation at which narratives start.

In the Situation Calculus, narratives correspond to all linear sequences of actions starting
from an initial situation (Fig. 4.2).

Figure 4.2: Narratives in the Situation Calculus

As a consequence, multiple narratives of events can be represented in a single model, hence
examples form a tree rooted at the initial situation so (Fig. 4.3).

This represents an advantage for Situation Calculus with respect to the Event Calculus [88]
and in general to any narrative-based formalism. In the latter, a problem arises if we present sev-
eral sequences of examples in the same session to the inductor, given that situations (represented
as natural numbers) are common to all examples. Thus, if we present two or more examples with
the same situation term, the inductor will consider the facts as belonging to the same situation.
As a consequence, narrative formalisms need to represent every possible sequence of actions as
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do(t2,s0)

c

^^

^ do(t l ,do(t2,do(t 1,s0)))

do(t2,do(t1,s0)) /

do(tl,do(tl,s0))

do(t2,do(t2,s0))

do(tl,do(t2,s0))

Figure 4.3: Tree of situations

independent models to make them jointly consistent. Furthermore, situations common to several
narratives are to be stored multiple times.

happens(toggle(swl),1). holds(closed(swl),1).
happens(toggle(sw2), 2). holds(active(light),1).
happens(toggle(sw2), 3). ^holds(closed(sw2), 2).

^holds(active(light), 2).
holds(closed(sw2), 3).

holds(active(light), 3).

However, we still depend on a common initial situation, so that all narratives must begin in
the same state (same values for all fluents). To avoid this, we allow different initial situations
through a set of constants só. This is important, above all, in domains where some states are
not reachable (or hard to reach) from some initial situations, or where actions are irreversible.

ILP algorithms deal with clauses with function symbols as though they were function-free by
using flattening [116]. In this case, flattening introduces for the function symbol do of arity 2 a
new predicate dop of arity 3, where the first 2 arguments are the same as for the function, i.e.,
the previous situation and the action, and the last argument is the result of the function, i.e.,
the resulting situation. Thus:

Holds( f, do(an, do(. .., do(al, so)) ...)

is internally represented as:

Holds(.f, sn) E- d0^( an^ Sn-1^ s^ ), ... , d0^ (al^ S0^ S1)

Multiple narratives can be represented in a unique model because the constants introduced for
do/2 terms are generated from both the action and the previous situation, so that if dor(a, s, s')
is true then dop(a', s, s') is false tor every a' ^ a and s' is the successor of s and not of any other
s".

4.3.1 The F^ame Problem

•

•

The use of logic-based formalisms raises specific challenges for action theories, of which the most
famous is the Frame Problem. LP uses negation-as-failure (NAF) as a means of overcoming the
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frame problem through the Universal inertia a^iom. Inertia is tackled in the following way: a

fluent may only change if a cause for the change can be derived from the theory.
On the other hand, observations used for learning are of the shape holds( fi, do(a^, s)) and

^holds( fi, do(a^, s)), that represent the value of a fluent fi after executing an action a^. Thus,

the Frame problem is also present in the observations, namely, if a fluent does not change after

executing an action, its truth value must be explicitly asserted in the input data. As a con-
sequence, non-af%cted values of fluents must be part of the information given to the learning
algorithm, thus having to deal with large datasets from which only a small fraction corresponds

to eífects of actions. For instance, the observation:

holds(closed(sw2), do(toggle(swl ), so))

corresponds to the value of closed(sw2) after executing the action toggle(swl), but it is not an

effect of the action.
Furthermore, if these inertia values are part of the examples for a fluent f, we should learn

a clause (for completeness) for each pair (a, f), where action a does not change fluent f. These

clause are called frame axioms:

Holds( f, do(a, s)) F- Holds( f, s), ^+ (4.5)

^Holds( f, do(a, s)) ^^Holds( f, s), ^r- (4.6)

• where ^+ and ^r- represent all those conditions under which a does not affect f. For instance,
some of the frame axioms for the negative value of light in the basic circuit are:

^

^Holds(active(light), do(toggle(swl), s))

^Holds(active(light), do(toggle(sw2), s))

^Holds(active(light), do(a, s))

t-

F-

E--

^Holds(active(light), s),

^Holds(closed(sw2), s)

^Holds(active(light), s),

^Holds(closed(swl ), s)

^Holds(active(light), s),

a ^ toggle(swl),

a ^ toggle(sw2)

•

expressing that the light remains off when one of the switches is toggled and the other is open,
or when no switch is toggled. The frame axioms correspond to the negation of the conditions
in the eífect axioms. A system without the inertia principle would have an intractable, or even
impossible, representation. Let us consider this example: assume a robot can sense whether it
is in the corridor. If the inertia values must be covered by the learned rules, these must include
an eífect axiom for all actions (turning and navigational) that do not lead the robot out of the
corridor, such that the robot is still on the corridor after the actions.

Furthermore, as the apprentice makes no diíference between caused values and inertia values,
it might find a consistent clause that covers both types of examples. These inertia examples
might af%ct the learning process by altering the frequences of literals in the training set specially
because inertia values are usually much more numerous. For instance, let us consider an extreme
situation in the simple circuit described in the previous section. If there is an additional fluent
(not relevant for prediction tasks) that correlates exactly, in the given training set, with the
positive value of light (caused or not) when toggle(swl) is executed, the apprentice will prefer a
single rule that covers all examples, rather than the intended effect axiom and the frame axioms.
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To avoid this situation, inertia values should be "separated" before learning and used as
background knowledge. This is achieved with the inclusion of axioms 2.5 and 2.6 in the back-
ground, so that examples need only be explicitly given for those situations where a fl^cent
changes, e.g., holds(on(a, table), do(move(a, table), sl )), whereas the inertia axiom propagates
non-aífected truth values from one situation to the next one, completing every situation, e.g.,
holds(on(b, c), do(move(a, table), sl )). Thus, we see how the use of the inertia axiom is a crucial
feature that allows an explicit and clear distinction between the eífects of actions and the inertia
observations. An important consequence is that induction works only over cavsed valves, whereas
for the inertia values, the inertia axiom is returned as part of the learned theory.

To enable such distinction in the observations, we need to re-express the training set as
ground facts for the predicate affects/3. To this end, positive a,fj^ects/^ atoms are generated
for every positive example and added to the background. Without these affects/^ atoms in the
background, the inertia axiom produces inconsistency with the corresponding holds/,2 atoms in
the training set.

affects(toggle(swl), closed(swl), so)

aífects(toggle(swl), active(light), so)

aí%cts(toggle(sw2), closed(sw2), do(toggle(swl ), so))

afiects(toggle(sw2), active(light), do(toggle(swl ), so))

aífects(toggle(sw2), closed(sw2), do(toggle(sw2), do(toggle(swl), so)))

affects(toggle(sw2), active(light), do(toggle(sw2), do(toggle(swl), so)))

As a consequence, a fluent cannot be caused to hold the same value it had in the previous
situation, i.e., it is impossible to have two consecvtive Positive (resP. negative) e^am^les for a
,fl^cent. For instance, an agent will not observe that a door is caused to be closed if an agent try
the action of closing it when it was already closed. Thus, the learned theory will describe what
changes in response to an action, not what stays the same.

The Situation Calculus provides a more compact and natural description of observations
with respect to previous approaches. In the latter, each example in, e.g., the Blocks world,
describes the properties of each block before and after the operation, together with the sub ject
of the operation (i.e., the block to be moved) and its destination (Fig. 4.4), where the ef%cts of
the action are the dií%rence between the pre- and post-execution states. Thus, situations are
considered as independent entities not related to a particular narrative. By doing so, positive
examples must be extracted from narratives so that the information provided by the narrative,
i.e., the sequence of actions, is lost. A consequence is that they need the explicit representation
of unchanged properties from one particular situation to another.

^^

on(A,B)

on(B,C)

cleur(A)

cleur(D)

on(A,D)

on(B,C)

clenr(A)

denr(B)

nn(A,D)

on(B,C)

cleur(A)

cleur(B)

on(A.D)

on(B,A)

clenr(C)

cleur(B) ^

on(C,tuble) on(C,tuble) on(C.tuble) on(C,wble)

Figure 4.4: Datasets corresponding to Fig. 1.1
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•

•

Note that situation do(move(a, d), so) is the post-execution state of move(a, d) but also the
pre-execution state of move(b, a). In the Situation Calculus positive examples are the individual
effects of actions, for instance, the examples corresponding to Fig. 4.4 are, among others, the
following:

holds(on(a, d), do(move(a, d), so))

holds(clear(b), do(move(a, d), so))

holds(on(b, a), do(move(b, a), do(move(a, d), so)))

holds(clear(c), do(move(b, a), do(move(a, d), so )))

where the narrative is explicitly represented in the examples through the situation constants, so
that learning can be done directly from the narratives, which allows inference on the narratives
to, for instance, implement inertia or complete missing values.

4.3.2 Formal definition

We follow the approach to learning Extended Logic Programs of [63, 54]. In the usual definition

of learning Extended Logic Programs in static domains, conventional ILP methods are applied

to learn a definition for both a target concept and its opposite, considering positive and negative

examples as instances of two disjoint classes. Thus, a positive definition is learned from E+ and

E- and a negative definition from E- and E+. When learning the negative value, the roles of

the example sets (E+,E- ) are switched, so that E- becomes the set of positive examples and

E+ becomes the set of negative examples. However, when learning action models, examples

correspond to transitions rather than to fluent values at particular situations. Thus, positive

examples correspond to the effects of actions whereas negative examples represent unsuccessful

executions of actions, i.e., when learning the positive value of a fluent fi, positive examples

correspond to transitions of type b whereas negative examples correspond to transitions of type

d, but also a to avoid that the positive and negative definitions overlap. Similarly for the negative

value.

Transition
a) true -^ false
b) false ^ true

• c) true -> true

d) false -^ false

Table 4.1: Possible observations for learning

•

Every positive example consists of one holds/,2 atom that represents the truth value of a fluent,
and one a,f,^ects/^ atom that represents "change of value", so th^,t negative examples contradict
the holds/^ atom, the af^`ects/^ atom, or both. In the ILP literature, E- is reserved for the
negative examples, however when learning Extended Logic Programs, it is used for the positive
examples corresponding to the negative value of a fluent.

We therefore consider the following learning problem, where E contains examples for m
fluents such that E is divided into m subsets E fl , where the learning procedure will be called
twice for each fluent, once for the positive concept Ef= and once for the negative concept Efi .
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Definition 4.2 (Learning Action Theories in the Situation Calculus)
Given

• A dorrtai^ descri^tion consisting of two nonempty sets: a set .^ of fluent names, and a set A of
action names.

• A set JU of narratives JV^ each starting at a situation só .

• A set E+ = Ui l E ft of examples (ground facts) holds( fi, do(a^, s)), representing observations
where a fluent fi E.F became true after executing an action a^ E A at a situation s.

• A set E- = Um 1 Efl of examples (ground facts) holds( fi, do(a^, s)) representing observations where
a fluent fi E.F became false after executing an action a^ E A at a situation s.

• A set Eaf£e^ts =
Uii^`Ef^e^ts of ground facts af£ects(a^, fi, s) for every e E(E+UE-) representing

observations where an action a^ E.A did affect a fluent fi E.^ at a situation s.

• A set EZnertia = Ui' lEinertia of ground facts affects(a^, fi, s) representing observations where an- f:
action a^ E A did not affect a fluent fi E.^ at a situation s.

• Background knowledge (BK), including holds/2 ground facts for all fluents at the initial situations
só and the universal inertia axiom (eq. 2.5,2.6).

•

Find a Situation Calculus program H+ = Ui ' 1 H f; , and H- = Ui? 1 H f, composed of axioms in the
form (2.2) and ( 2.3) respectively, such that:

(de+ E E+) BK U H+ U H- U Haf f ^ e+ (4.7)
•

(de- E E-) BK U H+ U H- U Haf f ^^e- (4.8)

and respectively

(b'e- E E- ) BK U H+ U H- U Haf f^ e- (4.9)

(de+ E E+) BK U H+ U H- U Haf f^^e+ (4.10)

and
^

(`da E Eaf£e^ts) BK U H+ U H- U Haf f^ a (4.11)

(`da E E^nertia ) BK U H+ U H- U Haf f ^ a (4.12)

where Haf f are the corresponding a,ffects/3 axioms in the form ( 2.4), with the same body as the effect
axioms in H+ and H-. q

In order to satisfy the completeness requirement, the learned rules for the positive concept
will entail all the examples for the positive value (eq. 4.7) and the corresponding a, f^`ects/^ literals,
while the rule for the negative concept will entail all the (explicitly negated) examples (eq. 4.8)
and the corresponding affects/^ literals (eq. 4.11). The consistency requirement is satisfied
when the learned rules both for the positive and negative concept do not entail examples of the
complementary concept (eq. 4.9 and 4.10) or the inertia facts (eq. 4.12). This definition implicitly
assumes that the training sets E+ and E- are disjoint. However, thé definition does not rule
out trivial solutions like H= E+, neither capture the requirement that the learned hypothesis
correctly predicts unseen examples. It should therefore be seen as a general framework [38],
which needs to be further instantiated for the kinds of tasks addressed in practice.

When learning a fluent fi, holds/^ facts at situations s^ so where the fluent is affected by añy
action, become part of E+, whereas the background (B) includes the value of fi at the initial
situations só together with the a, f, j`ects/^ atoms corresponding to every positive example that

•

•
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disable inertia in the situations where f2 changed, hence B^ E+ (because the corresponding
holds/,2literal is not in B) as required by the Prior Necessity condition in the ILP definition, but
also B^^E+ (because inertia is disabled). That is, a positive example is never entailed by the
inertia axiom. Note that if the a, f,^ects/^ atoms are not part of B, every situation included in the
training set is equivalent to the initial situation (through the inertia axiom) before any clauses
are learned.

With respect to negative examples, it is assumed that an action is not successful in the
situations where a fluent did not change, so that, negative examples are added for every situation
(included in the training set) where a fluent f is not aífected by an action, thus effectively making
a CWA over ca^csality, but restricted to the narratives in the training set. This avoids that the
learned theory infers a defined value for an inertia value (even with the same truth value), so that
no new a,fĵ`ects/3 atoms are produced for the narratives in the training set, i.e., the extension for
the predicate a,f^ects/^3 does not vary. Otherwise, the learned theory might produce a caused value
for a fluent and a situation for which inertia was assumed initially, and produce non-monotonic
effects during learning (section 4.3.4).

The result of learning consists of so-called e, f,^ect a^ioms or action laws in the form:

Holds( f, do(a, s)) ^ ^+ (4.13)

^Holds( f, do(a, s)) ^ ^r- (4.14)

•

•

•

•

stating that, in any situation, if the precondition ^r+ (resp. ^r- ) holds, then the effect will hold
(resp. not hold) in the resulting situation after executing an action a( f refers to each fluent

used to describe properties of a domain) . Ef%ct axioms represent the executability conditions

of actions and how those actions affect the value of the fluents when executed. When an action

causes multiple eífects, these are treated as direct effects of the action. The management of so-

called indirect ef%cts will be dealt in chapter 6. Ef%ct axioms introduce a bias for the clauses to

be learned, where only the previous situation can appear in the body of a clause. Furthermore,

generalization over fluents is not considered, but only over their arguments.

4.3.3 Undefinedness in the observations

In real world, complete information is impossible to achieve and it is necessary to reason on the
basis of the available information. The incom^leteness of the observations is considered with
respect to a narrative. A narrative is complete if all fluents have a defined value in any situation
s' between the initial situation so and the last situation s of the narrative, i.e., so < s' < s. In
some cases, a fluent is not defined in the initial situation, whereas in others a fluent can become
undefined after executing an action. For instance, let us consider an scenario where an agent
executes the action of pushing an object which causes the state of a small lamp to be occluded.
Similarly, it could be that the device being sensed has an internal non-defined state. In others,
it might become non-observable through an exogenous action (chapter 8).

However, due to the inertia axiom, the extension for any fluent is complete provided it has a
defined value in so, and thus, situations are completed where the fluent has an unknown value.
In these cases, to allow ^cndefinedness in the training set, we need to explicitly assert that a
fluent is af,^ected to disable inertia, i.e., a fluent becomes undefined after performing an action.
When these extra affects/^ atoms are included for a fluent f at a situation s, the inertia axiom
is disabled, so that an undefined value is produced for f at s, because the corresponding literal
holds( f, s) or ^holds( f, s) is missing. Note that a defined value for f at that situation may
be produced after some rules have been learned, thus producing non-monotonic efl'ects during
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learning. It would be possible to assume inertia for these cases, i.e., assuming that the last known
value is also the current one, thus making a kind of CWA over inertia. However, we still need
to allow that the learned theory produces a defined value for f at that situation that might be
different from the one assumed.

In this three-valued setting, it would be even possible to learn a definition for such "caused"
undefinedness (case e of table 4.2) in the value of a fluent, i.e., to learn that as an ef%ct of
executing an action a particular fluent becomes not observable. For this task, the learned theory
should produce an undefined value for the fluent after executing the action under some precon-
ditions. Actually, the theory should not produce any value at all, however it should infer that
the fluent is aífected to disable inertia, i.e., only the rule for af^`ects/^3 is to be learned.

On the other hand, it would be possible that a fluent is undefined and it becomes defined
later, e.g., the ob ject is removed and the lamp is visible again, or a sensing action is executed.
Thus, the set of possible observations for learning are displayed in table 4.2, where cases a and
b represent positive examples respectively, and cases c and d represent inertia values.

•

•

Transition
a) true -^ false
b) false ^ true
c) true ^ true
d) false ^ false
e) true/false -^ unknown

Ĵ ) unknown ^ true/false •

Table 4.2: Possible observations in a three-valued setting

4.3.4 Testing the generality of hypotheses

A central issue in the definition of any ILP method is the method for testing the coverage of
a hypothesis, i.e., testing whether an hypothesis entails an example. Action theories in the
Situation Calculus are recursive logic programs, where an ordering is imposed in the situation
constants so that termination is granted.

so ^ do(a, so) ^ do(a', do(a, so)) ^...

In fact, as generalization over fluents is not considered, programs in the Situation Calculus
can be seen as recursive programs for a single predicate holds/,2, or as programs with multiple
predicates (fluents) whose definitions can be possibly interdependent. Indeed, some implemen-
tations of the Situation Calculus do not use a predicate holds/,2 explicitly, so that two notations
are possible:

holds(clear(a), so) or clear(a, so)

Thus, the problem of learning action theories constitutes in general a multiple-predicate
learning (MPL) problem, where the consistency and completeness of hypotheses must be fulfilled
by the set of clauses learned for every fluent taken as a whole theory in the context of the
entire example set E, and not at a clause level for a particular fluent fi and using Ef; . Unlike
most previous applications of ILP that do not require complex recursive theories, recursion is
an important issue when learning action theories, where most fluents are so-called dependent
,tl^ents which are assumed to rely on the properties of the world around it, unlike independent

•

•
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or primitive fluents. In fact, the complexity of the learning task is to find the dependency graph
for the fluents.

With recursive programs, to check if the current hypothesis covers an example E, a proof
procedure actually needs other examples, for instance, when a fluent depends on its own value
in the previous situation. Let us consider the Blocks world.

A

C

•

s 1=do(move(A,D),s0) s2=do(move(B,A),s 1)

Figure 4.5: A narrative in the blocks world

Given the narrative in Fig. 4.5, to prove

E= holds(clear(c), do(move(b, a), do(move(a, d), so)))

s0

we need the value for clear(b) at the previous situation. In this case, fluent clear/1 is part of
the background for learning clear/1. The common approach in learning such recursive programs
is to include all the positive examples into the background B, so that an effect axiom^ covers
extensionally the example, i.e., there exists a ground instance of the axiom e^ ll, ..., l^, where

each li belongs to E U B.
A drawback is that extensional evaluation cannot deal with certain kinds of incompleteness

in the training set. If there are gaps in the narrative of Fig. 4.5, e.g., the fluent clear/1 has a
defined value at so and somewhat clear(b) is not defined at situation do(move(a, d), s0), then
extensional evaluation is not enough, i.e., a correct hypothesis might entail the example but
does not subsume it. This corresponds to the case of a theory that is intensionally complete but
extensionally incomplete. For instance, the following eífect axiom:

holds(clear(A), do(move(B, C), S)) ^ holds(clear(B), S), ... (4.15)

entails E but does not subsume it.
Adopting an intensional evaluation, a clause is evaluated by performing a derivation of each

example from a program composed by the clause, the background and the clauses previously
learned instead of the atoms in the training set. Thus, intensional evaluation for Situation
Calculus programs corresponds to a temporal projection problem. By doing so, most of the
problems of extensionality are automatically overcome. For instance, intensional evaluation can
cope with the incompleteness shown above, because a learned hypothesis may complete the
set of instances about a fluent. In this case, the clause above needs to be executed several
times to prove E, one for clear(c) at do(move(b, a), do(move(a, d), s0)) and one for clear(b) at
do(move(a, d), s0), where the initial situation so corresponds to the base case of the recursion.

clear(a)SO n^ clear(b)S1 n^ clear(c)SZ

Thus, the proof of E successes from the base case even without all intermediate facts. For
this to succeed, narratives need to be explicitly represented in the training set, as it is the case in
the Situation Calculus. A recursive theory is built incrementally, starting from a base case (the
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initial situation), i.e., examples are to be proved following the order they have in the narrative.
In general, however, intensional evaluation cannot deal with every possible incompleteness of the
training set, for instance, it needs that the fluent to be learned is defined in the initial situation.

In the general case of recursion, if the fluent to be learned fi, depends on the value of
other fluents f j with j^ i, extensional evaluation uses examples for these fluents as additional
background knowledge. As a consequence, if the specification of the narratives is partial, the
background knowledge for one fluent includes the incomplete data for the other fluents to be
learned. In this case, however, intensional evaluation requires to find an ordering to learn the
multiple fluents sequentially, i.e., the dependency graph. Ideally, in the circuit of example (2),
fluents should be learned following the relationships {swl, sw2, light} or {sw2, swl, light}, where
light depends on the state of the switches and not viceversa (Fig. 4.6).

swl,^, ^
,

,'/ Swl
Light E Light `^^

^ Sw2

Figure 4.6: Dependency graph of the simple circuit

In practice, these relationships are not known a priori. Furthermore, when learning mutually
recursive fluents, the learning of clauses for the dif%rent fluents must be interleaved. In particular,
Situation Calculus theories are recursive theories where fluents may refer to each other in their
definitions, hence intensional evaluation requires interleaving the learning of the different fluents.
For instance, the positive and the negative value of swl are mutually dependent when the action
toggle(swl) is executed, hence the first rule to be learned will be for the positive value (resp.
negative) if the switch is open (resp. closed) in the initial situation.

Holds(closed(swl), do(toggle(swl), s)) ^ ^Holds(closed(swl), s)
^Holds(closed(swl), do(toggle(swl), s)) E-- Holds(closed(swl), s)

In practice, as we saw in section 3.6, a rraultiple search has to be started for every fluent

that has examples that remain to be covered, so that the learning of fluents is interleaved.

Unfortunately, as new clauses are learned successively, adding a locally consistent clause for a

fluent may make previous clauses for other fluents inconsistent. This happens when the non-

derivation of a negative example (for a clause) requires proving with negation as failure not E,

where E will be covered later by another clause. In this case, some of inethods commented in

chapter 3 must be applied to recover consistency [33, 55, 108].

On the other hand, whereas the hypotheses are always positive programs, the use of default
negation for the af,^ects/^3 predicate in the inertia axiom, makes that the derivation of a positive
example E might require proving with negation as failure not A where A is the af^ects/^ atom
corresponding to another example, and thus, it can be the case that E is inferred by a set of
clauses but not by a superset of those clauses [16]. For instance, if A is covered later by some
rule, the whole theory will not cover E. However, the addition of the af^j`ects/^ atoms to the
background and the generation of negative examples for the inertia observations avoids such

•
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non-monotonic ef%cts. By doing so, the extension for the predicate holds/2 of B n H is always
a superset with respect to B, that is, when B ^ E+, we have that B n H^ E+, whereas the
extension for the predicate af,^ects/^ does not vary, i.e., the learned theory does not produce
new a,f,^ects/^ literals for the narratives in the training set. As a consequence, the derivation of
a positive example never requires proving with negation as failure not E, however, as we have
seen, it is still possible for the non-derivation of a negative examplel.

In general, only intensional evaluation can guarantee global properties of the learned the-
ory. However, the main problem of intensional evaluation is the computational cost with respect
to extensional evaluation, hence most current ILP algorithms still adopt the latter or hybrid
approaches [55]. Unlike this, extensional evaluation is not order-dependent, but it may pro-
duce theories that are extensionally consistent but intensionally inconsistent, and intensionally
complete but extensionally incomplete. However, these cases arise only when some important
positive examples are missing. Furthermore, extensional evaluation needs to explicitly disregard
non-terminating programs, however, a Situation Calculus program containing only effect axioms
is guaranteed to have a finite recursion due to the shape of the eífect axioms. Cycles are only
possible when so-called indirect eífects are considered2.

The prototype described in chapter 5 currently adopts extensional evaluation with an special
mechanism for dealing with non-terminating programs (see chapter 6). When the narratives
provided in the training set are completely specified-all fluents have a defined value in any
situation s' between the initial situation so and the last situation s of the narrative- the prototype
learns a theory that is globally consistent and extensionally complete3. This is so because any
hypothesis together with the background cannot entail facts that are not in the evidence. As
a consequence, every learning task does not need to take into account learned information and
keeps always the same background knowledge for learning new definitions. Unlike this, when the
narratives are partially specified, e.g., a fluent becomes unknown in a situation, there is no such
guarantee, and additional procedures should be added.

4.3.5 A three-valued setting for SC programs

When classifying a yet unseen object, an agent needs to distinguish between allowed actions,

forbidden actions, and actions with an unknown outcome, and therefore it needs to learn in a

three-valued setting. The use of a third value introduces more situations to be managed with

respect to a two-valued setting.

Following the notation of Lamma et al. [63], the theory that is learned will contain rules (for

1 Note that this could also happen when only positive programs are allowed.
2The problem of non-terminating programs due to cyclic theories will be dealt with in chapter 6.
3Together with the addition of the a,^`'ects/3 atoms to the background and the generation of negative examples

for the inertia observations.
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every fluent f) of the following form:

•

[^]Holds( f, so) ^

Holds( f, do(a, s))

^Holds( f, do(a, s))

^

t-

^r+

^r-

Aífects(a, f, s) ^ ^r+ ^

Affects (a, f , s)

Holds( f, do(a, s))

^Holds( f, do(a, s))

^

F-

F-

^r-

Holds( f, s) n not Affects(a, f, s)

^Holds( f, s) n not Af%cts(a, f, s)

where ^r+ (resp. ^r- ) is the definition learned for the positive (resp. negative) value. These
definitions are also used for af^`eĉts/^ clauses.

The possibility of dealing with contradictory theories, makes that the requirement of con-
sistency with respect to the training set can be enlarged to require that the program be non-
contradictory also for unseen atoms [63], i.e., B U H[^ L n^L for every atom L of the target
predicate. In order to handle possible contradiction in [63], contradictory learned rules are de-
fused (case 3 in table 4.3) by making the learned definition for a positive concept p depend on
the default negation of the negative concept. The undefined classification is obtained by making
opposite rules mutually defeasible, or "nondeterministic". In case of contradiction -^r+ n^r- is
true- this will introduce mutual circularity, and hence undefinedness in the WFSX semantics.
As pointed in [63] identifying contradictions on unseen literals is useful to detect spaces to be
further explored.

Note that ^r+ and ^r- can display as well the undefined truth value, when the value of a
fluent could not be determined. If one . of ^r+ or ^- is undefined and the other is true, then
the rules make both holds( f, s) and ^holds( f, s) undefined. However, as pointed in [63] this is
counter-intuitive, a defined value should prevail over an undefined one. For this task, Lamma et
al. use additional clauses where a predicate Undefined is explicitly used.

1 ^r+ and ^r- are defined ^r+ true true
2 ^r+ and ^r- are defined ^r- true false
3 ^r+ and ^r- are defined (^r+ n^r- ) true undefined
4 ^r+ and ^r- are defined (^r+ V^- ) false inertia

5 ^r+ is defined ^r+ true true
6 ^r+ is defined ^r+ false undefined
7 ^r+ and ^r- are undefined - undefined

Table 4.3: Possible situations in a three-valued setting

In the stable model semantics when both ^r+ and ^r- are true, the theory becomes inconsistent,
i.e., it has no models. To avoid them we just need to disable all rules that prove holds(f,s) and
^holds( f, s).

•

•

holds( f, s) ^ ^r+, not ^r-

^holds( f, s) F- ^r-, not ^r+
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If one of ^r+ or ^r- is unknown and the other is trú^, the defined value prevails over the
undefined one, because the default negation of an unknown value is true (case 5 in table 4.3) .
When both ^r+ and ^r- are false, inertia is applied (case 4) . Furthermore, if one of ^r+ or ^r- is
undefined and the other is false, then the rules above enable inertia, since NAF is used. However,
we may want to disable the inertia rule in certain cases. For instance, if we do not know whether
the switch swi is currently closed, then we do not want to conclude by inertia that the value
of light will remain the same after closing sw2. In this case we need to disable the inertia rule
not only when the preconditions for the change in the value of a fluent are known to hold, but
whenever there is no evidence that they do not hold. This requires the modification of rules for
the predicate affects/^ in the final theory [46].

Affects (a, f , s) ^ not ^^r (4.16)

where ^r is of the form Holds(Pl, s), ..., Holds(P^, s) and not ^^ is of the form not -^Holds(Pl, s),
• ..., not ^Holds(Pn, s) Thús, the final theory is in the form:

[^]Holds( f , so) ^

Holds( f, do(a, s)) ^ ^r+, not Unde f ined( f, a, s)

^Holds( f, do(a, s)) ^ ^r-, not Unde f ined( f, a, s)

Aífects (a, f , s) ^ not ^^r+

Aífects(a, f, s) ^ not -^^-
•

Holds( f, do(a, s)) F- Holds( f, s) n not Aífects(a, f, s)

^Holds( f, do(a, s)) ^ ^Holds( f, s) n not Aífects(a, f, s)

Unde f ined( f, a, s) E- 7f +, 7f -

The predicate affects/^ is applied whenever the negation of ^r+ or ^r- cannot be proved:
The predicate Undefined/^ avoids contradiction when both ^r+ and ^r- are true in a situation.
The form of the theory differs partially from that given in [9, 46]. In [46], contradiction is not
explicitly managed. With respect to [9], the predicate Undefined/^3 includes as argument the
fluent and depends on the preconditions of the action and not on A, f,^ects, thus a defined value
for one of ^r+ or ^r- will prevail over an undefined one.

4.4 Conclusions

•

•

In this chapter, we formally defined the problem of learning to predict the effects of actions
using Machine Leaning methods that are oriented to classification problems. Unlike previous ap-
proaches, we use non-monotonic Action Languages to represent and learn the effects of actions.
This allows us, for instance, to avoid the explicit representation of unchanged properties from one
particular situation to another, and provides with a natural and homogeneous representation.
On the other hand, most implementations of Action Theories use logic programming directly to
formalize some aspects of reasoning about actions or provide translations to logic programs. This
allows that Inductive Logic Programming methods can be applied ef%ctively. In particular we
used a Logic Programming implementation of the Situation Calculus, which combines expressiv-
ity and simplicity. Furthermore; the form at which aĉtions, effects and situations are represented
in the Situation Calculus allows that multiple narratives starting from different initial situations,
can be used for learning in an homogeneous and natural way. In the next chapter we describe a
prototype implementátion based on the framework presented in this chapter.
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Chapter 5

Imp lementation : LRA C

We have developed a prototype LRAC (Learning to Reason about Actions and Change) [72]
implemented in the YAP Prolog system [24] consisting of a top-down ILP algorithm. The aim of
the implementation is not producing a final system but to provide with a prototype that allows
to explore the application of dif%rent techniques and strategies. A specific implementation is
needed for the management of particular features of action formalisms that must be integrated
in the learning process, rather than using directly any ILP algorithm. This also makes the
prototype independent of the ILP method used. Additionally, it allows to apply a semantics for
Extended Logic Programs instead of the normal Prolog proof procedure and introduce necessary
features to deal with multiple predicate learning tasks, which is an issue usually ignored in most
popular methods.

5.1 Learning Action Theories with ILP methods

We follow an approach to learning action theories in the Situation Calculus that consists in
applying conventional ILP techniques to learn a definition for both E+ and E- . The implemented
ILP algorithm is mostly based on Progol [95] -that implements Inverting Entailment (IE)-
focused to and augmented with particular features needed for learning action theories. Progol is
the most representative system in the ILP field. Progol has been applied successfully in several
real problems and the results have been published in relevant journals in those fields. Another
particular feature that makes it attractive is the use of a most-specific clause to delimit the
search space. Progol learns the most general definition for a target predicate unlike Golem that
learns the most specific generalization, however, it would be possible to integrate both methods
in the prototype, so that the user can choose the level of generalization for each domain and even
diíferently for the positive and negative values [63].

Inverting Entailment (IE) computes the so-called bottom clause or 1-clause (most specific
generalization) from a positive example (seed). The 1-clause is computed from the least Herbrand
model of B n^E+, where E+ is the seed and B is the background knowledge. Theoretically, the
bottom clause includes all the background knowledge, however in practice, only the background
relevant to the seed is considered by applying some biases.

In particular, the Situation Calculus introduces a bias for such clause, where only the previous
situation can appear in the body of a clause and no references are possible to the predicate
affects/^. This is the form of so-called e,f,^ect a^ioms. Since each example E corresponds to a
particular situation do(ai, s2), where do(ai, si) is the constant used in describing E, background
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knowledge which does not pertain to si is irrelevant and need not be considered in the bottom
clause. For instance, in the examplé of the Blocks world shown in section 4.3.4, the bottom
clause generated from the seed

holds(clear(c), do(move(b, a), do(move(a, d), so )))

includes the values of fluents on/2 and clear/1 at situation do (move (a, d) , s0) and other static
predicates that are specific of the domain. Generalization is applied for every fluent to be used
as condition in the body and for the fluent (and the action) in the head, following a syntactic
bias. Similarly, a bias can be applied over the 1-clause at a clause level and not at a literal level
for a particular fluent.

In general, however, Inverting Entailment is incomplete with recursive clauses when some
important training examples are missing. This incompleteness is also present when learning
action theories. For instance, when

holds(clear(b), do(move(a, d), so))

is missing, the bottom clause does not include the intended effect axiom (eq. 4.15), hence IE will
not find the solution. These cases would require that the bottom-clause is applied recursively.
Muggleton showed that enlarging the bottom clause leads to completeness of IE [90], however
this has not been implemented yet. The search in Progol is delimited by the empty clause and
the 1-clause, where a possible hypothesis H is constructed as a clause that subsumes 1.

We adopt the answer set •semantics for learning action theories in the form of ELP. We follow

the approach to learning ELPs of [63, 54] that consists in applying conventional ILP techniques

where the answer set semantics substitutes the standard LP proof procedure to test the coverage

of examples. In the answer set semantics, the answer to a ground query A is either yes, no or

undefined depending whether the answer set contains A, ^A or neither [54]. A stable models

semantics for extended logic programs (ELP) is given by computing the answer sets of a program

where classical negation is "implemented" by reifying the truth value and adding some consistency

axioms.

false :- holds(F,+,S),holds(F,-,S).

This makes that when the model includes both an atom and its negation, the program be-
comes inconsistent. The prototype implemented uses smodels [96] that is an efficient implemen-
tation of the stable models semantics. The covering algorithm computes the finite stable model
of the theory to test the coverage of examples. We assume that Background B is a consistent
logic program i.e., B has a single model, and the same assumption is done for B U H where H is
a possible hypothesis. Thus, the unique and finite answer set is computed through smodels, and
the coverage test must check that every example is included in the unique stable model of the
program B U H. Initially, Progol is called with the computed stable model as background knowl-
edge from which the bottom-clause is computed. The background given to Progol is constructed
from the unique stable model of B U E+.

5. 2 Description of LRA C

The system LRAC is invoked with the command:

lrac <domain> [<f luent>]

•

•

v
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that launches the Yap Prolog, where <domain> is the domain to be learned and <f luent> is an
optional argument that instructs LRAC to focus on a particular fluent. Input to LRAC is given
in three separate files:

1. Background knowledge (<domain> . bg)

2. Positive examples (<domain> . train)

3. Declarative bias (<domain> . bias)

Background knowledge (. bg) includes domain-dependent definitions. This must include user-

defined type declarations to be used by the inductor to focus on well-formed clausesl . The syntax
adopted is that of the system smodels [96] that computes the stable models of a logic program.
For instance, for the circuit of example 2 the following definitions are provided:

sort(device;switch).

sorts(active(device)).
sorts(closed(switch)).
sorts(toggle(switch)).

• switch(swl;sw2).

device(light).

f luent(closed(W)) :- switch(W).

f luent(active(W)) :- device(W).

action(toggle(W)) :- switch(W).

•

•

Predicate sort/1 specifies the list of sorts of a particular domain apart from the domain-
independent sorts, namely {fl^cent,val^ce,action,situation}, whereas sorts/1 specify the sorts for
every argument of a predicate. Possible values for every sort are given by using the sort name as
a functor, and separated by a;. The form of fluents and actions (and static predicates) is given
through sort information for every argument.

File .train includes observations in the form of ground holds/^ facts. The truth value is reified
to allow the derivation of negative value fluents, hence negative informatión will be represented as
holds (F, -, S) . holds/^ facts for the initial situation(s) are then explicitly separated and included
in the background together with the inertia axiom.

holds(closed(swl),+,do(toggle(swl),s0)).

holds(active(light),+,do(toggle(swl),s0)).

holds(closed(sw2),-,do(toggle(sw2),do(toggle(swl),s0))).

holds(active(light),-,do(toggle(sw2),do(Loggle(swl),s0))).

holds(closed(sw2),+,do(toggle(sw2),do(toggle(sw2),do(toggle(swl),so)))).

holds(active(light),+,do(toggle(sw2),do(toggle(sw2),do(toggle(swl),so)))).

Positive af^`ects/^ atoms are internally generated for every positive example and added to the
background.

lOtherwise they could be partially constructed from data [83]
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holds(F,V,do(A,S)) :- holds(F,V,S),not affects(A,F,S).

affects(toggle(swl),active(light),do(toggle(sw2),s0)).

LRAC initially loads the training set as well as background predicates.

1. Read training set domain . train.
2. Compute the stable model.

3. Read bias file domain.bias.

4. Retrieve all situation terms.

5. Generate negative examples.

Figure 5.1: Loading a domain into LRAC

Negative examples in the form holds (f , v, s) are added for every situation (included in the
training set) where a fluent f is not aífected by an action. These are generated automatically
given the high number of negative examples that are possible.

.train .bias .bg

holds(f,s0)
holds(f,do(...,s0)..)

bias(...) sort(...)

t

•

TRAIlVWG SET

E+

holds(f,do(...,s0)..) :- holds(f,do(...,s0)..)

ILP ALGORITI-D^l

holds(f,do(a,A)) :- ...

affects(a,f,A) :- ...

inerlia axiom

BK

holds(f,s0)

affects(a,f,do(...,s0).. )

smodels

•

•

Figure 5.2: Using an ILP algorithm to learn Situation Calculus theories

Before learning, a bias must be specified for each learning task to delimit the language used
during the learning process. The built-in bias/2 predicate establishes which predicate will be
generalized, i.e., the predicate allowed to appear in the head of clauses.

bias(Head, BodyLiterals)

When forming rules with heads subsumed by Head, the bias disregards literals other than
those included in the list BodyLiterals. These bias/2 declarations replace both mode decla-
rations of Progol where declarations for the body literals are assigned to each target predicate
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individually following determination/2 declarations. Additionally, these determination/2 dec-
larations can only refer to the functor and the arity of the predicates, and thus it is not possible
to assign diíferent modeb declarations for a single fluent in diflerent modeh/2 declarations. We
found this feature useful when multiple predicates have to be learned such that the bias for body
literals can be diíferent for every fluent -i.e., for each argument of predicate holds/^3 and for each
action. This will be also useful to independently bias the search for direct and indirect effects
with the same fluent allowing for dif%rent mode declarations (this will be dealt in chapter 6).
Bias declarations for the circuit (2) are:

bias(holds(closed(#),#,do(#,+)),

[holds(closed(#2),#,+),holds(active(#),#,+)]).

bias(holds(active(#),#,do(#,+)),

[holds(closed(#2),#,+),holds(active(#),#,+)]),

•

Symbols + and - are meant to be replaced by input (resp. output) variables during the
construction of the 1-clause. Unlike this, # is meant to be replaced by a constant, so that
for instance, no generalization is applied over the action toggle/1. The recall for each literal
-i.e., number of alternative solutions for instantiating an atom- is assumed to be 1 by default,
otherwise it must be explicitly provided for one of arguments of a literal. For instance, with the
fluent closed/1, two possible instantiations are possible, one for each switch.

Two situations are included in a Situation Calculus formulae, namely, the previous situation
and the situation resulting of executing an action. This introduces an implicit bias for the clauses

to be learned, where only the previous situation can appear in the body of a hypothesized clause.

Thus, any literal added to a clause holds (F, do (a, S) ):- ... will refer to S(not to do (a, S) ).

From the bias/2 declarations, mode declarations for Progol are built, by using information about

sorts.

.- modeh(1,holds(active(#device),#value,do(toggle(#switch),+sit)))?

.- modeh(l,holds(closed(#switch),#value,do(toggle(#switch),+sit)))?

.- modeb(2,holds(closed(#switch),#value,+sit))?

.- modeb(l,holds(active(#device),#value,+sit))?

After loading a domain, LRA C starts learning for the domain specified and optionally for the
fluent specified, where the argument <f luent> can be a ground or non-ground term, which will
make the learned clauses more or less specific respectively. For instance,

lrac sw closed(_)

learns a definition for each possible instantiation of fluent closed/1. When lrac receives no
fluent as argument, it learns rules for all fluents, provided the necessary bias/2 declarations are
provided in the . bias file. For each seed e, the first bias declaration bias(h, b) is found such
that h subsumes e with substitution 9. Examples to be covered (resp. not covered) are filtered
according to the second argument of lrac (when this is provided). A more accurate filtering is
done after getting a bias/2 statement by using the head of the 1-clause, that helps to reduce
the overhead of the testing phase.

The learning procedure will be called twice, once for the positive concept and once for the
negative concept and separately for every action that is shown to cause the fluent to change in any
situation. The search in Progol is delimited by the empty clause and the so-called 1-clause (most
specific generalization) constructed from a seed, whose size and form are controlled by applying

57
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bias declarations and other special settings. The phase of constructing the bottom-clause can be .
carried out by Progol independently of the search process. For this reason, we have modified a

version of Progo14.4 [95] that simply returns the bottom clause for a given seed -forcing it as the
first example in the input file- without starting the search process. Once Progol has computed

the most specific clause, this is redirected to a file and read into memory. For instance, for the
fluent active(light) and the seed:

holds(active(light),+,do(tl,do(t2,s0))).

Progol returns:

holds(active(light),+,do(toggle(swi),A) :-

holds(closed(sw2),+,A), holds(closed(swl),-,A),

holds(active(light),-,A).

The size of the 1-clause may become significantly large specially when dealing with non-
determinate literals. Additional restrictions can be specified apart from the recall and the bias/2
statements by using Progol settings, among others:

set(i,_)

set(c,_)

depth of variables in the body
the maximum number of literals in the body of a clause

Table 5.1: Additional settings for controlling the size of the bottom clause

The declarative bias language used consists of mode declarations which is typical of most

popular ILP systems, and it is enough for most applications. However, it is useful to have

additional expressivity to further pruning the search space. For this reason, we implemented an

additional bias mechanism through built-in predicates prune/2 and remove/2 that have their

corresponding counterparts in Progol. The predicates take two arguments, the head and the

body of a clause, and the definition establishes conditions on them that if matched, will remove

the clause from search (remove/2) and all its refinements (prune/2). These pruning statements

are extremely useful for stating which kinds of clauses should not be considered in the search.

The main advantage of using the LP syntax is that pruning clauses can be expressed by using

arbitrary logic programs. For instance, suppose you .wanted . to disallow self-recursive clauses.

This can be achieved by using the following simple prune rule [95]:

prune(Head,Body) :- in(Head,Body).

The above prune/2 statement disregards any clause whose Head unifies with an atom in its
Body. We can also decide on to allow unbounded variables in the head or body of a clause, and
so on. A built-in predicate in(Lit, Body) is used to represent that a literal Lit is in the body of
the clause. Unlike prune/2, remove/2 statements are useful when the current hypothesis is not
well-formed, e.g., it is non-constrained, and however, some of the refinements are of interest. We
also implemented a variant of prune/2 that is applied to the bottom clause (before search) to
remove those literals that are redundant or are not of interest. The prune/2 statements can serve
the same purpose, however, prunebottom/3 statements reduce the size of the bottom clause, and
thus the number of hypotheses to be explored.

•

prunebottom(Lit,BottomHead,BottomBody).
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During search, hypotheses are refined by adding new literals from the bottom-clause and
respecting mode declarations. For instance, given a mode declaration for the function succ (+, -),
the - is used in the output argument, so that when an atom s^ccc/2 is added to the current
hypothesis, the first argument must be already bounded and the second argument is the result
of the function. As a consequence, the second argument can introduce new variables in the
hypothesis. However, an atom s^ccc(A, B) with B unbounded, is not of interest without adding
another atom that also refers to B. If this happen in the bottom clause, the atom should be
removed (with a^runebottom/2 statement), however if it happens in the current hypothesis, this
should be specialized without being tested previously (with a remove/2 statement). We add an
special predicate constrained (H, B, succ (+,+) ) to mean that + arguments are bounded in the
clause H : - B.

Progol uses a standard covering algorithm where each example is generalized to find the
hypothesis that covers the given example with maximal information compression. Positive ex-
amples covered by each rule are removed from E+ and the process is repeated by taking another
example from the remaining examples. Finally, the learned rule is added to the background
(Fig. 5.3).

1. If E_^ return B
2. Let e be the first example in E
3. Construct clause 1 for e
4. Construct clause H from 1

5. Let B=BUH

6. LetE'={e:eEE and B^e}
7. LetE=E-E'
8. Goto 1

Figure 5.3: Progol covering algorithm

•

The search algorithm of Progol is implemented in the Yap Prolog that lists those clauses
which subsume the bottom-clause and which might be part of a final hypothesis, and tests each
hypothesis on the positive and negative examples. The algorithm searches in a top-down fashion
for the best generalization of 1 using an A* search to find a subset of literals in the body
with the maximal compression -such that the resulting clause is well-formed according to the
syntactic bias. The 1 clause is processed in order from left to right (starting with the head),
and respecting the input/output arguments of predicates, so that a queue of current candidate
clauses is maintained 2.

l. initialize queue to contain the clause with an empty body.
2. remove candidate s with highest fs from the queue.
3. if ns = 0, fs > 0 and fs > gr for all r that have been visited so far, then return s.
4. unless ns = 0, gs < 0 or es > c, refine s.
5. add all refinements to the queue.
6. unless the queue is empty goto 2.

Figure 5.4: Progol search algorithm

2This ordering introduces an additional bias in the formation of candidate hypotheses [4]
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The compression measure used in Progol is of the form [95]:

9s = ps - ^s - hs

.Ís = 9s - ns

where pS (resp. ns ) are the positive (resp. negative) examples covered by the clause, cs is the
current length of the clause, and hs is an optimistic estimate of the number of litexals needed to
make the clause I/O complete (a value is derived for all output variables of its head).

Pruning of uninteresting candidates is done at step 3, so that some conditions must be fulfilled
by clauses to be further specialized, namely, no negatives are covered, the length must be less
than the maximum allowed, and a minimal ĉompression is required (gs < 0) -i.e., any hypothesis
must cover at least as many positives examples as the number of literals in the body. If the
queue becomes empty, the seed is returned without generalization. All examples that tried to
generalize and however no rule was learned because no enough compression was achieved, are
returned together with the learned clauses. The search stops when it is guaranteed that no better

clause in the queue, with a length cs < c(where c is the maximum number of literals allowed
in the body) will be found, optimistically assuming that further specialization of the clauses will
remove all negative examples covered while keeping all positive examples covered, i.e., gs is an
upper bound of fr for all refinements r of s. As in Progol, a limit can be imposed on the number
of hypotheses to be searched in complex domains.

The most costly operation in the search process is the coverage testing made for every can-
didate hypothesis. By default, extensional coverage testing is adopted so that positive examples
are added to the background. The actual reason is that, in practice, intensional testing makes
learning very costly and the execution times increase very significantly with respect to extensional
testing. With extensional evaluation, the order at which fluents are learned is not important. In
practice, LRA C takes a seed randomly from the training set, so that fluents are not necessarily
learned completely one after another.

The interpreter for the stable model semantics needs the logic programs to be grounded. With
extensional coverage testing, the unique stable model has to be computed just once. Intensional
testing corresponds to the entailment relation, i.e., the stable model of B U H is to be computed
for every H, hence intensional coverage is very costly in most cases. Variables are assumed to
range over the ob ject constants used in the program so that clauses are constrained (by using
type predicates) to allow for a finite^^grounding from which, the stable model is computed. Due
to the range restriction, every situation included in any narrative must be included a priori as a

term, so that the range of the function do/2 is restricted to the situation constants corresponding
to the narratives in the training set.

situation(s0).

situation(do(toggle(swi),s0)).

situation(do(toggle(sw2),do(toggle(swi),s0))).

Noise is another important issue when dealing with real world data. We are not specially
concerned with noise treatment, however there exist many approaches in the literature to noise
most based on pruning methods or compression. Progol relies on a compression measure to
avoid overfitting the training set, i.e., obtaining very specific rules which constitute very poor
generalizations. Noise can be also treated as a kind of non-determinism and dealt with by relaxing
the consistency requirement [5] (see section 7.2).

•
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5.2.1 Learning the basic circuit with LRAC

We used a simple wander program that collects data about its actions while exploring the envi-

ronment.

wander <domain> <narratives> <length>

Argument <domain> is the name of a file that contains the domain description needed for the
simulation, from which wander will generate <narratives> narratives of length up to <length>.
With each exploratory step, the program records the action that was taken, and the fluents that
changed. We assume that the environment is only manipulated by one agent and there is no
noise or uncertainty in the observations and actions.

LRAC initially loads the domain data.

$ lrac sw

[ YAP version Yap-4.3.18 ]

L R A C Version 18/O1/2001

File sw

Actions: toggle/1

Fluents: closed/1 active/1

Reading training set...(40s) done.

Executing smodels ... done.

Reading bias... done.

•

•

and then it starts learning taking a positive example, computing the most specific clause and
searching for the best clause.

[Generalizing holds(closed(swi),-,do(toggle(swl),do(toggle(swi),s0))).]

Calling progol...done

[Most specific clause is]

holds(closed(swl),-,do(toggle(swl),A)) :-

holds(closed(swi),+,A),

holds(closed(sw2),-,A),

holds(active(light),-,A).

Searching... done.

4 nodes explored

[Result of search is]

holds(closed(swl),-,do(toggle(swi),A)) :-

holds(closed(swl),+,A).

C18 redundant clauses retracted]

From 10 narratives of length 4 including 50 positive examples, LRAC returned the following
clauses in the basic circuit:

holds(closed(swl),+,do(toggle(swl),A)) :-

holds(closed(swl),-,A).

holds(closed(swl),-,do(toggle(swl),A)) :-

holds(closed(swl),+,A).

holds(closed(sw2),+,do(toggle(sw2),A)) :-

holds(closed(sw2),-,A).

holds(closed(sw2),-,do(toggle(sw2),A)) :-

holds(closed(sw2),+,A).

holds(active(light),+,do(toggle(swl),A)) :-
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holds(closed(swl),-,A),

holds(closed(sw2),+,A).

holds(active(light),+,do(toggle(sw2),A)) :-

holds(closed(swi),-,A),

holds(closed(sw2),+,A).

holds(active(light),-,do(toggle(swl),A)) :-

holds(active(light),+,A).

holds(active(light),-,do(toggle(sw2),A)) :-

holds(active(light),+,A).

According to the rules, action toggle(swl) (resp. toggle(sw2)) toggles switch swl (resp.
sw2), and both switches af%ct light through the actions that modify them. The corresponding
a,f^`ects/,^ clauses are generated automatically from the learned ef%ct axioms, since they have
the same bodies [121]. This allows to distinguish "caused" values, so that the inertia axiom is
disabled and no contradiction is produced.

aff ects(toggle(swl),closed(swl),A) :-

holds(closed(sw1),+,A).

aff ects(toggle(swl),closed(swl),A) :-

holds(closed(swi),-,A).

aff ects(toggle(sw2),closed(sw2),A) :-

holds(closed(sw2),+,A).

affects(toggle(sw2),closed(sw2),A) :-

holds(closed(sw2),-,A).

aff ects(toggle(swl),active(light),A) :

holds(closed(swl),-,A),

holds(closed(sw2),+,A).

affects(toggle(swl),active(light),A) :

holds(active(light),+,A).

aff ects(toggle(sw2),active(light),A) :

holds(closed(swl),-,A),

holds(closed(sw2),+,A).

aff ects(toggle(sw2),active(light),A) :

holds(active(light),+,A).

5.2.2 The Blocks world

Let us consider again the Blocks world (Fig. 5.5).

A

A

D

s0

A

s 1=do(move(A,D),s0) s2=do(move(B,A),s 1)

Figure 5.5: Blocks world

•

•

Background knowledge includes type definitions and the ob jects included in the scenario.
We include an special predicate di, f^`/,2 to represent that two variables do not represent the same
object, i.e., X ^ Y, where X and Y are variables.
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sort(block;location).
sorts(on(blok,location)).

sorts(clear(blok)).

sorts(move(blok,location)).

sorts(diff(blok,location)).

sorts(table(location)).
•

•

block(a;b;c;d).

location(table).

location(A) :- block(A).

table(table).

f luent(clear(B)) :- block(B).

fluent(on(A,B)) :- block(A),location(B),diff(A,B).

action(move(A,B)) :- block(A),location(B),diff(A,B).

diff(A,B) :- location(A),location(B),A!=B.

The sequence of actions of Fig. 5.5 is represented as the following LP facts:

holds(clear(a),+,s0).

holds(clear(d),+,s0).

holds(clear(b),-,s0).

holds(clear(c),-,s0).

holds(on(a,b),+,s0).

holds(on(b,c),+,so).

holds(on(c,table),+,s0).

holds(on(d,table),+,s0).

•

•

holds(on(a,b),-,do(move(a,d),s0)).

holds(on(a,d),+,do(move(a,d),s0)).

holds(clear(b),+,do(move(a,d),s0)).

holds(clear(d),-,do(move(a,d),s0)).

holds(on(b,c),-,do(move(b,a),do(move(a,d),s0))).

holds(on(b,a),+,do(move(b,a),do(move(a,d),s0))).

holds(clear(c),+,do(move(b,a),do(move(a,d),s0))).

holds(clear(a),-,do(move(b,a),do(move(a,d),s0))).

The use of many-sorted predicates for actions and fluents require a little effort in finding a
bias sufficient for learning, further than controlling the situation variable. For instance, when
ob jects other than situations are to be considered, we need to decide to instantiate or not every
predicate argument, so that generalization works over them.

bias(holds(on(+,+),#,do(move(+,+),+)),

[holds(on(+,+),#,+),holds(clear(+),#,+),diff(+,+)]),

bias(holds(clear(+),#,do(move(,+,+),+)),

[holds(on(+,+),#,+),holds(clear(+),#,+),diff(+,+)]),

• For structured fluents, the generation of negative examples requires to build all the possible
instantiations of fluents according to the argument Head of the appropriate bias/2 statement.
In the blocks world, from the example holds ( on ( a, b) ,+, do (move ( a, b) , s 1) ) and the above
bias statements, the following negative examples are generated, representing eífects that were
not produced by the action move/2 at any situation:
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holds(on(b,a),-,do(move(a,b),si)).

holds(on(a,c),-,do(move(a,b),sl)).

holds(on(b,a),-,do(move(a,b),s2)).

Before starting its search, LRA C calls Progol to construct the "most specific clause". For
instance, for the predicate on/2 the clause constructed was:

holds(on(A,B),+,do(move(A,B),C)) :- holds(on(A,A),-,C), holds(on(A,

B),-,C), holds(on(B,A),-,C), holds(on(B,B),-,C), holds(clear(A),

t,C), holds(clear(B),+,C), diff(A,table), diff(A,B), diff(B,

table), diff(B,A).

Literals in the form holds (on (A, A) ,-, D) are not of interest, and introduce an overhead for
the search process. To avoid these useless literals, we add a prnnebottom/3 statement like the
following:

prunebottom(holds(on(A,A),_,_),Head,Body).

F^cnctional dependences for on(+, -) and on(-, +) can be also incorporated as well as sym-
metry properties for di,f,j`/,2 and on/2, and the transitive property of dif^j`/,2.

prune(Head,Body) :- in(holds(on(A,B),_,_),Body),in(holds(on(B,A),_,_),Body).

prune(Head,Body) :- in(holds(on(A,_),+,_),Body),in(holds(on(A,_),-,_),Body).

prunebottom(diff(A,B),Head,Body) :- in(diff(B,A),Body).

prune(Head,Body) :- in(diff(A,B),Body),in(diff(B,C),Body),in(diff(A,C),Body).

We generated 144 situations including 133 positive examples and 2448 negative examples.
From these examples, LRA C learned the following effect axioms:

holds(on(A,B),+,do(move(A,B),C)) :-

holds(clear(A),+,C),

holds(clear(B),+,C).

holds(on(A,B),+,do(move(A,B),C)) :-

holds(on(A,B),-,C),

holds(clear(A),+,C),

table(B).

holds(on(A,B),-,do(move(A,D),C)) :-

holds(on(A,B),+,C),

holds(clear(A),+,C),

holds(clear(D),+,C),

diff (B,D) .

holds(on(A,B),-,do(move(A,D),C)) :-

holds(on(A,B),+,C),

holds(clear(A),+,C),

table(D).

holds(clear(A),+,do(move(C,D),B)) :-

holds(clear(D),+,B),

holds(clear(C),+,B),

holds(on(C,A),+,B),

diff (D,A) .

•

•

•

•
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holds(clear(A),+,do(move(C,D),B)) :-

holds(clear(C),+,B),

holds(on(C,A),+,B),

table(D).

holds(clear(A),-,do(move(C,A),B)) :-

holds(clear(C),+,B),

holds(clear(A),+,B).

The rules for on/2 states that moving a block A onto B will be possible when both blocks
are clear or when the first block is clear and B is the table, and that a block A will not be over
B (a block or the table) if we move A to a third (different) block C when both A and the target
block C are clear. Similarly for clear/1. Unbounded variables are displayed as _ by the Yap
Prolog.

A difference with the clauses learned by S. Moyle is the clause below that appears in [88] and

that trivially states that moving one block onto another will not make the first to be on a third

if the second is already on the third.

holds(on(A,B),-,do(move(A,C),D)) :- holds(on(B,C),-,D).

•

•

•

This is due to a bad generalization caused by either the size of the training set or a skewed

training set. The inclusion of any example where the three blocks involved are not forming a

tower allowed LRAC to obtain the correct clause which correctly states that a block will not be

over another block if we move the first one to a third block when both the first and the third

blocks are clear.

5.3 Conclusions

In this chapter we have described a prototype for learning Situation Calculus theories in the form
of Extended Logic Programs, that is based on the Inverting Entailment method, but it could use
other similar methods. The prototype uses a variant of the algorithm Progol for computing the
bottom-clause, an interpreter for computing the stable models of a logic program, and adopts
extensional evaluation for efficiency reasons.

•
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Chapter 6

Learning Indirect Effects

The constraints that we have considered so far were associated with a particular action. In
many cases, the efFects of an action are not caused directly by the execution of an action but
indirectly through other simultaneous changes. Such indirect eífects are usually represented as
consequences of general laws describing dependences between fluents. Previous approaches to
learning action models are restricted to predicting a single outcome or effect of an action. This
forces the explicit representation of all the effects of an action as direct effects, producing the
so-called Ramification problem [58]. The learner should infer how properties of a domain are
(directly/indirectly) af%cted by the execution of actions, or otherwise are subject to the general
law of inertia. We study the learnability and compactness of the learned theory in this new
framework. For this task we will use the standard benchmark scenarios for the ramification
problem used in the literature.

6.1 The Ramification problem

The Ramification problem has been described by Ginsberg and Smith [49]:

For any given action there are essentially an infinite number of possible conseq^cences
that depend ^cpon the details of the sit^ation in which the action occ^crs.

For instance, the constraint that a player may not be in check after his own move, represents
an implicit precondition on possible moves. It would be very difficult to express this action
precondition explicitly, as a condition on the starting state from which the player makes the
move [26]. The increased complexity of axiom eífects is a consequence of the fact that they need
to anticipate the ramifications of the executed action, and these become increasingly numerous
and complicated as the complexity of the domain increases.

In many cases, the ef^ects of an action are not caused directly by the execution of the action
but indirectly through other changes. Such indirect .eífects are usually represented as conse-
quences of general laws describing dependences between components of the world description.
Formally, we have:

Definition 6.1 (Domain constraint) A domain constraint is a formula

Holds( f, s) ^ ^r (6.1)

where the Holds literals in ^r are only of the form [^]Holds( f', s). O
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According to these domain constraints, indirect effects are usually derived from the state of
fluents, while direct ef%cts come from the execution of an action. Most solutions that have been
proposed for the ramification problem require ef%ct axioms to specify the most significant effects
of the action and to rely on domain constraints for specifying additional changes that are due
to the action. Thus, effect axioms are used to describe the dynamics of the primitive fluents
and state constraints are used to describe the derived fluents in terms of the primitive ones. For
instance, according to the following constraint:

Holds(active(light), A) ^ Holds(closed(swl), A), Holds(closed(sw2), A) (6.2)

light is a derived fluent, such that it is always on when both switches (primitive fluents) are
closed, not matter the actions that were executed.

However, the use of domain constraints for the propagation of eífects produces counterin-
tuitive solutions even in most simple cases. According to the above constraint, for instance,
light is always on when both switches are closed. In classical logic, if s^,ul is open and light is
false and then swl is closed, the violation of the above constraint can be repaired by making
light true or making sw2 false, which does not correspond to the intended behavior. The use of
causality for the Ramification problem avoids this situation by introducing directionality in the
formula [67, 101], i.e., light is the effect and never the cause.

6.2 Indirect effects in the Situation Calculus

The basic definition of the Situation Calculus suífers from the Ramification problem, given
that the predicate a,f,^ects/^3 that is used to overcome the F^ame problem, cannot be used to
represent indirect eífects because the situation argument represents the situation where the action
is executed and not the resulting situation, and the action is a required argument. However, the
introduction of domain constraints in the Situation Calculus is not sufficient. A fluent that has
been initiated/terminated directly through an eí%ct axiom cannot then be terminated/initiated
indirectly through a state constraint, unless it is released from inertia beforehand [123], otherwise
it would lead to contradiction. To add indirect ef%cts to the Situation Calculus theories we need
to consider action formalisms where a notion of causation is explicitly represented about how
changes in one state variable may cause changes in another state variable.

We use a dialect of the Situation Calculus [67] with a predicate caused/^ instead of a, f^ects/^3.
F. Lin [67] incorporates causality into a Situation Calculus based formalism through the predicate
caused( f, v, s) that is true if the fluent f is caused (by something unspecified) to have the truth
value v in the situation s. This allows to express flver^t-triggered causal statements, i.e., a fluent
is caused by other fluent, apart from action-triggered ones, which are convenient for répresenting
the indirect effects of actions. We formally define a Logic Programming implementation of the
Lin's dialect in the form: .

Defi=iition 6.2 (A Situation Calculus Program with indirect effects) A Situation Calculus pro-
gram is the conjunction of:

. A finite set of general clauses

[^]Holds( f, so) (6.3)

.

where so denotes the initial situation.
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• A finite set of clauses of the form

Caz^sed( f, v, do(a, s)) E- ^r (6.4)

where ^r does not mention the Caused predicate and every occurrence of the Holds predicate in
^ is of the form [^]Holds( f', s). The description states that, in any situation, if the precondition
holds then the ef£ect will hold in the resulting situation. These axioms are called ef,^ect a^ioms or
action laws.

• A finite set of clauses of the form

Ca^csed( f, v, s) F- ^r (6.5)

where ^ does not mention the Ca^sed predicate and every occurrence of the Holds predicate in ^r
is of the form [^]Holds( f', s). The description represents how changes in certain fluents propagate
to cause changes in other fluents. These axioms are called cavsal laws.

• The universal frame axiom describes how the world stays the same (as opposed to how it changes)

Holds( f, do(a, s)) ^ Holds( f, s) n not Ca^sed( f, v, do(a, s)) (6.6)

^Holds( f, do(a, s)) F-- ^Holds( f, s) n not Ca^sed( f, v, do(a, s)) (6.7)

• Some clauses that propagate caused values to Holds.

Holds( f, do(a, s)) ^ Caused( f, true, do(a, s)) (6.8)

^Holds( f, do(a, s)) F- Ca^sed( f, false, do(a, s)) (6.9)

a

•

Examples are now in the form of ca^csed/^ atoms, so that each example represents now the
truth value and the causality that were before represented separately by holds/^3 and a, f,^ects/`3.
A dif%rence with respect to the affects/^ predicáte is that the latter refers to the situation where
the action is executed, whereas ca^csed/3 refers to the resulting situation. Thus, ca^csed/`3 can
be used to represent both direct and indirect ef%cts by using an argument situation in the form
S or do (a, S) . Note that the reification of the truth value in the predicate Ca^csed is needed
to distinguish "caused not to hold" from "not caused to hold". Using axioms in the form 6.5 in
addition to ef%ct axioms rather than trying to give all the effects of actions directly is essential
for the modularity of a representation [26]. Additionally, the use of causality allows a clear
distinction between caused values and inertia values, so that we distinguish between the claim
that a is true and the stronger claim that there is a cause for it to be true.

6.3 Indirect ef%cts = effects propagation

Indirect ef%cts actually represent a propagation of changes with respect to domain constraints.
Thus, we have that:

i) Only those flvents that change simnltaneovsly with another f^^cent can indirectly af^ect to
each other.

As a consequence:



•

70 Learning Indirect Effects

ii) When a single fluent changes after e^ecuting an action, then at least an e,ffect a^iom must

be included for that fluent and that action (e.g., toggle(swl) with swl and togglé(sw3) with
sw3^.

Obviously, when a single eflect is produced, this is directly caused by the action. A further
consequence is:

iii) Causal rules can only cover those e^amples where the action e^ecuted produced several
simultaneous effects.

Without additional considerations, causal rules might cover examples where a single effect is
produced, because caused is used only in the head of the rule. These single eífects must not be
considered when computing the coverage of causal rules, which might produce an overestimated

coverage. This restriction can be incorporated into the algorithm, by allowing only direct effects
for those seeds where a single fluent changes. Just a simple restriction can avoid undesired
results. For instance, when swl is opened and sw2 was open, the following clause will not be
considered because swl is the only fluent to change, so that it can never be an indirect effect of
light. However, the clause is still possible provided light was on before opening swl.

Caused(closed(swl), false, A) F- ^Holds(active(light), A).

On the other hand, indirect eflects represent a propagation of changes. As a consequence,
the previous conditions are not strong enough, because the body of a causal rule might include

only fluents that did not change. This might produce invalid theories, for instance, if there is a
fluent that never changes with relay but that correlates exactly with the positive value of relay
in the training examples, the algorithm will prefer it rather than swl n sw3, and however there
is no propagation of effects. Thus, we can safely establish that:

iv) In any causal rule, at least one of the fluents in the body must have changed simultaneously
with the fluent in the head.

This can be also incorporated in the algorithm, such that, when a causal rule is found that
is a solution, this is removed if it does not fit the requirement. Note that this pruning cannot be
done during the intermediate stages of the specialization, given that some conditions that will
appear in the final clause will be missing.

However, given a particular set of observations, we have also that:

v) A fiuent A can depend on a f^uent B even if they were never observed to change simulta-
neously.

This could happen if, e.g.; light is always changed through swl in the examples, however,
light still depends on sw2. Thus, if we consider strictly condition iv, the solution might be
removed from the search space before starting. In an ideal case where we have all possible sets of
fluents that may change simultaneously in any situation, we could theoretically discard all those
pairs of fluents that are never observed to change simultaneously, e.g., swl and sw3 do not affect
each other. On the other hand, it is not difñcult to run into scenarios where two fluents never
change simultaneously and however one depends on the other. Let us consider two gear wheels
that can be turning or static. The wheels can be pushed independently of each other, such that,
when they are coupled, both wheels are in the same state. If we consider that the wheels cannot
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be (de)coupled when any of them is turning, then a change in the fluent coupled, when both

wheels are static, will not have any visible effect on the state of the wheels -i.e., there will be no
group of changes {turn(wheell), turr^(wheel2), coupled}- and however, the fluent coupled still
aífects the behavior of the wheels, and it is needed to predict indirectly the state of the wheels.

6.4 Learning Action Theories with indirect ef%cts

The previous chapter forces the explicit representation of all the eífects of an action as direct
ef%cts, producing the Ramification problem. Furthermore, the ramification problem produces
additional effects during learning. The need to anticipate the ramifications of the executed action,
causes that the learner has to produce a high number of clauses based possibly on little evidence.
As a consequence, the learned hypotheses may be unnecessarily complex and thereby also less
reliable and accurate. Unlike this, causal laws can make programs sensibly shorter, which have a
positive influence on their learnability, as the difñculty of learning a given logic program is very
much related to its length.

The learner must now infer how properties of a domain are (directly/indirectly) af%cted by
the execution of actions, or otherwise are sub ject to the general law of inertia. According to the
previous section, we adapt the definition 4.2.

Definition 6.3 (Learning SC programs with indirect eífects)
Given:

• A dorr^ain description consisting of two nonempty sets: a set .^ of fluent names, and a set A of
action names.

• A set JV of narratives N^ each starting at a situation só .

• A set E+ = Ui 1 E f; of examples (ground facts) caused( fi, true, do(a^, s)), representing observa-
tions where a fluent fi E.^ changed from false to true after executing an action a^ E A at situation
s.

• A set E- = Um lE f, of examples (ground facts) caused( fi, false, do(a^, s)) representing observations
where a fluent fi E.^ changed from true to false after executing an action a^ E A at situation s.

• A set E^nertia = Un' 1^, ^nertia of ground facts caused( fi, v, do(a^, s)) representing observations

where a fluent fi E.^ did not change after executing an action a^ E A at situation s.

• Background knowledge (BK), including holds/3 ground facts for all fluents at the initial situations
só, the universal inertia axiom (eq. 6.6 and 6.7) and axioms (eq. 6.8 and 6.9).

•
Find a Situation Calculus program H+ = Ui ' 1 H f; , and respectively H- = Ui? 1 H f, composed of axioms
in the form (6.4 and 6.5), such that:

(b'e+ E E+) BK U H+ U H- ^ e+ (6.10)

(b'e- E E-) BK U H+ U H- ^ e- (6.11)

and respectively

(`de- E E-) BK U H+ U H- ^ e- (6.12)

• (de+ E E+) BK U H+ U H- ^ e+ (6.13)

and

(`de E E^nertia ) BK U H+ U H- ^ e (6.14)

O
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Observations for the circuit of example 2 can be represented similarly as:

holds(closed(swi),-,s0).

holds(closed(sw2),-,s0).

holds(closed(light),-,s0).

caused(closed(swl),+,do(toggle(swi),so)).

caused(closed(sw2),+,do(toggle(sw2),do(toggle(swl),s0))).

caused(active(light),+,do(toggle(sw2),do(toggle(swl),so))).

The form of the clauses to be learned must be also changed, because with the normal bias
we cannot refer to other eflects in the current situation.

bias(caused(active(#),#,+),[holds(closed(#),#,+),holds(active(#),#,+)]).

bias(caused(closed(#),#,+),[holds(closed(#),#,+),holds(active(#),#,+)]).

Care must be taken to ensure that the addition of indirect eífects to a Situation Calculus
program does not cause a mut^cal rec^crsion [108] (this will be dealt with in section 6.6). The
prnne/2 statement below avoids obvious non-terminating clauses.

prune(Head,Body) :-

Head=caused(F,V,S),

in(holds(F,V,S),Body).

This pruning clause simplifies bias declarations, as we can express a single bias/2 declaration
for all the switches rather than enumerating the valid instantiations of closed (#) for each bias/2
statement of each switch.

We repeated the learning process where LRAC tried to learn every fluent as an indirect ef%ct
of other fluents and found:

caused(active(light),+,A) :- holds(closed(swl),+,A), holds(closed(sw2),+,A).

caused(active(light),-,A) :- holds(closed(sw1),-,A).

caused(active(light),-,A) :- holds(closed(sw2),-,A).

In this case, we obtained a complete solution where light is an indirect effect of the switches
and these affect light not directly but through actions that modify them (toggle(swl), toggle(sw2)).
The first clause states that the lamp is controlled by two switches, i.e., the lamp is active when-
ever both swl and sw2 hold simultaneously and it subsumes the corresponding effect axioms.
Notice that the first learned causal rule together with the axioms (6.8) and (6.9) entail the cor-
responding domain constraint, i.e. they can be used to derive the indirect ef%cts of actions.
However, forcing indirect effects in other fluents may produce odd generalizations or even no
compression at all. For instance, clauses found for both swl and sw2 are not complete and do
not even subsume any ef^ect axiom.

caused(closed(swl),+,A) :-

holds(active(light),+,A).

caused(closed(swl),-,A) :-

holds(closed(sw2),+,A),

holds(active(light),-,A).

caused(closed(sw2),+,A) :-

i

r
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•
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holds(active(light),+,A).

caused(closed(sw2),-,A) :-

holds(closed(swl),+,A),

holds(active(light),-,A).

•

•

•

•

+e

caused(active(light),-,do(toggle(swl),A) :- caused(active(light),-,A) :-•
holds(closed(sw2),+,A), holds(closed(sw2),-,A).
holds(closed(sw 1),-,A), holds(closed(sw 1),+,A),
holds(active(light),+,A).

/* examples not generalized */

caused(swl,+,do(toggle(swl),s0)).

caused(sw2,+,do(toggle(sw2),s0)).

This is the expected result because the current state of the switches cannot be inferred just
from the resulting situation but from the previous one. The natural choice is that a switch does
not depend directly on any other switch. The non-generalized examples are returned together
with the learned clauses. As a result, only light can be modeled naturally (and totally) as an
indirect ef%ct. In this case, there are also two eífect axioms for the negative value of light
containing a single condition, thus, learning light as a direct efl'ect or as an indirect ef%ct does
not af%ct the size of the theory.

In general, we have that actions can have multiple direct and indirect eífects, and that fluents

can be a direct (resp. indirect) effect of multiple actions and possibly of the same action under

different conditions. To actually find the right set of axioms, we could learn direct and indirect

eífects separately, take all learned clauses, and search all subsets of clauses that are complete

with, e.g., a preference for smaller theories. As an additional condition, every clause must cover

an example not covered by the rest of clauses in the subset. Unfortunately, this constitutes a

covering problem where the worst-case complexity is O(cn) where c is the number of clauses and

n is the largest number of clauses allowed in the solution. Furthermore, a bad selection of the

first clauses can cause a"snowballing" eífect over subsequent clauses in the cover.

A simpler possibility we have considered is to allow the inductor to determine at each step
whether a fluent should be learned as a direct or an indirect ef%ct, thus learning possibly a mix
of axioms. In this way, the decision of using direct or indirect ef%cts is done heuristically. For
this task, we need to perform a multiple search, such that two bottom clauses are built (Fig. 6.1) .

H

Figure 6.1: Building a bottom clause for direct and indirect eífects

LRAC will take the best of clauses returned by each search according to the Progol heuristic
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measure. For this task, multiple bias/2 statements must be provided so that the inductor will
take the appropriate one for each search. For instance:

bias(caused(closed(#),#,do(#,+)),[holds(closed(#),#,+),holds(active(#),#,+)]),

bias(caused(closed(#),#,+),[holds(closed(#),#,+),holds(active(#),#,+)]).

bias(caused(active(#),#,do(#,+)),[holds(closed(#),#,+),holds(active(#),#,+)]).

bias(caused(active(#),#,+),[holds(closed(#),#,+),holds(active(#),#,+)]),

Under these conditions LRAC returned the following clauses:

caused(closed(swl),+,do(toggle(swl),A)) :-

holds(closed(swi),-,A).

caused(closed(swl),-,do(toggle(swl),A)) :-

holds(closed(swl),+,A).

caused(closed(sw2),+,do(toggle(sw2) A)) :-,
•

holds(closed(sw2),-,A).

caused(closed(sw2),-,do(toggle(sw2),A)) :-

holds(closed(sw2),+,A).

caused(active(light),+,A) :-

holds(closed(swl),+,A),

holds(closed(sw2),+,A).

caused(active(light),-,A) :-

holds(closed(swl),-,A).

caused(active(light),-,A) :-

holds(closed(sw2),-,A).

that correspond to the intended description of the domain. The impact on learnability is not
quite noticeable (just one clause less than with direct ef%cts) given the small size of the domain.

6.4.1 A more complex circuit

The increased complexity of axiom effects is a consequence of the fact that they need to an-
ticipate the ramifications of the executed action, and these become increasingly numerous and
complicated as the complexity^ of the domain increases. Suppose a third switch is introduced,
named sw3i plus a relay.

Example 3(Thielscher's circuit (a)) A simPle circuit that incl^des a lam^, a relay, and

three switches swl, sw2 and sw3i together with some actions in the form toggle(s^,ui). q

^sw(1) ,sw(2)

^light

•

•

Figure 6.2: An extended electric circuit
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We generated a training set consisting of 173 situations with 270 positive examples and 1460
negative examples. By considering only direct effects, LRAC obtained the following clauses:

caused(closed(swl),-,do(toggle(swl),A)) :-

holds(closed(swi),+,A).

caused(closed(swl),+,do(toggle(swl),A)) :-

holds(closed(swl),-,A).

caused(closed(sw2),-,do(toggle(sw2),A)) :-

holds(closed(sw2),+,A).

caused(closed(sw2),-,do(toggle(sw3),A)) :-

holds(active(light),+,A).

caused(closed(sw2),-,do(toggle(swl),A)) :-

holds(closed(sw2),+,A),

holds(closed(sw3),+,A).

caused(closed(sw2),+,do(toggle(sw2),A)) :-

holds(closed(sw2),-,A),

holds(active(relay),-,A).

caused(closed(sw3),-,do(toggle(sw3),A)) :-

holds(closed(sw3),+,A).

caused(closed(sw3),+,do(toggle(sw3),A)) :-

holds(closed(sw3),-,A).

caused(active(light),-,do(toggle(swl),A)) :-

holds(active(light),+,A).

caused(active(light),-,do(toggle(sw2),A)) :-

holds(active(light),+,A).

caused(active(light),-,do(toggle(sw3),A)) :-

holds(active(light),+,A).

caused(active(light),+,do(toggle(swl),A)) :-

holds(closed(swl),-,A),

holds(closed(sw2),+,A).

caused(active(light),+,do(toggle(sw2),A)) :-

holds(closed(swi),+,A),

holds(closed(sw2),-,A).

caused(active(relay),+,do(toggle(swl),A)) :-

holds(closed(sw3),+,A),

holds(active(relay),-,A).

caused(active(relay),+,do(toggle(sw3),A)) :-

holds(closed(swl),+,A),

holds(closed(sw3),-,A).

caused(active(relay),-,do(toggle(swl),A)) :-

holds(closed(swl),+,A).

caused(active(relay),-,do(toggle(sw3),A)) :-

holds(closed(sw3),+,A).

According to the rules, action toggle(swl) (resp. toggle(sw3)) toggles switch swl (resp. sw3).
For the rest of fluents, the system learned 5 clauses for light, 4 for relay and 4 for sw2 -where
all actions toggle(swi) af%ct them. The dependency graph is shown in Fig. 6.3.

In this case, forcing all ef%cts as indirect, LRA C learned:

caused(active(light),+,A) :-

holds(closed(swl),+,A),

holds(closed(sw2),+,A).

caused(closed(light),-,A) :-

75
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toggle(sw2)

►oRgle(sK^3)

loggle(sN^l )

Figure 6.3: Direct effects in the Thielscher's circuit

holds(closed(swl),-,A).

caused(closed(light),-,A) :-

holds(closed(sw2),-,A).

caused(closed(relay),+,A) :-

holds(closed(swl),+,A),

holds(closed(sw3),+,A).

caused(closed(relay),-,A) :-

holds(closed(swl),-,A).

caused(closed(relay),-,A) :-

holds(closed(sw3),-,A).

For light and relay we obtained a complete solution. The relay is controlled by switches
swl and sw3, i.e., the relay is active whenever both swl and sw3 hold simultaneously. Similarly
for light with swl and sw2. As in the previous circuit, no complete solution was found for
swl and sw3. In some cases they produced odd generalizations, in others no compression was
achieved or even no consistent clause could be found. Fluent sw2 is more problematic because
no complete set of clauses were found, by considering strictly indirect effects, and however some
clauses individually were meaningful and subsumed some of the ef%ct axioms.

When we allowed LRAC to determine whether an eí%ct is a direct eífect or an indirect effect,
we obtained the following theory:

caused(closed(swl),-,do(toggle(swl),A)) :
holds(closed(swl),+,A).

caused(closed(swl),+,do(toggle(swl),A)) :

holds(closed(swl),-,A).

caused(closed(sw2),+,do(toggle(sw2),A)) :

holds(closed(sw2),-,A),

holds(active(relay),-,A).

caused(closed(sw2),-,A) :-

holds(active(relay),+,A).

caused(closed(sw2),-,do(toggle(sw2),A)) :

holds(closed(sw2),+,A).

caused(closed(sw3),-,do(toggle(sw3),A)) :

holds(closed(sw3),+,A).

caused(closed(sw3),+,do(toggle(sw3),A)) :

holds(closed(sw3),-,A).

caused(active(light),+,A) :-

holds(closed(swl),+,A),

holds(closed(sw2),+,A).

caused(closed(light),-,A) :-

holds(closed(swl),-,A).

caused(closed(light),-,A) :-

a

•
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holds(closed(sw2),-,A).

caused(closed(relay),+,A) :-

holds(closed(swl),+,A),

holds(closed(sw3),+,A).

caused(closed(relay),-,A) :-

holds(closed(swl),-,A).

caused(closed(relay),-,A) :-

holds(closed(sw3),-,A).

According to the rules, light and relay are still considered indirect effects whereas swl and
sw3 are direct ef%cts. However, sw2 is in some cases a direct effect and in other cases an indirect
effect. The difference in the size of the theory learned with respect to the theory with only direct
effects is significant (table 6.1).

Fluent direct direct/indirect

sw2 4 3

relay 4 3
light 5 3

Table 6.1: Number of clauses for direct and indirect ef%cts in example 3

•
Note that the causal rule for the negative value of sw2 does not contradict the effect axiom

-in fact, the condition of the causal rule for the negative value appears negated in the effect
axiom for the positive valuel. The new dependency graph is showed in Fig. 6.4.

toggle(sw2)

^

Light ^ Sw2F- Relay^ Sw3.^^ toggle(sw3)

^
Swl '^i toggle(swl )

Figure 6.4: Direct and indirect effects in the Thielscher's circuit

During learning, the inductor must prefer direct over indirect effects (and viceversa). In
general, when multiple eífects co-occur, it is not clear which fluents are connected to actions
and which are fluent-triggered. The problem is even harder if actions can be executed concur-
rently (section 8.1), because fluents that change simultaneously can be direct effects of different
actions. LRAC uses by default the compression measure of Progol which biases the learner to
prefer smaller theories. The insight is that indirect eí%cts can make programs sensibly shorter,
given that a causal rule may subsume the direct effects of several actions.

In some cases, one causal rule subsumes completely the ef%ct axioms (e.g., light) whereas in
other cases only partially (e.g., sw2). With regard to the positive value of relay (resp. light), a
causal rule is enough whereas two eífect axioms are needed (resp. 3 for light). For the negative
value, relay needs two clauses in any case. The negative value of sw2 is in some cases a direct
effect of toggle(sw2) and in other cases an indirect ef%ct of toggle(swl) and toggle(sw3). For
the latter case, indirect eífects will be preferred as just one clause is required (sw2 ^ relay).

1However, contradiction would be possible if multiple actions are executed concurrently (section 8.1).
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Additionally, LRAC will prefer the latter to sw2 ^ swl, sw3, because although they cover the
same number of examples the former has length 1. In these cases, the same coverage can be
achieved with much less causal rules, thus, if the causal rule is in the search space, LRAC will
always prefer it. Unlike this, the relation light -^ swl was not learned instead of the direct
eífect, given that, although the relation is true, it just covers a fraction of the examples for swl
whereas the direct effect covers all of them. And similarly for swl E- relay, and so on.

In practice, LRAC uses implicitly the empirical frequencies observed in the training set (an
approximation to the conditional distribution Pr(F^F') where F denotes a change in a fluent).
In this case, the training set might include only certain changes thus biasing the above process.
For instance, if whenever the relay becomes active, the switch sw2 is opened, then it would be
possible to learn the relation relay ^ sw2. If the above case appears when the relay is made
active through toggle(sw3) -thus, light becomes also false- then it would be possible to learn the
relation sw2 ^ light, or even light F- relay. Similarly, if whenever the switch swl is closed, the
switch sw2 was closed and consequently the light becomes active, then it would be possible to
learn the relation swl ^ light. In this case, swl is considered an indirect eífect of toggle(swl).

In general, identifying indirect eífects in a set of observations is intrinsically complex. If
the propagation of effects has observable delays, these could help by using the sequence of
changes, given that most definitions about causality require a precedence of causes over eífects.
For instance, swl will never change after light. Despite this, two eífects can be direct effects
of an action and still have diíferent delays, hence, the observed eífect propagation may not
correspond to the causality relations. However, to be able to observe small delays requires
in many cases advanced sensory capabilities. In practice, compression-based measures seem an
adequate estimator and correspond to the initial intuition that causal rules make theories sensibly
shorter. The experiments carried out, although not exhaustive, seem to confirm it.

6.4.2 Causalyty-based approaches

From definition 4.2, "caused" is associated to a change of value in a fluent. However, action
formalisms provide dif%rent meanings for "caused" other than simply "change of value" which
introduces a particular feature of causal rules wrt. ef%ct axioms in learning indirect effects, that
is clear in example (3). The clause:

caused(closed(sw2),-,A) :- holds(active(relay),+,A).

asserts that sw2 is caused to be open whenever the relay is active. But let us consider a situation
where sw2 is open and is toggled. The relay avoids the switch to close (and thus sw2 persists),
however the clause infers that the negative value of sw2 is again caused (inertia does not apply).
As a consequence, a number of "useless" (even if correct) instances of ca^sed/^ can be derived for
any situation where relay is true but not caused. Useless here just means that it does not give
rise to any changes, just maintains a reason for sw2 being false: Note that this problem does not
actually appear for the positive value of light in example (2), because there are no actions not
affecting light, i.e., the positive value does never persist for light, however, it does when other
actions are included that does not affect light.

This introduces some non-desired situations for reasoning [101]. It would be possible to
include a ca^csed/^ atom in the body that acts as a trigger of the causal rule, i.e., a causal
rule needs one of the conditions in the body to be caused, solving the "extra" caused atoms
generated. When the body includes multiple literals, we just need one of them to be caused.

•
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Unfortunately, this results in as many causal rules as literals in the body, when implemented in
Logic Programming.

caused(active(light),+,A) :- caused(closed(swi),+,A), holds(closed(sw2),+,A).

caused(active(light),+,A) :- holds(closed(swl),+,A), caused(closed(sw2),+,A).

• Furthermore, for the negative value of light, this approach still generates additional ca^sed/3
atoms, because light does not change its value after opening swl when sw2 was open.

caused(active(light),-,A) :- caused(closed(swl),-,A).

We could add a condition to express that light has actually changed, e.g., holds(sw2,+,A),
thus, ca^sed actually represents that a fluent changed its value. However, this cannot be generally
applied. A counterexample is provided by

caused(closed(sw2),-,A) :- caused(active(relay),+,A)

•

s

•

where no condition -given the form of the causal rules- can be added to express that sw2 was
previously true. We would need to refer to the value of sw2 at the previous situation. In general,
we need that the body of the clause, taken as a formula, changes to infer that the fluent in the
head is caused [26].

In most action formalisms, these extra caused atoms are labeled with the meaning "there is a
reason other than inertia", however, this semantics cannot be adopted during learning, because it
obviously contradicts the óbservations given that negative examples for caused(closed(sw2) ,-,S)
are given for those situations where sw2 is closed or it does not change2. A simple solution is to al-
low these some extra observations to be caused by adding an internal control, so that, causal rules
are not tested on those negative examples provided the latter are negative only for the causality
and there is no inconsistency on the truth value. Thus, given an example caused( f, v, do(a, s)),
only those negative examples where both holds( f, v', s) and holds( f, v', do(a, s)), are considered
(v' is the inverse of v). The learned theory still produces extra ca^csed/^ atoms, however these
do not affect the learning process.

6.4.3 The Blocks world (contd.)

Recall the blocl^s world domain. We repeated the learning process by allowing both causal rules
and ef^ect axioms and LRA C obtained:

caused(clear(A),+,do(move(C,D),B)) :-

holds(clear(D),+,B),

holds(clear(C),+,B),

holds(on(C,A),+,B),

diff (D,A) .

caused(clear(A),+,dc,(move(C,D),B)) :-

holds(clear(C),+,B),

holds(on(C,A),+,B),

table(D).

caused(clear(B),-,A) :-

holds(on(_,B),+,A).

ZF^irthermore, these "extra" atoms may affect learning provided we needed to use caused/3 in the body of a
clause (see section 8.2).



•

ó0 Learning Indirect Effects

caused(on(A,B),+,do(move(A,B),C)) :-

holds(clear(A),+,C),

holds(clear(B),+,C).

caused(on(A,B),+,do(move(A,B),C)) :-

holds(clear(A),+,C),

table(B).

caused(on(A,B),-,C) :-

holds(on(A,D),+,C),

diff (B,D) .

The negative value of clear/1 and the negative value of on/2 can be indirectly predicted
through the positive value of on/2 (Fig. 6.5). The use of indirect ef%cts produces a shorter
theory for the negative value of on/2, even with a single action move/2. Two effect axioms
would be needed tó deal separately with the cases where a block is moved onto other block or
onto the table. The domain constraint represents that on/2 is a ficnctional ,flvent, where the
location is at most one for each block, so that when a block is on location L, then it is not on
every other location different from L. However, the domain constraint for the negative value
of clear/1 does not produce a clear benefit mainly because there are no other actions that can
aí%ct it apart from move/2. However, as the domain constraint is shorter, the system is biased
to prefer it.

•

move(D,B)

on(D,A) = on(D,B)

clear(A) clear(B)

Figure 6.5: Indirect effects in the Blocks world

Actually the positive value of clear/2 is also an indirect eífect, because a block is clear if no

block is above it. -However, it is learned as a direct effect of the move/2 action because variables

in the body but not in the head are existentially quantified.

6.4.4 The Logistics domain

Let us consider the Logistics domain which has been considered a benchmark domain in the
planning literature.

Example 4(Logistics domain) In this domain we have two types of vehicles: tr^ccks and
airplanes. The problems in this domain typically start of^ with a collection of objects at vario^cs
locations in vario^cs cities, and the goal is to redistribvte these objects to their new locations.
The basic actions are loading . and vnloading packages from vehicles, driving trvcks and flying
airplanes.

O

s

The domain contains the following actions and fluents:
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action(lot(P,T)) :- package(P),trŭck(T).
action(unlot(P,T)) :- package(P),truck(T).

action(loa(P,A)) :- package(P),airplane(A).

action(unloa(P,A)) :- package(P),airplane(A).

action(drive(T,LF,LT)) :- truck(T),location(LF),location(LT).

action(f ly(A,LF,LT)) :- airplane(A),airport(LF),airport(LT).

fluent(at(P,L)) :- physobj(P),location(L).

fluent(in(P,V)) :- package(P),vehicle(V).

•

Background includes domain predicates trncl^/1, airplane/1, location/1, airport/1, city/1,

physobj/1 and package/1, that indicate the type of objects (where some objects may belong
to more than one type), actions to load and unload packages from trucks (lot/2, ^cnlot/2), and
from planes (loa/2, ^cnloa/2), drive trucks (drive/3) and fly planes ( f ly/3), and fluents at/2
to indicate the location of packages and vehicles, and in/2 to indicate that some ob jects are in
some vehicles. We used an scenario with three cities and three locations by city (including an
airport), and with a single plane and a single truck by each city. Trucks and planes are subtypes

of vehicle whereas vehicles and packages are physical objects. .

location(bos_po;pgh_po;la_po;bos_central;pgh_central;la_central).
location(A) :- airport(A).

airport(bos_airport;pgh_airport;la_airport).

city(pgh;bos;la).

package(pkgl;pkg2;pkg3;pkg4).

truck(pgh_truck;bos_truck;la_truck).

airplane(apnl;apn2).

physobj(A) :- package(A).

physobj(A) :- vehicle(A).

vehicle(A) :- truck(A).

vehicle(A) :- airplane(A).

•

•

Additionally, the following static predicates are used: incity(loc, city) to indicate in which
city a package, location or vehicle resides, and di,f,^/^.

incity(pgh_po,pgh).

incity(bos_po,bos).

incity(la_po,la).

incity(pgh_airport,pgh).

incity(bos_airport,bos).

incity(la_airport,la).

incity(pgh_central,pgh).

incity(bos_central,bos).

incity(la_central,la).

The training set consisted of 155 situations from which LRAC returned:

caused(at(A,B),+,do(unlot(A,D),C)) :-

holds(at(A,B),-,C),

holds(in(A,D),+,C),

holds(at(D,B),+,C).

caused(at(A,B),+,do(unloa(A,D),C)) :-

81
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holds(at(A,B),-,C),

holds(in(A,D),+,C),

holds(at(D,B),+,C).

caused(at(B,_),-,A) :-

holds(in(B,_),+,A).

caused(at(A,B),+,do(drive(A,D,B),C)) :-

holds(at(A,B),-,C),

holds(at(A,D),+,C).

caused(at(B,C),-,A) :-

holds(at(B,D),+,A),

diff (D,C) .

caused(at(A,B),+,do(fly(A,D,B),C)) :-

holds(at(A,B),-,C),

holds(at(A,D),+,C).

caused(in(B,_),-,A) :-

holds(at(B,_),+,A).

caused(in(A,B),+,do(lot(A,B),C)) :-

holds(in(A,B),-,C),

holds(at(A,D),+,C),

holds(at(B,D),+,C).

According to the rules, a package can be loaded into a vehicle when both are at the same
location, and it can unloaded from the vehicle where it is in. Trucks can be used to transport

goods within a city, and airplanes can be used to transport goods between two cities. The causal
laws express that a package cannot be at two locations at the same time or at a location and
into a vehicle, independently of the actions that were executed. Note that the following causal
rule is not learned:

caused(in(B,C),-,A) :-

holds(in(B,D),+,A),

diff(D,C) .

because a package cannot be moved directly from one vehicle to another one, i.e., ^in(B, C) and
in(B, D) never change simultaneously.

The Logistics domain is considered a benchmark for planning methods. In languages used for
planning, like PDDL, that has its origins in STRIPS, the effects of actions are still represented
as direct efFects, for instance:

(:action LOAD-AIRPLANE
:parameters

(^obj

?airplane

?loc)

:precondition

(and (OBJ ?obj) (AIRPLANE ?airplane) (LOCATION ?loc)

(at ?obj ?loc) (at ?airplane ?loc))

: effect

(and (not (at ?obj ?loc)) (in ?obj ?airplane)))

•

whereas the domain constraints learned correspond to so-called invariants in the planning lit-
erature, that are used tó assist the planner in exploiting the structure that is inherent in the
domain, and that often reduce the search [40, 114] .
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FORALL yl. FORALL zl. at(x,y1) AND at(x,zl) _> y1=z1

NOT (Exists yi:location. at(x,yl) AND Exists yl:vehicle. in(x,yl))

6.5 Relation to integrity constraints

Integrity constraints in Logic Programming are clauses with the special atom false in the head,
representing conditions that render the theory inconsistent if they become provable. A. Kakas et
al. [28] introduced the use of such integrity constraints as a means of specialization in learning,
which has a number of advantages, particularly when the given learning problem is incompletely
specified. The idea consists in using constraints to specialize overgeneral rules. For instance, in
the circuit 3, we can find a similar definition for the positive value of sw2, where an overgeneral
effect axiom is specialized by an integrity constraint.

caused(closed(sw2),+,do(toggle(sw2),A)) :-

holds(closed(sw2),-,A).

.- holds(closed(sw2),+,A), holds(active(relay),+,A).

•

•

•

In this case, the relay acts as a domain constraint forbidding some next states. The effect

axiom and the constraint are executed in two stages, such that the constraint prunes the resulting

situation when this does not satisfy the constraint. If the above integrity constraint is considered

simply as another clause in the theory, this will have no effect on the effect axiom which will

remain overgeneral.

An advantage over the classical specialization method of adding literals, is that integrity
constraints can sometimes provide implicitly the required specialization of the effect axioms
without the need of explicit negative training data. For instance, the above constraint can exist
independently of any negative examples, i.e., sw2 can never be closed when the relay is active.

The integrity constraints are not simply some extra clauses of the theory learned on some
additional concepts. Although the integrity constraints could be used to provide a partial defi-
nition for these predicates, in some cases, their main purpose is to specialize the effect axioms.
Thus, in general, these integrity constraints cannot substitute the causal rules, because the for-
mer serve only to prune models but not to infer the value of a fluent. For instance, the constraint
above does not infer that sw2 will be opened when the relay is active. As a counterpart, the
ef%ct axioms and the constraints cannot be learned separately, and the choice of the integrity
constraints is not independent from the rules of the theory and part of the difficulty is to find
the "relevant" constraints that would compensate correctly for the rules of the theory.

The use of explicit constraints provides sometimes more expressivity, because the use of nega-
tion allows universal quantification in the body of clauses. For instance, an action's precondition
where all the blocks must be on the table, cannot be expressed with normal logic programs,
however it can be expressed with the following constraint:

.- ..., holds(on(B,C),+,A),diff(C,table).

• Constraints can be also used to express complex qualifications, e.g., constraints about the
resulting situation. For instance, the constraint that a player may not be in check after his own
move, represents an implicit precondition on possible moves, and it would be very difficult to
express this action precondition explicitly as a condition on the starting state from which the
player makes the move [26]. Unlike this, in the following theory:
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caused(in(P,Row,Col),+,do(move(P,Row,Col),A)) :-

holds(valid(move(P,Row,Col)),+,A).
.- holds(incheck,+,do(move(P,Row,Col),A)).

the constraint specializes the overgeneral ef£ect axiom, so that only valid and legal moves are
allowed. The fluent incheck does not depend on how the check is produced, which provides with
a much simpler definition. Furthermore, the constraint represents a general rule in chess games
that exists independently of any negative examples.

It would be possible to use a mixed axiom where a constraint and an ef%ct axiom are inte-

grated in a single axiom (inter-constraint). For instance, in the example 3 we have:

caused(closed(sw2),+,do(toggle(sw2),A)) :-
holds(closed(sw2),-,A),

holds(active(relay),-,do(toggle(sw2),A)).

such that the value of relay refers to the resulting situation. However, note that this kind of
axioms only work when the constraint is not affected by the action, i.e., the relay does not
need the result of the effect axiom (it is not affected by toggle(sw2)), otherwise the effect axiom
includes a mutual recursion. For instance, in the chess game, the check depends on the position
after moving the piece, and the executability of the movement depends on the check. However,

it can be interesting when actions can be executed concurrently (section 8.1).

caused(in(P,Row,Col),+,do(move(P,Row,Col),A)) :-

holds(valid(move(P,Row,Col)),+,A),

holds(incheck,-,do(move(P,Row,Col),A)).

In this case, so-called inter-constraints are not usable, whereas with the use of explicit con-
straints, the overgeneral effect axiom is executed first, and only then the constraint is applied.

6.6 Cycles

A potentially problematic form of dependency that could specially arise in the representation of
physical systems is cyclic dePendences between efFects. Cyclic definitions can appear even in the
description of perféctly normal, well-behaved physical systems, thus, a complete learning method
must be able to learn theories containing cycles.

In the Situation Calculus, action theories are in general recursive theories where direct effects
are the base cases. Intuitively, there will be no recursion if the fluents are stratified and the heads

of clauses only ever mention fluents at the lowest level of the stratification. We can formally
express the properties of well-formed action theories such that the domain progresses after the
execution of actions.

i) each ef%ct should be caused, either by a primitive action or by another ef£ect.

ii) there cannot exist self-supported ef^ects.

iii) effect causation is well-ordered, i.e., there should not be an infinite chain of ef%cts in which
each effect is caused by^ the next effect in the chain.

However, care must be taken to ensure that the addition of domain constraints to a Situation
Calculus program does not cause a non-finite rec^rsion, where fluents may use one another in

their definitions. For instance, the clauses below produce a non-terminating recursion.

•
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caused(active(light),+,A) :-

holds(closed(swl),+,A),

holds(closed(sw2),+,A).

caused(closed(swi),+,A) :-
holds(active(light),+,A).

Both clauses can be locally consistent and complete considered separately but their union is

globally useless.

In systems adopting e^tensional evaluation, after each new rule is added to the theory, the

whole theory must be evaluated globally to check if the theory is valid. On the other hand,

if intensional evaluation is adopted, the clauses above are not possible, because no cyclical de-

pendences are possibly produced, although termination must be granted in the prover in some

way. In systems that use Prolog, a bound is set on the number of resolution steps of the prover,

whereas in the stable models semantics, there are no such termination problems. For mutually

recursive theories, the learning of one fluent must be interleaved with the learning of the other

ones [33, 108], otherwise the theory will not be found (similarly to the even/odd domain) . Fur-

thermore, a base case is to be found before the recursive one, i.e., some direct effects must be

learned first.

The cyclical dependence in the circuit shown before does not correspond to a real behavior of
the system, because the switches modify the state of the bulb, but not viceversa. There are cases
however, where a cyclical definition can be theoretically correct. Let us consider the following
example including a valid positive cycle that can cause a non-finite recursion.

Example 5(Gear wheels) Consider two connected gear wheels with actions push and stop
for each wheel that make a wheel start (resp. stop) tvrning. q

Figure 6.6: Gear wheels

•

Forcing all eífects as direct effects, LRAC returned:

caused(turn(wheell),+,do(push(wheell),A)).

caused(turn(wheell),+,do(push(wheel2),A)).

caused(turn(wheell),-,do(stop(wheell),A)).

caused(turn(wheell),-,do(stop(wheel2),A)).

caused(turn(wheel2),+,do(push(wheell),A)).

caused(turn(wheel2),+,do(push(wheel2),A)).

caused(turn(wheel2),-,do(stop(wheel2),A)).

caused(turn(wheel2),-,do(stop(wheell),A)).

In this example, every wheel has an action associated, such that any force causing a wheel
to start or stop turning propagates to the rest of wheels (and viceversa). Thus, all wheels are
considered direct effects of all actions that af%ct any of them. When we allow indirect effects
and extensional evaluation is adopted, LRA C easily learned the two counterparts of a double
implication, where every wheel is both an ef%ct and a cause.
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caused(turn(wheeli),+,A) :-

holds(turn(wheel2),+,A).

caused(turn(wheeli),-,A) :-

holds(turn(wheel2),-,A).

caused(turn(wheel2),+,A) :-

holds(turn(wheell),+,A).

caused(turn(wheel2),-,A) :-

holds(turn(wheell),-,A).

The learned theory has 4 causal rules whereas it requires 8 ef%ct axioms, hence, LRA C will
always prefer indirect effects. With extensional evaluation, the previous theory is complete and
consistent because the positive examples are always added to the model, however, the definition
is useless because there is no connection to actions, i.e., it cannot be used to derive conclusions.
Progol detects such incompleteness (step 6 of Fig. 5.3) however the cycle avoids further rules to
be learned. To avoid theories that are extensionally complete but intensionally incomplete, then
some of the methods considered in section 4.3.4 must be applied to make it complete, e.g, some
of the clauses must be explicitly removed to avoid the cycle. However, we have used a dif%rent
approach. In the stable model semantics, given the following theory T:

p^q

q^p

with a positive cycle whose unique stable model is the empty model {}, we can find a theory T'
by adding some rules to T that somewhat "complete" T, for instance, adding the facts p or q or
some rules for them but based on a third-party atom, e.g., p^ r. In the wheels example we
just have to prove the necessary facts, without removing the cycle, to make the theory complete.
For this reason, we add some e,f^`ect a^ioms that extensionally cover the examples that were not
proved by the theory (Fig.6.7).

caused(turn(wheell),+,A) :- holds(turn(wheel2),+,A).
caused(turn(wheel l ),-,A) :- holds(tum(wheel2),-,A).
caused(tum(wheel2},+,A) :- holds(turn(wheell),+,A).
caused(turn(wheel2),-,A) :- holds(turn(wheel 1),-,A).

caused(turn(wheel l),+,do(push(wheel l),A)). caused(turn(wheel2),+,do(push(wheel 1),A)). caused(turn(wheel 1),+,do(push(wheel 1),A)).
caused(tutn(wheel 1),+,do(push(wheel2),A)). caused(tum(wheel2);+,do(push(wheel2),A)). caused(turn(wheel l),-,do(stop(wheel l),A)).
caused(turn(wheell),-,do(stop(wheel l ),A)). caused(tum(wheel2),-,do(stop(wheel2),A)). caused(tum(wheel2),+,do(push(wheel2),A)).
caused(tum(wheell),-,do(stop(wheel2),A)). caused(turn(wheel2),-,do(stop(wheell),A)). caused(tutn(wheel2),-,do(stop(wheel2),A)).

Figure 6.7: Adding direct ef%cts to the gear wheels example

There is no a general rule as to what particular ef%ct axioms should be added. Intuitively we
should consider t^crn(wheeli) as a direct effect of pnsh(wheeli) and stop(wheeli) and an indirect
ef%ct of pnsh(wheel j) and stop(wheel j), with j^ i. However, this nominal correspondence
between actions and fluents cannot be assumed in general. In the worst case (the left-most side
and the center of Fig. 6.7) the whole theory is re-learned containing only direct eífects for one of
the wheels, whereas the causal rules propagate the changes to the other wheel. Thus, the causal
rules for one of the wheels become redundant. Only the set of clauses on the right-most side of
the figure represents the intended theory, that is:

•

•

•

caused(turn(wheell),+,do(push(wheell),A)).
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caused(turn(wheell),-,do(stop(wheeli),A)).

caused(turn(wheell),+,A) :-

holds(turn(wheel2),+,A).

caused(turn(wheell),-,A) :-

holds(turn(wheel2),-,A).

• caused(turn(wheel2),+,do(push(wheel2),A)).

caused(turn(wheel2),+,A) :-

holds(turn(wheell),+,A).

caused(turn(wheel2),-,do(stop(wheel2),A)).

caused(turn(wheel2),-,A) :-

holds(turn(wheell),-,A).

In the intended theory, tnrn(wheell ) is a direct eífect of p^csh(wheell ) and an indirect effect
of push(wheel2 ) -and similarly for t^crn(wheel2 ) (Fig. 6.8) .

stop(wheel 1)
wheel 1

/
push(wheel 1)

stop(wheel2) ^ / push(wheel2)
^ wheel2 -^-

•

•

•

Figure 6.8: Dependences in the wheels example (a)

Thus, the causal rules are not subsumed, so that the examples not covered by the eífect axiom,
are covered by the causal rule. This method completes the theory, however it does not always
produce the intended theory. For instance, the theory is completed only with eífect axioms,
however, if there is any valid causal rule that completes the theory without causing cycles, this
will not be found. However, extending the search to other domain constraints introduces an
additional cost because new cycles might appear.

Note that, in the normal Prolog semantics we need to impose a syntactical restriction (no
cycles are allowed) that guarantees that the ef%cts are unique and well-defined. In that case,
to avoid cycles in the final theory, t^crn(wheell ) must be considered always a direct effect and
only turn(wheel2) can be considered as an indirect effect (or viceversa). Unfortunately, this
makes the learned theory suífer from the ramification problem, for those fluents where the cycle
is broken (Fig. 6.9) .

stop(wheel 1) push(wheel 1)

stop(wheel 2) / ^ \ push(wheel 2)
wheel 2

Figure 6.9: Dependences in the wheels example (b)

With intensional evaluation the multiple spl tasks must be interleaved, so that the first
clause must correspond to a direct effect for one of the wheels. The final theory will be globally
complete, however, there is still no guarantee that it corresponds to the intended one.

In practice, whether the inductor will prefer to consider one of the fluents always as a direct
effect or it will learn the right theory, is based on a compression measure and depends on the
particular domain. In Fig. 6.10, the first clause to be learned should be the one labeled (1), but
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caused(turn(wheel2),+,do(push(wheell),A)).

^ ^ (1) ^

caused(turn(wheel 1),+,do(push(wheel l ),A)).

(3) ^^ (2)
caused(tum(wheel2),+,A) : - holds(tum(wheel l ),+,A). caused(tum(wheel2),+,do(push(wheell),A)). •°•

caused(tum(wheel2),+,do(push(wheel2),A)).

Figure 6.10: Search space using intensional coverage testing

it will be learned if it covers more examples than the one on its left -which converts an indirect
eífect into a direct effect3. Unfortunately, they cover the same number of examples and LRA C
will prefer one of them without a clear criterion. The next clause to be learned is for wheel2.
Unfortunately, LRAC will prefer the ef%ct axiom labeled (2) in Fig. 6.10 to the causal rule
labeled (3) because, although both clauses cover the same number of examples, the compression
measure punishes larger clauses4. Causal rules will be preferred when they produce a shorter
theory, however, in this case, effect axioms produce the same compression and LRAC is biased
to prefer the latter.

6.6.1 Yet another circuit

We have seen that it is possible to learn theories with cycles provided we use a semantics that
allow them, however, we have no guarantee that the final theory corresponds to the intended one.
In many cases, the cycles found do not correspond to actual cycles and they have to be broken.
The difficulty of breaking a cycle is the same as when learning indirect effects, i.e., determine
the causality in the fluents. Let us consider another circuit given in [128].

Example 6(Thielscher's circuit (b) ) An electric circuit that consists of a number of binary
switches, two relays, three resistors, and a couple of light bulbs:

{sl^ sl^ s2^ s2, s3, s3, li, lii^ 1z2^ 123^ rl^ r2^ r3^ rel^ re2^

The various states the circuit may e^hibit will be described using the unary fluent names
closed and active. The first ranges over all switches, and the scope of the second are both bulbs
and relays. There is only a type of action in this domain, changing the position of switches.

q

r

a

•

LRAC returned the following theory: •

caused(closed(sl),-,do(toggle(si),A)) :-

holds(closed(sl),+,A).

caused(closed(si),+,do(toggle(sl),A)) :-

holds(closed(sl),-,A).

caused(closed(s2),-,do(toggle(s2),A)) :-

holds(closed(s2),+,A),
•

holds(active(rel),-,A).

3The use of a seed in the algorithm may produce that the first c'lause to be learned corresponds to the action
start(wheel2) and the fluent turn(wheel2).

QThe action in the ef%ct axiom does not affect the length of the axiom.
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Figure 6.11: Another electric circuit

caused(closed(s2),+,do(toggle(s2),A)) :-

holds(closed(s2),-,A).

caused(closed(s2),+,do(toggle(sl),A)) :-

holds(closed(s2),-,A),

holds(closed(sl),-,A).

caused(closed(s3),-,do(toggle(s3),A)) :-

holds(closed(s3),+,A),

holds(active(re2),-,A).

caused(closed(s3),+,do(toggle(s3),A)) :-

holds(closed(s3),-,A).

caused(closed(s3),+,do(toggle(sl),A)) :-

holds(closed(s3),-,A),

holds(closed(sl),-,A).

caused(closed(s3),+,do(toggle(s2),A)) :-

holds(closed(s3),-,A),

holds(closed(s2),-,A).

caused(closed(sip),-,do(toggle(slp),A)) :-

holds(closed(slp),+,A).

caused(closed(sip),+,do(toggle(sip),A)) :-

holds(closed(sip),-,A).

caused(closed(s2p),-,do(toggle(s2p),A)) :-

holds(closed(s2p),+,A).

caused(closed(s2p),+,do(toggle(s2p),A)) :-

holds(closed(s2p),-,A).

caused(closed(s3p),-,do(toggle(s3p),A)) :-

holds(closed(s3p),+,A).

caused(closed(s3p),+,do(toggle(s3p),A)) :-

holds(closed(s3p),-,A).

caused(active(li),-,A) :-

holds(closed(s3),-,A).
caused(active(li),+,A) :-

holds(closed(s3),+,A).

caused(active(lil),-,do(toggle(si),A)) :-

holds(active(lil),+,A).

li3

li2

li 1
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caused(active(lil),-,do(toggle(sip),A)) :-

holds(active(lil),+,A).

caused(active(li1),+,A) :-

holds(closed(s1),+,A),

holds(closed(slp),+,A).

caused(active(li2),-,A) :-

holds(closed(s2),-,A).

caused(active(li2),-,do(toggle(s2p),A)) :-

holds(active(li2),+,A).

caused(active(li2),+,A) :-

holds(closed(s2),+,A),

holds(closed(s2p),+,A).

caused(active(li3),-,A) :-

holds(closed(s3),-,A).

caused(active(li3),-,do(toggle(s2p),A)) :-

holds(active(li3),+,A).

caused(active(li3),+,A) :-

holds(closed(s3p),+,A),

holds(closed(s3),+,A).

caused(active(rel),-,do(toggle(sl),A)) :-

holds(closed(sl),+,A).

caused(active(rel),+,do(toggle(sl),A)) :-

holds(closed(sl),-,A).

caused(active(re2),-,A) :-

holds(closed(s2),-,A).
caused(active(re2),+,A) :-

holds(closed(s2),+,A).

According to the circuit, every switch is a direct ef%ct of the corresponding toggle action,

whereas the bulbs and the relays depend on the state of the switches5. However, some causal

rules are missing. In some cases, the corresponding effect axioms achieved the same compression

and LRAC is biased to prefer direct ef%cts. For instance, rel is an indirect effect of a single

action toggle(sl), i.e., it depends on si, and however LRACpreferred direct ef%cts. With respect

to re2, LRAC preferred a causal law because it is an indirect effect of toggle(si) and toggle(s2)

and it produces a shorter theory.

In other cases, the existence of cycles avoided LRAC to find the intended theory. For in-
stance, the relays rel and re2 in case of activation attract the switches located above (s2 and s3
respectively). However, with extensional evaluation, the following cycles were detected: {s3, li}

and {s2, re2}, both for the positive and negative values. In these cases, the intended relation
is in the form re2 F- s2 (resp. li ^ s3), however there are no examples in the form {s2i ^re2}

or {^s2, re2}. The cycle {sl, rel} does not appear because there was no gain in using indirect
effects.

The cycles were broken by including some direct effects for one of the fluents, however, the
corresponding effect axioms cover the same number of examples, thus LRA C chose one of them
randomly. Actually, both re2 and s2 (resp. s3 and li) need two effect axioms. As a result,

•

a

SThe three resistors, are needed to keep low the current flow through the respective sub-circuit.
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•

the causal rules for one of the fluents became redundant. However, even other causal laws were
possible LRAC does not complete the theory with other indirect eífects but uses only ef%ct
axioms for completeness. For instance, correct relations like s2 f-- rel are not learned, and
however, it also breaks the cycle {s2, re2 }. Similarly, the relation s3 F- re2 breaks the cycle
{s3, li}, but LRAC could not find it. Thus, other causal rules should be considered to break
some cycles. This is an interesting issue to be studied in the future, however new cycles might
appear and care must be taken not to consider the same theory twice.

The ef%ct on the size of the theory learned is not evident for s2, because it needs also an

effect axiom for toggle(s2) apart from the causal rule, however, it is more evident for s3, because

it is an indirect effect of both toggle(sl) and toggle(s2). Note that intensional evaluation does

not guarantee either that the intended theory will be found. For instance, when toggle(sl) is

executed, sl and rel change at the same time, hence the effect axiom might be assigned to any

of them indistinctly.

In this example, the difference in the size of the theory learned when only direct ef%cts
are allowed is notable. The impact is bigger for s3 and li3 that are in the highest level in the
dependency graph (Fig. 6.12).

li

•

li 1

re 1 ^ s2 -^ re2

Figure 6.12: Propagation of effects in example 6

•

a

6.6.2 Recursive indirect effects

The use of indirect effects includes the possibility of self-rec^rsive definitions for objects other
than situations. Let us consider the following domain.

Example 7(A modified blocks scenario) Let us consider an scenario of the Blocks world
that models the action of a robot that can move blocks onto other blocks or onto the ground as
well as ^^sh blocks to di,f,^erent rooms. q

Figure 6.13: A modified Blocks world

The scenario includes the following definitions:
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block(a;b;c;d;...).

room(rl;r2;r3).

location(ground).

location(A) :- block(A).

fluent(clear(B)) :- block(B).

fluent(on(A,B)) :- block(A),location(B).

f luent(at(A,B)) :- block(A),room(B).

action(move(A,B)) :- block(A),location(B).

action(push(A,B)) :- block(A),room(B).

F^om 25 narratives of length 4 including 96 examples for the fluent at/2, LRAC returned:

holds(at(A,B),+,do(push(A,B),C)) :-

holds(at(A,B),-,C),

holds(on(A,D),+,C),

ground(D).

holds(at(B,C),+,A) :-

holds(on(B,D),+,A),

holds(at(D,C),+,A).

holds(at(B,C),-,A) :-

holds(at(B,D),+,A),

diff (D,C) .

According to the above clauses, only blocks on the ground can be pushed. The second clause

correctly asserts that pushing a block, changes the room of the block immediately over it and

the blocks over this one recursively. The current room of a block changes (indirectly) when it
is moved onto another block that is in a difFerent room, hence, the causal rule subsumes also

the corresponding effect axiom for move/2. Note that the clause does not need the condition

diff (C,ground) because ground is not at a particular location, hence when a block is moved

onto the ground, its location does not change. The last clause represents that a block can be

only at one room at a situation, thus it subsumes the corresponding effect axioms for move/2

and p^csh/2.

With respect to action push/2 no complete set of eí%ct axioms could be found for both the

positive and negative values, except for ^the blocks that are directly pushed, i.e., those that are
over the ground. Otherwise, we should have as many clauses as the number of blocks piled

in the highest tower. In this domain, handling indirect ef%cts is strictly needed for achieving

generalization, given that the ef%cts of a single action are propagated to a pile of blocks, so that

the number of af%cted blocks, i.e., the number of effects, varies on each situation. In this case,

the recursion replaces a relation above/2 to represent the transitive closure of on/2.

A similar case happens in the popular game Minesweeper.

Example 8(Minesweeper) The object of Minesweeper is to find mines which have been hidden
at random by the comp^cter on a grid.

•

The game includes, among others, the following definitions:



6.6 Cycles 93

•
,^1..

1r `1f 1^ ^' ^:

^1,- 2:
1;

^:. 1 ` y , :1.^ 1 "t
,^ ^^.^

Figure 6.14: Minesweeper

•

row(l..maxrow).

column(l..maxcol).

content(0..8;bomb).

•

•

•

fluent(clear(A,B)) :- row(A),column(B).

fluent(marked(A,B)) :- row(A),column(B).

action(reveal(A,B)) :- row(A),column(B).

action(mark(A,B)) :- row(A),column(B).
action(unmark(A,B)) :- row(A),column(B).

bombs(O..maxbombs).

in(A,B,C) :- row(A),column(B),content(C).

adjacent(A,B,C,B) :- row(A),column(B),row(C),

C<=A+1,C>=A-1,C!=A,

adjacent(A,B,A,D) :- row(A),column(B),column(D),

D<=B+1,D>=B-1,B!=D.

adjacent(A,B,C,D) : - row(A),column(B),row(C),column(D),

C<=A+1,C>=A-1,C!=A,

D<=B+1,D>=B-1,B!=D.

The game starts when the player moves his mouse and selects a square on the grid. With a
click of the left-hand key of the mouse, the computer opens the square on that grid and reveals
whether the square contains a mine or not. If that square does contain a mine, then that player
has lost the game. If the square does not contain a mine, then the square will contain a number
showing how many mines there are on the adjoining 8 squares. However, if the square is blank,
that means that there are no mines on any of the adjoining 8 squares. In that event, the computer
automatically helps out by opening all 8 adjoining squares and revealing their numbers. If it
happens that any of those squares are also blank, then the squares surrounding those squares
are also opened. This last case requires a recursive execution of the theory. For this case, LRAC
learned the following clauses:

caused(clear(A,B),+,do(reveal(A,B),C) :-

holds(clear(A,B),-,C).

caused(clear(A,B),+,C) :-

adjacent(A,B,D,E),
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holds(clear(D,E),+,C),

in(D,E,O).

The effect axiom just clears the square selected by the player, whereas the causal rule prop-
agates the effect of the action to the surrounding squares.

6.6.3 Negative cycles

So-called negative cycles are those where a fluent depends on its own negation. Negative cycles
do not correspond (at least intuitively) to real situations. The presence of a negative cycle may
manifest an error in the desigñ of a system. In practice, they are used to achieve non-determinism

based on the answer sets semantics or undefinedness in the Well-founded semantics [63]. Let us
consider the following circuit given in [123].

Example 9(Shanahan's circuit) Consider the modification of Thielscher's circ^cit depicted
in Fig. 6.15. This circnit incorporates a potentially vicious cycle of fluent dependencies. ^

^light

Figure 6.15: A modification of Thielscher's circuit

The circuit of Fig. 6.15 has only two states. When sw3 is open, the circuit behaves like the

basic circuit of example 2 where swl and sw2 control the state of the light. When sw3 and sw2

are closed, if swl is closed, the relay is activated, opening sw2, however this prevents the relay

from being activated. Thus, when the circuit stabilizes, the relay is not active. In this case, the

relay is made active and inactive consecutively and sw2 might be opened due to the momentary

activation of the relay (state t26 in table 6.2). As a consequenee, for an external observer, the

action of closing swl does not cause the relay to become active. In the real system, it might

happen that the bz^lb turns on for a very short period of time (t2Q), depending on the time it

takes to activate the relay and to affect the second switch. Nonetheless, the bulb and the relay

are definitely oíf in the resulting state. It would be even possible that the momentary value of

the bulb has ef%cts that remain visible, e.g., a light detector, although the b^clb is off in the

resulting situation.

A negative cycle produces the existence of intermediate sit^ations in the computation of the
resulting situation, where the constraints, e.g., that light is on when swl and sw2 are closzd, are
violated for very small periods of time until a stable state is reached.

The left column of table 6.2 assumes that the bulb has a smaller delay than the relay, then
the latter opens sw2 and consequently the light is ofi. The right column assumes that the relay
has a smaller delay than the bulb and then two cases are possible: in the first case, the light is
on until the relay opens sw2, whereas in the second case, the light is never on, i.e., the efFect of
the relay on sw2 is faster than the effect of swl on light.

•

•

•

•
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tla

t2a

t3a

t4a

tsa

tóa

{swl, sw2i sw3, relay, light}

{swl, sw2i sw3, relay, light}

{swl, sw2i sw3, relay, light}

{swl, sw2i sw3, relay, light}

{swl, sw2, sw3, relay, light}

{swl, sw2, sw3i relay, light}

t16

t26

t36

t46

t5b

t66

{swl, sw2i sw3, relay, light} tl^ {swl, sw2, sw3, relay, light}

{swl, sw2i sw3, relay, light} t2c {swl, sw2i sw3, relay, light}

{swl, sw2i sw3, relay, light} t3c {swl, sw2, sw3i relay, light}

{swl, sw2, sw3, relay, l2ght} t4c {swl, sw2i sw3, relay, light}

{swl, sw2i sw3, relay, light}

{swl, sw2i sw3, relay, light}

Table 6.2: Intermediate situations in the circuit 9 after closing swl

•

•

r

•

•

Let us consider another example given in [26].

Example 10 (Double relay example) An electric circ^cit consisting of two interconnected sab-
circ^cits. On one circ^cit there are two serially connected switches p and s and a relay relayl, on
the other, two switches r and q and a relay relay2. q

s

relay2 r

Figure 6.16: Double relay

relay 1

9

All narratives used for learning start from an initial situation where switches p, q and s are
closed, r is open, relayl is active and relay2 is inactive. Under these conditions, LRAC returned:

caused(closed(swr),-,do(toggle(swr),A)) :-
holds(closed(swr),-,A).

caused(closed(swr),+,do(toggle(swr),A)) :-

holds(closed(swr),+,A).

caused(closed(sws),-,do(toggle(sws),A)) :-

holds(closed(sws),+,A).

caused(closed(sws),+,do(toggle(sws),A)) :-

holds(closed(sws),-,A).

cau:sed(active(relayl),+,A) :-

holds(closed(sws),+,A).

caused(active(relayl),-,A) :-

holds(closed(sws),-,A).

caused(closed(swq),-,A) :-

holds(active(relayl),-,A).

caused(closed(swq),+,A) :-

holds(active(relayl),+,A).

95
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No rules were learned for p and relay2 because no action modified their values. Furthermore,
only actions over r and s produced any change on the circuit's state. Thus, despite the complexity
of the circuit, it exhibits a quite simple behavior, where switches r and s are mechanically
conneçted such that always exactly one of them is open. The cycle of s and r ean be solved in
several ways.

According to the learned rules, the circuit above has only two states. Closing r leads to the
opening of s, hence relayl is deactivated and q opens. Furthermore, relay2 remains inactive and
p remains closed. If r gets opened, s will be closed, so relayl will receive current and opens q.
In neither case p is open. As a result, relay2 can never become active. The first relay ensures
that q is closed if and only if there is current in the first circuit, whereas relay2 makes sure that
p is open if there is current in the second circuit.

(original) (learned)

Figure 6.17: Dependency graphs for the circuit 10

q

re 1

We actually do not learn the cyclic dependences (left-hand side of Fig. 6.17), but just a
very simplified behavior (right-hand side of Fig. 6.17). Note that trying to toggle p or q, makes

the circuit enter an infinite cycle of oscillations. For instance, after toggle(p), p closes, relayl

becomes inactive which opens q, then relay2 remains inactive thus forcing p to be open, which
actives relayl, and so on, and the circuit never reaches a stable state (until something breaks,
most likely), which seems to reflect a bad design of the circuit. This is the reason that no such
actions are included in the observations. Note that without the assumption that switches r and
s are connected, after closing p if both s and r are closed, the circuit also enters an infinite cycle
of oscillations

Most formalisms of action domains, produce an ^cndefined value for the fluents involved in
the oscillation [26] and in general for negative cycles. In both circuits, the negative cy ĉle causes
an odd behavior which seems to correspond to a bad design of the circuit rather than to a
particular purpose. We have not considered learning negative cycles as part of a domain descrip-
tion, however it would be possible by analyzing the sequence of intermediate situations -effect
propagations- and using an special procedure.

(a) sw 1^ light -^ relay-^ sw2^light -^relay

(b) swl^ relay^ light^ sw2-^relay^light

(c) swl-^ relay^ sw2-^ relay

.

•

•

•

Figure 6.18: Ef%ct propagation in circuit 9
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6.7 Conclusions

Previous approaches to learning action modéls are restricted to predicting a single outcome or
effect of an action. This forces the explicit representation of all the ef%cts of an action as direct
ef£ects, producing the so-called Ramification problem. This makes the descriptions of actions

cumbersome and difñcult for complex domains. In this chapter we have shown how to learn

action theories with direct and indirect effects. For this task, we have used a dialect of the

Situation Calculus based on causality, where causal laws are used for the propagation of effects.
Indirect effects also provide a benefit as to learnability, because the final theory is shorter and
then easier to learn. We have also dealt with special cases of indirect eífects, such as mutual

recursion or negative cycles.

•

•

•

•
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Chapter 7

Learning Default Act ion Theories

The previous chapters dealt with ef%cts of actions on a world where these are strictly specified.
In this chapter we show how to incorporate defeasibility into the specifications and introduce
defeasible constraints and eífect propositions. The explicit use of exceptions allows to learn rules
that are more generally applicable, mainly when there are occasional qualifications or noise in
the observations which may decrease the quality of the learning results, or when a theory must
be specialized minimally [5].

7.1 The Qualification Problem

The Q^calificatior^ Problem in Reasoning about actions, first identified by McCarthy in 1977 (79],
concerns how to express the preconditions for actions without having to account for the many
conditions which, albeit being unlikely to occur, may prevent the successful execution of an
action [127]. McCarthy uses the following example: that it is necessary to have a ticket to fly on
a commercial airplane is rather common to express. That it is necessary to be wearing clothes
needs to be kept inexplicit unless it somehow comes up. A proposition like that should not be
treated as a strict precondition in the formal specification of the action, so that a reasoning agent
always has to verify this condition before assuming that the action can be successfully executed.
In this case, exceptions represent qualifications to the. actions that are not intimately related
to the action. Moreover, it is often difficult if not impossible to even think of all conceivable
disqualifications in advance.

Any solution to the Qualification problem must incorporate defeasible specifications. It is im-
portant to consider defeasible specifications for the same reason as the necessity of non-monotonic
theories in knowledge representation and commonsense reasoning. The solution to the Qualifi-
cation problem is based on the fact that most conditions are so likely to be satisfied that they
are assumed away in case there is no evidence to the contrary, so that all of the qualifications for
an action are grouped under a disabled or abnormal predicate, that is assumed false by default.
Assuming away so-called abnormal disq^alificatior^s by default implies that if further knowledge
is available about one of such disqualifications, the previous assumption that the action is exe-
cutable must be withdrawn. These cases will be considered as e^ceptions to the general rules.
Since any exception is considered unlikely, we do however wish to ignore it unless there is evidence
to the contrary.

The ability to assume away, by default, exceptional disqualifications requires some non-
monotonic features. In Logic Programming, negation-as-failure is used to represent absence of
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information about exceptions. For instance, the clause to determine if a year is a leap year can
be expressed as follows:

normal(Y):- not ab0(Y).

ab0(Y):- divisible(4,Y), not abl(Y).

abl(Y):- divisible(100,Y), not ab2(Y).

ab2(Y):- divisible(400,Y).

where a hierarchy of "abnormalities" is used to represent exceptions to the general rule.
The use of defeasible specifications adds elaboration tolerance to a domain description. For

instance, the addition of new actions to a domain description may make some previous assertions
no longer valid. As pointed by V. Lifschitz, an elaboration tolerant formalism should allow us to
retract invalid assertions, in the spirit of non-monotonic reasoning, by adding new postulates. In
particular, if a new condition is observed where an action is disqualified, that is not considered
in the effect axiom, we do not have to modify the ef%ct axiom but just to add new abnormal
clauses.

In the next sections, we will analyze the impact of the Qualification problem in learning,
indeed, we will see that for learning, the need for defeasible propositions has more motivations
than just coping with exceptional disqualifications.

7.2 Default theories

In other than artificial environments, complete knowledge of all the relevant facts cannot be
assumed. With regard to example 2, when we toggle a switch then, contrary to our expectations,
the light may actually not turn on -due to, for instance, a broken bulb, a malfunction of the
battery, or loose wiring etc. According to the consistency condition (df. 3.1), the presence of just
a single "abnormal" example avoids the general r^le that apply to normal cases to be learned. In
an ideal case, the learned rules should contain the general conditions and explicitly enumerate
all the possible exceptions. For instance, in the circuit of example 2:

caused(active(light),+,do(toggle(sw1),A)) :-

holds(closed(swl),-,A),

holds(closed(sw2),+,A),

not holds(light_broken,+,A),

not holds(battery_malfunction,+,A),

The presence of large sets of preconditions for an action can lead to low accuracy results
unless a high number of good counterexamples is available. The bias of the learning algorithm is a
determining factor as even if the background includes all possible influencing factors, the number
and quality of the negative examples can make an induction algorithm to find a different clause
rather than the general one with all the possible exceptions, usually including other less relevant
conditions. Furthermore, the successful execution of actions depends on many more conditions
than we are usually aware of. In an extreme case, data includes observations where the prediction
of the same action under the same (known) conditions may succeed at one time but fail at another,
adding non-determinism to data. In these cases, it is useful to relax the consistency requirement
and learn more general clauses that might cover a small amount of counterexamples. In dynamic
domains, this is particularly interesting as it allows the possibility of discovering defa^clt rules

that describe the most common situations, without having to account for the many conditions

•

.

•
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which, albeit being unlikely to occur, may prevent the successful execution of an action, and that
can avoid the general rule to be found.

This argumentation is similar to the motivation for the Qualification problem in Common-
sense reasoning, however, allowing exceptions to the rules is interesting in other situations. For
instance, another source of exceptions, apart from abnormal qualifications, is noise. The effect
that noise produces is f he impossibility to learn a definition, because no clause is contained in
the language bias that is consistent, or an overspecific definition is learned, composed of very
many specific clauses instead of a few general ones. In these cases it is also advantageous to learn
clauses that are more generally applicable.

On the other hand, exceptions can be used as a method of specialization on its own, where
negative examples are used as exceptions to general rules, or as exceptions to exceptions and so
on. This contrasts with the normal method of specialization where a full set of preconditions is
learned for each rule. For instance, a clause to predict animals that fly can be expressed with or
without exceptions (Fig. 7.1) .

flies :- bird, not ab 1.

ab 1:- penguin, not ab2.

ab2 :- superpenguin.

flies :- bird,not penguin.

flies :- superpenguin.

Figure 7.1: Birds and penguins

The theory (a) makes explicit bird as a general (necessary) condition, where peng^cins are ab-
normal birds and superpenguins are abnormal penguins. Thus, the theory represents a sequence
of tests to be passed, from general to specific, so that when presented with a new animal, the first
test to be applied is bird and not a more specific condition like superpengnin. Unlike this, in
theory (b), bird and superpenguin are at the same level. This particular form of representation
is appropriate when conditions are not independent, for instance, penguin is an specialized bird
and superpenguin is an specialized penguin.

7.3 Default Action Theories

In order to account for exceptions in action theories we introduce for each fluent and each action a
unique 'abnormality' predicate abi [10]. In this case, each effect axiom is enhanced by a normality
condition, which restricts the axiom to all but abnormal circumstances (using NAF) and some
facts for abi are added to the theory.

Ca^csed( f, true, do(a, s)) ^^r+, not Ab( f, true, a, s) (7.1)

Ca^csed( f, false, do(a, s)) ^^r-, not Ab( f, false, a, s) (7.2)

where the Holds atoms in ^r+ and ^r- are only of the form [^]Holds( f', s). The abnormal/.^
atom includes the fluent and the action because a fluent can be abnormal only when a particular
action is executed. Similarly, there is a corresponding abnormal/.^ atom for the positive and the
negative value to distinguish when a fluent is abnormal in the positive valúe or in the negative
one, otherwise abnormal//^ would block rules for both values, for instance, when the conditions for
the rule of Ab( f, true, a, s) and Ca^csed( f, false, do(a, s)) hold simultaneously. In the final theory,
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the lowest layer corresponds to inertia, the next layer corresponds to the defeasible propositions
and the highest layer is the effect and causality propositions.

We have so far considered defeasible action laws, however, the use of causal rules can be also
done defeasible when abnormalities exist [10]. Fluents are considered abnormal after executing
an action, hence abnormal/1^ literals include always the action, however, causal rules range over
every possible action, thus we have:

Caused( f, true, s) ^^r+ ..., not Ab( f, true, A, s) (7.3)

Caused( f, false, s) F- ^r- ..., not Ab( f, false, A, s) (7.4)

where do(A, s) will refer to the resulting situation after performing any action A, where A is a
variable.

Our approach to learn action theories with exceptions, coincides with those used for learning
ELPs with exceptions [54, 63]. Induction first generates eífect axioms from positive and negative
examples and background knowledge in an ordinary ILP framework and returns a definition
consisting of default rules, together with definitions for the abnormality literals. The extension
of abnormal/1^ is generated from negative examples covered by the rules and output as a set of
ground atoms

By doing so, the definitions learned for the positive and negative concepts may overlap
(Fig. 7.2). The rectangle represents all situations where an action a is executed whereas the
circle represents the observed part (the training set). The area labeled F(resp. F) represents
the situations where the fluent F is caused to hold (resp. not to hold).

Figure 7.2: Overlap of positive and negative definitions

For the observed cases, i.e., for the overlapping in the training set, the inconsistence is
removed by explicitly considering exceptions to the rules. A second case is possible in action
theories where learned rules overlap with the inertia axiom in the observed part. This happens
when a learned rule infers "caused" for an inertia value. In this case, the overlap can be produced
with respect to the truth and "causality" value or just with réspect to the "causdlity" value (i.e.,
an inertia value is said to be caused) . As inertia values are used as negative examples, they are
dealt with as any other negative example and converted to exceptions to the rules for F and F.

In the normal ILP semantics, it is required that the learned program is consistent only with
respect to the examples but not necessarily for unseen atoms. For non-observed literals, the two
overlapped classifications are equally strong. Following [54, 63], the conflict can be resolved by
classifying them as undefined as we saw in section 4.3.5.
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observed predicted abnormalities

caused(F) caused(^F) ab(^F)
caused(^F) caused(F) ab(F)

holds(F) caused(^F^F) ab(^F^F)
holds(^F) caused(^F^F) ab(^F^F)

•

Table 7.1: Possible abnormalities
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•

•
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7.4 Learning rules with exceptions

The problem of learning non-monotonic logic programs has been already addressed in the ILP
literature by several authors [63, 29, 54, 5, 31). In [5], the typical top-down specialization
procedure is substituted by the introduction of an abnormal predicate and negation-as-failure.
In [54], a system LELP is developed to learn non-monotonic programs with exceptions in the form
of Extended Logic Programs. LELP learns default rules for the positive value or the negative,
or for both (parallel default rules), according to the ratio of positive and negative examples,
whereas in [63], the system LIVE, which learns extended logic programs under the Well-founded
semantics with negation (WFSX), learns rules for both the target concept and the negation.
Kakas et al [29] use defaults with priorities where a priority order is used in the proof procedure.
Finally, in [31], Default Logic is used.

To allow for the induction of default rules, different techniques exist. In [54, 63] the Golem [94]
algorithm is used to generate the RLGG, however, during the phase of rule generation to cover
positive examples no negative examples are used to specialize rules. Since the clause is not
tested on negative examples, it may cover some of them. The specialization of overgeneral rules
is performed only by creating exceptions identified as ob jects contained in negative examples.
Thus, abnormality literals substitute the normal specialization methods based on adding literals
to a clause until it does not cover negative examples. In methods that learn the most general
generalization, like Progol, we can relax the consistency criterion and set an ^cP^er bo^cnd on
the number of negative examples that can be covered by any acceptable clause, such that,
specialization needs not be fully completed.

By relaxing the consistency criterion we need to explicitly give the number of exceptions
allowed, which should coincide with the number of real exceptions. The aim of systems adopting
RLGG is using abnormality literals as the only means of specializing a clause. For instance,
in [5], the aim is to perform a minimal specialization in incremental learning systems. Unlike
this, by relaxing the consistency criterion, specialization uses partially the negative examples.
In any case, a decision must be taken about when default rules should be generáted, that is,
when to convert some examples into exceptions to a more general rule or complete the special-
ization process. In the approaches that use Golem, since Golem is computing the least general
generalization, the concept will not cover any more negative instances than necessary. When the
number of exceptions is explicitly provided, it would be possible to learn the most general rule
caused (f ,+, do (a, s) ) that covers all positive and all negative examples, such that all negative
examples correspond to exceptions. A simple heuristics is that the set of exceptions must be
smaller than non-exceptions [54]. Usually, a percentage of exceptions over the number of pos-
itive examples covered, is provided instead of the exact number of exceptions. Another useful
criterion is compression, such that, when a clause must be specialized too muĉli in order to
make it consistent, we should prefer to transform it into a default rule and consider the covered
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negative examples as exceptions. For instance, Progol's compression measure uses the length of
the hypotheses as a negative factor.

7.4.1 A small example .

Let us consider again the circuit of example 6. According to the circuit, the relays, in case of
activation, attract the switches located above, thus changing the state of lamps.

Figure 7.3: Another electric circuit

li3

li2

lil

In extreme cases, exceptions can make that the prediction of the same action under the same

(known) conditions may succeed at one time but fail at another, adding no-determinism to data.
We included some examples where resistor rl failed randomly, hence, when s 1 is closed and rl
is working abnormally, relay rel no longer works correctly (Fig. 7.3). These abnormal examples
resulted in the impossibility to learn a definition for s2 (among others). We repeated the learning
process relaxing the consistency criterion and found:

caused(closed(s2),+,A) :-

holds(active(rel),+,A),

not ab(closed(s2),+,B,A).

caused(closed(s2),-,do(toggle(s2),A)) :-

holds(closed(s2),+,A),

holds(active(rel),-,A).

caused(closed(s2),-,do(toggle(s2),...s0)).

ab(closed(s2),+,A,do(...,s0)...).

For the positive value of s2, the causal rule (s2 is closed when rel is active) fails when the rel
is active but working abnormally. In this case, LRA C learned the causal rule but with exceptions.
A different case happens with the negative value of s2, given that no exceptions are produced
because the occasional cases are those where the rule does not need the precondition of rel being
inactive. In this case, these abnormalities do not qualify the action but make the action successful
in some additional situations. That is, the learned clause does not cover those examples where
rel is active and not working correctly, thus s2 can be abnormally opened. Thus, the abnormal
cases correspond to ur^covered examples or ^cncom^ressed in the Progol terminology, because, the
uncovered positive examples are less than the negative examples covered if we remove rel from
the body. Both exceptions and uncovered examples are returned as ground facts.

The abnormal behavior of rel is not propagated to other components. For instance, li2 is not
affected because it depends on s2 and s2r, and the state of li2 is always consistent with respect
to them. However, if we learn li2 as a direct effect of any action that eventually modifies it, for

a
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instance, toggle(sl), then li2 would be also affected by the abnormal behavior of rel and some
exceptions would be produced.

In the previous example, relaxing the consistency criterion is strictly needed for learning. In
less extreme cases, for instance when the exceptions represent qualifications to the actions that
appear occasionally, or when there is noise or when important data are missing, generalization is
still possible without considering exceptions, however, poor generalizations might be obtained. As
a consequence, the use of a predicate abnormal/1^ that represents exceptions explicitly, contributes
to learnability, as it favors that more general rules are learned.

7.5 Learning about exceptions

If the exceptions form a class, i.e., if exceptions have some common properties, the simple
enumeration is not informative and rules about exceptions can be obtained that define the
circumstances under which a particular abnormality occurs. This will be possible provided that
we have data on their common properties and the language bias so allows. This is accomplished
by repeating the learning process for abnormal//^ literals and learning additional constraints each
of which relates some abnormal/!^ to the conceivable causes [54, 63]. Rules about exceptions have
such abnormal predicates in their head and are results of generalizations of some abnormal atoms:

Ab( f, true, a, s) ^^r+ (7.5)

Ab( f, false, a, s) E- ^r- (7.6)

where the holds/2 literals in ^r+ and ^r- are only of the form [neg]Holds( f', s). Positive (resp.
negative) examples for abnormal/4 are obtained from the set of negative (resp. positive) examples
covered by the overgeneral learned rules. Thus, an overgeneral rule for abnormal/4 specializes
the rule for ca^csed/^, i.e., increases the number of exceptions. Rules about exceptions should
be used to derive only exceptions. In fact, exceptions are usually minimized in non-monotonic
reasoning. When such a common rule cannot be generated or there are some exceptions that
cannot be covered by such a rule, those exceptions are left as they are and returned without
generalization.

However, the aim of using abnormal//^ as the only method of specialization is to learn a
theory composed of a default rule that is generally applicable, and to represent exceptions to
this rule, exceptions to these exceptions and so on. By doing so, exceptions to the definitions
of abnormal/!^ might be found and so on, thus leading to a hierarchy of exceptions [63, 54, 29]
(denoted as Ab2 ) .

Ab( f, true, a, s) F- Holds( f', s), .. . , not Abi ( f, true, a, s) (7.7)

Abi ( f, true, a, s) E- Holds( f", s), ... , not Ab2( f, true, a, s) (7.8)

•

These predicates Abi actually represent exceptions to exceptions, such that, taking Ab - Abo,
we have that for i even, the generalization of Abi makes the rule for Ab more general and hence
the effect axiom more specific, whereas for i odd, the generalization of Abi makes the rule for Ab
more specific and hence the effect axiom more general.

The need for explicitly providing a maximum number of exceptions is a naive form of learning
rules with exceptions and it is not appropriate at all to learn about exceptions. A more natural
option is to compute the RLGG as in the systems LIVE and LELP. For this task, we implemented
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E 6 is generated from E- covered by R
E^6 is generated from E+ covered by R
E bl is generated from E+ covered by R U Ra6
E^bl is generated from E- covered by R U Rab

Table 7.2: Generation of examples for abnormal/4 predicates

a very basic version of the Golem algorithm that accepts ground observations in the Situation
Calculus, such that, specialization is not fully completed, i.e., no negative examples are used to
specialize rules. Clauses are obtained by randomly taking couples of examples, computing their
rlgg and choosing the consistent one that covers the biggest number of positive examples. This
clause is further generalized with new positive examples until the clause covers some negative
examples [54]. The specialization of overgeneral rules is performed only by creating exceptions
identified as objects contained in negative examples. Repeating the learning process for the
abnormal/1^ atoms, we eventually obtain a theory that is consistent.

Let us consider a variation of the Blocks world, where a robot (with one or two grippers) is
used to move the blocks, such that some blocks are too heavy to be moved by robots having a
single gripper. In this case, we obtained an overgeneral version of the intended effect axiom.

caused(on(A,B),+,do(move(A,B),C)) :-

holds(clear(A),+,C),

holds(clear(B),+,C),

not ab(on(A,B),+,move(A,B),C).

The algorithm takes a pair of examples from which it computes the RLGG, so that the two
examples contribute to the generation of one clause. Even if they do not form part of the same
clause in the target concept, e.g., the block is heavy only in one of them, the RLGG includes a
common part that is applicable to both, i.e., the default rule. By repeating the learning process
for abnormal/!^ literals until a rule without exceptions is found, we obtained a consistent theory
in the form:

caused(on(A,B),+,do(move(A,B),C)) :-

holds(clear(A),+,C),

holds(clear(B),+,C),

not ab(on(A,B),+,move(A,B),C).

ab(on(A,B),+,move(A,B),C) :-

heavy(A),

not abl(on(A,B),+,move(A,B),C).

abl(on(A,B),+,move(A,B),C) :-

grippers(2).

The effect axiom represents the most general conditions necessary for moving blocks, whereas
the rule for ab represents exceptions to the general rule and the rule for abl exceptions to
exceptions. With the normal specialization, we obtained the following theory:

•

•

•

caused(on(A,B),+,do(move(A,B),C)) :-

holds(clear(A),+,C),

holds(clear(B),+,C),
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not heavy(A).

caused(on(A,B),+,do(move(A,B),C)) :-

holds(clear(A),+,C),

holds(clear(B),+,C),

grippers(2).

•

•

In this case, common conditions are replicated in both rules, and the need for two grippers
is not associated to the weight of the blocks.

Without additional considerations, such an algorithm would continue specializing and adding
abnormality predicates until a consistent theory is obtained for some Abi. Thus, if observations
contain noise, non-real exceptions would be created to make the theory consistent. This will
necessarily result in fitting the noise [125]. Similarly, if there is non-determinism in the training
set due to the absence of relevant information, relaxing the consistency criterion is essential for
learning as the only means to achieve generalization, however, learning about these abnormalities
makes no sense and it must be considered as another source of noise in the observations. Any
attempt to generalize from the set of exceptions will produce very low compression rates, hence
exceptions should be returned as ground facts.

In this case, it is important to have a reliable method of deciding whether to treat errors as
noise or to include them as exceptions. One way to approach the problem is to see if the exceptions
to the current theory e^hibit a Pattern by adopting one of the heuristic necessity stopping criteria
proposed in ILP to handle noise, such as the encoding length restriction, a significance test and
so on. Methods based on an information theoretic measure are based on the following idea [125]:
"data found to be incompressible are deemed to be noise". Each specialization performed by the
algorithm is an attempt to improve the accuracy of the theory, at the expense of increasing its
size. If the specialization was worthwhile, the gain in accuracy should outweigh the cost incurred
in increasing the theory size. By doing so, when a rule for abi achieves a good compression it is
very unlikely that this is due to noise.

7.6 Conclusions

In this chapter we have shown how to incorporate defeasibility into the specifications and have
introduced defeasible constraints and effect propositions. The explicit use of exceptions allows to
learn rules that are more generally applicable, mainly when there are occasional qualifications or
noise in the observations which may decrease the quality of the learning results, or when a theory
must be specialized minimally [5]. However, we have seen that there are more reasons to learn
rules with exceptions. Indeed, learning about exceptions is a particular form of specialization
where the final theory consists of a set of default rules that are generally applicable and might
cover some negative examples, and a set of rules for a predicate abnormal/4 that represents
exceptions to the general rules as well as exceptions to exceptions and so on, which in many
cases correspond to the natural description of a domain. We have just considered how to learn
rules with and about exceptions in action domains, by applying previous work for static domains,
however, much work is still needed to make these methods applicable in more real data containing
noise etc.

^
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Chapter 8

Complex actions

We have so far assumed that actions are atomic, durationless and have instantaneous effects.
Furthermore, we have assumed that changes in the values of fluents can only be caused by the
execution of actions, otherwise the state of the system is assumed to be stable.

If, for instance, concnrrent actions are allowed, an effect may depend on a particular combi-
nation of actions, an action may qualify another action's ef%cts, effects can be cancelled and so
on. Most scenarios in the real world include the concurrent execution of basic actions, hence it
is important for a learning agent to be able to represent and learn from them.

On the other hand, if there are action sources other than the agent itself, an environment may
seem active to an observer. Exogenous changes are quite common, for instance, if the domain
has properties that are non-amenable to manipulation (weather conditions), a second agent is
acting in the domain, and so on. In this case, the learner must consider not only the environment
but also the sources of other actions.

Finally, most actions (e.g., picking up a block, going from one location to another) take
time. Similarly, eífect propagations usually incorporate very small delays. For most practical
purposes these delays can be abstracted away and the effects assumed to be simultaneous and
instantaneous. This is convenient when the resulting model is simpler or necessary when there
is no actual knowledge for providing an accurate model. However, when they aífect the results
we are interested in, the delays must be explicitly represented and incorporated into the learning
process. ^

In this chapter we will consider some extensions to the framework presented in the previous
chapters that allow to handle most of these issues.

8.1 Concurrent actions

We have so far restricted to so-called atomic actions (or non-concurrent actions), hence we have
learned an effect axiom for each fluent and for each action that af%cts it. One of the criticisms
most frequent to the Situation Calculus was that it could not handle concurrent actions. In
narrative formalisms, an additional predicate happens/2 is introduced to state that an action
a is executed (happens) at situation s and so the action becomes part of the situation together
with the values of the fluents. The form of the direct ef%cts in a narrative. formalism would be:

caused(closed(swl),+,A) :- happens(toggle(swl),A),holds(closed(swl),-,A-1).

where A-1 refers to the previous situation. Concurrent actions are considered by adding multiple
happens/2 literals to the body.
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Some extensions exist to the Situation Calculus that allow to handle concurrent actions [48,
70, 9, 121]. An initial solution to cope with concurrent actions in the Situation Calculus consists
of creating a new sort for compound actions with respect to simple actions, consisting in sets of
actions, so that the do/2 function takes now compound actions as arguments. The term {a, a' }

denotes a compound action. Let us consider a classical example in the reasoning about actions
literature.

Example 11 (Soup bowl) There are two actions in the domain {LiftLeft, LiftRight} that
represent the action of lifting the left (resp. right) side of a soup bowl. The fluent OnTable
holds when the bowl is on the table, the fluent HasW ater holds when the bowl has water, and
the fluent Spilled holds when the water is on the table but not in the bowl. O

Some possible observations are:

holds(spilled,-,do({liftleft,liftright},A)).

holds(spilled,+,do({liftleft},A)).

With a compound action for each possible combination of the actions, a combination is con-
sidered as a new atomic action. Unfortunately this avoids that generalization works over actions,
thus having an effect axiom for every possible combination of actions, including not relevant com-
binations. Following [70], concurrent actions are introduced into the Situation Calculus through
a new function in(a, c) denoting that a compound action c includes a simple action a. We need
a new sort compo^cnd to implement the function in/2, relying on the standard interpretation of
sets and relations (membership, subset, etc) and their operations (union, intersection, etc).

A distinction is made between concurrent actions whose effects are c^cm^clative and concurrent
actions whose effects cancel each other out. In the first case, several actions must be executed
concurrently to achieve a particular ef%ct (allowing multiple in/2 literals in the body). In the
case of cancelling actions, we need to state explicitly that an individual action is not part of a
compound action. For this reason, negation as failure must be explicitly used for in/,2 literals.
Following the notation in [121], a second new predicate is introduced in the Situation Calculus to
cope with cancelling effects, where Cancels(c, a, s) represents that normal eí%cts of action a are
cancelled by the components of c if a and c are performed concurrently in situation s. Formally
we have:

Definition 8.1 (Situation Calculus Program with concurrent actions) A Situation Calculus pro-
gram is the conjunction of:

• A finite set of general clauses

[^]Holds( f, so) (8.1)

where so denotes the initial situation.

• A finite set of clauses of the form

Caused( f, v, do(c, s)) ^^r (8.2)

•

where c is a compound action, ^ does not mention the Af^`ects or Car^cels predicate, at least a literal
Ir^(a,c) is included in ^r where a is an atomic action, and every occurrence of the Holds predicate
in ^ is of the form [^]Holds( f', s) or not Cancels(c, c', s) where c' is a compound action.
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• A finite set of Cancels clauses of the form

Cancels(c, c', s) ^ ^ (8.3)

where ^ does not mention the Affects predicate, c and c' are compound actions, at least a literal
In(a,c) is included in ^r where a is an atomic action and every occurrence of the Holds predicate in
^r is of the form [^] Holds ( f, s) .

• The universal frame axiom.

Holds( f, do(c, s)) E- Holds( f, s) n not Ca^csed( f, v, do(c, s)) (8.4)

^Holds( f, do(c, s)) E-- ^Holds( f, s) n not Caused( f, v, do(c, s)) (8.5)

where c is a compound action.

• A clause that propagates caused values to Holds.

Holds( f, do(c, s)) ^ Ca^csed( f, true, do(c, s)) (8.6)

^Holds( f, do(c, s)) ^ Cansed( f, false, do(c, s)) (8.7)

where c is a compound action.

q

Effects of concurrent actions can be also seen in terms of inheritance [9], i.e., compound
actions normally inherit effects from their subactions, and cancelling actions cancel inheritance
of the effects of atomic actions. For instance, if an action is not possible then unless otherwise
specified, a bigger action containing that action is also not possible. A predicate noninh/2
explicitly accounts for the non-inheritance of ef%cts for a compound action, through so-called
inheritance a^ioms.

8.1.1 Learning of concurrent actions

Learning ef%ct axioms for concurrent actions requires a new shape for the axioms, where the
action is variabilized and references to individual actions included in it are done in the body of
the clause by means of positive and negative in/,2 literals. We will explicitly use positive and
negative in^^ literals instead of the predicate . Cancels/^ or inheritance axioms, given that the
latter express separately the positive occurrences of actions and their preconditions from the
cancelling actions, and it is not obvious how they can be learned separately. In some cases,
negative examples correspond to those situations where the eífect is not caused because there
are preconditions that fail, actions that are missing or actions that are executed additionally.

Without concurrency, the action in the head of a clause is a single term extracted from a seed,
whose arguments can be variabilized according to the bias. If any example contains concurrent
actions, then the comPound sort must be used for actions and thus the action in the effect axioms
-for the fluent and the truth value in the seed- must be variabilized. Once we variabilize the
action, those situations where an atomic action is executed are dealt with as a particular case of
concurrent actions with a single action, as it may still need negative in/2 literals. Thus, we will
have effect axioms in the form

caused(F,V,do(A,S)):- in(a1,A),...

instead of
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(F,V,do(a1,5)) :-

Without negative in/2 literals, the former is a stronger generalization, as it assumes that
action al is not aífected if executed concurrently with any other action, unless explicitly stated
in data, whereas the second one does not apply to compound actions.

A bias declaration for example 11 is:

bias(caused(spilled,#,do(+,+)),[holds(spilled,#,+),in(#,+),not(in(#,+))]),

At least a positive in/,2 literal must be added initially to the body, which must be granted,
for instance, with Prune/2 statements. When actions are structured terms, e.g., in the Blocks
world, the construction of the 1-clause must include the variabilization of every action both for
in/2 and not-in/,2literals. This requires a bias to be specified also for actions. For instance, in
the Blocks world, we have:

bias(caused(on(+,+),do(+,+)),[in(move(+,+),+),not(in(move(+,+),+)),...]),

thus resulting in rules like

caused(on(A,B),+,do(C,D)) :- in(move(A,B),C), not in(move(D,B),C),...

Additional pruning statements can be provided to avoid actions like move (B, A) if move (A, B)
was already included, and so on.

To enable concurrent actions in the computation of the stable smodel, we rename every

possible compound (ci) -because the interpreter does not support lists- and clauses are added to

the background that relate each compound to its components. For instance, for the compound
cl ={tl, t2}, we have: in(tl, ci) and in(t2, cl).

According to the bottom clause construction [95], only those actions included in the seed
will appear in the 1-clause through in/,2 literals. However, with respect to the literals not in/,2,
-used to refer to actions that must not be executed- actions must be included through an special
procedure when constructing the bottom clause. This requires to retrieve actions that are not
included in the positive example used as seed. However, the recall phase of these literals not in/^
cannot be carried out by Progol because when querying the Prolog interpreter, the action term a
must be instantiated previously in not in (^-a, +c) , and then it ^must be done through an special
procedure, e.g., by adding a predicate not_in(-a,+c) that uses a set of actions not included in
the compound c. Literals not_in(-a,+c) are constructed for each seed and provided to Progol
in the background before building the bottom clause.

Actions included in positive in/^ literals are taken from the seed. The negative counterpart
of in/,2 will refer to what actions should not be executed concurrently. Thus, actions included
in negative in/,2literals can be generated from the complete set of actions, from actions related
somewhat to the actions executed in the seed, or from actions included in the negative examples.

In the first case, actions are retrieved from the set of possible actions, including actions that
are totally independent from the action executed. In relational scenarios like the Blocks world,
we need to retrieve all possible instantiations of move/2 for the blocks constants. Furthermore,
these not in/,2 literals will introduce new terms, i.e., the arguments of the actions, and the
bottom clause may become very large.

In the second case, an heuristic is used to reduce the number of actions, by allowing only
those actions related to the executed action or to the effect, thus focusing on actions that might

•
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af%ct the executed action. For instance, by removing actions that do not share any argument
with those referred to in the seed.

Thirdly, we can use the information provided by the negative examples by allowing actions not
included in the seed that occur in any negative example, thus, only those actions that will allow
to discriminate positive from negative examples, are considered. The set of negative examples

cán be incomplete, however, the relevance of the negative actions is clearer. However, not all
negative examples are of interest but only those that have any action in common with the seed.
Unfortunately, this might still include some cases where the common action(s) are not relevant in
the positive example or in the negative examples. We can reduce this possibility if we dynamically
adjust the process with respect to the current hypothesis at each step of specialization, so that
cancelling actions are taken from those negative examples that include all actions included in
the current hypothesis.

As to the negative examples, we cannot assume that any other combination of actions different

from those included in a positive example does not cause the ef%ct, because if other irrelevant

actions are executed simultaneously or if any action is dropped from the example, it may still be

a positive example.

8.1.2 Scenarios for concurrent actions

The task of the inductor is now to find a set of actions that must be executed (resp. not executed)

and a set of preconditions, that produce a given effect. Several possible scenarios are usually

consideréd for concurrent actions [9], that we will consider individually in the rest of the section.

• Inde^endent actions. This is the most simple case, where actions can be executed concur-
rently and their effects are independent.

• Cancelling actions, i.e., the case when the eífect of a compound action cancels the effect of
the atomic actions. The effects of compound actions are cancelled in essentially the same
way.

• Accumulative actions, i.e., a compound action produces effects that none of the sub-actions
produces separately.

• Conflicting subactions, i.e., a compound action whose sub-actions have contradictory ef-
fects.

The soup bowl example is the most classical scenario of cancelling actions. In this case LRAC
returned:

caused(spilled,+,do(A,B)) :-

in(liftleft,A) ,

not in(liftright, A),

holds(has_water,+,B).

caused(spilled,+,do(A,B)) :-

in(liftright,A),

not in(liftleft, A) ,

holds(has_water,+,B).

We observe that the actions that lift the bowl are not independent, so that any of them
cancels the other. The above theory can be rewritten as follows:
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caused(spilled,+,do(A,B)) :-

in(liftleft,A) ,

holds(has_water,+,B),

not cancels(A,liftleft,B).

caused(spilled,+,do(A,B)) :-

in(liftright,A),

holds(has_water,+,B),

not cancels(A,liftright,B)
cancels (A, liftleft,B) : -

in(liftright,A).

cancels(A,liftright,B) :-

in(liftleft,A) .

In terms of inheritance, the theory can be re-expressed in the form:

holds(^spilled, {li f tle f t, li f tright})

noninh(spilled, {li f tle f t, li f tright}, s)

where liftleft (resp. liftright) explicitly cancels inheritance of the effect spilled by the compound
action. Baral and Gelfond [9] model the ef%ct -^spilled as a consequence of the compound
{liftleft,liftright} which is not reflected in the learned theory, because the observer does not
distinguish "caused not to hold" from "not caused to hold" (inertia), when there is no change of
value for spilled, i.e., the observer does not perceive the cancelled effect.

In the next example, we handle the case when the effect of an atomic action cancels the com-
bined effect of a compound action. Let us consider a variant of example 11 where an additional
action flip is added. In this case, LRAC learned the following theory:

caused(spilled,+,do(A,B)) :-

in(liftleft,A) ,

not in(liftright,A),

holds(haswater,+,B).

caused(spilled,+,do(A,B)) :-

in(liftright,A),

not in(liftleft,A),

holds(haswater,+,B).

caused(spilled,+,do.(A,B)) :-

in(liftright,A),

in(liftleft,A) ,

in(flip,A) ,

holds(haswater,+,B).

Action f lip needs the combined execution of lifting the bowl to spill the soup. Actually the
combined efFect of the compound is a combined cancellation of the atomic actions, because f lip
does not cancel the atomic actions but the combined effect of the compound {liftleft,liftright}
However this is not explicitly represented in the learned rules. In [9], f lip explicitly cancels the
inheritance of ^spilled to the compound {liftleft,liftright}.

noninh(^spilled, { f lip, li f tle f t, li f tright}, s)

In the next example, we handle another case when the ef%ct of an atomic action cancels the
combined visible effect of a compound action. Let us consider an scenario where a person, Mary,

•

•
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is trying to lift the bowl, so that Mary is unable to lift a heavy bowl with one hand, while she
can lift it using both hands. We add a fluent lifted to represent that Mary is holding the bowl
and a fluent heavy to represent heavy bowls. In this case LRAC returned:

•

•

caused(lifted,+,do(A,B)) :-

in(liftleft,A) ,

in(liftright,A).

caused(lifted,+,do(A,B)) :-

in(liftleft,A),

holds(heavy,-,B).

caused(lifted,+,do(A,B)) :-

in(liftright,A),

holds(heavy,-,B).

If we add an action jump that if performed simultaneously avoids the bowl to be lifted, we
obtain:

caused(lifted,+,do(A,B)) :-

in(liftleft,A) ,

in(liftright,A),

not in(jump,A).

•

•

w

•

where jump cancels the combined effect of the compound {liftleft,liftright}. The theory can be
rewritten as:

caused(lifted,+,do(A,B)) :-

in(liftleft,A) ,

in(liftright,A),

not cancels(A,{liftleft,liftright},B).

cancels(A,{liftleft,liftright},B) :-

in(jump,A).

In this case, the cancellation of the compound action is explicitly included. The translation
implicitly assumes that the cancelling action cancels the actions in the positive in/2 literals. If
otherwise, jump cancels just the atomic action {liftleft}, the compound {liftleft,liftright} would
inherit the cancellation, so that according to [9], the clause for cancels/3 above is not explicitly
included in the theory but it is inherited from the cancellation of the atomic action. LRA C would
learn the cancellations of the atomic action and the compounú action independently.

In general, learning about concurrent actions is a complex task because the size of the theory
to be learned increases significantly to express every possible interaction between actions. Even
the description of very simple domains becomes significantly complex when concurrent actions
are allowed. Recall example 2 and let us suppose that actions toggle(swi) can be executed
concurrently. For the fluent light, LRAC returned the following ef%ct axioms:

caused(active(light),+,do(A,B)) :-

in(toggle(swl),A),

not in(toggle(sw2),A),

holds(closed(swl),-,B),

holds(closed(sw2),+,B).

caused(active(light),+,do(A,B)) :-

in(toggle(sw2),A),
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not in(toggle(swl),A),

holds(closed(swl),+,B),

holds(closed(sw2),-,B).

caused(active(light),+,do(A,B)) :-

in(toggle(swl),A),

in(toggle(sw2),A),

holds(closed(swl),-,B),

holds(closed(sw2),-,B).

caused(active(light),-,do(A,B)) :-

in(toggle(swl),A),

holds(active(light),+,B).

caused(active(light),-,do(A,B)) :-

in(toggle(sw2),A),

holds(active(light),+,B).

In this case, the consequences of executing, e.g. toggle(swl), depend on the previous value of
sw2 distinctly depending on whether toggle(sw2) is also executed or not simultaneously. Similarly
for toggle(sw2) wrt. toggle(swl). When the switches are closed concurrently, they produce
independent ef%cts and the accumulative effect of activing the light, however, if one of the
switches is closed and the other is opened, the light remains ofi. In this case, the switch that is
opened cancels the indirect effect of closing the other switch.

As a consequence, many more clauses have to be learned to cope with every possible interac-
tion between actions. Note however that the corresponding causal rules for light (in chapter 6)
avoid this problem given that the action is also variabilized, hence the use of indirect effects
greatly simplify the final theory because a single clause covers all combinations of actions. Thus,
concurrent actions makes more evident the interest of learning indirect ef%cts.

Let us recall the circuit of example (3). If we execute toggle(sw2) and other action that
activates the relay at the same time (e.g., toggle(sw3)) the effect axiom infers sw2 (because

the relay was previously inactive) whereas the causal rule infers -^sw2, because relay becomes
active. As a consequence, the resulting theory has no stable model. Thus, the ef%ct axiom for

sw2 is no longer valid if other actions are executed concurrently in some states. Actually, the

behavior of the circuit will depend on the propagation delays. If the relay has precedence over

the switch, we need to add to the effect axiom of sw2 all possible cancelling actions that activate

the relay (avoiding sw2 to close) together with their preconditions, thus making the description
cumbersome in most cases.

caused(closed(sw2),+,do(A,B)) :-

in(toggle(sw2),A),

holds(closed(sw2),-,A),

not in(toggle(swl),A),

not in(toggle(sw3),A).

caused(closed(sw2),+,do(A,B)) :-

in(toggle(sw2),A),

holds(closed(sw2),-,A),

in(toggle(swl),A),

in(toggle(sw3),A)

holds(closed(swl),+,B).

caused(closed(sw2),+,do(A,B)) :-

in(toggle(sw2),A),

holds(closed(sw2),-,A),

in(toggle(swl),A),

•

•

•
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in(toggle(sw3),A)

holds(closed(sw3),+,B).

caused(closed(sw2),+,do(A,B)) :-

in(toggle(sw2),A),

holds(closed(sw2),-,A),

in(toggle(swl),A),

not in(toggle(sw3),A)

holds(closed(sw3),-,B).

caused(closed(sw2),+,do(A,B)) :-

in(togĝle(sw2),A),
holds(closed(sw2),-,A),

in(toggle(sw1),A),

not in(toggle(sw3),A)

holds(closed(swl),+,B).

•

•

•

•

•

Actually, this set of clauses could be replaced by an interconstraint in the form:
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caused(closed(sw2),+,do(A,B)) :-

in(toggle(sw2),A),

holds(closed(sw2),-,B),

holds(active(relay),-,do(A,B)).

where the constraint and the ef%ct axiom are integrated into a single axiom, such that the value
of relay in the resulting situation replaces all actions that could activate it.

In some cases, the combined execution of actions may produce complex effects very difficult to
predict accurately. Let us consider the Blocks world. Compound actions like {move(a, b), move(c, b)}
and {move(a, b), move(b, c)}, etc.., contain conflicting subactions. Let us suppose that the si-
multaneous execution of actions, e.g., move(a, b) and move(c, b), cancel each other out, such
that if another block c is moved onto a at the same time that a is moved onto b, it is assumed
that no movements are done. Then, the eífect axioms for move/2 must cope now for many more
preconditions, namely, when a block a is moved onto another block b, no other move/2 actions
involving blocks a and b must be included in the compound action.

caused(on(A,B),+,do(C,D)) :- in(move(A,B),C),

holds(on(A,B),-,D),

holds(clear(A),+,D),

holds(clear(B),+,D),

not in(move(F,B),C),

diff (F, A) ,

not in(move(B,G),C),

In a real scenario, where a robot can use both arms to move blocks, it might happen
that after {move(a, b), move(b, c)}, we have on(b, c) and on(a, table) in the resulting situa-
tion, provided on(b, table) was true in the previous situation. It might also happen that after
{move(a, b), move(c, b)}, the blocks bump into each other and they fall onto the table. In this
case, the effects of concurrent actions may produce very complex effects that depend on many
factors.

In some cases, the working of well-behaving systems can be broken when actions that cause
contradictory changes can be executed arbitrarily. In [9] an example with contradicting sub-
actions is shown where the eífect of performing close and oPen concurrently in a door is left
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undefined, i.e., the theory concludes that it is not defined whether the door is open or not af-
ter executing {open, close}. As a consequence, if an action paint is executed concurrently with
{open, close}, the theory does not entail either painted or ^painted, because the compound
inherits the non-executability from {open, close}. In this case ^cndefined is the more intuitive
answer rather than inertia, because the answer must be produced by the theory. From the point
of view of learning, the most intuitive answer is that produced by the observed system, thus,
the representation language used for learning should be able to express it. However, in a real

system, the effects of the concurrent execution might depend on small delays in the effect prop-

agation. In fact, the concurrent execution of conflicting subactions may cause the existence of
intermediate sit^cations in the computation of the resulting situation, similarly to negative cycles
(section 6.6.3).

8.2 Exogenous actions

We have so far assumed that changes in the values of fluents can only be caused by execution
of actions, otherwise the state of the system is assumed to be stable, that is, each effect is
caused, either by a primitive action or by another eífect that eventually is caused by an action.
If there are action sources other than the agent itself, an environment may seem active to an
observer (a^ctonomo^s change), for instance, if the domain has fluents that are non-amenable to
manipulation (weather conditions), a second agent is acting in the domain, and so on. Exogenous

actions are common when dealing with autonomous robots. In this kind of applications there are
two kinds of actions: one that the robot can perform, and the other that may happen independent
of the robot and which is beyond the control of the robot.

These exogenous actions introduce changes in a situation without an agent-initiated action,
whereas in the Situation Calculus, a situation is created only by executing an explicit action.
Exogenous changes can be represented through so-called nat^ral actions, i.e., creating a situation
with a fictitious action to cope for the changes. The special action nat is included when no action
is observed and some fluents are seen to change. For instance, let us suppose that the action
unpl^cg is executed by a second agent in example 2, causing the fluent light to be off. Then we
have a corresponding observation:

caused(active(light),-,do(nat,A)).

This topic has been paid relatively little attention in the community of reasoning about
actions [104, 110]. With respect to the observer, exogenous actions must be clearly distinguished
in the observations. This can be safely done when no agent-initiated action a is executed at the
same time, otherwise the observer might assign such exogenous ef%cts to the action executed.
In general, a fluent can be both agent and autonomously initiated when some of the actions
af%cting to it are hidden.

From the point of view of learning, we need to be able to represent these "external" observa-
tions and in some cases to consider new shapes for the learned clauses. Exogenous eífects are to
be considered part of the background, so that they are not used for learning additional clauses,
however, when these effects cause further changes in the domain (indirect effects), the latter can
be managed like any other ef%ct no matter the original cause. In this case, the exogenous eflects
have to be dealt with as if they were actions, which is out of the scope of the causal rules we
considered in chapter 6. Let us consider a typical example given in [14, 26].

.

•

•

•
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Example 12 (Alarm system) There is an alarm system that detects if somehow someone en-
ters, and that is not amenable to manipulation by the observer. We add the observer with capabil-

tities for sensing whether the alarm is active or not and whether it is ringing or not. We assume

the building has many possible entrances (doors, windows, etc.). In other words, there are many

actions able to bring someone in the building and these actions may not even all be known. We

formalize the system using the fluents in (stating that there is someone inside), active (the alarm

is active) and ring (the alarm bell is ringing^. O

Let us first suppose that the alarm is not manipulated when someone enters the building.
Under these conditions, LRAC learned the following ef%ct axiom, as expected, where anyone
entering the building triggers the alarm.

caused(ring,+,do(enter,A)) :-

holds(active,+,A).

No rules are learned for the autonomous fluent active because it is always caused by an

exogenous action. Learning from exogenous ef%cts makes sense when we are interested in learning

the source of the exogenous eífects, for instance, the behavior of an external agent and so on. In

this scenario, if the exogenous nat is consider like any other action, some clauses are learned for

active:

caused(active,+,do(nat,A)) :-
holds(active,-,A).

caused(active,-,do(nat,A)) :-
holds(active,+,A).

meaning that only 2 transitions are possible for it, i.e., the hidden action inverts the state of the

alarm. This is possible because the exogenous nat can be mapped to a single hidden action that
(de)activates the alarm. However, there are no different nat actions for different hidden actions,

hence in most cases learning exogenous ef%cts is not possible.
Let us suppose the alarm does not ring if it is deactivated at the same time when someone

enters. When the training data includes these "conflicting examples", the above clause for enter
is no longer returned. The basic form of the eífect axioms is not enough, because the value
of the exogenous fluent in the previous situation is not informative and the exogenous effect is
not connected to the agent-initiated action. This led us to consider different shapes for learned
axioms as we need a mix of eífect axiom (we need the action) and a causal rule because the
resulting situation must be referred to in the body of the clause, at least for the fluent active.
We considered dif%rent shapes for learned clauses, one where the resulting situation can be used
in the body of a clause, and other where negative caused literals other than the head are allowed.
Depending on the bias selected, we learned diíferent forms of the same axiom.

caused(ring,+,do(enter,A)) :-

holds(active,+,do(enter,A)).

•
caused(ring,+,do(enter,A)) :-

holds(active,+,A),

not caused(active,-,do(enter,A)).

These axioms represent that an explanation of some ef%cts must be searched for through
other (possibly exogenous) changes in the same situation -apart from the action and the previous
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situation- because a precondition for the action is modified at the same time, i.e., an exogenous
eífect "substitutes" the hidden action that was executed at the same time. Note that these clauses

subsume the "normal" effect axiom -where someone enters and the alarm was active- apart from
that where the alarm was activated simultaneously. Note also that, in both clauses, the action

must be explicitly included because the axioms does riot work when other actions are considered.
This example is actually due to the concurrent execution of an exogenous and an agent-

initiated action. When both exogenous and agent-initiated actions co-occur, exogenous effects
will be considered as eífects of the agent-initiated action. For instance, LRA C tried to learn an
effect axiom for caused(active,+,do(enter,A)) which makes no sense, and it is not obvious

how it could be avoided. For this task, the observer would need to use additional mechanisms
to identify efFects not related to the agent-initiated action.

Let us consider a variation of this scenario [26] where if the alarm is activated and someone was
already in the building, then the alarm also rings. In this case LRAC obtained no generalization,
i.e., examples for ring where enter is not executed were returned uncovered. The alarm is an
indirect e,f^ect of the exogenous change in active. An standard causal rule is not enough because
we need to refer explicitly to cansed values in the body of the clause, otherwise no consistent
clause will be returned. When ca^csed/^ is allowed in the body of clauses, the following rule was
learned:

caused(ring,+,A) :-

caused(active,+,A),

holds(in,+,A).

The caused/^ literal represents that the state of the alarm was "somewhat" changed (not
necessarily by an observed action). We need explicitly active to be ca^csed because the alarm
can be stopped through an additional action, thus both active and in can be true and the alarm is
not ringing. Actually, in a particular scenario, it would be possible to learn ring as an exogenous
eífect, because nat still corresponds to a single hidden action.

caused(ring,+,do(nat,A)) :-

holds(active,-,A),

holds(in,+,A).

However, the ef%ct axiom loses part of the declarative meaning of the causal rule, and most
importantly, if other hidden actions are executed that do not affect active, then the effect axiom
becomes inconsistent.

The hardest case occurs when both an agent-initiated action and an exogenous action happen
simultaneously and they affect the same fluent possibly in contradictory forms. The exogenous
action might undo the effect of the agent-initiated action when actions are opposed, or it can
change the outcome. In the first case, the agent will not observe any change and so it will
assume the action produced no ef%cts. As a consequence, a positive example is forced to become
a negative one thus introducing non-determinism.

8.3 Sensing actions

•

.
In real environments, an agent does not necessarily perceive always all the features it can sense.
For instance, in the office scenario, the robot can sense if the elevator is open whenever it is
physically close to the elevator. If no exogenous actions modify it, the robot can safely assume
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the last value sensed as the current one, otherwise, contradicting situations may arise. Suppose
the robot opens a door and it moves to the other side of the office. When it returns, the door
might (surprisingly) have been closed, thus contradicting the last value sensed. If we use the

inertia assumption, the robot will assume that the door is still closed unless evidence against it

is found. When the robot changes its belief, inertia must be disabled and the new observation

recorded as an exogenous change. Unfortunately, when the robot moves ahead and sees the

elevator, the new state of the elevator might be assumed as an indirect effect of moving. In these
cases, the robot should be able to identify exogenous eí%cts [99].

In other cases, the robot must execute some action to explicitly sense (sensir^g or knowledge
prod^cing actions), such that changes in the environment are not synchronized with the actions.
While the sensing is not performed, a value undefined is to be assigned to the fluent even when
the robot could physically sense it, thus, the robot must be able to represent uncertainty about
the information of the sensors. For non-sensing actions, we learn effect axioms that describe the
effect of the actions and for sensing actions we need axioms that describe the knowledge that may
be gained by executing that action [11]. Often the various sensing that needs to be done may not
be doable in all situations, thus, it would be also possible to learn when the sensir^g is possible
and in some cases even the value sensed, provided the sensing can be inferred from other fluents.
Consider a robot can perform the actions: check_door_lock, f lip_lock and push_door.

• If the robot performs the action check_door_lock, it will know if the door is locked or

not.

• If it performs f lip_lock then the door becomes locked (resp. unlocked), if it was previously
unlocked (resp. locked) .

• If it performs pz^sh_door when the door is unlocked, the door opens.

When the sensing action is not performed, the outcome of actions that depend on the sensed
information might become non-deterministic. For instance, the robot can perform the action
push_door when it does not know whether the door is locked, and still the door might be
opened in the resulting situation. Thus, any learned rule will be only valid for the cases where
the robot knows explicitly that the door is locked, whereas the decision for the rest of examples
becomes undefined.

Unlike hidden actions, sensing actions are executed by the own agent to explicitly sense a
piece of information. However, in some cases, the sensing actions can be expensive and their
execution must be minimized. In this case, learning must cope with the uncertainty in the values
of fluents.

8.4 Actions with duration and delayed effects

We have so far assumed that all atomic actions are instantaneous and have instantaneous efl'ects.
In real domains, we can find other types of actions:

• Durative actions.

• Actions with delayed effects.

• Actions with sequential effects.
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The topics of delayed ef%cts and actions with duration have received so far little attention
in the Reasoning about Actions literature [57, 48]. In general, a theory of actions in which all
actions and the effects are instantaneous is not enough to cope with some real domains.

Most actions take time, e.g., picking up a block, going from one location to another. The
trick, as observed in [104], is to conceive of such actions as processes represented by fluents, and
to introduce durationless actions which initiate and terminate these processes. This allows to
represent actions with duration and still respect the form of the Situation Calculus: programs.
Let us consider the action of picking a block. We have instantaneous actions start_ pickup(^)
and end_ pickup(^), and the process of picking up ^ is represented by the fluent picking_ up(^).
Action start_ pickup(^) causes the fluent picki^g_ up(^) to be true, end_ pickup(^) causes it to
be false. In those situations at which picking_ up(^) is true, we can describe those properties of
the world which must be true during the evolution of the process picking_ up, or even, another
action could interrupt the process while it is being executed.

This allows that a big deal of behaviors are representable in the Situation Calculus. For
instance, assume a room has a door with a spring latch. This is easy to do in the Situation
Calculus if we view the action of turning and holding the latch open, which intuitively would
have a duration, as a composite of two instantaneous actions, turn_ latch(t) and release_ latch(t).
The door can be opened by turning the latch, but the agent must keep the latch turned, i.e., the
action must be executed for some time, for if not, the spring loaded mechanism returns the latch
to its original position. The "concurrent" latch turning and door pushing causes the door to
open.

On the other hand, effect propagations usually incorporate very small delays. If some change
occurs after the end of an action, then there must be some underlying process going on. By
considering this change as a delayed effect of the action, one can sometimes abstract away the
details of the process and still be able to obtain an adequate description [57], that is, assuming
that the effects are simultaneous and instantaneous. Abstracting small delays is often convenient
because the resulting model is simpler or there is no actual knowledge on the delays for providing
an accurate model, otherwise they must be explicitly represented. The problem is to find out
when this is the case. In general, the delays should be considered explicitly in a theory of delayed
causation.

Some extensions exist to the Situation Calculus that model delayed effects similarly to du-
rative actions. When a fluent is known to be a delayed effect, we can use a similar strategy to
that used for actions with duration, where a new fluent is added to mean that the eífect is "in
progress". This is necessary if other actions can happen in-between that cancel the efFect. An ex-
ample due to Gelfond, Lifschitz and Rabinov of a delayed effect is a pedestrian light, which turns
green 30 seconds after one presses the button at the crosswalk. This domain is represented in
the narrative formalism TAL-C [57] as follows (CT should be read as "changes to true", [t, t+ i]^

denotes that ^ is true along the interval, whereas [t]^ refers to a single time-point):

depl CT(pressed n^tick) ^ R([t + 1]tick)
dep2 CT([t]tick) n[t, t + 29]tick ^ R([t + 29]color=green)
dep3 CT([t]tick) n[t, t + 58]tick ^ R([t + 59]color=red n^tick)

Press is a durative action, so that Pressed is a fluent that will be true while the Press action
is performed, that starts the "ticking". If the ticking goes on for 30 seconds, the pedestrian light
becomes green (dep2). Pressing the button a second time will not result in a second period
of green. This represents an interaction between a delayed ef%ct of one action and a second
intermediate action.

•
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Finally, we can also find actions that produce seq^cer^tial e, f,^ects over time, where the propa-
gation of ef%cts takes place in a particular ordering. When the intermediate situations have to
be explicitly recorded, the action theory must predict the sequence which requires a theory with
explicit delays. In cases like a spring that immediately comes to its initial position, the delay
between the effects must be explicitly stated, otherwise the resulting state would be inconsistent.

Similarly, in the pedestrian light example, we have that the light switches back to red after 20
seconds (dep3).

However, the ability to represent the effects of durative actions or delayed effects, is not
enough. In general, they represent a harder problem from the point of view of the observer than
for the representation methods. The observer must know which of the actions need some time

to execute, otherwise no instantaneous effects will be observed, the execution will be labeled as
failed, and the eventual effects will not be related to the action. Furthermore, from the point
of view of an observer, it is not clear if we can consider a fluent that changes without explicit
action as a delayed effect or as an exogenous change. For long delays, we still do not know which
of the previously executed actions is responsible for it, for instance when some situations are
created between the cause and the delayed ef%ct. However, this requires advanced identification
methods and the ability to make experiments in the domain.

8.5 Conclusions

To our knowledge, concurrent actions have not been paid much attention when learning the
effects of actions. However, most scenarios in the real world include the concurrent execution of
basic actions, hence it is important for a learning agent to be able to represent and learn from
them. In general, concurrent actions make the learning process harder, where additional actions
(cancelling or not) are to be used as preconditions for the executed actions. In this chapter,
we have shown how to incorporate concurrency to the Situation Calculus to learn the combined
effects of multiple actions and showed it in small representative domains that cover the different
types of interactions between actions shown in the literature.

On the other hand, it is important to have a representation method that allows to represent
and reason with exogenous actions. In particular, the Situation Calculus deals with these actions
and their effects in a very natural form. We have also seen how it is sometimes possible to learn
about such exogenous effects. But, in practice, the quality of the learning results is intrinsically
related to the capabilities of the observer. The major task of the observer is to identify the effects
of his actions from exogenous effects caused by hidden actions.

Similarly, actions with duration or delayed efiects are representable into the Situation Calcu-
lus and other action formalisms, however, the main difficulty is to know which actions have such
durations or delays. Without this knowledge, the assumption that actions are instantaneous and
have instantaneous eífects may produce invalid theories [15, 103]. The learning of preconditions
for actions must be combined with a procedure for deciding which action was responsible for a
particular effect, however, this may result difficult in many cases. The ability of an agent to
interact with the domain during learning may reduce the uncertainty, through the execution of
additional experiments.

•
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Chapter 9

Learning declarative control rules for
planning

In this chapter, we consider the task of learning action-selection rules for planning where both
plans and the control rules are represented in the Situation Calculus. We show how the problem
of learning action theories and the problem of learning action selection rules relate to each other.
The use of Action Languages has a significant impact in the generality of the approach, so that
both tasks can be approached in a similar way.

9.1 Introduction

In AI Planning, a planner is given an initial state and a goal, and finds a sequence of actions
that maps the state into the goal. For instance, turning a configuration of blocks into another
is a planning problem in the Blocks world. Planners generally search through a list of domain
actions until a correct sequence of those actions has been found that can achieve the desired
goals. This problem has been tackled by a number of algorithms and in recent years substantial
progress has been made [133, 59]. However, the problem is still computationally hard and the
best algorithms are bound to fail on certain classes of instances.

An alternative that has been proposed is to use knowledge of the planning domain for guiding
the planning process [113, 2, 51]. Planners that rely on domain-dependent control knowledge can
outperform the best domain-independent planners. Search control information for the blocks-
world may say things like •

`pick up a misPlaced block if clear'
`put current block on destination if destination block is clear and well placed'

etc.

•

This control is completely domain-dependent but it is completely independent of particular
scenarios of the blocks world [76]. Similar control rules can be defined for many planning domains.
These hand-coded declarative constraints do not make explicit reference to the workings of
the planner, but only refer to the solution space like the constraints that define the original
problem instance, so that they can be used by fundamentally different planning architectures [51].
Furthermore, these constraints can provide dramatic reductions in solution times, for instance,
whereas 11 or 12 blocks seem to be the limit of current planners in the blocks world [2], the use of
such control rules allows planners to deal with instances involving up to 20 blocks in less than a
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minute. Declarative control achieves its ob jective in a very elegant way because the control rules
are quite intuitive and purely declarative. Such control knowledge is not always easy to provide,
in fact, developing the right control formulas is a non-trivial task even for simple domains.

Many planners include basic control rules to, e.g., avoid that an effect achieved in the cur-
rent situation is removed in the next situation. However, even such a basic control cannot be
assumed generally. For instance, in the blocks world, it does not make sense to achieve on(a, b)
and ^on(a, b) in two consecutive situations, however it does with clear(a) and ^clear(a), where
block a is cleared to put another block onto it. Some useful information can be extracted from an
analysis of the domain description in the form of invariants, type information, symmetry proper-

ties and so on [114, 40] that helps reducing the search. However, the above control information
for the blocks world is not included in the domain description, because it depends on a planning
problem, e.g., well_placed is not used to predict the ef£ects of moving blocks.

A natural question that was posed is whether this kind of declarative control knowledge can
be learned. Recent results have shown that it is possible to automatically acquire high level
declarative rules for action selection in planning in a purely declarative way. This problem has
been very recently tackled by Kautz and Selman [52], Geffner [76] and Khardon [60], among
others, using dif%rent schemes for representation and learning. More precisely, they deal with
the problem of learning how to solve a planning problem in a domain, given solutions to a number
of small instances of it. Learned rules must infer the action to be executed ba.sed on the current
situation where the action will be executed and both the initial and the goal situation, so that
the control encodes the solutions to a class of problems that diífer on both the initial and the
goal situations.

Previous works focused on learning control rules that are specific to the details of the un-
derlying planner being used [22, 131, 64], hence the control rules cannot be reused by other
planners. Declarative control makes it possible to separate the control information from the
implementation of the planner which is a clear benefit [113]. Other approaches require the user
to explicitly supply specialized background knowledge to the learner [60, 34]. For instance, we
need to introduce extra predicates like misplaced, to represent the idea that there is a block that
needs to be movéd. However, the complexity of building these predicates is at least comparable
to that of learning the control rules. In fact, the task of learning is somewhat to discover such
predicates that relate the current situation with the goal situation. Thus, background knowledge
for learning involves only the primitive predicates that appear in the domain description.

In this chapter, we consider the task of learning action-selection rules using Action Languages,
where both plans and the control rules are represented in the Situation Calculus. We show how
the problem of learning action theories and the problem of learning action selection rules relate to
each other. Indeed, learning action selection rules can be seen as the inverse of the former, where
the theory to be learned is included in the background, and the learned rules must infer the action
to be executed based on the situation where the action will be executed and both the initial and
the goal situation, rather than predict the resulting situation, based on the action executed and
the current situation. For the problem of learning action-selection rules it is assumed that a
correct action theory is provided.

We believe that Action Languages constitute a natural framework for this task. A language
that makes the notion of situation more central can provide a more compact description of the
observations, where multiple plans with diíferent goals starting at different initial situations are
represented in the Situation Calculus in a homogeneous way. We also show how it is possible
to easily incorporate a form of temporal logic to enhance the expressivity of the action selection
rules, with respect to previous approaches. And lastly, we analyze in detail the benefits and

•

•
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drawbacks of this approach and outlook future improvements.

9.2 Action-selection rules

There are two possible approaches to the task of learning search control rules. One where the
objective is to learn the planner, i.e., the control rules will substitute the planner ^after learn-
ing [60, 76]. This requires thousands of training examples and long training times. Furthermore,

the control to be learned can be quite complex and thus hard to learn. In the second approach
the control rules assist [52] but not replace search. We will focus on the latter approach.

Control rules found in the literature [2] are usually in the form:

when we move a vehicle, one of these conditions should be met:
the next location is the goal location for the vehicle
or there is an ob ject such that:

the ob ject is at the new location and needs a pick-up
or the ob ject is in the vehicle and needs to be unloaded

otherwise the vehicle is not moved

♦

•

•

•

Kautz and Selman [52] learn for each action in the planning domain, two complementary
concepts, "select action" and "reject action".

•"Select rules" indicate conditions under which the action must be performed.

•"Reject rules" indicate conditions under which it must not be performed.

They also distinguish two classes of rules to be searched, static and dynamic. Static rules
allow references only to the initial and goal situation, whereas dynamic rules refer also to the
current situation where the action will be selected/rejected. Static rules thus, determine actions
that should be selected/rejected always given a planning problem, whereas dynamic rules need
also the current situation to infer the best action to execute. Dynamic rules are needed when
actions have to be executed in sequence. The intuition of all these rules is that they encode
information about the difference between the current (and the initial) state and the goal state.

The use of explicit "reject" terms can be argued to be unnecessary, because they will theoret-
ically represent the negation of the conditions for the select rules. Without explicit reject rules,
those actions not selected are implicitly rejected. However, this needs that learned select rules
are complete, which is a strong assumption in most cases, when relevant information is missing
or the control required is complex and thus hard to learn. In general, reject rules allow some
degree of ^cncertainty in the search control rules. For instance, a planning agent executing the
action-selection rules can know that a particular action must be rejected and still does not know
which action should be selected, i.e., select is not defined. We will also see that sorrle control is
easier to learn for the reject rules than for the select rules and viceversa.

Khardon [60] deals with deterministic control rules where a unique action is selected at each
situation. We deal with non-deterministic control, where possibly several actions are eligible
at one situation, however, the planner is not forced to execute them all concurrently. Multiple
actions can be eligible at a situation, for instance, when multiple subgoals can be achieved in the
next situation or a subgoal can be achieved through more than one action.
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9.3 Extraction of examples from plans

Unlike traditional approaches that find examples of the select and reject concepts by examining

a trace of the planner, Kautz and Selman extract examples heuristically from solved problem
instances. First of all, a planner is used to generate a set of plans for some small instances of
a planning problem, and a set of positive and negative examples are extracted from the plans.
Ideally, positive examples should correspond to any action that contributes significantly to the
achievement of the goal, by causing some needed intermediate ef%cts, such that the goal becomes
"closer". On the contrary, negative examples should be those actions that make impossible to
achieve the goal, or at least undo some intermediate eífects, or introduce redundant states,
making the plans innecessarily long. In practice, the extraction of examples is purely he^cristic
and depends highly on the quality of the plans used. In [52] the heuristics is based on the notion
that there is a good chance that the particular actions that appear in an optimal solution must

be selected, and those that do not appear must be rejected. For the extraction of examples,
Kautz and Selman distinguish three kinds of actions:

1. A real action was executed at situation s of a plan.

2. A virtual action was not executed at situation s, and however its preconditions hold at s.

3. A mutex virtual action was not executed at situation s, its preconditions hold at s but
it is incompatible with any of the actions selected in s.

For dynamic rules, positive ^ examples are actions of class real and negative examples are
of class m^te^ virtual. The insight is that examples based on actions that do not occur are
less reliable than ones based on actions that do occur. Mutex virtual actions tend to be more
relevant than others because their preconditions and effects overlap with those of actions that
were executed. The condition of "executable" for negative examples is important, otherwise the
"select" rules will replicate the executability conditions of the actions. Two types of errors may
appear:

• False negatives or reject "good" actions.

• False positives or select non-optimal actions.

The quality of the plans [68] used for learning is a key factor. Ideally, plans should be o^timal,
i.e., without repeated or useless states, to avoid false positives. This means that the length of

the plan must be minimal. The use of optimal plans restrict in some cases the training set to

small instances of planning problems, otherwise finding optimal plans is a costly operation.

If the plans are not optimal, false positives might be generated. False negatives are produced
when there is a need for an action and this is not executed. To avoid false negatives, an action
should be selected at any situation where the action is relevant and could be executed (possibly
concurrently), although there are other actions that are also applicable. For instance, when
considering plans of length l, false negatives may appear due to the existence of alternative ^lans
of the same length. In this case, several actions are eligible at a situation, hence the alternative
plans should be provided. Alternative plans of different length, such that no one s^cbsumes the
other are not considered, because they are not optimal plansl.

1

•

•

•

1 We have that a plan ^ subsumes ^i if the former can be obtained from P' by removing some segments of ^i .
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If the alternative plans are not provided, then a heuristics like the mutex virtual condition is
essential to minimize the effect of incorrectly labeled examples. However, the mutex heuristics
alone is not strong enough and false negatives can still be produced. For instance, in the logistics
domain (section 9.4.4), when a truck must be used to drive a package to a different location and
there are two trucks at the current location of the package, the planner will just take one of the
trucks. As the actions are mutually exclusive -a package can be loaded only into one truck- a
negative example will be produced for the truck that is not used. This false negative can be only

avoided if the alternative plan is provided.

9.4 Learning action-selection rules in the Situation Calculus

In this section, we adapt the approach used for learning action theories for the purpose of learning
action-selection rules. In this case, input data corresponds to plans -situations in the Situation
Calculus-

s9 = do(al, do(a2, . . . , so) . . .)

such that holds(goal, s9) is true, where goal represents a conjunction of fluent literals. We create

an special term select (resp. reject) to be added to every situation of each plan, that can hold
or not at diíferent situations depending on whether an action was selected or rejected. The goal
has not to be exactly the same through all plans. For instance, in the blocks world, a goal
state corresponds to a particular arrangement of the blocks, that can involve diíferent positions
for each particular block. However, the plans must correspond to a same planning problem,
e.g., turning one configuration of the blocks into another. For this reason we add a constant
gi to represent each goal situation, so that information about the goals can be represented as
conventional facts instead of using a goal modality. Examples are represented by ground facts of
the form

select(a, p(só, gj), si) ^ reject(a, p(só, gj), si)

to mean that an action a was executed (resp. rejected) at situation si at any plan pj = p(só, gj),

where só is the initial situation of the plan and gj is the goal situation.

Terms select/reject are represented as special fluents in the Situation Calculus, in the sense
that they are not subject to the inertia law. The reason is that it cannot be generally assumed
that an action must be selected unless another rule explicitly says that it should be rejected. On
the contrary their values do not persist from one situation to the next, but depend on the inertia
of the conditions in the body, i.e., there is still a need for the action.

Now, it is straightforward to adapt the form of the Situation Calculus programs to be learned
for the action-selection task.

Definition 9.1 (Action-selection rules in the Situation Calculus) The form of the action-
selection rules in the Situation Calculus is:

select(a, p(só, gi), s) F- ^r+ (9.1)

reject(a, p(só, gi), s) E-- ^r- (9.2)

where ^r+ (resp. ^r-) does not mention the select (resp. reject) predicate and every occurrence
of the holds/^ predicate in ^r+ (resp. ^r-) is of the form [^]Holds(F', s), [^]Holds(F', gi) or
[^]Holds(F', só). o
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The description states that, in any situation, if the precondition holds then the action a will
be selected (resp. rejected). The final set of learned rules is output in the form of logic programs
which can be used by either the original planner or a variety of other recent planning engines.

The goal situation is usually a partial state, so that no particular value is assumed for non-

specified facts. In this case, no references to negative goal literals are considered. The execution
of a plan might complete the goal situation with values for other fluents that are not included

in any goal condition, however, we cannot include conditions of the goal situation that were not
provided in the definition of the planning problem, because these values are indirect results of
a particular plan. The representation of the goal situations as special situation constants not
connected to particular plans avoids it2. The initial situation needs not either be assumed to be
complete. In this sense, it would be also feasible to consider explicit undefined values for fluents
in the control rules if it contributes to a better planner. Every plan includes as background a
(possibly partial) description of the situations of each plan which is "computed" by the execution
of the action theory in the situations of the plans. For this reason, we use as background the
initial situations, the goal situations, the action theory of the domain and the inertia axiom.

We formally define the problem of learning action selection rules in the Situation Calculus.

Definition 9.2 (Learning Action Selection Rules in the Situation Calculus)
Given:

• A do^rtain descri^tion consisting of two nonempty sets: a set .^ of fluent names, and a set A of
action names.

• A set of plans ^Z^ starting at situation si and with goal g^

• A set E k of positive examples (ground facts) select(a^,P2^, s), representing observations for each
action a^ that was executed in any situation s E Pi; .

• A set E^k of negative examples (ground facts) reject(a^,^2^, s) representing observations for each
action a^; that was rejected in any situation s E^i^ .

• Background knowledge (BK), including holds/3 ground facts for fluents at every initial situation
si and every goal situation g^, the action theory of the domain in the form of a Situation Calculus
program together with axioms (6.6,6.7,6.8,6.9).

Find the most general Situation Calculus program H= (U^_iHák^) U(U^ 1Há^^) composed of axioms
in the form 9.1 and 9.2, such that:

•

•

(de+ E E k) BK U Hák^ ^ e+ (9.3)
^

(b'e- E E^k ) BK U Hák^ ^ e- (9.4)

and respectively

(de- E E^k ) BK U H^kl ^^e- (9.5)

(b'e+ E E k) BK U Hák^ ^^e+ (9.6)

where ^reject - select and viceversa. •
q

2An exception is those facts resulting of the application of constraints to the goal situation, e.g., ^clear(b) if
on(a, b) is true.
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The consistency condition avoids that select and reject rules overlap in the training set.

However, it might happen that search control rules óverlap -when applied to plans not used
for training- such that an action is both selected and rejected. These contradictions can be
managed by making rules mutually defeasible so that no defined answer is given for the action.

It would be also possible that multiple actions are eligible at one situation, that are mutually

exclusive. In this case, without additional control, the planner will take one of the actions

non-deterministically.

Control rules are non-recursive logic programs, hence extensional coverage testing can be
used to test the generality of the hypotheses. The description of the situations included in the
plans can be derived intensionally from the background. For efficiency reasons, we can use the

ca^csed/^ ground facts that describe the effects produced by the actions in the plans, instead of
the action theory of the domain, together with the inertia axiom. This avoids that many holds/^
facts are repeatedly derived to test the coverage of the rules.

9.4.1 Using a planner to generate the training set

A new generation of planning systems that formulate planning as a constraint satisfaction problem

has appeared that improve both speed and scalability [59]. Answer set planning [66] differs from

satisfiability planning in that it uses Logic Programming rules instead of propositional formulas.
The key element of answer set planning is the representation of a planning problem as a program
whose answer sets represent possible plans. An answer set planner operates by searching plans
that fit within a certain number of steps.

The planner we have used for generating training plans invokes a system for computing
answer sets (smodels [97]), several times with different values of n (length of the plan) until

some solution is found. Thus, we consider only optimal plans. Only planning problems with
solutions under a certain length were used to ensure that all problems could be solved in a

reasonable amount of time.
Plans for learning were generated by using a narrative implementation of the Situation Cal-

culus, so that every stable model of the program is a possible plan, i.e., a narrative. A predicate

happens/2 is added, similarly to the Event Calculus, to indicate the actions that happened at
each time point in a narrative. Action selection is carried out by so-called choice r^cles which is a

short-form for disjunctive rules, which non-deterministically select one of the executable actions.

situation(O..n).

• { happens(move(B,L),S) } :- block(B),location(L),situation(S),

executable(move(B,L),S).

executable(move(A,B),S) :-

situation(S),block(A),location(B),A!=B,

holds(clear(A),+,5), holds(clear(B),+,S),

hol^ds(on(A,B),-,S).

•
The specification of a planning problem consists of the descriptions of the initial and goal

situations. For instance:

init(s0). goal(g0).

holds(on(a,b),+,0). holds(on(b,c),+,g0).

holds(on(b,table),+,0). holds(on(a,table),+,g0).
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holds(on(c,table),+,p), holds(on(c,table),+,g0).

holds(clear(a),+,0).

holds(clear(c),+,0).

Plans are extracted from each stable model and converted to the non-narrative Situation
Calculus before learning, so that a situation constant is used for the initial and goal situations
of each plan.

Answer: 1

Stable Model:

happens(move(d,table),1) happens(move(a,table),2) happens(move(d,a),3) ...

holds(clear(c),-,0) holds(clear(a),-,0) ...

Answer: 2

Stable Model:

happens(move(d,b),1) happens(move(a,table),2) happens(move(d,a),3) ...

holds(clear(c),-,0) holds(clear(a),-,0) ...

The algorithm to extract positive and negative examples from these plans is depicted in Fig. 9.1,
where positive examples are real actions and heuristics like the mutex virtual condition are con-
sidered in step 6, which also considers the existence of alternative solutions to a same planning
problem.

1. initialize queue Qp to contain all plans p(só, gi)
such that no two plans subsume each other.

2. remove a plan p from Qr.
3. initialize queue Qa to contain all pairs (ai, s2)

where ai is an action executed at situation si of p.
4. remove a pair (a, s) from Qa.
5. add select(a, p, s) to E+.
6. add reject(a', p, s) to E- for all actions a' ^ a

that are (mutex) virtual at s and j^ (a', s) in an alternative plan.
7. unless the queue Qa is empty goto 4.
8. unless the queue Qp is empty goto 2.

Figure 9.1: Extraction of examples from plans

9.4.2 Using learned control rules to speed-up planning

The learned declarative constraints can be used by fundamentally different planning architec-
tures [51]. However, the form that the learned control is actually used depends on the particular
planner. For instance, control knowledge can be incorporated to an answer set planner in a purely
declarative form by encoding it as additic^nal constraints [66] that are specified as separate rules
and are simply added to the domain description. For instance, in the Blocks world, we can use
select rules as conditions for choice-rules whereas reject rules are used as constraints to avoid
rejected actions to be executed as well as a possible overlap of select and reject rules.

•

•

{ happens(move(B,L),S) } :- block(B),location(L),situation(S),goal(G),

select(move(B,L),S,G).
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.- block(B),location(L),situation(S),goal(G),

happens(move(B,L),S),reject(move(B,L),S,G).

•

By doing so, possibly several actions are eligible at one situation, however, the planner is not
forced to execute them all concurrently. In case of overlap of select and reject rules, undefinedness

is forced to avoid the contradiction.
The use of learned control rather than hand-coded one may introduce incompleteness and .

unsoundness into the planner, so that, when faced with a new instance of a planning problem,
the planner might fail to find a solution. Ideally, selected actions should be sufficient for solving
any instance of the planning domain. However, when no rules are applicable, or when the rules
are unsound, the planner might fail on some instances. Multiple causes are possible. Sometimes,
the training plans are not representative enough, or the noise in the extraction phase is high, or
it is just that the control to be learned has a complex representation to be learned. In general,
learning control rules that replace the planner is difñcult in general, so that some search is
unavoidable.

The alternative is to execute the planner without control rules. The existence of explicit
reject rules provides a third category of actions apart from selected and not selected actions, i.e.,

non-rejected actions. These are to be given preference over the rejected actions. Thus, several

situations are possible when applying the control rules in practice.

• Execute selected actions.

• Execute non-rejected actions.

• Execute all executable actions.

In using non-rejected actions, the planner is not so dependent on the completeness of the
select rules.

Figure 9.2: Application of the learned control

Despite this, unsound reject rules might still make the planner incomplete. In this case, the
control rules have to be refined with the failing plans. A refinement phase of learned rules is an
important factor to produce a robust planner, as showed in [52, ?6].

9.4.3 The Blocks world

Let us consider a possible planning problem in an scenario of the blocks world. The scenario
includes a description of the initial and goal situations (Fig. 9.3).

All possible plans of length 2 for this scenario are:

pl: do(move(b,a),do(move(a,table),s0))

p2: do(move(b,a),do(move(a,c),s0))
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holds(on(a,b),s0).

holds(on(b,d),s0).

holds(on(d,table),s0).

holds(on(c.table).s0)

holds(on(b,a),g0).

Figure 9.3: A possible plan in the Blocks world

From these two plans we can extract the following examples.

select(move(a,table),s0,p1).

select(move(b,a),do(move(a,table),s0),pi).

select(move(a,c),s0,p2).

select(move(b,a),do(move(a,c),s0),p2).

We see that two actions are eligible at situation so. Similarly we can generate the corre-
sponding negative examples, among others:

reject(move(c,a),s0,p1).

reject(move(b,table),do(move(b,a),s0),pl).

The negative example re j ect (move (a, table) , s0, pi ) is not considered because it is a pos-

itive example in the alternative plan p2. Following the mutex heuristics,

reject(move(c,a),do(move(a,table),s0),pi)

is a negative example, however

reject(move(c,e),do(move(a,table),s0),pl)

(where e is a clear block not related to the goal) is not considered because it is not incompatible
with move (b, a) .

Background for learning is enlarged with domain predicates block/1 and table/1 as well as
the predicate di,f,^/,2. A bias must be specified for the select/reject rules and for each action. The
use of structured actions and fluents makes possible to consider several levels of generalization.
For instance, it would be possible to allow constants in the place of variables thus focusing on
particular objects of the domain.

bias(select(move(+,+),+,+),

[holds(on(+,+),#,+), holds(on(+,-),#,+),holds(clear(+),#,+),

diff(+,+),table(+),not(table(+))]).

•

bias(reject(move(+,+),+,+),

[holds(on(+,+),#,+), holds(on(+,-),#,+),holds(clear(+),#,+),

diff(+,+),table(+),not(table(+))]).
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Valid control rules must contain at least one literal of the goal situation3. The built-in
predicate remove/3 can be used to remove from search those hypotheses that are not well-formed.

remove(select(_,_,G),Body) :- not in(holds(_,_,G),Body).

remove(reject(_,_,G),Body) :- not in(holds(_,_,G),Body).

•

•

In the planning literature, the use of control rules is enhanced with the inclusion of additional

predicates, so that the complexity of the temporal formulas is kept small. From the point of

view of learning, where we do not assume the presence of such background predicates, e.g., that

a block is well-placed and so on, rules need additional literals to express the same meaning, thus

some of the clauses may be lengthy. Some literals are added just to introduce new ob jects in the

clause, whereas others express some properties about those objects. For this reason, we need to

allow a high number of literals in the body of rules. A very important factor is then to constrain

the search space as much as possible. This means to make the bottom-clause as short as possible

without removing the solution from the search space and consider only well-formed clauses.

Prune statements are extremely useful for stating which kinds of clauses should not be con-
sidered in the search. For instance, the bottom clause might also contain those literals that
are strictly derived from the executability conditions of the actions. As such, they will not be
used for discrimination -negative examples always correspond to executable actions that were
not executed- but increase the search space significantly. They should be kept only when they
introduce additional relevant variables to those of the action in the bottom clause. For instance,
in the following rule:

select(move(A, B), . . .) F- clear(A), . . .

clear(A) is a condition for the execution of move(A, B) and no new variables are introduced.
These literals can be removed from the bottom clause before search.

On the other hand, so-called invariants are statements that are true in the initial situation
and whose truth is preserved by the application of every action. Algorithms for computing such
invariants have been given, among others, in [114]. These invariants can be of help to prune the
space search. Such information can be provided to the learning method in a declarative form
through mode declarations or prune statements. Let us consider the following invariants for the
Blocks world in Fig. 9.1.

^^ z ^(on(z, ^c) V on(^, n))

y^ u --^ (on(z, u) V on(z, y))

-^ on(y, y)

-^ (on(z, z^) V on(^c, z))

-^ (on(y, z) V on(y, table))

-^ (clear(z) V on(^, z))

Table 9.1: Invariants for the Blocks world

(9.7)

(9.8)

(9.9)

(9.10)
(9.11)

(9.12)

^ For instance, invariant (9.9) deals with literals in the form holds ( on (A, A) ,-, S) , which are
not of interest and introduce an overhead for the search process. To avoid these useless literals,
we add a prune statement like the following.

3We only considered dynamic rules because static rules are a particular case of the former. Thus, no references
are made to the initial situation of the plan.
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prune(Head,Body) :- in(holds(on(A,A),_,_),Body).

Invariant (9.10) avoids symmetric references.

prune(Head,Body) :- in(holds(on(A,B),_,C),Body),in(holds(on(B,A),_,C),Body).

Invariants (9.7, 9.8 and 9.11) represent typical functional dependences, e.g., once a block z
is onto a block u, the former cannot be onto a third block y, and so it is redundant condition.

prune(Head,Body) :- in(holds(on(A,_),+,8),Body),in(holds(on(A,_),-,B),Body).

prune(Head,Body) :- in(holds(on(_,A),+,B),Body),in(holds(on(_,A),-,B),Body).

Further pruning conditions are derived from relations among fluents (9.12).

prune(Head,Body) :- in(holds(on(A,B),+,C),Body),in(clear(B),_,C),Body).

prune(Head,Body) :- in(clear(B),+,C),Body),in(holds(on(A,B),_,C),Body).

The training set consists of the optimal solutions (including alternative plans) to a small
number of planning problems consisting of up to 4 blocks requiring between 2 and 6 steps.
Under these conditions, 6 rules were learned that covered 42 of the 47 select examples and 164
of the 169 reject examples. The rest were returned without generalization4.

select(move(A,B),C,D) :- holds(on(A,B),+,D),table(B).
select(move(A,B),C,D) :- holds(on(A,B),+,D),

holds(on(B,E),+,C), holds(on(B,E),+,D).

select(move(A,B),C,D) :- holds(on(A,E),+,C), table(B), holds(on(F,E),+,D), diff(A,F)

reject(move(A,B),C,D) :- holds(on(B,A),+,D).

reject(move(A,B),C,D) :- holds(on(E,B),+,D), diff(A,E).

reject(move(A,B),C,D) :- holds(on(B,E),+,D), holds(on(B,E),-,C).

The meaning of the rules is:

• The first rule represents the particular case where the table is the goal location of a block.

• The second rule selects the action because the immediate effeĉt also holds in the goal and

block B is well placed.

• In the third rule, block A should be moved onto the table if it is currently on a block E
and there is a third block F that is on E in the goal. This rule is particularly interesting
as the table is always a clear destination for blocks that must be temporally moved to any
location dif%rent from the current one.

• The reject rules just avoid that additional actions are executed. In particular, the second
reject rule rejects the action because a diíferent block other than A should be over B, and
in the third reject rule because block B is not well placed according to the goal.

4ILP algorithms compute accuracy over literals of the target predicate, e.g., select/reject. Theoretically, a
rule might be very frequent in a single plan but rarely applicable in others, thus the support of the rule is very
dependent on that plan. It is important that action-selection rules are general across multiple and diverse plans.
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•

Some rules are missing, for instance, one to express that a block must be placed onto the
table because the block immediately below is to be clear in the goal situation or on a different
location. The analysis of the plans used for training revealed that these situations were not very
commonly represented.

However, most importantly, the rules are not generally applicable when more than two blocks
are to be piled up in the goal situation. When this is the case, the condition "well placed" of
the first select rule does not work properly, and we should obtain different versions of the above
rules for towers of four, five, etc.. blocks. As pointed by Khardon [60], a partial stack of blocks
may have all its goal conditions satisfied while being above a block that must be moved since it
belongs to a different stack. In such case all these blocks must be moved (Fig. 9.4).

D

current Goal

Figure 9.4: Another planning problem in the Blocks world

s
This can be avoided if the rules that select the blocks to be moved, move the blocks in the

correct order [76]. For instance, in Fig. 9.4, a possible plan is:

{move(d, table), move(a, table), move(d, a), move(b, d)}

•

In this case, the subgoals to achieve -i.e., the facts that are dif%rent in the initial and goal
situations- are on(b, d) and on(a, table) (Fig. 9.5). The learned rules select the action move(b, d),
however, this must be delayed until the blocks under d are all well placed. Unfortunately, a
negative example will be generated for move(b, d) at the initial situation that avoids to learn one
of the rules above5.

move(d,table)

on(b,d) ^ move(a,table) on(a,table)

move(d,a)

move(b.dl

Figure 9.5: Pending subgoals and their associated actions

•

Furthermore, the exact precondition for the select rule cannot be expressed without special-
ized background predicates. When a plan for the scenario in Fig. 9.4 is used for training, a more
specialized version of the second select rule is learned, that is not generally applicable. Note,
however, that the third reject rule, that avoids that a block is moved onto a block that is not
well placed, is still learned, which avoids b to be moved onto a not well-formed stack. Thus, the
existence of explicit reject rules provides a third category of actions apart from select rules, i.e.,

5Note that the negative example will be also generated using the mutex heuristics, given that move(b, d) and
move(d, table) are applicable and mutually exclusive.
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non-rejected actions, that the planner can use to find a plan. However, this makes that some
search is unavoidable apart from the control rules. As pointed by Geífner [76], a simple policy in
which all blocks are put on the table and then stacked in order into their target positions would
be more ef%ctive in these cases. Note that this strategy would be only learned if the training
plans were generated according to it, however, the planner used for generating the training plans
search for optimal plans and the mentioned strategy does not guarantee minimality.

Geffner [76] uses the enhanced expressivity of Description Logics in (`don9*.(ony = ons)) to
express that "all blocks at the goal situation, are on the same locations than at the^current situ-
ation". However, the added expressivity of Description Logics makes that the space of concepts
to be searched grows significantly with respect to logic programs, which is intrinsically large.
Khardon [60] supplies the learner with support predicates like inplacea/1 and above/2 which
allows to represent the concept well_ placed.

G(on_table(^1)), on_table(^l) -^ inplacea(^1)

inplacea(^2), G(on(^1i ^2)), on(^1, ^2) ^ inplacea(^1)

where G represents the goal situation. However, it is not obvious how this kind of control can
be learned without extensive background knowledge or more expressive languages.

If we add the relation above/2 to represent the transitive closure of the relation on/2, we
still need universal quantification in the select rule's body, because we need to refer to all the
blocks under b. Goal ordering information [61] can be also used to find a plan. For instance, in
Fig. 9.5, the subgoal on(a, table) must be achieved before on(b, d). This ordering could be used
by the control rules so that some control rules are given preference over others. We will consider
all these issues again in section 9.6.

9.4.4 The Logistics domain

Let us consider again the Logistics domain [130] which has been considered a benchmark problem
in the planning literature. The problems in this domain typically start off with a collection of
ob jects at various locations in various cities, and the goal is to redistribute these ob jects to their
new locationss (Fig. 9.6).

I os-central

holds(at(pkg l,pgh-pos,so).
holds(at(apn I,pgh-aitport,s0).
holds(at(pgh-tntck, pgh-pos,s0).
holds(at(bos-truck,bos-ai rport), so).
holds(at(apn 2,bos-ai rport),s0).

^

^

bos-airpo

holds(at(pkg I ,bos-cenval,g0).

Figure 9.6: A possible plan for the logistics domain
•

The background is the same we considered in section 6.4.4. More elaborated predicates like
diffcity/^ and samecity/2 which take two locations as arguments were included because they are

6Location of vehicles are not considered part of the goal.
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s

used usually in the domain description and substitute a longer combination of incity/2 and di, f^`/^

literals. These features [39] are useful for learning as they make clauses shorter and thus easier
to learn7. All ob jects aífected by actions should be included as arguments of these, -for instance,

with action fly(plané, from, to) where the f rom argument is not strictly needed. By doing so,

more relevant variables are introduced in the bottom clause without need for additional literals.

Logistics is a domain intrinsically parallel, where multiple vehicles can be moved concurrently.

Indeed, the combinatorics of the domain arises from the problem of finding all ways to interleave
the movements of packages and vehicles [51]. Concurrency is also possible if the scenario includes
a single package that must be taken to a different city and the truck at the destination city is not
at the airport. In this case, the action of driving the truck to the airport of the goal city can be
interleaved with the subgoal of flying the package to that city. For concurrent plans, minimality

of plans must be considered also in the number of actions executed at each situation, where only
actions needed to achieve the goal must be executed to avoid false positives. Thus the planner
must find a plan that minimizes the parallel length, i.e., the number of time steps in a plan, and

then the seq^cential length, i.e., the number of actions, by removing unnecessary actions [37]. To
minimize the sequential length, we use the cardinality constrains of smodels to limit the number

of actions included in each stable model8, for instance:

{ happens(A,S): actsit(A,S) } slen.

•

•

where slen is a constant provided as an argument to smodels. If concurrent actions are not

allowed in plans then, in those cases where actions can be executed concurrently, e.g., when

multiple subgoals can be achieved independently, the order independence must be given to the

learner by explicitly giving all possible plans, i.e., interleaving the subplans for several subgoals,

otherwise false negatives might be produced.

When concurrent actions áre allowed, the combinatorics is still present, and the number of
plans possible can be very big, hence it is very costly to obtain optimal plans for learning. A
policy^ to minimize the number of plans is to execute as many actions as possible in the first
steps of the plan. Once the concurrency is fully exploited, the final part of the plan is sequential.
Thus, the set of plans to be provided to the inductor is significantly smaller and still minimal.
For instance, the following plan with parallel length 6 and sequential length 9, is optimal and
all the actions are executed as soon as they are needed, thus no alternative plans need to be
considered.

1 lot(pkgl,pgh_truck), lot(pkg2,la_truck)

2 drive(pgh_truck,pgh_po,pgh_airport), drive(la_truck,la_po,la_central)

3 unlot(pkgl,pgh_truck), unlot(pkg2,la_truck)

4 loa(pkgl,apnl)

5 f ly ( apnl , pgh_airport , la_airport )

6 unloa(pkgl,apnl)

•

This reduces significantly the data to be provided to the learner and provides with the same
information as the whole set of plans. However, these operations can be very costly. Fortunately,
the virtual-mutex condition avoids the false negatives produced if not all orderings are provided,
given that actions that can be executed concurrently are clearly no mutually exclusive.

^It would be possible to analyze the domain description and build some predicates like this from conjunctions
of literals that appear frequently.

8An auxiliary predicate actsit/2 is used so that the scope of the constraint affects to every pair (ac-
tion,situation).
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Action

We generated 28 plans of parallel length between 3 and 9 steps, -with 3 cities, 3 locations,
1 truck and 1 plane by city, and 3 packages- where the goals involve the location of at most
2 packages. F^om these plans, we obtained positive (select) and negative (reject) examples for
each action (table 9.2).

lot/2

unlot/2
loa/2

unloa/2
drive/3
fly/3

Learning declarative control rules for planning

real virtual mutex virtual
29 54 29
29 31 26
21 26 9
21 21 21
39 651 103
21 420 90

Table 9.2: Positive and negative examples for the Logistics domain

Only 12 rules were learned that cover most of training examples and the rest were returned
without generalization.

select(unlot(A,B),C,D)

select(unlot(A,B),C,D)

select(lot(A,B),C,D)

select(lot(A,B),C,D)

select(unloa(A,B),C,D)

select(unloa(A,B),C,D)

select(loa(A,B),C,D)

select(f ly(A,B,C),D,E)

select(fly(A,B,C),D,E)

select(drive(A,B,C),D,E)

select(drive(A,B,C),D,E)

select(drive(A,B,C),D,E)

Their basic meaning is:

.- holds(at(A,E),+,D), holds(at(B,E),+,C).

.- holds(at(A,E),+,D), holds(at(B,F),+,C),

diff city(E,F), airport(F).

.- holds(at(A,E),+,D),

holds(at(B,F),+,C),

.- holds(at(A,E),+,D),
samecity(F,E).

holds(at(B,F),+,C), diff city(E,F), not(airport(F)).
.- holds(at(A,E),+,D), holds(at(B,E),+,C).
.- holds(at(A,E),+,D), holds(at(B,F),+,C),

samecity(E,F).

.- holds(at(A,E),+,D),

holds(at(B,F),+,C), diff city(F,E).

.- holds(in(F,A),+,D),

.- holds(in(F,A),+,D),

holds(at(F,G),+,E),

.- holds(in(F,A),+,D),

.- holds(in(F,A),+,D),

holds(at(F,G),+,E),

.- holds(at(F,C),+,D),

samecity(C,G).

holds(at(F,C),+,E).

samecity(C,G).

holds(at(F,C),+,E).

airport(C),

diffcity(C,G) .

holds(at(F,G),+,E),

• Unload a package from a truck if the current location is the goal location or if the current
location is an airport and the package in the truck must go to a different city.

• Unload a package from a plane if the current location is the goal location or if the package
in the plane must go to a different location in the same city.

• Load a package into a truck if it must be in another location of the same city9.

• Load a package into a plane if the goal location is in a dif%rent city.

•

•

•

•

9Note that in the rule for lot/2, the literal saTriecity(A, B) also replaces A# B.
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•

•

•

• Fly to the goal destination (an airport) of the package or to a city C if the package must

be in a location of that city.

• Drive a package to its goal location or to an airport if the goal location is in a dif%rent

city. Drive a truck to a location where there is a package that needs a pick-up.

In other words, the control to be added to the logistics domain consists of: if the ob ject's new

location is in the same city, it can be transported solely by truck, otherwise, if its new location
is in a different city it has to be transported by truck to the city's airport, then by plane to the
new city, and then by truck to its final location within the new city.

In some cases, rules for different actions have almost the same body. This happens when the
actions form a sequence that is dependent on a common subgoal, so that the action selection rules
for each one must somewhat replicate the need for the subgoal. For instance, when a package is
in a wrong city we need to drive the package to an airport. In this case, we need, at least, the
sequence of actions {lot(p, t), drive(p, lp, a), unlot(p, t)}, where lp is the current location of the
package.

Comparing the rules learried with hand-coded ones included in the planning literature [2],
some rules are missing or are not general enough. For instance, the rule learned for drive/3
when a package needs a pick-up, covers only those cases where the package must be driven to a
different location of the same city. The analysis of the plans used for training revealed that these
situations were not very commonly represented. No similar rule was learned for flying planes
to pick up packages, because cities are supposed to have one airplane. No rule was learned for
moving vehicles to their goal location because the location of vehicles do not form part of the
goal situation in the training plans.

With respect to re j ect, we obtained, among other, the following rules:

reject(unlot(A,B),C,D) :- holds(at(A,E),+,D),

holds(at(B,F),+,C), samecity(F,E).

reject(unloa(A,B),C,D) :- holds(at(A,E),+,D),

holds(at(B,F),+,C), diffcity(E,F).

reject(drive(A,B,C),D,E) :- holds(at(F,C),+,E), holds(in(F,A),-,D).

whose meaning is:

• Don't unload a package from a truck if it must be in another location of the same city.

• Don't unload a package from a plane if it must be in a different city.

• Don't drive a truck if there is a package that must be in the target location but it is not
into the truck.

The number of rules is much higher than for the select rules. The reason is that reject rules
correspond to the negation of the conditions in the select rules. In some cases, this makes that
more reject rules are to be learned, hence the learned hypotheses might be less reliable and
accurate. For instance, some reject rules, for which complementary select rules were learned, are
missing, or are overspecific. Some of the conditions are difficult to express or even not possible.
For instance, the condition that packages that are not referred to in the goal situation should
not be loaded into vehicles, cannot be expressed easily. Similarly, a reject rule for avoiding
movements of vehicles without a package, needs quantification over the packages to express that
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there are no packages in a vehicle. We can also have the contrary situation, i.e., the select rules
have complex conditions that are easier to learn when learning the opposite value. Without the
mutex heuristics, rejected actions correspond to actions that interfere with the actions executed
in the plan, whereas in other cases they correspond to actions not related to the goal. With the
mutex heuristics, the number of these negative examples is much smaller because they are only

generated when they interfere with the action executed in the plan. Actually, without the mutex
heuristics we obtained much less rules than with the heuristics.

As pointed in [52], an active learr^ing approach is applicable, so that it is possible to test the
rules on additional plans and take those examples where some of the rules failed, to augment

the training set and repeat the learning process. Some rules can be missing, overgeneral or
overspecific. For instance, in the Logistics domain, one of the rules for drive/3 is missing,
however, the missing rule is learned after some new plans are added.

select(drive(A,B,C),D,E) :- holds(at(F,C),+,D), holds(at(F,G),+,E),

diffcity(C,G), not airport(C).

Thus, the current set of rules determine somewhat what instances were missing previously.
By doing so, the control rules can be refined successively so that a robust planner is obtained.
Plans for testing the rules are generated randomly, however, the refinement process could be

made shorter if the additional plans are carefully selected. In section 9.6, we consider this issue
again.

The form at which plans are generated for learning may produce diíferent control rules in

some cases. For instance, let us consider a package that is to be transported to another city but
there is no a truck in the airport waiting for the package. Then, if the action of moving the truck

in the goal city to the airport is performed as soon as possible or is delayed until it is the only
eligible action, the positive example will be covered by different control rules, namely, "move the
truck to a location in the same city where a package must be loaded" or "move the truck to the
airport if there is a package in another city that must be in this city at the goal situation".

On the other hand, some particular situations were not revealed by the rules mainly because
in the plans used there is a single package, a single plane and a single truck by each city. Indeed,
the learned rules produce optimal plans when a single package is to be transported or when there
are no conflicting goals. For instance:

• When there are two packages at the^same location of a city, that must be driven to different

locations in the same city, a shorter plan is obtained if both packages are loaded and then

transported, rather than loading and transporting each of them separately. Indeed, this is

the plan produced by the learned rules.

However, if there are two trucks at that location, the control rules should load each package
into a different truck so that the movement of trucks can be executed concurrently. A
planner using^the learned rules, might load both packages into the same truck.

• When there is a single truck in a city that contains a package that must be transported,
and there is another package that needs a pick-up, the planner has two goals that are
mutually exclusive, so it has to take one of them. Let us suppose the optimal plans require
to pick up all the packages before. In this case, the control rules need to be applied in
a particular ordering, otherwise the rule for drive(t, _, l), when l is the target location
of the package that is in the truck, must include as condition that there is no a package
in the same city that needs a pick-up, however this cannot be expressed with the normal

•

•
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quantification of logic programs. Note however, that the corresponding reject rule can be
learned with the normal quantification, which avoids non-optimal actions to be executed,
however this requires some blind search to find the intended plan.

r

s

• In all the plans of the Logistics domain that we have considered, there is a single truck by
each city. Let us consider a situation where a package needs to be loaded into a truck and
several trucks are at the same location. In this case, the package needs to be loaded into
any of them. However, one of the control rules learned expresses that a truck must not
be moved while there is a package that needs to be driven to another location of the same

city, and other that the package must be loaded into all of them. Thus, when the rules are
applied, they select to load the package into every possible truck, so that the planner will

take just one of them. This is so because both the package and the truck are arguments
of the actions that appear in the head of clauses, hence they are universally quantified.
As a first consequence, some rules for the action lot/2 will not be learned if all but the
truck actually used in the plan, were considered negative examples. Unfortunately, these
negative examples are generated even with the mutex heuristics, because a package cannot
be loaded into two trucks at the same time. What we actually want to express is that at
least one of the trucks must wait for the package and that the package must be loaded into
one of the trucks. The problem can be avoided if all the alternative plans are provided,
i.e., the package is loaded into a diíferent truck in each plan. This seems the most natural
solution, however it relies on the completeness of the training plans. Note that, the learned
rules will still recommend actions that load the truck into every possible truck.

A second consequence is that non-optimal plans may be produced. For instance, let us
consider that two packages at a same location need to be transported. A package is loaded
into a truck, and simultaneously another truck has come to this location. As the learned
rules avoid trucks to leave while there are packages that need to be loaded, then only when
both packages have been loaded, the trucks can leave the location resulting in a non-optimal
plan.

These situations are the result of the existence of interactions between potential goals when
multiple packages are to be transported or when multiple vehicles can be used. The learned
rules still produce a plan for these cases, but not necessarily optimal. In some cases, the detailed
control would require highly complex rules, which are hard to be learned10, whereas in other
cases, we need to give preference to some immediate subgoals over others by using preferences
explicitly or by using more expressive languages. We will consider these issues again in section 9.6.

9.5 Control rules based on subgoals

In this section, we enhance the form of the action-selection rules to incorporate a restricted form
of tem^oral logic. We will use as our language for expressing search control knowledge [2] a
first-order version of linear temporal logic (LTL). The synta,x is obtained from first order logic
by adding temporal operators such as Until (Lf ), Ne^t (Q) and some of the derived operators,
such as Always (O) and Sometimes (p). It is shown that these temporal constructs are sufficient
to represent a large class of temporal information [23].

The form of the search control rules that has been considered so far suggest the action to
be executed/rejected. In the planning literature [113, 2), however, most of search control rules

loThis complex control is not included in the control rules found in the literature.
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are expressed in a form of temporal logic (with operators q , Q and Until) where the head is a
condition on some fluent, rather than a term of the form select(a) or reject(a). In this section, we
will analyze the eífect on learnability of changing the form of the search control rules with respect
to select/reject rules. These operators can be represented in the Situation Calculus through new
literals ( table 9.3)

always(e, v, p(so, s9), s) q

next(e, v, p(so, s9), s) Q'

eventually(e, v,p(so, s9), s) ^

until(e, v, e', v',p(so, s9), s) 1.(

Table 9.3: Temporal operators

where e represents a fluent, v a truth value and p(so, sy) a plan. These literals will becorrie now
the head of the search control rules.

Most of search control rules in the planning literature are expressed with the operator Q
(ne^t). Indeed, as pointed by Rintanen, all the Logistics control rules can be formalized with the
operator Q. We consider two dif%rent^ semantics for Q. In the first one Q^ is true at situation
i if ^ is false at i and true at i+ 1. By doing so, the operator Q^ actually replaces the select
rules for all the actions that might eventually produce ^ at the next situation. The efFect of this
kind of rules with respect to the select/reject rules is then similar to the ramification problem in
commonsense reasoning. In terms of compression, such rules will be supported by more examples
that previously were shared by the corresponding rules for each individual action.

(a) multiple effects (b) common effects

Figure 9.7: Subgoals for actions

Unlike this, when an action produces multiple effects, we just need a select rule whereas we
need one rule for each simultaneous effect. However, by applying a classification method, the
select/reject example will be covered just once, and the rule will correspond to just one of the
reasons to execute it. The order at which hypotheses are built determines which of the rules will
be learned. Let us consider a select rule for move(b, table). The need for the action is that the
table is the goal location of b, and that the previous location of b (e.g., c) must be clear in the
goal situation. We need two selection rules for move/2, one for each subgoal, but the example
will be assigned to just one of them, thus the example will represent just one of the reasons.
However, if we learn rules for the subgoals Qclear(c) and Qon(b, table), both reasons will be
supported. because we have an example for each subgoal.

When ^ is true in both the current and the next situation, the intended meaning is to
preserve ^. For instance, in the blocks world, once a block is in the position it must be in the
goal state, it should not be moved. In the logistics domain, for instance, as packages can be

s
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•

moved through dif%rent actions, a single rule avoids the current location of the package to be
changed, i.e., substitute multiple reject rules, one for each action that might change the location

of the package.

Let us consider again the Logistics domain. The new literals that represent the temporal
operators are built from the training plans by taking every pair of consecutive situations. The

heuristics for the extraction of examples is the same when dealing with subgoals instead of
actions. New bias/2 statements are added to the BK.

bias(next(in(+,+),#,+,+);[holds(in(+,+),#,+), ...]).
bias(next(at(+,+),#,+,+),[holds(in(+,+),#,+), .,.)),

•

•

•

•

We obtained 17 rules that cover all situations explained by the action-selection rules, among
others: ^ ^ ^

next(in(A,B),+,C,D) :- truck(B), holds(at(A,E),+,D),

holds(at(B,F),+,C), samecity(F,E).

next(at(A,B),+,C,D) :- holds(at(A,B),+,D).

next(in(A,B),-,C,D) :- holds(at(A,`E),+,D), holds(at(B,E),+,C).

next(at(A,B),+,C,D) :- holds(in(E,A),+,C), holds(at(E,B),+,D).

More rules are learned with respect to the select rules, because all the actions produce at
least two effects. In some cases, the subgoal rules achieve more compression, e.g., those that
generalize ovér the vehicles, so that multiple select rules would have to be learned. For instance,
the second rule is applicable both to planes and trucks, so that when the location of the vehicle
is the goal location of the package, then the next ef%ct will be to unload the package from the
vehicle, whether a truck or a plane. Similarly for the last rule, that is used to transport a package
to its goal location. In other cases, some conditions in the body are specific for the truck (resp.
the plane) an independent rule will have to be learned. For instance, the first rule is equivalent
to the select rule for lot/2. As a counterpart, the use of subgoals makes rules more difficult
to read sometimes, specially for at/2 that is applicable to both packages and vehicles. Note
also that the second rule for in/2 is a consequence of the rule for at/2 because of the invariant
at(Pl^g, Loc) ^^in(Pkg, V). This can be applied to many other cases. For instance, the action
drive(pkg, f rom, to) produces the eífects at(pkg, to) and ^at(pkg, f rom), thus the corresponding
ne^t rules are almost identical.

With respect to the second meaning of the operator Q, we obtained similar results. However,
in general, subgoal-selection rules favor the compression measure of learning algorithms and
coincide with the control rules used in the planning literature. With respect to the operator q

(always), we have that q^ is true at situation i if ^ is true at j for all j E{i, ..., n- 1} where
the goal holds at n. With respect to static select/reject rules, q^ produces the same effect but
starting from any situation in the plan and not from the initial situation. With respect to Q^,
since the scope of the latter is only the next situation, it needs that once the condition C for
the rule becomes true, C is true henceforth. For instance, a rule with the meaning "if a block is
well-placed, do not execute actions that move it". In this case, the operator O can be replaced
by Q without loss of ineaningll. However, if the condition of the rule can change but the rule
must be still respected, then the rules are different and a form of inemory should be added.

11 As to the planner's performance, Q might provide a more eíficient checking, because the control rule needs
to be executed only once -e.g., removing the action from the set of possible actions- while the scope for the rule
of Q will be executed at each state. However, this is very dependent on the planner used.
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The operator Until is a generalization of O where q^ - (^ Lf goal). The use of the Until
operator is illustrated with rules like if yov achieve C, then preserve it ^cntil C' is achieved. Our
semantics for ^Ll^' is only one of several possible ones, where ^' is required to eventually become
true. Formally we have that ^Lf ^' is true at situation i if ^' is false at i, ^' is true at some
j E{i, ..., n} and ^ is true (resp. ^' is false) at k for all k E{i, ..., j- 1} For instance, in [113],
Until is used in the Logistics domain to express: "a truck must stay at its current location until
a package that needs to be moved, is loaded into it". However, a similar rule can be obtained
with the operator ^.

Finally, the operator Q^ ( event^cally) does not add apparently too much expressivity to control
rules because it is too imprecise to assert "an effect ^ should be achieved in the future". Although
operator Q is not commonly used in the literature for expressing search control rules, it can assume
the role of identifying ficture s^cbgoals [84] based on the current situation and the goal situation.
For instance, in the Blocks world, we have that:

on(a, b), on9(c, b), a^ c^ Qclear(b)

where on9 refers to the predicate on/2 in the goal situation. The rule above identifies a future
subgoal to be achieved, that may need several situations to be achieved. In the logistics domain,
a subgoal to achieve when a package is in a wrong city is to drive the package to an airport.

in_^.urong_city(p), airport(a) ^ Qat(p,a)

In this case, the same control can be also expressed with the basic action-selection rules for the
sequence {lot(p, t), drive(p, l, a), unlot(p, t)}. However, subgoal identification can be interesting
when the connection between the current and the goal situation is not obvious, but it is with
respect to the subgoal. The combined use of these identified subgoals together with the action-
selection rules may increase the quality of the control, so that a control rule can refer to future
subgoals and not only to the final goal situation.

Let us consider Fig. 9.8. In this case, the only action to select is move(c, table), however this is
not directly related to the final goal clear(a) unless predicate above/2 is considered. Any attempt
to learn this control directly will be dependent on the number of blocks piled, as happened in
Fig. 9.5. The final goal clear(a) needs previously clear(b), but unlike Fig. 9.5, clear(b) is not
included in the . goal situation. Without a predicate above/2, it is not obvious how to express
that all blocks above a must be removed. However, we can use control rules to find a necessary
subgoal of clear(a):

on(b, a), clear9 (a) ^ Qclear(b)

because clear(b) has a clear relation to the final goal unlike move(c, table). Given this new
subgoal, we can now learn that:

on(c, b), clearS9 (b) ^ Qclear(b)

If there is a block d over c, we need to identify previously clear(c) as a subgoal of clear(b):

on(c, b), clearsy (b) ^ Qclear(c)

where the scope of the operator Q is delimited by clears9(b). Note that the above rule can
be applied iteratively over each new subgoal, so that we get a sequence of subgoals where the
last one is the first to be achieved, thus the pile of blocks is unstacked in the correct ordering.
However, the practical application of this approach will require further study.

•

•

•



9.6 Discussion 149

clear(B) ^ clear(A)

•
current Goal

Figure 9.8: Subgoal identification

•

9.6 Discussion

In this section, we review some issues that must be considered to improve the quality of the
learned control.

Concurrent actions

Khardon [60] deals with deterministic control rules where a unique action is selected at each

situation. We deal with non-deterministic control, where possibly several actions are eligible at
one situation. In many cases, these actions can be executed concurrently to achieve independent

subgoals, e.g., in the Logistics domain. However, there are no so-called cancelling actions or

actions that must be executed concurrently. According to the action-selection rules, actions
that must be executed concurrently are not distinguished from multiple eligible independent

actions. Thus, when multiple select rules are fired at a situation, the planner could execute them
all concurrently, or just a subset. Unfortunately, some actions might be cancelling for others or
even contradictory. For instance, actions a and a' can be eligible and however a' cancels a. Thus,
select/reject rules are needed that work over non-atomic actions, i.e., selecting a set of actions
that m^cst be executed concurrently. Cancelling actions could be obtained from the domain
description añd added explicitly to the control rules. The set of possible compound actions, i.e.,
actions that must be executed concurrently, could be also extracted from the domain description
and the ef%cts produced in the plan.

Limited expressivity of Horn programs

Most ILP methods deal with a particular subset of first order logic, where variables in the head are
universally quantified and variables in the body (but not in the head) are existentially quantified.
In most applications, these logic programs are enough, whereas in others the background is
carefully selected before learning (even building new predicates) to enhance expressivity.

The first limitation is that the arguments of the actions/fluents that appear in the head
of clauses, are universally quantified. Sometimes, it would be interesting that some arguments
of actions are existentially quantified, for instance, when a package can be loaded into several
trucks. Khardon [60] uses an special interpretation of decision lists, where only an instantiation
of the rules (in lexicographical order) is considered. If only a single action can be selected at each
situation, this approach works well, because it takes one of the possible eligible actions. This
type of control could be incorporated to the answer set planner in the form of constraint rnles:

{select(lot(P,T),S):truck(T)} 1 :- package(P),situation(S),...

that forces at most one instantiation of the action lot/2 to be executed in the current situation.
For the intended interpretation, we can also invent a new action predicate lot(p) to mean that
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a package p must be loaded into any truck. However, it would be possible to have other inter-
pretations, i.e., all packages must be loaded into a single truck, which would require to try all
quantifiers for the action arguments.

In other cases, ^cniversal q^cantification might be needed in the body of clauses, as we saw
in the blocks world and in the Logistics domain. For instance, the rule for drive(t, _, l) in the
Logistics domain needs to establish a preference between driving a package to the goal location or
driving to a location where a package needs a pick-up. When non-ordered rules are to be learned,
the select rules need the explicit use of quantifiers to express the same meaning. Decision lists
used by Khardon [60] can account for this kind of control.

select drive(...) if any package needs a pick-up
else select drive(...) if the next location is the goal location of a package

Bacchus and Kabanza [2] also use an ordered set of control rules. We could similarly impose
an order for the application of the control rules, so that these are to be learned in a particular
ordering. However, by doing so, the control becomes strictly seqz^ential because only one rule
is applied at each situation. Furthermore, the fact that control rules are to be applied in a
particular ordering, makes that rules cannot be learned independently and makes them lose part
of the declarative meaning.

The use of integrity constraints as a means of specialization (28] can also replace (partially)
the explicit use of quantifiers. For instance, the overgeneral rule "drive the truck to the target

location of the package contained in it" is specialized by the integrity constraint "there cannot be
a package in the same city that needs a pick-up". This requires to use reject rules to specialize
overgeneral select rules. Note that the select and the reject rule learned separately do not achieve
the same eí%ct.

Similarly, in the blocks world (with a predicate above/2), the following rules capture the
concept that the target block B is well-placed:

select(move(A,B),C,D) :- holds(on(A,B),+,D).

.- select(move(A,B),C,D),holds(above(B,E),+,C),

holds(on(E,F),+,D),holds(on(E,F),-,C).

where the constraint avoids that ..A is moved onto B when a block under it is not currently well-
placed. However, these approaches cannot be considered a general solution because variables can
be quantified in many diíferent forms. Thus, in general, more expressive languages are needed.

The need for quantifiers is a consequence of the absence of specialized background knowledge
like well_placed in the blocks world. In the planning literature, the use of temporal operators
is enhanced with the inclusion of these additional predicates, e.g., ^.vrong_city, well_placed and
so on, so that the complexity of the temporal formulas is kept small. However, as pointed by
Kautz and Selman [52] an essential part -and the most difficult- of the learning process is to
discover these p: edicates. From the point of view of learning, where we do not assume the
presence of such background predicates, it is important to consider additional expressivity in the
form of the search control rules. Geffner and Martin uses Description Logics [?6, 3], however,
the added expressivity makes that the space of concepts to be searched grows significantly with
respect to normal logic programs, which is intrinsically large. A promising idea is the use of a
constructive induction [39] approach that builds a set of new features both from data or from
the learned rules. In fact, from the learned rules for the Logistics domain, we can obtain the

•
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definition for specialized predicates used in the literature like in_ wrong_ city, in_ wrong_ location,

need_ to_ move_ by_ truck and so on, that could be used as additional predicates for learning.

Active learning

Active learning seems particularly relevant for learning control rules. Unlike other learning

applications, the whole space of instances is available, at least in theory, and we can easily
generate new instances of a planning problem. Thus, it is possible to test the rules on additional
plans and take those examples where some of the rules failed to augment the training set and
repeat the learning process. Unfortunately, there is no an oracle that will provide us with the best

counterexample or the most typical example, hence the additional plans are generated randomly.

Work in active learning has shown that just allowing the system to pick which example to

label next can greatly reduce the number of examples the user needs consider. A set of well-

chosen plans can reduce the refinement phase significantly by, e.g., identifying unexplored regions

of the space of possible plans, or providing good counterexamples. A possible approach consists

of analyzing the learned rules and altering conditions that appear in the learned rules. For

instance, the rule learned initially for drive/3 when no package is in the truck but there is a

package that needs a pick-up, was not general enough. By negating one of the conditions (e.g.,

di, f,^city) in the rule, we obtain a new planning problem that will produce a false negative. We can

use more general or more specific conditions on domain types, for instance, an airport instead of

a location, and so on. Another possible approach that does not consider the learned rules, is to

discover associations or patterns in the training plans, that help identifying plans that were not

considered for training. For instance, the following association says that there is always a truck

at the initial location of a package that needs to be moved.

^ at(pkg, loc), goal(at(pkg, loc')), loc ^ loc', ( j^ truck : at(truck, loc))

•

•

Similar associations can be obtained, for instance, "there is always a truck at the airport of

the goal city", "packages to be moved are never at the same city in the initial situation", and so
on12.

F^rther topics

The kind of search control rules we have explored shows the interestingness of declarative learning
methods for planning. However, the approach relies upon the fact that a connection can be
found between the current state and the goal state. For instance, in the 8-puzzle, search-control
rules recommend one of actions {north,south,west,east}, however, only some movements actually
contribute directly to the ob jective, while many others are necessary but apparently disconnected
from the goal. When such a connection cannot be found, no control rules will be learned or the
rules will tend to overfit the training data. The discovery and use of intermediate subgoals can
be a promising approach, as we showed in the Blocks world. .

In some domains, the first actions in any plan are taken almost randomly, at least the first
action, e.g., in the 8-queens domain, thus introducing noise in the training set. In this domain,
the goal condition is not provided as ground facts, because the plan is just to put the queens in
the locations referred to in the goal situation. In these domains, any control rule cannot refer to

12Some other associations of no interest are also found, for instance, "trucks are never in the goal situation",
etc..
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the goal situation. However, it is still possible to learn control rules based only on the current
situation.

In other cases, only weak control rules can be found, i.e., control rules that work in most
cases, but they are prone to fail in particular cases. However, this type of control would require
the planner to be able to recover from situations where the control rules have failed, and apply
full search locally.

9.7 Conclusions

Several authors have shown that it is possible to learn declarative control rules using inductive

learning methods. Our work is mostly based on those of Kautz and Selman, and Geffner and

Martin, that unlike Khardon's approach, do not use specialized background knowledge and do
not need large training sets.

Kautz and Selman report positive results in the Logistics domain, among others, using action-
selection rules with the mutex heuristics and the FOIL system. For instance, the following rule
captures the concept of "an ob ject that is not in its goal city".

^ Unload-Airplane (o p a) ^

(in-city a c) n(goal (at o 1)) n^(in-city 1 c)

Geffner and Martin focus on the Blocks world where they show the benefits of using a concept
language and take full advantage of the enhanced expressivity. For instance, the following rule
says to pick up a block if it is clear and its target block is clear and well-placed.

PICK ((b'on*y.(on9 = ons)) n(don9.clears) n clears)

However, the added expressivity makes that the space of concepts to be searched grows
significantly with respect to normal logic programs, which is intrinsically large. In the Logistics
domain, the space of concepts may become prohibitive. On the other hand, the control learned
needs to be extensively rewritten to be used by most planners. Other restrictions due to the
language, as the restriction to unary actions is also an obstacle for it to be applied to other
planning domains. In both works, the learned rules are refined selectively until a robust set of
rules is obtained. _. _ .

We have shown how the task of learning declarative control rules for planning can be refor-
mulated into our framework for learning action theories in a natural way. VVe believe that Action
Languages are better framed for this task because they provide with a natural and homogeneous
representation, as well as a solution to the Frame problem in the observations. Furthermore, it
is not obvious how to consider multiple plans for learning, in the commented works. We also
extended the form of the action-selection rules to consider a reduced form of temporal logic,
where the control rules select the next subgoal to be achieved. These rules are closer to the
control rules used in the literature and make that less control rules are to be learned that are
more generally applicable than the action-selection rules. We identified the importance of the
use of select and reject rules, and its combined use to enhance expressiveness.

We made an exhaustive analysis of the Blocks world and the Logistics domain. We were
able to learn the control rules for the Logistics domain used in the literature, from a small set of
examples, and identified some limitations as to expressivity and as to the optimality of the learned
planner. Similar results are obtained in other benchmark domains used in planning competitions,
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like the tireworld or the grid domains. Our current work includes a more careful and detailed
empirical evaluation of the approach, and the automatic generation of good counterexamples
from the learned r. ules to speed-up the refinement process. This task raises specific challenges for
current methods in ILP, mainly with respect to the limited expressivity of Horn clauses, when
no specialized background knowledge is assumed to be provided. The use of more expressive

languages [3] or the use of constructive induction methods [39] seem particularly relevant for this
task.

•
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Chapter 10

Related work

In this chapter, we will cover the most relevant work in the field of Dynamic system identifi-
cation [13], directly related to the objectives of this thesis. Dynamic system identification has
been studied in a variety of disciplines including control theory, neural networks, and automata
theory. The infe:rred model might correspond to a system of diíferential equations [129], a set of
production rules [124], or a set of states and transition probabilities [13].

10.1 Learning operators effects for planning

Many approaches exist to learning domain knowledge for planning [124, 87, 22, 103, 132, 99, 27,
7]. They learn or refine operator efFects through experimentation or from traces from experts'
problem solving. Most of these approaches fall somewhere between those aimed at building
a complete wor:ld model and those aimed at learning a complete behavioral policy. Some of
them require th.at the agent has initial approximate planning operators or just a weak initial
domain model [:132]. In many of them, most emphasis is put on the autonomy of learning, where
planning, learning and exploratory steps are interleaved [15, 124, 103, 132, 22], whereas others
combine a phase of exploration, e.g., with a wander program that records observations [7, 99],
and a phase of generalization carried out by inductive learning systems. The difference is that
the latter appro^aches consider the learning process and the exploratory process as two separate
processes, so that the learning algorithm has absolutely no control over the sample of labeled
examples drawri, i.e., they do not perform actions to control the system, and so learning is
not really active. Our approach falls into this second approach, i.e., to learn preconditions
for the actions and their ef%cts from a given set of observations, rather than with learning an
environment by acting on it. The methods of representation used include mostly STRIPS-based
operators [124, 22, 132], but also teleo-operators (TOP) [15], m^ltitokens [99], regression trees [7]
(decision trees with continuous variables) and so on.

LIVE [124] uses a dialect of first-order logic, where the prediction rules are very much like
STRIPS operators [36]. An special scenario of the Towers of Hanoi is presented that consists of
three disks and three plates. The disks have different sizes and they can be moved from one plate
to another according to some rules. An example of prediction rule may look like the following:

Condition INHAND(diskx)n^ON(diskx plate/table)
Action PUT(diskx plate/table)

Prediction ON(diskx plate/table)n^INHAND(diskx)
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It says that the action PUT can put a disk in hand onto a plate or the table if the disk is
not already there. When no relations are changed, LIVE will still create a new rule where its
condition and prediction will be the same and it says that if disk ^ is in hand and there is a disk
y on plate ^, the action will have no effect on disk ^, that is, disk ^ will be still in hand.

Condition INHAND(x)nON(y p)
Action PUT(x p)

Prediction INHAND(x)

Gil [22] presents an approach to refining a planner's incomplete knowledge base. Given a
knowledge base consisting of STRIPS-style operators -with a list of state features (or postcon-
ditions) that are added and another list of features that are removed by applying the operator-
her approach uses exploration and experimentation, so that an inductive learner is trained on
the instances of successful and unsuccessful operators and the states where the operators were
chosen to fill in missing preconditions and eífects. The example domain consists of crafting a
primary telescope mirror from raw materials, where operators are in the form:

(GRIND-CONCAVE (CLEAN
(params (<obj>)) (params (<obj>))
(preconds (preconds

(is-solid <obj>)) ( is-solid <obj>))
(effects ( (effects (

(add (is-parabolic <obj>)) (add (is-clean <obj>)))))
(del (is-planar <obj>))

(del (is-reflective <obj>))

(del (is-polished <obj>)))))

(POLISH (ALUMINIZE

(params (<obj>)) (params (<obj>))

(preconds (preconds

(and (is-clean <obj>) (and (is-clean <obj>)

(is-glass <obj>)) ( is-solid <obj>)))

(` (is-reflective <obj>)))) (effects (

(effects ( (add (is-reflective <obj>))
(add (is-polished <obj>))))) (del (is-clean <obj>)))))

Wang's OBSERVER system [132] is able to work from an empty knowledge base, using traces
from experts' problem solving to fill in the empty operator descriptions. The learned operator
GOTO-DR in a small robotics domain, when the observation in Figure 10.2 is given to the learning
module, is:

(operator goto-dr

(preconds ((<vi> door) (<v2> object) (<v3> room) (<v4> room))

(and (inroom robot <v4>)

(connects <vi> <v3> <v4>)

(connects <vl> <v4> <v3>)

(dr-to-rm <vl> <v3>)

(dr-to-rm <vl> <v4>)

(unlocked <vl>)

(arm-empty)

(inroom <v2> <v3>)

(pushable <v2>)))

(effects ((<v5> object))

((add (next-to robot <vl>))

(del (next-to robot <v5>)))))

•
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One of the lirr^itations of these approaches is that they assume pre-conditions are conjunctive
and they do not liandle domain noise. TRAIL [15] extends this work by allowing disjunctions in
the preconditions, noise in an action's eífects, and also durative actions. TRAIL uses so-called
teleo-operators (^['OP) [15] that are an action representation different from STRIPS operators,
which are appropriate to reactive agents. The TOP below describes the process of moving a
robot forward to the proper distance from which a construction bar cari be successfully grabbed.
The TOP also records the probability assigned to each side effect. TRAIL learns the probability
that an outcome of an action will occur but it does not allow the probability of the outcome be
dependent on the preconditions.

Action: move-forward

Postcondition: at-grabbing-distance(?x)

Precondition: facing-bar(?x) OR too-near-to(?x)

Side Effects: NOT(too-near-to(?x)) 100%

NOT(too-far-from(?x)) 100%

NOT(facing-bar(?x)) 10%

desJardin's l.'AGODA system [27] is also able to learn relationships between values of the
preconditions arid the probability that the action will succeed. However, like TRAIL, it only
learns whether or not the action will be successful.

More recentl.y, Balac's ERA system [7, 6] assumes that the agent first explores its domain
by taking random actions and recording state descriptions, and includes the ability to model
noise and the use of continuous variables in the action descriptions. For instance, the tree at
Fig. 10.1 identii.ies the environmental conditions that influenced a robot's ability to turn. The
tree includes nodes for each combination of roughness and rain that the robot encountered. One
of the main lim:itations is however that ERA is still restricted to predicting a single outcome or
effect of an action.

Figure 10.1: A Regression tree for a robot's domain

•

Oates [99] ].earn planning operators only from the agent's own past interactions with its envi-
ronment, using añ special representation method (multitokens) . He deals with noise introduced
by exogenous ^events and allows uncertainties associated with the outcomes of actions. For in-
stance, the multitoken below describes that a robot can pick up a block if it has not a dry gripper
and it is not holding another block.

(pickup * * NOT-GD NOT-HB) ^ (* * * * HB)
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IMPROV [103] learns procedural planning knowledge and supports complex non-instantaneous
actions (actions with sequential ef%cts). For instance, the following code represents the complex
effects of braking a car.

(a) Conditional Effects

IF current-operator(brake)

and weather(raining)

and isa(<c>,my-car)

and tires(<c>,worn)

THEN add skid(<c>)

(b) Sequential Effects
IF current-operator(brake)

and brake-pressure(<c>,0)

and isa(<c>,my-car)

THEN add brake-pressure(<c>,10)

remove brake-pressure(<c>,0)

IF current-operator(brake)

and brake-pressure(<c>,10)

and isa(<c>,my-car)

THEN add brake-pressure(<c>,30)

remove brake-pressure(<c>,10)

(c) Iterative Effects

IF current-operator(brake)

and isa(<c>,my-car)

and speed(<c>,<speed>)

and greater-than(<speed>,0)

and time(<t>)

THEN add speed(<c>,(<speed> - 5))

add time(<t> + 1)

remove speed(<c>,<speed>)

remove time(<t>)

EXPO, LIVE and OBSERVER share a similar STRIPS-like representation, thus, these sys-
tems sufFer from the limitations of STRIP-based formalisms. IMPROV and TRAIL allows com-
plex operator effects, e.g., they are able to cope with sequential effects, durative actions, or
exogenous eífects, however, they rely on procedural representations. This lack of declarative-
ness makes the results of learning very dependent on the particular formalisms and difficult to
transfer. Furthermore, despite teleo-operators [15] or regression trees [7] are more expressive to
representing action domains than traditional STRIPS operators, it is still not obvious how to
represent indirect effects, recursive efiects, cycles or exceptions.

With respect to the observations, in most approaches each example in, e.g., the blocks world,
describes the properties of each block before and after the operation, together with the subject of
the operation (i.e., the block to be moved) and its destination, so that each example consists of
a separate dataset. As a simple illustrative example, consider the two states before and after an

agent applied an operator as shown in Figure 10.2 where the delta-state is the difference between
the pre- and post-operator execution states [132].

Thus, positive examples must be extracted from narratives so that the information provided
by the narrative, i.e., the sequence of actions, is lost. As a consequence, they need the explicit
representation of unchanged properties from one particular situation to another (frame ^roblem).
In the Situation Calculus, positive examples are the individual effects of actions, so that learning
is done directly from the narratives, hence there is no need for preprocessing methods, and it
allows inference on narratives to, for instance, implement inertia, complete missing values, or
learn recursive effects.

On the other hand, some of the previous approaches use partially an ILP algorithm to gener-
alize action preconditions, however in most cases they use a diíferent representation method that
needs a translation procedure into a form that ILP algorithms can understand. For instance,

s
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2

c

(connects dr_12 rm2 rml) (dr-open dr12)

(connects d:r12 rml rm2) (unlocked dr12)

(dr-to-rm d:r12 rml) (inroom robot rml)

(dr-to-rm d:r12 rm2) (inroom c rm2)

(pushable c) (inroom b rml)

Ipushable b) (arm-empty)

(inroom a r.ml) (next-to robot a)

(a) Pre-state

(connects dr12 rm2 rml) (dr-opei

(connects drl2 rml rm2) (unlockc

(dr-to-rm dr12 rml) (inroom robc

(dr-to-rm dr12 rm2) (inroom c rr

(pushable c) (inroom b rml)

(pushable b) (arm-empty)
(inroom a rml) (next-to robot d^

(b) Post-state

Delta-state = add: (next-to robot dr12) del: (next-to robot a)

•

Figure 10.2: An observation of the state before and after the application of an operator that
moves the robot to the door.

in TRAIL, as instances are not directly in the format of positive and negative examples to be
covered, an special Prelmage predicate is used that is labeled as either positive or negative for
each state depen.ding on whether the corresponding instance was a success or a failure, with an
additional state argument to allow for generalization over situations. TOP preimages have to be
converted into a form that the ILP method Foil can use and once a concept has been learned
this is converted again into a TOP preimage. In other cases, the language used has not an easy
translation into first-order logic. Unlike this, the use of logic programming theories of actions,
makes that an ^^ction theory is learned in the same way as it will be used, thus there is no a
different representation for learning and another different for reasoning.

10.2 Lear:ning action models using ILP methods

In the ILP field; there are some approaches to learning dynamic systems [19, 53, 35, 88]. In the
approach of Feng in [35], examples are introduced for each situation and the sequence ordering is
implicitly represented by the sit^cation argument of the predicates in the example. The predicate
s^cc(S,S) is also defined to relate two consecutive situations. In the application domain, compo-
nents of a powe:r subsystem are equipped with sensors, and the sensor readings are transmitted
at regular intervals to the ground, for instance:

sensorl(s2,+).

The simulator starts with an initial state of the system and a component which is assumed
to be faulty. It then moves to another state which is a legal transition from the previous state.
After each transition, the states of components are evaluated and then propagated until the
system reaches ^a stable state, i.e., there is no change in the states of components through several
propagations. l:n each transition the atates of the sensors are recorded. A typical rule that is
learned is:

^ f ault(timeA):- succ(timeB,timeA), fault(timeB).

161

Although tl.lis rule is interesting because it describes the situation that a fault lasts over
time, it is operationally useless and it cannot help to detect faults from sensor readings. In
general, approa,ches that use the first-order features to merely represent the sequence in the set
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of examples have restricted ability to model dynamic domains because several strong restrictions
must be made about the behavior of the system. For instance, when literals of past states (other
than previous) become relevant, these are only introduced in a clause by means of chains of
s^ccc/2 predicate, thus the temporal interval between any consecutive situations is fixed. This
restriction does not make sense in most dynamic systems.

Bratko [19] describes an application of inducing qualitative models [62] of dynamic systems
from example behaviors using ILP methods. In [53] Sammut and Hume have studied a reactive
approach to learning of action sequences in a simulated robot world, that produces a theory
to recognize sequences of actions by describing the pre-conditions and post-conditions of each
action in the construction sequence.

However, the most relevant work in the ILP field is [88] that shows an approach to learn the
effects of actions using a logic programming implementation of the Event Calcnlns from observed
time traces of property values from an existing dynamic system. Background knowledge includes
domain core a^ioms (DSA) for Event Calculus, while domain specific axioms are learned from
a narrative of events. The DSA's determine which events trigger the state of particular fluents.
The initial state is given by facts like holds_at (on(block_b,block_a) ,+,0), whereas a narrative
includes separately the actions happens (move (block_a, block_b) , 5) and the effects. They reify
the truth value of fluents and unify the initiation and termination of properties into a single
predicate definition flips/3 to state that an event flips the value of a fluent, thus allowing to

use a single predicate for every learning task. Since the observations of an event calculus program
are recorded as different predicates from those that can be used to define legitimate DSAs, a
theory revision mechanism provided by logical back-propagation is applied, where examples of
the observational predicate holds are used to augment the definition of a related predicate f li^vs.
The work includes experiments in the blocks world. A typical rule has the following the form:

flips(move(X,Y),on(X,Y),+,Time) :-

holds_at(clear(X),+,Time),holds_at(clear(Y),+,Time),...

which is very similar to the corresponding effect axiom in the Situation Calculus but for a
narrative formalism. Moyle and Muggleton showed that it is possible to learn Event Calculus
programs in ILP. Our work extends theirs for learning rules about action and change, and it is
intended to be a general study on the learnability, in particular in formalisms based on Logic
Programming. That includes how to cope with inertia, indirect effects, exceptions to general
rules, concurrent actions, non-deterministic and other complex eífects of actions, and so on.

10.3 Reinforcement Learning

Reinforcement learning [126] has a different objective other than learning a model for the effects
of taking actions but learning to act in the environment, hence it requires a complete and correct
model for the effects of each action. In reinforcement learning, simply stated, the learned rules
tell you what action you should take in any state. A reward is assigned to each action after
execution, so that the sum of rewards from all the visited states is guaranteed to be maximized.
The current known learning algorithms back propagates the reinforcement values from the goal
states to the non-goal states. The model of the system learned in this fashion is in the form
states to actions, rather than states and actions to next states, as in action model learning.

•

•

•

•
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10.4 Inference of deterministic finite-state automata

Dynamic system identification can be seen as inference of deterministic finite-state automata from

sequences of input/output pairs. In this case, state transitions are assumed to be instantaneous
and occur when some agent executes an action, otherwise the state of the system is assumed to
be stable. The corresponding automaton for the circuit 2 is the following (where 1 and 2 denote
swi and sw2 respectively, and ti denotes toggle(swi)):

Figure 10.3: Automaton for the circuit 2

i

Avtomata identification methods have been applied to the problem of learning dynamic sys-

tems [41, 124, 115, 13]. These methods relied on the assumption that the agent can interact with

the environment he is trying to learn [1] or can ask so-called membership qveries and eq^civalence

qneries to an oracle. Efñcient algorithms exist for the identification of automata, mainly in the

area of Grammatical inference.

However, aut:omata are not appropriate for modeling dynamic systems in many senses, e.g.,
limited expressivity, no elaboration tolerance, and so on. Furthermore, the use of (global) states
instead of using state variables (fluents) makes unmanageable the representation of even small
domains. For in;;tance, certain episodes are difficult to manage with an automaton, such as those
containing events where no e^act ordering can be determined. These parallel episodes come as a
consequence that most parts of the world are independent of most other parts because there is
little interaction. In these cases, it is necessary to consider every possible ordering of the actions
involved in the episode.

10.5 Lear:ning Qualitative models

In (112], a method is presented to learn continuous dynamic systems in the form of a qualitative
model. Qualitative reasoning (QR) is an elegant approach to studying the behavior of a physical
system without going into as much detail as in a numerical simulation. In contrast to ordinary
differential equations, QR captures distinctions that make an important qualitative dif%rence and
ignores others. :F'or instance, the level at which a bathtub overflows is a qualitatively important
point. The real number line in which variables take their values is described in terms of a finite
set of qualitatively significant landmark values and the intervals between them. For instance, a
variable describing water temperature might have landmark values for the freezing and boiling
points.

QuantitativE^ data is given and is converted into qualitative behaviors, so that, all but the
"interesting" points in the data are discarded, i.e., points where some variable reaches a maximum,
a minimum, or zero. For each variable at each time point, the quantitative value is turned into
a qualitative valne consisting of a qualitative magnitude and a direction-of-change. Qualitative
states are added to behaviors as needed. If, for instance, a variable is at a minimum at one
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time point and at a maximum at the next, the qualitative state for the interval during which the
variable is increasing is added to the behavior. Then, individual constraints are generated and
tested creating constraints consistent with the input behaviors (Fig. 10.4).

Variable Initial Qspace
Inflow 0, inl, o0
Outflow 0, o0
Netflow -oo, 0, netl, o0
Amount 0, o0

State 0 (initial state)
Variable Magnitude
Inflow inl
Outflow 0
Netflow netl
Amount 0

State 1
Variable Magnitude
Inflow in1
Outflow (0, oo)
Netflow (0, netl)
Amount (0, oo)

Dimensions

mass/time
mass/time
mass/time
mass

successors: state 1
Direction-of-change
steady
increasing
decreasing
increasing

successors: state 2
Direction-of-change
steady
increasing
decreasing
increasing

State 2 successors: none
Variable Magnitude Direction-of-change
Inflow in1 steady
Outflow ontl steady
Netflow 0 steady
Amount amo2^nt1 steady

Figure 10.4: Qualitative behavior of a simple bath tub

A qualitative diíferential equation (QDE) is valid over some operating region, expressed in
terms of the values of the variables involved ( operating conditions) . Many systems cannot be
described by a single QDE, but they^ are explained by different QDEs that hold under different
operating conditions or regions. The movement of a system from the operating region of one QDE
to that of another is called a region transition. A method for the detection of region transitions
is added [109] that involves to detect the time points where the behavior moves from one region
to another with a set of heuristics. Once some regions have been identified, an inductive learning
algorithm is used to identify the operating conditions for each QDE. Actions can cause these

transitions, but in many other cases, the transition can be fluent-triggered, where an special
event in a fluent -e.g., reaching a landmark- causes the transition.

The identification of the operating conditions for the region transitions is indeed an action
model learning task, whereas the identification of QDE and region transitions are necessary
preprocessing steps for induction to work over qualitative data.

•
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Chapter 11

Summ^ry and Conclusions

11.1 Summary

The problem of lf;arning complex action descriptions is an open question for the Machine Learning
community. In tllis thesis, we have shown that is possible to learn non-monotonic action theories
in the form of logic programs, where Inductive Logic Programming methods can be applied
effectively. We h^ave shown it in simple simulated domains containing indirect effects, exceptions,
and complex actions, that are considered benchmark problems in the literature of reasoning about
actions and change.

Previous approaches suf%r from the limitations of STRIPS-based formalisms or rely on pro-
cedural representations. Our approach is based on non-monotonic action theories, which are a
formal and expressive representation for action domains, where system's behaviors are naturally
viewed as appropriate logical consequences of the domain's description, which makes the learned
specification of actions and their effects quite intuitive and natural. These languages make the
notion of sit^cati^on more central which provides a more compact description of observations and
theories and a more convenient hypothesis space for learning. In particular, the form at which
actions, ef%cts a^nd situations are represented in the Situation Calculus allows that multiple nar-
ratives starting from diíferent initial situations can be used for learning in an homogeneous and
natural way. Tlriis also allows that learning is done directly from the narratives, hence there is
no need for prel>rocessing methods, and it allows inference to be done on the narratives to, for
instance, implement inertia, complete missing values or learn recursive eífects.

In particulai•, the use of Action Theories that are based on Logic Programming, allows a
natural integrati.on with Inductive Logic Programming methods, which provide a high expressiv-
ity and other special techniques, e.g., noise handling techniques, without losing representational
power. This malkes that an action theory is learned in the same way as it will be used, thus there
is no a different representation for learning and another diíferent for reasoning, planning and so
on. We adoptecí Extended Logic Programs as the form of programs to be learned, where two
kinds of negation -negation as failure and classical negation- are eí%ctively used in the presence
of incomplete in.formation.

These logic-based formalisms allow to deal with issues like inertia, indirect ef%cts and de-
feasible represeritations. Firstly, the use of non-monotonic formalisms avoids the explicit repre-
sentation of unc;hanged properties from one particular situation to another in the observations
(Frame Problerr^), hence observations need only be explicitly given for those situations where a
fluent changes, whereas the inertia axiom propagates non-affected truth values from one situation
to the next one, completing every situation. Secondly, the use of domain constraints together
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with ef^ect axioms allows the learner to infer how properties of a domain are (directly/indirectly)
affected by the execution of actions, or otherwise are sub ject to the general law of inertia, thus
avoiding the Ramification Problem. And thirdly, the use of a defeasible representation for the
effects of actions allows the possibility of discovering default rules that describe the most com-
mon situations and the ability to manage and learn about exceptions. Furthermore, extensions
to the Situation Calculus are used that allow to learn the effects of concurrent actions and other
complex actions, as well as representing exogenous ef%cts, without losing declarativeness.

On the other hand, the use of Action Languages allows that diverse learning tasks can be
approached in an homogeneous way, for instance, to learn the ef%cts of actions based on the
action executed and the situation where the action is executed, but also the dual problem, i.e.,
learning to act, where the action theory of a domain is included in the background, and the
learned rules must infer the best action to be executed based on the current situation and both
the initial and the goal situations. The learned declarative control achieves its objective in a very
elegant manner because the control rules are quite intuitive and purely declarative, and makes
it possible to separate the control information from the implementation of the planner.

Action Theories represent a challenge to Machine Learning methods, where non-monotonic
properties are introduced into the learning process, theories to be learned are mutually recursive
(including cyclical dependences), two kinds of negation are used so that a three-valued setting
is used for learning, and exceptions are possible through default negation. While the techniques
introduced in this thesis are far from being a complete solution to the problem of learning in
dynamic domains, we believe that it is a significant step forward in that direction.

11.2 Areas for future work

The work presented in this dissertation can be extended in several ways. The following lists a
number of areas for future work that follows naturally from the work described in this thesis.
Some of them address specific limitations, while others are broader issues that were beyond the
scope of the thesis.

• A more efficient implementation should be developed to reduce the time used for learning.
The most costly operation in the search process is the coverage testing made for every can-
didate hypothesis. The current implementation still adopts extensional coverage because
of the computational cost of intensional coverage. Further work needs also to be done to
assure global properties of the learned theory, i.e., the management of cyclical dependences
and the global inconsistency problem.

• With regard to the learning of default theories, a reliable method of deciding whether to
treat errors as noise or to include them as exceptions should be developed.

• We have used a non-narrative formalism for learning. This allows for instance, to use a
single model in the background such that multiple narratives form a tree, thus avoiding
to repeat common branches for each narrative. However, for long narratives, observations
in the Situation Calculus become not manageable by some programs, for instance, the
smodels interpreter. In narrative formalisms, the size of narratives does not affect the size
of the observations and have other advantages, for instance, a simpler adaptation to manage
concurrent actions and continuous change. By doing so, however, multiple models are to
be provided in the background for coverage testing. In particular, we will consider the
integration of the learning methods into the system PAL [21] for causal representation in

a
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action dom<^,ins, based on the concept of pertinence [101], which provides with an expressive
and declara.tive formalism.

• The assuml^tions we have made are appropriate for tasks involving agents with higher level
cognitive fu,nctions that involve reasoning about goals, actions, etc.., but are a limitation of
our approach when applied at the lowest level of control. The management of multi-valued
and specially numerical fluents as well as the explicit management of delays and sequential
effects in a theory of delayed causation, would allow to deal with more basic-level tasks.

• We have nE^ither considered parameters that vary continuously as a consequence of a pro-

cess execut,ion. The topic of continuous change has received relatively little attention in

the Reasoning about Actions literature [86, 120]. As pointed by R. Miller, a satisfactory
general fra:mework has to be developed which reconciles logic-based techniques for reason-
ing about action with the standard mathematical approach to modeling dynamic systems,
using differential calculus. Some previous logic-based approaches to reasoning about ac-
tions do allow limited types of mathematical expressions involving continuously varying
parameters to be embedded within domain descriptions which combine logic and differen-
tial equations. An alternative is the integration of Qualitative reasoning (QR) [62] into
action theories, where fluents would represent q^calitative states that hold under different
operating conditions or regions which are triggered by events.

^ • Further work needs to be done to show the adaptation to more and increasingly more
complex sc;enarios, and with different noise levels, e.g., to improve its adequation for dealing
with real robot's environments. For a more practical application, exploration methods could
potentially be added to reduce the dependence on an specific set of observations, where
exploration and learning steps are interleaved. Furthermore, the implemented algorithm is
not incremental, so the learned action theory must be completely re-learned every time a
new insta^lce is available.

•
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Appendix A

Logic F'rogramming concepts

This is a summa:ry of basic concepts from logic programming. A logic program is a finite set of

rules of the shape:
H ^ L1,...,Ln

where n>= 0, ^^ is an atom called the head of the rule and the Li's are program literals which
receive the name of body of the rule. When n= 0, we say that H is a fact. An atom is of the form
p(tl, ..., t^), whE;re p is a predicate symbol and ti's are called terms. A term can be a constant, a
variable, or f(tl, ..., tn), where tl, ..., tn are terms and f is a n-ary function symbol. A gro^cnd
term is a term ^vithout variables. Ground terms are used to describe objects. Predicates are
about relations over these objects. A program literal is either an atom p or its default negation
not p. A logic program is said to be positive (or definite) when it does not contain any negated
literal. A clause is a denial if it has no positive literal. A Horn clause is either a definite clause
or a denial.

A s^cbstit^ction 8={Xl/tl, ..., X^/t^} is a function mapping variables to terms. The appli-
cation C9 of a substitution B to a clause C means replacing all the occurrences of each variable
X^ in C by the same term t^ . A ground term is a term without variables The Herbrand nniverse
is the set of all ^ ►ossible terms that the theory can make assertions about, whereas the Herbrand
base is the set of all possible ground facts that the theory can represent. It is obtained by taking
the set of all pre:dicate letters in the program and ^forming all possible ground instances of them
using the Herbrand universe.

The following notation will be adopted: predicates, functions and constants start with a
lowercase letter, while variable symbols start with an uppercase letter. Given the following
program:

father(b,a) .

father(e,d) .

mother(c,a).

parent (X,'Y) : - father (X, Y) .

parent(X,'Y) :- mother(X,Y).

the Herbrand u^liverse is {a, b, c, d, e}, and the Herbrand base:

^father(a, b), father(b, a), . . . , parent(a, b), parent(b, a), . . . }.

An interpretation of a logic program is an assignment of truth or falsity to each element
of the Herbrand base. A model of a logic program is an interpretation such that all the rules
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of the program hold. In other words, if for each ground instance of each rule of the program
A F- Bl, B2, ... , Bn, A is assigned true whenever all the Bi are assigned true. For instance,
{}, {a} and {a, b} are models of a ^ b. For positive programs, there exists a unique minimal
model, called the Least Herbrand Model (LHM), which is the intersection of all the models and
is taken as the declarative meaning of the logic program. The existence of a unique LHM is
not guaranteed for non-positive programs. For instance, the simple program a^ not b has two
models {a} and {b} and both are minimal.

y
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The stable models semant ics

A normal logic program is a set of rules in the form:

Ao ^ A1,...,Ar,,,,not A,,,,+1,...,not An

where 0< m< n. If a program does not contain the not operator is called positive. Such
positive program.s have a unique stable model that coincides with the least Herbrand model.
Even with norma,l logic programs, when the least Herbrand model exists, then that is the unique
stable model. Tliis is the case with stratified programs, i.e., programs without negative cycles.
For the remaining cases, a normal logic program T can have none, one or several stable models.
A program having exactly one stable model is called categorical. A unique stable model is a
minimal model and it coincides with the least model in a Horn logic program. A program is
consistent ( under the stable model semantics) if it has a stable model, otherwise a program is
inconsistent.

The stable model of a normal logic program is defined in the following form [44]: given a set
of atoms I, for each atom a that is true in the I, we remove from the program all those rules
that include not a as a condition, whereas for the remaining atoms, we remove all the conditions
in the form not cz. By doing so, the resulting program is a positive program. Thus, if the least
model of the program coincides with I, then I is an stable model of the program. For instance,
{a} is the unique stable model of the program:

aF-notb

because the resu:lting program is {a F-} whose least Herbrand model is {a}. The set {b} is not
a model of the irnplication, whereas {a, b} is a superset of {a}. The insight is that for an atom
to be in an stable model of a program, it needs to be in the head of one of the rules, such that
all the conditions of the rule are part of the stable model.

A program with a positive cycle:

a^b

bF-a

has as stable mociel {}, i.e., the empty set, whereas by adding the rule a E--, the resulting program
has a unique stable model {a, b}. And similarly for the program:

a^a
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A program with a negative cycle:

a^notb

b^nota

has two stable models {a} and {b}, which represent two alternative beliefs. If we add a rule like
c F- a V b, then c is included in both models and thus it is entailed by the program.

Normal logic programs may behave very differently when new rules are added, with respect
to their previous meaning. For instance, the program: ^

a^nota

has no stable model, however, the following theory is consistent and the stable model is {a}.

aF-nota

a^notb

. When multiple models exist, two forms of reasoning are possible. With ca^ctious reasoning, a
program P entails a ground atom A if A is true in every stable model of P. With brave reasoning,
a program P entails a ground atom A if A is true in any stable model of P. Entailment refers
to the common part of all models,

Answer set programming [66] is based on the view of program statements as constraints on
the solution of a given problem, where each model of the program encodes a solution to the
problem itself. Let us consider a node coloring problem: given a graph given as a set of nodes

and edges find a way to color the nodes with 'n' colors such that two adjacent nodes are not
colored with the same color. This problem can be represented with the following normal logic
program:

color(red).

color(blue).

color(yellow)

node (a) .

node(b).

node(c).

node(d).

edge(a,b).

edge(b,c).

edge(c,d).

edge(d,a).

col(X,red) :- node(X), not col(X, blue), not col(X,yellow).

col(X,blue) :- node(X), not col(X, red), not col(X,yellow).

col(X,yellow) :- node(X), not col(X, blue), not col(X,red).

- edge(X,Y), color(C), col(X,C), col(Y,C).

The program above has 18 stable models, that represent possible colorings of the graph,
among others:

Stable Model: col(d,red) col(c,blue) col(b,yellow) col(a,blue)

Stable Model: col(d,red) col(c,yellow) col(b,red) col(a,blue)

Stable Model: col(d,red) col(c,blue) col(b,red) col(a,blue)

a
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^ The stable moclels semantics

The program smodels [97] is an efficient implementation of the stable models semantics.
Computation of :^table models is preceded by a phase of grounding of the program. Let us
consider the following program:

^

winning(Y) :- move(Y,X), not winning(X).

move(a,b).

move(b,a).

During the grounding phase, the program is simplified in several forms. The grounded version

of the program above is in the form:

move(b,a).

move(a,b).

winning(b) :- not winning(a).

winning(a) :- not winning(b).
^

l^om this grounded program, smodels computes two stable models.

smodels ve^°sion 2.26. Reading...done

Answer: 1

Stable Model: move(b,a) move(a,b) winning(b)

Answer:

Stable

2

Model: move(b,a) move(a,b) winning(a)

^^

C
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