
^z ^ Pertinence for Causal
j Q ^ Representation of Action Domains

^

PhD. Dissertation

Pedro Cabalar

^. ^^c^^^°^

Universidade da Coruña
Departamento de Computación

Pertinence for Causal Representation
of Action Domains

Pedro Cabalar

Dissertation

presented at the Facnltade de Informática
de A CoT^ña following the requirements

for the degree of

Doctor en Informática

A Coruña, 2001

UNIVERSIDADE DA CORUÑA

.: ..i _..._.____----.^ ^^

I . _ ^ ^
l_ __ _____j
^ . . . ^. - ^ ^ . t^:...: .. ^^ ^ _ , ._^..^_.J

DEPARTAMENTO DE COMPUTACION

Facultade de Infortnática
Campus de Elviña, s/n.

" 15071 A CoNña
Telf. (98l) 16 70 00

Ramón Pérez Otero, Profesor Titular del Area de Ciencias de la Com-
putación e Inteligencia Artificial en la Universidad de A Coruña.

CERTIFICA

Que la memoria titulada "Pertinence for Causal Representation of Action

Domains" ha sido realizada bajo mi direccióm por José Pedro Cabalar Fer-

nández en el Departamento de Computación de la Universidad de A Coruña,

y constituye la tesis que presenta para optar al grado de Doctor en Infor-

mática.

A Coruña, 25 de septiembre de 2001

i^
r

i^^:^^
_ ^ •,

Ramón Pérez Otero V° B° José Luis Freire Nistal
Director de la tesis . Director del Departamento de Computacióci

2 j23

To Carr►aen María

Acknowledgements

This work could not be conceived without the advice and direction of my supervisor, Ramón
P. Otero. The origins of this research come from a reorientation from his initial interest in
temporal expert systems into a more formal reasoning focusing. As a result, I have had the
opportunity of directly witnessing the birth of his Pertinence Logic, from which this thesis
represents, somehow, a free interpretation.

Very special thanks to my colleague, David Lorenzo, for his valuable help and close collab-
oration during all these years. I am also very grateful to Alessandro Provetti, for his support
and encouragement, specially in my first steps in the area of nonmonotonic reasoning.

I am thankful to the members of the AI Lab. Manuel Cabarcos, Mario Otero-Díaz, José
Manuel Rodríguez, Silvia Gómez, Oscar García, David Losada and Álvaro Barreiro for their
fruitful discussions, specially during our "friday meetings," and for standing me during the
coffee hours. I am also due to Alma Gómez and to the people at the Computer Science School
of Ourense, where I spent two wonderful years, and to the members of the KR Lab. at the
University of Texas at El Paso, for their hospitality during my stay there.

Finally, as personal acknowledgements, I want to thank the unconditional support of my
parents, Pedro and Fina, along my whole career, and to my wife, Carmen María, for her real
common sense advice and her dynamic personality (also known as impatience), without which
I would have never finished.

This research has been supported by a grant of the Government of Spain (PB97-0228) and
several grants of the Government of Galicia (XUGA-10503B96 and XUGA-10503B94) including
a research stay grant for the author at the University of Texas at El Paso.

This document was generated using LaTeX 2E. Figures have been designed with the xypic

LaTeX package and the graphical tools Xfig and Tgif. Escher's drawing in page 89 was down-

loadedfrom: http://www.worldofescher.com/gallery/DrawingHands.html

i

Abstract

This dissertation goes deeply into the use of causality for reasoning about actions and change,
focusing not only in its application for solving typical representational problems, but also on
causal knowledge as a relevant information per se. We show that causality is intimately related
to the concept of pertir^ence with respect to the actions execution, and we propose a formal
characterization of this idea, explaining its role in the semantics of causal rules. This allows us
to introduce a high level language that provides a comfortable representation of action domains
by using causal constructions. Besides, we present a unified view of the two existing orientations
about causality, incorporating them at two different levels: at an ontological level, we use
pertinence to capture the idea of causality versus persistence; whereas at an epistemological
level, we propose dif%rent non-monotonic techniques to achieve the directional behavior of causal
expressions.

Resumen

Este trabajo profundiza en el uso de causalidad en dominios de acciones y cambio, centrándose
no sólo en su aplicación para la resolución de problemas representacionales, sino también en el
interés en sí del conocimiento causal como una información significativa. Demostramos que la
causalidad está íntimamente ligada al concepto de pertir^erccia con respecto a la ejecución de
acciones, y proponemos una caracterización formal de esta idea, explicando su presencia en
la semántica de las reglas causales. Esto nos permite la introducción de un lenguaje de alto
nivel que proporciona una forma más cómoda de representar dominios de acciones utilizando
construcciones causales. Proponemos ademá,s una visión unificada de las dos orientaciones exis-
tentes sobre causalidad, incorporándolas a dos niveles distintos: a un nivel ontológico, usamos
pertinencia para capturar la idea de causalidad versus persistencia; mientras que a un nivel
epistemológico, proponemos diferentes técnicas no monótonas para lograr el comportamiento
direccional de las expresiones causales.

11

Contents

1 Introduction 1
1.1 Causality in Reasoning about Actions and Change 2
1.2 State of the art: two understandings of causality 7
1.3 Main motivation: representing causal information 8
1.4 Pertinence: a new focus on chañge . 11
1.5 Organization . 14

2 Nonmonotonic reasoning and logic programming 17
2.1 Circumscription . 17
2.2 Default Logic . 19
2.3 Review of Logic programming . 22

2.3.1 Basic definitions . 22
2.3.2 Stable models . 23
2.3.3 Clark's completion and supported models 25
2.3.4 Well Founded Semantics . 26
2.3.5 Cycles . 30
2.3.6 WFSX and the coherence problem . 31
2.3.7 A rewriting method for computing WFSX 33

3 Static L2 37
3.1 LZ syntax and semantics . 37
3.2 Examples . 40
3.3 Extending L2 syntax . 42
3.4 Encoding L2 into classical logic . 44

4 1^ansition systems 47
4.1 Narrative action domains . 47
4.2 Typical problems in action domains . 50
4.3 Automata and transition systems . 52
4.4 Adding Pertinence . 53

5 ^-language 59
5.1 ^-rule syntax . 60
5.2 Operational semantics . 63
5.3 Examples . 65

iv CONTENTS

6 Pertinence Calculus: formalizing pertinence in action domains 69

6.1 Basic definitions and axioms . 69

6.2 Propositional representation . 71

6.3 High level constructions . 72

6.4 Circumscribing pertinence . 75

6.4.1 Correspondence to operational semantics 77

6.5 Encoding Pertinence into Default Logic . 81

6.6 Encoding pertinence into logic programming . 83

6.6.1 Correspondence to operational semantics 85

6.6.2 Using program cycles for planning and temporal explanation 86

7 Causal cycles 89

7.1 Characterizing the effects of causal cycles . 90

7.1.1 Positive vs. negative cycles . 90

7.1.2 Self-supportedness . 91

7.1.3 Nonexistence of successor state . 92

7.1.4 Nondeterminism . 93

7.1.5 Cumulativity and cycle ordering . 95

7.1.6 Coherence . 96

7.1.7 Summary . 97

7.2 Domains with cyclic dependences . 97

8 Comparison to other action approaches 103

8.1 Change as abnormality . 104

8.2 Lin's ĉaused predicate . 104

8.3 Occlusion . 109

8.4 Event Calculus . 111

8.4.1 Original formulation . 112

^ 8.4.2 Adapting the notation . 114

8.4.3 Relation to pertinence . 116

8.5 Inductive causation . 117

8.5.1 Initiation vs. pertinence of a formula . 119

8.6 Abnormality and Logic Programming . 121

8.7 Thielscher's approach . 122

8.7.1 Basic definitions and a pair of examples 122

8.7.2 Comparison . 125

8.8 Causal explanation . 128

8.8.1 Literal completion. Relation to Logic Programming 130

8.8.2 Pertinence postulates in Causal Explanation 132

8.9 Schwind's comparative . 133

9 Pertinence Action Language 143

9.1 Missionaries and cannibals in PAL . 144

9.2 The blocks world . 147

9.3 Rule grounding . 149

9.4 Temporal projection . 152

9.5 Queries . 155

CONTENTS ^

9.6 Queries for stable models: temporal explanation vs. planning 157

10 Conclusions 161

A Proofs of theorems 165

B PAL examples 175

B-1 Newton's formula . 175

B-2 Lin's suitcase . 176

B-3 Yale Shooting Problem . 177

B-4 Lamp circuit . 177

B-5 Combinatorial circuit . 179
B-6 Account balance . 179
B-7 The gong example . 181
B-8 The alarm problem . 182
B-9 The gear wheels . 183
B-10 Shanahan's relay . 185
B-11 The soup bowl . 186
B-12 Thielscher's relay . 187

B-13 The trapdoor . 188

vi CONTENTS

Chapter 1

Introduction

The concept of causality, frequently present in human daily discourse, has been traditionally
absent from scientific formal reasoning. A well known example is the famous formula of New-
tonian physics f= m• a, expressing the relation among force, mass and acceleration. The
formula is non-directional in the sense that it can be indistinctly used for computing any of
the three magnitudes, knowing the values of the other two. However, we implicitly handle the
intuition about a cause-ef%ct direction - from force to acceleration - that allows us considering
the computation of each magnitude as a di,,fferent reasoning process:

• computing a is predicting the e,,^`'ect of the application of f to m;

• computing f is, somehow, planning which force must be applied to m in order to cause
acceleration a, and finally,

• computing m is explaining why the application of f has caused the observed acceleration
a.

In any case, we know, for instance, that obtaining m from f and a does not mean that we can
vary the particle's mass by changing the force and the acceleration (at least, using Newtonian
physics). All this information is behind the correct understanding of the formula, but not
explicitly represented in it.

Closer to our concerns, something similar happens with the formalization of abstract reason-
ing about actions using classical logic. Consider, for instance, the following scenario, introduced
in [65]:

"A suitcase has two locks, and a spring-loaded mechanism that will open the
suitcase when both locks are in the up position (up(1) and up(2))."

A possible representation of this domain would be the classical formula:

up(1) n up(2) ^ open (1.1)

This type of formula, known as rriaterial irraplication, does not reflect any causal knowledge
either. In fact, it is logically equivalent to:

up(1) n ^open ^ ^up(2) (1.2)

2 Introduction

and, as it happens with Newton's formula, it is possible to use it in different ways, such as:

{ (1.1), up(1), up(2) } I- open

{ (1.1), up(1), ^open } ^- ^up(2)

although, again, we actually have different understandings of these applications. For instance,

the first case, predicts the efFect, open, of moving up both locks, whereas the second case explains

that, if thé suitcase is closed while the first lock is down, it is because the second lock is up.

Notice the difference in the interpretation: ^up(2) is not considered an e,,ffect of up(1) and ^open.

Since in both examples we were reasoning about a snapshot of the world's configuration,

causality has not become necessary for computing facts. However, it is clear that it acts behind
our understanding of dynamic domains, and so, it will affect any attempt of formalizing our
reasoning processes. Thus, it is no surprise that causality has become interesting for Artificial

Intelligence (AI) [76], and particularly for the area of Reasoning ábout Actions and Change
which, due to its goal of formalizing the common sense understanding of dynamic systems, it

has experienced an increasing proliferation of causal proposals along its evolution.

1.1 Causality in Reasoning about Actions and Change

The appeal to causality has sporadically appeared throughout the evolution of research in actions
and change in a more or less explicit way. Let us briefly outline the main research topics of this
field in the order they appearedl, paying special attention to the ones more related to causal

reasoning.
The foundation of the area of reasoning about actions is usually identified with McCarthy's

historical paper [73]. In this work, McCarthy established, as one of the goals of AI, the develop-
ment of computer programs capable of performing common sense reasoning tasks like prediction,
explanation or planning. To this aim, the domain knowledge was explicitly described using some
kind of logical representation. Following this idea, McCarthy and Hayes introduced in [81] the

Situation Calculus, a(many sorted) first order logic formalization which became the first and

perhaps most widely used representation of action domains.

Although this dissertation does not use Situation Calculus, it is useful to outline it. Its

notation identifies three basic sorts of logical objects: ,fluents, actiores and situations. A fluent

represents a property of the domain that may vary along time (for instance, the locks positions

and the truth value of open in the previous example). An action is an intervention we may per-
form in order to alter the configuration of the domain (for example, toggling any of the locks).
Finally, situations represent sequences of actions that are carried out in the domain. Syntac-
tically, they are terms recursively constructed either with constant so (the initial situation) or

successive applications of function2 do(A, S), which denote the resulting situation of applying

action A in S, a situation term in its turn. Using Situation Calculus, our formula (1.1) would

be typically represented as:

`dS, A. (holds(up(1), S) n holds(up(2), S) ^ holds(open, S)) (1.3)

1 For a detailed revision, consult for instance [101] which has been recently reviewed with the comments

in [79, 63, 99, 102].
20ther formalizations denote this function as res^lt(A, S). Besides, for homogeneity with the later use of logic

programming, we follow the convention of upper case initials for variables and lower case initials for constants.

1.1 Causality in Reasoning about Actions and Change

where A and S are variables for the sorts of actions and situations, respectively. Note the
dif%rences with respect to (1.1) : we have introduced situation arguments to represent dií%rent
instants along time. Besides, predicates up(1), up(2) and open have been transformed into fluent
objects3 so that they become quantifiable now.

The original definition of Si^tuation Calculus [81] already included causal assertions, which
simply consisted in delays of an unspecified number of situations between the condition (or
cause) and its resulting ef%ct. However, causality was not the focus of tlie initial research in
reasoning about actions. Instead, efforts were centered on solving the so-called frame problem
which motivated great part of the research in the area and is still indirectly related to most
subjects currently under study.

The frame problem (which was also first described in [81]) consists in the unfeasibility of
representing explicitly the persistence of all the unaffected facts when an action is performed.
Consider again the suitcase example and assume that we want to predict what happens with
up(1) in situation do(lift(1), so) (we lift lock 1). Of course, we should include formulas that
describe the eñects of actions:

bS, N. holds(up(N), do(lift(N), S))

with N any lock number. However, it is easy to assume that our theory may contain more facts,
color_of (suitcase, yellow), at(suitcase, room), dark(room), etc, that have nothing to do with
toggling the locks. The list of unrelated facts may increase as we update our knowledge for a
more accurate or complete representation of the domain. The problem is that, in order to avoid
uncertainty for these facts, we must explicitly add formulas, called frame axioms, asserting what
does not change. For instance, we must also add:

b'S, N. (holds(dark(room), do(lift(N), S)) - holds(dark(room), S))

dS, N, L. (holds(at(suitcase, L), do(lift(N), S)) - holds(at(suitcase, L), S))

dS, N, C. (holds(color_of (suitcase, C), do(lift(N), S)) - holds(color_of (suitcase, C), S))

for any location L and color C. Moreover, we must assert that moving one lock does not affect
the other:

dS. (holds(up(1), do(lift(2), S)) - holds(up(1), S))

dS. (holds(up(2), do(lift(1), S)) - holds(up(2), S))

This means a serious problem of representation, since the mere addition of a new fluent may
force us to reconsider the whole formulation of a given domain, deciding which actions may a,,^`'ect
the fact or not, and usually, adding frame axioms for most of the existing actions. Besides, this
task is even harder when we allow eífects that depend on concurrent actions or that may be
obtained indirectly, as we will see later.

The solution to the frame problem involves the addition of a default mechanism, called the
common sense law of inertia, that can be enunciated as follows:

under no evidence on the contrary, , fluents must remain unchanged.

3This transformation is usually called reiftication, which means "making into a tháng."

4 Introduction

This apparently simple criterion means a problem for classical logic reasoning, since we need to
draw conclusions based on lack of evidence. This is not possible due to the monotonicity of the
consequence relation of classical logic - the more formulas we add, the more consequences we
obtain, that is: Cn(T) C_ Cn(T U T'). To see why inertia must be nonmonotonic assume, in our
example, that we handle a theory T containing holds(dark(room), so) (the room was dark). We
would want to conclude by default that holds(dark(room), do(lift(1), so)) E Cn(T). However, if
we are later told that the suitcáse has an internal lamp which lights up the room:

`dS. (holds(open, S) ^ ^holds(dark(room), S))

the previous conclusion must be clearly retracted:

holds(dark(room), do(lift(1), so)) ¢ Cn(T U (1.4)).

The need for encoding the inertia law moved the attention to selecting an adequate non-
monotonic reasoning technique. Predicate Circ^croscription [74] and Defavlt Logic [94] were the

two solutions that received the most attention in the beginning. The first attempts relied on a

mireimal change orientation: select those classical models with less changes among situations.

Technically, the solutions consisted in introducing a special predicate, ab (for abnormal), point-

ing out an exception to inertia. For instance, ab(open, lift(1), S) points out that fluent open is

free from inertia at situation S after performing action lift(1). This can be expressed as:

b'A, F, S. (^ab(F, A, S) ^(holds(F, do(A, S)) - holds(F, S))) (1.5)

that rephrases the frame axioms in a more compact way, and so, it is usually called the universal

frame a^iom. Thanks to this axiom, the inertia default amounts to a models selection minimizing

the extent of ab.
Unfortunately, a naive application of the minimal abnormality solution may easily lead to

counterintuitive results, as soon discovered by Hanks and McDermott with the Yale Shooting
Problem (YSP) [48]. They proved, both in Circumscription and Default Logic, that the sim-
ple criterion of selecting the models with less abnormality extent was too weak, as it can be
influenced by the position of the changes along the sequence of situations.

The Yale Shooting scenario consists in trying to kill a turkey by shooting a gun that must

be previously loaded:

b'S. holds(loaded, do(load, S)) (1.6)

`dS. (holds(loaded, S) ^ ^holds(alive, do(shoot, S))) (1.?)

dS. (holds(loaded, S) ^ ^holds(loaded, do(shoot, S))) (1.8)

To introduce some uncertainty, a waiting situation is inserted between loading and shooting:

sl = do(load, so)

s2 = do(wait, sl)

s3 = do(shoot, s2)

As a result, we get two models with minimal abnormality: the expected one in which the turkey

results killed (the fluent alive becomes abnormal and false after shooting), and another one in

which the the turkey remains surprisingly alive (the fluent loaded becomes abnormal and false

1.1 Causality in Reasoning about Actions and Change

after waiting). The problem is that, although both models háve a minimal set of abnormalities,
we know that the abnormal unloading should not be justified.

Notice the causal component of the YSP: the undesired model seems to arise because of
making conclusions "against the tide:" we consider first the inertia of alive in the last situation
and then we conclude backwards that the gun must have become unloaded. Moreover, in that
inference process, the formula (1.5) is applied by contraposition: from a change of value in fluent
loaded, we conclude that it is abnormal. This contrapositive application seems to violate our
causal understanding of (1.5). In fact, we could have used the the equivalent formula:

dA, F, S. (^(holds(F, S) - holds(F, do(A, S))) ^ ab(F, A, S)) (1.9)

but something seems to point out that persistence should follow from non-abnormality and not
vice versa. Furthermore, it seems that the authors had this directionality in mind, since they
provided a different formulation of effect axioms like (1.7), being originally expressed as:

b'S. (holds(loaded, S) ^^holds(alive, do(shoot, S)) n ab(alive, shoot, S))

Although this change does not vary the final result, it somewhat emphasizes that the abnormality
of alive should actually follow from the gun shot. A similar intuition has motivated a recent

solution, due to Turner [109], which uses Default Logic, but making an appropriate use of

inference rules to capture the right directionality. For instance, in our example, we could use
the inference rules:

holds(loaded, S)
^holds(alive, do(shoot, S)) n ab(alive, shoot, S)

holds(loaded, S)

^holds(loaded, do(shoot, S)) n ab(loaded, shoot, S)

holds(F, S) n-^ab(F, A, S)

holds(F, do(A, S))

^holds(F, S) n ^ab(F, A, S)
^holds(F, do(A, S))

plus the minimal abnormality default:

: ^ab(F, A, S)

^ab(F, A, S)

which in Default Logic means that ab should become false whenever it is consistent to assume
so.

Despite of its clear relation to causality, the first solutions to the YSP were actually more
concerned with its purely chronological aspect. Chronological rrainirraizations [55, 52, 104] con-
sisted in establishing a prioritized ordering, so that abnormalities wére still minimized, but they
had to appear as late as possible along time. In this way, the preferred model would be the one
in which the turkey is killed. Apart from the complexity introduced in the minimization process,
these solutions present a drawback in temporal explanation problems, since the explanations for
a given observation are always placed in the last situations.

The second group of solutions became what we can call the "first wave" of approaches
explicitly labeled as"causal." The so-called cansal rraini^nizations [56, 50] were inspired by the

5

s Introduction

following idea: only those facts that are caused are allowed to change. To achieve this behavior,

a predicate canses(A, F, V) was defined, expressing that when action A is successfully executed,

fluent F is caused to have value V. This predicate is minimized and combined with ab4 so that

any fluent is abnormal iff it has been caused to take one of its possible values. The solution to the

YSP is then very simple - it amounts to include the assertions canses(shoot, alive, f alse) and

ca^cses(load, loaded, tr^ce). Since no assertion causes(^,uait, loaded, V) is stated, loaded becomes

not abnormal after wait, and the undesired model is ruled out.

The problem of these solutions is that their interpretation of causality just amounts to a

simple table describing direct relations action/fluent-value. This over-simplified view disables

a correct treatment of more complex shapes of causality like context dependent causation or

indirect effects. These limitations, together with the fact that causality was not actually needed

for solving the YSP5 cooled down the initial interest on causality, which was not renewed until

the study of the ramification problem came to scene.

The ramification problem, identified by Kautz in [52], consists in obtaining an appropriate

description of the indirect effects of actions. We want to avoid describing any effect of an

action as a direct effect. For instance, imagine that we have several diíferent mechanisms for
moving the locks. It is clear that this does not affect to the way in which we decide the suitcase

status. However, if we force to describe everything as direct effects, we would have to repeat

the specification on how open is affected by the lock positions for each possible action that may

move a lock. At a first sight, the most direct way for describing these indirect e^ects is by adding

formulas called state constraints, like (1.3), which must be satisfied in every situation. However,

as we had explained in the beginning, a formula like this does not capture a directionality among

the involved fluents and, in the presence of the inertia assumption (again the frame problem), it

may lead to counterintuitive results. Assume we try to find out what happens in do(lift(1), so)

having:

^holds(np(1), so) n holds(^cp(2), so) n^holds(open, so)

A minimal change policy would result in two equally valid minimal models. One of them, as

expected, considers that open changes to true, because up(2) has persisted (formula (1.3) is

applied from the antecedent to the consequent). However, a second minimal model considers

instead that open persists false and (applying (1.3) by contraposition) obtains as e,,^`ect that

z^p(2) becomes false, i.e., lock 2 is moved down!
Note that, despite of the similarity to the two minimal-abnormality models of the YSP,

there is no chronological component now, since we only have one action execution (in fact,
chronological minimization cannot be applied to solve this problem) . Initial attempts, like for
instance [57], consisted in classifying the fluents into diíferent categories, so that the inertia of

^cp(2) would have more priority than the change in open. The problem for this technique is that,

as explained in [107], any example can be easily extended with new layers of causal dependences
so that we are forced to reclassify the set of fluents introducing new categories. R,a,ther than a
fluent classification, it seems that this prioritized reasoning should be automatically extracted

from a suitable modification of state constraints: cavsal rules. This idea, in fact, motivated a

more prolific "second wave" of causal solutions (just to cite some of them [69, 65, 47, 107, 28,

100, 103]) that has continued to the present.

4Predicate ab was actually called A,^`'ects in [56] and Clipped in [50].

SApart from chronological minimizations, Baker also proposed [8] a different circumscription technique that

relies on varying the interpretation of the do function.

1.2 State of the art: two understandings of causality 7

1.2 State of the art: two understandings of causality

As we have said, during the last six years, a considerable amount of causal approaches have
been proposed for simultaneously solving the frame and the ramification problems. Although
all these solutions agree in introducing causal rules as expressions semantically diíferent from
state constraints (like, for instance, (1.3)), there is no agreement on what shape these causal

rules should have. Some approaches rely on a classical logic representation, so that one difFerence
between a causal rule and a constraint is that the former refers to some special-purpose predicate
(similar to abnormal or ca^cses seen before) apart from the one for expressing the fluent's truth
value (usually, predicate holds). Other approaches use instead some type of (nonclassical)
conditional logic to capture the directional behavior of causal rules, without including new
predicates apart from holds. We will name these two diíferent trends respectively as:

a) change-based ca^csality

b) inferential ca^csality

Let us describe more in detail each orientation.

a) Change-based causality

The first type of causal approaches interprets causality as something intimately related
to the concept of change, that is, as the co^cnterpart of persistence. As we said before,
they define an additional predicate whose name can be abnorrraad, occl^cde, ca^csed, a,,^`ects,
clipped, etc. Despite of the differences, all these predicates have a common purpose: they
are used to represent that some fluent or fact has changed, becoming an exception to
inertia. We will talk about the change predicate to refer to any of these special purpose
predicates. Paradoxically, some of the approaches we will include in this category have
not been traditionally classified as causal when, in fact, the technical implementation for
all of them is very similar. It seems that classifying whether an approach is causal or not
has been more influenced by the chosen name for the change predicate than by the formal
semantics attached to it. This formal semantics presents two important features. First,
causal rules are represented as classical material implications that involve references to
the change predicate although, unfortunately, a different pattern is used in each approach.
Second, nonmonotonicity is obtained as a result of applying some minimization policy for
the change predicate. The main purpose of this method is to obtain as less exceptions to
inertia as possible but, as a side ef%ct, it must also avoid the contrapositive application of
causal rules. The first formalization that solved the frame and ramification problems using
a change predicate was proposed by Lin in [65]. Lin introduces a variation of predicate
ca^cses(A, F, V), denoted caused(F, V, S), standing for "fluent F is caused to have value
V at situation S" (note how the action A has been replaced by a situation S). The most
important part of Lin's approach is the minimization techniques applied:

i) minimize ca^csed for the whole theory e^cepting the universal frame axiom,

ii) select those minimal models that satisfy the universal frame axiom.

6The general technique of minimizing only a part of the theory was, in fact, previously proposed by Sande-
wall (96^ who called it filtered preferenttial entailment. Lin's proposal is a particular case in which the universal
frame axiom is not included in the minimization.

8 Introduction

In fact, this same technique was later followed by other approaches [47, 103].

b) Inferential causality

The second trend is based on the following idea: using a nonmonotonic formalism that

allows general default reasoning (not only inertia) but simultaneously provides condition-

als that behave as inference r^cles. A prototypical example of this philosophy would be

the already mentioned Turner's use of Default Logic to solve the YSP. The roots of this
trend come from the application of declarative logic programming to reasoning about ac-

tions. The interest of declarative logic programming, under the inferential understanding

point of view, is that it provides both default reasoning (thanks to the availability of de-
fault negation) and directionality (by using program rules). Many proposals followed the
methodology established in [41] in which, as a first step, a"high level" action language

is defined (possibly involving causal expressions) and, afterwards, its semantics can be
alternatively described in terms of a logic program (in that case, interpreted under the

answer sets semantics). As examples of approaches following this methodology we could

cite [10, 109, 61] (see [42] for an overview).

A similar line, which is closely related to the use of logic programming, relies on defining
new conditional logics that capture the inferential behavior. The first relevant approach in
this direction was [69], where inference rules were interpreted using a fully model-theoretic
description, and inertia was presented as a simple fixpoint characterization of the successor
state. Later, this approach was technically simplified, and generalized for capturing general

default assumptions, giving raise to the so called Ca^csal E^planation Theories [70, 60, 111].

The idea behind this approach is that any consequence of a causal theory must be causally

explained. Thus, causal rules are seen as the description of those conditions that make
the effects be directly caused. It must be noticed that there is an important diíference
between the understandings of "being caused" handled by change-based causality and by

causal explanation. While, for instance, in Lin's approach, facts obtained by inertia are

not caused, in causal explanation, inertia is represented ^as one more ca^csal r^cle and so,

its ef%cts must also be caused. In fact, as stated by the so-called principle of ^cniversal

ca^csation: "everything must result caused."

These two main understandings of causality are not mutually excluding. For instance ap-
proaches like [107], [28] or even [12] have shown the possibility of a mixed orientation, combining
a change predicate7 with the application of inference rules or the use of logic programs. This
suggests that it is possible to understand the inferential approach as a generic lower level option

on which to represent the change-based formalization, which is more specific of action domains.
This dissertation will follow, in fact, this organization, putting the stress in the shape of the
change-based representation, but also providing diíferent choices for the nonmonotonic inference

to be used below.

1.3 Main motivation: representing causal information

Going back to the change-based approaches, it is surprising how causality is understood just as a
mean for ruling out undesired models and not as a interesting phenomenon to be studied per se.

7In [107], it is not exactly a predicate, but a distinction between normal facts and e,^`'ects (those that have been

affected by the action).

1.3 Main motivation: representing causal information 9

As a result, many approaches are only concerned with the solution to the frame and ramification
problems, paying little or no attention to the meaning of causality itself. For instance, it is usual
that, after rejecting the undesired models, causal information is simply disregarded. In other
words, there is no worry about the final extent of the change predicate and, of course, this makes
difficult to provide an intuitive meaning for it.

This is exactly the point that gives rise tó the main motivation of this thesis. Our purpose
is to use the information of the change predicate as a significant part of the domain knowledge,
acquiring the same level of importance as the fluent values or the performed actions. While in
the earlier attempts, causal information is just used to describe a model selection policy, here it
will become part of the ontology, being included inside interpretations. Of course, this will be
done showing how to associate an intuitive meaning to this new information. This meaning will
be related to the idea of Pertinence or relevance of any formula with respect to the performed
actions. To introduce these ideas, let us see a simple example.

Example 1 (The lamp circuit)
Consider the circuit in figure 1.1, introduced in [107], where a lamp lightbulb is on if and only

if two switches are closed:

dS. (holds(light, S) - holds(sw(1), S) n holds(sw(2), S)) (1.10)

O

^sw(1) sw(2)

^light

Figure 1.1: A simple circuit.

Assume that in some resulting situation s we have:

^holds(sw(1), s), holds(sw(2), s), ^holds(light, s)

Our purpose is to represent not only the information described by this state (that is, the fluent
values), but also how this information has been obtained. That is, which of these facts have
been caused and which are due to inertia instead. Let us focus on fluent light, which has
resulted false. Our commonsense intuition seems to point out that this false value is somehow
"diíferent" depending on the performed action and the previous state. Thus, we consider the
four possibilities:

1. opening switch 1 while switch 2 was closed,

2. closing switch 2 while switch 1 was open,

3. opening switch 1 and closing switch 2 simultaneously,

10 Introduction

4. or finally, performing no action on the switches.

For instance, we know that in case 1 light has been caused to be false, whereas in cases 2 and 4

it has remained unchanged. Case 3 is the most interesting one: the light has ^ remained off, but

depending on how simultaneous is the switches movement, it may have happened that the light
experimented a momentary flash. A detailed description of a transient like that falls outside the

scope of our representation8. However, it seems that it is the switching that ca^cses the light to

be oñ. Or, in different terms: we cannot guarantee that light has persisted false.

The example suggests that, in order to represent these ideas, we should incorporate into

the state additional information about what is caused and what has persisted, establishing a

e^cludir^g distir^ction between both possibilities. We could, for instance, define for each fluent F

the new predicates:

ca^sed(F, V, S) (with V E {false, true})

persisted(F, S)
def

^ca^csed(F, true, S) n^cazcsed(F, false, S))

following Lin's notation [65]. However, predicate holds already represents the truth value V

of the fluent. Thus, we can just express that the fluent is caused, regardless its truth value,

introducing the notation: pert(F, S). This points out that the truth value for F(which is

separatedly specified by predicate holds) at S has been fixed by a(direct or indirect) causal

intervention due to the performed actions. On the other hand, the negation, ^pert(F, S), allows

us representing that the fluent F has followed inertia.

The use of the term "pert" comes from the idea of seeing the fact for light as relevant or

pertircer^t with respect to the actions execution. The idea of associating causation to pertinence
has been, in fact, inspired by a computational feature: only the facts for pertinent fluents need
to be recomputed as we move from one situation to another. This feature is crucial when we
try to efficiently compute the outcome of executing a sequence of actions in a large system, and
furthermore, it allows displaying the results in a much more compact way (only pertinent facts
need to be shown). As a matter of fact, this described displaying method is the one used by a

real tool for designing temporal expert systems called Medtool [82] which has inspired great part

of the intuitions for defining the idea of pertinence.

Back to our example, the next question is: how should we formulate the domain in order to

obtain the right meaning for pert(light, s)? A first, trivial, solution could be providing a direct

$Of course, some objections can be raised about which is the appropriated representation granularity to be used

here. A full detailed description of the domain should perhaps include the physical delays between the switches

movements and, whatnot, even the variations in the electrical current until a stable state is reached. This kind of
representation would be the one handled by a physicist, whose interest is to describe the real world as accurately

as possible, in order to improve predictions. However, in the area of reasoning about actions, we do not try to
model the real world but, instead, the intelligent understanding of that world, and this usually means handling

an abstraction (see for instance McCarthy's approximate theories [78]). In this way, anyone can understand and

reason about the lightbulb circuit in example 1 without being aware of all the physical equations describing its
behavior in detail. Furthermore, even inside Physics, we usually deal with simplified theories that allow ignoring
low level details for concentrating on higher level problems. For instance, the design of combinatorial circuits
using logical gates and Boole's algebra is but an abstraction of the electrical behavior of the different families
of transistors and diodes. Similarly, in the lightbulb example, we are not interested in possible microscopical
delays between the switches movements and the propagation of their effects. This is roughly "converted into"

a simultaneous movement that results in a unique state. Then, causal information is used as a"footprint" of

whether a fact may have been obtained via a chain of delayed changes or not.

1.4 Pertinence: a new focus on change 11

description for each action execution:

`dS. (holds(sw(2), S) ^ pert(light, do(open(1), S)))

d5. (^holds(sw(1), S) ^ ^pert(light, do(close(2), S)))

`dS. ^pert(light, do(wait, S))

This solution clearly suffers from the frame and ramification problems, since we would always
have to decide the formulas for pert in a nonmodular way, being forced to reformulate the
axioms when new actions or indirect eífects are specified. A second possibility could just be
understanding pert as a change of truth value:

`dA, S. pert(light, do(A, S)) -(holds(light, S) ^ holds(light, do(A, S)) (1.11)

Unfortunately, formula (1.11) does not capture the desired behavior, since case 3 was an example
of the light being pertinent without having experimented a change of value (at least, at a
macroscopical level) .

In fact, it seems that the truth for pert(light, S) should be somehow related to the formula
(1.10) and that this relation is in part what makes that formula to become a causal rule. The
study on how to formalize this relation of pertinence and causal rules constitutes the main topic
of this dissertation. But, before going into detail, it is perhaps more interesting to enunciate the
basic properties of pertinence that our formalization should satisfy.

1.4 Pertinence: a new focus on change

The theoretical formalization of pertinence was introduced by Otero in [85], and most of its
features were inspired by his previous work in a tool for the design and implementation of
temporal expert systems called Medtool [82], and particularly by the inference mechanism he
designed for that tool. This dissertation just deepens in the description of pertinence but paying
special attention to its application for causal action domains. In this section, we summarize the
expected meaning of pertinence by extrapolating our example into general postulates.

As we have seen, the central role of pertinence is to point out that a given fluent value has
been obtained by application of a causal influence:

P1) A fact will be pertinent wheaever it is a direct or indirect e,,ffect of the performed actions,
that is, whenever it is "a,,ffected" by therr^.

As stated in P1, pert(F, S) represents that F is añected by the currently performed actions,
whichever they are. Note that we refer to some situation S, but not to ariy explicit action
name argument. In this way, pertinence becomes an inherent property of the fluent, unlike
other predicates used in the literature which may include additional arguments like the fluent
value (as in caused(F, V, S)), the performed action (like in ab(F, A, S)) or even both (as in
causes(A, F, V)).

A second interesting feature is that we will always understand ^pert(F, S) as a guarantee of
real persistence. In this way:

P2) Any e,,^ect will be obtained as a result of applyi^g a caasal chain or the res^clt of inertia,
but r^ot both.

12 Introduction

Although this focusing seems to be present in most of the change-based approaches, we will see
in Chapter 8 that, in many cases, there is not a clear excluding separation between applying

causal rules and obtaining fluent values from inertia laws.
In this way, the only possibility for experimenting a change in a fluent value is due to

pertinence, that is, due to the application of some causal rule:

P3) A change of fluent value can only occur due to pertinence, i.e., due to an e,,ffect of a causal
chain application.

However, notice that the opposite does not hold, as we saw in case 3 of the lightbulb example:

P4) Pertinence does not necessarily mean a change of value.

The light could be oíf by pertinence (due to the switches movement) even though it was also
previously off. Finally, in order to satisfy the previous postulates, we obtain the following one

that establishes the role of pertinence inside a causal rule:

P5) A causal rule implication must be applied if and only if its condition holds and it is perti-

nent.

Actually, P5 is more a criterion than a real postulate: it is the only one that establishes

a condition about the shape of causal rules. We have found that this condition is crucial for

the fulfillment of the other four postulates. Moreover, in many change-based approaches, the

nonsatisfaction of P5 leads to problems in the interpretation of the change predicate, when seen
under the pertinence postulates. Assume we did not require pertinence of the rule condition, or
in other words, that we allowed applying a rule whose condition has just persisted true. Then,
the ef%ct of the rule would become pertinent, (it is the result of a causal chain), but at the
same time, there would not be any external intervention to justify its pertinence: the truth for
the condition is obtained just by inertia. This violates postulate P1 - the ef%ct would not be
due to any action. On the other hand, assume that the rule condition requires something else

apart from being true and pertinent. For instance, some approaches further require that the
truth value of the condition has changed from false to true. This may easily lead to generate
less pertinent ef%cts than actually needed. Think again in case 3 of the lightbulb example: the

rule condition up(1) n up(2) results false as in the previous state but we cannot guarantee that

it has persisted false and so, the rule should be applied to obtain that light is pertinent.

The most relevant consequence of postulate P5 is that pertinence information will not just

point out fluent values were were obtained but, what is more important, it will a,,ffect rule con-

ditions, and so, the resulting state may vary depending on the pertinence information. Another

very important consequence is that the idea of "pertinent" is applied here to a whole rule condi-

tion, not just to a single fluent: we can still naturally talk about the pertinence of up(1) n up(2)

or its persistence. This means that pertinence becomes also a property of the formula, similar to

its truth value. This extended application of pertinence can be intuitively explained as follows.

When all the fluents involved in a formula ^ persist, the valuation of ^ will also be the same

than in the previous situation. Analogously, when one of the fluents involved in ^ is pertinent,

we cannot guarantee the persistence of ^, and so, we say that the formula is pertinent.

In order to emphasize the importance of this last postulate, let us consider the following

example.

Example 2 (Account balance)
We wish to maintain the balance of a checking account together with the amount of its last

1.4 Pertinence: a new focus on change 13

transaction. To this aim, we handle the fluents balance(X) and transac(Y), where the latter
points out the total amount of the last transaction (either positive or negative). We wish to
recompute the balance only when a transaction is made. q

Of course, we are interested in representing both the current value of the last transaction
(fluent transac) and the balance of all the transactions we were provided until now. Consider
the rule for modifying balance depending on transac. Of course, the straightforward formulation
would consist in referring to the actions used for establishing the transaction value, let us call
them deposit(Y) and withdraw(Y), including formulas like9:

dS. holds(transac(Y), do(deposit(Y), S) (1.12)

`dS. holds(transac(-Y), do(withdraw(Y), S) (1.13)

`dS. (holds(balance(X), S) ^ holds(balance(X + Y), do(deposit(Y), S))) (1.14)

b'S. (holds(balance(X), S) ^ holds(balance(X - Y), do(withdraw(Y), S))) (1.15)

However, this solution may easily present the ramification problem: it would not be so
strange that the amount of the transaction was obtained as a result of a complex computation,
rather than as a direct effect of an action. F^rthermore, there might exist more different com-
putations, caused by new actions, detailing the type of transaction we have performed. Thus,
when transac(Y) is not a direct effect, the above representation would force us to include an
implication like (1.14) or (1.15) for each possible action that can modify transac, and so, the
balance too.

To avoid this problem, we must represent the dependence between fluents balance and
transac, without explicitly mentioning the performed action. A naive attempt to formulate
that relation could be the constraint:

b'S, A. (holds(balance(X), S) n holds(transac(Y), do(A, S)) ^

holds(balance(X + Y), do(A, S))^ (1.16)

Unfortunately (and this is the key problem) this formula is not enough to differentiate between
the case of two consecutive transactions for the same amount, and the case of simple persistence
of the last transac, which could improperly modify the balance.

Postulate P5 claims that, when we use causal rules to model ramification dependences, we
must require the rule condition not just to be true, but also pertinent. In other words, in order
to modify the balance, transac must be pertinent (i.e. influenced by the latest action). As we
will see in Chapter 8, some change-based causal approaches formulate the conditions of causal
rules by excllusively referring to fluent values, thus violating postulate P5. As a result, undesired
effects may follow without any external intervention, just as a result of inertia (for instance, an
incorrect update of balance when transac actually persists). ^

A possible alternative is to formulate the causal rule so that it is applied when its condition
becomes true (i.e., it is true, but was previously false). Remember that a change in truth value
always implies pertinence (but not vice versa). In this way, we would be requiring a condition
which is stronger than pertinence, and that it would work in most of the cases, but not all of
them. In our example, the case of two consecutive transactions with the same amount would be

9We assume that additional axioms would be included in order to avoid simultaneous different values for $uents
transac and balance.

14 Introduction

understood as persistence (the rule condition maintains its truth value) and the balance would

remain unchanged.

Finally, one more possible solution could be to define an auxiliary fluent, new_transac to

point out that transac(Y) must be taken into account for computing the balance. In this way,

any rule that affected to transac(Y) should also make new_transac true. On the other hand,

the rule for balance should require the truth of new_transac (otherwise, the value must be
disregarded, and these two fluents would persist). This is in fact the most modular solution,
but coincides exactly with our description of pertinence: just rename holds(new_transac, S) as

pert(transac, S). Note how the presence of new_transac in the rule condition for balance is

nothing else but the consequence of postulate P5.

If the chosen language already handles a predicate II for representing that the fluent is caused
(for instance ca^csed(transac, Y, S), occluded(transac, S), ab(transac, A, S) etc) it seems quite

clear that this auxiliary fluent, new_transac, is not needed. Unfortunately, if the pertinence
postulates are not satisfied, II does not provide the required behavior and its utility just amounts
to a purely technical application to enforce a model selection policy. We will come back to this

example when doing the comparison with related work, in Chapter 8.

1.5 Organization

This dissertation is organized as follows. The next chapter is an overview of the basic technical
definitions and known results about nonmonotonic reasoning that we will use in the following.
We cover two of the best well known nonmonotonic techniques, Circumscription and Default
Logic, but we also pay special attention to the use of declarative logic programming semantics
as a practical tool for nonmonotonic reasoning. In Chapter 3, we make a first approach to the
formalization of pertinence, restricting the analysis to a hypothetical successor state, where no

additional dynamic information is still detailed. As a result, we obtain a logic, L2, with two

simultaneous valuations: the standard one for truth values plus a new one for pertinence.

The next chapter describes a typical narrative framework for reasoning about actions, par-

ticularly focusing on transition systems. We explain how the structure of a finite state machine

(where pertinence becomes an output function) results appropriate for representing all answers
to prediction, postdiction and planning problems, thus providing a complete visual represen-
tation of the domain behavior. Unfortunately, finite state machines present serious problems
when used as a representational formalism due to their lack of modularity and, which is more
important, to their impossibility for capturing the underlying causal relations in the domain (in

fact, they only show the resulting eífects).

To overcome these difficulties, Chapter 5 introduces a basic causal syntax, called ^-language
(in the style of the .^4-language). The 7^-rules are interpreted under an operational semantics,
that is, by applying an algorithm, which implements in practice the pertinence postulates, and
allows computing all the possible transitions. In this way, we can generate the corresponding

finite state machine starting from the causal representation. This method, however, is still

far from constituting a real semantics, since it exclusively relies on an algorithmic description.
Besides, its applicability will be intentionally restricted to acyclic causal dependences, since we
will see how most formalizations exclusively differ in the interpretation of causal cycles.

The following chapters, 6 and 7, provide the logical formalization for the introduced basic

causal language and its operational interpretation. Chapter 6 presents the basic monotonic

framework we have called Pertinence Calc^cl^cs (by analogy with Situation Calculus or Event

1.5 Organization 15

Calculus) plus the applications of diíferent nonmonotonic techniques like circumscription, de-
fault logic, and logic programming (under three different declarative semantics). Essentially,
pertinence calculus is an elaboration of L2 that incorporates the needed ontology for our actions
framework, defining multiple valued fluents, actions and situations. We prove correspondence
theorems with respect to the operational semantics for all the nonmonotonic techniques studied

before, under the assumption of acyclicity of causal dependences. Chapter 7 contains a study
of causal cycles, comparing their behavior under all the alternatives.

Chapter 8 is a comparison of pertinence to several well-known action approaches and their
treatment of causality. We show how most of them share many intuitions we defined for per-
tinence (specially change-based approaches), but in all the cases some of its postulates are not
satisfied.

Next, Chapter 9 has a more practical orientation, describing an extension of ^-language,
called Pertinence Action Lang^cage (PAL) that allows a more comfortable representation of action
domains. We provide an overall description of this language, briefly commenting its syntax with
several examples, and presenting some applications of the corresponding interpreter we have
implemented. This interpreter works at two difFerent levels: a front-end level for translating
PAL expressions into ^-rules, and a back-end level for interpreting these rules under some of the
nonmonotonic choices presented before.

Chapter 10 contains a final discussion, summarizing our results and outlining possible ^direc-
tions for future work.

For readability sake, we have included most of the proofs in Appendix A. Finally, Appendix
B contains the representation in PAL of most of the examples presented in the thesis.

16 Introduction

Chapter 2

Nonmonotonic reasoning and logic
programming

This is an overview of well-known concepts of nonmonotonic reasoning and logic programming
we will use along this work. An experienced reader should perhaps skip the whole chapter,
excepting, at most, section 2.3.6, where we provide some contributions related to the bottom-
up computation of well founded semantics with explicit negation. Detailed introductions to
nonmonotonic reasoning can be found in [18, 36, 5] and, for the case of logic programming, in
the surveys [66, 30, 6, 59, 31].

We have organized this background presentation in three sections. The first two sections
describe the two general-purpose nonmonotonic approaches used in this work: circ^croscription

and defa^clt logic. The last section is devoted to declarative logic programming and, more
concretely, to three well known semantics for logic programs: Clark's completion, stable models

and well fonnded semantics.

2.1 Circumscription

Circnmscription [74] is one of the most popular nonmonotonic techniques and for which more
variations have been proposed. Intuitively, given some classical theory T, we want to circum-
scribe the extent of some predicate p exclusively to those facts explicitly asserted in T.

Given two predicates p and P, we write P< p and P= p to respectively stand for:

P < p def
`dX. \P(X) ^ p(X))

P_ p def
t1X. (P(X) = p(X))

being X a vector of variables. As usual, p< P is an abbreviation of p< P n^(p = P). Then,
we can provide the following definition:

Definition 1(Circumscription) The circnmscription of a theory T for a predicate p is de-
noted as CIRC[T; p] and defined as the second order formula:

CIRC[T; p] def
T(p) /^ -^^P. (T(P) /^ P< p) (2.1)

O

18 Nonmonotonic reasoning and logic programming

It must be noticed that circumscription is not a nonmonotonic logic, but a technique for

obtaining nonmonotonic consequences of a classical theory. Note also that the definition of

CIRC[T; p] is using second order logic (we quantify over a predicate variable P). The intuitive

meaning is clear: we fix the minimal extent for p among all the possible P's that satisfy the
formulas in T.

In fact, as shown in [58] we may actually bear in mind the following alternative semantic
characterization. Let Ml and M2 be two (first order logic) interpretations. We write Ml <r M2

to express that Ml and M2 coincide in their universes and valuations for all constants and

predicates, excepting the valuation for p, which satisfies: Ml [p] C M2 [p] . Then:

Property 1 The models of CIRC[T; p] are the <p-minimal models of T. ^

In other words, circumscribing p in T corresponds to selecting those models of T that have

minimal extent for p, while all the rest is fixed. The resulting effect of this minimization is,
informally speaking, to introduce an ordering in the reasoning process, so that, we first freely

decide the valuation of the fixed constants and, afterwards, we obtain a minimal extent for p.

In this sense, there exists some sort of directional reasoning, although only for two levels, which

may be insuf^icient sometimes.
The typical example for showing this insufficiency is the following one:

`dX. (^ab(X) n german(X) ^ drinks_beer(X))

german(peter)

Let us call Tl to this theory which tries to represent that, by default, Germans drink beer, and

that peter is german. The expected result of circumscribing predicate ab is that we should get

^ab(peter), and so, drinks_beer(peter). However, we may first freely propose ^drinks_beer(peter)

obtaining as a consequence ab(peter), which actually constitutes a second model of CIRC[Tl; ab].

Notice that both models are not comparable using the < ab relation, since they do not coincide

in the extent of drinks_beer, which is one of the fixed predicates.

To allow some flexibility, a modification called variable circumscription [75] was introduced.

Definition 2(Variable circumscription) The circumscription of a predicate p in a theory

T, varying the vector of predicates z is denoted as CIRC[T; p; z] and defined as:

CIRC[T; p; z] def T(p, z) n^^P, Z. (T (P, Z) n P< p)

The corresponding ordering relation Ml <^^z M2 used for the models minimization holds

when:

1. Ml [q] = M2 [q] for q^ p and q not in z,

2. Ml [p] C M2 [p]

that is, we allow now to vary the extent of predicates in z. Thus, for instance, our previous

example can be simply solved by using the variable circumscription CIRC[Tl; ab; drinks_beer].

In this way, we are somehow proposing a directional reasoning organized in three levels:

1. decide freely the extent for german(X),

2.2 Default Logic 19

2. minimize the extent of ab(X),

3. and finally, obtain the consequences for drinks_beer(X) from the remaining models after
the previous two steps.

Of course, this scheme is still rather rigid, since it just provides three levels. Although we
will not actually use it, a natural generalization is the so called prioritized circurrascription [54] in
which we introduce a complete priority ordering for a chain of minimized predicates pl, ..., p^.
As proved in [58], prioritized circumscription can be defined as:

^
CIRC[T; pl >...> p^; z] = n CIRC[T; pZ; pZ+l ^.. ., p^, z]

2=1

Note that it would be possible to use this directional ordering to obtain a causal behavior for
an stratified set of material implications, fixing the predicates to be included at each stratum
or priority-level. However, .this solution for implementing causal rules is not very appropriated
because: (1) causal rules are not always stratified; (2) the ordering relation among predicates
is not always fixed, but may dynamically vary; and (3) what is even more problematic, this
ordering may be easily affected by simple elaborations like adding a new causal dependence.

One final interesting variation is the so-called paradlel circu^nscription [75]. The idea is to
allow the sirrcultaneous minimization of several predicates.

Definition 3(Parallel circumscription) The parallel circurrascription of the vector of predi-
cates p= pl, ..., p^ in the theory T, CIRC[T; pl, ... , p^;], is defined as the second order formula:

_ T(p) n,^P. (T(P) n P< p)

where P is a vector of predicate variables P1, ..., P^ and P< p represents the formula:

pl Cpl^...^p^ ^ p^^^(pl =pl^...^p^=p^)

q

This is sometimes particularly interesting when moving from a first order theory T with
a finite domain universe to a propositional theory T', where all the quantifiers and variables
are replaced by (finite) ground conjunctions or disjunctions. In such a case, the original

circumscription CIRC[T; p] actually corresponds to the propositional parallel circumscription
CIRC[T'; p(al), ..., p(an)], where p(ai) are all the ground instances of predicate p.

2.2 Default Logic

Default logic, conceived by Ray Reiter [94], is perhaps one of the most widely used nonmonotonic
formalisms. As discussed in [62], some of the aspects that seem to have contributed to its success
are: ^

1. its original definition has proved to be expressive enough to cope with most of the research
topics, without excessive need for additional improvements or variations,

2. as shown in [109], its use of inference rules allows avoiding the frame, the Yale Shooting
and the ramification problems,

20 Nonmonotonic reasoning and logic programming

3. and last, but not least, declarative logic programming (particularly, the stable models [38]
semantics) can be actually used as a practical implementation of (a subset of) default
logic. ^

This last feature has been frequently used as a powerful connection between the areas of
nonmonotonic reasoning and logic programming, so that results in one area can be extrapolated
to the other. In fact, we will actually follow the presentation of default logic introduced in [43],
due its similarity with the description of stable models.

The intuitive idea behind default logic is to extend the use of classical inference rules so that
part of their antecedent is not required to be present among the current consequences, but just
to be consistent with them. A default rule is a structure of the form:

lX.^l^ ••^^m

7

where a, ry and the ^Z's are ground formulas. Although rules with variables are usually allowed,
they are actually understood as rule patterns, replacing each variable by all its possible ground

instances. Under default logic terminology, a is called the prerequisite, each QZ is a j^cstification,

whereas -y receives the name of conseqnent. When a= T, we simply write:

• Nl ^ • • , l^m

Furthermore, if the default has the shape:

it is said to be norrnal.
As said before, the informal behavior of a default rule is that when a has been obtained and

all the ,Qi are consistent (i.e., their negations are riot among the current consequences), we add
the new consequence ry. The problem for formalizing a process like this is that, if we simply
apply a transitive closure of rule applications, some of the justifications ,QZ we had assumed as
consistent may finally become false, invalidating the whole process. In other words, unlike the
classical inference closure, default reasoning cannot be captured by a constructive process.

For a formal description, let us begin first with usual (nondefault) inference rules. A(propo-

sitional) inference rule is a structure of the shape:

a
- (2.2)
7

Definition 4(Closed theory) A theory E is said to be closed with respect to a set of inference

rules D iff for any rule (2.2) in D such that a E E then ry E E. ^

In short, E is closed w.r.t. D iff no more rules can be applied to increase E.
Inference rules are typically used in classical logic proof theory. Notice that they behave as

"blind" syntactic transformations. For instance, a typical logical inference rule is:

anQ
^ ^ a (2.3)

to guarantee commutativity of conjunction. Besides, rules like this are typically specified as gen-
eral patterns, using meta-variables (like a and Q above) to represent any propositional formula.

2.2 Default Logic 21

We will call logical rnles to the usual set of inference rule patterns for propositional calculus. We
say that E is logically closed when it is closed with respect to the logical rules, i.e., E includes
itself all its possible logical consec^uences. The logical clos^cre of a theory E, denoted as Cn(E),
is the least superset of E that is logically closed.

Assume that we handle now a set D of nonlogical rules. Our interest is to get the consequences
of some initial theory W under the set of rules in D. For simplicity sake, we may assume that
W C D and that any classical formula ^ actually represents the nonlogical rule:

T
^ (2.4)

Thus, we simply define the set of conseqnences of D, Cn(D), as the closure of the empty theory
0 with respect to both logical rules and rules in D. In other words, Cn(D) is the least set of
formulas that are both logically closed and closed with respect to D. Notice that, by abuse
of notation, we have used the same name, `Cn', than for logical consequences. However, this
does not lead to ambiguity, since, when D only contains classical formulas, like (2.4), Cn(D)
corresponds to the logical closure, as before.

The theory Cn(D) can be obtained incrementally by successive applications of rules. To
this purpose, we define the operator of direct consequences, TD, that maps each logically closed
theory E into the new logically closed theory:

TD^E) = C^({7 aEDandaEE
7

Successive applications of this operator, starting with Eo = Cn(^) (i.e., the set of all the
tautologies), will always lead to a fixpoint (no more rules are applicable), which is the final set
of consequences:

TD(Ei) = Ei = Cn(D)

Let us consider now a set D of defa^clt rules, that is, inference rules with justifications. As
explained before, the justifications do not need to be among the consequences - we just require
that they are not finally denied by them. The problem, of course, is that during the inference
process we cannot predict whether the assumptions will be later denied or not, and so, simply
iterating some variation of TD will not be enough now. Instead, we proceed as follows: we first
choose an arbitrary logically closed theory E for valuating the consistence of justifications in all
the rules; afterwards, if the set of resulting consequences happens to coincide with E, then E is
a possible "valid" assumption and is called an e^tension of D.

Formally, given a set of default rules D and a logically closed theory E, we define the set of
inference rules DE (read D modulo E) as:

a:/31i...^Qm ED
dth EQ

7
, an ere is no ^, ^ E

That is, DE contains each rule where the justifications are consistent w.r.t E, and so, they
are omitted. Since the resulting DE consists of usual inference rules, we can compute its conse-
quences Cn(DE) as before. Thus, extensions are characterized by the following fixpoint condi-
tion:

Definition 5(Extension) A logically closed theory E is an e^tension of a set of default rules
D iff E = Cn(DE). ^

22 Nonmonotonic reasoning and logic programming

A default theory may have several extensions or no extension at all. For instance, it can be
easily seen that D1:

-,p ^q

q p

has two extensions El = Cn({p}) and E2 = Cn({q}), whereas D2:

^ ^p

p

has no extension. Notice also that having no extension is different from having an inconsistent

one. For example, the default theory D3:

T

p ^ ^p

has as unique extension the inconsistent theory Cn({1}), i.e., the whole set of well formed
formulas.

A default theory D is said to be consistent iff it has at least one consistent extension. We

usually say that a formula is a conseq^cence of D when it belongs to all its extensions.

2.3 Review of Logic programming

In [16] an important connection was discovered: if we momentarily forget the control strategy of
Prolog, we may essentially understand that a program with negation as failure like, let us say:

p .- \+ q.

r :- p, \+ s.

tries to solve the same problem as the default theory:

• ^q p • ^s
p r

This relation opened the cross research between the fields of nonmonotonic reasoning and

logic programming. On the one hand, nonmonotonic approaches are used to study declarative

semantics for logic programming and its generalizations. On the other hand, logic programs

provide an excellent tool for obtaining practical applications of nonmonotonic reasoning.

We study in this section three well known logic programming semantics, beginning with the

stable models because of its closeness to default logic.

2.3.1 Basic definitions

The syntax of logic programs is defined starting from a finite set of ground atoms ^-l called the

Herbrand base. We assume that all the variables have been previously replaced by their possible

ground instances. A program literal is either an atom a E ^-l or its default negation not a (which

is called a defa^clt literal). A normal logic program is a finite set of rnles of shape:

H ^ L1i...,Ln

where n>_ 0, H is an atom called the head of the rule, and the L^s are program literals which

receive the name of body of the rule. When n= 0, we usually write `H' to stand for `H ^',

2.3 Review of Logic programming 23

and say that H is a program fact. A normal logic program is said to be positive (or definite)
when it does not contain any default literal. Note that, if we interprete `,' and `F--' as classical
conjunction and implication, then a positive logic program just corresponds to a set of Horn
clauses.

Some syntactic restrictions on the presence of cycles will be later interesting. Given a normal
logic program P we define its corresponding graph G(P) as follows. Each node corresponds to
an atom in the Herbrand base a E ^-l, whereas each arc (a, b) denotes that atom b occurs in the
body of a rule with head a. If b occurs as an atom, the arc is said to be positive and labeled
with a`+', whereas if b occurs in a default literal, not b, the arc is negative and labeled with a
`-'. A cycle is any path in G(P) from a to a. The cycle is positive iíf all the ares involved in it
are positive. Otherwise, the cycle is said to be negative. When G(P) does not contain cycles, P
is said to be a hierarchical program, whereas when it does not contain negative cycles, it is said
to be stratified. Another way of defining a hierarchical program P is by requiring the existence
of a (nonnegative) integer mapping:

level : ^l ^ N U {0}

so that, for each rule with a as head, level (a) < level (b) for any atom b occurring in the body
of the rule.

For defining the diíferent semantics of logic programs we will use the following intuitions.
We will handle propositional models which more or less will play the same role than extensions
in default logic, but restricted now to sets of atoms. In this way, we lose the use of classical

disjunction and negation. As a result, some care will be needed with the meaning of falsity under
this new focusing. For instance, given a model M, if a¢ M for some atom a, we understand in
logic programming that a is false, but we would actually understand that a is unknown, when
seeing M as an extension in default logic.

A(2-valued) interpretation M is defined as any subset of ^, M C^. It can also be seen
as a function M:^-l --^ {t, f} mapping a truth value for each atom in ^, so that M(a) = t
iff a E M. The interpretation can be extended to provide valuation of any formula ^, so that
M(^) follows the standard propositional definitions, where `not ', `,' and `F-' represent classical
negation, conjunction and material implication, respectively. When M(^) = t we usually say
that M satisfies ^ and write M^^. An interpretat'ion is said to be a model of a program P iff
it satisfies all its rules.

2.3.2 Stable models

The definition of the stable models [38] semantics naturally arises from the already explained
connection between default logic and logic programming. Beginning with positive programs, it
can be easily observed that each program rule like

c ^ al,...,a^,

with {c, al, ..., a^,} C^ can just be seen as the inference rule:

aln...nan

Thus, in order to compute the consequences of a positive program P, we may follow similar steps
as for inference rules. Since we exclusively deal with atoms, the defiiiition of "being closed" with

24 Nonmonotonic reasoning and logic programming

respect to P simply amounts now to require M^ P. From this, we obtain that Cn(P), that

is, the least theory closed with respect to P, becomes now the least model of P, let us denote it

LM(P). Finally, we may also use TP operatorl iteratively:

TP(M) _{c ^(c F- al, .. ., an) E P, and ai E M for all i E [1, n]}

to compute LM(P).

Property 2 Given a positive logic program P, the least fi^point of TP is the least model of P:

LM(P). ^

In order to define the semantics for default negation, we provide a definition of program

modulo in a similar way as we did for default theories. Given a normal logic program P and an

interpretation M, we define the positive program PM (read P modnlo M) as:

PM ={c F-- al, ..., an ^(c ^ al, ..., an, not bl, ..., not b^,,) E P, and there is no b^ E M}

Since PM is a positive program, it has a least model LM(PM). We will usually write

I,P(M)
def

LM(PM) or simply I'(M) when there is no ambiguity.

Definition 6(Stable model) An interpretation M is a stable model of a normal logic program

P iff M is a fixpoint of I', that is, M= I'(M). ^

Of course, it can be easily seen that any stable model M is a model of the program. Note
that the only difference w.r.t. default logic is that literals not b^ represent here the atoms that

mnst not belong to M, whereas justifications ,Q^ represented there the formulas for which ^^3^

should not belong to E. In this way, the program rule:

c t- al, ..., a^,, not bl, ... , not b^,,

actually corresponds to the default:

al,...,a,,, . -,bl,...,^b^

c

Following this correspondence, assume that D(P) denotes the representation of a program

P as a default theory. Then, the following result [39] applies:

Property 3 Given a normal logic program P, M is a stable model of P i,,ff Cn(M) is an

e^tension of D(P), seeing M as a theory consisting of atomic form^clas. ^

Exactly as in default logic, a logic program may have several stable models, like in the

program:

p E- not q

q F- not p

with the stable models {p} and {q}, or no stable model at all, like in:

p F- not p

However, we will see later that these possibilities only arise in presence of cycles. Hierarchical
programs always have a unique stable model (which, in fact, coincides with the result of the

other two semantics).

lIn fact, this is the original Tp operator introduced by van Emdem and Kowalski in their historical paper [112].

2.3 Review of Logic programming 25

2.3.3 Clark's completion and supported models

The idea of program completion was first introduced by Clark [25]. To understand its motivation,
assume we have the positive logic program Pl:

As a propositional theory, {q n r^ p, s^ p, r}, this program has many models which, for
instance, allow varying the truth of p. However, when working with a logic program we actually
handle the following intuition: the two rules for p are the only possibilities to derive p. So,
rather, than a single implication, we should handle p-(q n r) V(s).

The completion of a normal logic program P, COMP[P], is defined as the classical proposi-
tional theory:

COMP[P] def {p = Bi V••• V B,^ ^ p E^, and the Bi are all the bodies for head p}

following some conventions:

1. an empty body is considered as the constant t(true),

2. an empty disjunction corresponds to the constant f(false),

3. the commas and the default negations are respectively seen as classical conjunctions `n'
and negations `^'.

The theory COMP[Pl] would correspond to:

p =

q =

(qnr)Vs

f

r - t

s - f

which clearly has the unique model {r}, which in this case, coincides with the least model
LM(Pl). However, this coincidence is not general, even for positive programs. The simple
program P2:

P ^ p

would lead to the completion p- p which has two possible models, 0 and {p}, being LM(PZ) _^.
As we can see, the completion of a positive program may lead to more than one model.

To see an example of completion for a nonpositive program, consider P3:

a^ not b, not c

a ^ d

c ^ d

d F- c

26 Nonmonotonic reasoning and logic programming

and its completion COMP[P3]:

a - (^b n ^c) V d

b - f

c - d

d - c

which has two models: {a, c, d} and {a}.
Although the completion of a program P is a syntactic transformation, there also exists a

semantic characterization of the models of COMP[P].

Property 4 Let P be a normal logic program and M a^-valned interpretation. Then M^

COMP[P] i,^ M= TP(M). ^

That is, the models of completion are all the fixpoints of operator TP, which receive the name

of sz^pported models. This means, for instance, that when the program is positive, completion is

a weaker semantics than the least model (which selects the least fixpoint of TP).

2.3.4 Well Founded Semantics

The main idea for introducing well fo^cnded semantics [113] (WFS) is to allow interpretations

in which some atoms are not defined (neither true nor false). The motivation for this is that

cycles like p E-- not p, which may cause the nonexistence of stable model, may have a well

founded model where p is left undefined, without affecting other atoms not actually involved

in the cycle. We will present three alternative definitions of WFS, beginning with the most
semantic one, which was introduced by Przymusinski [92], who used a direct generalization of

stable models for the three-valued case.
We define a 3-valued or partial interpretation M, as a pair (M+, M-) of disjoint sets of

atoms, so that the sets M+, M- and ^-l -(M+ U M-) represent the trne, false and ^cndefined

atoms, respectively. Given M-, it will be sometimes convenient to refer to the complementary

set ^l - M-, that is, the nonnegative atoms. It is clear that, since M+ and M- are disjoint,

M+ C_ ^-l - M-. We say that M is complete iff M+ _^-l - M-, i.e., ^-l = M+ U M-. Note

that we may characterize any complete M only by its set of true atoms, M+, which can be

understood as a 2-valued interpretation.
Valuation of formulas assigns now to each formula one of the three possible values {f, u, t}

(where u stands for nndefined) following the rules:

1) M(p) =

t if p E M+
f if p E M-
u otherwise

2) M(not ^) =

t if M(^) = f
f if M(^) = t

u otherwise

3) M((^, ^i)) = min(M(^), M(^))

4) M(^ ^^) = t if
M(^) ^ M(^)

f otherwise

2.3 Review of Logic programming 2?

5) M(t) = t, M(f) = f, M(u) = u

Again, we say that a partial interpretation M satisfies a formula ^, written M^3 ^, when
M(^) = t and that M is a partial model of a program P iff it satisfies all its rules.

We will use two ordering relations for comparing partial interpretations.

Definition 7(T^uth ordering, +) We say that interpretation Ml +(Mi Mi) assigns less
truth than interpretation M2 =(M2 , M2), denoted as Ml < M2i iñ Ml C M2 and MZ C Ml .^ - -

Definition 8(Information or Fitting's ordering, <F) We say that interpretation Ml =
(Mi , Mi) contains less information than interpretation M2 =(M2 , M2), denoted as Ml <F
M2,iffMi CM2 andMi CM2. p

Note that, if we extend the truth ordering to truth values f<_ u<_ t, then for any expression
^, Ml(^) < M2(^) iff Ml < M2. When we handle complete interpretations, Ml < M2 simply
amounts to Mi C M2 , whereas all the complete interpretations are <F-maximal (they cannot
contain more information).

As happened with 2-valued interpretations, any positive program has also a unique least
partial model.

Property 5 Let P be a positive program. There exists a ^cniq^ce <_-rrainimal model of P, called
its Least Partial Model, LPM(P). p

In fact, when the positive program does not contain truth constants in its body, the least
partial model is complete and coincides with LM(P). However, if we allow truth constant u to
be one of the body atoms, then the LPM(P) may be not complete. For example, the program
P4:

has the following models:
M+ M-

Mo {p, q} ^
Ml {p, q} {s}
M2 { p, q, s} f^
M3 {p, q, r} {s}

M4 {p,q,r,s} (b

M5 {p,q,r} Ql

To select the <-minimal models, we take as less positive atoms and as much negative ones
as possible, and so LPM(P4) = Ml, which makes p and q true, s false, and r undefined.

As the natural following step, we extend the modulo operation to the 3-valued case. When
M is a partial interpretation, PM is defined by replacing in P all the default literals not p by
M(not p). Note that we can simplify the program by deleting the rule, when M(not p) = f,
and deleting the default literal from the body, when M(not p) = t. The resulting program is
positive (free from default literals) and so, it has a least partial model LPM(PM).

28 Nonmonotonic reasoning and logic programming

Definition 9(Partial Stable Model) A partial interpretation M is said to be a partial stable

model of a program P ifi M= LPM(PM). q

In this way, we can see any 2-valued stable model M as the partial stable model (M, ^-l - M)

which happens to be complete. The interest of partial stable models is that, for any normal
logic program, there always exists a particular one with the least amount of information.

Property 6 Given any normal logic program P, there e^ists a z^niq^ce <F-minimal partial stable

model of P, which receives the name of Well Founded Model (WFM). O

Notice that this immediately means that:

Corollary 1 Let W be the well fo^cnded model of a normal logic program P. For any ,2-val^ced

stable model M of P, we have that W<F (M, ^-l - M). q

Corollary 2 Let W=(W+, W-) be the well foz^nded model of a normal logic program P. If

W is complete, i. e. W+ = 3-l - W-, then W+ is the ^cniqz^e ,2-valned stable model of P. q

Notice that a complete WFM means a unique stable model, but not the opposite. For

example, the program P5:

b F-- not c

c F- not b

d ^- not c

d^ not d, not b

has a unique stable model, {b, d}, but its WFM, (0, 0), is not complete (all the atoms are

undefined).
At a first glimpse, computing the WFM involves more complexity than the 2-valued stable

models. Potentially, there exist more possible partial stable models than complete ones. Besides,
after computing them, we must make an additional minimization (computing the <F least partial

stable model). However, due to the shape of logic programs, the WFM can be computed using

an incremental procedure, and so, it is actually simpler than computing the stable models.
The second characterization of WFS we will use actually corresponds to the most usual

method for computing the WFM. This method relies on the I' operator we had defined for stable
models which is antimonotonic with respect to inclusion among sets of atoms. As a result, I'2,
that is, r applied twice, results to be monotonic, and so, the Knaster-Tarski's theorem [106]

is applicable: there exists a least (resp. greatest) fixpoint, l f p(I'2) (resp. gf p(I'2)), which is

computable by iteration on the least set of atoms 0(resp. the greatest set of atoms ^-l). The
interest of I'2 is clarified by the following result:

Property 7 The well fo^cnded model of a normal logic program P corresponds to the ^-valned

interpretation (l f p(I'2), ^-l - g f p(I'2)). Moreover, each fi^point o f this pair can be comp^cted in

terms of the other: gf p(I'2) = I'(l f p(I'2)) and l f p(I'2) = I'(gf p(I'2)). q

Finally, we will also present a third method of computing the WFM which is the most
procedural, but also the the most efficient one. This method was developed by Brass and Dix
(for a recent update, see [1?]) and relies on successively applying the following intuitive program

transformations:

2.3 Review of Logic programming 29

1. Failure ►^: delete all rules containing the positive literal p such that p is not head of any
rule.

2. Positive reductionĤ : delete all literals not p with p not head of any rule.

3. SuccessĤ : delete any positive literal p such that p is a fact.

4. Negative reductionĤ : delete all rules containing not p such that p is a fact.

5. Positive loop detection Ĥ : delete all rules containing the positive literal p such that

p ^ r(^)

Property 8(see theorem .^.17 in ^17^) The transformations {P,N,S,F,L} are sound w.r.t. WFS
and provide a con,fluent calculus which is strongly ter^ninating. Furthermore, if P is the final
program (where no new transformation is applicable) then the WFM, W=(W+, W-), satisfies:

W+ = f acts(P)

W - _ ^-l - heads(P)

where f acts(P) (resp. heads(P)) denotes the set of ato7res that occur as a prograrrc fact (resp.
as a head) in P. q

The first four transformations allow simplifying the program by ruling out those atoms with
trivial or direct interpretation. For instance, when an atom p is one of the program facts, we

, can be sure that it will be finally true, and so we can replace any program literal containing

p by its final truth value (transformations ►^ and Ĥ). Analogously, when an atom is not
head of any rule, it will be finally false (there is no way to obtain evidence for it) and we can

also simplify the corresponding program literals, using transformations ►-^ andĤ . As shown
in (17] (theorem 4.9), the exhaustive application of these four rules allows obtaining the so-called
Fitting's model [35] of a normal logic program. Although we will not use Fitting's semantics in
this thesis, it is interesting to note that Fitting's model would correspond2 to assign these direct
or trivial truth values until a cycle is reached (either positive or negative cycle), leaving undefined

any atom involved in (or depending on) the cycle. In this way, the fifth transformation, ►^,
becomes the real "contribution" of WFS with respect to Fitting's semantics. Positive cycles
are solved by applying the following criterion: if, under an optimistic view, we compute the
consequences of the program assuming all the default literals to be true (this is the real meaning
of I'(0)) but still some atoms cannot be obtained, then these atoms will always be false (since
we had assumed the most optimistic case for default negation). This also means that, for a
hierarchical program, the rewriting method for computing the WFM actually amounts to the

rulesĤ , ^,Ĥ andĤ , since ^ exclusively af%cts to positive cycles.

Let us make a more detailed study on the interpretation of program cycles under the dif%rent
semantics we have introduced.

2The usual definition of Fitting's model is as the _<F-least fixpoint of operator ^P, which is a three-valued
generalization of TP.

30 Nonmonotonic reasoning and logic programming

2.3.5 Cycles

Despite of the differences among all these semantics, it is possible to establish some syntactic
cases in which their interpretations of a logic program coincides. Most of these syntactic re-

strictions are very related to the cyclic references present in the program. For instance, under a
complete absence of cycles, the three semantics we have presented lead to the same result:

Property 9 Let P be a hierarchical logic program. Then:

1. there e^ists a unique fixpoint M of TP,

,2. M is the unique stable model of P,

^. (M, ^-l - M) is the WFM of P,

q

Furthermore, if we also require that the program is positive, we obtain:

Property 10 Let P be a hierarchical and positive logic program. Then:

COMP[P] - CIRC[P; ^-l]

q

In other words, for a program without cycles nor default negation, the parallel circumscrip-
tion of all the Herbrand atoms is equivalent to the Clark's completion (and so, as the program

is hierarchical, to the unique stable model and to the complete WFM). Of course, having no
default negation at all is a too strong restriction, but this result will be interesting for computing
circumscription in some particular cases.

Proposition 9 allows us to understand each semantics as a different way of interpreting logic
program cycles. Let us think first, for instance, about positive cycles like PZ ={p t- p}. As we

already saw, this program has two supported models: {p} and 0. Note that model {p} shows

a"strange" feature: in order to explain which rules justify p, we need p itself as part of the

explanation. Stable models disable these "auto-explanations," satisfying instead the property

of well-supportedness:

Definition 10 (Well-supportedness) A(2-valued) interpretation M is called well-supported

w.r.t. to a program P iíf for some well-founded ordering < on ^-l:

p E ^-l implies that there exists some rule p E- L, M^ L and q< p for all the

positive literals q in L

O

In other words, M is well-supported ifF each p E M has an explanation that does not use p.

In fact, the concept of being well-supported coincides with being a stable model (see for instance
theorem 6.18 in [6]). This well-supported behavior for positive cycles is present also in the WFS,

as shown by the property:

Property 11 Let P be a stratified logic program, and M its unique stable model. Then, the

complete ^-valued interpretation (M, ^-l - M) is the well founded model of P. O

2.3 Review of Logic programming 31

In other words, these two semantics only diífer in the treatment of negative cycles. Roughly
speaking, WFS tries to simplify the cases in which there is no stable model or there are multiple
ones. This is done by identifying those atoms that can be clearly set as true or false, inde-
pendently of problematic negative cycles. Using corollaries 1 and 2, it is easy to see that if a
program has multiple stable models, any defined atom in its WFM will have the same valuation
in all of them.

However, the WFM does not correspond exactly to the intersection of the stable models. For
instance, in program P5 the unique stable model is {b, d} whereas the WFM leaves all the atoms
undefined. This difference is related to a property of inference relations not satisfied by stable
models: currt^clativity. In few words, an entailment relation ^ is cumulative iff having a^ Q
and a ^ ry, adding one of the conclusions to a preserves the rest of conclusions: a U,Q ^ ry.
Looking at program P5, the unique stable model entails b and d true. However, once d is added
to the program, we obtain two stable models {b, d} and {c, d}, and b is no longer entailed.

The WFM of P5 can be understood as an ordered interpretation of the cycles present in the
program. Looking at the dependences graph:

b'

we intuitively first solve the negative cycle between b and c, which in WFS leads to both atoms
undefined. After that, d is also left undefined because it depends on the undefined atoms b and
c, and it is also involved in another negative cycle.

2.3.6 WFSX and the coherence problem

As we explained previously, in order to use logic programming as a nonmonotonic reasoning tool,
we have had to restrict the representation for dealing with atoms, rather than with arbitrary
formulas, as in default logic. However, when we work with typical problems in reasoning about
actions, we usually have to represent boolean (or even multiple-valued) fluents, needing to
distinguish the fact of being explicitly false from the default negation. The addition of a second
negation (named in diíferent works as classical, e^plicit or strong negation) leads to the so called
e^tended logic progrararrcing [40, 89, 2, 3].

We will handle now two types of atoms: `p', to represent that p has value tr^ce; and `^', to
represent3 that p has value false. Normal logic programs dealing with this extended signature
receive the name of e^tereded logic prograrras. We call objective literal, denoted as L, to either
p or p, and default literal to any not L. Besides, we will use the notation L to stand for the
complementary ob jective literal of L, assuming p def p. Furthermore, given a set of atoms M,
we denote M to stand for the set of complementary atoms:

M
def {p (p E M}

The extension of the stable models semantics for extended logic programming is extremely
simple. We simply rule out the stable models containing any pair {p, p}, that is, we take

3For our later convenience, we deviate here from the usual notation of extended logic programming which
denotes objective negated literals as ^p.

32 Nonmonotonic reasoning and logic programming

charge of explicit inconsistency. We usually talk about answer sets [40] when referring to these

(consistent) stable models of extended logic programs.
. At a first glimpse, it seems that something similar can be done for the WFS, considering the

program to be contradictory when the WFM makes true both p and p. However, as pointed out

in [89, 2], a direct application of this method may lead to counterintuitive results. To understand
the problem, it must be first noted that we handle now more possible epistemic states for a given

atom. R,a,ther than saying that L is trne (when L E M+) or that it is false (when L E M-), we

will say instead that it is founded or nnfonnded, respectively. In this way, we may distinguish

between being ^cnknown (that is, both p E M- and p E M- are unfounded) and being ^cndefined,

which means that for some truth value of p we cannot establish whether it is founded or not

(p¢M+UM- orP¢M+UM-).
In principle, we may have that p is undefined and P defined, or vice versa. However, it seems

that there should exist a connection between complementary objective literals: when L E M+
is founded, we should have L E M- unfounded. Unfortunately, this property, called in [89] the

coherence principle, is not satisfied by the usual definition of WFS. The typical example is the

program P6:

p ^ not q

q E- not p

Intuitively, as we know that p is founded, its default negation not p should be immediately true,

making q also founded. That is, we should obtain the complete model ({^, q}, {p, q}), with ^

and q founded and their complements unfounded. However, it is easy to see that the WFM of

P6 is ({^}, {q}), which leaves both p and q undefined. The reason for this is that WFS does not

provide any connection between p and P and so, we are not able to establish that the default

literal not p should be true when p is foundedly false.
To overcome this difficulty, Alferes and Pereira introduced a variation of WFS called WFSX

(Well Founded Semantics with Explicit Negation). For simplicity sake, we will just provide
the iterative method to compute the WFM under WFSX semantics, which relies on a variation

of the application of I'2. Most of the properties presented here have been directly extracted

from [2]. Later, we will use this definition of WFSX to introduce a second computation method,

which is an extension of Brass and Dix's transformations.
Let r be a rule H E- B of an extended normal logic program. By rs we denote the seminormal

version of r:

rs def
H^ B, not H

Given a extended normal program P, we write PS to stand for the seminormal version of P:

PS def
{rs I T E P}

For any set of atoms M and any fixed program P, we write I'S(M) to denote the least model of

PM. The function I'S is not defined for a contradictory M, i.e., M containing both p and p. A

program is contradictory in WFSX iíf it has no fixpoints for I'I'S.

Property 12 For noncontradictory programs, there e^ists a least fi^point of rrs, denoted as

lĴp(rrs) • O

2.3 Review of Logic programming 33

The combined function rrs is monotonic (on inclusion of sets of atoms), and so, its least
fixpoint (when defined) can be computed by iteration on the least possible set of atoms, 0. This
is usually denoted as rrs T(^). The well founded model is then defined in terms of l f p(rrs) as
follows:

Definition 11 (WFSX's Well founded model) The well founded rraodel (WFM) of a(non-
contradictory) extended logic program under the WFSX semantics corresponds to the three-
valued interpretation:

^lfp(rrs), rs(lfp(rsr)))

0

It is interesting to note that the iteration of rrs may also be used to detect contradictory
programs, as stated by the following property:

Property 13 If the iteration of rrs T(0) reaches an interpretation that contains both p and ^,
then the prograrra is contradictory in WFSX. p

Finally, another important property (proved in theorem 4.3.6 in (2]) is that WFSX actually
generalizes WFS:

Property 14 For progra^ns without e^plicit negation, WFSX coincides with WFS. O

Unfortunately, this property does not help to establish the diíferences between WFS and
WFSX when the program actually contains explicit negation. To this aim, we introduce next
an alternative characterization of WFSX that provides straightforward results comparing both
semantics and helps in identifying when WFSX is actually needed.

2.3.7 A rewriting method for computing WFSX

As explained above, in this section we introduce an.alternative method for computing the WFSX
relying on the rewriting transformations defined by Brass and Dix. We will incorporate the
following two new transformations:

6. Coherence failureĤ : delete all rules containing the positive literal P such that. p is a fact.

7. Coherence reductionĤ : delete all literals not P such that p is a fact.

Notice how, in both cases, we simplify literals for P provided that p is trivially true (it is

a fact). In such a case, the coherence reduction, ►-^, transforms not P into true. In fact, this
transformation is the direct implementation of the coherence principle: default negation follows

from explicit negation. As for transformation Ĥ , it allows replacing p by false, momentarily
assuming that the program will be noncontradictory. As we will show later, even though this
assumption is not finally satisfied, the rewriting method (including these two new rules) is still
capable of detecting contradiction.

We begin introducing the following definition:

34 Nonmonotonic reasoning and logic programming

Definition 12 (Trivial interpretation of a program) Let P be a program not containing

contradictory facts. We say that U=(U+, U-) is the trivial interpretation of P iff.

U+ def
faCtS(P)

U_ def
(^ _ heads(P)) U f acts(P)

O

In other words, we consider as true any atom which is a fact in the program, and as false

any atom p which is not head or for which p is a fact.

Example 3 Consider the program P7:

Its trivial interpretation is:

U+ _ {p}

U- _ {á, b, P}

O

Notice that, this program cannot be further transformed using the WFS transformations

{F , P, S, N, L} and its WFM would be:

W+ _ {p}

W - _ {á, b}

leaving ^ undefined, but the trivial interpretation goes even further, considering ^ unfounded,

provided that p is a fact. The trivial interpretation iŝ interesting because it will always contain

less or equal information than the WFM (under WFSX), as stated by the following theorem:

Theorem 1 Let P be a noncontradictory program, W=(W+,W-) its well fo^cnded model

(nnder WFSX) and U=(U+, U-) its trivial interpretation. Then U<F W.

Proof
(In appendix A) ^

We will prove now that the whole set of transformations, {F , P, S, N, L, C, R} are sound with
respect to WFSX, that is, all the successive transformed programs either have the same WFM
or are contradictory. To this aim, we provide first a lemma that establishes that the fixpoints

for rI'S remain unchanged after each transformation. We introduce here a remark .on notation.

When PĤ P' with some transformation rule Ĥ , we write I'' and I'Ŝ to express that these

functions implicitly correspond to P', instead of P.

Lemma 1 For any transformation Ĥ with x E{F,P,S,N,L,C,R}, if PĤ P' then:

2.3 Review of Logic programming 35

(a) if M= I'I'S(M) then rs(M) = I' Ŝ (M) and M= I''r ŝ (M).

(b) and vice versa, if M= I''I'Ŝ (M) then I'S(M) = I'ŝ (M) and M= rI'S(M.).

Proof (In appendix A)

Using this lemma, the soundness theorem is almost straightforward.

q

Theorem 2 (Soundness) The trans formations ►X-^, with x E{F , P, S, N, L, C, R} are sound

w. r. t. WFSX. In other words, if a program P has a WFM then any resulting P', PĤ P' has

the same WFM. Otherwise, if P has no WFM then P' has no WFM.

Proof

(In appendix A) q

Before studying completeness, we can already use this result to compare WFSX to WFS. As
the transformations {P, N, S, F, L} used for WFS are a subset of the ones we have just proved to
be sound for WFSX, we immediately get that:

Theorem 3 Let P be. any e^tended normal logic program and let W=(W+, W-) be its WFM

under WFS. Then:

(i) If W is contradictory (it makes true both p and p) then P is contradictory in WFSX.

(ii) If the program P is noncontradictory and X is its WFM under WFSX then W<F X.

Proof
(In appendix A)

Note that the opposite for (i) does not hold, that is, we may have a program which has a
noncontradictory WFM in WFS but has no solution in WFSX. As a simple counterexample,
consider the program P8:

a F- not a

á

It is easy to see that in WFS, we get a undefined and á true (remember that there is no
connection between both atoms). So, the result is not contradictory. However, in WFSX, there
is no fixpoint for I'I'S. For instance, if we try to compute its least fixpoint by iteration, we obtain
that I'rs(0) _{á}, and I'I'S({á}) _{a, á} and so, it is not defined any more (WFSX has no
fixpoints). If we focus on the transformation rules, note that P8 cannot be further transformed

using rules {P, N, S, F, L}. However, in WFSX, we still can apply rule ^(coherence reduction):
as a is explicitly false, not a must become true. As a result, we get the program Pĝ ={a, á}
which is clearly contradictory.

Theorem 3 also leads to the less general, but also useful result:

Corollary 3 Let W be the well founded model under WFS for some program P, and let W be
noncontradictory and complete. Then, W is also the well founded model of P under WFSX. O

36 Nonmonotonic reasoning and logic programming

To end up with the comparison, as for any hierarchical program, WFS leads to a complete

WFM, we also obtain:

Corollary 4 WFS and WFSX coincide for any hierarchical program. O

Although these results help in comparing the efFects of applying WFSX w.r.t. WFS for

extended logic programs, we have not proved yet that applying exhaustively the complete set of

transformations {F, P, S, N, L, C, R} actually ends providing the WFM in WFSX. We only know

by now that, if we reach a pair of contradictory facts, then the program is WFSX-contradictory
and, otherwise, the three-valued interpretation obtained from the program has less or equal

information than the final WFM.

Definition 13 (Non-reducible program) An extended normal logic program P is said to be

non-red^ccible iff no transformation in {F, P, S, N, L, C, R} is applicable for P. O

Theorem 4 Let P be an non-red^ccible program not containing contradictory facts. Then, the

trivial interpretation of P:

U+

U-

def

def

f acts(P)

(^-l - heads(P)) U f acts(P)

is its WFM ^cnder WFSX, that is:

i) U+ = lfP(rrs)

22) U- _ ^-l - I's(U+)

Proof
(In appendix A) O

Looking at the proof of the previous theorem (included in the appendix), it can be noticed

that we use the premise of nonapplicability of all the transformations excePting the failureĤ
which, therefore, is not actually necessary. The explanation for this is that, as it is easy to see,

failure is actually a particular case of positive loop detection ►^. Both transformations delete

rules containing positive literals that satisfy a given condition which in Ĥ is stronger than

in ^: L¢ heads(P) ^ L ¢ I'(0). However, maintaining transformation Ĥ is interesting

because of a pair of reasons. On the one hand, it is less costful than loop detection and so, it

may mean an efficiency improvement in many cases. On the other hand, it is interesting from

the theoretical point of view, since, as we had seen, the subset of transformations {P, N, S, F}

completely establish the Fitting's model of the program.

Chapter 3

Static L2

In this chapter we overview the basic definitions of Otero's Pertinence Logic [85], although
the presentation is closer to that of [86]. As we have explained in the introduction, the idea
of pertinence (at least, in this dissertation) is absolutely related to the concept of change in
dynamic systems. However, we will present now, for clarity sake, a formalization as static as
possible, initially omitting features like actions, fluents, situations or even the nonmonotonic
inertia defaulti. However, some implicit informal dynamic intuitions will be needed for a better
comprehension.

Suppose that we handle a finite set of atoms or propositional variables, and that we study
some particular state or configuration of their truth values, using to this aim a classical proposi-
tional interpretation. We want to go further and represent not only the truth values, but also the
fact that some of them have are result of some external intervention2 whose detailed description
is not provided yet. Thus, we will say that an atom is pertir^ent when it happens to have been
affected by this intervention, and we will say that it is nor^pertir^ent otherwise. As a result, we
extend the interpretation to capture this pertinence mapping for all the atoms. We will also
bear in mind an hypothetical previous state (not explicitly represented yet) which would assign,
for all the nonpertinent atoms, the same truth valuation than in the current state. Thus, we
intuitively identify nonpertinence with persistence.

The main motivation for introducing a new logic is that this new pertinence information can
also be extended to complex formulas. For instance, think about the formula up(1) n up(2). If
the pertinence mapping points out that both up(1) and up(2) are nonpertinent, we know that
the whole formula up(1) n up(2) would have the same truth value in a previous state, and so,
we can say that the formula has persisted (it is nonpertinent). Thus, the pertinence mapping
can also be extended to non-atomic formulas, becoming somehow a second valuation, parallel
to the usual truth valuation.

3.1 L2 syntax and semantics

We begin describing L2 syntax by defining a finite nonempty set of propositional atoms, E,
called the sigr^ature. An L2 formula is recursively defined as follows:

1 We deviate here from the original Otero's presentation which, in the basic definition of LZ, already includes
a nonmonotonic entailment with a particular minimization process. Instead, we have preferred to delay the
introduction of nonmonotonic reasoning until inertia is tackled (chapter 6).

ZThis "intervention-oriented" focusing seems, in fact, strongly related to Pearl's interpretation of causality for
probabilistic reasoning (see for instance sections 1.3.1 and 3.4 in [88]).

38 Static LZ

Definition 14 (L2 formula) Given any atom a E E and any pair ^, ^ of L2 formulas, the

following expressions are also L2 forrraulas:

-1-^ a, -^^^ ^ ^ ^, ^ ^ ^G, ^ ^ ^

q

We also include the usual propositional abbreviations:

def

def

def

^1

^^v^

(^^^)^(^^^)

As we can see, the basic L2 syntax introduces just one new connective w.r.t. classical
propositional logic: the binary connective `^' which will be used in the encoding of causal rules.

As usual, an L2 theory is a set of L2 formulas. .
The semantics of L2 is characterized by defining two valuation functions: one for the truth

of the formula (as in classical logic) and the other for its pertinence. We define the set of

truth values {t, f} respectively standing for "true" and "false" and the set of pertinence values
{p, n} which correspond to "pertinent" and "nonpertinent" respectively. In this way, an L2

iaterpretatior^ M is a pair (Mt, M^) of subsets of E that respectively point out the sets of true

and pertinent atoms. The do^cble valuatior^ will be a function from the set of formulas to the set

of pairs {t, f} x{p, n}. For commodity sake, we will denote each one of these pairs simply as
two consecutive letters, tp, tn, fp, fn, and so, we may also consider L2 as a four-valued logic. A
possible intuitive reading for the resulting combinations above, would respectively be: "caused
true," "persists true," "caused false" and "persists false."

Definition 15 (Double valuation of a formula) Given an interpretation M, the correspond-

ing donble val^catior^ of a formula ^, denoted as M(^), is a pair of values Mt(^)Mp(^), where

Mt(^) E{t, f} is called the truth val^ce of ^ and Mp(^) E{p, n} is called its pertir^er^ce val^ce,

such that:

i) the interpretation of 1 is fixed to false, as expected, additionally assuming that it does
not yield pertinence:

• Mt (1) = f,

• Mp(1) = n.

ii) For any atom a:

• Mt (a) = t iff a E Mt,

• M^(a) = p iíf a E M^.

iii) For any propositional formula ^:

• Mt (^) is the usual Tarski's truth valuation of ^ using Mt as a standard propositional

interpretation, that is:

(a) Mt(^^) = t iff Mt(^) ^ t,

(b) Mt (^ n^) = t iff Mt (^) = t and Mt (^) = t,

3.1 L2 syntax and semantics

^ ^ ,^ ^^^ ^^^ ^^^
fn fn tn fn fn tn
fn fp tn fp fp tn
fn tn tn fn tn tn
fn tp tn fp tp fp

fp fn tp fp fp tn

fp fp tp fp fp tn
f p tn tp f p tp tn
fp tp tp fp tp fp

tn fn fn fn tn tn

tn fp fn fp tp tn
tn tn fn tn tn tn
tn tp fn tp tp fp

tp fn fp fp tp tn
tp fp fp fp tp tn

tp tn fp tp tp tn
tp tp fp tp tp tp

Figure 3.1: Double valuation of formulas.

(c) Mt(^ V^) = t iñ Mt(^) = t or Mt(^i) = t.

• Mp(^) = p ifi there occurs an atom a in ^, such that a E M^. In other words:

(a) Mp(^^) = p iff Mp(^) = P^

(b) M^(^ n^) = p iff Mp(^) = P or M^(^) = P^
(c) M^(^ V^i) = p iíf M^(^) = p or Mp(^i) = p.

iv) For any pair of L2 formulas, ^ and ^i:

• Mt(^ ^^/i) = t iff M(^/i) ^ tp or M(^/i) = tp,

• Mp(^ ^^) = p iff M(^i) = tp. .

O

As we can see, the two values of classical propositional formulas are obtained independently (the
truth is not used for pertinence and vice versa). Notice that, for these formulas, pertinence is
just an "occurrence" test: it checks whether the formula contains some pertinent atom or not.
The reason for this is that, when no atom in ^ is pertinent, we will have the guarantee that its
truth value has not changed with respect to the previous state. The presence of a pertinent atom
in ^ drops this guarantee, and so the whole formula is interpreted as pertinent. An alternative
tabular description of L2 double valuation is provided in figure 3.1.

We will say that an interpretation M is a rraodel of an L2 theory T ifl for any formula ^ E T,
Mt(^) = t. In other words, a model is an interpretation that assigns "true" to all formulas
in T, regardless their pertinence. We also define several kinds of equivalence. Two formulas
^ and ^/i are said to be truth equivalent (resp. pertinence-equivalent) iff Mt (^) = Mt (^) (resp.
Mp(^) = M^(^)) for any interpretation M. We say that ^ and ^ are equivalent when they are
both truth and pertinence-equivalent, that is, M(^) = M(^) for any interpretation M. It must

39

40 Static L2

be noticed that, in order to get the same set of models for two formulas ^ and ^, it is enough
with requiring their truth equivalence, since the definition of model exclusively depends on the
truth value.

3.2 Examples

Let E_{a, b, c, d, e} and let Mo be the interpretation:

Mó = {a,b,e}

Mó = {b,c,e}

Then, the double valuation of atoms corresponds to:

Mo (a) = tn

Mo(b) = tp

Mo(c) = fp

Mo (d) = f n

Mo (e) = tp

Intuitively this will mean that our current state for truth values Mó has been obtained because

of an intervention in atoms Mó , that is, in atoms b, c and e. The truth value of a formula like

^(aV d) is simply obtained by classical propositional valuation using Mt, i.e., Mó(^(a V d)) = f.

As for its pertinence value, since neither a nor d belong to Mó , the formula is nonpertinent:

Mó (-^(a V d)) = n. Thus:

Mo(^(a V d)) = fn

This intuitively points out that the formula is currently false and that there was no external
intervention to obtain such a truth value. In other words, we know for sure that the formula
would have also been false in some sort of previous state.

As another example, Mo (a n^c) = tp which means that the formula has been caused true.

That is, we know that the formula is true now but, since one of its atoms, c, has been affected
by change, we cannot guarantee that the formula has really persisted true with respect. to a

previous state (c could have been false before, or moreover, it could have happened to be also
true, but the intervention may have made it momentarily unstable) .

Let us see now some examples about L2 conditionals. A conditional ^^^ is true when, if ^
is true and pertinent then ^ is also true and pertinent. For instance, we have that Mó (c ^ a) = t,

since the antecedent a is nonpertinent. We also have that Mó (e ^^c) = t, since both the

antecedent and the consequent are true and pertinent. Pertinence of a conditional corresponds

to requiring that the antecedent is true and pertinent. That is:

Mo(c ^ a) = tn

Mo (e ^ ^c) = tp

As an example of a false conditional, Mo(a ^ e) = fn, since the antecedent is true and pertinent

but the consequent is not pertinent.

3.2 Examples 41

Conditionals in L2 are somehow atypical operators in the sense that they do not satisfy
several "standard" properties in other conditional logics. For instance, an L2 conditional is
sensitive to (truth) tautologies, so that ^ G^ is not generally equivalent to ¢^^ n(a V^a).
As an example, think for instance in the pair of rules:

d G a (3.1)

d ^ a n (c V ^c) (3.2)

under interpretation Mo. On the one hand Mo(3.1) = tn, since Mo(a) = tn and the antecedent
is directly nonpertinent. On the other hand, Mo (3.2) = fp, because the antecedent is still true,
but has beco^ne pertir^er^t due to the reference to c, Mo (a n(c V^c))= tp, whereas the consequent
Mo (d) = f n. ^

This effect of relevance of tautologies can only be explained if we recall the dynamic intuition
about pertinence. Consider, for instance, the combinatorial circuit in figure 3.2. Assume that
a= 1 and that we change the value of c from 0 to 1. It is clear that, in the resulting state,
the output of the OR gate will always be 1(it represents a tautology) and so, d will have the
same value as a. However, along the change of c, we cannot guarantee a complete persistence of
d: the output of the OR gate may be momentarily undefined, affecting also to the AND gate.
Therefore, d must result pertinent, that is, caused true because c is modified. On the other
hand, b is not affected at all by c, and so, we can guarantee that it persists false.

b

AND

OR

Figure 3.2: A simple combinatorial circuit.

Another property that is not generally satisfied is the decomposition of a disjunctive an-
tecedent into two rules. For instance, interpretation Mo is model of the theory Tl:

d G a (3.3)

d G c (3.4)

but is not model of T2:

d ^ a V c (3.5)

The formula (3.5) is valuated as false in Mo, since Mo(cV a) = tp whereas Mo(d) = fn. However
both (3.3) and (3.4) are valuated as true since Mo(a) ^ tp and Mo(c) # tp. The reason for this

42 Static L2

nonequivalence relies on the valuation of the disjunction: the truth of formula a V c is provided

by a whereas its pertinence is provided by c.
Something similar happens for a conjunctive consequent. For instance, Mo is model of:

a n e ^ b (3.6)

but is not model of the theory T3:

e ^ b (3.7)

a ^ b (3.8)

The reason for this is that, in order to make pertinent the conjunction a n e, it is enough to
make one of its atoms pertinent. However, if we separate these atoms in diíferent rules, then

each of them must be pertinent.
As an interesting remark, note that conditionals can be used to fix the pertinence of any

given atom. Consider the formula:

1 ^ (a V ^a)

Since its consequent is always false, and its antecedent always true, the only way in which
the conditional can be made true is by making a nonpertinent. In a similar way, the formula
^(1 ^ a V ^a) can be used to represent tha,t a must be pertinent. Of course, these constructions
are slightly bizarre and, as we will see in the next section, we will define additional operators
that allow a more comfortable representation. However, the following result shows that, in fact,
the ^ operator is enough for covering all the expressivity needed for L2 models:

Theorem 5 Let C be an arbitrary set of L2 interpretations. There always e^ist an L2 theory,

let us call it Tc, such that its set of rriodels is precisely C.
Proof
We can define for each Mi E C, the conjunction ^(Mi):

{a ^ Mi (a) = t}U{^a ^ Mi (a) = f}U{^(1 ^ aV-^a) ^ M^(a) = p}U{(1 ^ aV^a) ^ Mp(a) = n}

and then construct Tc simply as:

Tc = v ^(Mi)
z

where we assume that an empty disjunction is equivalent to l. Then, using the already proved

ef%ct of 1 G a V^a, by an straightforward application of truth-satisfaction of formulas in L2,
we get that the set of models of T^ is precisely C. ^

3.3 Extending L2 syntax

The number of operators that can be defined in a logic with 4 possible values is considerably
greater than in classical propositional logic. To compute the number of possible unary operators,

the truth of (op) ^ can be described as the subset of the 4 values for ^ that lead to t, for instance.
Analogously, its pertinence value, can be described as the subset of values that lead to p. In
this way, we have 24 possible truth valuations and 24 possible pertinence valuations, that is,

3.3 Extending LZ syntax 43

^ !^ ^^ I^ ^

fn fn fn fn

fp tp fp fp

tn fn fn tn

tp tp tp fp

Figure 3.3: Extended L2 syntax: unary operators.

24 • 24 = 256 possible unary operators. But this amount is small compared to the number
of binary operators. For each pair of formulas ^, ^, we have 4• 4= 16 possible cases. The
truth and pertinence valuations for a binary operator ¢(óp)^i are subsets of these 16 cases: i.e.
21s , 21s _ 2s2 In other words, more than 4 billions possible binary operators!

Despite of this considerable amount of possibilities, not all the imaginable operators have a
clear meaning with respect to the postulates of pertinence we wish to represent formally, and
so, we will focus on the ones specially related to the use of L2 for action domains. For instance,
although we have seen that the formula ^(1 ^ a V^a) allows fixing a as pertinent, it is clearly
more elegant to define an unary operator for this purpose. Thus, we denote !^ to stand for
"formula ^ is pertinent," and, therefore, its truth value is defined as:

i) Mt(!^) = t iíf M^(^) = P

Notice that, in its turn, we must also define the pertinence of !^. To this aim, we simply follow
the same criterion as for classical operators: the formula is pertinent iff ^ contains some pertinent
atom3. In other words:

ii) M^(!^) = p iíf Mp(^) = p

For our convenience, we introduce the abbreviations:

respectively standing for "^ is caused" (the formula is true and pertinent) and "^ persists" (the
formula is true, but not pertinent). The resulting valuations for these three unary operators are
described by table in figure 3.3.

As an interesting result, notice that a conditional ^^^ is truth equivalent to the formula4
^^^^ ^, that is, they have the same models.

Together with these unary operators, we will also introduce what we will call the safe versions
of classical conjunction and disjunction, respectively `&' and `^'. The motivation for these new
operators can be explained by the following example.

3It can be objected that this is perhaps an arbitrary criterion. For instance, when ^ is currently nonpertinent
but was pertinent in the previous state, the formula !^ changes its truth value, and so, it should also become

pertinent, if we understand that postulate P3 is applicable to formulas, and not only to fluents. However, we
will later restrict the study to transition systems where the pertinence of the current state becomes an output
function, independent from the pertinence of the previous state.

4 As explained later, in Section 8.8, despite of the strong similarity between these conditionals and lúrner's
UCL causal rules [111), the interpretation of the C("caused") operator is very different in each case.

44 Static L2

Example 4 Assume we want to encode the lamp domain using the formulas:

light ^ sw(1) n sw(2) (3.9)

^light ^ ^sw(1) V ^sw(2) (3.10)

Assume also that, under a given interpretation Ml, sw(1) persists false but sw(2) has become

true and pertinent:

Ml(sw(1)) = fn

Ml(sw(2)) = tp

The valuation of the antecedent in (3.10) would become true and pertinent:

Ml(^sw(1) V ^sw(2)) = tp

and so, if Ml is model of (3.9) and (3.10), we obtain that Ml(light) = fp must hold. Thus, we

obtain that ^light is pertinent: it does not hold by persistence, but as a result of applying a

conditional. It can be objected that, depending on how the switches circuit is physically built, we

may sometimes be sure that when one of the switches is oíf, the light is not affected even though
we perform actions on the other switch. In this sense, we can say that the switches mechanism
is "safe" with respect to single manipulations.

In order to represent systems like this we define the safe corcjur^ction, ^&^, so that whenever

one of the conjuncts persists false, the whole formula persists false. Analogously, the safe

disjurcctior^, ^^^, becomes true and non-pertinent when at least one of its disjuncts has persisted
true, i.e., is true and non-pertinent. The complete valuations for these two operators is described
in table of figure 3.3. The differences with respect to n and V have been underlined for a better
comparison. As an interesting property, it can be easily checked that:

1. ^(^&^) is equivalent to ^^^^^,

2. ^(^^^) is equivalent to ^^&^^%,

Thus, using these safe operators:

light ^ sw(1)&sw(2) (3.11)

^light G ^sw(1)^^sw(2) (3.12)

we have that the antecedent of rule (3.12) directly persists:

Ml(^sw(1)^^sw(2)) = tn

and so it does not force ^light to become pertinent.

3.4 Encoding L2 into classical logic

For a better understanding, we will include a translation of L2 into classical logic. To this

aim, we provide first a set of transformations that translate any L2 formula into a propositional

3.4 Encoding L2 into classical logic

^ ^ ^&^ ^ ^^^
fn

fn

fn

fn

fn

fp

tn

tp

fn

fn

fn

fn

fn

fp

tn

tp

fp
fp
fp
fp

fn
fp
tn
tp

fn

fp

fp

fp

fp

fp

tn

tp

tn

tn

tn

tn

fn

fp

tn

tp

fn

fp

tn

tp

tn

tn

tn

tn

tp

tp

tp

tp

fn

fp

tn

tp

fn

fp

tp

tp

tp

tp

tn

tp

Figure 3.4: Valuation of "safe" operators.

combination of atomic expressions with shape a or !a, for any a E E:

!!^

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

It can be easily seen that these rules are sound with respect to L2 truth-equivalence. If
we exhaustively apply these transformation rules, it is easy to see that the shape of the final
expressions would only present a unique nonclassical feature: the application of operator ! to
atoms. This allows us to rename any atom in the scope of ! as:

!a -^ pert(a)

and the rest of atoms as:

(3.24)

45

a --^ holds(a) (3.25)

46 Static L2

We can understand the final theory as a classical propositional one, using the signature:

E* _{holds(a) : a E E} U {pert(a) : a E E}

Let M* C_ E* be a classical interpretation for this type of theories. The correspondence between
M* and an L2 interpretation M is straightforward:

Mt = {a : holds(a) E M*}

M^ _ {a : pert(a) E M*}

This result is interesting from a practical point of view, since it allows us to consider L2
operators as mere syntactic abbreviations that can be "unfolded" using rules (3.13)-(3.25) to
handle classical propositional semantics afterwards. From a purist point of view, however, the
L2 double valuation is actually needed if one wants to provide a real semantics for these syntactic

transformations.
As an example of application of rules (3.13)-(3.23), we transform the formula (3.9) consecu-

tively as:

^ (sw(1) n sw(2)) ^ ^light by rule (3.13)

sw(1) n sw(2)n! (sw(1) n sw(2)) ^ lightn!light by rule (3.14)

sw(1) n sw(2) n(!sw(1)V!sw(2)) ^ lightn!light by rule (3.20)

holds(sw(1)) n holds(sw(2))n
(pert(sw(1)) V pert(sw(2))) ^ holds(light) n pert(light) by rules (3.24) and (3.25)

The most complex transformations are perhaps those for the safe operators, `&' and `^'. For

instance, the formula ^(^sw (1) ^ ^sw (2)) successively becomes:

(^sw(1)^^sw(2))n!(-^sw(1)^^sw(2)) by (3.13)

(^sw(1) V ^sw(2))n!(^sw(1)^^sw(2)) by (3.17)

(^sw(1) V ^sw(2))n
((!^sw(1)n!^sw(2)) V(!^sw(1) n sw(2)) V(!^sw(2) n sw(1))) by (3.21)

(^sw(1) V ^sw(2))n
((!sw(1)n!sw(2)) V(!sw(1) n sw(2)) V(!sw(2) n sw(1))) by (3.18)

(^holds(sw(1)) V ^holds(sw(2)))n '

((pert(sw(1)) n pert(sw(2)))V
(pert(sw(1)) n holds(sw(2)))V
(pert(sw(2)) n holds(sw(1)))) by (3.24) and (3.25)

Chapter 4

Transit ion systems

Once we have seen the "static" version of pértinence, we will analyze how to apply this con-
cept to dynamic systems, focusing by now on their components and features, rather than on a
logical formalization, which is delayed until chapter 5. We introduce first a typical transition-
based frameworkl for reasoning about actions and change, paying special attention to automata
descriptions where the states contain the information about the fluent values, whereas the tran-
sitions are labeled with the performed actions. The idea of pertinence is incorporated into this
scheme by defining an output function that completes the information provided by the state.

4.1 Narrative action domains

As in most approaches for reasoning about actions, we begin identifying two types of entities:

• a finite nonempty set ,F of ,fi^cents2, which will be properties of the system that vary along
time,

• a finite nonempty set ,,4 of actions, which will be the way in which an exogenous agent
may "operate" the system, causing it to change from one state to another.

To put an example, we define the fluents .^ _ {^cp(1), ^cp(2), open}, and the actions ,,4 =
{toggle(1), toggle(2)} (for alternatively changing the position of each lock). We will indistinctly
call sy^nbol to any fluent or action, that is, to any p E ,A U.F. At each moment in time, each
symbol p may be associated to a unique value v, which in the switches example, corresponds to
one of the boolean values {t, f}(standing for "true" and "false" respectively).

Although most examples will deal with boolean domains, we will establish, for the general
case, a third nonempty set, V, called the set of possible values and which, for simplicity sake, we
will assume to be finite. In this way, for any symbol p, we denote range(p) C V, range(p) ^^,
to point out the possible values that can be associated to p along time3. We will use letters p, a,

1This initial transition-based framework has been partly inspired by the definitions described in (42].
2The term was coined by Newton as part of his celebrated method of fiuxions which was the origin (together

with Leibniz's contribution) of the infinitesimal calculus. Newton's understanding of a curved path was strongly
bound to the idea of a point moving through space for a period of time. This moving point was called fiuent and
its velocity received the name of finxion.

3Although this set of values is sometimes referred using the term domain, we have preferred to use the term
range, reserving the former for the possible values of the symbol parameters, so that we follow the standard
functional terminology.

48 Z^ansition systems

f and v for respectively denoting arbitrary symbol, action, fluent and value names. An action

signature is defined as the tuple (.^, .A, V, range) .
While most action approaches consider that fluents have an associated value, it is not so

usual that this same feature holds for actions. To put some examples of its utility, think about
an action push with a given strength, an action move(blockl) with a given target location, or

an action set_bit with a given truth value. In most action formalizations, the "action value" is
frequently encoded as one more parameter: push(7), rrLOVe(blocki, table), set_bit(f), etc. Once we

introduce action values, it is necessary to explain what happens when an action is not performed.
We will assume that any non-performed has no defined value. In this way, contrarily to many

approaches, which represent this case by asserting that the action "is false," in our case, we
allow distinguishing between an action (like set_bit) performed with value f, and the case in
which it is not performed at all. Following this criterion, most actions used in boolean domains
(like toggle(1)) will have the singleton range {t}.

At each moment in time, we will represent a particular world configuration in which each
symbol will have (at most) one associated value. This mapping is separatedly defined for fluents
and actions as follows.

Definition 16 (Fluents state) A, f luents state is a function Q:,^ -^ V that, for any fluent

f, maps a value Q(f) E range(f). q

Definition 17 (Compound action) A co^npound action is a partial function a: .A ^ V that

maps for some of the actions a E.A. a value a(a) E range(a). q

We will usually represent these functions as sets of elementary pairs called value facts.

Definition 18 (Value Fact) Given a symbol p E .A U.F and any value v E range(p), a value

fact is defined as the construction: holds(p, v). When v E {t, f} we allow the abbreviations p,

p for respectively denoting holds(p, t), holds(p, f). q

Using value facts, a possible state could be expressed as:

Qo ={up(1), up(2), open} _{holds(up(1), f), holds(up(2), t), holds(open, f)}

As examples of compound actions, we could have, for instance:

al = 0

a2

a3

_ {toggle(1)} _ {holds(toggle(1),t)}

_ {toggle(1), toggle(2)} _ {holds(toggle(1), t), holds(toggle(2), t)}

Of course, since Q and a actually represent functions, when we represent them as sets of
value facts, they cannot contain two dif%rent facts for the same symbol p. We say that any set

of facts is consistent when it satisfies this restriction. Furthermore, since Q represents a complete
function, it must contain a fact for each possible value. A set of fluent facts satisfying (resp.

not satisfying) this constraint is called corriplete (resp. partial). In order to denote the symbol

of a given fact, we write:

symb(holds(p, v))
def p

4.1 Narrative action domains 49

For some scenarios, actions cannot be performed concurrently. We say that an scenario has
nonconcnrrent actions iff any compound action a has zero or one element (^a^ < 1), and we say
that allows concnrrent actions otherwise.

In order to represent time, we rely on temporal sequences of states, rather than on real
numbers. For simplicity sake, our approach will handle a linear representation.

Definition 19 (Narrative) We define a narrative, v, as a finite sequence:

Q0^ a1,Q1^ • • •, an-1^Qn-1^ an,^n

with n > 0. p

The integer value n is called the length of the narrative (we will always consider finite
narratives). We call situation to each one of the integer positions i E [0, n). Note the difference
between a state, which may appear several times in the narrative, and a situation, which is an
unique index. Situation 0 is called the initial situation.

We use the (somehow) nonstandard convention of placing actions in the same situation than
their eífects (other approaches [70, 42] place actions in the precedent situation). In this way,
we may assúme that no action is performed at the initial situation, considering the implicit
existence of a fixed ao = Q), which will be usually omitted.

An example of narrative vl could be the following sequence:

^o _ {^p(1), ^cp(2), open}

al _ {toggle(2)}

Q1 _ {^cp(1), ^cp(2), open}

a2 _ {toggle(1),toggle(2)}

QZ _ {np(1), up(2), open}

a3 _ {toggle(2)}

Q3 _ {^cp(1), up(2), open}

An alternative representation for narratives which will be closer to their logical formalization
is to handle "situated facts," that is, facts with a third argument pointing out a situation index.
We will call atoms to these situated facts, since they will later give shape to our propositional
signature.

Definition 20 (Atom) An atom is a structure holds(p, v, i) where holds(p, v) is a value fact
and i is any situation index i E [0, n]. When v E {t, f} we allow the abbreviations pi, ^i for
respectively denoting holds(p, t, i) and holds(p, f, i). p

As we can see, any state or compound action in a narrative can be simply represented as a
set of atoms. For any situation i E [0, n], we denote:

atoms(Qi)
def

{holds(f, v, i) ^ holds(f, v) E Qi}

atoms(ai)
def

{holds(a, v, i) ^ holds(a, v) E ai}

and also, for the whole narrative (4.1) :

atoms(v)
def I I

(atoms(ai) U atoms(Qi))

iE [VO,n]

50 Transition systems

In this way, the narrative vl would simply become the set:

atoms(vl) _ { up(1)o, up(2)o, openo,

toggle(2)1, up(i)1, up(2)1, openl,

toggle(1)2, toggle(2)2, up(1)2, up(2)2, open2,

toggle(2)3, ^P(i)3, up(2)3, open3 }

which can also be seen as a propositional interpretation. Notice that for obtaining vl from

atoms(vl) there is no ambiguity: atoms referring to action symbols describe the compound
actions ai, whereas atoms referring to fluents describe the states Qi.

The system behavior, 13, is a subset of all the possible narratives. For instance, we could

describe our switches example by mentioning all the sequences (like the one seen above) that
agree with the physical behavior of the suitcase. Of course, a description like this is clearly
unfeasible (the narratives length is finite, but as long as desired) and so, we will need to handle
a more compact representation. To this aim, in [42], for instance, two different types of languages
are defined:

1. Action description languages, used for establishing the system behavior ,Ci.

2. Action query languages, used for checking properties satisfied by the narratives in ,C3.

In our case, we will introduce in the next chapter a basic description language consisting of
elementary causal constructions that will allow obtaining the set 13 of allowed narratives. As for
the query language, it will simply consist of observations:

Definition 21 (Observation) We call observation to any propositional combination of atoms.
O

As an example:

holds(up(i), t, i) n holds(up(2), f, 2) v^holds(up(i), t, 3)

4.2 Typical problems in action doinains

Given a system behavior ,Ci, a narrative v E 13 and some observation ^, it is usual to define the

satisfaction relation ^^ so that by v^,^ ^ we mean that ^ is satisfied by v. We can also extend
the use of this same symbol, ^^ to denote the entailment relation among observations, so that
^^,^ z/^ means that all the narratives (in 13) satisfying the set of observations ^, also satisfy
observations ^. Given this entailment relation, we can generally describe the usual tasks to be
solved in typical problems about action domains.

Definition 22 (Temporal pro jection or prediction) A temporal projection (or prediction)

problem consists in, given an initial state Qo and a sequence of compound actions á= al, ..., an

decide whether:

atoms(Qo) U atoms(á) ^13 ^

for some observation ^ usually referring to the final situation n. ^

4.2 Typical problems in action domains 51

For instance, given Qo ={up(1), up(2), open} and al ={toggle(1)}, a2 ={toggle(1), toggle(2)}
and a3 ={toggle(1)} we want to predict whether this entails open3 or not.

Definition 23 (Temporal explanation or postdiction) A temporal e^planation (or post-
diction) problem consists in, given some (usually incomplete) set of observations Obs about
the actions execution and the resulting state, try to provide consistent explanations about the
observed outcome. Formally, the temporal explanation is some set of observations E^pl such
that:

Obs U E^pl ^,^ 1

that is, there exists some narrative v that satisfies Obs U E^pl. O

Usually, the observations Obs provide a complete actions execution and the explanation E^pl
must complete the description of the initial or intermediate states. However, as we can handle
concurrent actions, we may also allow incomplete action descriptions. For instance, given the
observation:

toggle(2)1 n openl n up(2)1

we should obtain as valid explanations:

• lock 1 was down and it has not been moved: up (1) o n^toggl e(1)1

• lock 1 was up but we have toggled it: up (1) o n toggl e(1)1.

Definition 24 (Planning) A planning problem is enunciated by providing a complete initial
state Qo and a set of observations for the last state G^ called the goals, trying to obtain the
complete sequence of compound actions that guarantees that the goals are reached. Formally,
we want to find the sequence á= al, ..., an, called the plan, satisfying both:

atoms(QO) U atoms(á) U G^ ^,^ 1 (4.2)

atoms(Qo) U atoms(á) ^,^ Gn (4.3)

O

Notice the difference between temporal explanation and planning. While the former just
provides actions executions that are consistent with respect to our observations, the later requires
that the actions provided as solution guarantee obtaining the desired goals Gn. Thus, in the
general case, plañning is stronger than temporal explanation.

As an example of the distinction, assume that a fire can be lighted either using a lighter or
a pair of stones. The use of the stones is nondeterministic, so that they cause a spark that may
light the fire or not. If we are said that in the resulting state the fire was observed, we would
have two possible temporal explanations: either someone has used the lighter, or the stones have
been successfully used. However, if the fire were a goal for planning, the last explanation is not
a valid plan, since it does not guarantee that the goal is achieved. It can be easily seen that this
distinction disappears when handling deterministic systems.

52 Transition systems

4.3 Automata and transition systems

As we have seen, the system behavior can be specified as a set of narratives which, in the general
case, do not need to satisfy any particular temporal restriction. However, in most cases, the kind
of systems we handle are more restrictive. For instance, sometimes, it is enough with describing
Qz_1 and ai for completely fixing the possible resulting state(s) ^i. In other words, it is usual
that successor states exclusively depend on the previous state and the action execution. The
advantage of these systems is that, rather than describing the whole set of allowed narratives ,13,
we may provide instead the corresponding transition relation.

Definition 25 (Transition system) Given an action signature (.F, ,A, V, range), we define a

transition system as a tuple (S, A, O) where

• S is the set of allowed ,fluent states,

• A is the set of allowed compound actions,

• e is the transition relation, O C S x A x S.

In this way, the narratives in the behavior I3 are obtained from the finite sequences of

consecutive applications of the transition relation:

13 ={v of shape (4.1) ^ for all i E [1, n], (Qi-1, ai^ Qi) E ^D}

Thus, a transition is simply seen as a narrative with n= 1.
It is also easy to define now the set of all possible resulting or successor states of applying c^

in a given state Q as:

Res (Q, a)
def

{^' ^(Q, a, Q') E e}

A compound action a is said to be none^ecutable in Q iff ^Res(Q, a)^ = 0. Besides, a transition

system is called deterministic when, for all Q E S and a E A, ^ Res (^, a) ^ < 1. In such a case, it

is usual to talk about e as a partial function, rather than a relation: Q' = e(Q, a).

Transition systems are directly related to the well known structures of finite automata. An
auto^naton is defined as a tuple (S, A, e, Qo, F') where A is called the set of inPut syrr^bols and

the two additional components correspond to:

1. the initial state, Qo E S

2. the set of acceptance states, F C S

The typical use of automata is to decide the membership of a sequence of input symbols to

a given language (set of sequences). In our case, the input symbols clearly correspond to the
set of possible compound actions A. However, the idea of "language" is less intuitive: it should

correspond to all the sequences of actions given any possible initial state Qo E S and accepting

as final any allowed state, that is, assuming F= S. Thus, it does not really make sense to fix

Qo and F.
For compactness sake, we will adopt some conventions for the automata representation. A

set of ares sharing the same source and target are abbreviated as a single arc with several labels,

4.4 Adding Pertinence 53

whereas a double-direction arc, is the abbreviation of the corresponding two single-direction
ares. Besides, when the automaton corresponds to a boolean domain (which will be in most of
the cases) we will adopt an abbreviated notation for state and arc labels. States will be encoded
as strings of truth values, whereas for compound actions, we will use strings containing the letter
p to point out the action occurrence, and n to represent its nonoccurrence. The correspondence
between values and fluents or actions is established by an ordering in an attached legend. For
instance, given the legend:

toggle(1) toggle(2) : ^cp(1) ^cp(2) open

state tft corresponds to {^cp(1), ^cp(1), open} whereas compound action pn would be {toggle(1)}.
Automaton in figure 4.1 shows the transition system corresponding to the suitcase example.

Together with the state string, we have also depicted the suitcase appearance.
As unique remark, notice that state ttf = {^cp(1), np(2), open} may seem counterintuitive,

but is not necessarily impossible. We have understood that Lin's description of the suitcase
mechanism just talks about the process for opening the suitcase. Thus, we leave open the
possibility of this configuration, for instance, because the suitcase is manufactured with this
shape. Of course, it could always be possible to define this state as non-allowed, deleting it from
our representation.

4.4 Adding Pertinence

Let us see now how to modify transition systems to cope with the idea of pertinence. As we
explained in the previous chapter, we will be interested in representing not only the fluent values,
that is, the state Q, but also whether they have been aífected by the performed actions a or not.
To this aim, we need a new function to capture this information.

Definition 26 (Pertinence mapping) A pertinence rraapping, is a function ^r :,F' U,,4 -^
{p, n} that associates a pertinence value to each ŝymbol p. p

As happened with fluent states and compound actions, we will represent ^r as a set of facts.
To this aim, we define a second type of fact:

Definition 27 (Pertinence Fact) Given a symbol p, a pertinence fact is a structure pert(p, v),

with v E{p, n}. Since the set of values is fixed and binary, we will always allow the abbreviations

!p and !p for respectively denoting pert(p, p) and pert(p, n). Q

An example of pertinence mapping could be:

{!toggle(1), !toggle(2), !np(1), !np(2), !open}

pointing out that action toggl e (1) has been performed and that the value for fluent z^p(1) became
affected by this action execution. Since !p E^ stands for "pertinent with respect to the performed
actions", any performed action is trivially pertinent.

Definition 28 (Pertinence narrative) A pertinence narrative v is a finite sequence:

^o, ai, ^i^ ^i^ . . . ^ an^ ^n^ ^^.

with n> 0, that satisfies:

54 Transition systems

nn

nn

ftt

fft

U
nn

toggle(1) toggle(2) : up(1) up(2) open

Figure 4.1: Automaton for Lin's suitcase.

nn

4.4 Adding Pertinence 55

C1) The pertinence value for any action a at any situation i E [1, n] is fixed with respect to ai:

p if there is some holds(a, v) E ai
7fi (a) _

n otherwise

C2) As before, we consider an implicit ao =^, adding also an implicit ^ro which contains
nonpertinence for all the symbols, i.e., ^ro = {!p : p E .A U.F}.

C3) Given any i E [1, n], if a fluent f is nonpertinent, ^ri(f)= n, then Qi(f)= Qi_1(f).

Condition C1 expresses that an action is pertinent iíf it has been performed (regardless its
value). As for C2, notice that, since no action is performed at 0, we consider that no symbol
may become pertinent at that situation. Finally, condition C3 points out that any fluent f
nonpertinent at i maintains its previous value at i- 1. In other words, a change of value is only
accepted if f is pertinent (postulate P3).

In order to maintain the alternative representation of narratives as sets of atoms, we define
the new type of atom:

Definition 29 (Pertinence atom) A pertinence atorra is a structure pert(p, v, i) where pert(p, v)
is a pertinence fact and i is any situation index i E [0, n]. Abbreviations !pi and !pi respectively
denote pert(p, p, i) and pert(p, n, i). p

Note how we handle now atoms like holds(p, v, i) and pert(p, v, i), which can be seen as
specializations of holds(a) and pert(a), we had used for translating LZ theories into propositional
logic. Analogously, we extend the notation ator►zs(X) as follows:

atorr^s(^ri)
def

{pert(p, v, i) ^ pert(p, v) E^ri}

ato^ns(v)
def I I

(atorras(ai) U atoms(Qi) U ato^ns(^i))

iE [vo,n^

As an example, consider ^the extension of vl so that we add pertinence atoms:

vi = vl U { !toggle(1)o^ !tOggle(2)o^ !^P(1)o^ !np(2)o^ !openo^

!toggle(1)i^ !toggle(2)i ^ !^P(1)i^ !^P(2)1, !openl^

!toggle(1)2, !toggle(2)2, !up(1)2, !np(2)2, !open2,

!toggle(1)s^ !toggle(2)s^ !nP(1)3^ !nP(2)3^ !open3 }

Pertinence narratives contain a considerable amount of redundant information due to con-
ditions C1, C2 and C3. We will sometimes use a more concise sequential representation, just
pointing out the initial fluent values and, for each transition, the values for pertinent symbols.
For instance, narrative vi would correspond to:

0) up(1), ^cp(2), open

1) toggle(2), up(2)

2) toggle(1), toggle(2), up(1), up(2)

56 Transition systems

3) toggle(2), up(2), open

In this way, anything not explicitly asserted is assumed to be nonpertinent, and so, to have
persisted. For instance, at situation 2, open has persisted false since situation 0, whereas at 3,

up(1) has persisted true since situation 2. This representation is also more efficient for practical

purposes, since it allows storing narratives in a more compact way. Besides, it emphasizes also
an interesting representational feature: at each moment, we can easily establish the most recent

situation in which the value of a fluent became pertinent. As shown in [22], this enables an easy
introduction of temporal4 constraints among the instants in which different fluents are caused.

To end up with the introduction of pertinence into transition systems, we must also extend
the automaton representation. A simple way to do this could be to include the pertinence facts
into each automaton state, together with the fluent values. Unfortunately, this would imply
an explosion of the number of automaton states to be represented, which is already a problem
when we just consider fluent values. However, we can avoid this problem because we will actually

handle systems satisfying the restriction:

^ri is fixed by ai and Qi_1.

Since we will center the attention in transition systems satisfying this constraint, it will be

possible to represent pertinence separatedly as an output relation, handling in this way finite

state machines, rather than automata.

Definition 30 (Pertinence transition system) Given an action signature (.P, .A, V, range},

we define a pertinence transition system as a tuple (S, A, P, P, w) where

1. S is the set of allowed ,fluent states,

2. A is the set of allowed compound actions,

3. P is the set of allowed pertinence mappings,

4. O is the transition relation, e C S x A x S.

5. w is the output relation, w C S x A x P.

As happened with the transition function, e, when the system is deterministic, the output

relation will become a partial function: ^r = w(Q, a).
Finally, the introduction of pertinence information into the graphical representations of

boolean domains is quite straightforward. In fact, we had already represented compound actions
using their pertinence values. The only needed addition is the pertinence of the fluents, which
can be simply appended to each arc label (they are separated from action values by a colon) .
For instance, the complete Lin's suitcase domain could finally become the machine in figure 4.2.

As remarka,ble differences with respect to figure 4.1, notice that some double-direction ares
have been unfolded, since they vary now in their outputs (they yield diíferent pertinence map-

pings).

4Notice that although we use here a situation index, it is not so diíficult to imagine an extension for a temporal

basis using real numbers.

4.4 Adding Pertinence 57

nn:nnn

fft

nn: nnn

toggle(1) toggle(2) : up(1) up(2) open

Figure 4.2: Finite state machine for Lin's suitcase.

58 Z^ansition systems

Chapter 5

^-language

Using finite state machines as the "programmer-level" representation of the system behavior has

some important drawbacks. The most evident one is the intractability in the number of possible

states, as far as the system representation grows up. But, perhaps, the most cumbersome

one is the absence of modularity. Even when dealing with small systems, any update of the

representation, like adding more actions or fluents, cannot be implemented as a small addition

or transformation but, instead, it forces us to reconsider the whole machine. As a counterpart,

however, they also present some advantages. They provide a straightforward description of the

system evolution: solving temporal projection, explanation or planning problems just amounts

to a simple analysis of the machine graph. In some way, the machine compiles all the possible

answers for all the possible queries of these three basic types of problems. However, we claim

that the machine based description (or any other one just based on a set of narratives) does not

contain enough information for a complete ^nderstanding of the system behavior.

For instance, should we consider that two systems described by the same machine are "equiv-
alent"? With respect to temporal projection, explanation or planning queries, it is clear that the
answer is affirmative. However, the two systems may handle diíferent causal relations, although
they finally lead to the same set of answers. Think about our machine in figure 4.2. By just
looking at the graph, we could not clearly establish whether fluent open is an indirect effect of
toggling the locks or not. Thus, we could think about an "equivalent" system in which z^p(1),
up(2) and open were all direct eífects, without any causal relation among them. Of course,
one could object: why to bother about the internal causal relations, if we are just interested
in obtaining the same results for the same queries? The answer is that the underlying causal
dependences may influence the elaboration of our system representation. As an example, if we
add a new action for moving the locks, the machine for representing the new system will be
clearly different depending on whether open is aífected by the locks or not. So, the two systems
should not be considered completely equivalent, since under the same modification, they lead to
different machinesl.

In this section we describe a description language consisting of elementary causal construc-
tions that are very similar to those from the well known ,,4-lang^cage [41], but will be later
characterized as simple cases of the L2 conditional. The basic causal language introduced here
allows us not only to describe in a more compact way the transition and output relations for
the finite state machine describing the system behavior, but also to represent in an explicit way

lIn fact, a similar discussion has recently arisen[64] in Logic Programming, where two programs may provide
the same answers but react in a different way with respect to addition of rules. When the programs are also
equivalent in this last sense, they are said to be strongly equivalent.

60 ^-language

the causal dependences present in the domain.

We will initially handle an important restriction: the set of rules will not contain cyclic

references. Using this assumption, we provide a(deterministic) operational semantics consisting
on a constructive algorithm for computing the successor state and the pertinence output. It is

interesting to note that all the proposed formalizations we introduce in the next chapter actually
coincide with the operational semantics when there are no cyclic references, leading in all cases

to a deterministic system. Some of these formalizations, however, will use nondeterminism as a

way of interpreting causal cycles.

5.1 P-rule syntax

A^-rvle has the general shape:

EifCafterD (5.1)

where:

1. E is called the e,^ect and corresponds to a fluent value fact holds(f, v) or the constant 1,

2. C is the condition and has the shape Cl n ••• n C^, k > 0, where the Ci are facts of any
kind (like holds(^, v) or Pert(^, v)),

3. D is the (e,,ffect) Precondition and has the shape Dl n ••• n D„Z, m> 0, where each Di is

a fluent value fact holds(f, v).

With an empty eífect precondition, m= 0, we simply write E if C. Besides, we sometimes
use the abbreviation:

{El, ..., E^} if C after D

to stand for the set of rules:

El if C after D

E^ if C after D

Intuitively, the rule is applicable when, being the precondition D true, the condition C is
both true and pertinent. In its turn, once it is applied, it will make the effect E both true and
pertinent.

As a pair of examples, the Yale shooting scenario can be represented by2 ,Ay ={load, shoot},

,F'y ={alive, loaded} and the set Ry of rules:

loaded if load (5.2)

{alive, loaded} if shoot after loaded (5.3)

2 As we allow empty compound actions, action wait is not needed.

5.1 ^-rule syntax 61

whereas the suitcase example can be represented by ,A3 ={toggle(1), toggle(2)}, FS ={up(1), up(2), open}
and the set of rules RS:

up(1) if toggle(1) after up(1) (5.4)

up(1) if toggle(1) after up(1) (5.5)

up(2) if toggle(2) after up(2) (5.6)

up(2) if toggle(2) after up(2) (5.7)

open if up(1) n up(2) (5.8)

Let F be either a conjunction of facts ^1 n••• n^^ or a set of facts {^1, ...,^^}. Then, we
denote: ^

symb(F) _{symb(^i) ^ i E[1, k]}

A rule that exclusively contains actions in the condition, symb(C) C,^4, is called an e,,^ect
a^iom (for instance, rules (5.2)-(5.3) and (5.4)-(5.7)), whereas if it exclusively contains fluent
symbols (symb(C) C.F) we call it ramification rule (e.g., rule (5.8)).

An effect axiom with E= 1 receives the name of qualification constraint. Intuitively, its
condition and precondition point out a configuration not allowed to happen, leading to the non
existence of successor state, and so, to the nonexecutability of the performed action - the action
is disqualified. To understand its utility, consider the following modification of the Yale shooting
scenario, R'y :

loaded if load (5.9)

{alive, loaded} if shoot (5.10)

1 if shoot after loaded (5.11)

The effect precondition has disappeared from rule (5.3) to become, negated, a disqualification
in (5.11). In this way, while Ry allowed a shot with an unloaded gun, leading to no resulting
effects, with R'y such a shot cannot be performed (there does not exist any successor state).

. As another example of use of qualification constraints, we can also consider the encoding of
STRIPS [34] operators, frequently handled in planning problems. A STRIPS operator a has an
associated formula Pre called the precondition, plus two lists of facts: the add list f l, ..., f k
and the delete list gl, ..., g„^. This can be directly represented as:

{fi^... ^ Ĵ^^9i,...,9m.} if a

1 if a after Prel

1 if a after Pre,.

(5.12)

(5.13)

(5.14)

(5.15)

where Prel, ..., Pre,. is the set of conjunctive clauses obtained from the Disjunctive Normal
Form of ^Pre.

Analogously to effect axioms, a ramification rule with E= 1 plays a similar role to a
state constraint, ruling out some undesired configurations. However, it does not impose any
restriction on the initial situation, since at that moment, no symbol is pertinent, and no rule
would be applicable. To allow constraints at situation 0, we define an initial constraint as any
propositional combination of fluent facts. A state Qo satisfies an initial constraint ^, denoted as

^o ^ ^ iff:

62 ^-language

1. Qo ^ holds(f, v) iíf holds(f, v) E Qo

2. Qo^^V^iffQo^^orQO^^

3. Qo^^^iffQO^^

and the rest of propositional connectives are defined in terms of V and ^. Given any state
constraint ^, we require that Qo ^ ^ for any allowed state Qo E S.

To see the need for initial constraints, consider for instance the suitcase domain represented
as RS. If we do not add the constraint:

^cp(1) n icp(2) ^ open

then we would be considering as a possible initial situation one in which the suitcase has both

locks up but it is closed.
®f course, we could impose that rules are interpreted as constraints in the initial situation.

However, it is interesting to maintain both things separatedly3. For instance, we may actually

interpret Lin's enunciate as a description on how the s^citcase can be operted instead of when it

happens to be open. In such a case, we could allow an initial state that does not satisfy the

constraint (for instance, imagine that the suitcase is manufactured closed but with both locks

up)
Given any domain represented by the set of rules R, we will also add the syntactic restriction

of absence of cyclic references. The study of cycles is postponed until chapter 7.

Definition 31 (Direct dependence) Given a set of ^-rules R, we say that a fluent f directly

depends on a symbol p (fluent or action) iff there exists a rule (5.1) in R with symb(E) = f and

p E symb(C). q

Definition 32 (Acyclic rules) A set of ^-rules R is acyclic iff we can establish a nonnegative

integer mapping, layer :,,4 U.^ ^ NU {0} such that, if a fluent f directly depends on a symbol

p, then layer(f)> layer(p). q

Notice the similarity between this layer function and the level function we defined for hiérar-

chical logic programs. There may exist several possible layer functions satisfying this condition.

We will be particularly interested in the following one:

1. layer(a) = 0 for any action a

2. layer(f) = 0 ifi there exists no rule (5.1) in R with symb(E) = f.

3. layer(f)= ma^{layer(C) ^(E if C after D) E R, symb(E) = f} -I- 1

where the application of layer to a condition C= Cl n••• n C^ is defined as:

layer(C)
def

ma^iE^i^^^{layer(symb(Ci))}

Another way of establishing the acyclicity of a set of rules R is representing its corresponding

dependences graph, a directed graph where each node f represents a fluent and each edge f-^ f'

means that f' directly depends on f. As expected, a set of rules will be acyclic (under our

3The separation between constraints and causal rules is extensively discussed in [28].

5.2 Operational semantics 63

previous definition) iff its corresponding graph is free of cycles. For instance, given the set of
rules:

f if gnh

f if ĝ

i if h n f

j if hngn f ni

(5.16)

(5.17)

(5.18)

(5.19)

the corresponding directed acyclic graph is represented in figure 5.1, where the vertical lines
show the layer assigned to each fluent.

layer 0 1 2 3

Figure 5.1: Dependences graph for rules (5.16)-(5.19).

5.2 Operational semantics

We want to establish now how to obtain the transition and output relations, e and w from
the set of rules R. In fact, our transition system will be deterministic by now, and so, we
want to compute the successor state (if there exists so) Ql = P(^o, cxl) and pertinence mapping
^1 = w(Qo, al), given any pair Qo and al.

The first intuitive idea is that rules whose conditions are true should be "applied," so that
we include their effects in Q1, and mark the aífected fluents as pertinent in ^rl. The problem is
how to know when a rule condition C"is true," since the facts in C, in their turn, may be eífects
from other rules, or old values persisting from the predecessor state. Thanks to our acyclicity
assumption, we can directly fix an ordering in this process of rule application by following the
layer mapping.

We will construct an iterative algorithm that goes completing the transition, adding facts
to Q1 and ^rl layer by layer, until they are completely defined for all the fluents. Thus, at each
moment, we will actually handle a partial transition.

Definition 33 (Partial transition of layer j) Let j be a nonnegative integer. We define a
^vartial transition v^ as a narrative of shape:

7 7
Q0^ al, Q1, ^1

where Qi and ^1 are complete for symbols up to layer j, but undefined for symbols of greater
layers. ^

64 P-language

The sets a° and ^r° are not represented, since they are not relevant for establishing the final
complete transition. As a remark, note that ^rl is only partial for fluents, since by condition C 1
of definition 28, the pertinence mapping for actions is always complete.

The addition of new facts to Q1 and ^1 will depend on the applicability of rules, which is

defined as:

Definition 34 (Rule applicability) Given a layer number j> 0, a rule of shape (5.1) with

layer(symb(E)) = j is applicable in a partial transition v^ = Q°i al, ^i^ ^i 1^^

1. ^ E Q°, for all fact ^ in D,

2. ^ E^i U^ri U al, for all fact ^ in C,

3. !symb(^) E^ri, for some fact ^ in C

O

Note that condition 3 says that some symbol occurring in the condition C must be known
to be pertinent. This actually corresponds to the practical implementation of postulate P5.

Given the state Q° and the compound action al, the algorithm in figure 5.2 describes how to
compute the successor state Ql and pertinence mapping ^rl (i.e., how to complete the transition

v).

So) j .= o
Out° = 0
Pers° _{holds(f, v) E Q° ^ layer(f)= 0}
Q° = Pers°
^r° _{!a ^ a E symb(al)} U{!a ^ a ¢ symb(al)} U{!(f) ^ layer(f)= 0}

S1) We define v^ = Q°, al, oi, ^i .
If j is the maximum layer in ,^ then finish with Q1 = Q1 and ^rl =^i .

S2) j := j + 1
Out^ _{E ^ E is effect of some applicable rule in v^-1 and layer(symb(E)) = j}

If Out^ is inconsistent or contains 1, then finish: al is not executable in Q°.

S3) Compute:
Pers^ _{holds(f, v) E Q° ^ layer(f)= j, f¢ symb(Out^)}

^i = ^i-1 U Out^ U Pers^

^i =^i-1 U{!p ^ p E symb(Out^)} U{!p ^ p E symb(Pers^)}

and go to step S 1.

Figure 5.2: Algorithm for computing the successor state for acyclic rules.

For each layer j, the algorithm computes the symbol values using two disjunct sets of facts:

Out^ and Pers^. The intuitive meaning of these sets is to point out the source for each fluent

value: Out^ collects the effects of the applicable rules, whereas facts in Pers^ are directly

retrieved from the previous state Q° by persistence.

5.3 Examples 65

Proposition 1 Under the operational semantics based on algorithm in figure 5.,2, when the

appdied action is empty, al =^, the transition relation P is re, f lexive and the output as-

signs nonpertinence to all the symbols. In other words: for all state Qo^ (^o^ ^^ ^o) E P and
(QO, Q^, {!p ^ p E.A U.^}) E w.
Proof

It is straightforward since, pertinence of a fluent comes from a chaining of rule applications
that must be originated by a performed action. When there are not performed actions, all the
fluents are nonpertinent and so all the facts are obtained from Pers^, which implies that the
final Ql = Qo • O

5.3 Examples

Let us first consider the suitcase problem in its original shape: we have ^o = {ovup(1), up(2), open}
and we want to predict what happens after performing a={toggle(1)} using the set of rules
(5.4)-(5.8). Given layer(up(1)) = layer(up(2)) = 1 and layer(open) = 2, the next table shows
the successive steps followed by the algorithm:

Out° = 0 Pers° = 0

Outl = {up(1)} Persl = {up(2)}

Out2 = {open} Pers2 = 0

It can be easily seen that the final Q1 and ^rl simply correspond to:

Q1 = Qi = {up(1), up(2), open}

^ri = ^rl = {!toggle(1), !toggle(2), !up(1), !up(2), !open}

Repeating this process for all the possible states and compound actions in this domain, we get
the machine in figure 4.2.

To illustrate how the algorithm can be used for computing a narrative with several tran-
sitions, consider the typical Yale shooting problem, which consists of a sequence of loading,
waiting and shooting:

^o

al

a2

a3

{alive, loaded}

{load}

0

{shoot}

We may apply the algorithm so that rather than considering transition
handle instead Qi, ai+l^ ^i+l^ ^i+l, with i E [0, 2]:

i=0) The first transition is computed as follows:

Out° = 0 Pers° = 0

ao^ ai^ ^i, ^i we

Outl = {loaded} Persi = {alive}

and so Q1 = {loaded, alive}, ^rl = {!load, !shoot, !loaded, !alive}.

66 P-language

i=1) By proposition 1, the application of the empty action a2 =^ leads to the same state,

Q2 = Ql.

i=2) Finally, the last transition leads to:

O^cto = ^ Perso = ^

Ontl = {alzve, loaded} Persl = (^

Note that, when i= 2, rule (5.3) becomes applicable because the condition is true and
pertinent (action shoot has been performed) and the precondition is true (loaded E Qo). The

final state is then Q3 ={loaded, alive} and ^r3 ={!shoot, !load, !alive, !loaded}.

The whole obtained narrative can be summarized in the already seen format:

0) alive, loaded

1) load, loaded

2)

3) shoot, alive, loaded

so that only pertinent facts are shown at each transition. In figure 5.3, we have represented the
machine that corresponds to the complete transition relation for rules (5.2)-(5.3).

nn:nn, nn:nn, nn:nn,
np:nn _ pn:pn _ np:nn

pn:pn, ^^ np:pp
PP^Pn

pn:pn,

PP^Pn
---.̂_

nP^PP

load shoot : loaded alive

Figure 5.3:. Machine for the Yale Shooting scenario.

Finally, we will see one more example, as introduced in [86], for showing the behavior of
pertinence in the condition of a rule.

Example 5(^he gong example) A ballerina must start her choreography when the gong

is struck. If the choreography is particularly short, she may even finish while the gong is still

sounding. ^ ^

Let us define the sets of actions ,A9 ={strike, f inish}, fluents .^9 ={dancing, gong} and

rules, R9: ^

gong if strike (5.20)

dancing if gong (5.21)

dancing if f inish (5.22)

Assume that we perform action f inish, but the gong is still sounding. Apparently, this

would lead to an inconsistence, obtaining both dancing and dancing. However, as condition

5.3 Examples 67

of (5.21) is not pertinent (the gong remains sounding by inertia), the rule is not applicable.
Intuitively, the ballerina relies on the gong stroke to begin her choreography, but not on the
persistent sound afterwards.

Looking at the rules, fluent gong would be in layer 1 and fluent dancing in layer 2. Let
Q={dancing, gong} and a ={ f inish}. The successor state is computed as follows:

O^cto = ^ Perso = ^

Outl = 0 Persl = {gong}

Out2 = {dancing} Pers2 = ^

and so:

Q2 = {gong, dancing}

^2 = {! f inish, !strike, !gong, !dancing}

The complete transition and output relations is depicted in figure 5.4.
Of course, we could formulate the example by replacing rule (5.21) by an effect axiom:

dancing if gong

However, we could also easily imagine that there may exist different actions for making the gong
sound, which is the actual cause to start dancing. In this way, when we use pertinence, we have
somehow available a"dual" behavior for each fluent. On the one hand, the value of the fluent
can be used as the inertial feature, like in this example, where the truth of gong points out
that the gong remains sounding. On the other hand, the pertinence of the fluent behaves as
an associated "non-intertial" fluent which represents some punctual event, like in the example,
where the pertinence of gong points out that a new gong "note" (in musical terminology) has
been initiated.

nn: nn,
pn:np

nn:nn,

nP^PP
pn:np

nn:nn,
pn:np

nn:nn

f inish strike : gong dancing

Figure 5.4: Machine for the gong example.

68 ^-language

Chapter 6

Pertinence Calculus: formalizing
pertinence in action domains

Although the operational behavior for P-rules allows solving the frame and ramification prob-
lems in a simple and natural way, we have not provided yet a real logical characterization of this
behavior. To this aim, we may simply consider a propositional signature where we deal with the
two types of atoms, holds(p, v, i) and pert(p, v, i), we had already defined for representing narra-
tives. For commodity sake, however, we will allow a first order representation with quantification
for fluents, actions or situations. We have called pertinence calcudus to the resulting framework,
because of its similarity to other well known action formalisms like Situation Calculus [81] or
Event Calculus [53], which also use a predicate "holds" reifying the fluent name.

Pertinence calculus will be used as the monotonic framework on which to apply an additional
nonmonotonic technique for capturing the inertia default. We propose different possibilities
for representing inertia, using first well-known nonmonotonic techniques like circumscription
and default logic, that are applicable to first order logic, and proposing afterwards a logic
programming encoding (which relies on a previous theory grounding) interpreted under three
different semantics: stable models, well founded semantics and completion. In all the cases,
we obtain the correspondence with respect to the operational semantics seen in the previous
chapter, although in the case of circumscription only after requiring an additional syntactic
restriction.

6.1 Basic definitions and axioms

Pertinence calculus can be presented as a many-sorted first order logic axiomatization with
four finite sorts: ,,4 (action names), ,^ (fluent names), V(values), and the set of situationsl,
nonnegative integers ranging in [0, rc]. As before, we simply call syrrabol to any element of the
set ,A U.F, and for each symbol p, we have a subset of V called range(p). Letters I, F, A, V
and P will be used for situation, fluent, action, value and symbol variables respectively, whereas
the corresponding lower case letters will be used for denoting constants. Pertinence calculus
only handles two basic 3-ary predicates, the already mentioned holds(p, v, i) and pert(p, v, i),
for which the following axioms are defined.

1 Although this work is oriented to narrative domains, a simple variation of pertinence calculus can be directly
proposed to deal with a branching structure of situations do(A, S) as those used in Situation Calculus.

70 Pertinence Calculus: formalizing pertinence in action domains

We include, for each sort, a pair of axioms called domain clos^cre (DC) and ^cniq^ce names

assnmption (UNA). For instance, in the case of the actions sort, we would have:

`d. A v A = a (DC)
aEA

n
a,a' EA, a#a'

(UNA)

Since we will not handle structured terms nor function names, these axioms allow establishing
a one-to-one correspondence between (syntactic) constant names and the possible (semantic)
objects in the universe of any first order interpretation M. Thus, we will directly use M[c] = c,

for any constant name c E .A U.F U V U[0, n].
The following axioms respectively guarantee, at each situation, the uniqueness of value for

each symbol and its existence (only for fluents2).

`dP, I, V, V'. (V ,E V' ^^(holds(P, V, I) n holds(P, V', I))) (6.1)

dF, I. ^V. holds(F, V, I) (6.2)

Analogously, uniqueness and existence of pertinence value are expressed as:

dP, I. ^(pert(P, p, I) n pert(P, n, I)) (6.3)

dP, I. (pert(P, p, I) V pert(P, n, I)) (6.4)

which, in fact, can be reexpressed altogether as:

dP, I. (pert(P, n, I) --^pert(P, P, I))

This formula clearly points out that reifying the pertinence value in predicate pert is not

actually needed, although it will be later very convenient for implementing causal rules and
inertia using logic programs. In this way, while we maintain the representation inside first

order logic, we will sometimes allow the alternative representation of pert as a binary predicate

pert(P, I), defining the following straightforward correspondence:

pert(P, p, I) pert(P, I)
def

df
pert(P, n, I) e ^pert(P, I)

The conditions C1, C2 and C3 we had imposed on narratives respectively become now the

axioms:

`dA, I. (pert(A, p, I) -^V. holds(A, V, I)^ (6.5)

dP. pert(P, n, 0) (6.6)

dF, V, I. (I> 0 n pert(F, n, I) n holds(F, V, I-1) ^ holds(F, V, I)) (UFR)

2Remember that an action has not any associated value when it is not performed

6.2 Propositional representation 71

The formula (UFR) represents the universal frame a^iom, asserting that the value of any non-
pertinent fluent must persist. We call AX to the set of axioms (DC), (UNA), (6.1)-(6.6), without
including the universal frame axiom, (UFR).

The usual shape the universal frame axiom in other approaches is closer to:

`dF, V, I. (I> 0 n pert(F, n, I) ^(holds(F, V, I-1) - holds(F, V, I))) (6.7)

The following theorem shows that under pertinence calculus axiomatization, it is indeed
equivalent to (UFR).

Lemma 2 If axioms (6.1) and (6.,2) are satisfied, then the following formulas are equivalent:

`dF, V, I, J. (holds(F, V, I) ^ holds(F, V, J)) (6.8)

`dF, V, I, J. (holds(F, V, I) - holds(F, V, J)) (6.9)

Proof
(See appendix A). p

Theorem 6 If a^ioms (6.1) and (6.,2) are satisfied, then the formula (UFR) is equivalent to
(6. 7).
Proof

It is straightforward by observing that (UFR) can be reexpressed as:

`dF,V,I. (I>0 npert(F,n,I) ^ (holds(F,V,I-1) ^ holds(F,V,I)))

and then replacing the inner implication by an equivalence, as a result of applying lemma 2. O

6.2 Propositional representation

This first order representation can be alternatively converted into a propositional one. Thanks
to finiteness of all sorts and axioms (DC) and (UNA), we can consider each possible first order
model M as a propositional one, using as signature the finite set of ground Herbrand atoms for
holds and pert. In this way, any universally (resp. existentially) quantified sort variable can be
replaced by a finite conjunction (resp. disjunction). Therefore, we can simultaneously see the
previous axioms (6.1)-(6.6), (UFR) as the respective propositional patterns:

^holds(P, V, I) n holds(P, V', I)

v holds(F, V, I)
VErange(F)

pert(A, p, I) - v holds(A, V, I)
V Erange(A)

pert(P, n, 0)

pert(F, n, I') n holds(F, V, I' -1) ^ holds(F, V, I')

(6.12)

(6.13)

(6.14)

where all the variables are replaced by their possible ground instances, with V# V', I E [0, n]
and I' E [1, n].

72 Pertinence Calculus: formalizing pertinence in action domains

6.3 High level constructions

All the L2 constructions can be incorporated into pertinence calculus in a very simple way, just
understanding them as abbreviations. These abbreviations can be "unfolded" using the already

seen rules (3.13)-(3.23) for nonatomic formulas, plus the transformations:

! holds(p, v, i) -^ pert(p, p, i) (6.15)

! pert(p, v, i) -^ pert(p, p, i) (6.16)

We also introduce here a new notation which will be interesting for the comparison to other

causal approaches. We define the predicate caused(p, v, i) to stand for ^holds(p, v, i), that is:

caz^sed(p, v, i)
def

holds(p, v, i) n pert(p, p, i)

To see how to unfold high level constructions, let us consider:

^(holds(^cp(1), t, I) n holds(^cp(2), t, I))

This is successively transformed into:

(6.17)

(holds(^cp(1), t, I) n holds(up(2), t, I)) n!(holds(^cp(1), t, I) n holds(up(2), t, I))

holds(^cp(i), t, I) n holds(^cp(2), t, I) n (!holds(^cp(1), t, I)v!holds(^cp(2), t, I))

holds(up(1), t, I) n holds(^p(2), t, I) n(pert(^p(1), p, I) V pert(z^p(2), p, I))

Using these L2 constructions we can now provide a translation of any ^-rule r= (E if C after D)

into pertinence calculus, following the next steps. Let I be a fresh situation variable. We define

the formulas:

1. ^Cj as C after replacing facts holds(p, v) by holds(p, v, I) and pertinence facts pert(p, v)

by pert(p, v, I),

2. EI as E after replacing fact hol ds (f, v) by hol ds (f, v, I)

3. D1_1 is D after replacing facts holds(f, v) by holds(f, v, I-1), or T, if D is empty.

Then, the translation of r, denoted as t(r), is defined as the formula:

dI. (I> 0 n Dr-^ ^(Er ^ Cr))

Notice that the situation variable I is quantified for all the situations excepting 0. There exist
two reasons for this. First, when D is not empty, situation I-1 must be defined, and so I> 0.

Second, at situation 0 everything is nonpertinent (axiom (6.6)) and so, any rule would never

be applicable. When there is no confusion, we will usually omit the quantification for I in rule

translations, directly writing:

Dr-i ^ (EI ^ cI)

or, what is equivalent:

DI-1 /^ ^CI ^ ^EI (Ú.ló)

6.3 High level constructions 73

Although in this expression, (6.18), we have used material implication ^, we will bear in
mind that it may be replaced by an inference rule (in the case of default logic) or by a program
rule conditional, in the case of logic programming.

As for the translation itself, it is interesting to note how D is simply required to be true at
situation I-1, while condition C is required to be caused at situation I (i.e., not only to hold
but also to be pertinent). In the same way, the resulting ef%ct must also be caused at I. This
captures the eñect of "pertinence propagation" explained in the operational semantics.

As an example, consider the translation of rule (5.8):

oper^ if up(1) n up(2)

from the suitcase domain, Rs. First, we would have:

CI déf
holds(up(1), t, I) n holds(up(2), t, I)

D - def T
I1

EI def
holds(open, t, I)

(remember that in the rule, we used abbreviation f to denote holds (f, t)). Then, the translation
of (5.8) would be:

T n ^(holds(up(1), t, I) n holds(up(2), t, I)) ^^holds(open, t, I)

which, after applying the transformation rules, finally becomes:

holds(up(1), t, I) n holds(up(2), t, I) n(pert(up(1), p, I) V pert(up(2), p, I))

^ holds(opeu, t, I) n pert(oper^, p, I) (6.19)

It is easy to see that, using the caused notation, this rule can be also expressed as the
conjunction of the formulas:

caused(up(1), t, I) n holds(up(2), t, I) ^ caused(open, t, I) (6.20)

holds(up(1), t, I) n caused(up(2), t, I) ^ caused(open, t, I) (6.21)

As another example, rule (5.4) would be successively transformed into:

holds(up(1), f, I-1) n ^holds(toggle(1), t, I) ^^holds(up(1), t, I) (6.22)

holds(up(1), f, I-1) n holds(toggle(1), t, I)n!holds(toggle(1), t, I) ^

holds(up(1), t, I)n!holds(up(1), t, I) (6.23)

holds(up(1), f, I-1) n holds(toggle(1), t, I) n pert(toggle(1), p, I) ^

holds(up(1), t, I) n pert(up(1), p, I) (6.24)

which, since performed actions are always pertinent (axiom (6.5)), can be further simplified into:

holds(up(1), f, I-1) n holds(toggle(1), t, I) ^ holds(up(1), t, I) n pert(up(1), p, I) (6.25)

This last simplification can be enunciated as the following property:

74 Pertinence Calculus: formalizing pertinence in action domains

Property 15 Let E if C after D be any P-rule where C contains a conjunct like holds(a, v)

or pert(p, p), for sorrce action a or sorrae syrrabol p. Then, the translation of C is equivalent to

the for^nula:

DI1 ^ CI ^ cC EI

Proof
The only difference with respect to (6.18) is that CI is not required to be caused, but just to

be true instead. In other words, we do not require explicitly that CI is pertinent. As CI is

a conjunction of atoms, CI is pertinent whenever one of its atoms is so. Assume one of these

atoms is holds(a, v, I). When the atom is true, by axiom (6.5) we get that pert(a, p, I) is true,

and so !CI must also be true. On the other hand, if one of the atoms is directly pert(p, p, I),

then requiring it to be true directly implies !Cj. So, in both cases we get CI ^!CI and we can

omit !CI in the translation. 0

Using this property, the rest of rule translations for RS are:

holds(up(1), t, I-1) n holds(toggle(1), t, I) ^ holds(up(1), f, I) n pert(up(1), p, I) (6.26)

holds(up(2), f, I-1) n holds(toggle(2), t, I) ^ holds(up(2), t, I) n pert(up(2), p, I) (6.27)

holds(up(2), t, I-1) n holds(toggle(2), t, I) ^ holds(up(2), f, I) n pert(up(2), p, I) (6.28)

Finally, in order to obtain a compact representation of observations, one more construction
is introduced. Assume we want to enunciate a temporal projection problem consisting of an
initial situation Qo plus a sequence of action executions á= al, ..., an. If we just represent the

observations as atoms: ^

ator►zs(Q^) U ator►zs(al) U••• U ato^ns((xn)

we will be just asserting which elementary actions are performed, but not which actions are not

performed. To avoid this, several solutions can be proposed. The simplest one is to explicitly
include a set of negative pertinence literals, asserting which actions are not performed. When

we want to express that the action execution is completed in this way, we will use the following

abbreviation:

do (a, i)
def /^ holds(a, v, i) n n pert(a, n, i)

holds/(a\,v)Ea aEA-symó(a)

For instance:

do ({load},1)
def

holds(load, t, 0) n pert(shoot, n, 0)

that is, we assert that the only performed action is load.

Given a sequence of compound actions á= al, ..., an, we denote:

do (á)
def /^ do (ai, i)

iEl[1\,n]

Of course, a more general solution relying on some kind of default reasoning can be proposed.
For instance, we could minimize the occurrence of actions using some simple circumscription

policy like CIRC[atorres(ai); holds]. However, due to the shape of the minimized formulas and to

6.4 Circumscribing pertinence ?5

pertinence calculus axioms related to action occurrences, this circumscription always amounts
to the formula do (a, l), and so, we do not get any real advantage of using a more elaborated
definition. Minimizing the occurrence of actions could be interesting, perhaps, not for temporal
projection, but for other kind of problems like minimal planning, where this minimization is not
so trivial.

6.4 Circumscribing pertinence

Now, let Ts be the pertinence calculus theory consisting of the set of axioms AX U(UFR)
plus the translations (6.19)-(6.28) of ^-rules for the suitcase domain. The following question
is straightforward: do the models of Ts describe the set of narratives we obtained in figure 4.2
using the operational behavior? In other words, does our pertinence calculus encoding provide
the right semantics for the algorithmic description?

The answer is clearly negative yet, as we can see with the following counterexample. Assume
we just want to toggle lock 1 when the suitcase is closed and both locks are down. This would
correspond to:

holds(up(1), f, 0) n holds(up(1), f, 0) n holds(open, f, 0) n do ({toggle(1)},1) (6.29)

The result should be clear: lock 1 must be caused to be up, whereas the rest should persist
by inertia. In fact, this is the solution provided by the operational semantics. In figure 4.2,
there exists a unique successor state corresponding to Ql ={up(1), up(2), open} with ^rl making
toggle(1) and up(1) pertinent. The theory Ts U(6.29), however, just allows concluding that
up(1) becomes true - nothing is entailed about up(2) nor open. In fact, we get seven models
which only vary in the valuations of holds and pert for fluents up(2) and open in situation 1.
Using L2 notation for representing holds and pert values, these models correspond to:

up(2) open

M1 fn fn

M2 fn fp

M3 fp fn

M4 fp fp

M5 fn tp

M6 fp tp

M7 tp tp

The expected model is Ml, where both up(2) and open persist false unaffected. However, our
representation is still too weak: we have not said anywhere that up(2) and open cannot become
pertinent by only performing toggle(1). Thus, we have the other six possibilities which are clearly
counterintuitive. The reason for these extra models is that, as explained in the introduction, a
logical description of a dynamic system requires not only the formulas that express the changes,
but also some kind of inechanism that allows concluding that unaffected facts do not change:
the inertia law. Of course, we could try to add more formulas for this purpose (effect axioms),
but their shape would vary depending on the whole domain knowledge, leading to the already
explained frame problem. Instead, we will explain how to incorporate the common sense law of
inertia into pertinence calculus, using in this section a models minimization technique.

As we had seen, the inertia default can be stated as follows:

everything persists, under no evidence on the contrary

76 Pertinence Calculus: formalizing pertinence in action domains

In our case, since the universal frame axiom (UFR) already asserts that nonpertinent fluents

persist, we could rephrase inertia as:

everything is not pertinent, under no evidence on the contrary

which also copes with the requirement of minimizing unneeded pertinence. This intuitive be-
havior can be simply achieved by selecting those models with less pertinent atoms. The question
now is how to measure "less pertinence" between two given models. To this aim, we can use
now the binary representation for the pertinence predicate, pert(P, I), bearing in mind that both

pert(P, p, I) and pert(P, n, I) are the already seen abbreviations of pert(P, I) and ^pert(P, I),

respectively. In this way, we can simply try, as a first attempt, to select those models of our

theory T with less extent for pert (P, I) regardless the extent of hol ds (P, V, I). As we had seen in

section 2.1, this ordering relation is denoted as <^ert;hocds and corresponds to the circumscription:

CIRC [T; pert; hol ds]

This models minimization solves our previous scenario, since we would get Ml as unique minimal

model (it is the only one without pertinent atoms), but it is still too naive and does not cover
all the cases for the system automaton. As a counterexample, consider that we toggle lock 1
when it was down, lock 2 was up and the suitcase was closed:

holds(up(1), f, 0) n holds(up(2), t, 0) n holds(open, f, 0) n do (toggle(1),1) (6.30)

Note that this was the original scenario introduced by Lin. Following machine in figure 4.2, the
unique successor state should be that lock 1 is caused to be up, and the suitcase caused to be

open:

Q1 = {up(1), up(2), open} (6.31)

^rl = {!up(1), !up(2), !open} (6.32)

However, the theory TS U(6.30) has five models that vary for the following fluents at situation

1: .

M8

M9

Mio
Ml l

M12

up(2) light

fp fn

fp fp

fp tp
tn tp

tp tp

and so, we get two <_^ert;h°tds-minimal models, M8 and Mil. Notice that we have arrived to the
surprising model explained in the introduction: while Mll provides the expected behavior (the

suitcase results open), M8 prefers the persistence of open false, "moving down" lock 2.

To overcome this difficulty, many change based approaches [65, 47, 103] apply a filter pref-

erential entailrraent [96] technique, consisting in minimizing only a part of the theory. More

concretely, these action approaches minimize the change predicate in the whole theory e^cepting

the universal frame axiom, which must be satisfied afterwards. An analogous process can be

established in pertinence calculus, using instead the ordering relation, <pert^ so that we require

holds fixed before minimizing the extent of pert. Note that this relation is more restrictive than
<pert;holds^ since two models with a diíferent extent for holds are not comparable now. Given

this modified ordering relation, we define the selected models as follows.

6.4 Circumscribing pertinence ?7

Definition 35 (Selected model) Given a set R of ^-rules, let the pertinence calculus theory
T be t(R) U AX U Obs where Obs is a set of observations. Then, a model M of T is said to be
selected iff:

i) M is a<pert-minimal model of T,

ii) M satisfies the universal frame axiom: M^ (UFR).

In other words, the selected models of T are the models of the circumscribed theory:

CIRC[t(R) U AX U Obs; pert] U(UFR)

O

Coming back to our example, let TS contain the rule translations (6.19)-(6.28) plus axioms
AX and observations (6.30). There exist ten models of TS, corresponding to M8-M12 plus those
that, at situation 1, vary in these fluent valuations:

Mis

M14

Mis
Mis

M17

up(2) oper^

fn fn

fn fp

fn tn
fp tn

fn tp

Notice that these five extra models appear now because we are not requiring (UFR) - in all
of them, some fluent is nonpertinent while it has changed its truth value with respect to Qo. We
select now those models with less pertinence, fixing the truth mapping. Thus, we can classify
the models by each truth combination:

^cp(2) ope^
M9

M8

M14

M13

fp

fp

fn

fn

fp

fn

fp

fn

Mio

Mis

M17

Mis

fp

fp

fn

fn

tp

tn

tp

tn

M12

Ml l

tp

tn

tp

tp

obtaining three <reTt minimal models, M13, M15 and Mll. Finally, since M13 and M15 do not

satisfy (UFR), the unique selected model is Mll, which is the expected one (lock 2 persists up,

whereas the suitcase results open). ^

6.4.1 Correspondence to operational semantics

Although the applied minimization technique has solved the suitcase problem in its usual terms,
we cannot be actually sure that similar problems will not appear for other scenarios, or even

?8 Pertinence Calculus: formalizing pertinence in action domains

for other transitions of the suitcase domain. In fact, this objection is sometimes applicable to
most works in the literature3, where the proof for showing that there are no "surprising" results
with indirect effects is simply left to an study of a particular domain and a particular action

execution. In this way, the usual methodology amounts to a trial and error process where it is
always possible to look for a new scenario that leads to "unnatural" results.

In our case, there exists a considerable advantage: we have^ available the operational inter-

pretation of rules which plays the role of "expected behavior." Thus, rather than constructing
a proof for each imaginable scenario, we will look for a general result of correspondence with
respect to the operational interpretation. Unfortunately, it is not possible to obtain a full corre-
spondence when using the already explained circumscription policy, as shown with the following

counterexample.

Example 6(The alarm scenario) An alarm system detects if somehow people enter a build-

ing. We assume that there may be many dif%rent ways to enter the building, that is, there

are many actions bringing someone in. We use the fluents in (stating that someone is inside),

active (the alarm system is active) and ring (the alarm bell is ringing). While the system is

active, anyone entering the building triggers the alarm: if in becomes true when active is already

true, ring becomes true. However, activating the alarm system when someone is already in the

building is not supposed to cause the bell to ring. ^

This problem was proposed in [15] to emphasize the diíference between causal rules, which

talk about change propagations, and state constraints like:

in n active ^ ring

which would not behave correctly when we activate the alarm while someone is inside.

For simplicity sake, we consider an action enter that causes in to become directly true. Of

course, in order to leave open the possibility of other ways of making in true, we avoid the use

of action enter in the rule for ring. We will also handle two actions, connect and disconnect for

respectively activating or deactivating the alarm. Finally, as we will allow concurrent actions,
we assume that activating the alarm while a person is entering does not cause the ring to bell.
This assumption was not clarified in the original problem, but it is interesting for our purposes.

Under these assumptions, the set Ra of ^-rules would be:

active if connect (6.33)

active if disconnect (6.34)

in if enter (6.35)

ring if in n active n!active (6.36)

Notice that the rule for ring requires that active is not only true but also persistent. In

other words, we want the alarm to be active, but not ca^csed to be so. It is easy to see that, if

we use the algorithm in figure 5.2 to compute the successor state for the transition:

{in, active, ring}

{enter}

3As the most remarkable attempt, if not the only one, of a systematic assessment of action approaches, see [97].

6.4 Circumscribing pertinence 79

we obtain:

Ql = {in, active, ring}

^rl = {!in, !active, !ring}

that is, as expected, the bell begins ringing.

Unfortunately, the circumscriptive policy for the pertinence calculus encoding does not allow
to conclude that the bell rings. The translation t(Ra) would be the set of formulas:

holds(connect, t, I) ^ holds(active, t, I) n pert(active, p, I) (6.37)

holds(disconnect, t, I) ^ holds(active, f, I) n pert(active, p, I) (6.38)

holds(enter, t, I) ^ holds(in, t, I) n pert(in, p, I) (6.39)

holds(in, t, I) n holds(active, t, I) n pert(active, n, in) n pert(in, p, I) ^

^ holds(ring, f, I) n pert(ring, p, I) (6.40)

whereas the set of observations, Obs, corresponds to:

holds(in, f, 0) n holds(active, t, 0) n holds(ring, f, 0) n do ({enter},1)

Clearly, any model of t(RQ) U AX U Obs satisfies holds(in, t, l) n pert(in, p, l) (fluent in is
caused true). However, we get two different selected models, which vary at situation 1 for:

' ^ active ring
M1
M2

tn tp

tp fn

Which is the explanation for this uncertainty? As we saw before, model Ml is the expected
one, where persistence of active has been preferred before deciding ring. In the other model,
persistence of ring has been preferred "first." Then, formula (6.40) has been applied by contra-
position allowing to conclude pert(active, p, l). The problem here is that there is no intuitive
explanation for obtaining pertinence of active. Notice that the two rules that may af%ct active
are not applicable, since neither connect nor disconnect are performed. In this way, models M2
clearly violates postulate P1: active cannot be aífected by the performed actions. Allowing this
behavior would imply assuming that ramifications can be obtained by reasoning from ef%cts to
causes4.

Therefore, circumscribing our pertinence calculus translation does not allow us to conclude
that the bell begins ringing, since there exists a model in which ring is true and a model in
which it is false. F^rthermore, this counterexample also shows that, when we use the proposed
circumscription policy, the induced transition relation is rtondeter^ninistic.

Fortunately, this deviation from the operational interpretation is not the most frequent case.
In fact, it is possible to establish a syntactic constraint in the ^-rules that guarantees the
correspondence with respect to the operational behavior.

Definition 36 (Definiteness) A set R of P-rules is said to be definite iíf no rule condition
contains any negative pertinence fact: !p. p

'Although this behavior is clearly counterintuitive for temporal projection, it has been applied for the case of
diagnosing dynamic systems, as proposed in [84^.

80 Pertinence Calculus: formalizing pertinence in action domains

As we can see, the alarm example is not definite, since we require testing that fluent active is

not pertinent while fluent in is caused true. Of course, restricting thé representation to definite

^-rules means an important limitation with respect to our initial goals since, in this way, we
cannot freely handle pertinence in the same way as fluent values. However, the need for testing

nonpertinence of a fluent (or that it has not been caused) is not so frequent, at least in most of

the action domain examples used in the literature5.

Definiteness becomes interesting because it allows us to apply a transformation which is very

similar to Clark's completion for logic programs, but adapted to pertinence in ^-rules.

Definition 37 (Pertinence Completion of ^-rules) Let R be a set of ^-rules, and t(R) be

their translations into pertinence calculus. Then, we define the pertinence completion of R,

written PCOMP[R], as the uniori of t(R) and the set of pertinence calculus formulas:

pert(f, p, I) - v CCÍ n D1_1 (6.41)
^

for each fluent f and all the rules E if C^ after D^ with symb(E) = f. q

Notice that, in fact, t(R) already contains the right-to-left direction of (6.41), and so, the

only real addition is the left-to-right implication. Now, under the assumption of definite ^-rules,
we can replace circumscription by pertinence completion, as stated by the following lemma:

Lemma 3 For any definite acyclic set R of ^-rules:

CIRC[t(R); pert] - PCOMP[R]

Proof
(See appendix A). q

As an example of pertinence completion, consider again Lin's suitcase scenario, with the set
of ^-rules RS=(5.4)-(5.8). The pertinence completion PCOMP[RS] would include the translation

of the rules t(RS) ((6.19), (6.25)-(6.28)) plus the additional formulas:

pert(up(1), p, I) -(holds(up(1), f, I-1) n holds(toggle(1), t, I))V

(holds(up(1), t, I-1) n holds(toggle(1), t, I)) (6.42)

pert(up(2), p, I) -(holds(up(2), f, I-1) n holds(toggle(2), t, I))V

(holds(up(2), t, I-1) n holds(toggle(2), t, I)) (6.43)

pert(open, p, I) - holds(up(1), t, I) n holds(up(2), t, I)n

(pert(up(1), p, I) V pert(up(2), p, I)) (6.44)

5As an interesting discussion, see Thielscher's comment and the authors' answer at the online review of

Denecker et al's paper [28]:
http://^.ida.liu.se/egt/etai/ra/rac/009/rppf.html#004

6.5 Encoding Pertinence into Default Logic 81

In fact, thanks to pertinence calculus axioms for fluent values, formulas (6.42) and (6.43) can
be further simplified into the respective equivalences:

pert(^cp(1), p, I) - holds(toggle(1), t, I)

pert(^cp(2), p, I) - holds(toggle(2), t, I)

Now, the main theorem of this section guarantees that, under the syntactic limitations
of definiteness and acyclicity, the circumscription we have defined for our pertinence calculus
encoding obtains the same results than the operational semantics presented in the previous
chapter:

Theorem ? Let R be a definite set of acyclic causal rnles and let Qo be some initial state and
á a sequence of actions al, ..., a^,. Then, v is a narrative for Qo and á ^cnder the operational
semantics i,,^` the interpretation atoms(v) is a model of the theory:

CIRC[t(R) U AX U atorras(QO) U do (á); pertJ U(UFR)

Proof
(See appendix A). q

In fact, even when some rules in R contain negative pertinence facts in their conditions,
any narrative of the operational semantics is still a selected model in the circumscribed theory.
However, the other direction does not necessary apply, since the presence of facts like !p may
lead to more selected models, apart from the one corresponding to the narrative obtained by
the rule application algorithm, as we saw with the alarm example.

6.5 Encoding Pertinence into Default Logic

As we have just observed, a suitable pertinence circumscription allows avoiding most problems
with contraposition of material implication. Theorem (7) guarantees that the circumscriptive
policy we have introduced captures the behavior of the operational description, for which it
can be trivially checked that no effect can be obtained by contraposition. However, we have
had^ to pay a price for obtaining the correspondence result: rule conditions must not contain
negative pertinence facts. Otherwise, as shown with the alarm example, there could be models

of the circumscribed theory that are not narratives of the operational description. In fact, these
"non-covered" models are obtained by contraposition of (the translation of) some causal rule.

Of course, a radical solution could be to forbid rule conditions with negative pertinence
facts. In this way, we would understand that the circumscriptive encoding is the right semantics
for causal rules, and that references to nonpertinence have some special meaning not captured
by the operational behavior. However, this asymmetric treatment of pertinence does not seem
very natural and moves away from one of our goals, that is, to provide a uniform treatment
of pertinence information, similar to the one for fluent values. Besides, we would be somehow
"breaking" the methodology: once we decided to look for a semantics for the operational de-
scription, we should rather try to capture its exact behavior. Other possibilities are neither
better nor worse, but describe a different thing.

In this section we study how to avoid contraposition by reinforcing pertinence calculus with
inference rules, while maintaining the pertinence minimization. To this purpose, we use a well

82 Pertinence Calculus: formalizing pertinence in action domains

known nonmonotonic formalism, defa^clt logic [94], which is, in fact, the most suitable among

the usual ones for dealing with inference rules. Default logic is also important from the practical
point of view, as it allows exploiting the following property: a default theory that exclusively
deals with atoms corresponds to a logic program under the stable models semantics [38]. This
property is interesting from the point of view of implementation, as there exist several practical

efficient tools [105, 32] for computing the stable models of a logic program. In this way, we follow

here similar steps for pertinence calculus as done in [109] for the action language ,AC, providing
first an embedding into default logic and, in the next sections, into logic programming.

If we look at the nature of most of the representational problems already explained (the
Yale shooting, the suitcase and the alarm examples, for instance), there exists in all of them

a causal violation where we obtain conclusions by applying some conditional expression in the

"wrong" direction. That is, it seems that the intended meaning of some of the conditionals
we have used does not fit with a material implication, but with an inference rule instead. For
instance, from the suitcase and the alarm examples it seems clear that causal rules should be
represented using inference rules. However, this would not be enough for dealing with the Yale
shooting problem. In that case, the problem arose because of applying backwards the universal
frame axiom (UFR). After considering this, we present the encoding, which is actually divided

into three clearly diíferentiated parts.

Definition 38 (D(R)) Let R be a set of causal rules. We define the default theory D(R) as

the four sets of default rules:

1. D(R)1 contains the formulas in AX, i.e., axioms (DC), (UNA) and (6.1)-(6.6),

2. D(R)2 contains the inference rule schemata

pert(F, n, I) n holds(F, V, I-1)

holds(F, V, I)

for any fluent F and I E [1, n], plus the inference rule schemata

DI1 ^ C CI
C EI

for each causal rule E if C after D and I E [1, n],

3. D(R)3 contains the default rule schemata .

: pert(P, n, I)

pert(P, n, I)

for any symbol P and I E [1, n],

(6.45)

(6.46)

(6.47)

q

As interesting remarks, note that each set contains different types of rules. The set D(R)1
exclusively contain classical formulas that correspond to the basic set of pertinence calculus

axioms. The set D(R)2 is the corpus of inference rules. It is interesting to note that all of

them show a clear terriporal directior^ality, since their consequents always refer to a situation I

which is greater or eqnal than the situations in the antecedents. In other words, we never apply

an inference rule to obtain conclusions from future to past. Finally, the set D(R)3 consists of

normal defaults that clearly express the minimization of pertinence: whenever some symbol P
can be assumed to be nonpertinent, it is concluded to be so. This minimization, in conjunction
with the universal frame axiom (6.45), implements the commonsense law of inertia.

6.6 Encoding pertinence into logic programming 83

6.6 Encoding pertinence into logic programming

The default logic encoding has some serious drawbacks from a practical point of view. The most
important one is the use of logically closed theories which, in principle, imply dealing with sets of
an infinite number of formulas. However, for our purposes, the full expressivity of default logic
is not actually needed. A first example of this is that we only use a particular type of normal
defaults (rule (6.47)). Another interesting observation is that all the consequents in D(R) are
atoms (like holds(F, V, I) in (6.45)) or conjunctions of atoms (like ^EI in (6.46)). Motivated
by this last feature, we can study the feasibility of imposing the following strong restriction:

consider theories and rules in which all the propositional formulas are atoms.

As we saw in the background, a default theory under that restriction corresponds to a logic
program under the stable models semantics [38], whose definition is simpler and for which there
exist efficient implementations [105, 32]. For this reason, we will not provide a correspondence
theorem for the default logic encoding with respect to the operational semantics. Instead, we will
explain how the already defined default theories can be suitably rearranged as logic programs
and, afterwards, provide the correspondence with respect to these programs.

Given any set R of causal rules, we define the program P(R) consisting of three sets of
program rules, P(R)1i P(R)2 and P(R)3i analogous to the sets defined for D(R). The trans-
lations of P(R)2 (the corpus of inference rules) and P(R)3 (the pertinence minimization) are
straightforward. The set P(R)2 contains, for any fluent F and I E [1, n], the program rules:

holds(F, V, I) F-- pert(F, n, I), holds(F, V, I-1) (6.48)

plus, for each causal rule holds(f, v) if C after D in R, and for each symbol p occurring in C,
the rules:

holds(f, v, I) E- DI 1, CI, pert(p, p, I)

pert(Ĵ^ P^ I) ^ DI i^ CI ^ pert(p^ P^ I)

assuming I E [1, n] and that n's are replaced by commas in DI 1 and CI.
The explanation for this translation is simple. The expression DI1 n ^ CI we used before

as antecedent cannot be represented as a conjunction of atoms. However, we can reexpress the
formula into its disjunctive normal form, and then create a diñerent program rule with each
clause as condition. Since the formula is eqŭivalent to DI1 n CIn!CI, and both DI 1 and CI
are conjunctions, we only have to decompose !CI which is the disjunction of pert(p, p, I) for all
the atoms occurring in C. Besides, for each one of these conditions, we get two rules, since the
eífect must be caused, i.e., must become both true and pertinent.

The set P(R)3 is a direct translation of D(R)3i that is, for any symbol P and I E [1, n], it
contains the single rule:

pert(P, n, I) F-- not pert(P, p, I) (6.49)

Finally, in order to encode the basic axioms AX, we understand 1 as a special atom in the
Herbrand base, so that we will reject later those stable models containing this atom. The set
P(R)1 contains the rules:

1^ holds(P, V, I), holds(P, V', I) (6.50)
1 F- pert(P, p, I), pert(P, n, I) (6.51)

pert(A, p, I) ^ holds(A, V, I) (6.52)

84 Pertinence Calculus: formalizing pertinence in action domains

with I E[0, n]. Rules (6.50)-(6.52) respectively correspond to axioms (6.1), (6.3), and (6.5).
The axioms (DC) and (UNA) are not needed since we already handle Herbrand models, whereas

axiom (6.6) has also been omitted, since there are no rules with head pert(P, p, 0) and so (6.49)

makes everything nonpertinent at situation 0. Note also that we do not need to include the
axioms for existence of value, (6.2) and (6.4), and that in fact, rule (6.52) only represents one

of the directions of the double implication of (6.5).

As an example of formulation, consider again rule open if up(1) n up(2). As we had seen:

holds(open, t, I)

pert(open, p, I)

holds(open, t, I)

pert (open, p, I)

T

holds(up(i), t, I) n holds(up(2), t, I)

pert(up(1), p, I) V pert(up(2), p, I)

and so, we would have the logic program rules:

def

def

def

E- holds(up(1), t, I), holds(up(2), t, I), pert(up(1), p, I)

F- holds(up(1), t, I), holds(up(2), t, I), pert(up(1), p, I)

^ holds(up(1), t, I), holds(up(2), t, I), pert(up(2), p, I)

F- holds(up(1), t, I), holds(up(2), t, I), pert(up(2), p, I)

The final logic program for Lin's suitcase domain contains the rule translations:

holds(up(N), t, I)

holds(up(N), f, I)

holds(open, t, I)

pert(open, t, I)

holds(open, t, I)

pert(open, t, I)

^ holds(up(N), f, I- 1), holds(toggle(N), t, I)

^ holds(up(N), t, I- 1), holds(toggle(N), t, I)

F- holds(up(1), t, I), holds(up(2), t, I), pert(up(1), p, I)

^ holds(up(1), t, I), holds(up(2), t, I), pert(up(1), p, I)

^ holds(up(1), t, I), holds(up(2), t, I), pert(up(2), p, I)

E- holds(up(1), t, I), holds(up(2), t, I), pert(up(2), p, I)

6.6 Encoding pertinence into logic programming

for any I E [1, n] and N E {1, 2}, plus the axiom translations:

holds(up(N), t, I') ^ holds(^cp(N), t, I' - 1), pert(up(N), n, I')

holds(up(N), f, I') t- holds(^cp(N), f, I' - 1), pert(^cp(N), n, I')

holds(open, t, I') ^

pert(^cp(N), f, 0)

pert(toggle(N), f, 0)

pert(open, f, 0)

pert(toggle(N), t, I) t-

1 E--

1

1

1

1

pert(np(N), f, I)

pert(open, f, I)

holds(open, t, I' - 1), pert(open, n, I')

holds(toggle(N), t, I)

holds(open, t, I), holds(open, f, I)

F- holds(^cp(N), t, I), holds(^cp(N), f, I)

E- pert(open, p, I), pert(open, n, I)

F- pert(^cp(N), p, I), pert(^cp(N), n, I)

^ pert(toggle(N), p, I), pert(toggle(N), n, I)

F- not pert(^cp(N), t, I)

E-- not pert(open, t, I)

pert(toggle(N), f, I) F-

for I E [0, n], and I' E [1, n].

not pert(toggle(N), t, I)

6.6.1 Correspondence to operational semantics

Of course, in order to describe the program behavior, we must choose one of the possible logic
programming semantics. In this way, while stable models allow obtaining the same results than
default logic (when we restrict the study to atoms), other logic programming semantics like
well-founded semantics or Clark's completion, may lead to different results. However, the next
theorem will be very important for comparison purposes with respect to the operational behavior,
since it shows that for an acyclic set R of P-rules, the resulting program P(R) is hierarchical,
and so, by property (9) seen in the background, the three logic programming semantics will
actually coincide.

Theorem 8 Given a set of acyclic ca^csal rnles R, the program P(R) is hierarchical.
Proof (See appendix A). q

Corollary 5 Let R be an acyclic set of cansal r^cles, Qo an initial state Qo and á a sequence of
compound actions. Then, the program P(R) U atoms(Qo) U do (á) is hierarchical.
Proof
Trivial, since atoms(QO) U do (á) are a collection of atoms (we are assuming that the conjunction
of atoms obtained from the do abbreviation is represented as a set of logic program facts). q

The previous results allow a straightforward application of proposition (9), so that we always
obtain a unique stable model, which is also the unique supported model and, furthermore,
corresponds to the (complete) WFM. Therefore, in order to show the correspondence with
respect to the operational behavior, it will suffice to use for this purpose any of the three logic
programming semantics, thanks to the absence of cycles.

85

86 Pertinence Calculus: formalizing pertinence in action domains

Theorem 9 Let R be an acyclic set of causal rules, Qo an initial state and á= al ... an

a sequence of compound actions. Then, v is a narrative for Qo and á under the operational

semantics i,f,^ atoms(v) is the complete WFM of the program P= P(R) U atoms(QO) U do (á).

Proof

(See appendix A). q

6.6.2 Using program cycles for planning and temporal explanation

Although theorem 9 has shown that it is possible to capture the operational behavior using
logic programs (interpreted under any of the three semantics we have considered), these logic
programs have a disadvantage: they are only thought for temporal projection problems. In other

words, we actually construct a di,,^`erent program for each initial state and sequence of actions,

obtaining a unique model which describes the resulting narrative (remember we are considering,
by now, a deterministic transition relation). However, we know that under some semantics, like

stable models or Clark's completion, a logic program may be satisfied by several models and

not just by only one. The question is, could we construct a single program so that its models

correspond to the set of all possible narratives?

We will show how a suitable use of logic program negative cycles may allow the generation

of all the possible narratives for any sequence of transitions. This is very interesting since, in
this way, we can solve temporal explanation and planning problems by just adding observations
(as facts) to the program, rather than constructing all the possible programs for all the possible

narratives.

Definition 39 (P9en) Given the set of actions ,,4, fluents .F' and a fixed narrative length n,

we define the program P9en as the set of rules:

holds(F, v, 0) E- not holds(F, vl, 0), ..., not holds(F, v„^,, 0)

for any fluent F, any v E range(F) and {vl, ..., v^} = range(F) -{v}, plus the rules:

holds(A, u, I) ^ not holds(A, ul, I), ..., not holds(A, u,,,,, I), not pert(A, n, I)

for any I E [1, n], any action A, and any u E range(A) and {ul, ..., u„^} = range(A) -{u}. O

In other words, if no other value for fluent F at 0 can be proved, then we assign value v. In
the case of actions, this is done at any situation greater than 0, but we add one more possibility

not pert(A, n, I), allowing also the case in which the action is not performed (and so, no value

can hold for it).

The following result shows the utility of P9e7E when we interpret our logic programs either

under stable models or under Clark's completion semantics.

Theorem 10 Let R be an acyclic set of causal rules and n some fi^ed narrative length. Then
the set of stable models (resp. supported models) of the program P(R) U P9en correspond to the
stable models (resp. supported models) of the multiple programs P(R) U atoms(Qo) U do (á) for

any possible initial state Qo and any possible sequence of actions á= al, ..., a^,.

Proof
(See appendix A). q

6.6 Encoding pertinence into logic programming 87

Notice that this covers the case of an acyclic R. Thus, a unique program P(R) U P9en is
able to provide the set of all narratives captured by the finite state machine we would obtain
applying the operational semantics. Besides, this result is in fact more general, since if we provide
partial observations about Qo or á, the program will compute all the narratives resulting from
completing this information. In this way, we can use program P(R) U P9en to solve temporal
explanation problems and so, if the system is deterministic, to solve planning problems.

As we can see, there is not a similar result for WFS. This be no surprise, since, as we had
already explained, any logic program has always a unique well-founded model. Thus, when we
consider WFS, it does not make sense to talk about a set of models for the logic program for
trying to capture the desired narratives. For instance, the negative cycles we introduced in P9en,
rather than generating multiple scenarios, they would actually constitute a problem in WFS,

leaving undefined all the facts for the initial situation and action executions. From a practical
point of view, this means that solving a postdiction or a planning problem using WFS involves
an extra generation of possible scenarios which is not part of the program interpretation itself,
but for which efficient strategies could be obtained. The main disadvantage, however, relies
in the theoretical understanding, since planning and postdiction would be tasks "outside" our
logical formalization.

Although it is outside the scope of this dissertation, two possible solutions to this problem
can be outlined: the disjunctive and the abductive extensions for logic programming. Disjunctive
logic programming (see [67] for a survey) consists in extending the shape of program rules to
cope with disjunctive heads:

Hl I... ^ H^,,, E- L1,...,Ln

where Hi are atoms and Li are program literals. Intuitively, the idea is that we may obtain differ-
ent models for the program (even in WFS) depending on the selected choice of rule consequence.
As an example, consider the program:

P ^ q E-- not r

Since r cannot be proved, we should be able to apply the program rule. However, as the
head is disjunctive, we should obtain two (complete) models: {P} and {q}. The stable models
semantics has been naturally extended for disjunctive programs [40], and in fact, one of the cur-
rently available tools [32] for efficiently computing the stable models semantics allows disjunctive
constructions. Moreover, it is possible to reformulate P9en using disjunctive heads instead of
negative cycless:

holds(F, vl, 0) ^ ... ^ holds(F, vm, 0) (6.53)
holds(A, ul, I) ^ ... ^ holds(A, un, I) (Pert(A, n, I) (6.54)

for any range(F) _{vl, ..., vr,,,} and range(A) _{ul, ..., un}. Unfortunately, there is no
general agreement about the disjunctive version of WFS: there exist several approaches like
stationary serraantics [93], D-WFS [29], GDWFS [11] which in most cases do not even take into
account the coherence problem.

Another alternative is using abductive logic ^vrogramming (see [51] for a survey), which relies
on applying abductive reasoning to a logic program. Abduction is a logical mechanism that

6In general, a negative cycle (p E- not q), (q ^ not p) is not equivalent to (^^q). However, in this case, the
presence of constraints (6.1) and (6.3) guarantee this equivalence.

88 Pertinence Calculus: formalizing pertinence in action domains

allows meta-reasoning about some given inference relation, I-. Consider, for instance, some

pair of related formulas ^ I- ^. While deduction allows concluding which consequences ^ may

follow from the fixed hypothesis ^, abduction allows proposing the possible hypotheses ^ which

could lead to the fixed consequence ^. When abduction is applied to logic programming, the

generation of hypotheses is usually limited to addition of atoms for a fixed set of predicates called
abdncible. This mechanism could be directly used in our case, by understanding as abducible

the atoms for the initial situation and for the actions execution. In this way, we would obtain a
logical counterpart of our practical "generation of possible cases." It must also be noticed that,
contrarily to disjunctive logic programming, using abduction would allow real planning, even
when the transition relation was nondeterministic, since the obtained abductions gnarantee that

the goal is finally obtained.

Chapter 7

Causal cyc les

Figure 7.1: "Drawing hands" by M. C. Escher.

The previous chapter has shown how to encode the operational behavior of P-rules into
pertinence calculus by either using logic programming (theorem 9) or circumscription (theorem
7), although for the latter we had to additionally assume definiteness. An important feature
that allowed the agreement of the different semantics for the case of logic programming (LP)
was requiring acyclicity of the set of P-rules. In fact, the operational interpretation was not
defined when the set of rules contained cycles. Nevertheless, the presented logical formulations
are still perfectly defined for causal cycles, but provide different results depending on the non-
monotonic technique we use: circumscription, or logic programming, which also varies under
Clark's completion, stable models or WFS.

The main motivation for studying causal cycles is to provide a coherent interpretation for
our causal rule representation. Of course, we could impose the restriction of acyclicity on R,
but this would mean a lack of flexibility when trying to represent the system in an elaboration
tolerant way. Imagine updating a large system dealing with a considerable amount of rules. It
is not so unusual that the addition of a new rule leads to a cyclic reference which, perhaps,

90 Causal cycles

is never a problem in practice, but simplifies the representation. On the other hand, although
not so frequently, we can also find some domains in which the causal cycle itself has a natural

meaning.

7.1 Characterizing the effects of causal cycles

The generalization of the ^-language to cope with causal cycles yields different effects depending
on the nonmonotonic technique we apply to pertinence calculus. It is interesting to note that

in all the four cases - circumscription, completion, stable models and WFS - we obtain new

features in the behavior that are exclusively due to the presence of cycles. Without trying

to be exhaustive, we informally proceed to relate the most relevant among these new, features

by studying simple examples of causal cycles. Many of these studied features were already

commented for LP. The interest is that, although the logic programs for encoding ^-rules seem
to be very simple (default negation is exclusively used for the normal default for minimizing
pertinence), they are however complex enough for presenting all the effects derived from LP

cycles.
In all the examples of this section, we assume a set of boolean fluents .F = b, c, d, an action

,A ={a} and that all the narratives have length n= 1(i.e., we consider single transitions).

7.1.1 Positive vs. negative cycles

As P-rules can be encoded into logic programs, the first question that may arise when studying
causal cycles is whether they can be classified as positive/negative LP cycles or not. As we saw
in chapter 2, this distinction is very useful for classifying the effects of LP cycles under different
LP semantics, and so, it may indirectly help to fix the behavior of P-rules. For instance, we
know that the differences between stable models and WFS exclusively rely on negative LP cycles
(property 11). Unfortunately, it is easy to see that, in fact, practically any causal cycle (i.e. a

cycle in the ^-rules) leads to some negative cycle in its logic programming encoding. Consider

the following simple example:

Example 7 Let Rl be the singleton ^-rule:

bifb (7.1)

O

At a first glimpse, this example should just contain a positive cycle. However, in order to
establish the type of LP cycle, we must not excessively rely on the fluent values. In fact, the

rule:

bifb

should behave in a completely analogous way. Instead, we must analyze the translation of Rl

into a logic program, P(Rl) which contains, among other, the rules:

holds(b, t, l) F- holds(b, t, l), pert(b, p, l) (7.2)

pert(b, p, l) E- holds(b, t, l), pert(b, p, l) (7.3)

pert(b, n, l) ^ not pert(b, p, l) (7.4)

holds(b, t, l) F- holds(b, t, 0), pert(b, n, l) (7.5)

?.1 Characterizing the effects of causal cycles 91

where (7.2) and (7.3) are the translation of (b if b), (7.4) is the rule (6.49) for fluent b, and (7.5)
is the frame axiom for fluent b and value t. Positive cycles are evident in (?.2) and (7.3) where
the heads are also included in the bodies. However, we have also the following negative cycle:

pert(b, n, l) F-- pert(b, p,1) ^- holds(b, t, l) ^ pert(b, n, l)

following rules (7.4), (7.3) and (7.5) backwards.
Another interesting remark is that whereas in LP some cycles are not "problematic" due to

the program shape, when we use ^ rules this will usually depend on the initial státe and the
performed actions. For instance, the logic program:

p E- r^ot p

contains a negative cycle that can be ignored thanks to the program fact p. However, we will see
that in most of the examples we will study, the same causal cycle may be sometimes ignored like
the LP cycle above (for instance, the initial state contains some fact like p that directly solves
the problem), but may lead to problems when we study a diíferent transition. In other words,
we must actually bear in mind that the representation of a domain as P-rules is actually a set of
dogic programs, one for each possible transition. Thus, a"static" study of the cycle, like in LP,
is not so easy, as we must bear in mind all the possible transitions that may become affected.

7.1.2 Self-supportedness

A first important effect that may follow from the interpretation of a causal cycle is self-
s^cpportedr^ess, that is, using LP terminology, the non-satisfaction of well-s^cpportedr^ess. As
we saw in chapter 2, we informally say that a model of a logic program is well-supported iíf
for any concluded atom p, we can construct a rule-application chain starting from facts and
which does not contain p itself. Thus, self-supportedness means that we may obtain models
which, for explaining some p, we have used p itself or, in other words, p is auto-justified. We
also saw in chapter 2 that stable models and WFS are well-supported. Therefore, we will spe-
cially focus here on circumscription and Clark's completion, analyzing examples of occurrence
of self-supportedness induced by a causal cycle.

As a first example, we may use the already introduced Rl. Consider the case Qo ={b}
and al =^, that is, we let pass one situation without performing any action. Three semantics
lead to the same result: circumscription, stable models and WFS. In these three cases, fluent b
persists unchanged. The explanation, in the case of stable models and WFS, is that although
Ri contains a negative cycle, it actually depends on a positive one: pert(b, p, l) always depends
on pert(b, p, l) itself, and so may never become well-supported. This "solves" the negative cycle
by making pert(b, p, l) always false, and so, pert(b, n, 1) always true, due to rule (7.4).

The difference appears when using Clark's completion which, apart from the model we
obtained with the other three semantics, it also yields one more model in which b becomes
true and pertinent: holds(b, t, 1) and pert(b, p, l). The reason for this is that, under Clark's
completion, we may first freely assume that b is pertinent and true. This makes the rule bodies
for (7.2) and (7.3) true, and then we obtain again that b is pertinent and true (this informal
reasoning corresponds to the selection of fixpoints of operator TP).

This kind of reasoning is analogous to the understanding of the picture that illustrated
the beginning of this chapter (figure 7.1). Escher's drawings are famous because of showing

92 Causal cycles

impossible configurations (either spatial or, like in this case, causal). Somehow, both hands

"come to life" although each one is drawn (caused) by the other. ^

Coming back to our example, notice that the completion interpretation of Rl directly violates
postulate P1, since there is no external intervention that justifies the pertinence of b. In fact,

the absence of pertinent atoms is the reason why circumscription does not lead in this case

to self-supportedness. Unfortunately, the example can be easily modified to achieve a similar

situation for the circumscription case.

Example 8 Let R2 be the set of ^-rules:

bifbna (7.6)

q

Apparently, executing al ={a} in Qo = {b} should behave in a similar way. However, note

that now, action a"triggers" the pertinence of the causal rule condition. Thanks to property

(15), the translation of 7.6 amounts to:

holds(b, t, l) E- holds(b, t, l), holds(a, t, l)

pert(b, p, l) ^ holds(b, t, l), holds(a, t, l)

From al and Qo we include the program facts holds(a, t, l) and holds(b, f, 0). While both

stable models and WFS provide again the same answer (b persists false), both completion and
circumscription lead to an additional model in which b is caused to be true. Notice that, although
in this case postulate P1 is not violated (there is an external intervention due to action a), an
atom is still not self-supported, since holds(b, t, l) is needed in the condition of the rule we used

to derive it.

7.1.3 Nonexistence of successor state

From a causal point of view, self-supportedness does not seem to be very interesting and, in fact,
is one of the main disadvantages of circumscription and Clark's completion techniques, when
applied to pertinence calculus. For this reason, we center the rest of the discussion on stable
models and WFS, although some of the effects we analyze from now on also occur in completion
and circumscription. For instance, in the case of stable models, one of these singular effects is
the absence of successor state, dúe to the absence of stable model for some logic program.

Consider again R2 but using now the initial state Qo ={b}, that is, we include the observation

holds(b, t, 0) instead of holds(b, f, 0). At a first glimpse, this cycle does not seem to lead to any

problem: when b was true, we should be able to execute a"overriding" the value of b. However,

due to the postulates of pertinence, allowing such behavior would reot leave clear whether b

persisted or was caused true (note that, in order to become pertinent, we must assume first that
b persists true). As a result, the corresponding program has no stable model. It is easy to see
that, due to the particular initial state and action execution, we have finally forced a negative

LP cycle in the pertinence of b.
Just as a remark, the answer for this transition in the cases both of completion and circum-

scription is that we obtain a unique model: b is caused true, but becomes self-supported.

The whole problem would disappear if we had, instead:

7.1 Characterizing the effects of causal cycles 93

Example 9 Let R3 be the set of ^-rules:

b if b n a (7.7)

b if a (7.8)

q

In this case, the new rule would make b to be directly pertinent whenever a is performed,
and so, there would be no interference with inertia.

As pointed out by example R2i we may have now a new possible reason for none^ec^ctability
of actions: the nonexistence of model. When R was acyclic, the nonexistence of successor state
was always due to obtaining an inconsistent set of facts, either by assigning different values to
the same fluent or by applying a rule with 1 head. We had a more explicit representation of
impossible action executions. In other words, we could always explain to a programmer why
the action is not executable: either some particular constraint has been violated, or some fluent,
due to some particular rules, is assigned two different values. Once cycles are allowed, the stable
models interpretation (and in fact, the same applies for circumscription and Clark's completion)
may lead to the nonexistence of successor state due to an "ill-defined" construction conflicting
with inertia. Thus, the nonexecutability is somehow hidden and it can be objected that it is
more difficult to be detected. For instance, note that R2 does not contain any 1 head, and that
it only causes b to have one value (t), not the other (f).

Of course, we can consider that the introduction of a cycle like R2 actually had an intentioned
purpose, trying to represent that a is nonexecutable when b was true. But there exist more
reasons to think about it as a wrong formalization. Had the intention been that one, it would
have been far more clear to formulate the rule as:

1 if a after b

since, as we have seen, (b if b n a) behaves in different ways depending on the previous state
or on the presence of other rules. Besides, from the programmer's point of view, if we look for
the explanation for a nonexecutable action and we deal with a large system, we will not know
a priori whether this was due to a constraint we introduced, the assignment of different values
to the same fluent or a cyclic reference, which may be almost hidden, affecting a great number
of rules and fluents. It seems more probable that, in such cases, the occurrence of the cyclic
reference was something unexpected constituting a mistake in our representation, rather than
an intentioned way of expressing nonexecutability.

The orientation followed by WFS is, in fact, closer to this last idea. When Qo ={b} we face
the same problem as in the stable models case: it is not possible neither to assume pertinence
nor persistence of b. However, the result is different: instead of having no model, we obtain
an incomplete WFM where only those atoms actually involved (or affected) in the ill-defined
cycle are left undefined. Thus, while atoms holds(b, t, l), pert(b, p, l) and pert(b, n, l) are left
undefined, the truth of holds(a, t,1) is guaranteed, as well as the falsity of holds(b, f, l) (we
know, at least, for sure, that b cannot become false). From a programmer's point of view, the
well founded model offers a more detailed description of the anomalous cyclic dependence.

7.1.4 Nondeterminism

A very important feature that may appear as a result of causal cycles is the availability of
different successor states for a same transition. In fact, we already obtained nondeterminism

94 Causal cycles

when we studied completion and circumscription for examples R2 and R3. We will see now that

this may also happens for stable models, but not for WFS, which again makes use of undefined

atoms.

Example 10 Let R4 be the set of P-rules:

b if ĉ na (7.9)

c if bna (7.10)

q

The resulting program P(R4) contains, among other, the program rules:

holds(b, t, l) F- holds(c, f, l), holds(a, t, l) (7.11)

pert(b, p, l) ^ holds(c, f, l), holds(a, t, l) (7.12)

holds(c, t, l) ^- holds(b, f, l), ^holds(a, t, l) (7.13)

pert(c, p, 1) F- holds(b, f, l), holds(a, t, l) (7.14)

pert(b, n,1) E- not pert(b, p, l) (7.15)

pert(c, n, l) E- not pert(c, p, l) (7.16)

holds(b, t, 1) E- holds(b, t, 0), pert(b, n, l) (7.17)

holds(b, f, l) E- holds(b, f, 0), pert(b, n, l) (7.18)

holds(c, t, l) F- holds(c, t, 0), pert(c, n, l) (7.19)

holds(c, f, l) ^ holds(c, f, 0), pert(c, n, l) (7.20)

Again, if we execute action a, diíferent effects are obtained depending on the initial state. For
instance, when the initial state is Qo ={b, c}, there is no interference between inertia and causal
rules, since we do not have any reason for assuming b or c false. In fact, the four semantics

coincide in this case: we simply obtain that b and c persist true and this directly disables
both rules. Assume now that at the initial situation, one of the fluents was false, for instance
Qo ={b, ĉ}. We still have no reason for using rule (7.10), and so c may persist false, making
b true and pertinent. Again, the four semantics provide this unique model. However, when

Qo ={b, ĉ}, it is impossible to assume the persistence of both fluents, since this would make
rules (7.9) and (7.10) to be applied and we would get as a result that b and c are pertinent.
However, we can consider each of the two cases separatedly. Preferring first the persistence of any
of the two fluents implies that the other becomes true and pertinent. These two possible models
are obtained in all the cases, excepting WFS. The well founded model for the corresponding
program leaves all the atoms referring to b and c undefined. The explanation for this is that
WFS always provides a unique model (i.e., a deterministic answer) and so, it cannot choose a
preference for the persistence of b nor c.

As happened with the possible use of nonexistence of model to represent nonexecutability,
we can think that the existence of multiple models may be used to represent nondeterministic
systems. In this case, nóndeterminism is a new property we have not provided for the operational
semantics, nor in the shape of causal rules. So, this would be interesting, for it means an increase

in expressivity. However, similar objections may be risen as we did with the nonexistence of
model. A first important problem is that the nondeterministic behavior of causal cycles depends

on the previo^cs sit^cation, as we saw with all the possibilities for R4. This seems to make difficult

?.1 Characterizing the effects of causal cycles 95

the representation of a nondeterministic eífect which does not depend on the previous state. A
second problem is again the possible appearance of a cycle in a large set of rules. Notice that
the cycle may be "well-behaved" in most of the transitions. In fact, it may be the case that,
due to the constraints or the shape of the rules, it never leads to nondeterminism. However,
when several successor states appear, it is quite improbable that it was something intentionally
expected, but seems instead an "uncontrolled case" we had not expected to occur.

7.1.5 Cumulativity and cycle ordering

Another feature that may occur in the presence of cycles is due to non-cumulativity of the stable
models semantics which, as we explained in chapter 2, seems to be related to a unordered (with
respect to the level function) interpretation of cycles. Consider the following example (analogous
to program P5 in chapter 2):

Example 11 Let R5 be the set of 7^-rules:

b if ĉ na (7.21)

c if b n a (7.22)

d if ĉ n a (7.23)

d if dnbna (7.24)

q

If we consider the initial state Qo in which all fluents are false and we perform al ={a},
we obtain a unique stable model in which both b and d become caused true, whereas c persists
false. Notice that there exist two cycles in this domain: one between b and c due to rules (7.21)
and (7.22); and the other for d in the single rule (7.24). In order to solve the cycles, one could
expect that a layering criterion could be applied: as c and b do not depend on d, we could try
to solve first the cycle (7.21)-(7.22), and then proceed to reason for d, which depends on b and
c. The stable models interpretation somehow "violates" this ordering: informally, we first use
cycle (7.24) to conclude that b cannot be true (if so, we get into a problem with d). Then, we
use this constraint to prune one of the two possible stable models that would arise from cycle
(7.21)-(7.22) stand-alone (as we saw with R4). ^

The real problem of this behavior is that the addition of apparently harmless rules may lead
to strange eífects. Thus, since d is obtained from performing a in Qo, one could expect that
adding a rule that expresses this relation explicitly should not vary the obtained result.

Example 12 Let R6 be the union of R5 plus the P-rule:

d if a after b n ĉ n d (7.25)

O

However, we obtain now for the same transition two di,,Q^erent stable models: the one obtained
before plus one in which both c and d are caused true, ^whereas b persists false.

Contrarily to stable models, the WFS interpretation is modular and ordered with respect
to the dependences among fluents. In this way, in order to solve R5, we can first decide cycle
(7.21)-(7.22) that, as in R4, leaves b and c undefined. After that, as d depends on b and c

96 Causal cycles

and it is also involved in a cycle, it is left undefined. In this way, WFS already warns about a
strange construction in the cycles of R5. As for R6, the addition of (7.25) immediately solves

the undefinition for d, but the cycle between b and c remains as before. As a result, we get b

and c undefined, but d becomes now caused true.

7.1.6 Coherence

From the previous examples, it seems that the most reasonable interpretation for cycles is
provided by WFS, since when a cycle is not "solvable," at least the WFM points out which
fluents (and furthermore, which fluent values) originated the problem. However, apart from
the fact of leaving some fluents undefined, which does not have a clear correspondence with
respect to a real domain, WFS may also lead to unnatural results due to the coherence problem

commented in section 2.3.6, unless we use the variation of WFSX.

To illustrate how the coherence problem arises also in ^-rules, consider first the following
example.

Example 13 Let R7 be the set of ^-rules:

b if bna

c if bna

d if cna

If we use initial state Qo ={b, c, d} and perform action al ={a}, the solution for this

example is straightforward, provided that we already studied cycle (7.26) in example R2 for a
similar transition. Thus, b is left undefined and so, since c depends on b via (7.26) and, in its
turn, d on c via rule (7.26), we get that all the fluents become undefined. Now, let us modify
R7 by adding one more rule:

Example 14 Let R8 be the union of R7 plus the ^-rule:

ĉ if a

O

If we consider the same transition, the addition of this rule directly fixes fluent c to be caused

true. As a result, fluent d should also be solved, since we are sure now that rule (7.26) cannot be

applied, because its condition is false. However, as usual WFS does not establish any connection

between atoms c and ĉ, we actually obtain that ĉ is founded but c remains undefined.

This problem is directly solved if we consider WFSX instead of usual WFS. The main feature
introduced by WFSX is the application of coherence: whenever an atom is fixed to be true its
explicit negation is fixed as false. Thus, condition of rule (7.26) becomes false, and d persists

true.
It is interesting to remind that we have shown that WFSX can be characterized as a set

of rewriting rules that includes all those needed for WFS, as presented in [17], plus the two
transformations we called coherence failure and coherence reduction. We recall their definitions:

• Coherence failnreĤ : delete all rules containing the positive literal ^ such that p is a fact.

7.2 Domains with cyclic dependences 97

• Coherence red^cction ^: delete all literals not p such that p is a fact.

Coherence reduction is not actually needed for our logic programs for pertinence: the only default
negations not pert(P, p, I) are in the body of (6.49), but the opposite atom, pert(P, n, I), is not
head of any rule, excepting (6.49) itself.

The problem of WFSX is that it is exclusively thought for boolean atoms, whereas fluents
and actions can be multivalued. In this way, we must actually adapt the WFSX transformation
rules to cope with multiple values. Fortunately, this adaptation is quite straightforward, simply
redefining:

• Coherence fail^cre Ĥ : delete all rules containing holds(p, v, i) (resp. pert(p, v, i)) such
that holds(p, v', i) (resp. pert(p, v', i)) is a program fact, where v^ v'.

7.1.7 Summary

To sum up, we have shown that both the circumscriptive approach and the interpretation based

on completion do not satisfy well-supportedness, allowing that some ef%ct becomes the only

cause for its own occurrence. Only stable models and WFS satisfy well-supportedness. However,

the stable models focusing may provide multiple models or nonexistence of model. We claim

that both situations seem to point out a lack of representativity rather than a way for expressing

nondeterminism or nonexecutability. It must be clearly understood that we are not claiming

that these effects of negative cycles are not interesting for their use in logic programming. In

fact, by an appropriated formulation of cycles with stable models, it is possible to construct

logic programs with a comfortable constraint solving orientation, as shown in section 6.6.2.

The problem here is that these effects arise fror►z the translation of cansal r^cles, and not as an
intended work of representation.

It can be objected that the problem actually relies on the translation P(R) and that perhaps,
with another encoding into stable models, these effects for causal cycles disappear. This could be
possible, but note that: (1) the translation seems perhaps the most natural one, using inference
rules in most cases and leaving the default negation exclusively for minimizing pertinence; and
(2), as a hint of being in the right direction, the encoding P(R) corresponds in a direct way to
the operational semantics when the set of causal rules is acyclic.

Finally, we could think about a radical solution to these problems: consider that these
"strange cycles" never occur when representing a real world domain. However, the next section
presents a pair of domains where cyclic dependences seem to be present in the physical system.

7.2 Domains with cyclic dependences

Thinking about a cyclic causal dependence may seem unnatural. However, we will show, with a
pair of examples, that depending on the level of abstraction we use for representing the problem,
causal cycles may correspond to a natural representation of a real system.

A typical example of a causal cycle is the domain presented in [72, 28] dealing with a pair
of gear wheels.

Example 15 The gear wheels We have a gear mechanism with a pair of wheels. Turning
(resp. stopping) one wheel makes also move (resp. stop) the other one. q

gg Causal cycles

This domain can be represented using the actions ,Aw ={start(1), start(2), stop(1), stop(2)},

fluents .^w ={turn(1), turn(2)} and causal rules Ru,:

turn(1) if start(1) (7.26)

turn(2) if start(2) (7.27)

turn(1) if stop(1) (7.28)

turn(2) if stop(2) (7.29)

turn(1) if turn(2) (7.30)

turn(2) if turn(1) (7.31)

turn(1) if turn(2) (7.32)

turn(2) if turn(1) (7.33)

We assume nonconcurrent actions and that we rule out undesired initial states with the

constraint:

turn(1) - turn(2)

If we interpret the rules (7.26)-(7.33) using stable models, WFS or the circumscriptive encod-
ing, we obtain the machine depicted in figure 7.2, which at a first glimpse seems to capture the
intuitive behavior. However, using Clark's completion, we obtain a different transition relation,
which, in fact, is nondeterministic. Thus, for instance, when both wheels are not turning, if we
perform no action, we obtain two possible successor states: one in which everything remains
unchanged (as happened with the other semantics), plus an additional one in which both wheels
begin turning without external intervention! The explanation of this eífect is again due to the

lack of well-supportedness: the wheels movements mutually justify one each other.

nn:nn

Pnnn: PP ^ I. I nnPn: PP ^
nPnn:PP nnnP^PP

nn:nn

start(1) start(2) stop(1) stop(2) : turn(1) turn(2)

Figure 7.2: Gear wheels example.

Of course, we can still solve the problem inside the Clark's completion interpretation. For
instance, we can consider one of the fluents (e.g., turn(1)) as primary, defining the other fluent

as a simple synonym. In this way, only turn(1) would follow inertia, whereas turn(2) would

simply get its truth value from turn(1), using the constraint: turn(2) - turn(1). However, it

is easy to see that this solution does not reflect the physical organization of the wheels, and we
can always further elaborate the system description so that this equivalence is not valid. To
emphasize the difference between both fluents, consider that we can now couple and uncouple

7.2 Domains with cyclic dependences

the wheels, handling a mechanism represented in figure 7.3. When both wheels are uncoupled,
they can be managed independently, whereas only when they are coupled, the causal cycle is
really ef%ctive.

turn(1) turn(2)

Figure 7.3: A device for coupling gear wheels.

We define ,A^ = Aw U{couple, uncouple} and .^^ _.^w U{coupled}, using, as a first tempta-
tive, the set of causal rules R^:

turn(1) if start(1)

turn(2) if start(2)

turn(1) if stop(1)

turn(2) if stop(2)

coupl ed if coupl e

coupled if uncouple

turn(1) if turn(2) n coupled

turn(2) if turn(1) n coupled ^

turn(1) if turn(2) n coupled

turn(2) if turn(1) n coupled

These rules lead to a problem when coupling the wheels when at least one of them was
turning. For instance, when Qo ={turn(1), turn(2), coupled} and cxl ={couple} we get no stable
model, whereas the WFM leaves all the fluent values undefined (excepting truth for coupled,
which is founded, and falsity for turn(1), which is unfounded). The intuitive explanation is that
if we assume, for instance, that turn(1) persists true, we can apply rule (7.34) and get turn(2)
true and pertinent. But then, rule (7.34) would be applied making turn(1) not persistent, which
is the opposite of what we had assumed. Something similar happens assuming first that turn(2)
persists false.

It seems clear that the problem arises because a lack of formalization: we have not specified
how to couple the wheels at that situation. We may consider, for instance, that both wheels are
caused to stop when coupled, adding the rules:

99

turn(1) if couple (7.34)

turn(2) if couple (7.35)

100 Causal cycles

Another option is to require instead, as action precondition, that the wheels must be stopped

before coupling:

1 if couple after turn(1)

1 if couple after turn(2)

Note that, now, we disqualify action couple by explicitly provoking an inconsistence, rather

than by leading to the nonexistence of stable model. Unfortunately, this solution needs extra
formalization, since we still have problems when coupling two stopped wheels. In such a case, we

could neither assume persistence of any wheel (rules (7.34) and (7.34) would finally make both

turn(1) and turn(2) pertinent) nor pertinence (since it would always depend on itself, being

not well-supported), and so, there is no stable model (and so, the WFM is incomplete). This
additional problem arises because it seems that rules (7.34)-(7.34) should only be applicable due
to some wheel movement and not just by coupling the wheels. A possible solution is, as we did

in the alarm problem, to consider that coupled must not only be true, but also persistent. Thus,

we reinforce the rules by explicitly requiring nonpertinence of coupled:

turn(1) if turn(2) n coupled n!coupled

turn(2) if turn(1) n coupled n!coupled

turn(1) if turn(2) n coupled n!coupled

turn(2) if turn(1) n coupled n!coupled

Many other possible solutions are imaginable. For instance, we could choose to give one of
the wheels more priority than the other so that, in the exact moment in which they are coupled,
the former governs the latter. In any case, the possibility for all these options seems to point
out that the nonexistence of stable model (or the incompleteness of the WFM) for the initial set
of rules was due to a lack in the formalization: we had not clearly specified the system behavior

in all the possible cases.
It is still possible to imagine a solution for this problem using completion. In chapter 8

we will study a generalization of Clark's completion called the Logic of Causal Explanation. A

possible solution relying on this logicl is to define the rule (turn(1) - turn(2)) F- coupled, using

the equivalence as the head of the rule. However, it is easy to think about new elaborations of
the system in which the need of an actual causal cycle becomes evident. For instance, it could
be the case that we are initially said that only one wheel controls the other, but later we must
update the description so that one affects each other. It would not be very reasonable to be
forced to decide, for each new possible causal cycle, whether the old rules must be replaced by

a new rule with an equivalence as head or not.
As a second example of "cyclic scenario," consider the circuit2 in figure 7.4 introduced by

Shanahan in [103]. The circuit contains a lamp, a relay and three switches. The interest of
this circuit is that it shows a vicious cyclic dependence which corresponds to a real domain.
For instance, when we close switch 1 at the state depicted in the figure, the relay must become
activated but this, in its turn, should open switch 2, and so, the cause for activating the relay
is retracted. Something similar happens when closing switch 2 while switch 1 is closed, so that
the action becomes nonexecutable. Of course, one may argue that if we consider intermediate
delays, reducing the level of abstraction, the vicious cycle disappears. In this way, we would

1 Suggested by Lifschitz during a discussion
2This circuit is in fact a modification of one proposed by Thielscher [107] we will study later in chapter 8.

?.2 Domains with cyclic dependences 101

be replacing causal knowledge by a chain of delayed eífects 3. However, the interest of causal
knowledge relies precisely in that it provides a powerfz.^l abstraction that avoids a detailed study of
the real physical interactions. This abstraction is particularly useful for commonsense reasoning,
but paying the price of being unable to cover some unusual configurations, like the one in the
figure. In this case, for instance, although the circuit is perfectly possible in the real world,
from a"causal" point of view, its purpose is not very clear, and seems to correspond to a faulty
design.

^sw(1) sw(2)

-.--«--^-.^1 •

^light

Figure 7.4: Shanahan's relay.

To formalize this domain, we define the set of actions would correspond to:

,^4,. _ {toggle(1), toggle(2), toggle(3)}

the fluents are:

{sw(1), sw(2), sw(3), relay, light}

and the causal rules would be R,.:

sw(N) if toggle(N) after sw(N) (7.36)

sw(N) if toggle(N) after sw(N) (7.37)

light if sw(1) n sw(2) (7,38)

light if sw(1) (7,39)

light if sw(2) (7.40)

relay if sw(1) n sw(2) n sw(3) (7.41)

relay if sw(1) (7.42)

relay if sw(2) (7.43)

relay if sw(3) (7.44)
sw(2) if relay (7.45)

for all N E {1, 2, 3}. When we perform action al ={toggle(1)} after state:

Qo ={sw(1), sw(2), sw(3), light, relay}

3This is idea is in fact very common in some interpretations of causality. For instance, we may cite Sandewall's
transition cascade semantics (98], Pinto's approach [90, 91] or even Thielscher's causal rules [107], although in
this case, the causal transitions are handled at a different level than the state transitions.

102 Causal cycles

we get that the resulting program has not any stable model, whereas the well founded model is
incomplete, leaving all the atoms for sw(2), relay and light undefined. This intuitively points
out that there exist a problem involving these three fluents. Assuming that sw(2) persists true
means that the relay is activated and that in its turn sw(2) gets open, refuting the assumption.
Notice that the well founded model guarantees that sw(1) is made true and pertinent. This is

important, because it allows, at least, to fix which fluent values can be determined without being

affected by the vicious cycle. Thus, we can see how light is left undefined because it depends

on the cycle affecting sw(2), whereas sw(1) can be fixed because it has no causal dependence
on the other fluents.

As happens with stable models, completion and circumscription also lead to the nonexistence

of any selected model. Notice again how the well founded model provides a more detailed

description of the origin of the problem.

Chapter 8

Comparison to other action
approaches

This chapter contains a comparative study with respect to a wide group of action approaches,
including not only the most representative ones, but also some specific solutions which show
interesting features for our purposes. Although not all the presented approaches have been
explicitly named as causal, most of them actually deal with a predicate for expressing change,
and so can be classified as change-based causality, as we discussed in the introduction.

The study will be particularly focused on how inertia and causality are respectively rep-
resented and combined in all these approaches. In fact, most of them have similarities with
pertinence postulates, but do not satisfy them completely. As a result, it is often not possible to
use the change predicate to express accurately that the fluent has persisted or not, since there
is no clear distinction between inertia and causation.

In order to present the original formulationsl, we will indistinctly handle narrative and time-
branching approaches, but this difference is not essential for our purposes. We will use both
letters S or I to denote situations. In most cases, fluents are boolean and the holds predicate
has only two arguments, so that, with respect to our notation:

holds(F, S) - holds(F, t, S)

^holds(F, S) - holds(F, f, S)

Besides, the reification of formulas inside the holds predicate will be sometimes used:

holds(^^, s)

holds(^ n ^i, S)

holds(^ V ^, S)

def

def

def

^holds(^, S)

holds(^, S) n holds(^, S)

holds(^, S) v holds(^, S)

As examples for effect axioms and ramification constraints, we will extract formulas from
two well known already studied scenarios: Yale Shooting and Lin's suitcase. Together with
these two typical domains, we will also handle the account balance example presented in the
introduction (example 2) in order to emphasize the interest of pertinence postulates, helping to
detect which ones are violated by each approach.

1 For coherence sake, we have changed the use of capital letters to denote variables, as in the rest of this thesis.

104 Comparison to other action approaches

8.1 Change as abnormality

The first case of change-based predicate under study is the abnormality predicate, ab, extensively

used in the first formalizations of situation calculus. Although it does not correspond to a real
causal approach, nor is used for dealing with the ramification problem, it is interesting because
it constitutes the root of the first representations of inertia. For instance, in Baker's classical

work [8] (one of the first solutions to the Yale shooting problem) we can find the following

expressions:

^ab(F, A, S) ^(holds(F, do(A, S)) - holds(F, S)) (8•1)

holds(loaded, S) ^ ^holds(alive, do(shoot, S)) (8•2)

which correspond respectively to the universal frame axiom and an example of effect axiom. It
can be easily seen that this formalization does not satisfy postulate P2: sometimes, facts can
be explained both by inertia and by a causal process. For instance, if we shoot a loaded gun

when the turkey is already dead, there is no need to conclude ab(alive, shoot, S) (predicate ab is

minimized). In this way, we can explain the fact ^holds(alive, do(shoot, so)) both as the result

of (8.2) and as the application of (8.1), since alive is not abnormal in this situation.

As we can see, this formalization understands abnormality exclusively as a change of truth

value in a fluent. Of course, for the original aim of this formulation, the actual extent of

predicate ab was not relevant at all. The only interest was focused on the resulting extent of

holds. However, it is interesting to note that, in the initial formulation of the Yale Shooting

scenario [48], the effect axiom is actually represented as:

holds(loaded, S) ^^holds(alive, do(shoot, S)) n ab(alive, shoot, S) (8.3)

which does not eventually añect the extent of holds, but seems an attempt of preserving postulate

P2 and using ab as a"causal" predicate. Under this second formulation, the shot to a dead

turkey would lead to ab(alive, shoot, S) and so only the e,,^`ect a^ior►z would explain the fact

^holds(alive, do(shoot, so)).

8.2 Lin's caused predicate

Lin's approach [65] constituted the first successful solution to the frame and ramification prob-

lems that relied on a minimization technique for a change-based predicate: caused(F, V, S).

Since caused contains the fluent truth value reified, the following two axioms are added:

caused(F, true, S) ^ holds(F, S) (8•4)

caused(F, f alse, S) ^^holds(F, S) (8•5)

The universal frame axiom has the shape2:

^caused(F, true, S) n^caused(F, f alse, S) ^(holds(F, do(A, S)) = holds(F, S)] (8.6)

the effect axioms are expressed as:

holds(up(L), S) ^ caused(up(L), f, do(toggle(L), S)) (8.7)

^holds(up(L), S) ^ caused(up(L), t, do(toggle(L), S)) (8.8)

2For a better comparison, we have omitted the Poss predicate.

8.2 Lin's caused predicate 105

for each lock L E{1, 2}, and finally, as example of ramification rule, we have:

holds(np(1), S) n holds(^cp(2), S) ^ caused(open, t, S) (8.9)

In order to avoid unnatural models, Lin conceived the following minimization policy, based
on filter preferential entailment (minimizing only a part of the theory):

1. Let T' be the result of minimizing ca^csed in the whole theory T e^cepting the ^cniversal
frarr^e a^iorr^.

2. Add to T' the universal frame axiom (8.6).

As we can see, this is exactly the technique we have followed in section 6.4 for circumscribing our
pertinence predicate, pert, and, in fact, this same idea was also applied to other circumscription-
based approaches [47, 103^ .

There exists a strong resemblance between Lin's formulation and pertinence calculus, spe-
cially when using the circumscriptive encoding. It is interesting to see, for instance, how Lin's
caz^sed predicate satisfies some of the pertinence postulates like:

P2) when a fluent value is obtained, it is either due to a causal rule or to inertia, but not both
(the frame axiom (8.6) has as explicit prerequisite that the fluent is not caused)

P3) any change in a fluent value is always due to some causal chain (this corresponds exactly
to the contrapositive reading of (8.6))

P4) cansed does not necessarily mean that the fluent value has changed

The main diíferences are, however:

(a) Unlike ca^csed, the pertinence predicate does not refer to the truth value of a fluent.

(b) Pertinence is also defined for actions, and furthermore, for complex formulas.

(c) In Lin's approach, conditions of causal rules, like (8.9), are just required to be true. They
do not necessarily contain ca^csed atoms (postulates P5 is not satisfied and, as a result,
neither P 1) .

The first difference, (a), means that the inclusion of the fluent value inside the caz^sed
predicate is not really necessary, since pertinence calculus obtains an equivalent eífect without
using that representation. Notice that, although for its logic programming use, we have reified
the pertinence value, V E{p, n}, inside pertinence atoms, we had seen how we may actually
use instead a binary predicate pert(P, V). In any case, pertinence atoms do not refer to the
fluent value at all, being predicate holds exclusively used to that purpose. All this explanation
suggests that pertinence calculus provides a more economic representation, in the sense that we
do not need to repeat the fluent value (which could be nonboolean) both in caused and holds,
and so axioms (8.4) and (8.5) are not necessary any more in pertinence calculus. Furthermore,
we had already seen (6.17) how ca^csed can be defined in terms of pert inside pertinence calculus:

caused(p, v, i)
def

holds(p, v, i) n pert(p, p, i)

Of course, the opposite can also be done, defining pert inside Lin's approach:

pert(F, p, I)
def

caused(F, tr^e, I) V ca^csed(F, f alse, I)

106 Comparison to other action approaches

or, generally:

pert(F, p, I)
def

^V. ca^csed(F, V, I)

for any V E ra^ge(F).
The second diíference (b) is not fundamental, but provides a more comfortable description

of causal rules. The definition of pertinence for actions is particularly interesting because of

handling a narrative approach allowing concurrent actions. Notice that without this feature,

the nonoccurrence of an action a at a situation i would need to be represented as the negation

of all its possible values:

`dV. ^holds(a, V, i)

Thanks to axiom (6.5), we can simply use negative pertinence pert(a, p, i) to point out

nonocurrence of the action. Lin's formulation was specifically thought for situation calculus,
and so, it would need to be carefully adapted for concurrent actions3.

To see the utility of pertinence of actions, consider the typical example (from [9]) for testing

a appropriated representation of eífects from concurrent actions:

Example 16 ('The soup bowl) Whenever Mary tries to lift the bowl with one hand, she spills

the soup. When she nses both hands, she does not spill the sonp. We know that the sonp is not

spilled initially.

On the one hand, in order to represent the domain in a modular way, we should avoid referring
to all the performed actions in any causal rule. On the other hand, we need to represent that a
given action has not occurred: for example, when we lift the right side bz^t not the left side, or

vice versa. Assuming we are just interested in actions ,A ={li f t(le f t), lif t(right)} and fluents

,F ={spilled}, this domain can be represented using the ^-language rules:

spilled if li f t(lef t) n!li f t(right)

spilled if li f t(right) n!li f t(le f t)

The most important part of diíference (b) is the definition of pertinence for complex formulas,

not only for fluents or actions. As we had. already seen when studying L2 logic, this provides
a very concise high level representation which, in most cases, allows expressing causal rules

without explicitly referring to pert predicate (or its abbreviation `!'). In fact, this feature is

crucial for an adequate implementation of postulate P5, which says that causal rules must be

applicable if only if their conditions (which are complex formulas) are pertinent.

Last, but not least, dif%rence (c) is in fact the most fundamental one, since it means that
Lin's approach does not necessarily satisfy P5, that is, in the typical encoding of a ramification
rule, the condition does not refer to ca^csed predicate, but depends exclusively on holds. This

has an advantage for implementation: in each formula of the circumscribed portion of the
theory, all the references to caused are either exclusively negative (it is iñ the antecedents of

axioms (8.4) and (8.5)) or exclusively positive (it is in the consequents of effect axioms and
ramification rules). Then, by applying standard results in circumscription4 it is always possible

to circumscribe cansed by using Clark's completion.

3For studies about concurrent actions inside situation calculus, see for instance [9, 80].

4See [58], propositions 3.1.1 and 3.3.1

8.2 Lin's caused predicate 107

As a direct éxample of difference (c), consider the ramification rule (8.9) provided in Lin's
original work. It is easy to see that its condition just relies on fluent values (it only contains
holds atoms). As a result of this violation of P5, there may exist situations in which postulate
P 1 does not apply. For instance, if both switches are up, each time we execute an action wait
without effects, we would have that the suitcase would be caused to be open, but not as a result
of any direct or indirect eífect of the action5 (violation of P 1) . To avoid this, we should make

the rule applicable not only when both locks are up, bút also when such a conjunction has been
caused. Notice how we need to represent that a conjunction (not a single atom) has been caused.
In this sense, it is important to observe that the representation of:

"holds(up(1), S) n holds(up(2), S) is caused"

cannot be simply done by requiring:

caused(up(1), t, S) n caused(up(2), t, S) (8.10)

as one could be tempted to use in a first attempt, since this would have a completely different
meaning (as observed by Turner in [110], formula (5.76) page 180) forcing always to move up
both switches simultaneously in order to open the suitcase. Instead, the suitcase is actually
caused open whenever both locks are up and, either lock l, or lock 2 or both have been caused
to be up. That is, we should replace (8.9) by:

holds(up(1), S) n holds(up(2), S) n(caused(up(1), t, S) V caused(up(2), t, S)) ^

^ caused(open, t, S) (8.11)

which is equivalent to the conjunction of (6.20) and (6.21) we obtained as translation of the
^-rule:

open if up(1) n up(2)

Thus, the definition of pertinence of a conjunction makes the representation easier and more
comfortable, while preserving postulates P1 and P5.

To deepen in the interest of postulate P5, let us analyze now the account balance example
using Lin's causal expressions. If we used the rule:

holds(balance(X), S) n holds(transac(Y), do(A, S)) ^ caused(balance(X + Y), t, do(A, S))

to compute the addition of valuess, the application of a waiting action would cause the last
(persisting) value of transac to be improperly added to balance. The solution to this problem
is simply to formulate the rule as:

holds(balance(X), S) n caused(transac(Y), t, do(A, S)) ^ caused(balance(X + Y), t, do(A, S))

so that the value of transac is taken into account only if it has been caused right now. The
problem is that, as we are not said how transac is computed, this solution would not work ^cnless
we can guarantee that caused(transac(Y), t, do(A, S)), ín its turn, is only true when there exist

SIt could be objected that this behavior may point out the execution of a so-called "natural" action or delayed
effect. However, it is clear that this scenario is not actually related to this feature.

sFor simplicity sake, we have omitted the necessary additional axioms to avoid simultaneous different values
for fluents transac and balance.

108 Comparison to other action approaches

some causal propagation from the performed actions. In other words, the pertinence postulates
must be satisfied by all the involved causal rules.

It must be observed that this problem (under the point of view of pertinence postulates)
of Lin's formulation is mainly due to its freedom for expressing causal rules, rather than on a

limitation on their shape. This is because the general shape of a causal rule was actually defined

in [65] as a formula like:

^(holds, S) n caused(Fl, Vl, S) n••• n caused(Fn, Vn, S) ^ caused(F, V, S) (8.12)

where caused atoms can be also used in the condition. As an example for using the general

shape, Lin proposes adding to the suitcase scenario a new fluent, down, which is the antonym

of up, so that one of them is caused to be true iff the other is caused to be false, and vice versa:

caused(up(L), t, S) ^ caused(down(L), f, S) (8.13)

caused(up(L), f, S) ^ caused(down(L), t, S) (8.14)

caused(down(L), t, S) ^ caused(up(L), f, S) (8.15)

caused(down(L), f, S) ^ caused(up(L), t, S) (8.16)

for each lock L E{1, 2}.
This general shape of rule has the disadvantage that, when cyclic references for caused atoms

occur, it prevents the use of Clark's completion 7 . Besides, it is difficult to find a natural reason
why this example must be formulated as (8.13)-(8.16) instead of:

holds(up(L), S) ^^ caused(down(L), f, S) (8.17)

^holds(up(L), S) ^ caused(down(L), t, S) (8.18)

holds(down(L), S) ^ caused(up(L), f, S) (8.19)

^holds(down(L)S) ^ caused(up(L), t, S) (8.20)

which follows the same "pattern" as the ramification rule (8.9) we had before. The only ex-
planation for the change in representation seems to be that this encoding would unadequatedly
aífect the minimization for up(L). To see this, consider the initial state:

^holds(up(1), so) n^holds(up(2), so) n^holds(open, so)

trying to predict what happens in situation sl = do(toggle(1), so) (we toggle the first lock).

It is clear that caused(up(1), t, sl) becomes true as a direct eífect of toggle(1), and so we get

holds(up(1), sl) and caused(down(1), f, sl) by respectively applying (8.4) and (8.17). However,
we actually get several selected models depending on the truth values for the second lock. One

of these models is obtained by assuming ^holds(up(2), sl) and holds(down(2), sl) when fixing

the extension of holds. These assumptions, together with (8.18) and (8.19), respectively imply

caused(down(2), t, sl) and caused(up(2), f, sl), and so, both fluents are not affected by the

7In Lin's work it was asserted that, at least, the theory is still definite for caused, and so, its circumscription

leads to a unique minimal model. This is not accurately true, since we actually get a unique minimal model per

valid combination of holds predicate (remember we are fixing the extent of holds). As a result, Lin's approach

leads also to nondeterminism and, in fact, is not well-supported. For example, when representing the gear wheels

example (without using caused in the rule conditions) we get two minimal models, independently of the initial

state: one in which both wheels are caused to turn one each other, and one in which they are caused not to turn

one each other.

8.3 Occlusion 109

afterwards application of the frame axiom. As a result, we get a model in which the second
switch is moved up without any evident reason.

As explained in [65], this problem of affecting the minimization for the original fluents
up(1), up(2) does not occur when formulas (8.13)-(8.16) are used instead. So, the reason in
this case for using caused in the condition seems to be motivated by a purely technical purpose
(to avoid undesired effects with circumscription) rather than by any particular representational
aspect. As a result, there is no homogeneous method establishing when the condition of a causal
rule must depend on caused. The process of adding new rules becomes in this way a nonmodular
task: we must always decide whether the new rules may aífect or not to the minimization for
the previously defined fluents.

8.3 Occlusion

Among the so-called standard approaches for Reasoning about Actions, one of the closest to
pertinence is perhaps Sandewall's Occlusiore [97], specially in its use for solving the ramification
problem inside Temporal Action Logic (TAL) [47, 33]. The essential idea of occlusion is to allow
handling elementary expressions like:

Xf

read "occluded f", where f is some fluent. In Sandewall's words ([97], pages 234, 235) :

"It is intended that X f shall be true at time t iff there is no preference for the
fluent f to retain its value in the transition from Bt to t. ... The occlusion predicate
can be seen as a special-purpose abnormality predicate, where the reason for the
abnormality has been made precise. Notice that occlusion does not irrcply change; it
merely allows it."

' This last sentence is nothing else but postulate P4 expressed for occlusion. In fact, occlusion
satisfies postulates P1 through P4, being by this reason the closest approach to pertinence.
The main difference, however, is still centered on postulate P5, which is not fully satisfied and
may imply obtaining less occluded fluents than those actually needed from the point of view
of pertinence. To illustrate this, let us center the analysis in TAL formulas for dealing with
indirect effects. A possible representation of the suitcase scenario using TAL surface language,
called G(SD), could be:

[I, I + 1] toggle(L) ^ ([I]up(L) ^ [I + 1]^up(L)) (8.21)

[I, I + 1] toggle(L) ^ ([I]^up(L) ^ [I + 1]up(L)) (8.22)

dI. [I] ((up(1) n up(2)) » [I]open) (8.23)

These formulas are unfolded into a basic formalism which uses just two predicates 8: holds(F, I)
and occlude(F, I). Thus, the expression X F will be true at time I iíi occlude(F, I) is satisfied.
Note that the predicate representation is also closer to pertinence calculus than that of Lin's
caused predicate, since occlusion does not refer to the fluent truth value. In this way, we can
establish the straightforward correspondence:

occlude(F, I) - pert(F, p, I)

BFor comparison sake, we have reversed the original ordering of the predicate arguments.

110 Comparison to other action approaches

or, when pertinence value is not reified, simply as:

occlude(F, I) - pert(F, I)

The expressions for direct effects, like (8.21) and (8.22) are actually understood in G(SD)

as macros, so that they are previously instantiated with each action occurrence explicitly ob-

served. Without entering into detail about the translation, the most interesting part is the final

representation of (8.23), which leads to the pair of formulas:

holds(up(1) n up(2), I) ^ holds(open, I) (8.24)

holds(up(1) n up(2), I+ 1) n^holds(up(1) n up(2), I) ^ occlude(open, I+ 1) (8.25)

Unfolding the formula reification inside holds, we get:

holds(up(1), I) n holds(up(2), I) ^ holds(open, I) (8.26)

holds(up(1), I+ 1) n holds(up(2), I+ 1) n ^(holds(up(1), I) n holds(up(2), I)) ^

occlude(open, I + 1) (8.27)

Together with this rule representation, the semantics consists in a filter preferential en-

tailment, circumscribing the occlude atoms (while fixing holds) and conjoining afterwards the

so-called Nochange A^iorrc:

holds(F, I) ® holds(F, I+ 1) ^ occlude(F, I+ 1) (8.28)

(with ® standing for exclusive disjunction), which is nothing else but the contraposition of the

usual Universal ^ame Axiom:

^occlude(F, I+ 1) ^[holds(F, I) - holds(F, I+ 1)] (8.29)

Thus, like the pertinence calculus circumscriptive encoding, the minimization method coincides
again with Lin's technique, in which it seems to be inspired, although formulas are actually more
similar to pertinence calculus, due to the already explained correspondence between predicates

pert and occlude.
Back to the representation of ramification rules, it is easy to see that (8.24) and (8.25) can

be reexpressed altogether as the single formula:

holds(up(i), I+ i) n holds(up(2), I+ i) n^(holds(up(1), I) n holds(up(2), I)) ^

holds(open, I+ 1) n occlude(open, I+ 1) (8.30)

which is very similar to the final representation of this same rule in pertinence calculus (6.19).

Apart from the use of occlude versus pert, we directly observe that here, occlude is only present

in the consequent, and not in the antecedent (violation of postulate P5). However, the condition

is slightly more elaborated than Lin's rules, since it is not enough with requiring both switches

to be up, but also that at least one of them was down before. The general pattern is, in fact,
that the whole formula used as rule condition must have experimented a change of truth value,

passing from false in I to true in I+ 1. In this way, we somehow replace the idea of requiring

pertinence of up(1) n up(2) by the idea of requiring its change of truth value. ^

8.4 Event Calculus 111

Some advantages, with respect to Lin's notation, are obtained from this formulation. The
first and perhaps most interesting one is that, contrarily to Lin's approach, postulate P1 is
always satisfied. For example, consider the wait action with an open suitcase, while both
locks are up. It is easy to see that, since the formula u^(1) n úp(2) rerrcains true from the
previous situation to the next one, there is no need to consider ópen to be occluded, and so,
it persists unaf%cted. Generally speaking, whenever we obtain a fact occlude(F, I) it will be
always due to some causal chain directly or indirectly initiated by an action execution, not by
the mere application of inertia. A second advantage, which has more to do with the technical
implementation rather with a real representation subject, is that, as occl^cde only occurs in the
consequents, the circumscription can always be computed by using Clark's completion.

Although, as we have seen, occlusion avoids forcing unnecessary occluded atoms when just
inertia has been applied, we will see next that it is too weak for other examples, falling short in
the set of fluents that should be actually caused. This is because postulate P5 is just applied
in its "if' direction, but not in the "only if." In this way, requiring the change of truth value

will always imply that some fluent has become occluded/pertinent (postulate P3 is guaranteed
by axiom (8.28)) but there may be cases in which the condition is pertinent whereas its value
has not changed (postulate P4). In such cases, the causal rule is not applied, when it should
actually be taken into account.

As an example of this behavior, consider again the account balance scenario and assume that
we are given two consecutive transactions by the same amount. It is clear that both nurrzbers
must be taken into account to compute the average, and that this situation is dif%rent from
the one in which the last transaction has just persisted. The occlusion rules for computing the
balance would finally look like:

holds(transac(Y), I+ 1) n ^holds(transac(Y), I) n holds(balance(X), I) ^

holds(balance(X + Y, I+ 1) n occl^cde(balance(X + Y), I) (8.31)

which it is easy to see that would not be applicable when the value of transac is caused to be the
same one as before. So, the balance would simply persist, while it should have been updated.

Finally, another interesting similarity between occlusion and pertinence is that the former
is also defined for complex formulas, although for a different purpose. The occlusion of a
propositional fluent formula corresponds to the occlusion of all the fluents occurring in it. Notice
how this is exactly the dual concept of pertinence: at least one of the involved fluents is ^required
to be pertinent. The reason for this difference seems to rely on the way in which both definitions
are used. On the one hand, occlusion of a complex formula is thought for forcing the conseqnent
of a causal rule to become an exception to inertia. In this way, all the occurring fluents are
occluded, when perhaps it could be enough with occluding just some of them in order to allow the
change of truth value of the whole formula. On the other hand, pertinence of a complex formula
is mainly thought for an easier representation of the antecedent of a causal rule, precisely where
occlusion is never used in TAL. As we saw in the previous section (formula (8.10)), requiring the
pertinence of all the fluents occurring in the rule condition would not capture the appropriated
meaning for pertinence postulates.

8.4 Event Calculus

The Event Calculus [53] is another example of well known standard action approach which,
although not explicitly labeled as causal, relies on the use of change-oriented predicates. As

112 . Comparison to other action approaches

we did with occlusion, we will particularly focus the study on the solution to the ramification
problem which, in fact, has been first studied in a recent work by Shanahan [103]. That solution
is very interesting because it consists in defining additional special-purpose noninertial fluents,

that is, adding new evercts, to point out when an effect must be considered to be "new" . In other

words, thinking about the account balance example, Shanahan's proposal informally corresponds

to the already explained solution of defining a special fluent new_transac.

As explained in that paper, the Event Calculus notation used in [103] was directly obtained

from chapter 16 in [101]. Event Calculus has the particularity of handling events instead of

actions. Informally speaking, we can see an event as a noninertial fluent whose value is under-

stood as momentary. When the value of an event is directly specified as a fact it behaves as

an usual action. However, we can also reason about events, adding conditions for deriving their

values. In this way, they may behave as "derived actions." The basic Event Calculus formalism

is more complicated than Lin's or occlusion solutions, using a greater amount of formulas and
predicates. The reason for this is that formulas seem to be oriented to an interval based repre-

sentation, rather than exclusively relying on situation indices. We will first present exactly the

original notation and proceed later to an equivalent simplification for comparison purposes.

8.4.1 Original formulation

The basic predicates in an Event Calculus representation are:

• initiates (A, F, I) (respectively terminates (A, F, I)) to express that fluent F starts (re-

spectively ceases) to hold after action A at time I,

• releases(A, F, I) means fíuent F is not subject to inertia after A at I,

• initiall yP (F) (resp. initiall y^, (I)) means that fluent F holds (resp. does not hold) from

time 0,

• clipped(Il, F, I2) (resp. declipped(Il, F, I2)) means that fluent F is not subject (resp. is

subject) to inertia along interval [Il, I2],

• happens(A, I) to express that action A occurs at time I,

• and finally, holds(F, I) with the standard meaning.

These predicates are used to represent eífect axioms E(using initiates, terminates and

releases) plus another set of formulas 0 containing the sequence of actions (using happens) and

the initial state (using intiall yP and initiall yN) . All these formulas are combined with a set of

general axioms in order to derive the resulting set of holds(F, I) atoms:

initiallyP(F) n^clipped(0, F, I) ^ holds(F, I) (8.32)

initiallyN(F) n^declipped(0, F, I) ^ ^holds(F, I) (8.33)

happens(A, Il) n initiates(A, F, Il) n Il < I2 n^clipped(Il, F, I2) ^ holds(F, I2) (8.34)

happens(A, Il) n terminates(A, F, Il) n Il < I2 n^declipped(Il, F, I2) ^^holds(F, I2) (8.35)

clipped(Il, F, I3) -

^A, I2. (happens(A, I2) n Il < IZ n I2 < I3 n(terminates(A, F, I2) V releases(A, F, I2)))
(8.36)

8.4 Event Calculus 113

declipped(Il, F, I3) -

^A, I2. (happens(A, I2) n Il < I2 n I2 < I3 n(initiates(A, F, I2) V releases(A, F, I2))) (8.37)

Let us call EC to this set of axioms (8.32)-(8.37) and UNA to the unique names axioms for
fluents and actions. The final theory is circumscribed as follows:

CIRC[E; initiates, terminates, releases] n CIRC[0; happens] n EC n UNA

The solution to ramification problem presented in [103] requires additional formulation.
Besides eífect axioms (used to represent direct effects of actions), new causal constraints of the
shape:

initiating ^ causes ^

are introduced, where ^ is any propositional combination of fluent names and ^ is a fluent name
or its negation. These causal constraints are later understood as abbreviations of formulas using
the following four additional predicates:

• started(F, I) (resp. stopped(F, I)) meaning that either F holds (resp. does not hold) at I
or an event occurs at I that initiates (resp. terminates) F,

• initiated(F, I) (resp. terminated(F, I)) that means that F has been started (resp. stopped)
at I but no event occurs at I that terminates (resp. initiates) F.

The meanings of these predicates become perhaps clearer by looking at the new general
axioms: ^

initiated(F, I) - started(F, I) n^^A. (happens(A, I) n terminates(A, F, I)) (8.38)
terminated(F, I) - stopped(F, I) n^^A. (happens(A, I) n initiates(A, F, I)) (8.39)

Then, each causal constraint like:

initiating ^ causes F

is simply translated as a pair of formulas:

^' n started(F, I) ^ happens(A', I)

terminates (A', F, I)

where A' is a new action symbol and ^' is the result of replacing in ^(expressed in a normal form)
positive fluent literals F by initiated(F, I) and negative fluent literals ^F by terminated(F, I).
Analogously, a constraint like:

initiating ^ causes ^F

is translated as:

¢' n stopped(F, I) ^ happens(A', I)

initiates(A', F, I)

114 Comparison to other action approaches

As an example, Lin's suitcase would be represented as follows. The direct eífects are simply
expressed as:

^holds(^cp(L), I) ^ initiates(toggle(L), I)

holds(up(L), I) ^ terminates(toggle(1), I)

for any lock number L, whereas the constraint:

initiating up(1) n z^p(2) causes open

becomes the pair of formulas:

initiated(^cp(1), I) n initiated(^cp(2), I) n started(open, I) ^ happens(got_open, I)

initiates (got_open, open, I)

8.4.2 Adapting the notation

As we can see, this formulation of Event Calculus relies on a great amount of intermediate

predicates that, in many cases, are simple definitions of elaborated formulas, and so, can be
replaced by them. Besides, the notation is sometimes redundant because of using different

predicate names for each truth value. Finally, the frame axioms have a diíferent shape since they
do not seem to be oriented to a transition-based system, but they rely on interval definitions

instead. To simplify the comparison, we present some slight modifications that will help in

emphasizing the actual main differences with respect to pertinence calculus and, in moreover,

to the rest of approaches.
As a first change, we will only rely on three different predicates:

1. happens (A, I), which maintains its previous shape.

2. holds(F, V, I), so that we reify the truth value for the fluent (we assume the inclusion of

axioms (6.1) and (6.2)).

3. set(A, F, V, I), that replaces both initiates and terminates also by reifying the fluent truth

value

Besides, we replace:

initiallyp(F)
def holds(F, t, 0) (8.40)

initiallynr(F)
def

holds(F, f, 0) (8.41)

We will also omit predicate releases since we are not interested in fluents that may become

non-inertial along the narrative. If we apply these notational changes, it is easy to see that the

axioms (8.32)-(8.37) can be expressed more compactly as:

holds(F, V, 0)n

^^A, I2i V'. (0 < I2 n IZ < I3 n V^ V' n happens(A, I2) n set(A, F, V', I2)) ^

holds(F, V, I3) (8.42)

8.4 Event Calculus 115

happens(B, Il) n set(B, F, V, Il)n

^^A, I2i V'. (Il < I2 n I2 < I3 n V^ V' n happens(A, I2) n set(A, F, V', I2)) ^

, holds(F, V, I3) (8.43)

where we have simply replaced clipped and declipped by their definitions. After this change, it
is easy to see that the only predicate to be minimized is set, while maintaining fixed happens
and holds, and requiring (8.42) and (8.43) outside the minimization:

CIRC[E; set] n CIRC[0; happens] n(8.42) n(8.43) n UNA

The difference in the formulation of frame axioms (8.42) and (8.43) with respect to the ones

we have seen until now -(UFR), (8.1), (8.6) or (8.29) - is something more than a simple change
in notation: the Event Calculus formulas have the advantage of being applicable to non-discrete
time. In fact, we could also reformulate (UFR) in pertinence calculus to adopt a similar fashion,
so that we could use real numbers for situations in the narrative:

holds(F, V, Il) n dI2. (Il G I2 n I2 < I3 n^pert(F, I2)) ^ holds(F, V, I3)

For comparison sake, however, we will do the opposite, that is, reformulate the Event Calculus
frame axioms (for the case of integer time) to obtain an equivalent shape closer to the narrative
approaches we have seen so far:

Theorem 11 If we handle discrete time, the conjunction (8.42) n(8.43) is equivalent to the
conjunction of.•

^^A, V'. (V ^ V' n happens(A, I) n set(A, F, V^, I)) ^

(holds(F, V, I) = holds(F, V, I+ 1)) (8.44)

^A. (happens(A, I) n set(A, F, V, I)) ^ holds(F, V, I+ 1) (8.45)

Proof
(See appendix A). q

Note how (8.44) is more similar now to the universal frame axioms seen so far, whereas (8.45)
can be compared to Lin's axioms (8.4) and (8.5). Besides, we can also rephrase ramification
rules to express them in terms of holds, happens and set. For instance, (8.40)-(8.40) would
correspond to:

holds(up(1), t, l) V^A. (happens(A, I) n set(A, up(1), t, I)) n

^^A. (happens(A, I) n set(A, up(1), f, I)) n

holds(up(2), t, I) V^A. (happens(A, I) n set(A, up(2), t, I)) n

^^A(happens(A, I) n set(A, up(2), f, I)) n

holds(open, f, I) V^A. (happens(A, I) n set(A, open, f, I)) ^ happens(got_open, I)

(8.46)

116 Comparison to other action approaches

set(got_open, open, t, I) (8.47)

In words, we require for each lock that it is either up or about to be set up, but not about to

be set down. Similarly, we require that open was false or about to be set false. When all these

conditions are true, we finally force the special event got_open to occur, which, due to (8.47),

finally sets the value of open to true.

8.4.3 Relation to pertinence

An important observation is that predicate set, which plays the role of pert, occluded, or caused,

actually contains more information than the all these predicates. While we had pert(F, I) and

occlude(F, I), Lin's caused(F, V, I) included the reified fluent value and finally set(A, F, V, I)

also includes the performed action. F^.irthermore, we additionally need to refer to the action

occurrence happens(A, I). In this way, predicate set just points out the possibility of setting

the value, but this possibility is not finally established until the action actually occurs. This
notation seems, at a first sight, not very comfortable when we want to deal with indirect effects,
since the direct reference to the action is precisely what we want to avoid in order to solve the
ramification problem. Note how, in fact, in the Event Calculus formulas (both the original and

the adapted ones) action names are in most cases quantified: we do not have a real interest in

the particular action that sets the fluent value!
In sight of this feature, it would be easy to include one more notational change, that would

make closer the Event Calculus formulation to Lin's approach, for instance. Consider the defi-

nition of a predicate caused(F, V, I) as follows:

caused(F, V, I)
def

^A. (happens(A, I) n set(A, F, V, I))

This predicate is identical to Lin's caused (excepting that its eífects for holds will be placed

one situation after: I+ 1). Then, axioms (8.44) and (8.45) respectively become:

^^V^. (V ^ V^ n caused(F, V^, I)) ^ (holds(F, V, I) - holds(F, V, I+ 1))

caused(A, V, I) ^ holds(F, V, I+ 1)

which correspond exactly to Lin's axiomatization, excepting for the delay of one situation.
As for the ramification rule, notice that the actual purpose of defining the special action

got_open is exclusively due to obtain at least some action (regardless its name) that both occurs
and sets open to be true. That is, the consequent of the ramification rule could simply be:

^A. (happens(A, I) n set(A, open, t, I))

but this is corresponds to caused(open, t, I). So the final shape of the rule could simply be:

(holds(up(1), t, I) V caused(up(1), t, I)) n

^caused(up(1), f, I) n

(holds(up(2), t, I) V caused(up(2), t, I)) n

^caused(up(2), f, I) n

(holds(open, f, I) V caused(open, f, I)]) ^ caused(open, t, I) (8.48)

which is now much more familiar with respect to the notation we have followed. Looking at this
formula, it could be thought that perhaps postulate P5 is satisfied, since the caused predicate is

8.5 Inductive causation 11?

present in the rule antecedent. Unfortunately, the condition can be made true without requiring
any caused atom to be true, just relying on values for holds. Besides, a change of value for the
fluent in the consequent is required (open is required to be false before applying the rule)

Let us consider some examples of transitions. For instance, waiting on an just opened suitcase
leads to the correct result: all the fluents persist and no caused atom is made true. This is
because, after applying the waiting action, open was not false, as required in the antecedent
(8.48). In a similar way, if we had that open was true, up(1) fálse and up(2) true, and we
perform toggle(1), open persists true. This is a difference w.r.t. occlusion or pertinence that, in
both cases, lead to open caused true for this transition.

As for the account balance example, we would formulate the ramification rule as:

holds(balance(X), t, I) n

(holds(transac(Y), t, I) V caused(transac(Y), t, I)) n

^caused(transac(Y), f, I) n

(holds(balance(X -^ Y), f, I) V caused(balance(X + Y), f, I)]) ^ caused(balance(X + Y), t, I)

that is, under the precondition that fluent balance had value X, if transac has value Y or is
about to get value Y (but not about to get another value), and we have that balance has not or
is not about to get a difFerent value from X+ Y then balance gets the value X+ Y. It can be
seen that when transac is not caused, that is, it has persisted (performing a waiting action, for
instance), the rule is applicable. In this way, we would incorrectly "take into account" as many
values in the balance as elapsed situations.

8.5 Inductive causation

Like all the previous approaches, Denecker et al's work [28], also uses a change predicate (called
caus in this case) to represent causal rules, but has the interest of analyzing diíferent options
for the nonmonotonic technique to be applied for this fixed representation. This is in fact the
methodology we have followed in this thesis: separating the representation of change itself (in
our case, using the idea of pertinence) from the nonmonotonic inference technique to be applied
to that representation. In other words, [28] studies a mixed approach which combines, at dif-
ferent levels, both orientations to causality: the change-based representation and the inferential
approach.

The inference techniques mainly studied in [28] are completion and inductive definitions
(which actually correspond to well-founded semantics), although stable models are also briefly
commented. Besides, the comparison is focused on the behavior for causal cycles. In fact,
great part of the discussion about cycles done in this thesis in inspired by Denecker et al's
work, and similar conclusions are reached. For instance, as we also observed with pertinence
calculus, completion has the problem of not being well supported. Similarly, their work talks
about a negative self-supportedness to describe the eífect of applying stable models semantics.
As happened with pertinence calculus, the stable models interpretation for causal rules still has
the problem of leading to nondeterminism, which is also interpreted as an unintended result,
rather than a way of represeriting causal uncertainty:

"nondeterminism should not arise due to tricky interactions of deterministic rules,
but should be modeled explicitly when intended." ([28], section 5.2, page 21)

118 Comparison to other action approaches

Despite of this closeness, both in the methodology and in the results of analysis for cycles,

some important differences remain. On the one hand, the inductive definition for causation

corresponds to well founded semantics, but nothing is said in [28] about the coherence problem.
Thus, some examples (like example 13) would lead to more undefined atoms than actually
needed. On the other hand, which is more important, the representation of change and causation
does not completely fulfill the pertinence postulates, as happened with the other change-oriented
approaches, although an interesting construction is defined which resembles a lot to the definition

of pertinence for a complex formula. We will particularly focus in this section on these differences

in the representation of change with respect to pertinence postulates.
Denecker et al's approach is transition oriented, exclusively dealing with two consecutive

situations, let us call them I-1 and I. Given any fluent literal L (that is, a fluent name or its

negation), the notation in [28] relies on three basic constructions:

1. caus(L) to express that L becomes caused in the successor situation I

2. holds(L) to represent that L is true in the initial situation I-1

3. init(L) which is used as a shorthand notation for holds(^L) n caused(L)

For comparison sake, we could bear in mind the following correspondences:

caus(F)
def

caused(F, t, I)

caus(^F)
def

caused(F, f, I)

holds(F)
def holds(F, t, I-1)

holds(^F)
def holds(F, f, I-1)

A causal (ramification) rule is represented as an expression like:

initiating ^ causes L if ^

where phi and psi are propositional combinations of fluent symbols and L is a fluent literal.

When ^(the precondition) is trivially true, then ^i condition is omitted. For instance, the

ramification rule for Lin's suitcase has the shape:

initiating up(1) n up(2) causes open (8.49)

This rule is also represented as:

caus(open) F- init(up(1) n up(2))

where, as we can see, init is applied to a complex formulas. The general eífect of this will be
commented later. By now, we just focus on the final unfolding of (8.49) that consists of the
implications:

caus(open) F- init(up(1)) n holds(up(2)) n^init(^up(2))

caus(open) F-- init(up(2)) n holds(up(1)) n^init(^up(1))

caus(open) F-- init(up(1)) n init(up(2))

Since init(up(L))
def

caus(up(L)) n holds(^up(L)), we may first notice that postulate P5

is satisfied in its "if' direction: the antecedents require that some lock must have been caused,
in order to reach the desired position. As a result, postulate P 1 also holds which, in fact, is

explicitly rephrased in Denecker et al's paper:

8.5 Inductive causation 119

". .. an effect is never triggered by the absence of other ef%cts alone, e.g. the
suitcase will not be open just because nothing happens (which would be a serious
violation of inertia" ([28], section 5.3, page 24).

It is easy to see that, once we have just opened the suitcase, performing a wait action does not
make true any init(up(L)) for any lock, and so, no rule would be applied to obtain caus(open).
The suitcase would remain open, but as a result of inertia. In this sense, the meaning of
caus(open) would fully coincide with the intended meaning for pertinence.

However, as happened with occlusion in TAL, the conditions are excessively strong, since
they require not only that some fluent in the condition must have been caused, but also that
it has experimented an actual change of value (as explicitly stated in the definition of init). In
this way, this approach does not satisfy the "only if' direction of postulate P5.

To understand the problem consider, as always, the account balance example:

initiating transac(Y) causes balance(X + Y) if holds(balance(Y))

assuming we have included constraints to avoid multiple simultaneous values for transac and
balance. This rule is translated as:

caus(balance(X -I- Y)) ^ holds(balance(X)) n caus(transac(Y)) n holds(^transac(Y))

which is only dif£ers with respect to the pertinence calculus version in that conditions have been
strengthened with holds(^transac(Y)). In this way, we not only require causation of transac,
but we simultaneously force a real change of value in transac(Y) with respect to its previous
one, disabling the possibility of two repeated values that are consecutively caused. In other
words, as a piece of example, the balance of the sequence of transactions 50, 50, 50, 30 would be
80.

8.5.1 Initiation vs. pertinence of a formula

Although, as we have seen, causal rules in [28] do not follow exactly the pertinence postulates
due to an excessive strengthening of rule conditions, there exists however a very interesting
feature of [28] which is, to the best of our knowledge, the closest concept to our definition of
pertinence of a formula that can be found in the literature. We are, of course, talking about
the initiation of corraplex for^nulas 9. Essentially, this feature explains how predicate init can be
applied to a reified formula by a series of transformation steps very similar to the ones followed
in L2: (3.13)-(3.23).

The original definitions rely on the concept of supporting set for a complex formula ^ which
is equivalent to the idea of (consistent) three-valued model for ^. For instance, considering three
fluents {up(1), up(2), open}, the formula up(1) n up(2) has three supporting sets:

So = {up(1), up(2)}

Sl = {up(1), up(2), open}

S2 = {up(1), up(2), ^open}

Clearly, a formula will be true iíf all the literals in (at least) one of its supporting sets are true.
Using this idea, the initiation of a formula ^ is described as:

9Covered in section 5.3 in [28].

120 Comparison to other action approaches

1. ^ is not already true

2. For some supporting set S of ^, there exist SZ and S^, subsets of S, Si C S, S^ = S- Si such

that all the literals in Si are initiated and all the ones in Sp are true and not terminated.

Let us see a formal definition. Given a literal L, we write L to denote the opposite literal:

^_^p; ^p = p. For any set of literals S, we define the abbreviations:

s,def
{L:LES}

ca^cs(S)
def

{caus(L) : L E S}

holds(S)
def

{holds(L) : L E S}

cans(S)
def

{^caus(L) : L E S}

Then, given a general rule:

initiating ^ causes L if ^

its translation can be defined as the set of formulas:

ca^cs(L) ^ caz^s(Si) n holds(Sp) n caus(Sp) n holds(^^) n holds(^)

for each supporting set Si U Sp of ^, being SZ ^ 9^. The fact of requiring S^ #(b is very important,

since otherwise, we would allow application of rules that do not depend on any positive causation.
Therefore, this requirement corresponds to the implementation of postulate P5 (the condition
must be pertinent), in its "ifl' direction. Remember that pertinence of a propositional formula
corresponds to requiring that at least one of its atoms is pertinent.

To see how complex initiation works, consider again (8.49). We must deal with the three

supporting sets studied before: So, Sl and S2. The rules from So would be:

^caus(open) ^ caus(np(1)) n holds(up(2)) n^ca^cs(^np(2)) n holds((^up(1) n ^cp(2)))

cans(open) ^ ca^cs(^cp(2)) n holds(up(1)) n^caus(^^cp(1)) n holds((^^p(1) n^p(2)))

ca^s(open) F- caus(up(1)) n caus(^cp(2)) n holds((^^cp(1) n np(2)))

Note that we would also generate rules for Sl and S2, although it seems clear that they would

not be really needed. In fact, this is a problem of this definition, from the practical point of

view, since the number of these ground rules combinatorily.explodes when we add more fluents

(we get more irrelevant supporting sets).

Looking at the resulting rules, it is easy to see that they have stronger conditions than the

rules that resulted from pertinence (6.20) and (6.21). As we can see, the real diíference is that
initiation of formulas forces the condition to be previously false, which may lead to problems
(as we saw with the balance example). Apart from this, the two decompositions actually yield
the same result, but pertinence transformation is simplier. The reason for this simplicity is due

to differences in the predicate notation. Thus, in [28], as predicate holds is exclusively used for

the previous situation, there is no way to represent that a fluent value just holds in the resulting

state (without saying anything about its causation) z^nless we refer to the previous situation

holds(F) and explicitly say that the fluent has persisted -^caus(^F). The possibility of referring

to holds in the successor state is essential for obtaining a more reduced set of ground rules since,

in this way, we do not need to explicitly unfold all the combinations caused/persisted for all the

literals in the supporting set.

8.6 Abnormality and Logic Programming

8.6 Abnormality and Logic Programming

In [12] another interesting approach was proposed. Although not explicitly classified as causal,
it can be seen as another mix of the inferential and the change-based orientations. The change
predicate is the already seen ab(L, A, S), with the only diíference that the first argument L
is a fluent literal, rather than a fluent name. In this way, this notation can actually be seen
as a truth reification, as in Lin's caused predicate. However, as an important difference to
Lin's causation, in order to obtain directionality of inference rules and to minimize the extent
of ab, the applied nonmonotonic technique this time is Logic Programming (under the answer
sets semantics) rather than a circumscription policy. As a matter of fact, Baral's paper was
focused on dealing with defeasible causal rules, for which two levels of abnormality predicates
were defined, but we will omit here this distinction and pay more attention to the treatment of
undefeasible ramification rules.

Under Baral's formalization, the inertia law corresponds to the program rules:

holds(F, do(A, S)) ^ holds(F, S) n not ab(F, A, S)

^holds(F, do(A, S)) F- ^holds(F, S) n not ab(^F, A, S)

whereas effect axioms and ramification rules would have the shape:

^holds(úp(N), do(toggle(N), S))

ab(úp(N), toggle(N), S)

holds(up(N), do(toggle(N), S))

ab(^up(N), toggle(N), S)

holds(open, do(A, S))

ab(^open, A, S)

(8.50)

(8.51)

t- holds(up(N), S) (8.52)

E- holds(^p(N), S) (8.53)

F- holds(up(N), S) (8.54)

^ ^holds(up(N), S) (8.55)

t- holds(up(1), do(A, S)), holds(up(2), do(A, S))(8.56)

F- holds(up(1), do(A, S)), holds(up(2), do(A, S))(8.57)

First of all, it must be noticed that the idea of "F is caused true in do(A, S)" is represented
here in an indirect way, by asserting that the opposite value is abnormal: ab(^F, A, S). Similarly,
"F caused false" would correspond to ab(F, A, S). The general idea is that, when we cause a
fluent to get a value, we should break the inertia for the other value (or values, thinking about a
multi-valued fluent). Then, the inertia (8.50)-(8.51) requires that, for obtaining any fluent value,
it both held before and it is not abnormal. Since abnormality is applied to one fluent value at
each case, a first important consequence is that a fluent value may be obtained by applying
simultaneously inertia and a causal rule (violation of postulate P2), if the fluent happened to
have the same value before. Besides, postulate P5 is again not satisfied, since conditions of
(nondefeasible) causal rules do not include references to ab. ^

Thinking about our examples, if we wait after opening the suitcase, we obtain:

ab(^open, wait, S)

which, although it does not yield any strange eífect, would point out that fluent open was caused
with some value different from false. In other words, although inertia should follow for all the
fluents, we obtain some true atoms for ab. As for the balance example, it is easy to see that rule
conditions should include references to ab. Otherwise, a construction like:

121

holds(balance(X + Y), do(A, S)) ^ holds(transac(Y), do(A, S)), holds(balance(X), S)

ab(^balance(X -}- Y), A, S) F- holds(transac(Y), do(A, S)), holds(balance(X), S)

122 Comparison to other action approaches

would always consider as many values as elapsed situations, even when no values for transac

are provided, but they are obtained from inertia instead.

8.7 Thielscher's approach .

Another well known causal approach is the so-called causal relationships, introduced in [107].

We could also classify this approach as a mixed orientation because it combines a distinction
between caused and non-caused effects with a special inference method for applying causal rules.
In fact, this approach can be considered the most `procedural' one, since it does not provide
a classical interpretation for causal rules nor an explicit representation of inertia but, instead,

its semantics is based on an iterative process. The idea is to fire repeatedly the applicable

rules at each stage, in a similar way to the operational semantics for P-language, but with the

particularity thát it allows different changes of value for a same fluent in a same situation.

8.7.1 Basic definitions and a pair of examples

A cansal relationship is a construction of the shape:

A causes B if ^ (8.58)

where A and B are fluent literals, whereas ^ is a fluent formula. Intuitively, literal A is the

"triggering effect", literal B is the resulting effect and formula ^ is a condition that must
currently hold (in the resulting situation) but which is not needed to be caused. It must be

observed that causal relationships do not e^ist independently, but are always associated to some

state constraint, which has the shape of a propositional fluent formula.
For instance, the ramification for Lin's suitcase is represented as the pair of causal relation-

ships:

np(1) causes open if ^cp(2) (8.59)

z^p(2) causes open if np(1) (8.60)

associated to the state constraint:

^cp(1) n np(2) ^ open

To decide the applicability of one of these rules, the inference process maintains a pair of
sets of fluent literals (S, E), where S (which is maximal and consistent) represents the "current

state" and E (which is possibly inconsistent) points out the current triggering effects. Any rule
(8.58) is applicable w.r.t (S, E) iff:

1. S^^ n A n^B using propositional satisfiability

2.AEE

that is, the rule condition holds, the effect A holds and is among the triggering effects and the

consequent is not true. As a result, we get the new pair:

((S- {B}u {B}),Eu {B})
For a set of causal relationships R, we denote (S, E) ^R (S', E') to express that (S, E) is

the result of applying some rule in R to (S, E). Then, given an initial state S, a delete-list C

(or precondition) and an add-list E(or set of direct effects), the s^cccessor state S' is any state

satisfying:

8.? Thielscher's approach 123

1. ((S - C) U E, E) ^R (S', E') for some E'

2. S' satisfies all the state constraints

Note that the process is non-deterministic: we may apply the rules in any sequence order,
stopping at any state satisfying the constraints (even not necessarily the first to appear in the
sequence). Observe also that, along this process, we generate a sequence of intermediate states
in which fluents are continuously changing their values and this may af%ct the triggering of
other rules. This means that to establish the successor state, we describe a chain of low level
intra-state transitions. An also important feature is that the triggering effects set, E, never
decreases and may be inconsistent. To illustrate these definitions, Thielscher proposes in [107]
the following example:

Example 17 (Thielscher's relay) Consider a variation of the lamp circuit (example 1) by
introducing a relay that controls switch 2, as depicted in figure 8.1. O

^sw(1) sw(2)

^light

Figure 8.1: Electric circuit with a lamp and a relay.

Without detailing the set of causal rules, the intuitive behavior is the following one. It seems
clear that after closing sw(1), the light must be finally ofF, since the relay is activated, and so
switch sw(2) results open. So, the only possible final state is {sw(1), sw(2), sw(3), relay, light}.
However, this state is actually obtained following two different sequences of rule applications:
(1) assuming that the relay is faster than the lamp, sw(2) becomes immediately false and the
light is never turned on during the intermediate states; and (2) assuming than the lamp is faster
than the relay, and so the former is momentarily set to true, although the relay is activated
later and then the light is turned off . again. As a result, there exists a rule application path
in which the light experiments a momentary flash. In [107], this example is further modified
afterwards by incorporating a light detector (fluent detect), which is set to true, whenever the
literal light is triggered. With this variation, we obtain now two di,,fferer^t successor states (the
outcome is nondeterministic), where detect may become true or false depending on the relative
delays between the lamp and the relay.

As we had explained, causal relationships are always associated to some state constraint. In
fact, the causal relationships associated to the same constraint can be seen as a description of
all its possible causal decompositions. For example, the constraint:

sw(1) n sw(2) - light (8.61)

124 Comparison to other action approaches

is decomposed into the causal directions:

sw(1) causes light if sw(2)

sw(2) causes light if sw(1)

sw(1) causes light if T

sw(2) causes light if T

so that the above constraint is always understood as an influence from the switches to the

light. In [107] an automatic process was provided in order to obtain the set of causal rela-

tionships from a given constraint, assuming that additional in,fluence information is available.

This influence information is simply provided as pairs of fluent names, like (sw(1), light), point-

ing out that sw(1) may causally affect light. Although we will not detail here the method,

the above relationships (8.62)-(8.62), for instance, are actually obtained from influence pairs

{(sw(1), light), (sw(2), light)} applied to the constraint (8.61).

Finally, we will also consider one more example presented in [107] whose purpose was to
show the real need for the distinction, inside each rule (8.58), between the triggering eñect A

and the condition ^.

Example 18 (The trapdoor) In order to hunt a turkey, we use this time a manually activated

trapdoor. When the turkey is at_trap and the trapdoor is open (trapdoor_open, the ground

underneath the trapdoor is designed so that the turkey cannot be alive: alive. The possible

actions we can perform correspond to open the trapdoor and to entice the turkey. However,

the turkey would never kill himself by moving towards the trapdoor. In other words, it is the

change in trapdoor^pen that influences alive, but not the change in at_trap. q

This example is simply formalized with the constraint:

at_trap n trapdoor_open ^ alive

which, together with the influence information (trapdoor_open, alive), leads to the single causal

rule:

trapdoor_open causes alive if at_trap

Assuming that the actions are described as the triples:

({trapdooropen}, entice, {trapdooropen})

({at_trap, alive}, entice, {at_trap, alive})

it is easy to see that the application of the algorithm for causal relationships yields the expected

results: when we perform open in state {alive, at_trap, trapdoor_open} the turkey is killed,

whereas when we perform entice in {alive, at_trap, trapdoor_open} we obtain no successor state.

In this way, trapdoor_open acts as an implicit qualification for entice. Of course, the keypoint

for obtaining this behavior is that we have not included the analogous causal relationship:

at_trap causes alive if trapdoor_open

8.7 Thielscher's approach 125

8.7.2 Comparison

In order to compare Thielscher's approach with pertinence, we will begin first focusing on the
representation of caused/non-caused facts. Clearly, the idea of e,,^`ect (each element of the set E
used for application of causal relationships) is strongly related to the concept of being pertinent.

In fact, as the effect also represents a truth value, it actually corresponds to the representation
caused(F, V, I). In this way, the causal relationships (8.59)-(8.60) can be seen as the rules:

holds(up(2), t, I) n caused(up(1), t, I) ^ caused(open, t, I)

holds(up(1), t, I) n caused(up(2), t, I) ^ caused(open, t, I)

which correspond to an alternative representation we saw in pertinence calculus (formulas (6.20)
and(6.21)). Notice that we also saw something similar in Denecker et al's approach, but in that
case holds predicate actually referred to the previous situation, and not to the resulting one. To
emphasize how the idea of ef%ct coincides with the concept of pertinence, let us represent the
trapdoor example using ^-language:

trapdoor_open if open after trapdoor_open (8.62)

at_trap if entice after at_trap n alive (8.63)

alive if entice after at_trap n alive (8.64)

alive if trapdoor_open n at_trap n!at_trap (8.65)
^ 1 if trapdoor_open n at_trap n alive (8.66)

The three first rules (8.62)-(8.64) correspond to ef%ct axioms and follow exactly the definition
of entice and open done in Thielscher's example. The shape of (8.64) may seem unnaturallo
at a first sight, but its purpose is to act as a qualification constraint on action entice. The
constraint is simulated by rule (8.66). As the rules are acyclic, we may apply the operational
interpretation, which coincides with the four semantics presented in this work. It is easy to
see that the two transitions commented before (opening the trap with the turkey above, and
enticing the turkey with an open trap) yield the same results. Rule (8.65) shows some similarity
with (6.36) from the alarm example: we are requiring that at_trap persists true.

As a representational limitation of causal relationships, it is evident that they do not allow
referring to the previous state. In other words, the ` after ' precondition we used for ^-
language rules cannot be represented when using causal relationships. However, the extension
of Thielscher's formalism for allowing this feature is straightforward, just allowing an after
clause as in ^-language.

Thielscher's causal relationships do not seem to be intended for using the distinction eífect/non-
ef%ct as a representational feature. This distinction is implicitly used in the rule notation, but
there is no way to assert, for instance, that two facts have simultaneously become effects (they
both have been caused) or that a given fact is not an eífect. Note that all these cases can be
simply represented in pertinence rules by an explicit inclusion of pertinence literals. Neverthe-
less, apart from this minor representational limitation, it is easy to see that causal relationships
satisfies all the pertinence postulates. For instance, notice how P5 (the most problematic pos-
tulate in many cases) is directly implemented in the definition of rule applicability: rules are
never applied without a triggering effect, which plays the role of pertinence of the condition.
Besides, rule applicability does not rely on any additional transformation on the rule condition,

loFor a perhaps more natural representation of this domain, see appendix B.

126 Comparison to other action approaches

as happened with TAL (which required a change in truth value for the condition) or with Event

Calculus (which relied on a change in the derived fluent value). As a result, it is possible to
express the account balance scenario in a direct way:

transac(Y) causes balance(X + Y) if T after balance(X)

assuming the extension of causal relationships to cope with the after clause. The possibility of
referring to the previous situation is, indeed, essential for this example. Using instead the rule:

transac(Y) causes balance(X + Y) if balance(X)

for a similar purpose, would clearly fail: whenever transac(Y) becomes an effect, we would get

an unlimited numberli of intra-state transitions increasing the value for balance.

A very interesting feature is the use of influence information, which can be related to the
definition of pertinence of a formula or to the initiation of complex formulas we saw in Denecker's
approach. Notice that, without influence information, the representation of causal relationships
is quite cumbersome, since we must express all the possible combinations of effect literals that
may trigger the same rule condition. For instance, the relay example in 8.1 needs 13 causal

relationships, although they are actually generated from 3 state constraints. So, the use of
influence information together with state constraints is essential for a comfortable description
of the causal dependences in the domain. However, this representation has different properties

with respect to complex initiations or pertinence. One of the disadvantages is that one must
always use a state constraint together with the causal rules, while both kind of expressions seem
to be of a diíferent nature and for different purposes12. Besides, we force to include a description
of influence pairs which may not always be so clear a priori and so, the process may be not very
elaboration tolerant. On the contrary, when using P-language rules, these influence pairs are

somehow automatically extracted from the representation, and so, the addition of new rules
does not force us to explicitly reconsider the pairs for expressing dependences among fluents.

Although the "effect" -triggering mechanism behaves similarly to pertinence, there are, how-
ever, some major differences which deserve to be commented. The main objection is perhaps
that causal relationships allow different values for the same fluent at the same situation. For
instance, as we saw in the relay example, one of the possible outcomes of closing switch 1 is that

fluent light momentarily changes to true, although it finally comes back to false. This behavior
seems to break one of the most important abstractions handled for reasoning about actions: the

concept of state sim^cltaneity. As we explained in the introduction, causality has more to do
with an abstraction than with a thorough representation of the physical behavior of the system.
The aim of abstraction has a clear practical orientation: the higher is the abstraction level used
in a problem representation, the easier will be the process for finding a solution. If we are really
interested in representing momentary changes of a fluent (for instance, changes in the light when
the detector is added), then we should perhaps think about augmenting the grain detail, and
considering each intermediate step as a state itself. Thielscher's approach establishes instead
something like a two-level hierarchy of states: "first class" or steady states; and intermediate
or unstable states. In tliis way, ramifications are understood as delayed effects obtained in an

11 A similar example of this infinite firing of causal relationships was also presented in [28] (page 33) where they

used instead an integer counter.
12In fact, this was extensively discussed in [28], where they claimed the need for separating causal rules from

state constraints as two completely independent representation tools.

8.? Thielscher's approach 12?

intra-state transition sequence, considering all the possible orderings for the relative delays13. In
fact, as later explained in [108], this distinction between stable and intermediate states forces us
to classify the causal constraints into steady and stabilizir^g, respectively depending on whether
they are totally simultaneous or they may experiment a causal lag. .

The work presented in this thesis relies on assuming the state simultaneity hypothesis, ab-
stracting any intermediate unstable variations. However, our pertinence formulation provides
more information than other approaches which consider the state as exclusively delimited by
fluent values. Think, for instance, in the representation of the relay domain using ^-language
using rules:

sw(N) if toggle(N) after sw(N)

sw(N) if toggle(N) after sw(N)

light if sw(1) n sw(2)

light if sw(1)

light if sw(2)

relay if sw(1) n sw(3)

relay if sw(1)

relay if sw(3)

sw(2) if relay

These rules are acyclic, and so, the four semantics we studied in this work actually coincide.
F^rthermore, we can use the operational interpretation (algorithm in figure 5.2 to compute
any successor state. In this way, performing action toggle(1) in the initial state depicted in
figure 8.1, we obtain that the light is caused to be ofF (light is false and pertinent). Pertinence
postulates allow us to interpret this fact by concluding that the light has experimented a causal
intervention, i.e., that we car^r^ot g^carantee that the light has persisted off. Notice that this is,
somehow, an abstraction for the different paths that we followed when using causal relationships:
nondeterministically assuming that either the relay was faster than the lamp (and so, the lamp
persists off) or vice versa (and so, persistence of l ight cannot be guaranteed) . As we must reduce
here everything to a single successor state, pertinence provides at least a hint about a possible
causal intervention. In fact, this hint is sometimes more interesting than a detailed description,
since in a real system, the relative delay differences between the lamp and the relay could be^
variable, or, we could pass through intermediate states in which the light is neither fully on nor
fully of^. Thus, we claim that the information represented by pert(light, p, l) is enough to allow
a causal understanding while simultaneously preserving an appropriated abstraction level.

Another interesting lesson we can draw from this example is that, contrarily to the four
alternative semantics we have studied, which lead to determinism under an acyclic set of rules,
Thielscher's approach is generally nondeterministic, even when rules are acyclic. Although it is
true that, in most cases, we usually do not want to represent all the possible relative delays among

13The idea of causality as a propagation of delayed effects has also been studied in other approaches. For
instance, as commented in the introduction, the historical paper [81] already included the idea of causad assertions
which were based on this principle of delayed effects. As another example, the more recent proposal presented
in [98] is very close to causal relationships. It defines a semantics in which, in order to compute the successor
state, a cascade of sub-transitions is activated until a stable point is reached. In [90], a similar idea is introduced,
but the "intermediate" transitions become usual ones. This is possible because ramifications are understood as
delayed effects whose justification is obtained via a so-called natural action, i.e., a cause which does not need any
external intervention, but only the time passing.

128 Comparison to other action approaches

causal propagations, it is also true that for obtaining the same behavior, the use of an explicit
representation of the intermediate states together with the incorporation of nondeterministic
rules would probably be much more complicated. So, if we are really interested in the study
of momentary delays, Thielscher's algorithm could be an alternative option to go further than
pertinence, which, as we have seen, just provides a hint of what may have happened. Thus,

as future work, it could be interesting the analysis and implementation of a fifth semantics for
^-rules using a similar algorithm to causal relationships.

One objection about we could perhaps do with respect to the treatment of causal delays
when using causal relationships is the lack of homogeneity between direct and indirect ef%cts.
Consider, for instance, the simpler lamp circuit represented in figure 1.1, and its representation
into causal relationships:

sw(1) causes light if sw(2) (8.67)

sw(2) causes light if sw(1) (8.68)

sw(1) causes light if T (8.69)

sw(2) causes light if T (8.70)

It is clear that by simultaneously toggling both switches, the lamp remains off. The facts sw(1)
and sw(2) are considered right from the very beginning, both in the intermediate state S and in
the set of eífects E. As a result, only rule (8.69) is applicable, switching off the light. However,
we do not obtain an alternative application in which the light is momentarily on. The question
here is, why not to consider also a possible delay between both switches, as it happened in the
relay example? To emphasize this diíference, notice that if we make a further elaboration, by

adding the rules:

move^c^(N) causes sw(N) if T

movedown(N) causes sw(N) if T

then, surprisingly, the direct effects {movedowr^(1), move^p(2)} actually lead to nondeterminism

(there is a path in which the light is momentarily on) just because sw(1) and sw(2) are now

indirect effects instead of direct ones.

8.8 Causal explanation

Together with Thielscher's approach and Lin's work, the other main proposal for solving the
ramification problem that appeared around 1995 was McCain and Turner's causal rules [69],
partly inspired by Geffner's work [37]. This approach relied on a modal conditional operator,
^^^, used for a transition-based description of the system behavior. The nonmonotonic
behavior was achieved by a fixpoint condition (for the successor state), which served both for
implementing inertia and for providing the `^' operator with the behavior of an inference rule.

Later, in [70], this initial approach was considerably simplified giving rise to the so-called
Ca^csal E^planation logic which was thereafter succesfully used for satisfiability planning [71]
and as a basis of the C action language [46] (a successor of ,A-language that allows dealing with
ramifications) and its implementation, the ca^csal calc^lator (CCALC) [23]. Although it is frequent
to identify both approaches, [69] and [70], as a same formalism, they actually present important
differences. For instance, Causal Explanation has a simpler semantics and its fixpoint condition

8.8 Causal explanation 129

does not depend on any actions or transition-oriented framework (it can be used for other kind
of defaults different from inertia) . In fact, one more further generalization of both approaches
was introduced in [111], receiving the name of Universal Cansation Logic (UCL).

Among this variety of related approaches, we will pay in this section more attention to
Causal Explanation [70], although we will simultaneously provide some informal insight about
its formulation into UCL. The interest of the latter is that it provides constructions like C^
(where C is a modal S5-necessity operator) to stand for "^ is caused."

As commented in [70], the intuitive idea behind Causal Explanation arises from the distinc-
tion between two kind of causal conditionals:

i) the fact ^ ca^cses the fact ^

ii) Necessarily, if ^ hapPens to be tr^ce then ^ is caz^sed

Using UCL notation, these two types of conditional would respectively correspond to the for-
mulas:

C^ ^ C^
^ ^ C^

The first type of conditional is similar to an inference rule and, in fact, is equivalent to the causal
rules used in the first approach [69] introduced by McCain and 1^rner. Note that the antecedent
condition is required to be caused. Sometimes, however, we do not need to identify the causes
for all the facts and it is enough with knowing sufficient conditions in order to establish the
caused consequents. Thus, in this second type of description, the condition ^ does not need
to be caused: it is just an e^planation for C ^/i. This second orientation corresponds to Causal
Explanation, where ^^ C z/i is simply denoted as ^i <- ^.

The formal description for Causal Explanation is very simple. Syntactically, we handle
an extension of propositional logic with a new conditional operator ^. We assume that this
operator is not nested14, that is, for any formula ^ E-- ^(called causal rnle), both the antecedent
and the consequent cannot contain ^ in their turn.

The semantics is defined as follows. Given a set D of these causal rules and any propositional
interpretation M, the theory DM is defined as:

DM={^I (^^-^)ED^M^^}

where ^ stands for classical satisfaction of formulas. Clearly, DM is a classical propositional
theory. Using the UCL point of view, DM would stand for the set of formulas C^"known to
be caused," after using M to interpret all the explanations.

Definition 40 (Causally explained model) An interpretation M is a ca^csally e^plained r►zodel
of a causal theory D iff M is the unique model of DM. p

Intuitively, we require now that, once M has fixed the explanations, the resulting caused
formulas C^ must be exactly all the consequences derived from the single model M. In other
words, causally explained models satisfy ^- C^. This is where the idea of "universal causation"
actually comes from: we want every consequence to be finally caused.

laOne of the ways in which UCL generalizes Causal Explanation is, for instance, by allowing nested conditionals.

130 Comparison to other action approaches

Another important observation is the strong similarity of this definition with the already

seen fixpoint conditions used in logic programming. As a matter of fact, we will see later that

Causal Explanation can be seen as a generalization of the idea of s^cpported model or its syntactic

counterpart, Clark's Completion.

The following would be some typical uses of causal rules.

holds(np(N), I. + 1) E- occ^crs(toggle(N), I) n^holds(np(N), I) (8.71)

^holds(z^p(N), I+ 1) ^- occ^crs(toggle(N), I) n holds(z^p(N), I) (8.72)

holds(open, I) E- holds(^cp(1), I) n holds(^cp(2), I) (8.73)

holds(F, I+ 1) ^ holds(F, I+ 1) n holds(F, I) (8.74)

^ ^holds(F, I+ 1) F- ^holds(F, I+ 1) n ^holds(F, I) (8.75)

The first pair of rules would be an example of effect axioms. Rule (8.73) is a ramification rule,
whereas rules (8.74)-(8.75) represent the encoding of inertia. Notice the curious shape of this
representation: whenever we want to derive a default consequence, this one must be included as
part of the condition in the antecedent. In fact, similar constructions are usually included for
completing the initial situation:

holds(F, 0) E- holds(F, 0) (8.76)

^holds(F, 0) F- ^holds(F, 0) (8.77)

or for generating all the possible action executions:

occnrs(A, I) F- occnrs(A, I) (8.78)

^occurs(A, I) ^ ^occ^crs(A, I) (8.79)

For instance, the formula(8.76) should be read as "by default, fluent F can be assumed to be

true at 0." ^

8.8.1 Literal completion. I^,elation to Logic Programming

Great part of the success of Causal Explanation is that, when rule consequents are limited to
literals, there exists a transformation, called literal completion, that allows the conversion of any

causal domain into a classical propositional theory.15. The idea of literal completion can be seen
as a straightforward generalization of Clark's completion for logic programming, but applied to

literals instead of atoms.

Definition 41 (Literal Completion) Let D be a set of causal rules where all the consequents

are literals. Then, the literal completion of D, LCOMP[D], corresponds to the propositional

theory that contains a formula:

L=^1V...^/^n

for any possible literal L formed with atoms in the signature, being the ^i are all the antecedents

such that (L F- ^i) E D (as always, the empty disjunction is equivalent to 1). q

15In fact, this is the working principle of the tool CCALC, which is a Prolog program consisting of an interpreter
for the C action language plus a module for grounding rules and processing their literal completion. The main

inference work is delegated afterwards to an external call to some propositional prover like Crawford's NTAB [27,

26], Zhang's SATO [115, 114] or more recently Malik et al's CHAFF [83, 24^

8.8 Causal explanation 131

Property 16 Let D be a set of causal rules where all the consequents are literals. Then, the
causally e^plained models of D are the classical models of its literal completion, LCOMP[D]. O

We can define Clark's completion as a particular case of literal completion, where negative
literals are always assumed by default, that is, we include the axiom schemata:

^p ^ ^p (8.80)

for any atom in the signature.

As we explained in the background, when considering Clark's completion, the logic program
operators `F-', `,' and `not ' are respectively interpreted as the propositional connectives `^', `n'
and `^'. We will implicitly assume this equivalence inside this section.

Theorem 12 Let P be a normal logic program. Then, for any propositional interpretation I,
I ^ COMP[P] i,,ff I ^ LCOMP[P U(8.80)].
Proof
It is straightforward. Note that the literal completion LCOMP[P] consists of the completion for
positive literals, which in this case is COMP[P], plus the completion for negative literals, which
in this case is a set of formulas like ^p -^p, which^are propositional tautologies. O

Note that this result is similar to the well known relation between answer sets and stable
models ([39], section 6): the stable models of a normal logic program P are the answer sets of:

PU{^pF-notp ^pEE}

being E the propositional signature. In a similar way, answer sets can be defined in terms
of stable models, by renaming the negated literals ^p into a new type of atom p. This same
operation can be done for defining the literal completion in terms of Clark's completion:

Theorem 13 Let D be a set of cáusal rules where all the antecedents are conjunctions of literals
and all the consequents are literals. Let E be the propositional signature for D and let D' be
the result of replacing in D each literal ^p by the atom p plus the addition of the following rule
schemata:

false E- p, P (g,gl)
false ^ not p, not P (8.82)

where false is an additional atom false ^ E. Then, the models of LCOMP[D] are the models of
COMP[D'] U{^false} (modulo the reified literals representation).
Proof

The formula ^false means that false - 1 and so (8.81) and 8.82 are equivalent to ^(p n^ and
^(^p n^p) respectively. But the conjunction of this pair of formulas is equivalent to ^ -.,^p.
Now, it is easy to see that if we apply propositional universal substitution, COMP[D'] U{^false}
is equivalent to LCOMP[D] U{p - ^p^p E E} U{false - 1}. Therefore, for any model I of
LCOMP[P], the interpretation I' = I U{P^p E E- I} is model of COMP[D'] U{^false}. And
vice versa, for any I' model of COMP[D'] U{^false}, the interpretation I= I' fl E(which
contains less atoms) is a model of LCOMP[D]. p

132 Comparison to other action approaches

Notice that we must require (8.81) to avoid inconsistence and (8.82) to obtain a unique
model. Otherwise, atoms p and ^ would not have any logical connection. Another interesting
observation is that, in the encoding of answer sets into stable models, only rule schemata (8.81)
is actually added. The explanation for this is that answer sets are not complete (i.e., an answer

set represents several models) and so rule (8.82) is not included.

The actual relevance of this pair of theorems is that, when we reduce McCain and Turner's

causal rules to deal with literals (as done, for instance, in CCALC) the representativity is ex-
actly the same as when using Logic Programming supported models (i.e., Clark's completion).
Therefore, an hypothetical alternative semantics of ^-language relying on Causal Explanation

would not be of any interest, since it would simply correspond to the already seen semantics

based on Clark's completion. Besides, these results also help to clarify the real orientation of
McCain and Turner's causality: roughly speaking, since we obtain the same expressivity as in
Logic Programming, Causal Explanation seems to be thought as an alternative for implementing

inference rules rather than as a way of representing change in a dynamic domain.

8.8.2 Pertinence postulates in Causal Explanation

In order to study Causal Explanation under pertinence postulates, the first difficulty is to

identify how caused facts are represented. In the previous comparisons, this was practically

straightforward, since all of them handled a particular change predicate which could be related

to pertinence pert(F, V, I). Unfortunately, such a change predicate cannot be found in Causal

Explanation. Each causally explained model contains fluent values but not any information
about how these values have been obtained.

Nevertheless, under UCL notation, when we use the modal operator C to interpret causal
rules, we actually handle the concept of "caused formula." At a first glimpse, this seems to point
out that formulas like C open or C^open to atoms like ca^csed(open, t) or caused(open, f),

respectively. This relation was studied by Turner (see theorem 5.23, page 177 in [110]) which
established an interesting correspondence between causal explanation rules (under their UCL
shape) and Lin's formulation (without allowing ca^csed in the conditions). Turner's result,

however, is not a complete correspondence: although the truth values for fluents we obtain

in UCL correspond exactly to the holds atoms we get under Lin's formulation, no relation is

established for caused atoms. Of course, the latter is not surprising at all: UCL requires that all
the consequences must be finally caused, whereas Lin's approach not. Notice how, despite the
similarity in the shape of the rules (when the condition is true, the consequent must be caused),

the concept of "caused" has a completely di,,^`erent meaning in both approaches. On the one hand,
any causally explained model satisfies C^-¢ which means that "caused" does not provide any
additional information with respect to the fluent truth values, if we exclusively look at the set of
selected models. On the other hand, the models in Lin's approach may contain fluent values that

are not caused. ^rthermore, the usually rrtust contain them, since the application of inertia for

some fluent f is only enabled when ^cansed(f, t, S) n^ca^csed(f, f, S). So, in Lin's approach

there is an important qualitative diíference between the formulas holds(f, S) and ca^csed(f, t, S)

whereas in causally explained models this diíference simply does not e^ist.

^^ F^om this discussion, it is easy to see that the purpose of the C operator handled in UCL
does not correspond with the idea we had in mind when introducing predicate pert. The C

operator is exclusively intended for fixing the final selected models, but it cannot be used as a
relevant information with respect to nonmodal formulas. This diíference becomes even clearer if
we observe that, under UCL terminology, as everything must be finally caused, this also includes

8.9 Schwind's comparative 133

those facts resulting from the universal frame rules (8.74)-(8.75). In other words, inertia is one
more causal rule. As we could see when comparing Causal Explanation to logic programming,

it seems that the idea of causality here is more related to defining some conditional operator
that provides the behavior of inference rules plus some general purpose nonmonotonic behavior.

As a result, pertinence postulates are simply not applicable neither to Causal Explanation

nor UCL, unless we additionally include some predicate to differentiate between change and
inertia. To see how these two different cases are completely mixed in Causal Explanation, we
can study, for instance, what would happen if we tried to apply postulate P2. As an example,
consider the formulas (8.71)-(8.75). It is easy to see that, in a given transition, it is possible to
apply both the ramification rule (8.73) and the inertia rules (8.74)-(8.75) simnltaneonsly. For
instance, if we have just opened the suitcase and we perform a wait action, the resulting fact
holds(open, l) is justified both by the ramification rule and by the inertia law (8.74).

8.9 Schwind's comparative

To end up with the comparative study, we include some remarks about Schwind's paper [100]
which is perhaps the most complete up-to-date comparison among different causal approaches
existing in the literature. Schwind's work covers the three main causal approaches arisen around
1995, Lin's ca^csed predicate, Thielscher's causal relationships and McCain and Turner's causal
rulesls, all of them also covered in this work, plus an additional approach [44] developed by
Schwind herself together with Giordano and Martelli. We will particularly focus in the criteria
used in that overall comparison, rather than on the study of this last work. The reason for this
is that, apart from its temporal representation relying on Dynamic Logic [49], it uses the same
modal notation as the UCL encoding of Causal Explanation, and so, it does not introduce any
relevant difference with respect to pertinence postulates.

The main difference between Schwind's comparative and the study included in this section is
the change in the orientation. While our comparison is more oriented to the change-based under-
standing of causality, Schwind's work is completely inferential because it is exclusively focused
on the properties of causal conditionals from the point of view of their inferred consequences.
This means that there is no special interest in distinguishing whether a fluent value has been
caused or it has persisted. Furthermore, in order to study these inference properties, there is not
even any actual need for considering a dynamic framework at all. In this way, Schwind presents
nine criteria (section 2.1 in [100]) for characterizing causal conditionals without including in
their definitions any single mention to actions, fluents, situations nor inertia. Notice how, on
the opposite, these concepts are continuously handled in the pertinence postulates.

Forgetting this difference in orientation, we can at least analyze the pertinence rules from
the point of view of the nine inferential criteria proposed by Schwind. If we write `^' to stand
for any generic conditional operator, these criteria can be enunciated as follows:

1. Monotonicity.

^^7^^
1sIn fact, McCain and Turner's approach is studied both under the point of view of the causal rule as a

conditional operator which, for instance, happens to be monotonic, and under the point of view of the induced
inference relation which, of course is nonmonotonic. We claim that studying the latter does not make much
sense since it seems a quite different thing to analyze the properties of conditional operators from considering
the properties of their induced inference relations. For instance, we can equally consider the induced inference
relations for Lin's and Thielscher's approaches and, of course, they will result being nonmonotonic.

134 Comparison to other action approaches

2. Transitivity.

3. Contraposition.

4. Refle^ivity. ^

5. Conj^cnction of preconditions.

6. Conj^cnction.

7. Reasoning by case.

8. Right weakening (RW).

9. Left Logical Eq^civalence (LLE).

^^^^ ^^^
^^7

^^^

^^ ^ ^^

^n7^^

(^ ^ ^) or (7 ^ ^)

^^^^ ^^7
^^^^7

^U7^^

^^^^ ^(^^7)

^^7

^^^^^(^=^r)
7^^

Of course, a first problem we must face is to clarify the formal meaning of each derivation

rule:

al, . . . , an (8.83)
^1 ^ • ^m

s. Although this is not done in Schwind's, it can be easily deduced from the context. For
instance, for those causal approaches that rely on a classical logic representation (like Lin's
ca^csed predicate) the above rules are understood as classical entailment, that is {al, ..., a^,} ^

{,Ql, ...,^3,,,,}. Unfortunately, this is not possible in many of the approaches, like for instance

Causal Explanation (not UCL), Inductive Causation or Thielscher's approach, since they do
not define satisfaction for a causal conditional, but only for standard propositional formulas. In

8.9 Schwind's comparative 135

these cases, the causal rules can be considered as part of the semantics, and we can only study
whether their addition will vary the resulting (propositional) consequences or not. F^.irthermore,
even when classical logic is used as the underlying monotonic framework, we can use, instead
of classical entailment, the (nonmonotonic) entailment induced by the selected models, let us
denote it as a ^,Q. Of course, since selected models are a subset of the classical models, classical
entailment is stronger than nonmonotonic entailment, i.e., a ^,Q implies a^^3.

In this section, we will use the following criterion:

A derivation rule like (8.83) represents that, for any theory T(consisting of
causal rules and observations) where all the ai E T, then the consequences of T and
T U {,Ql, . . . , ,Q,,,, } coincide.

In other words, rather than "concluding" the rules in ,Q, we assert that their addition is "harm-
less," that is, it does not affect to our previous representation (which includes the ai).

We study now each property separatedly.

1. Monotonicity.

For simplicity sake, we begin considering P-rules without precondition, that is, of shape
E if C. Although the encoding of this expression relies on classical implication (for the ^
circumscriptive semantics) or a logic programming rule (in the other cases), which are
both monotonic conditional operators, the ?^-rule itself is surprisingly nonmonotonic. The
reason for this is the implicit pertinence of the rule condition. As a counterexample of
monotonicity, consider the following variation of the gong example, where we simply add a
new instrument: a whistle. We have a domain represented by the set of rules R containing:

gong if strike (8.84)

dance if gong (8.85)

dance if f inish (8.86)

whistle if blow (8.87)

where strike, blow and f inish are actions and gong, whistle and dance are fluents. Con-
sider the expression (8.85), which is the only ramification rule. If we add a fourth rule by
strengthening its condition:

dance if gong n whistle (8.88)

the resulting domain R' = R U (8.88) does not yield the sarrte consequences (the resulting
automaton is dif%rent). To see this, consider the initial state Qp = {gong, dance, whistle}
and that we perform action blow. Using the rules in R, the result is that everything persists,
excepting whistle which becomes true. However, the same scenario using R U(8.88) leads
to Q1 ={gong, dance, whistle} and ^rl ={!gong, !dance, !whistle}, that is, the ballerina
starts dancing.

The explanation for this is simple: once we include whistle in the condition, we are
providing a new possible cause for dance which can make the rule applicable while gong
persists. In this way, although gong is true, rule (8.85) is not applicable because gong is
not pertinent (not caused). However, in R', rule (8.88) has as condition gong n whistle
which is true (gong persists true and whistle is caused true by blow), but additionally

136 Comparison to other action approaches

becomes pertinent. If we wanted to express that whistle is a simple additional condition

which mnst not act as a ca^cse, then we should rather formulate the rule as:

dance if gongn!gong n whistle (8.89)

asserting, now in an explicit way, that the pertinence is due to gong (at least), or alterna-

tively as:

dance if gong n whistle n !whistle (8.90)

which would further assert that whistle must persist true.

Despite of this nonmonotonicity, we do not obtain the usual counterfactual behavior of
most nonmonotonic conditional operators. Typically, nonmonotonicity is used for express-

ing things like:

rain ^ wet

rain n nmbrella ^ ^wet

that is, rules with stronger conditions may override those with weaker requisites which,

in this way, may become defeated. When using R-rules, this is not exactly the case. For

instance, consider that R" contains R plus the rule:

^dance if gong n whistle (8.91)

that is, the combination of a gong and a whistle makes the ballerina stop dancing. Assume

we simultaneously blow the whistle and strike the gong. Then both (8.85) and (8.91)
are applicable leading to inconsistence. Something similar happens if we just strike the

gong while the whistle persisted sounding. However, if we blow the whistle while the

gong persisted trz^e, then rule (8.85) is not applicable and we get that the ballerina stops

dancing. In other words, this pseudo-counterfactual behavior depends on which conjuncts
of the condition are pertinent or not.

Let us consider now ^-rules with precondition. As the precondition of a rule is not modified
in the rule encoding (pertinence does not af%ct to the precondition), and as this encoding
uses monotonic conditional operators (either classical implication or logic program rules)
it is easy to see that the following applies:

E if C after D

EifCafterDna

for any conjunction17 cx of fluent facts. In other words, ^-rules are monotonic with respect

to their preconditions.

2. Transitivity.

Again, we study first precondition-free rules. As the rule consequent is always a fluent

fact, we must restrict the transitivity study considering instead:

EifC, FifE

F if C
17In fact, any propositional combination of fluent facts can be properly handled by obtaining its disjunctive

normal form and transforming each negation ^holds(f, v) into the disjunction holds(f, vl) V• •• V holds (f, vn) for

the rest of values of fluent f which are not the value v.

8.9 Schwind's comparative 13?

where E and F are fluent facts. It is easy to see that this is always true. The encoding of
E if C and , F if E would be:

C^!C -^ E

Cn!C -^ !E

E^!E ^ F

En!E ^ !F

where -^ is either a classical implication or a logic program rule. For both conditionals,
transitivity is satisfied, and so we get that we can add:

C^!C -^ F

C^!C ^ !F

without introducing any variation.

As for rules with precondition, of course transitivity can be proved for the case

EifCafterD, FifEafterD

F if C after D

being careful of not interchanging the roles of condition and precondition (note that they
actually refer to diñerent situations).

3. Contraposition.

As we explained in the introduction, one of the main goals of introducing causality is to
avoid contrapositive reasoning. In fact, we saw that many of the typical representational
problems handled in the literature (not exclusively ramification problems) are related to
an undesired application of contrapositive reasoning. So, it is not any surprise that this
property is not satisfied in any of the four proposed semantics. Consider again the original
ballerina domain: rules (5.20)-(5.22). Clearly, if we add the rule:

go^g if dance

introduces an important variation: in this case, when we order the ballerina to f ir^ish the
choreography we get as an indirect ef%ct that the gong stops sounding!

Although the contraposition of a rule generally yields a different transition relation^, it
must be noticed that, for instance, the pair of rules:

b if c

c if b

do not behave as a classical equivalence b- c. It is perfectly possible to have a state
Q={b, ĉ} without entering intro contradiction, provided that, in this case, b persists.

Unfortunately, requiring that a given causal conditional does not allow contraposition is
not strong enough to rule out possible contrapositive consequences. For example, let us
consider the circumscriptive encoding of pertinence. In that case, contraposition is not
allowed: the gong variation we saw above would still mean a modification in the transition

138 Comparison to other action approaches

relation w.r.t. the original gong example. However, we saw that for some domains (like
the alarm problem, example 6) the circumscriptive encoding allowed "applying" a rule
to obtain results from its consequent to its antecedent. In this sense, we consider our
operational interpretation as a more reliable criterion than the contraposition property, as

stated here.

4. Reflexivity.

The meaning of this property can be easily misunderstood. For instance, under Schwind's
interpretation, reflexivity is not desirable because it would mean that a given formula ^

may cause ^ itself. We claim that this last sentence does not correspond to the property

of reflexivity but, instead, corresponds to the idea of self-svpportedness we commented in

detail in section 7.1.2. Thus, we understand that the mere presence of ^^^ should not
be enough to obtain as a consequence that ^ is finally caused, unless there exists another
causal chain to obtain ^.

This idea is very diíferent to trying to avoid that ^^^ is a tautology (in Schwind's
terminology) or, in our case, that its addition is harmless. ^rthermore, it seems that we

should exactly look for the opposite, that is, the addition of the formula ^^^ should

not modify the consequences of our previous representation, whichever it was. This would
be a good hint for absence of self-supportedness. In this way, reflexivity is satisfied by

the stable models and the well-founded encodings of pertinence, which are precisely those

ones that do not allow self-supportedness. ^

To show that the interesting property is to avoid self-supportedness and not reflexivity,
consider the other two encodings of pertinence: circumscription and completion. As we
explained in chapter (?), both may obtain self-supported conclusions, that is, a fact may
become surprisingly "caused by itself." However, completion does not satisfy reflexivity,

i.e., introducing a positive cycle like example 7:

bifb

usually modifies the consequences. In fact, even circumscription does not satisfy reflexivity:

we saw that while b if b never implies any change, an apparently equivalent variation,

like example 8, b if b n a, (which under a classical logic reading is still a tautology)

may completely change the result for circumscription (leading to self-supportedness as we

explained in section 7.1.2).

5. Conjunction of preconditions.

Again, there exists a slight problem when formulating this property. We must clarify the

meaning of the informal disjunction we have in the consequent. For instance, in Schwind's
paper, the proof of this property for Lin's approach is done by relying on classical logic,

simply observing that:

holds(f, S) n holds(g, S) ^ caused(h, v, S)

classically entails (in fact, it is equivalent to):

((holds(f, S) ^ caused(h, v, S)) V (holds(g, S) ^ ca^sed(h, v, S))

(8.92)

8.9 Schwind's comparative 139

However, we must bear in mind that in Lin's rules, situations are universally quantified,
and so we are actually handling:

`dS. ^(holds(f, S) ^ ca^sed(h, v, S)) V(holds(g, S) ^ ca^csed(h, v, S))

which does rcot erctail:

dS. ((holds(f, S) ^ ca^sed(h, v, S)) V dS. (holds(g, S) ^ caused(h, v, S))

which is the actual shape of a disjunction of two causal rules.

To avoid these problems, we will pose this property as follows. Having some set of rules
R which contain, for instance:

EifC1nC2

we want to prove that either the set of rules R' = R U{E if Cl } or the set of rules
R" = R U{E if C2} have the same consequences than R. It is easy to see that this
does not hold. Consider the case in which E, Cl and C2 are simply fluent atoms. When
we handle R' (resp. R") it suffices with causing Cl (resp. C2) to obtain E. The other
condition is not needed at all (it may be even false). However, when we consider R alone,
we need that one of the conditions is caused while the other is at least required to be true.

6. Conjunction.

This property is not analyzable for ^-rules, since their consequent is only defined for
fluent facts. However, we could study it for the more general case of the L2 conditional,
`^,' considering the monotonic entailment induced by L2 models, let us write it as^t
(remember that a model is an interpretation that assigns t to all the formulas, regardless
their pertinence). Then, it is easy to see that:

Theorem 14

{^^^, ^^^} ^t ^G^7^^
Proof
(See appendix A). q

It must be noticed that the contraposition of this property does not hold, that is:

{^G^^^^} ^t (^^^)^(^^^)

7. Reasoning by case.

Again, ^-rules cannot be used to study this property, but we can instead analyze it for
general L2 expressions.

Theorem 15

{A^BVC} ^t (A^B)^(A^C)

Proof
(See appendix A). q

140 Comparison to other action approaches

As happened before, it must be noticed that the opposite of this property is not necessarily
true, i.e., we may have a model of {A ^ B, A^ C} which is not model of A^ B V C.

As a counterexample, simply consider M(B) = tn, M(C) = fp and M(A) = fn.

8. Right weakening (RW).

One more time, RW cannot be studied for P-rules because the consequent must be an
atom (a fluent fact). Since we want to replace this atom p by some formula ry which is
a logical consequence of p(in the sense of classical logic), we will easily find out that ry
cannot be an atom in its turn, and so, it cannot be used as a rule ef%ct. Thus, ry will be

either some nonatomic formula, like for instance p V q, or the constant T(which cannot be

used as a rule eífect either). Notice that we look for logical consequences, i.e., we cannot

use consequences derived from nonlogical constraints like p^ q or p--^r we may have

included in the representation. To overcome this non-applicability, we move the study

again to L2 conditionals.

It is easy to see that, when dealing with pertinence, one cannot rely on transformations
due to logical equivalences. The intuitive reason for this is that pertinence of a formula is

ser^sitive to the atoms occurring in it. As a result, we get that, for instance, having the

rule:

p n q ^ r (8.93)

it does not entail:

p G r (8.94)

although, clearly, p logically follows from p n q. To see a counterexample, consider the

L2 interpretation M(p) = tn, M(q) = tp and M(r) = tp. The first conditional (8.93)

is satisfied by M, since being the antecedent r true and pertinent, the consequent p n q

is also true and pertinent (since q is pertinent). However, the second conditional (8.94)
is valuated as false, because being r true and pertinent, in order to satisfy this rule, the

consequent p should be valuated M(p) = tp and this is not the case (p is non-pertinent).

9. Left Logical Equivalence (LLE). ^

The same reasoning as for RW is applicable to LLE, that is, logical equivalences cannot be
freely added to a L2 conditional. In fact, we have already commented this in example 3.2
(chapter 3). Assume we have the already seen rule (3.1) stand-alone:

d ^ a

Although c V^c is a tautology, it is easy to see that (3.1) does not entail rule (3.2), that

is:

d ^ a n (c V ^c)

For instance, the interpretation M(a) = tn, M(c) = fp and M(d) = fn is a model of (3.1)

but not of (3.2).

This example shows the that pertinence can be classified as a relevance logic (as studied
for instance in [4]) so that, the satisfaction of formulas is af%cted by the atoms occurring in

8.9 Schwind's comparative 141

them. Of course, from a classical logic point of view, it may seem counterintuitive the fact
that the introduction of logical tautologies affects the satisfaction of formulas. However,
we must always bear in mind the underlying "dynamic" understanding of causal formulas
and that, as we explained in example 3.2, pertinence may mean momentary instabilities
for which usual truth values may be undefined.

142 ^ Comparison to other action approaches

Chapter 9

Pertinence Action Language

In the previous chapters we have studied the relation between pertinence and causality trying
to simplify the representation as much as possible. In this way, we defined a special rule syntax,
we called P-language, that was simple but expressive enough to cover most of the typical repre-
sentational examples used in the literature. However, for practical purposes, P-language must
be significantly improved. For instance, we can try to handle expressions involving the fluents
(and actions) values, rather than considering separatedly each conjunctive case and using aux-
iliary variables. As an example, consider the following typical planning problem (as extracted
from [77]) :

Example 19 (The missionaries and cannibals problem)
"Three missionaries and three cannibals come to a river and find a boat that holds two. If the
cannibals ever ontnz^mber the missionaries on either bank, the missionaries will be eaten. How
shall they cross?" q

Assume we represent this domain with a set of actions carry(M, C) pointing out that M
missionaries and C cannibals are carried in the boat from one bank to the opposite one. Besides,
we use a fluent num(P, B) E [0, 3] to point out how many persons of type P E{mis, can} are
in a given bank B E{le f t, right}. The fluent boatbank is used to point out the location of the
boat. Finally, for commodity sake, we include an auxiliary fluent moved(P) that points out how
many persons of type P are carried, i.e., if carry(M, C) is true, then moved(mis) = M and
moved(can) = C.

Now consider the formulation of this domain in P-language. We would need to represent
that the boat cannot be moved when it is empty:

1 if carry(0, 0) (9.1)

and that the capacity cannot be exceeded:

1 if carry(M, C) (9.2)

for any pair of values of M and C so thát M+ C> 2.
If we assume that the rules:

holds(moved(mis), M) if carry(M, C) (9.3)

holds(moved(can), C) if carry(M, C) (9.4)

144 Pertinence Action Language

are also included, the variations of the number of persons in the departure and destination banks

are respectively represented by the rules:

holds(num(P, B), N- M) if holds(moved(P), M)

after holds(n^cm(P, B), N) n holds(boatbank, B) (9.5)

holds(n^cm(P, B), N+ M) if holds(moved(P), M) n holds(boatbanl^, B)

after holds(num(P, B), N) (9.6)

We represent the movement of the boat using:

holds(boatbanlc, B) if carry(M, C) after holds(boatbank, B') (9.7)

where B is the opposite bank to B'. Finally, we must avoid that the cannibals eat the mission-

aries:

1 if holds(num(mis, B), M) n holds(num(can, B), C) (9.8)

for any C> M and M> 0.
Notice the probléms of this representation. First, the constraints involving variables values

cannot be directly represented in ^-language - in fact, variables are just an abbreviation we

use to replace all the grounded instances. Second, although fluents like nnm, or moved have

a numerical range, we actually do not take much benefit from this, since we must finally use
expressions involving auxiliary variables, rather than directly the fluent name. This is more

similar to the way in which arithmetic expressions are handled, for instance, in Prolog. As a

matter of fact, notice that expressions like N- M are also abbreviations of some grounded

instance, and are not actually allowed in ^-language.
In this chapter we briefly comment about an extension of ^-language, called Pertinence

Action Langz^age (PAL1) [87] (first presented in [21]) which is thought to overcome these limita-

tions. The goal of defining this language is to simplify the representation as much as possible by
making use of the functional nature of symbols (either actions or fluents). In this way, we may
use any action or fluent name inside logical or arithmetic expressions, or even as parameters of
other actions or fluents. The syntax style has a strong resemblance to traditional programming

languages like C or Pascal.

9.1 Missionaries and cannibals in PAL

Perhaps the best way to present PAL is directly using an example. Figure 9.1 shows the repre-

sentation of the missionaries and cannibals problem in PAL.
As we can see, the first group of lines are used to define the set of blocks as the integer interval

from 1 to 4, and the set of locations as any block or the table. A set is usually defined as a
group of elements embraced by {...}, like for instance the singleton set {table}. Elements
in a set can be both atom names (an identifier with a lower-case initial, like table) or integer
numbers. As usual, the interval notation [1, 4] is an abbreviation of { 1, 2, 3, 4} . Set expressions
can be constructed using binary operators +, -,* standing for union, difference and intersection

respectively. Two set names are predefined:

lUnfortunately, the same acronym has also been recently used in (13] to stand for Probabilistic Action Language

which has no relation to the current work.

9.1 Missionaries and cannibals in PAL

options

not concurrent;

constants

capacity = 2;

nummis = 3;

numc an = 3 ;

sets

persontype = {mis,can};

number = [0 , nummi s] + [0 , numcan] ;
bank = {left,right};

f luents

num: persontype x bank -> number;

moved: persontype -> [O,capacity);

boatbank: bank;

opposite: bank -> bank;

actions

carry: [O,capacity] x [O,capacity] -> event;

vars
M,C : [O,capacity] ;
B : bank;
P : persontype;

rules

f alse if carry(M,C) and M+C>capacity;

false if carry(0,0) ;

moved(can):=C if carry(M,C);

moved(mis):=M if carry(M,C);

num(P,prev(boatbank)):=prev(num(P,prev(boatbank)))-moved(P);

num(P,boatbank):=prev(num(P,boatbank))+moved(P);

boatbank:=opposite(prev(boatbank)) if carry(M,C);

f alse if num(mis,B)>0 and num(can,B)>num(mis,B);

initially

opposite(left):=right,

opposite(right):=1eft,

num(P,left):=3,

num(P,right):=0,

boatbank:=left;

145

Figure 9.1: Missionaries and cannibals problem in PAL.

146 Pertinence Action Language

boolean = {true , f alse} ;
event = {true};

After these auxiliary declarations, we describe the fluents and actions involved in the

domain. Syntactically, their declarations have the same shape, following the usual description

of function types:

< f name > : < setl > x < set2 > x . . . x < setn > -> < range >

which means that f name is a n-ary function so that given ^1, ...,^^ with ^i E seti, we have

that f name(^1, ...,^n) E range. Using this convention, the fluents in figure 9.1 are quite self-

explanatory. When the fluent is 0-ary, we may simply omit the arrow ->, as in the declaration

of boatbank.

As a remarkable observation, notice how the range for action carry is event, that is, its

only defined value is `true'. This is because, as we explained in section 4.1, unperformed actions

have no defined value. In this way, we are free to define an action like:

set_bit : boolean;

which can be performed with value true, performed with value false or not performed at all.
The options line expresses that we will not consider concurrent actions.

In order to define the rules, we declare auxiliary variables (always varying in a finite range).
The rule syntax allows arithmetic, relational and logical operations, as in any programming
language, plus a conditional `if'. As we can see, the expressions may freely mix variable names
with fluent or action names. Besides, instead of handling a precondition, like the `after' in
^-rules, we include a fluent name "modifier" so that, for any fluent name f, the expression
prev(f) denotes its value at the previous situation. This allows mixing previous values with
current ones, as happens in the rules for computing the fluent num:

num(P,prev(boatbank)) .= prev(num(P,prev(boatbank)))-moved(P); (9.9)

num(P,boatbank) .= prev(num(P,boatbank))+moved(P); (9.10)

Notice that this integration even allows fluent expressions as parameters for non-0-ary fluents.

In this way, using a compact representation like num(P , prev (boatbank)), we may easily express

an apparently complex concept like:

"the (resulting) number of persons of type P in the bank where the boat was

previously."

The advantage of this representation becomes evident if we compare (9.9) and (9.10) to the
previous seen P-rules, (9.5) and (9.6), respectively. Note how we have reduced the amount of
auxiliary variables, leaving just the one actually needed: the type of person P for which we
wish to update the number. Of course, it is still possible to maintain these auxiliary variables,
handling a closer notation to P-language, like for instance, with the equivalent rule:

num(P,B):=N-M if moved(P)=M and prev(num(P,B))=N and prev(boatbank)=B;

Let us see next other interesting features with a second typical example.

9.2 The blocks world 147

9.2 The blocks world

Another typical scenario for planning problems is the following one:

Example 20 (The blocks world)

A robot may move a set of cubic blocks which can be placed one on top of another or directly
on the table (we assume we always have enough room on the table). A block cannot be moved
if it has something on top. Besides, only one block can be moved at a time. O

Figure 9.2 shows the representation of the blocks world scenario in PAL. This example
introduces a new modifier pert which refers to the pertinence of a given symbol. In this way,
pert (move (B)), is used to test whether the action move (B) is pertinent (i.e., has been performed)
or not, regardless the action value. Of course, we could also represent this same concept by using
an alternative block variable C, and requiring move(B)=C, but this additional variable would not
have any particular use (it would actually correspond to the use of the underscore `_ ' in Prolog)
and would unnecessarily interfere in the grounding process. Besides, the reference to pertinence
of an action is esser^tial for expressing that the action has ^ot occurred. For instance, in order
to express that we have not moved block B, the expression not (moved(B)=C) cannot be used
as a condition, since both B and C are variables universally quantified in the whole rule, and so,
existentially quantified inside the condition. Furthermore, the mere reference to an action name
(without using pert) implicitly leads to assume that this action is pertinent. So, the correct
way to represent the non-occurrence of move (B) would be not pert (move (B)). AS for the case
of fluents, we can also use pert to refer to their pertinence/non-pertinence, but we do not have
this time the problem of undefined values.

Another new feature is the use of fluent literals to the left of `if'. For instance, the rules for
fluent clear (marked as r2 and r3) would respectively be simple abbreviations of:

clear (move (B)) : =f alse ;
clear(prev(loc(B))):=true if pert(move(B));

Notice again how we exploit the functional nature of actions and fluents as much as possible.
For instance, rule r3 expresses in a compact way the sentence:

"if we move some block B, then the previous location of B becomes clear."

As another piece of example, rule r5 qualifies action move (B) :

"it is not possible that the block where we move B was not previously clear."

Some implicit assumptions have also been taken into account. For instance, consider the
expression clear (move (B)). As move (B) is a location, it may include the case of move (B) =table.
However, clear(table) is not defined, because clear is only applicable to a block. When the
grounding leads to a case like this, no grounded ^-rule is generated at all.

As happened in the previous example, PAL rules are simpler than the usual representation
of this domain in logic proĝramming or in other action approaches. For instance, we typically
would have to include a set of constraints to express that we cannot place the same block at two
different locations or that we cannot move the same block to different targets. These constraints
become implicit here because move and loc are defined as functions (whose result value is always
unique by definition). Of course, this feature is not only provided by PAL, being also present in
other action formalisms that allow the definition of multi-valued fluents.

148 Pertinence Action Language

options

not concurrent;

sets
block = [1, 4] ;
location = block + {table};

actions

move: block -> location;

f luent s
loc: block -> location;

clear: block -> boolean;

vars

B: block;

rules

loc(B):=move(B); /* rl */

not clear(move(B)); /* r2 */

clear(prev(loc(B))) if pert(move(B)); /* r3 */

f alse if pert(move(B)) and not prev(clear(B)); /* r4 */

f alse if not prev(clear(move(B))); /* r5 */

f alse if move(B)=B; /* r6 */

initially

loc(B):=table,clear(B);

Figure 9.2: Blocks world scenario in PAL.

9.3 Rule grounding 149

For instance, in the very recent work [45], multi-valued fluents are incorporated into the
C action language. The resulting extension has received the name of C+ and has also been
embodied into CCALC tool. In C+, for each fluent f, we have a set of values Dom(f) (which
corresponds to our range(f)) so that we may use a new type of atom, f= v, inside the causal
expressions. Using this feature, they present a very similar representation to our blocks world
scenario where, for instance, the location l of a block b is also represented as loc(b) = l. It is
worth to note, however, that despite of this similarity, C+ still forces to use auxiliary variables,

rather than directly constructing expressions with the fluent name. To put an example, the rule
for increasing the number of cannibals we saw in the previous example, would be represented in
C+ as:

caused num(can, B) = N- M if moved(can) = M after num(can, B) = N n boatbank = B;

and, using CCALC syntax, finally written as:

caused num(can,B) eq X if moved(can) eq M

after num(can,B) eq N&8^ boatbank eq B 8c& X=N-M

Anyway, it is easy to see that moving C+ towards PAL representation could be directly
proposed without any additional difliculty.

9.3 Rule grounding

Despite of the diíferent looking between a PAL rule and a^-language rule, the way in which
the former is interpreted is, in fact, by translation into a set of grounded instances of the latter.
This translation follows the next steps:

1. First, we identify all the components to be instantiated, that is, variables and symbol
names, understanding as dií%rent components p, prev(p) and pert (p), for each symbol p.
Then, we generate a grounded instance per each possible combination of these components.
As an exception, we do not instantiate the leftmost fluent occurring at the left of :_, let
us call it the e,,ffect,fluent. We denote pi/vZ to stand for the instantiation of symbol pi into
one of its values vZ E range(pi).

2. Once the combination of values is established, we simply make a bottom-up evaluation of
all the expressions. Whenever an if condition is valuated as false or a parameter is out
of its symbol domain, we jump to the next instance without generating any grounded rule.

3. Finally, we generate a(grounded) 1^-rule:

E if holds(pl, vl) n... holds(pn, vn) after holds(fl, ul) n••• n holds(f„^, ur,,,)

where:

i) E is the atom holds(f, v) where f is the effect fluent, and v is the final value of the
expression to the right of :_. If the PAL rule had not eífect fluent (i.e., its head was
false) or v¢ range(f) then E becomes 1 instead.

ii) each holds(pi, vi) corresponds to the instantiation pi/v2 for each symbol pi which was
not referred via prev modifier.

150 . Pertinence Action Language

iii) each holds(fi, ^i) corresponds to the instantiation prev(fi)/^ci for each fluent fi which

was referred using the prev modifier.

Let us see some examples. Consider the rule:

false if carry(M,C) and M+C>2;

We must instantiate the values for M E[0, 3], C E[0, 3] and carry(M,C) E{tr^ce}. When an

instantiation like (M/2, C/1, carry (M, C) /true) makes the condition become f alse:

true and 2+1>2

no rule is generated. Thus, the final set of rules would be:

1 if holds(carry(3, 3), t)

1 if holds(carry(3, 2), t)

1 if holds(carry(3,1), t)

1 if holds(carry(3, 0), t)

1 if holds(carry(2, 3), t)

1 if holds(carry(2, 2), t)

1 if holds(carry(2,1), t)

1 if holds(carry(1, 3), t)

1 if holds(carry(1, 2), t)

Notice that, unless the symbol parameters are constant (or the symbol is 0-ary), the final

complete name of the fluent is not established until we make the bottom-up valuation (step

2). For instance, we first detect in step 1 some carry(M,C) or some num(P,boatbank), using
their respective ranges to generate grounded instances, but we do not finally obtain a grounded
symbol, e.g. like carry(2,1) or num(mis,left), until we do the bottom-up valuation of the

grounded expressions. When doing this, . it may be the case in which the parameter expression

is out of domain, like in:

clear (move (B)) : =f alse ;

when move(B)=table. Again, as stated in step 2, no rule is generated in such a case. In this

way, we would obtain:

holds(clear(1), f) if holds(move(1),1)

holds(clear(2), f) if holds(move(1), 2)

holds(clear(3), f) if holds(move(1), 3)

holds(clear(4), f) if holds(move(1), 4)

where table never occurs.
As an additional interesting example of grounding, consider the domain:

9.3 Rule grounding

sets

int = [0,4];

actions

i : int;

f luent s
b: [1,3) -> int;

rules

b(i):=prev(b(i))+1;

Intuitively, when we assign a value k for the action i, the k-th position of b is incremented by
one. Of course, we implicitly require that i E[1, 3] since, otherwise prev (b (i)) is not defined,
and so, no rule is generated. Besides, for any instance with prev (b (i))=4 the expression
prev (b (i))+1 is valuated as 5, and so, it is out of range for the eífect fluent b(i). Therefore,
the PAL interpreter automatically generates the constraints:

1 if holds(i, l) after holds(b(1), 4)

1 if holds(i, 2) after holds(b(2), 4)

1 if holds(i, 2) after holds(b(2), 4)

All these implicit transformations allow avoiding range and domain checkings like:

b(i):=prev(b(i))+1 if i>=1 and i<=3;

false if prev(b(i))=4;

It is also interesting to note that the resulting interpretation for boolean expressions corre-
sponds to the definition of pertinence for propositional connectives. For instance, consider the
case of a disjunction like:

f luent s

b,c,d:boolean;

rules

b if c or d;

The grounding would generate four possible pairs of values for c and d, but only three of
them satisfy the condition c or d(the case c=false, d=false is ruled out). So, the resulting
rules would be:

holds(b, t) if holds(c, t) n holds(d, f)

holds(b, t) if holds(c, t) n holds(d, t)

holds(b, t) if holds(c, f) n holds(d, t)

The generation of the three cases is important, since ^-rules are then interpreted using perti-
nence. For instance, it must be observed that we cannot translate the PAL rule by just handling:

holds(b, t) if holds(c, t)

holds(b, t) if holds(d, t)

because, as we saw when studying disjunction in static L2, the formula b V c can be also caused
when one of its disjuncts is true and not pertinent while the other is false but pertinent.

151

152 Pertinence Action Language

9.4 Temporal pro jection

Apart from the scenario description, PAL allows solving, in its current version, two kinds of
reasoning problems: temporal projectior^ and temporal q^ceries. These two types of problems are

integrated in the same framework, so that, we can simultaneously mix simulation, which goes

updating a"real" narrative, and solving hypothetical queries, where the initial state is assumed
to be the current one in the real narrative. Let us see first how temporal projection works.

To see a well known example, consider the suitcase scenario:

sets

lock={1,2};

f luent s
open: boolean;
up: lock -> boolean;

actions

toggle: lock -> event;

vars

L:lock;

rules

up(L):=not prev(up(L)) if toggle(L);

open if up(1) and up(2);

A typical temporal projection description would have the shape:

initially

not up(1),up(2),not open;

do {

,toggle(2);

toggle(1);

toggle(1),toggle(2);

toggle(1);

The initially clause is followed by a set of fluent value assignments (in this case represented
as literals) which resets the real narrative to the corresponding initial state. In fact, we can use
variables and conditional expressions for these assignments, provided that no reference to other
fluent is done. For example, this expression would also be correct:

up(L) :=false if L!=2

inside initially.

After initializing the real narrative, the do clause describes the sequence of action assign-
ments, using a semicolon to delimit the end of a transition, and a comma to separate concurrent
actions inside the same transition. To put an example, the output of the previous execution

would be:

1)

toggle(2):=true

9.4 Temporal pro jection

up(2) :=false
2)

toggle(1):=true

up(1):=true

3)

toggle(1):=true

toggle(2):=true

up(1) :=false

up(2):=true

4)

5)

toggle(1):=true
open:=true

up(1):=true

As it could be expected, only the pertinent facts are shown (the rest can be deduced by
persistence) . Note how from a programmer's point of view, pertinence means an advantage,
since it emphasizes the relevant part of the domain. This is very important, specially when
dealing with a relatively large amount of fluents. In fact, this necessity of limiting the output
to the relevant information has also arisen when using other systems. For example, when using
the logic programming tool SMODELS [105] to represent action domains, we typically include
some assertions of the style:

hide.

show caused(F,V,S).

to express that, when showing a stable model, we want to hide all the atoms excepting the ones
for predicate caused, which are the actually relevant ones. The advantage of pertinence is that
this relevance is conte^t-dependent, so that a fact for a given fluent may be relevant in a given
transition but non-relevant in a dif%rent one.

The changes done when using do clauses are incremental, so that:

do {toggle(1);}
do {toggle(2);}

is equivalent to:

do {toggle(1);toggle(2);}

The current "real" state is, at each moment, the one corresponding to the last do-transition.
In order to compute the successor state, PAL uses by default the well-founded encoding for
P-rules. In this way, there exists at most a unique successor state, although this state may
contain some undefined fluents (or just some of their values). For instance, consider the already
seen cycle example R2 (rule (7.6) in section 7.1) which corresponds to:

actions

a: event;
f luent s

b : boolean;

rules

bifbanda;

153

154 Pertinence Action Language

The output for the following temporal projection:

initially b;

do {a;}

is the resulting state:

1)
a:=true
b:_? Unf ounded values={ f alse }

which points out that, at situation 1, a is (trivially) true and pertinent whereas the pertinence
of b could not be established, although we know for sure that b cannot be false, (i.e., the value

false is "unfounded" for b).
Similarly, the example R4 in section 7.1, containing rules (7.9)-(7.10), would correspond to

the PAL description:

actions

a: event;

f luents

b,c: boolean;

rules

b if not c and a;

c if not b and a;

The execution of:

initially

not b, not c;

do{a; }

yields the following output:

1)

a:=true

b:=? Unfounded values={ }

c:=? Unf ounded values={ }

that is, both b and c are completely undefined.
Apart from the well founded encoding, PAL currently allows switching to the stable mod-

els interpretation (circumscription and completion are still under development) using the tool
SMODELS2 as a back-end search engine for obtaining the stable models.

For changing the interpretation of rules, we can include the option:

options

inference=smodels;

Using this option, the output for RZ becomes instead:

No models found.

2This connection between PAL and SMODELS is relatively simple thanks to the availability of an API for

handling SMODELS from any C++ program. ^

9.5 Queries

whereas the output for R4 is:

Several models were found.

1)

a:=true

b:=true

Two important remarks must be made here. First, as the stable models interpretation
leads to a nondeterministic transition relation, temporal projection arbitrarily selects one of the
possible successor states as the resulting real state. In the case of R4, we have obtained the model
where b becomes true and pertinent while c persists false (and so, it is not shown). Second,
the case in which "no models are found," (there is no stable model for the corresponding
program) never happens when using well-founded semantics. At most, we can get that there
does not exist a successor state, but this is always due to the application of a rule with effect 1.
As a result, it is always possible to show one rnle (at least) that has caused the inconsistence.
For instance, the execution for the blocks scenario:

initially

loc(1):=2,

loc(B):=table if not B=1,

not clear(2),

clear(B) if not

do {

move(2):=table;

}

B=2;

using the well founded interpretation, leads to the output:

Inconsistence (rule 4, line 23, applied with `f alse' head).

that is, the rule we have marked as r4 has been applied (we cannot move a block that was not
clear).

9.5 Queries

As we said above, together with the solution of temporal projection or simulation problems,
PAL also allows solving temporal queries. These queries can be done after or before any do
clause and never aífect to the real narrative.

The simplest case of query is the one for consulting information about the current (or pre-
vious) state. For instance, coming back to the suitcase scenario, the following queries:

query

open ? ^

up(1) or prev(up(2)) ?

are quite straightforward, respectively asking, in the first case, whether the suitcase is open, and
in the second case, if it is the case that lock 1 is up, lock 2 was up or both. In fact, a query
accepts practically the same syntax than any rule condition, and it follows similar grounding
steps, generating grounded query instances. So, we can ask about pertinence, like in:

155

156 Pertinence Action Language

query

pert(up(1)) and pert(up(2)) ?

to check whether both fluents have been affected by the actions, we can use variables, like in:

query

up(L) ?

to check which locks are currently up, or we can construct expressions with the fluent and action
names, like in:

query

num(mis,left)=num(can,right)+2 ?

The answer to a query containing variables usually leads to multiple solutions, and the output
is similar to the one for a Prolog query:

vars

B,C:block;

query

loc(B)=table and loc(C)=table and B>C?

B=2,C=1

B=3,C=1

B=3,C=2

B=4,C=1

B=4,C=2

B=4,C=3

6 solutions

We can also fix the maximum number of solutions using the option:

options
solutions=3;

which is usually more interesting for temporal queries.
Apart from the queries about the current state, we can propose hypothetical future obser-

vations so that PAL tries to find an explanation, guessing the actions to be performed. These
future observations are placed in the query by separating them with semicolons. For instance,
assume that the initial state of the suitcase scenario is:

initially

not up(1), not up(2), not open;

If we perform the query:

query

true; open?

we are asking for a way of making open true in a hypothetical next state. The output in this

case is:

9.6 Queries for stable models: temporal explanation vs. planning

Solution 1:

1)

toggle(1):=true

toggle(2):=true

open:=true

up(1):=true

up(2):=true

1 solution

Of course, the semicolon can be used as many times as desired, like:

query

true ; true ; true ; open ?

true ; true ; true ; up(1) ; up(1) ; up(1); open ?

Besides, when the formula in a given situation is simply the expression `true', it can be
omitted. For instance, the first queries above, can also be represented as:

query

; ; ; open ?
; ; ; up(1) ; up(1) ; up(1); open ?

As another abbreviation, when we want to repeat the last formula ^ along the next k situa-
tions we can use the notation:

^...{k}^/i

to replace the expression:

^;...;^; ^and^

In this way, the example queries can be further simplified into:

query

...{3} open ?

...{2} ; up(1) ...{2} ; open ?

As an example of the typical use of this syntax for solving planning problems, the query for
solving the missionaries and cannibals problem in 11 steps would have the shape:

query

...{11} num(can,right)=3 and num(mis,right)=3 ?

9.6 Queries for stable models: temporal explanation vs. plan-
ning

15?

It must be emphasized that PAL queries are actually solving te^nporal e^planatior^ problems,
which is not strictly the same than planning problems. As we already discussed in section 4.2,

158 Pertinence Action Language

when the transition relation is deterministic, like in the well-founded encoding of ^-rules, or
simply, when cycles are not present in any of the encodings, there is no diíference between
both types of problems. However, under a nondeterministic framework, temporal explanation

is weaker than planning. Thus, when we deal with cycles and we use the stable models option,

the result of a query may not be a valid plan.

For instance, consider the already seen cycle R4 using the smodels inference option, and

assume we pose the query:

initially

not b, not c;

query

;c?

The answer has one solution:

Solution 1:

1)

a:=true

c:=true

1 solution

which provides the only possible e^planation (performing the action a) that justifies the obser-

vation c true at the next situation. However, as the execution of a is nondeterministic, this

solution does not guarantee achieving c true in the next state. In fact, as we saw before, if we

perform:

do{a; }

the temporal projection selects (arbitrarily) the other possible stable model in which b becomes
true and pertinent and c persists false. So, the goal c is not satisfied.

In order to establish whether a given explanation is a valid plan, we must perform an ad-
ditional query where, together with the obtained actions sequence3, we negate the goal in the
last situation. If no solution is found, then the explanation is a valid plan. In our example, this
simply corresponds to checking whether the query:

query

; a and not c?

has solutions or not. As we obtain the possible model:

Solution 1:

1)

a:=true

b:=true

^ 1 solution

3We are assuming nonconcurrent actions. Otherwise, we should also avoid that the answer includes additional
actions as new explanations.

9.6 Queries for stable models: temporal explanation vs. planning 159

we can assert that performing a is not a valid plan for obtaining c. In fact, as this was the only
explanation, this means that such a valid plan does not exist.

This technique for checking the validity of a given explanation as a plan is also used in
CCALC, where the transition relation is (in the general case) nondeterministic. As we saw,
when causal rules contain positive cycles, their encoding into Clark's completion may lead to
multiple successor states for a given transition. In the case of CCALC, as the completion is a
classical theory, searching a plan corresponds to two queries:

i) Find a model M such that M^ T n G, where T is the (completed) background theory
and G is the goal

ii) Check whether T n A n^G ^ l, being A the sequence of actions occurring in M.

that are usually solved by an external propositional solver4.
In classical logic, step ii) is equivalent to show T n A^ G. However, when we use stable

models, this equivalence is not valid any more, because the entailment relation is now nonmono-
tonic (and even noncumulative). Thus, the soundness of this technique depends on the shape of
the program. This is guaranteed by the following two features:

• Each grounded query like G or A n ^G is actually represented as a logic program constraint
instead of being included as a set of facts in the program. In other words, we do not add
the query as evidence for the program but, instead, we select the resulting stable models
that contain the query facts.

• It is easy to see that any stable model for the program P(R), translation of a given set
of rules R, always provides at least one value for each action or fluent at each situation.
Thus, selecting the stable models that do not contain holds(^, t) is the same than selecting
the stable models that contain holds(P, f).

QOne of the problems of this technique is, in fact, that most of the available efficient propositional solvers
provide at most one model M for step i) but it may be the case in which M does not pass the test in step ii).

160 Pertinence Action Language

Chapter 10

Conclusions

In this dissertation we have studied ^ the use of causality in action domains, but applying a
diíferent focusing with respect to the recent line of causal approaches that have emerged in
the area. These approaches understand causality as some mathematical mechanism to rule out
undesired models. They are mostly concerned with solving representational problems (like the
frame and ramification problems) and so, in many cases, once the desired models are obtained,
causal information is disregarded. The work presented here, has studied instead the possibility
of dealing with causal knowledge as a significant part of the state, at the same level than fluent
values. In this way, we can establish an excluding distinction between facts that have been
caused, that is, that have been obtained via some causal intervention, and facts that have
persisted, i.e., that have been obtained by inertia. F^.irthermore, this information can be used
inside the conditions of causal rules, exactly as we would do with fluent values.

The separation between inertia and causality has been achieved by defining the concept of
pertinence with respect to the actions execution and proposing some postulates about its basic
features. Essentially, we have defined that a fluent is pertinent whenever its value is result of a
causal intervention, regardless its final value. Analogously, the fluent is nonpertinent when it per-
sists by inertia. In fact, this idea is generalized so that we can talk about pertinence/persistence
of any formula ^(it is pertinent if and only if one of the occurring fluents is pertinent).

Starting from this idea, the main contributions of this thesis can be summarized as follows:

• We have presented a framework for transition systems based on finite state machines, where
pertinence is understood as an output function associated to the information included in
the state.

• We have introduced a basic causal rule syntax, we called P-language (for analogy with ,A-
language), that allows describing the transition function in a more compact and elaboration
tolerant way and provides a representation for the causal dependences underlying in the
domain.

• As a first attempt of semantics, we have provided a natural and simple update algorithm
that allows computing the succesor state for any possible transition, assuming that causal
dependences are acyclic.

• We have presented a whole first order logic formalization for capturing the operational
behavior of ^-language. This formalization (called Pertinence Calculus for analogy with
Situation or Event Calculi) incorporates basic axioms for two predicates: holds for speci-
fying the fluent values, and pert for representing their pertinence.

162 Conclusions

• As Pertinence Calculus relies on a classical logic representation, we have provided diífer-
ent nonmonotonic mechanism for dealing with inertia and for avoiding the ramification

problem. The alternatives we have presented are:

1. Circumscription: we maintain the classical logic representation but minimize the pert

predicate inside a portion of the theory

2. Logic Programming (LP) under stable models semantics

3. LP under well-founded semantics

4. LP under Clark's completion

Assuming acyclicity of causal rules, we have shown the correspondence of these four se-
mantics with respect to the operational behavior.

• We have provided a detailed study on the effects of causal cycles when interpreted under
the four nonmonotonic options presented before.

• We have made a thorough comparative with respect to the best known action approaches,
particularly focusing on the way in which they represent causal knowledge versus inertia.

• The theoretical study has been put in practice by implementing an interpreter of a high
level language, Pertinence Action Language (PAL), which simplifies the representation of
dynamic domains, thanks to the definition of pertinence, and to the possibility of con-
structing expressions that involve functional actions and fluents.

Besides these main contributions, some interesting collateral results have been obtained, like
for instance, the variation of the transformation based algorithm for WFS presented in [17] to
cope with WFSX [2].

The broadness of this research work gives chance to a great deal of improvements and open
lines for future work. We can classify these open directions into extensions for the theoretical
part and improvements for the practical system. For instance, as an action formalism, the
presented work has not dealt with other common features which are typically studied in the

area. These features are not essential for the study of causal reasoning, but are very interesting
for an appropriated representation of many action scenarios. We may cite:

•(Explicit) nondeterminism: it consists in allowing the description of a nondeterministic
transition relation using a causal representation. This could consist in incorporating a new
type of rule whose ef%ct is possibly caused, but its causation is not always granted. In this
way, the application of the rule may lead to a state in which the efFect is caused, or to a
state in which the rule fails.

• Qualification problem: it is partially related to the previous topic. The goal is to allow

describing in a compact way the exceptions for the effects of an action (or even a ramifi-
cation rule), avoiding to mention them each time the action is referred along our domain

representation.

• Natural actions: some caused effects do not have any simultaneous external intervention,
but are instead the result of a delayed causal dependence. In order to represent these
delayed effects, we have two possibilities: (1) including rules whose conditions do not
depend on pertinence; and (2) studying the propagation of pertinence between consecutive
situations (notice that, currently, the preconditions of rules do not depend on pertinence).

163

• Actions with dnrations and n^cmerical timeline: sometimes, it is interesting to represent an
action that takes place along a number of situations, or even a time interval. This could
be easily done by translating this type of actions into events in a similar way as done in
TAL [33] or Event Calculus [53] .

• Sensing and robot knowledge: another interesting topic is the possibility of representing
not only the world state, but also the robot's knowledge about that state. This allows
proposing planning problems that may involve sensing actions for completing the robot's
knowledge before making any modification of the real state.

Apart from these typical enhancements, we could also extend the three usual types of prob-
lems (temporal projection, temporal explanation and planning) for dealing with other interesting
features like:

• 5trong eq^civalence between causal representations: that is, not only to guarantee that they
lead to the same transition relation, but also that this is satisfied even after adding new
causal rules. In order to study this property, we can take benefit from recent work [64]
about strong equivalence for logic programs under stable models. In the case of well-
founded semantics, the strong equivalence has not been fully characterized yet although,
for instance, the semantics presented in [20] allows establishing sufficient conditions.

• Study of temporal properties: the current version of PAL, and in fact, the existing non-

monotonic satisfiability planners like CCALC or those using SMODELS, are capable of

proving temporal queries with a fixed number of situations. In CCALC and SMODELS,

this is used for grounding all the rules at each possible situation. An interesting kind

of problems are those that consist in proving whether the system will eventually reach a

given state or not, regardless the elapsed number of situations. The problem here is that

the number of situations can be as large as needed. The most promising type of formalism

to be used in order to solve queries like these is Modal Temporal Logic, since there exist

decidable tableaux methodsl for solving queries with formulas like O^ (that is, ^ will be

true forever) or Q^ (that is, ^ will eventually become true). However, the combination

of these techniques (thought for monotonic propositional modal logic) with some general

nonmonotonic formalism still remains to be solved. As an approximation, we can cite the

temporal logic programming paradigm TEMPLOG [1, 14] and its extension for dealing

with default negation under stable models semantics (Temporal Answer Sets [19]).

• Machine Learning: in this area it should be quite straightforward to adapt the results
obtained in [68], where a thorough study for applying machine learning to action domains
was presented. As that work mainly relied on logic programming implementations, it can
be expected that the modification of the proposed techniques for dealing with pertinence
will be practically immediate, specially when using any of the logic programming semantics
we presented in section 6.6.

There are plenty of improvements that can be done for the PAL interpreter, apart from those
derived from the above extensions for the theoretical framework. Among other, we can mention:

• Inclusion of quantifiers in queries and rules: some queries like "are all the blocks on
the table?" cannot be correctly expressed since query variables are always existentially
quantified.

1 For instance, see section 5.4 in [7]

164 Conclusions

• Allowing full temporal e^planation problems, providing a partial description of the initial

state and generating an explanation that completes this description.

• Implementing the other two nonmonotonic techniques, i.e., the circnmscriptive encoding

and the one based in Clark's completion (or even an adaptation of Thielscher's causal

relationships).

• Extending the set operators for allowing intensive descriptions. For some problems, it is

also interesting to allow defining sets of tuples instead of atomic elements.

• Adding conditional ^and iterative instructions to the temporal projection syntax. In this

way, 'it would be possible to capture the whole behavior of a small conventional program-
ming language. Something similar has been recently studied in [95].

• Extension of the temporal operators to include temporal constraints. This would allow

proposing Temporal Constraint Networks inside a typical action domain description. The

theoretical study for this option has been presented in [22]. ^ .

Appendix A

Proofs of theorems

Proof of theorem 1

By definition of <F, we must prove U+ C_ W+ and U- C_ W-. Consider first any L E
U+ = f acts(P). The result of applying I' will always contain the fact L. By definition,
W+ = I'I's (W +), and so L E W+. Consider now L E U- . By definition, either L¢ heads (P)
or L E f acts(P), i.e., L E f acts(P). On the one hand, if L¢ heads(P), the result of applying
both I' and I'3 cannot contain L. Then, L^ I'S(W+), i.e. L E^l - I's(W_+) which, by definition,
is W-. On the other hand, if L E f acts(P), as f acts(P) C_ W+, then L E W+. But then, the
modulo PW + will not contain any rule with L as head (in the seminormal program P37 these rules
contains reot L in their bodies). As a result, L¢ I'3(W+) which means that L E^-l - I'S(W+)
i.e. L E W-. p

Proof of lemma 1

F
H

As p is not head of any rule in P, the same applies for PS, P' and P3. Thus, for any of these
programs Q and for any interpretation M, when iterating TQNr fi (^1), p is never obtained and so,
any rule with p in the body is never used. Then, it can be deleted without varying the result.
This directly implies that I'(M) = I''(M) and rs(M) = I'Ŝ (M), for any M and so, the proofs
for (a) and (b) become trivial.

L
H

We will similarly show that, for any M and any Q E {P, PS, P', PŜ }: p¢ TQNr T(0). As p¢ I'(^)
we immediately get that p cannot belong to any application of I'(M), because the resulting
modulo is a subset: PM C_ P^. Besides, as P^ = P^, we have p ^ rs (0), and so p cannot belong
to any I'S (M) since again PM C_ P^. Finally, for r' and I'ŝ it suffices to see that P' C_ P and
PŜ C PS. Then, the rules with p in the body are never used during the iteration TQM T(^) and
so I'(M) = I''(M) and I'S(M) = I'Ŝ (M) for any M, being the proofs for (a) and (b) directly
trivial.

P
H

As proved in Ĥ , since p is not head, it cannot belong to any application of I', I'S, I'' or I' Ŝ .
Besides, for any interpretation M such that p¢ M, it is easy to see that PM = P'M and

166 Appendix A

PM = PŜM. Let us prove first (a). For any fixpoint M= rrs(M) we have that, as M is the

result of applying r, p¢ M. But then, rs (M) = rŝ (M) (which is the first consequent of (a)),
and in its turn, p ^ rs (M). Finally, this means that M = rrs (M) = r'rs (M) = r'rŝ (M), that

is M is fixpoint of r'rŝ . The proof for (b) is completely analogous.

Ĥ
Notice first that, for any M, r(M) = r'(M) and p E r(M), because p is a fact in P, and so, it

will always valuated as true when applying TP (resp. TP^). Second, we show now that for any

M such that p E M and ^¢ M, rs(M) = rŝ (M). The fact p occurs as the seminormal rule

p F- rtot p both in PS and in PŜ , but in PM and PŜM, this rule will become again the original fact

p. As a result, deleting p from the rules will not vary the final outcome, i.e., rs(M) = rŝ (M).

Besides, in PM and PŝM all the rules for P will be deleted (they contain in their bodies not p).

This means that, additionally, P¢ rs(M).

Now, we prove (a): let M= rrs(M). Then, as M is the result of applying r then p E M.

But, at the same time, as rs is defined for M, p¢ M. Therefore, we can apply the previous

results, rs (M) = rŝ (M) (which is the first consequent of (a)). Let us call J to rs (M) . Then,

as we had seen, r(J) = r'(J), i.e., rrs(M) = r'rs(M) = r'r ŝ (M). The proof for (b) is again

analogous.
N

H

First, note that for any M with p E M, PM = P'M and PM = PŝM. Then, for proving (a), let

M= rrs(M). As before, since p is a fact in P and M is the result of applying r, we get p E M,

and p¢ M (otherwise rs (M) would not be defined). Therefore PM = PŜM and rs (M) = r ŝ (M)

(the first part of (a)). Now note that the fact p in P becomes the seminormal rule p F- not p

in PS. However, in the modulo PM (which is equal to PŝM) this rule becomes again the fact

p, because p¢ M. This means that p E rs(M), and so, Pr9^M1 = P'r9^M1. It follows that

rrs(M) = r'rs(M) = r'r ŝ (M). As always, the proof for (b) is analogous.
C

H

Again, for any M with p E M, in the modulos PM and PŜM all the rules with ^ as head are

deleted (as they are seminormal, they contain r^ot p in the body). As a result, P is never added

when iterating the direct consequences operator, and so rs(M) = rŝ (M). Now, consider the

proof for (a). If M = rrs(M), we have p E M(because of p being a fact and M the result

of r) and so, the previous result is applicable: rs(M) = r ŝ (M), which is the first part of

(a). Now, by definedness of rs(M), we get that P¢ M. But this means that when iterating

direct consequences on the program Pr9^M^, the fact P is never reached. Therefore, the rules

with ^ in the body are never used, and so, the program P'rs^Mi has the same least model:

rrs(M) = r'rs(M) = r'rŜ (M). The proof for (b) is completely analogous.
R
H

First observe that, for any M with p¢ M, PM = P'M and PM = PŜM, and so, r(M) = r'(M)

and rs(M) = rŜ (M). Now, if M= rrs(M) we have (as in the two previous proofs): p E M

and p E M. Therefore, we immediately have rs(M) = rŝ (M) (the first part of (a)). Now, note

that P¢ rs(M), because all the rules with ^v as head contain r^ot p in their bodies, and we had

that p E M. By our first observation, this means that the modulo for P and P' w.r.t. rs (M) is

the same one: rrs(M) = r'rs(M) = r'r ŝ (M). The proof for (b) is completely analogous. O

Proof of theorem 2

Proofs of theorems 167

Simply note that the well founded model in WFSX is defined as the three-valued interpre-
tation W=(W+, W-) with W+ = l fp(rrs) and W- = rs(M+). As we have proved in lemma
reflem:wfsxl, any fixpoint of rrs is fixpoint of r'rŝ and vice versa. So W+ = l f p(r'rŝ). Besides,
as also proved in lemma 1, for any fixpoint M, rs (M) = rŝ (M) . So W-= rŝ (W +) . Therefore,
if W is WFM of P, it is WFM of P'. Finally, if P has no WFM, as the fixpoints for rrs and
r'r^ coincide, then P' has no WFM. p

Proof of theorem 3

It follows from the previous results. Let us consider (i) first. It is easy to see that any program
P' containing the facts p and p is contradictory (has no fixpoints) in WFSX. As the transfor-
mations for WFS are also sound in WFSX, whenever we get the facts p and p in some of the
transformed programs P', its WFM in WFSX is not defined, and so, the WFM for the original
program is not defined as well. To prove (ii), it suffices with additionally applying lemma 1 for
the resulting program P' after exhaustively applying all the WFS transformations. The facts of
P' (i.e. W+) are included in X+ whereas the "non-head" atoms (i.e. W-) are included in X-.
So W<F X for that program, and also for the original one. q

Proof of theorem 4

We begin proving (ii). Consider rs(U+), and more concretely, the modulo Pŝ+. By nonap-

plicability ofĤ , program P cannot contain a rule with r^ot p in the body, being p a fact of
P. However, in PS, any rule with P in the head contains r^ot p in its body. So, PŜ+ is the
result of deleting in Ps any rule whose head is in f acts(P) plus the remaining default literals.
As a first consequence rs(U+) f1 facts(P) _^. But also, it is easy to see that PŜ+ C_ P^.

By nonapplicability of ►^, all the positive literals of P are included in r(0) whereas by non-

applicability of ►^, there is no positive literal of P in f acts(P). As a result, all the rule
bodies in P^ are true w.r.t. r(^) and so r(0) = heads(P^) = heads(P). Finally, since the
rules P^ - Pŝ+ are those with heads in f acts(P) and these in their turn never occur in the
bodies of P, we get that rs(U+) = r(^) - f acts(P) = heads(P) - f acts(P). Then, it directly
follows that ^-l - rs(U+) _^-(heads(P) - f acts(P)) = U-. Now, we proceed to prove
(i). By lemma 1, the trivial interpretation (U+, U-) has less information than the WFM. So,
U+ C l fp(rrs) and it will suffice with showing that U+ is simply a fixpoint: rrs(U+) = U+.
By (ii), rrs(U+) = r(heads(P) - f acts(P)). If we call J= heads(P) - f acts(P), we want

to establish the least model of P^. By nonapplicability ofĤ andĤ , given any rcot p in P,
p E heads(P)- facts(P). So, all the rules with default literals are deleted in P^. Now, by nonap-

plicability ofĤ in P, any body atom P^ cannot belong to f acts(P) = f acts(P^). This means
that, when computing TP,r T(Q1), rules with nonempty body are never used. In other words, the
least model of P^, is f acts(P') = f acts(P). That is, r(J) = rrs(U+) = f acts(P) = U+. q

Proof of lemma 2

Showing that (6.9) implies (6.8) is straightforward by definition of `-'.
To show that (6.8) implies (6.9), assume that the former is true but the latter false. This

168 Appendix A

means that, for some fluent F, value V, and situation I, holds(F, V, I) n^holds(F, V, J) or

^holds(F, V, I) n holds(F, V, J). For the first case, we have that holds(F, V, I), together with
(6.8), implies holds(F, V, J) and so we reach an inconsistence. In the second case, from axiom
(6.1) and holds(F, V, J) we get that:

`dV'. (V ^ V' ^ ^holds(F, V', J))

Now, applying modus tollens to each ^holds(F, V', J) and (6.8) we get that ^holds(F, V', I) for

all the values diíferent from V, but due to axiom (6.1), this means holds(F, V, I) and we reach

again a contradiction. q

Proof of lemma 3

We will work with the grounded propositional version of t(R). Given any set of models, consider

a partition where we collect in each class all the models with the same extent of predicate holds.

We will show that each class of models coincides both for CIRC[t(R); pert] and PCOMP[R], and

so, they have the same total set of models. Let H be one of these extents for predicate holds.

Then, we can define the modulo of any theory T with respect to H, T H, by replacing each

atom holds(p, v, i) by its truth value with respect to H. For instance, the models of PCOMP[R]

for class H would correspond to the models of PCOMP[R]H. On the other hand, the models
of CIRC[t(R); pert] for class H are simply the models of t(R)H with less extent for predicate

pert. Now, notice that t(R)H has the shape of a positive logic program exclusively containing

ground atoms of pert. Then, by property 10, its minimal models can be computed by the Clark's
completion of the program which is easy to see that it is no other than PCOMP[R]H. q

Proof of theorem 7

As R is definite, the theory T is equivalent to:

PCOMP[t(R)] U AX U Obs U(UFR)

Let us consider again the grounded propositional version of T. We prove first that if the opera-
tional semantics obtains a narrative v, this narrative corresponds to the unique model M of T.

To prove this, we proceed by induction both in the layer function j and in the situation index

i, proving that the atoms for (i, j) in M are exactly the ones we obtained in v.

i=0) Without regarding the layer j, given any symbol p, M must contain an atom pert(p, n, 0),

due to axiom (6.6), and an atom holds(p, v, 0) included in the observations atoms(QO) C T.

As actions which are not pertinent cannot have a value (axiom (6.5)), we get that there

is no action a such that holds(a, v, 0) E M. Finally, no other atom for situation 0 can be

added to M, since axioms (6.1)-(6.4) guarantee that the symbol value and its pertinence
value are unique for each situation. So, the set of atoms at 0 in any model M are exactly
the ones in the narrative v: the observed atoms(QO) and non-pertinence for all the symbols.

i-1) We assume proved up to situation i- 1 and try to prove for situation i.

i, j=0) The first layer of symbols consists of the actions and those fluents not occurring as ef-
fects in any rule. From the definition of do , for any fact holds(a, v) E a2 we get the

Proofs of theorems 169

atom holds(a, v, i) E M and, by axiom (6.5), also pert(a, p, i) E M. Besides, any nonper-
formed action b is forced to become non pertinent pert(b, n, i), and again due to (6.5), no
holds(a, v, i) atom can be included for them. As for the fluents, given any f in layer 0, it
is easy to see that in PCOMP[R] we will obtain the formula:

pert(f,p,i)-1

in other words, pert(f, n, i) must be true. From this, we get that all the pertinence atoms
for M in layer 0 correspond exactly to the ^r° established by the algorithmic approach.
But, as all the fluents are non-pertinent, the frame axiom (UFR) will shift all their previous
values to the current situation, obtaining an atom holds(f, v, i) for each holds(f, v, i-1) E
M. Since the induction hypothesis is verified up to i- 1, this means that the atoms
holds(f, v, i- 1) correspond to Qi_1 in the narrative, and so, the atoms holds(f, v, i)
correspond to Q° as defined by the algorithm. ,

We assume proved up to layer j - 1 and proceed to prove for layer j.

Let us consider any rule E if C after D with layer(symb(E)) = j. Thanks to induction
hypothesis, it is easy to show that the rule is applicable in v^-1 iff M ^^Ci n Di_1, since
this formula only depends on atoms up to situation i and layer j-1, and its interpretation
exactly corresponds to the idea of rule applicability. As these rule conditions are satisfied
by M, the rule translations t(R) will force ^Ej to be true, and so we obtain holds(f, v, i)
and pert(f, p, i) for any E= holds(f, v, i) effect of one of the applicable rules. As a result,
M must mandatorily contain the set of atoms corresponding to O^ct^. When all the rule
conditions for a fluent f are not applicable, we will equivalently obtain that the disjunction
of their translations:

v ^CÍ /^ DI-1

k

is false in M, and by pertinence completion, pert(f, p, i) must become false, i.e., pert(f, n, i)
true. In this way, we get that the pertinence atoms in M are exactly those in ^r? . Finally,
the frame axiom (UFR) is applied to any nonpertinent fluent in layer j, exactly as we did
for layer 0. Therefore, the rest of fluent values in M are taken from the previous situation,
which by induction hypothesis corresponds to Qi_1, and so, M also contains Pers^. Since
we have shown that M includes ^i and Out^ U Pers^, it contains at least one holds value
and pert value for any fluent in layer j, and so, no more atoms can be consistently included
in M.

We have to prove now that whenever M is a model of T then it is also the narrative obtained by
the algorithm. Let us assume the opposite, that is, either the algorithm obtains a diíferent M'
or no narrative at all. The first case is not possible, since we have just proved that any obtained
narrative is the unique model of T. So, the algorithm does not obtain any narrative, i.e., at
some point we apply two rules with dif%rent effects for the same fluent (or we have obtained
some 1 as eífect of an applied rule). However, assume we proceed with the inductive proof we
have just used up to the point in which the first two rules of this kind are applied. The proof
fixes the part of M we have obtained so far and, as we saw, the applicability of rules means
satisfaction of their conditions in T. Thus, both eífects must also be included in M, but this is
not possible due to axiom (6.1). Something similar happens for rules with 1 head: no model M
can satisfy the propositional formula 1. ^

170 Appendix A

Proof of theorem 8

We will construct a level mapping, level, for all the atoms of P(R). Since R is acyclic, we

may use the layer function, and its maximum value ma^layer = ma^{layer(p) ^ p E.A. U.F}.

To this aim, we begin defining a leveli "local" to each situation i E [0, n^ so that, for each action

A:

leveli(holds(A, V, i)
def _ O

leveli(pert(A, p, i)
def _ 1

leveli (pert(A, n, i)
def _ 2

and for each fluent F:

leveli (pert(F, p, i)

leveli(pert(F, n, i)

def

def

= layer(F) * 3

= layer(F) * 3 1

leveli(holds(F, V, i)
def = layer(F) * 3 + 2

Then, the global level is simply defined as:

level(holds(P, V, i))
def

leveli(holds(P, V, i)) + i*(ma^layer + 1)

level(pert(P, V, i))
def

level2(pert(P, V, i)) + i*(ma^layer + 1)

level(1)
def . (n + 1) * (ma^layer + 1)

It can be easily checked that no rule in P(R) violates this level ordering. In the case of actions,

we first establish their value holds(A, V, i), then their positive pertinence pert(A, p, i), which

depends on the value by (6.52)), and finally their negative pertinence pert(A, n, i) which depends

on the positive one by (6.49). As for the fluents, from layer to layer, we also define three levels:

first we decide the positive pertinence pert(F, p, i) since, looking at the P-rule translations,

it exclusively depends on symbols of lower layer; second, we include the negative pertinence

pert(F, n, i) which depends on the positive one by (6.49); and finally, we include the fluent value

which depends on the negative pertinence because of rule (6.48). O

Proof of theorem 9

We will use the transformation method from [17^ presented in the background. Notice that,

as the program is acyclic, it will suffice with applying rules Ĥ with x E{P,N,S,F} (positive

reduction, negative reduction, success and failure), since rule ^ is exclusively for positive loop

detection. As in the proof for theorem 7, we will proceed by induction in the situation and the

layer number. We will show that we can go obtaining an equivalent program so that the rules

with head up to situation i and layer j are exclusively logic program facts, and that these facts

correspond to the ones in the narrative already obtained by the algorithm.

i=0) It is easy to see that the program rule (6.49) adds the nonpertinence atoms for all the

symbols whereas atoms(QO) completely fix the initial state. The rules (6.1) and (6.3) can

be deleted by failure (there are no simultaneous values for the same symbol in a state

Proofs of theorems . 171

Qo). Also, rule (6.52) is deleted by failure, since no atom holds(a, v, 0) is head of any rule.
Finally, rule (6.49) with I= 0 is deleted by positive reduction, since no atom ^ert(^v, p, 0)
is head of any program rule. So, we can obtain an equivalent program that exclusively
contains the atoms of the narrative as only rules with head for situation 0.

i-1) We assume proved up to situation i- 1 and try to prove for situation i.

i, j=0) All the action atoms are directly obtained from do (ai, i). For those performed actions,
we also get pert(a, p, i) by applying success in (6.5). The rest of instances for (6.5) are
deleted by failure (there is no holds(a, v, i) for those actions). As for the fluents, note that
there cannot be any program rule with head pert(f, p, i) and fluent f at layer 0. Thus,
we can apply positive reduction in (6.49) for all the fluents at layer 0, obtaining that they
are nonpertinent. This also means that we can apply success to all the instances of (6.48)
for which the previous value of the fluent has been already obtained, and so we obtain
that the fluent value persists. The rest of instances of (6.48) are deleted by failure. So,
again we reduce the program rules at this layer exactly to the set of atoms obtained by
the algorithm.

i,j-1) We assume proved up to layer j- 1 and proceed to prove for layer j.

i,j) Let us consider any rule E if C after D with layer(symb(E)) = j. Thanks to induction
hypothesis, it is easy to show that the rule is applicable at this layer iff some of the program
rules for its translation can be reduced by success, obtaining the value and pertinence atoms
for the P-rule effect. The rest of program rules in the translation can be deleted by failure.
As for non-applicable ^-rules, it is also easy to see that they can be deleted by failure.
Then, the instances of (6.49) for the obtained pertinent fluents can be deleted by negative
reduction, whereas for those fluents that have not been concluded as pertinent, we can
apply positive reduction to (6.49) to obtain that the are nonpertinent. Finally, we can
apply success to (6.48) to obtain the persistence of their value, and failure for the rest of
instances of (6.48).

It must be observed that when the algorithm stops because of inconsistence, it could actually
go on computing facts until reaching the last situation and layer. It is easy to see that the
algorithm detects inconsistence if and only if the program transformation method yields atom
1 as a rule fact. Finally, as we have shown that the final program exclusively contains program
facts, this means that we have obtained the complete WFM (otherwise, we could only guarantee
that the WFM is a superset of these facts). p

Proof of theorem 10

Stable models:
It is clear that, given some Qo and á, the stable model M of P= P(R) U atoms(Qo) U do (á)
is a stable model of P' = P(R) U Pye71. To check it, just note that PM and P'M are the same
programs: when doing the modulo w.r.t. M, the rules in P9en generate exactly the observations
in atoms(Qo) U do (á).

So, we must actually prove that for any stable model M of P' = P(R) U P9e^ there exists
some Qo and á such that M is stable model of P= P(R) U atorras(QO) U do (á). We prove first
that M contains a unique atom holds(f, v, 0) for each fluent f. Assume it contains no value

172 Appendix A

for that fluent. Then in P'M, the rule (6.53) (included in P9e^,) would be transformed into the

fact holds(f, v, 0) and so M would not be model of P'M (and so, neither stable model), since it

does not contain this atom. Assume that, instead, it contains more than one value for fluent f.

Then, in the modulo P'M, all the rules (6.53) for fluent f would be deleted, since their bodies

contain not holds(f, v^, i) for all the values in range(f) but one, and M contains at least two of

them. Looking at the rest of the rules in P', it is easy to see that no other rule has some atom

holds(f, v, 0) as head. Therefore, the least model of P'M will not contain atoms of that shape

(i.e., as M contains them, it is not a stable model).
An analogous reasoning can be done for action executions: for each action a and situation

i> 0, M must contain either some unique atom holds(a, v, i) or the atom ^ert(a, n, i). We do

not provide the proof, whose only variation is that we must also consider rule (6.52), which
completes the negative cycle for the case of nonexecution of the action.

Therefore, we can extract from the atoms in M the corresponding (complete) initial situation

Qo and a(complete) sequence of actions á. Finally, we have to prove that M is stable model of

P= P(R) U atoms(QO) U do (á). This is straightforward since, again, P'M = PM.

Supported models:
As happened with stable models, we begin proving that given some Qo and á, the supported

model M of P= P(R) U atoms(QO) U do (á) is supported model of P' = P(R) U Pyen. To see

this, consider COMP[P] and COMP[P']. It is easy to see that, in the case of P, completion can

be just applied to P(R):

COMP[P] = COMP[P(R)] U atoms(QO) U do (á)

since the rest of formulas are just atoms. In the case of P', as P(R) does not contain any rule

with head holds(f, v, 0) nor holds(a, v, i) we also have that:

COMP[P'] = COMP[P(R)] U COMP[P9en]

where P9en contains the formulas:

holds(F, v, 0) - not holds(F, vl, 0), ..., not holds(F, vm, 0)

holds(A, u, I) - not holds(A, ^cl, I), ..., not holds(A, ^c^, I), not ^ert(A, n, I)

for any I E [1, n], for any fluent F, action A, any v E range(F) with {vl, ..., v,,,,} = range(F) -

{v}, and any u E range(A) with {^cl, . . . , ^c,,,,} = range(A) - {z^}. ^

Since M is model of COMP[P], it is also model of COMP[P(R)], so we only have to prove

that it is model of COMP[P9en]. But COMP[Pyen] asserts that any fluent is assigned an unique
value at situation 0 whereas for actions, it asserts that either they are assigned a unique value,

or they are nonpertinent. Since M is model of P', by correspondence theorem (9), it contains

the same set of atoms than the narrative in the operational behavior, and so, it must satisfy

COMP[P9en]•
Now, we have to prove the other direction, that is, given any supported model of P', there

exists a Qo and a á such that M is supported model of P= P(R) U atoms(QO) U do (á). As

we have seen, satisfaction of COMP[P9e7^] implies that any model M defines a complete initial
situation ^o and a complete actions execution á. As M is model of COMP[P'] it must also be

model of COMP[P(R)] and clearly M^ atoms(QO) U do (á). Therefore, M ^ COMP[P]. O

Proof of theorem 11

Proofs of theorems 173

Some initial remarks. First, remember that we implicitly understood that nonquantified
variables are actually universally ^ quantified. Besides, we handle the standard axiomatization
for the integer sort, including arithmetic operations and inequalities.

To show the equivalence, we will prove that both:

(i) (8.42) n (8.43) ^ (8.44) n (8.45)

(ii) (8.44) n (8.45) ^ (8.42) n (8.43)

Proof of (i)

Showing that (8.42) n(8.43) ^(8.45) is straightforward, by simply applying in (8.43) the
substitutions Il = I and I3 = I+ 1 and observing that, for integer numbers, there does not exist
any I2 strictly between I and I+ 1.

For proving (8.44), for any fluent F, consider the formula:

^^A, I2, V'. (0 < I2 n I2 < I+ 1 n ha^pens(A, I2) n set(A, F, V', I2)) (A-1)

If we assume (A-1) is true, from (8.42) with I3 = I+ 1 we get:

holds(F, V, 0) ^ holds(F, V, I+ 1)

which, by lemma 2, is equivalent to:

holds(F, V, 0) = holds(F, V, I+ 1) (A-2)

But, in the same way, as (A-1) covers situations strictly lower than I+ 1, it is also true for
those strictly lower than I. Therefore, taking I3 = I in (8.42) and following analogous steps, we
obtain:

holds(F, V, 0) - holds(F, V, I) (A-3)

And now, from (A-2) and (A-3) we finally get:

holds(F, V, I) - holds(F, V, I+ 1)

which directly implies (8.44), since it is its consequent.
Now, assume that (A-1) is false instead. Then, we can take an action, let us call it B, in

some situation Il between 0 and I+ 1 that happens and sets some value v for F. Besides, for
all those actions, we can freely take B as the (chronologically) latest one, so that:

ha^pens(B, Il) n set(B, F, V, Il) n^^A, I2, V'. (Il < I2 n I2 < I+ 1 n happens(A, I2) n set(A, F, V', I2)^A-

It is easy to see that we can apply (A-4) together with (8.43) both for I3 = I and I3 = I+ 1,
obtaining in this way both holds(F, v, I) and holds(F, v, I+ 1). But, due to axioms (6.2) and
(6.1), this implies:

holds(F, V, I) - holds(F, V, I+ 1)

and so (8.45) is also true.
Proof of (ii)

174 Appendix A

It is quite direct. To show (8.42) notice that if its antecedent is true, then we can induc-

tively apply (8.44) for I = 0... I3 - 1 to successively obtain holds(F, V,1), ..., holds(F, V, I3).

For showing (8.43), if its antecedent is true, then we can apply (8.45) with I= Il to obtain

holds(F, V, Il + 1). But now, we can apply again (8.44) inductively for I= Il + 1. .. I3 - 1 to

obtain holds(F, V, Il + 2), ..., holds(F, V, I3). q

Proof of theorem 14

As a proof sketch, we may use the classical logic encoding of L2. Notice that the conjunc-

tion of the first two rules is equivalent to:

(^^!^ ^ ^^!^) ^ (^^!^ ^ 7^!^)

and this, in its turn, is equivalent to: ^

^^!^ ^ (^G^!^ ^ 7^l7)

Finally, note that this formula entails:

^^!^ ^ (^ ^ 7 ^ (!^^!^))

which corresponds to:

q

Proof of theorem 15

Again, we may use the classical encoding of L2. As we had seen, A^ B V C is equivalent

to:

(B v C) ^ (!Bv!C) ^ A^!A

which corresponds to the conjunction of the four implications:

Bn!B ^ An!A (A-5)

B^!C ^ A^!A (A-6)

Cn!B ^ An!A (A-7)

Cn!C ^ An!A (A-8)

Now, simply notice that (A-5) and (A-8) are respectively equivalent to A^ B and A^ C. q

A endix Bpp

PAL exam lesp

B-1 Newton's formula

(page 1)

#f ile force . pal
options
not concurrent, solutions=l;

sets

int = [0 , 20] ; ^
f luent s

f,m,a . int;

actions

apply_force : int;

rules

f : =apply_force ;

a:=f/m if m!=0;

initially

m:=3,a:=0,f:=0;

do {apply_force:=15;}

Notice how the causal rule transforms f= m• a into a= f/m, since the real effect is the
acceleration a. The output for the proposed execution would be:

1)

apply_force : =15

f : =15

a:=5

Note also how the mass m is not shown (it remains unchanged). We can also compute the
force knowing the acceleration, proposing a planning problem:

initially

m:=3,a:=0,f:=0;

176 Appendix B

query

; a=5?

The output of PAL interpreter would be in this case:

Solution 1:

1)

apply_force:=15

f : =15

a:=5

1 solution

which, although it seems the same result as before, it is actually proposing the hypothetical
execution of apply^orce :=15 without changing the current state. If we remove the option
solutions=l we actually obtain more solutions, since the causal rule handles an integer division
and so, values 16 and 17 are also correct answers.

Computing the mass in terms of the acceleration and the force is still not possible using the
PAL interpreter, since temporal explanation problems for completing the initial state are not

available yet.

B-2 Lin's suitcase

(page 1)

f ile suitcase.pal

sets

lock={1,2};

f luent s

open: boolean;
up: lock -> boolean;

actions

toggle: lock -> event;

vars ^

L:lock;

rules

up(L):=not prev(up(L)) if toggle(L);

open if up(1) and up(2);

initially

not up(1),up(2),not open;

do{ toggle(1); }

The proposed execution corresponds to the typical Lin's suitcase problem. The output from
PAL interpreter is the expected one:

1)

toggle(1):=true

open:=true

up(1):=true

B-3 Yale Shooting Problem

that is, the suitcase results open.

B-3 Yale Shooting Problem

(chapter 1, page 4)

The Yale Shooting Problem can be encoded in PAL as follows:

#f ile yale . pal
actions

shoot,load : event;

f luent s

loaded,alive: boolean;

rules

loaded if load;

not alive if shoot and prev(loaded);

not loaded if shoot and prev(loaded);

initially

alive, not loaded;

do {

load;

shoot;

whose resulting output is:

1)

load:=true

loaded:=true

2)

3)

shoot:=true

loaded : =f alse

alive : =f alse

B-4 Lamp circuit

(chapter 1, page 9)
The lamp circuit domain can be simply formalized in PAL as follows:

#f ile lamp . pal

sets

switch={1,2};

f luent s

177

178 Appendix B

light : boolean;

sw: switch -> boolean;

actions

toggle: switch -> event;

vars

S:switch;

rules

sw(S):=not prev(sw(S)) if toggle(S);

light:=sw(1) and sw(2);

The four cases commented in the introduction would correspond to the transitions:

case 1: opening sw(1) while sw(2) was closed

initially sw(1), sw(2), light;

do { toggle(1); }

case 2: closing sw(2) while sw(1) was open

initially not sw(1), not sw(2), not light;

do { toggle(2); }

case 3: opening sw(1) and closing sw(2) simultaneously

initially sw(1), not sw(2), not light;

do { toggle(1),toggle(2); }

case 4: perform no actions, having sw(1) open and sw(2) closed

initially not sw(1), sw(2), not light;
do { ; }

These are the respective results for the four transitions:

1)

toggle(1):=true

light : =f alse

sw(1) :=false

Re st art

1)

toggle(2):=true

light:=false

sw(2):=true

Restart

1)

toggle(1):=true

toggle(2):=true

1 ight :=f al s e

sw(1) :=false

sw(2):=true

B-5 Combinatorial circuit 179

Restart
1)

Notice that the resulting state is the same one in all cases, but we can see different outputs
because we are only shown the pertinent facts, with respect to each of the four initial states. Note
also how the result for case 3 has made light to become pertinent although it was also previously
false. This, as was explained in the introduction, is can be interpreted as the possibility of a
momentary flash in the light, depending on the accuracy of the simultaneous movement of the
switches.

B-5 Combinatorial circuit

(page 41)

#file circuit.pal

f luent s

a,b,c,d : boolean;

actions

set_c, set_a : boolean;

rules

d:=a and (c or not c);

b:=not a;

a:=set_a;

c:=set_c;

initially

a:=true, c:=f alse, b:=f alse, d:=true;

do { set_c:=true; }

The output we obtain after setting c true is:

1)

set_c:=true

c:=true

d:=true

that is, fluent d is also caused true, although it was also previously true. Notice how the
intervention in c has affected d even though the presence of c in the rule for d is a classical
tautology. On the other hand, fluent b has no dependence on c and so, it does not result
affected, persisting false as before.

B-6 Account balance

(example 2, page 12)

The domain for computing the balance account can be formalized as:

180 Appendix B

#f ile balance . pal
sets

int = [-50 , 50] ;

f luent s
transac , balance : int ;

actions

deposit,withdraw: int;

rules

transac:=deposit;

transac:=-withdraw;

balance : =prev (balance) +transac ;

It must be noticed that we are free to add new rules or to modify the existing one for

computing the last transaction to be included in the balance witho^ct needing to modify at all

the rule for fluent balance. To see an example of how pertinence is important in this domain,

consider the execution:

initially

balance : =0 , transac : =0 ;

do {

deposit:=35;

withdraw:=22;

deposit:=10;

deposit:=10;

deposit:=10;

}

The obtained output is the following one:

1)

deposit:=35

transac : =35 ^

balance : =35

2)

withdraw:=22

transac : =-22

balance : =13

3)

4)

deposit:=10

transac : =10

balance : =23

B-7 The gong example 181

5)
deposit:=10
transac : =10
balance : =33
6)
7)

deposit:=10
transac : =10
balance : =43

The key point here is that fluent transac has value 10 in situations 4 to 7, but situation 6

is not taken into account, because in that case the fluent transac has persisted. In other words,
the balance is modified only when the transac is pertinent.

B-7 The gong example

(example 5, page 66)
The gong scenario can be encoded in PAL practically without any variation with respect to the
elementar.y syntax of ^-language:

. #file gong. pal

f luent s

gong, dancing: boolean;
actions

f inish, strike: event;

rules

gong if strike;
dancing if gong;
not dancing if f inish;

initially

not gong, not dancing;

do { strike; f inish; }

The sequential execution of the two actions above leads to:

1)

strike:=true

gong:=true

danc ing : =true

2)

finish:=true

dancing : =f alse

Notice how, although gong remains true at situation 2, the rule dancing if gong is not applied,
because gong is not pertinent.

182 Appendix B

B-8 The alarm problem

(example 6, page 78)

As happened with the gong example, the representation in PAL of the alarm scenario is

practically the same as in ^-rules:

#f ile alarm. pal

f luent s
in, active, ring;

actions

enter, disconnect, connect;

rules

active if connect;

not active if disconnect;

in if enter;

ring if in and active and not pert(active);

initially

active, not in, not ring;

do {enter;}

initially

active, not in, not ring;

do {enter,disconnect; connect;}

In this file, we have inĉluded two proposed temporal projections problems. For the first case,
we simply check that when someone enters the building while the alarm is active the bell is

caused to ring, that is:

1)

enter:=true

in:=true

ring:=true

In the second execution, while the person enters the building, this time we disconnect the

alarm simultaneously. Afterwards, we connect the alarm again, once the person was already

inside:

Restart

1)

enter:=true

disconnect:=true

in:=true

active : =f alse
2)
connect:=true

active:=true

B-9 The gear wheels 183

Noticé that ring persists false without any change since the initial situation. Connecting

the alarm does not cause the bell to ring because this only happens when in is caused true and

active persists true, but is not caused.

B-9 The gear wheels

(example 15, page 97)

The first version of the gear wheels is simply represented as:

#f ile wheels . pal

sets

wheel = {1,2};

f luent s

turn : wheel -> boolean;

actions

start, stop : wheel -> event;

vars

W : wheel;

rules

turn(W) if start (W) ;

not turn(W) if stop(W);

turn(1):=turn(2);

turn(2):=turn(1);

Just as an example, the execution:

initially not turn(W);

do { ; start(1); ; stop(2); start(2); }

yields the output:

1)

2)

start(1):=true

turn(1):=true

turn(2):=true

3)

4)

stop(2):=true

turn(1) :=false

turn(2):=f alse

5)

start(2):=true

turn(1):=true

turn(2):=true

184 Appendix B

Now, consider the first variation, that is, we add the coupling mechanism as in the set of
^-rules (7.34)-(7.34):

#file coupled.pal

sets

wheel = {1,2};

f luent s

turn : wheel -> boolean;

coupled: boolean;

actions

start, stop : wheel -> event;

uncouple, couple : event;

vars

W : wheel;

rules

turn(W) if start(W);

not turn(W) if stop(W);

coupled if couple;

not coupled if uncouple;

turn(1):=turn(2) if coupled;

turn(2):=turn(1) if coupled;

initially

turn(1), not turn(2), not coupled;

do { couple; }

When we use the WFS interpretation, the execution above yields the output:

1)

couple:=true

turn(1):=? Unfounded values={ }

turn(2):=? Unfounded values={ }

coupled:=true

whereas we obtain no stable models.
The second variation (file coupled2 . pal) solves the problem by adding the rule:

not turn(W) if coupled;

which corresponds to (7.34)-(7.35), so that coupling also causes that both wheels are stopped.
The same execution yields now:

1)

couple:=true

turn(1) :=false

turn(2) :=false

coupled:=true

Finally, the last variation consists in:

B-10 Shanahan's relay

#file coupled3.pa1

sets

wheel = {1,2};

f luent s

turn : wheel -> boolean;

uncouple, coupled: boolean;

actions

start, stop : wheel -> event;

couple : event;

vars

W : wheel;

rules

turn(W) if start(W);

not turn(W) if stop(W);

coupled if couple;

not coupled if uncouple;

turn(1):=turn(2) if coupled and not pert(coupled);

turn(2):=turn(1) if coupled and not pert(coupled);

false if couple and prev(turn(W));

so that we avoid coupling wheels that are not stopped and, additionally, we require that the
connection between the rules is only active when coupled persists true. For instance, when we
execute:

initially

not turn(1), not turn(2), not coupled;

do { couple; }

we actually obtain:

1)

couple:=true

coupled:=true

that is, the fluents turn(W) are not a,,ffected by coupling the wheels.

B-10 Shanahan's relay

(figure ?.4, page 101)

In this case, we can simplify the ^-rules representation, directly assigning boolean expressions
to fluents light and relay:

#f ile relay2 . pal

sets

lock={1,2,3};

f luent s

light,relay: boolean;

185

186 Appendix B

sw: lock -> boolean;

actions

tóggle: lock -> event;

vars

L:lock;

rules

sw(L):=not prev(sw(L)) if toggle(L);

light:=sw(i) and sw(2);

relay:=sw(1) and sw(2) and sw(3);

not sw(2) if relay;

The problem in the circuit design becomes evident using the execution:

initially

not sw(1),sw(2),sw(3),not relay, not light;

do {toggle(1);}

which yields no stable model whereas, in WFS, we obtain:

1)

toggle(1):=true

light:=? Unfounded values={ }

relay:=? Unfounded values={ }

sw(1):=true .

sw(2):=? Unfounded values={ }

B-11 The soup bowl

(example 16, page 106)

The soup bowl scenario can be captured using non-pertinence of an action for testing its

non-occurrence:

#f ile soup . pal

sets

side = {left,right};

actions

lift: side -> event;

f luent s

spilled: boolean;

vars

S1,S2 : side;

rules

spilled if S1 !=S2 and lift (S1) and not pert (lift (S2));

B-12 Thielscher's relay

Thanks to the use of variables, we can summarize the behavior in a quite straightforward
single rule. The executions: ^

initially not spilled;

do { lift(right); }

initially not spilled;

do { lift (left) , lift (right) ; }

yield the output:

1)

lift(right):=true

spilled:=true

Restart

1)

lift(left) :=true
lift(right):=true

that is, we must lift both sides iñ order to avoid spilling the soup.

As an example of query, we could ask a way of lifting some side while avoiding to spill the

soup:

initially not spilled;

query ; not spilled and lift(Si) ?

We obtain two answers, depending on how we instantiate variable S1:

Solution 1:

S1=1eft

1)

lift(left) :=true

lift(right):=true

Solution 2:

S1=right

1)

lift(left) :=true

lift(right):=true

2 solutions

although the "plan" is the same in both cases: lift both sides simultaneously.

B-12 Thielscher's relay

(example 17, page 123)

The representation of Thielscher's relay using PAL is very similar to the one for Shanahan's
relay we saw before:

187

188 Appendix B

#file relay.pal

sets

lock={1,2,3};

f luent s

light,relay: boolean;

sw: lock -> boolean;

actions

toggle: lock -> event;

vars

L:lock;

rules ^

sw(L):=not prev(sw(L)) if toggle(L);

light:=sw(1) and sw(2);

relay:=sw(1) and sw(3);

not sw(2) if relay;

The configuration depicted in figure 8.1 corresponds to the initial state:

initially

not sw(1), sw(2), sw(3), not^relay, not light;

and, after performing do {toggle (1) ;} we obtain:

1)

toggle(1):=true

light : =false

relay:=true

sw(1):=true

sw(2) :=false

that is, the relay results connected and the light is caused to be off, although it was already off

before.

B-13 The trapdoor

(example 18, page 124)

The representation in PAL that directly corresponds to Thielscher's formulation for the

trapdoor scenario is:

#file trapdoor.pal

f luent s

trapdoor_open, at_trap, alive: boolean;

actions

open, entice: event;

rules

trapdoor_open if open and not prev(trapdoor_open);

at_trap if entice and not prev(at_trap) and prev(alive);

alive if entice and not prev(at_trap) and prev(alive);

B-13 The trapdoor

not alive if trapdoor_open and at_trap and not pert(at_trap);

f alse if trapdoor_open and at_trap and alive;

Assume that the trap is closed and the turkey alive but not at the trap.

initially

not at_trap, not trapdoor_open, alive;

If we perform:

do { entice; open; }

the turkey is finally killed:

1)

entice:=true

at_trap:=true

alive:=true

2)

open:=true

trapdoor_open:=true

alive : =false

However, changing the order of the actions for the same initial situation:

do { open; entice; }

prevents the turkey to be actually enticed:

Restart

1)

open:=true

trapdoor_open:=true

Inconsistence (rule 5, line 12, applied with `false' head).

This representation, however, does not seem the most direct one for the considered domain.
For instance, one could think about a third action push that forces the turkey to be tat_trap
even when the trapdoor is open. In this case, the turkey should result killed too, but this time,
because of a change in at_trap. Therefore, a more appropriated formulation could perhaps be:

#file trapdoor2.pa1
f luent s

trapdoor_open, at_trap, alive: boolean;

actions

open, entice, push: event;

rules

trapdoor_open if open;

at_trap if push;

at_trap if entice;

f alse if entice and prev(trapdoor_open);

not alive if trapdoor_open and at_trap;

189

190 Appendix B

This representation yields the same result for the two previous prediction problems, but also
allows:

initially

not at_trap, not trapdoor_open, alive;

do { open; push; }

so that the turkey is finally killed by a change in at_trap:

1)

open:=true

trapdoor_open:=true

2)

push:=true

at_trap:=true

alive : =false

B ibliography

[1] M. Abadi and Z. Manna. Temporal logic programming. Jo^crnal of Symbolic Com^^ctation,
8:277-295, 1989.

[2] J. J. Alferes. Semantics of Logic Programs with E^plicit Negation. PhD thesis, Facultade
de Ciéncias e Tecnologia, Universidade Nova de Lisboa, 1993.

[3] J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. `classical' negation in nonmonotonic
reasoning and logic programming. Journal of A^ctomated Reasoning, 20(1):107-142, 1998.

[4] A. R. Anderson and N. D. Belnap. Entailment: The Logic of Relevance and Necessity,

[5]

[6]

[7]

[8]

volume 1. Princeton University Press, Princeton, USA, 1975.

G. Antoniou. Nonmonotonic Reasoning. The MIT Press, 1997.

K. R. Apt and R. Bol. Logic programming and negation: a survey. Jo^crnal of Logic
Programming, 19-20:9-71, 1994.

B. Ari. Mathematical Logic for Com^^cter Science. Prentice Hall, 1993.

A. B. Baker. Nonmonotonic reasoning in the framework of the situation calculus. Artificial
Intelligence, 49(1-3):5-23, 1991.

[9] C. Baral and M. Gelfond. Reasoning about effects of concurrent actions. Jo^crnal of Logic
Programming, 31(1-3):85-117, 1997.

[10] C. Baral, M. Gelfond, and A. Provetti. Reasoning about actions: Laws, observations and
hypotheses. Jo^crnal of Logic Programming, 31, 1997.

[11] C. Baral, J.Lobo, and J.Minker. Generalized disjunctive well-founded semantics for logic
programs. Annals of Math and Artificial Intelligence, 5:89-132, 1992.

[12] C. Baral and J. Lobo. Defeasible specifications in action theories. In Proc. of the Intl.
Joint Conf. on Artificial Intelligence (IJCAI), pages 1441-1446, Nagoya, Japan, 1997.

[13] C. Baral and L. Tuan. Reasoning about actions in a probabilistic setting. In Proc. of the
Fifth SymPosium on Logical Formalizations of Commonsense Reasoning (Common Sense
,2001), 2001.

[14] M. Baudinet. A simple proof of the completeness of temporal logic programming. In
L. Fariñas del Cerro and M. Penttonen, editors, Intensional Logics for Programming,
pages 51-83. Clarendon Press, Oxford, 1992.

192 BIBLIOGRAPHY

[15] K. Van Belleghem, M. Denecker, and D. T. Dupré;. Ramifications in an event-based lan-
guage. In W. Daelemans K. Van Marcke, editor, Proceedings of the Ninth D^ctch Conference

on Artificial Intelligence (NAIC'97), pages 227-236, November 1997.

[16] N. Bidoit and C. ^oidevaux. Minimalism subsumes default logic and circumscription.
In Proc. of the IEEE Symposi^cm on Logic in Comp^cter Science (LICS-87), pages 89-97,
1987.

[17] S. Brass, J. Dix, B. ^eitag, and U. Zukowski. Transformation-based

bottom-up computation of the well-founded model. Theory and Prac-

tice of Logic Programming, to appear, 2001. (Draft version available at

http://www.cs.man.ac.uk/"jdix/Papers/O1_TPLP.ps.gz).

[18] G. Brewka. Nonmonotonic Reasoning: Logical Fonndations of Commonsense. Cambridge

University Press, 1991.

[19] P. Cabalar. Temporal answer sets. In Proceedings of the Joint Conference on Declarative

Programming (APPIA-GULP-PRODE'99), L'Aquila, Italy, September 1999.

[20] P. Cabalar. Well founded semantics as two-dimensional here-and-there. In Proceedings

of the Workshop on Answer Set Programming (ASP'Ol). ,2001 AAAZ Spring Symposi^cm

Series., Stanford, California, March 2001.

[21] P. Cabalar, M. Cabarcos, and R. P. Otero. PAL: Pertinence action lan-

guage. In Proceedings of the 8th Intl. Workshop on Non-Monotonic Reasoning

NMR',2000 (Collocated with KR',2000), Breckenridge, Colorado, USA, april 2000.
(http://xxx.lanl.gov/abs/cs.AI/0003048).

[22] P. Cabalar, R. P. Otero, and S. G. Pose. Temporal constraint networks in action. In

W. Horn, editor, Proceedings of the 1l^th E^cropean Conference on Artificial Intelligence,

Berlin, Germany, August 2000. IOS Press.

[23] CCALC (causal calculator) web page:

http://www.cs.utexas.edu/users/tag/cc .

[24] CHAFF web page:
http://www.ee.princeton.edu/"chaff/ .

[25] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,

pages 241-327. Plenum, 1978.

[26] J. M. Crawford. Ntab location at crawford's web page:
http://www.cirl.uoregon.edu/crawford/ntab.tar

[27] J.M. Crawford and L.D. Auton. Experimental results on the crossover point in random

3sat. Artificial Intelligence, 81(1) :31-57, 1996.

[28] M. Denecker, D. Theseider, and K. van Belleghem. An inductive definition approach to

ramifications. Linkóping Electronic Articles in Comp^cter and Information Science, 3(7),

1998. URL: http://www.ep.liu.se/ea/cis/1998/007/ .

BIBLIOGRAPHY 193

[29] J. Dix. Classifying semantics of disjunctive logic programs. In K. R. Apt, editor, Pro-
ceedings of the Joint International Conference and Symposium on Logic Programming,
Washington, 1992. ALP, MIT Press. .

[30] J. Dix. Semantics of logic programs: Their intuitions and formal properties. an overview.
In A. Fuhrmann and Hans Rott, editors, Logic, Action and Information- Essays on Logic
in Philosophy and Artificial Intelligence, pages 241-327. De Gruyter, 1993.

[31] Júrgen Dix, Luis Pereira, and Teodor Przymusinski. Prolegomena to Logic Programming
for Non-Monotonic Reasoning. In J. Dix, L. Pereira, and T. Przymusinski, editors, Non-
monotonic E^tensions of Logic Programming, LNAI 1216, pages 1-36. Springer, Berlin,
1997.

[32] DLV web page

http://www.dbai.tuwien.ac.at/proj/dlv/.

[33] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstrdm. Temporal action logics lan-
guage specification and tutorial. Linkdping University Electronic Press, Series in Com-
puter and Information Science, 15, 1998.

[34] R. E. Fikes and N. J. Nilsson. Strips: A new approach to theorem proving in problem
solving. Artificial Intelligence Journal, 2:189-208, 1971.

[35] M. Fitting. A kripke-kleene semantics for logic programs. Journal of Logic Programming,
2(4):295-312, 1985.

[36] D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors. Handbook of Logic in Artificial
Intelligence and Logic Programming. Nonmonotonic Reasoning and Uncertain Reasoning,
volume 3. Oxford Science Publications, 1994.

[37] H. Geffner. Causal theories for nonmonotonic reasoning. In Proceedings AAAI-90, pages
524-530, 1990.

[38] M. Gelfond and V. Lifschitz. The stable models semantics for logic programming. In Proc.
of the 5th Intl. Conf. on Logic Programming, pages 1070-1080, 1988.

[39] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proc. of the 7th
Intl. Conf. on Logic Programming, pages 579-597, 1990.

[40] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-385, 1991.

[41] M. Gelfond and V. Lifschitz. Representing action and change by logic programs. The
Journal of Logic Programming, 17:301-321, 1993.

[42] M. Gelfond and V. Lifschitz. Action languages. Linkóping Electronic Articles in Computer
and Information Science, 3(16), 1998. (http: / /www. ep. liu. se/ea/cis/1998/016).

[43] M. Gelfond, V. Lifschitz, H. Przymusiríska, ánd M. Truszczyríski. Disjunctive defaults.
In Proc. of the ,2nd Intl. Conf. on Principles of Knowledge Representation and Reasoning
(KR'91), pages 230-237, 1991.

194 BIBLIOGRAPHY

[44] L. Giordano, A. Martelli, and C. B. Schwind. Dealing with concurrent actions in modal ac-
tion logic. In Proceedings of the Thirteenth European Conference on Artificial Intelligence,
pages 537-541, 1998.

[45] E. Giunchiglia, J. Lee, V. Lifschitz, and H. Turner. Causal laws and multi-valued fluents.

(unpublished draft) http : //WWW . cs . utexas . edu/users/vl/mypapers/clmvf -long . ps.

[46] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Prelim-
inary report. In Proc. of the AAAI-98, pages 623-630, 1998.

[47] J. Gustafsson and P. Doherty. Embracing occlusion in specifying the indirect eífects of

actions. In Proc. of the 5th Intl. Conf. on Principles of Knowledge Representation and

Reasoning, 1996.

[48] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Artificial

Intelligence Journal, 33:379-413, 1987.

[49] D. Harel. Dynamic logic. In ^ D. Gabbay and F. Guenthner, editors, Handbook of Philo-

sophical Logic, volume II (E^tensions of Classical Logic), pages 497-604. Kluwer Academic

Publishers, Dordrecht (NL), 1984.

[50] B. A. Haugh. Simple causal minimizations for temporal persistence and projection. In
Proceedings of the óth National Conference of Artificial Intelligence, pages 218-223, 1987.

[51] A. Kakas, R. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic and

Computation, 6?(2?):719-770, 1993.

[52] H. Kautz. The logic of persistence. In Proceedings of the 5th National Conference of

Artificiad Intelligence, pages 401-405, 1986.

[53] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Computing,

4:67-95, 1986.

[54] V. Lifschitz. Computing circumscription. In Proc. of the Intl. Joint Conf. on Artificial

Intelligence (IJCAI), pages 121-127, 1985.

[55] V. Lifschitz. Pointwise circumscription: Preliminary report. In Proceedings of the 5th

National Conference of Artificial Intelligence, pages 406-411, 1986.

[56] V. Lifschitz. Formal theories of action (preliminary report). In Proc. of the lOth IJCAI,

pages 966-972, Milan, Italy, 1987.

[57] V. Lifschitz. Frames in the space of situations. Artificial Intelligence, 46:365-376, 1990.

[58] V. Lifschitz. Circumscription. In C.J. Hogger D.M. Gabbay and J.A. Robinson, edi-

tors, Handbook of Logic in AI and Logic Programming, volume 3, pages 298-352. Oxford

University Press, 1993.

[59] V. Lifschitz. Foundations of logic programming. In Gerhard Brewka, editor, Principles of

Knowledge Representation, pages 69-127. CSLI Publications, Stanford, California, 1996.

[60] V. Lifschitz. On the logic of causal explanation. Artificial Intelligence Journal, 96:451-465,

1997.

BIBLIOGRAPHY 195

[61] V. Lifschitz. Action languages, answer sets and planning. In The Logic Programming
Paradigm: a,25- Year Perspective, pages 357-373. Springer Verlag, 1999.

[62] V. Lifschitz. Success of default logic. In Logical Fo^cndations for Cognitive Agents: Con-
trib^ctions in Hono^cr of Ray Reiter, pages 208-212. Springer Verlag, 1999.

[63] V. Lifschitz. M. Shanahan, solving the frame problem. Artificial Intelligence, 123(1-2):265-
268, 2000.

[64] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM
Transactions on Comp^ctational Logic, 2000.

[65] F. Lin. Embracing causality in specifying the indirect effects of actions. In C. S. Mellish,
editor, Proc. of the Intl. Joint Conf. On AríZficial Intelligence (IJCAI), Montreal, Canada,
August 1995. Morgan Kaufmann.

[66] J.W. Lloyd. Fonndations of Logic Programming (,2nd ed). Springer-Verlag, 1987.

[67] J. Lobo, J. Minker, and A. R,a,jasekar. Fo^cndations of Disj^cnctive Logic Programming.
The MIT Press, 1992. ^

[68] D. Lorenzo. Learning non-monotonic logic programs to reason about actions and change.
PhD thesis, Facultade de Informática, Universidade da Coruña, 2001. (to appear).

[69] N. McCain and H. Turner. A causal theory of ramifications and qualifications. In C. S.
Mellish, editor, Proc. of the Intl. Joint Conf. on Artificial Intelligence (IJCAI), pages
1978-1984, Montreal, Canada, August 1995. Morgan Kaufmann.

[70] N. McCain and H. Turner. Causal theories of action and change. In Proc. of the AAAI-97,
pages 460-465, 1997.

[71] N. McCain and H. Turner. Satisfiability planning with causal theories. In Proc. of the óth
Intl. Conf. of Knowledge Representation and Reasoning, 1998.

[72] N. C. McCain. Cansality in commonsense reasoning about actions. PhD thesis, University
of Texas at Austin, 1997.

[73] J. McCarthy. Programs with common sense. In Proceedings of the Teddington Conference
on the Mechanization of Thonght Processes, pages 75-91, 1959.

[74] J. McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial Intelligence,
13:27-39, 1980.

[75] J. McCarthy. Applications of circumscription to formalizing common sense knowledge.
Artificial Intelligence, 26(3):89-116, 1986.

[76] J. McCarthy. What is AI?, 1997. Available at:
ht tp ://www-f ormal . st anf ord . edu/ j mc /what i s ai . html .

[77] J. McCarthy. Elaboration tolerance. In Proc. of the l^th Symposi^cm on Logical Formal-
izations of Commonsense Reasoning (Common Sense 98), pages 198-217, London, UK,
1998. Updated version at ^
http ://www-formal . stanf ord . edu/ jmc/elaborat ion . ps.

196 BIBLIOGRAPHY

[78] J. McCarthy. Approximate objects and approximate theories. In Proc. of the 7th Intl.

Conf. on Principles of Knowledge Representation and Reasoning, pages 519-526. Morgan

Kaufmann, 2000.

[79] J. McCarthy. M. Shanahan, solving the frame problem. Artificial Intelligence, 123(1-

2):269-270, 2000.

[80] J. McCarthy and T. Costello. Combining narratives. In Proc. of the óth Intl. Conf. on

Principles of Knowledge Representation and Reasoning, pages 48-59, Trento, Italy, 1998.

Morgan Kaufmann.

[81] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. Machine Intelligence Jo^crnal, 4:463-512, 1969.

[82] The Medtool project and related activities are described in web documents

http ://www . dc . f i. udc . es/ai/medtool . html, 2001.

[83] M. Moskewicz, C. Madigana, Y. Zhao, L. Zhang, and S. Malik. Chaíf: Engineering an

efficient sat solver. In ^39th Design Automation Conference, 2001.

[84] M. Otero and R. P. Otero. Using causality for diagnosis. In Proc. of llth Int. Workshop

on Principles of Diagnosis (DX-00), pages 171-176, Morelia, Mexico, 2000.

[85] R. P. Otero. Pertinence logic for reasoning about actions and change. Technical Report
TR-AI-97-O1, AI Lab., Dept. of Computer Science, University of A Coruña, 1997.

[86] R. P. Otero and P. Cabalar. Pertinence and causality. In Proc. of the Nonmonotonic

Reasoning Actions and Change Workshop (NRAC), at the Intl. Joint Conf. on Artificial
Intelligence (IJCAI'99), pages 111-119, Stockholm, Sweden, 1999.

[87] PAL web page:

http://www.dc.fi.udc.es/ai/`cabalar/pal/.

[88] J. Pearl. Ca^csality. Cambridge University Press, 2000. .

[89] L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with explicit

negation. In Proceedings of the E^cropean Conference on Artificial Intelligence (ECAI'9,2),

pages 102-106, Montreal, Canada, 1992. John Wiley & Sons.

[90] J. Pinto. Causality in theories of action. In Fo^crth Symposi^cm on Logical Formalizations

of Commonsense Reasoning, pages 349-364, London, U.K., 1998.

[91] J. Pinto. Causality, indirect ef^ects and triggers (preliminary report). In Seventh Interna-

tional Workshop on Non-monotonic Reasoning, Trento, Italy, 1998.

[92] T. Przymusinski. Well-founded and stationary models of logic programs. Annals of Math-

ematics and Artificial Intelligence, 12:141-187, 1994.

[93] T. C. Przymusinski. Stationary semantics for disjunctive logic programs and deductive

databases. In Proceedings of the North American Logic Programming Conference, pages

40-59, Austin, Texas, 1990. MIT Press.

[94] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

BIBLIOGRAPHY . 197

[95] R. Reiter. Narratives as programs. In Proc. of the 7th Intl. Conf. on Principles of Knowl-
edge Representation and Reasoning, pages 99-108, Breckenridge, Colorado, USA, 2000.
Morgan Kaufmann.

[96] E. Sandewall. Filter preferential entailment for the logic of action in almost continuous
worlds. In C. S. Mellish, editor, Proc. of the Intl. Joint Conf. on Artificial Intelligence
(IJCAI), pages 894-899. Morgan Kaufmann, 1989.

[97] E. Sandewall. Features and Fluents. A Systematic Approach to the Representation of
Knowledge about Dynamical Systems. Oxford University Press, 1994.

[98] E. Sandewall. Transition cascade semantics and first assessments results for ramification.
In Oliviero Stock, editor, Spatial and Temporal Reasoning. Kluwer Publishing Company,
1997.

[99] E. Sandewall. M. Shanahan, solving the frame problem. Artificial Intelligence, 123(1-
2):271-273, 2000.

[100] Camilla Schwind. Causality in action theories. Linkóping University Elec-
tronic Press, Series in Computer and Information Science, 4(4), May 1999.
http://www.ep.liu.se/ea/cis/1999/004/.

[101] M. Shanahan. Solving the Frame Problem. The MIT Press, 1997.

[102] M. Shanahan. M. Shanahan, solving the frame problem. Artificial Intelligence, 123(1-
2):275, 2000.

[103] Murray P. Shanahan. The ramification problem in the event calculus. In Proc. of the Intl.
Joint Conf. on Artificial Intelligence (IJCAI'99), pages 140-146, 1999.

[104] Y. Shoham. Chronological ignorance: time, nonmonotonicity, necessity and causal theo-
ries. In Proceedings of the 5th National Conference of Artificial Intelligence, pages 389-393,
1986.

[105] SMODELS web page

http://www.tcs.hut.fi/software/smodels/.

[106] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285-309, 1955.

[107] M. Thielscher. Ramification and causality. Artificial Intelligence Journal, 1-2(89):317-364,
1997.

[108] M. Thielscher. Reasoning about actions: Steady versus stabilizing state constraints. Ar-
tificial Intelligence, 104:339-355, 1998.

[109] H. Turner. Representing actions in logic programs and default theories: A situation
calculus approach. Journal of Logic Programming, 31:245-298, 1997.

[110] H. Turner. Causal Action Theories and Satisfiability Planning. PhD thesis, University of
Texas at Austin, 1998.

198 BIBLIOGRAPHY

[111] Hudson Turner. A logic of universal causation. Artificial Intelligence, 113(1-2):87-123,

1999.

[112] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23:733-742, 1976.

[113] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Jo^crnal of the ACM, 38(3):620-650, 1991.

[114] H. Zhang. SATO web page:

http://www.cs.uiowa.edu/"hzhang/sato/.

[115] H. Zhang. SATO: An efficient propositional prover. In Conference on A^ctomated Deduc-

tion, pages 272-275, 1997.

N
UNIVERSIDADE DA CORUNA

Servicio de Bibliotecas

qlNtll l l l ll l lll i i

/

