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NOTATION

The indicial notation will be used throughout the text, together with the usual

summation convention for repeated indices. The indices after commas will stand for

derivatives with respect to the variables specified in the index. Variables in boldface

refer to vectors or matrices as a whole. The international system of units (Sn will be

used throughout the text except for the cases in which a different unit is of common use.

The symbols included in this thesis stand for the following variables:

Latin symbols

A Reduced viscous coefficient matrix

Av Viscous coefficient matrix

A PBCG preconditioning matrix

B Gradient of pressure matrix

BE Penalty matrix

bb Wetted perimeter of a boundary basic element

b; Prescribed velocity

b;n Wetted perimeter of an interior basic element ^

C„ (u, v^ Convective coefficient matrix

C(u, v^ Reduced convective coefficient matrix

d Depth with respect to a system parallel to the bottom of the channel

e^;,en; Unit vectors in the ^ and r^ directions

f Body force vector

f,• Body forces components

g Gravity force

h Depth vector

h Depth with respect to a horizontal reference system or size of the grid

h' Star depth

H; Quadrature rule coefficient



h^ Star gradient of depths

H k (S2} Sobolev space of order k over the domain S2

h^ , h,^ Characteristic basic element lengths in the ^ and r^ dŭections

Hó (S2} Subspace of H' (S2} vanishing on I',

J Jacobian determinant of the transformation

k,^ Diffusion

k^^ Artificial diffusion

K;p Pressure-velocity coupling coefficient

L Lower triangular matrix

L2 (S2} Hilbert space over the domain S2 ^

Lo (SZ} Subspace of L2 (S2} with zero mean over the domain SZ

m Mass

M Number of pressure nodes

M Unsteady reduced coefficient matrix

M„ Unsteady coefficient matrix

ma Momentum

n Manning roughness coef. or outward unit vector normal to the interface

N Number of velocity nodes ^

n' Modified Manning roughness coefficient

nn Number of nodes

ne Number of elements

N, Velocity shape function

p Pressure vector

p Pressure

ph Discretized pressure

3 SUPG contribution to the weighting function

Pk,^k PBCG sequences of vectors

q Weighting function

Q1Po Bilinear velocity-constant pressure basic element



r Inertial relaxation factor

Re Reynolds number

Rh Hydraulic radius

rk, P^ PBCG sequences of vectors

So Geometric slope

Sf Friction slope

Só (S2^ Discretized subspace belonging to Ló (S2^ over the domain S2

t Time

t^ Traction vector

U Upper triangular matrix

u Velocity along the x direction

u Velocity vector in the x direction

u;` Discretized velocity

u;(x;,t) Velocity

R;

Mean horizontal velocities in the x direction ^

Pseudo-velocities in the x direction

v Velocity along the y direction

v Velocity vector along the y direction

V Volume of integration

Vó (S2 Ĵ Discretized subspace belonging to H 1(S2^ over the domain S2

Vo Initial volume
^ '

^ Mean horizontal velocities in the y direction

^t Pseudo-velocity in the y direction

w Velocity along the z direction

w; Weighting functions

x; Spatial directions

Z Height of the free water surface

Zb Height of the bottom of the channel

^ Zk, ^k PBCG sequences of vectors



Greek symbols

ap Pressure relaxation parameter

au Velocity relaxation parameter

a^,a,^ Dŭectional Reynolds numbers in the ^ and r^ directions

a Peclet number

I' Boundary of the S2 domain ^

S;^ Kronecker delta

E Penalty parameter

E,^ Eddy viscosity coefficients

^;^ Rate of deformation

r^ Local spatial variable

r^(x, y) Perturbation function ^

^, Lagrange-multiplier

µ Dynamic viscosity of the fluid

v Kinematic viscosity of the fluid

^ Local spatial variable

p Density of the fluid

6^^ Stress along the boundary

Tb Shear stress acting on the water bottom

T;^ Stress

zs Shear stress acting on the water surface

^ Concentration

v_ Velocity vector

x; Pressure shape function

S2 Domain of integration

S2h Discretized domain

aV Volume V boundary

aS2 Domain boundary
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Introducción, resumen y conclusiones

INTRODUCCIÓN, RESUMEN Y CONCLUSIONES

Las ecuaciones de Navier-Stokes, que rigen el flujo viscoso incompresible, sólo

tienen solución analitica para un limitado numero de casos simplificativos. Para

conseguir un procedirniento que resuelva de manera sistemática los problemas del flujo

incompresible, debemos recurrir a alguna técnica numérica que nos aporte una solución

aproximada de los problemas reales. El Método de los Elementos Finitos es junto con el

de los Volúmenes Finitos la técnica numérica más comúnmente utilizada hasta la fecha

para resolver las ecuaciones de Navier-Stokes.

El Método de los Elementos Finitos fue desarrollado en un principio para el

cálculo de estructuras, sin embargo la resolución del flujo viscoso incompresible

requiere un tratamiento especial para resolver ciertos problemas que no aparecen en el

cálculo convencional de estructuras. Estos problemas derivan de la necesidad de

verificación de la ley de conservación de la masa, en una sustancia que cambia

constantemente de forma, de la existencia de dos tipos distintos de incógnitas en la

ecuación constitutiva (velocidad y presión), de la asimetría de la matriz de `rigidez'

debido a la presencia de los términos convectivos, de la existencia de fuerzas viscósas

entre partículas, de la dependencia de las variables con respecto del tiempo, etc.

Algunas de estas dificultades pueden ser ignoradas si se hacen ciertas simplificaciones,

que como la de Stokes ignoran los términos convectivos, o la de flujo potencial que

hace caso omiso de los esfuerzos viscosos. Sin embargo, estas simplificaciones sólo nos

dan una aproximación para ciertos casos sencillos de flujo.

Todas estas particularidades exigen la utilización de una formulación en

elementos finitos que se adapte a las características singulares de los fluidos. Los tipos

de formulación usados en la resolución de las ecuaciones 2D de Navier-Stokes por el

Método de los Elementos Finitos en este trabajo, han sido las formulaciones mixta,

penalizada y segregada, y reciben esta denominación dependiendo de la forma en la que

se tratan las incógnitas velocidad y presión por un lado, y las ecuaciones dinámica y de

continuidad por otro. Estos tres tipos de algoritmos son los más comúnmente utilizados

en la literatura afín, siendo estos métodos en los que muchos autores acuerdan en

dividir las formas de resolver las ecuaciones de Navier-Stokes por el Método de los

Elementos Finitos [Kim 88], [Choi 94].
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Introducción, resumen y conclusiones

La forma más intuitiva de las tres de resolver el problema del flujo

incompresible es la formulación mixta, que se basa en aplicar el método de los residuos

ponderados directamente sobre las dos ecuaciones de la ley de Navier-Stokes, esto es

ecuación dinámica y de continuidad.

J Wh (u^+u
n

i,i
f, )+v Jnw^^uh^dS2- 1 JnWh`pdSZ-,^- t;`W;`dI'2 -O

P 2

Jqhuh,dSZ = 0
n

Una vez se ha obtenido una forma débil y la aproximación ha sido introducida

en la formulación, se llega a un sistema de ZN+M ecuaciones diferenciales para el caso

2D, siendo N y M el número de nodos de interpolación de velocidades y presiones en

los que se ha dividido el dominio. Las necesidades de memoria para almacenar los datos

implicados como consecuencia de la utilización de una formulación de tipo mixto son

muy grandes. Por otra parte, el proceso iterativo encaminado a la resolución de la

convección es más directo que en los otros casos que veremos a continuación.

De otro lado, los problemas de consistencia que emergen como resultado de la

necesidad de verificación de la condición de divergencia-estabilidad (o también llamada

condición de Ladyzhenskaya-Babuska-Brezzi en honor a sus descubridores y

estudiosos), hacen que la elección de los elementos básicos en términos de los cuales el

dominio de definición es dicretizado sea una cuestión de vital importancia [Babuska

71], [Brezzi 74]. La elección de un elemento básico inadecuado (como la aparentemente

inofensiva utilización de una malla de igual orden para las incógnitas velocidad y

presión), puede provocar la obtención de la solución trivial como única posible, dar

lugar a la divergencia del proceso iterativo o provocar la aparición de oscilaciones nodo

a nodo en el campo de presiones (solución también conocida como `presión en tablero

de ajedrez'). Estos tipos de soluciones espurias fueron detectadas y caracterizadas por

Taylor y Hood en un artículo de 1973 [Taylor 73]. Para evitar este tipo de inestabilidad,

Taylor y sus colaboradores idearon un elemento básico conocido con el nombre de par

de `Taylor-Hood', que cumple estrictamente la condición LBB y con el que obtuvieron

buenos resultados en la resolución del flujo viscoso incompresible. Sin embargo, existen

elementos básicos, como es el caso del elemento Q 1 P0, que sin cumplir estrictamente la

condición de divergencia-estabilidad, han permitido obtener soluciones estables. Los

2



Introducción, resumen y conclusiones

v

buenos resultados obtenidos en el presente trabajo, con el elemento básico de tipo Q1P0

(velocidad bilineal, presión constante), que ni siquiera ha mostrado dar lugar a los

campos de presión en tablero de ajedrez que aparecen en los trabajo ŝ de otros autores

(ver por ejemplo [Fortin 77] y[Brooks 82]), nos ha llevado a utilizar este elemento

básico en todos nuestros cálculos con óptimos resultados.

La formulación penalizada, también utilizada en este trabajo permite gracias a la

utilización de un apazato matemático basado en el cálculo variacional y recuperado por

Zienkiewicz en 1974 para el Método de los Elementos Finitos, la reducción en el

número de ecuaciones presentes en el sistema algebraico a una cantidad igual a dos

veces el número de incógnitas de velocidad del dominio [Zienkiewicz 74]. El trabajo de

Zienkiewicz seria continuado en [Teman 77], [Bercovier 79], [Hughes 79] y[Brooks

82]. El campo de presiones en los algoritmos penalizados es obtenido a posteriori como

un valor de postproceso y por lo tanto no consume recursos a la hora de la resolución

del sistema. La formulación podría presentarse de forma simplificada como:

h h h h h h 1 h h (^ h k h 1jw; (u;^ +u^u;,^ - f;)+v JQw;,^u;,^dS2+ J^ u;^w;^dS2-. ►lL2t; w; dr2 =0; p=--u^,
Q Qh ^

Esta formulación, elimina la ecuación de continuidad del sistema a resolver, pero

a cambio introduce un parámetro numérico llamado de penalización ( E) próximo a

cero, cuya elección va a ser muy importante en la obtención de una convergencia

adecuada. La elección de un parámetro de penalización demasiado pequeño va a

provocaz que el término de penalización sea varios órdenes de magnitud mayor que el

término viscoso. Una correcta elección de E implicará un equilibrio entre un número

suficientemente grande como para que el tamaño de una unidad básica de memoria del

ordenador sea capaz de almacenaz la información de los términos viscoso (pequeño) y

penalizado (grande) en el misma variable; y un número suficientemente próximo a cero

como para permitir la correcta convergencia del problema.

Por otra parte, en las formulaciones penalizadas aparece un problema análogo al

que se nos presentaba en la formulación mixta cuando se usaba una interpolación del

mismo orden para las incógnitas velocidad y presión. Cuando en la formulación de

penalización los términos implicados son integrados con leyes de cuadratura del mismo

orden de error, podemos encontrarnos con que la única solución posible del sistema es

la trivial. Este fallo en la resolución del flujo puede evitarse mediante lo que conocemos

3



Introducción, resu^n y conclusiones

como una `integración reducida selectiva', que consiste en integrar las matrices

elementales de penalización con una ley de cuadratura de orden inferior a la usada en el

resto de los térrrŭnos. De esta forma, el término de penalización no es exacto, la matriz

asociada correspondiente deja de ser regular, y con ello se `desbloquea' la obtención de

la solución trivial.

Por último, la formulación segregada consiste en una resolución secuencial de

las variables presión y velocidad, a través de la resolución de dos sistemas diferenciados

para la ecuación dinámica y de continuidad, que se obtienen gracias a la aplicación del

método de los residuos ponderados. El método fue desarrollado en un principio para las

formulaciones en diferencias finitas y volúmenes finitos [Patankar 80], [Ferzinger 96].

Debido a sus buenos resultados fue extendido en la década de los 70 al Método de los

Elementos Finitos. Desde entonces muchos autores han realizado aportaciones en este

sentido, entre las cuales se pueden destacar las de [Scheneider 78], [Benim 86], [Rice

86], [Shaw 91] y[Haroutunian 93] entre otros. La formulación aquí utilizada será una

variante de la empleada por Rice sobre la que han trabajado muchos otros autores como

[Zij191], [Choi 97], [du Toit 98]. El fundamento de esta formulación parte de aplicar el

método de los residuos ponderados a las ecuaciones dinámica y de continuidad, para

obtener:

Sistema dinámico:

jW;`^lth +Uhu;` ^iS2+V^Wh uh dŜ2= JWh f dŜ2- 1 J w.``p^dS2+^, t;'W;`dI'2
^ J .j ^rj tr! t i Q ^Q n p 2

Sistema de continuidad:

jwhju^dS2- jw;`u^n Ĵdl'2 =0
nh r2

En la primera iteración se hace una suposición para el campo de presiones, en

función de la cual de obtiene un resultado para el campo de velocidades en el sistema

dinánŭco, que una vez obtenido es realimentado en el sistema de continuidad. La

conexión entre ambos sistemas se hace mediante la definición de un conjunto de

variables Q; y tri , conocidas con el nombre de pseudovelocidades y definidas de la

forma:

ai = p̂ -^jdi;u; +fsi

Oii ixj

T^ = 1 -^gijvj +fy;

8ii ixj

v

4



Introducción, resumen y conclusiones

donde g;^ es la matriz de cceficientes del sistema dinámico, que según esto se puede

expresar como:

1 p aNj ^n

ui =-p -^,Oi;u; + Ĵsi
-JS2w^ aX pj ^L

O ii ;xi

r aN .
v; _ ^ -^jOijvj + fyi - J ^w; ' pj dS2

O ii jxi ^

donde la relación entre las velocidades y las pseudovelocidades, y los cceficientes de

conexión K;p pueden escribirse matemáticamente como:

aN.
%li ,^ Ĝr; _ KiP ^ p! ;

ax

aN.
vi = v^ - K;° ^ p j; K;p = 1 f^ W; dS2

S ii

Una vez se han resuelto ambos sistemas, las velocidades son corregidas y el

proceso se repite hasta alcanzar la convergencia. Para que este algoritmo llegue a

converger, será necesario introducir una relajación en las variables incógnita, función de

un parámetro que será obtenido por tanteo numérico.

La formulación segregada, aparte de permitir la utilización de una misma malla

en la interpolación de las variables velocidad y presión sin provocar problemas de

consistencia, consigue que el tamaño de los sistemas a resolver sea reducido al número

de nodos de velocidad o presión, con lo que la matriz de coeficientes es de menor

tamaño. Además, por la propia definición de la formulación, la matriz de cceficientes

asociada a los sistemas se puede expresar como una matriz de ancho de banda estrecho,

cuando se lleva a cabo una correcta renumeración de los nodos.

Los algoritmos hasta ahora expuestos resuelven las ecuaciones de Navier-Stokes

en dos dimensiones, de forma que la tercera dimensión del espacio es totalmente

ignorada. La formulación de Aguas Someras es utilizada como una manera de incluir la

tercera dimensión, para los casos en los que el calado del flujo es pequeño en

comparación con la dimensión horizontal. Este algoritmo hace la suposición de que la

dirección principal del flujo es la horizontal, y sólo flujos despreciables tienen lugar en

planos verticales. Asimismo, la aceleración en la dirección vertical es considerada

despreciable en comparación con la gravedad, y se asume una distribución hidrostática

de presiones. La simplificación de Aguas Someras supone que la distribución de las

velocidades horizontales a lo largo de la dirección vertical es uniforme, y en

consecuencia se lleva a cabo una integración en altura, para así considerar como

5



Introducción, resumen y conclusiones

velocidad horizontal la media de velocidades a lo largo de la vertical. El calado y el

gradiente del calado entran ahora a formar parte de la ecuación de continuidad,

permitiendo así que la tercera dimensión afecte a la conservación de la masa, y que de

esta forma el balance de masas no se haga en función de las dos dimensiones

horizontales del flujo.

Para valores suficientemente grandes del número de Reynolds, aparece en los

fluidos una forma de flujo caótico y no permanente de manera intrínseca, que

conocemos como turbulencia. El estado turbulento va a suponer la aparición de

remolinos de muy escaso tamaño (del orden de hasta 10 µm ), y elevada frecuencia (del

orden de IOKHz), con lo que la captación de estos fenómenos requeriría una malla

extremadamente fina, si no se utiliza un modelo específico de turbulencia. La forma

más habitual de abordar los estados turbulentos es descomponer las magnitudes

implicadas en el flujo en un instante dado, en la media temporal de esas variables en un

determinado intervalo, más un cierto término función del tiempo. La evaluación de la

velocidad y la presión del flujo en esta forma, dará lugar a la aparición de un término

adicional en las ecuaciones de Navier-Stokes, conocido como término de tensiones de

Reynolds. Este término puede ser evaluado mediante un modelo específico de

tuifiulencia de una o varias ecuaciones, como es el caso de los modelos de longitud de

mezcla o el modelo k-^ En esta tesis no se ha considerado un modelo específico de

turbulencia, ya que los casos a los que se va a aplicar no lo requieren. Sin embargo, se

ha incluido una evaluación de la pendiente motriz en términos de la fórmula empírica de

Manning, que si bien no permite captar los remolinos del flujo turt^ulento, si que estima

las pérdidas de energía globales, que incluyen también las tensiones turbulentas.

La resolución de las ecuación de aguas someras se hará según un algoritmo de

tipo mixto, que por lo tanto participará de las mismas ventajas e inconvenientes

expuestos para la formulación mixta 2D de Navier-Stokes. Para materializar la

influencia del calado sobre la ecuación de continuidad, se definirán unos valores

intermedios del calado h` y del gradiente del calado b' , evaluados según un esquema

en diferencias finitas desarrollado por el autor, para así eliminar los términos con cuasi-

no-linealidades.
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Aparte de los problemas de inestabilidad que surgen como consecuencia de la

forma en que son tratadas las incógnitas presión y velocidad, y de la elección de los

elementos básicos en función de los cuales el dominio es discretizado, otro grupo de

problemas de inestabilidad numérica potencial que aparece a la hora de resolver los

problemas del flujo viscoso, es el de los provocados por la forma en que el método de

los residuos ponderados se aplica sobre el término de convección de la ecuación

dinámica. En efecto, la forma simétrica en que la formulación de Galerkin (funciones de

peso iguales a funciones prueba), trata al término convectivo no simétrico, resulta ser el

origen de una fuente de inestabilidad en la obtención de la solución de las ecuaciones de

Navier-Stokes. Esta inestabilidad aparece en forma de oscilaciones espurias nodo a

nodo en el campo de velocidades, que en la literatura anglosajona se suelen conocer

como `wiggles'. Estas oscilaciones que aparecen como consecuencia de la existencia del

término de convección en las ecuaciones de Navier-Stokes, se hacen lógicamente más

ostentosas cuanto mayor es el peso de la convección en el flujo, y por lo tanto son

mayores cuanto más grande es el número de Reynolds. Estas oscilaciones se pueden

eliminar llevando a cabo un exhaustivo refinamiento de la malla, especialmente en

aquellos lugares donde existe un cambio brusco en las condiciones del flujo. Sin

embargo, este refinamiento puede implicar unos costes computacionales muy altos, que

depende de las condiciones particulares del flujo en cuestión y pueden convertir el

problema en inabordable para ciertos casos caracterizados por números de Reynolds

suficientemente altos. Fue en el congreso MAFELAP de 1975, cuando Zienkiewicz

planteó una forma de resolución de estos problemas del flujo incompresible mediante

un algoritmo de estabilización [Zienkiewicz 76]. Como consecuencia de este encuentro,

surgen trabajos [Heinrich and Huyakom 77], [Heinrich and Zienkiewicz 77], que

proponen la utilización de esquemas, que llamados de Petrov-Galerkin, permiten la

estabilización de la ecuación de conveción-difusión mediante la utilización de funciones

de peso y de prueba distintas.

Sin embargo, cuando se intentó generalizar este procedimiento de estabilización

a las ecuaciones de Navier-Stokes, se encontró que aparecían unos modos de difusión
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espurios en la dirección ortogonal al flujo. Para evitar este aspecto, Brooks y Hughes

publican en 1982 un artículo [Brooks 82], en el que establecen las bases del así llamado

método SUPG, que aparte de utilizar una formulación de Petrov-Galerkin en la

resolución de las ecuaciones de Navier-Stokes, añade un término de difusión artificial

que actúa sólo en la dirección del flujo, consiguiendo eliminar así la difusión espuria

ortogonal a éste. Estos trabajos son la base teórica en la que se apoya el método SUPG

en sus múltiples variantes, que tan extensamente ha sido utilizado en la literatura al

respecto durante estos años. Otro de los métodos más comúnmente utilizados para la

estabilización de las ecuaciones de Navier-Stokes es el de Galerkin Least-Squares

(GLS), que generaliza la formulación SUPG para elementos de mayor orden mediante

la adición de un residuo de mínimos cuadrados a la formulación de Galerkin, y que fue

desarrollado por Hughes y Franca en 1989 [Hughes 89]. Diferentes versiones de la

formulación SUPG pueden encontrarse en la bibliografia especializada (ver por ejemplo

[Sampaio 91], [Zijl 91], [Franca 92], [Kondo 94], [Hannani 95], [Choi 97]). Un

algoritmo de tipo SUPG adaptado a las formulaciones consideradas ha sido utilizado en

este trabajo para dar estabilidad a la solución de nuestro sistema de ecuaciones. Sus

fundamentos teóricos y aplicación a la formulación usada pueden verse de forma

desairollada en el capítulo 2.6.

Una vez que hemos obtenido la formulación integral estabilizada del problema

del flujo incompresible, se introduce la aproximación en términos de los elementos

básicos considerados para cada formulación. El sistema diferencial y no lineal de

ecuaciones se transforma utilizando una aproximación en diferencias finitas hacia atrás

para las derivadas con respecto del tiempo, y un algoritmo de aproximaciones sucesivas

para los elementos no lineales. La obtención de la convección por medio del método de

aproximaciones sucesivas, implica una convergencia de tipo lineal, frente a la

cuadrática de otros métodos como el de Newton-Raphson; sin embargo el primero

consigue la convergencia en una decena de iteraciones para la mayoría de los casos

prácticos y para números de Reynolds del orden de 103. Por el contrario, el método de

Newton precisa una primera solución de tanteo suficientemente cercana a la solución

del problema, lo que en muchos casos puede obligar a la utilización de una así llamada

técnica de continuación, que en la ecuación de Navier-Stokes supone un incremento

escalonado del valor del número de Reynolds hasta llegar al valor real de éste. Por otra

•
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parte, la mejora en la velocidad de convergencia de este método cuadrático no llega a

ser sensiblemente ventajosa, debido al pequeño rango de convergencia de muchos de los

problemas reales.

En este punto se integran las matrices elementales para cada elemento, haciendo

uso de una cuadratura numérica exacta, o de una aproximada en el caso de que se

requiera una integración selectiva reducida (formulación penalizada). Las matrices

elementales así obtenidas se ensamblan adecuadamente y a continuación se lleva a cabo

la resolución del sistema.

La resolución del sistema algebraico se ha llevado a cabo por varios métodos. En

una primera instancia, la resolución del sistema se hace por medio de un método directo

de Crout con almacenamiento en matriz llena. Esta forma de almacenamiento, aunque la

más sencilla de programar, provoca que para mallas no excesivamente refinadas, el

volumen de datos a almacenar se convierta en inabordable. La forma de mejorar la

compactación en el almacenamiento de la información, ha sido la utilización de un

almacenamiento en `Skyline' o `perfil en columnas'. Este tipo de almacenamiento es

más efectivo que el almacenamiento en banda, y consiste en guardar exclusivamente los

datos de las columnas a partir del primer elemento distinto de cero hasta el elemento de

la diagonal. Los datos se almacenarán en dos vectores, uno el de punteros, de la misma

dimensión que el propio sistema, y otro de datos, en el que aparte de los elementos no

nulos, estarán embebidos un cierto número de ceros. Dado que las matrices de

coeficientes del sistema con las que estamos trabajando incluyen una parte relativa a la

aceleración convectiva, éstas no son simétricas y por lo tanto cada matriz requerirá

utilizar dos vectores de datos, uno para cada matriz triangular. La utilización de este tipo

de almacenamiento es compatible con una resolución directa del sistema de tipo Crout,

que por lo tanto dará lugar a la obtención de la solución exacta del sistema de

ecuaciones. La propia definición de los algoritmos mixto y penalizado conduce a una

configuración de la matriz de `rigidez' que difiere con mucho de ser una matriz de tipo

banda (ver figura adjunta}. Por tanto, una adecuada renumeración de los nodos dará

lugar a una reducción de las necesidades de memoria, pero no contribuirá de forma

definitiva a un almacenamiento eficiente. Por el contrario, la formulación segregada no

sólo dará lugar a una matriz de coeficientes de dimensión el número de nodos incógnita,

sino que permitirá que una adecuada renumeración de los nodos de lugar a una
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reducción drástica en los requerimientos de memoria, si utilizamos un almacenamiento

en `skyline'.

Almacenamiento de la matriz de `rigidez' en `Skyline' para las formulaciones mixta, penalizada y segregada.

Para las formulaciones mixta y penalizada será en cambio necesario recuirir a un

almacenamiento en matriz dispersa, que como sabemos es incompatible con una

resolución directa del sistema. El almacenamiento en matriz dispersa se llevará a cabo

mediante una técnica de `filas numeradas', y el volumen de almacenamiento será sólo el

doble de los datos no nulos presentes en la matriz de rigidez. Este tipo de

almacenamiento es incompatible con una resolución directa y habrá que recumir a un

procedimiento de tipo iterativo. El método utilizado ha sido de tipo PBCG o método

`Precondicionado de Gradientes Biconjugados', que permite obtener muy buenas

aproximaciones en un número reducido de iteraciones.

Los algoritmos anteriormente reseñados han sido empleados en la resolución de

varios casos particulares. Los problemas académicos nos han servido para validar el

algoritmo, tras lo cual el programa ha sido empleado en la resolución de varios casos

prácticos. Como primer ejemplo académico, en el capítulo 3 se han utilizado los

algoritmos mixto, segregado, y penalizado, para resolver el flujo en una cavidad

cuadrada con velocidad tangente y unitaria en el lado superior, y condición de no

deslizamiento en el resto. Este es uno de los tests más comúnmente utilizados en la

verificación de las formulaciones de Navier-Stokes. Este ejemplo académico presenta

varias zonas de recirculación y singularidades del campo de presiones en las esquinas

superiores, lo que junto con la amplia literatura disponible al respecto, lo convierten en

un problema de referencia. Los resultados obtenidos para las tres formulaciones

tanteadas han sido totalmente análogos, como podía esperarse de la idéntica forma de

tratar los tres tipos de formulación implementados. También se ha observado, que las
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gráFcas de las velocidades horizontales a lo largo de una línea vertical centrada de la

cavidad, están en consonancia con los resultados de referencia de [Ghia 82], [Kondo 91)

y[Hannani 95], con los que se han comparado. De hecho, se han obtenido resultados

muy aproximados a la solución numérica de Ghía para una malla de 129x 129 nodos

(que es la solución de referencia por excelencia de los problemas de Flujo en una

Cavidad), para un refinamiento de malla de tan sólo 40x40 elementos básicos de tipo

Q1P0, mejorando así los resultados de Hannani y Kondo para una malla de similar

refinamiento, gracias a la utilización del método de estabilización especificado en el

apartado 2.6.

Si bien los resultados obtenidos para los tres tipos de formulación son totalmente

análogos, los tiempos de computación empleados en los mismos difieren de una manera

ostentosa. Tanto en la formulación mixta como en la penalizada, se ha utilizado una

resolución del sistema algebraico de tipo PBCG (Gradientes Biconjugados

Precondicionados), que consigue la convergencia de la solución para tiempos de

computación más reducidos que los que se han obtenido cono resultado de emplear una

formulación de tipo segregada en combinación con una resolución directa del sistema de

ecuaciones. Por tanto, la economía computacional que ha supuesto la reducción en el

volumen de almacenamiento de la matriz de coeficientes del sistema a resolver en el

método segregado, ha sido rebasada por los mayores costes computacionales que

implica la resolución de un sistema, de menor dimensión, pero de forma directa. Por

otro lado, la resolución iterativa de los algoritmos mixto y penalizado, ha dado lugar a

tiempos de computación similares, siendo superiores los del algoritmo penalizado en los

resultados del problema del Flujo en una Cavidad. Sin embargo, en el método de

penalización, la selección del parámetro e para cada problema particular, da lugar a

importantes variaciones en el tiempo de computación, que puede llegar a ser menor que

el empleado en una resolución mixta, si se evalúa convenientemente la magnitud del

parámetro de penalización. A la vista de los resultados obtenidos para el flujo tangencial

en una cavidad cuadrada, en lo sucesivo se ha utilizado indistintamente el algoritmo

mixto y penalizado para la resolución de los problemas planteados.

Una vez verificado el conrecto funcionamiento de las tres formulaciones de

Navier-Stokes, en el capítulo 4 se presentan los resultados obtenidos con el programa en

la resolución del flujo en un canal con un ensanchamiento brusco en la sección,
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conocido en la bibliografía anglosajona como `Backward Facing Step'. Este es uno de

los problemas académicos más comúnmente utilizados en la literatura al respecto, en el

que se puede observar la formación de varios vórtices de recirculación a lo largo de la

longitud del canal, como consecuencia de dicho ensanchamiento en la sección. Además

de numerosos resultados numéricos presentados por varios autores clásicos, existen

datos experimentales de [Aimaly 83], que permiten hacer una comparación entre los

datos numéricos y los reales. Esta comparación con los datos experimentales de

Armaly, se hace en términos de las longitudes de reacoplamiento, que están tabuladas

para distintos números de Reynolds. Los resultados obtenidos mediante la utilización

del algoritmo recogido en esta tesis doctoral, mejoran apreciablemente los datos

numéricos de Armaly obtenidos mediante una formulación en volúmenes finitos,

acercándose de una manera manifiesta a los datos experimentales obtenidos por el

propio autor. Asimismo, los resultados numéricos presentados en este trabajo están en

absoluta consonancia con los conocidos resultados de [Kim 88] y[Choi 94], obtenidos a

partir de formulaciones mixta y segregada respectivamente.

En el capítulo 5 se evalúa el flujo en una cavidad rectangular, en la que se

distribuye el caudal de entrada en tres diferentes canales de salida. Se trata ésta de una

estructura que se puede encontrar con frecuencia en las plantas de tratamiento de aguas

residuales. Como un primer paso, se obtienen los campos de velocidades para distintos

números de Reynolds, y se observa la evolución en las líneas de corriente para los

distintos casos. La observación del recorrido del fluido puede ser esencial a la hora de

evaluar el dimensionamiento de una cavidad de distribución de agua, impidiendo la

aparición de remolinos en caso de que las pérdidas de energía no nos interesen, o por el

contrario favoreciendo la formación de los mismos, en el caso de que los fenómenos de

recirculación sean favorables, para por ejemplo aumentar el tiempo de retención del

fluido y favorecer así la sedimentación de partículas.

También se ha introducido un término de pérdidas por fricción de tipo Manning

para la resolución del flujo en esta cavidad de distribución. La inclusión de un término

de Manning, análogo al definido en el apartado 1.6, permite evaluar las pérdidas por

fricción de una manera empírica y como puede verse en las figuras mostradas en el

capítulo 5, con resultados similares a los producidos al aumentar la viscosidad

cinemática del fluido.

•
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Aunque la solución del flujo en la cavidad de distribución se obtiene por

aplicación del algoritmo permanente en solo paso, se ha resuelto también mediante

incrementos progresivos de tiempo en el algoritmo no permanente. El resultado

obtenido mediante la consideración de la variación del flujo a intervalos de tiempo

finitos, permite observar la evolución del caudal de entrada en la cavidad hasta llegar a

las condiciones de régimen, que se alcanzan en el momento en el que la última partícula

que accede por el canal de entrada llega hasta el canal de salida. Como puede verse en

los resultados del capítulo 5, estas condiciones de régimen se consiguen para el tiempo

que la última partícula tarda en recorrer la cavidad de distribución.

En el capítulo 6 se han utilizado los algoritmos de Navier-Stokes en dos

dimensiones y de Aguas Someras, para resolver el flujo en un canal que se expande al

doble de su anchura de forma brusca. Como era de esperar, la resolución por medio de

la formulación en dos dimensiones de Navier-Stokes no asegura el cumplimiento de la

ley de continuidad de la masa, y el producto de la velocidad por el área de la sección

transversal no se conserva cuando se impone una ley hidrostática de presiones aguas

abajo. Sin embargo, la utilización de las ecuaciones integradas en altura, permite la

conservación del caudal a lo largo de todo el canal, gracias al uso del algoritmo

detallado en la sección 2.5, y desarrollado por el propio autor.

Finalmente, en el capítulo 7 se presentan algunos ejemplos de resolución del

flujo en estructuras empleadas en la depuración de aguas residuales, a saber;

decantadores de flujo horizontal, en sus variantes rectangular y circular, decantador de

lamelas `LUPA' (prototipo que está siendo desarrollado en la Escuela Técnica Superior

de Ingenieros de Caminos, Canales y Puertos de La Coruña), y floculador en laberinto.

La obtención de las características del flujo en todos ellos, es muy importante a la hora

del dimensionamiento de estas estructuras.

A modo de conclusión, este proyecto de tesis doctoral realiza un análisis

exhaustivo de las ecuaciones que gobiernan el flujo incompresible y de su solución por

el Método de los Elementos Finitos. Como consecuencia de ese análisis, se ha elaborado

un programa que obtiene resultados óptimos en el cálculo del flujo incompresible.

El programa soluciona las ecuaciones laminares de Navier-Stokes por los tres

algoritmos más comúnmente utilizados dentro del marco de los elementos finitos, lo

cual supone un estudio comparativo inédito. Como consecuencia, no sólo se comprueba
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que como era de esperar la solución es la misma para las tres formulaciones

consideradas, sino que además la solución obtenida mejora la de varios autores de

referencia, cuyos resultados se aportan para realizar la comparación, gracias a la

utilización de los mecanismos estabilizadores reseñados en el texto.

Además, este trabajo presenta un algoritmo, que desarrollado por el autor,

permite la resolución de las ecuaciones de aguas someras gracias a la incorporación de

un módulo basado en un esquema en diferencias finitas dentro del marco del Método de

los Elementos Finitos. Este módulo contiene además un modelo de evaluación de los

efectos turbulentos en función de la fórmula de Manning, que permite resolver la

turbulencia en un gran número de los flujos relacionados con la ingeniería civil, sin

perder la estructura de la ecuación de Navier-Stokes, que queda preparada para la

incorporación de un modelo de turbulencia de tipo k-E,, desarrollado en el propio grupo

de investigación [Bonillo 00]. Este módulo que será incorporado como un futuro

desarrollo, permitirá superar con creces los modelos que, como el RMAZ de la

Universidad de Brigham, se utilizan en la actualidad para el cálculo hidrodinámico de

manera comercial y que hacen uso de una viscosidad turbulenta constante.

Por último, los algoritmos desarrollados han sido utilizados en la resolución de

algunos casos prácticos relacionados con las estructuras de las plantas de tratamiento de

aguas residuales, lo cual tiene una aplicación directa en la mejora del rendimiento de las

mismas.

•
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CHAPTER 1

INTRODUCTION AND GOVERNING EQUATIONS

The philosophy is written in this vast book which is permanently in front of our eyes (I am referring to the universe),
which nevertheless, cannot be understood if one has not learnt to understand its language and to know the alphabet in

which it is written. And is written in the language of mathematics, being its script that of the triangles, circles and
other geometric figures, without which we could only wander through dark mazes.

Galileo Galilei,1564-1642
!I Saggiatore, VI, 232
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Chapter 1. Introduction and governing equations

CHAPTER 1. INTRODUCTION AND GOVERNING EQUATIONS

1.1. The physical problem

The aim of this thesis, framed within the numerical and hydraulic research being

carried out in the Civil Engineering School of La Coruña, has been to explore the

feasible numerical techniques that solve the open channel flow problems. Several

formulations have been developed, implemented and validated with some available

experimental and numerical data. An efficient code has been released in order to give

solution to these flow problems in a stable and efficient way with great success.

Once this code has been evaluated, it has been used in the resolution of some

practical engineering problems related to the wastewater industry. The obtaining of the

flow variables in these real cases may provide a powerful tool in order to allow for an

improvement in the geometric features of the flow basins. Only through the

comprehensive knowledge of the hydrodynamic variables, will the flow be not only

evaluated but also fully understood. As a consequence, an adequate design of the basins

and channels may be carried out, based upon an efficient and reliable numerical

technique, resulting in great cost savings.

The equations that rule the physical problem of the unsteady incompressible

flow are based upon the Newton second law (as in any other dynamic problem), and the

continuity equation, that ensures the conservation of mass in a material that has not a

fixed shape. Both equalities constitute the so-called Navier-Stokes equations to be used

within this work.

All the flows found in civil engineering practice can be featured by the Reynolds

number (UL/v, where U and L are the characteristic velocity and length of the flow and

v is the kinematic viscosity that depends on the fluid nature). For small Reynolds

numbers, the flow can be regarded as lanŭnar, and the streamlines are parallel to each

other. As the Reynolds number is increased, a chaotic, random and intrinsically

unsteady type of motion appears. ff these turbulent effects are to be solved by using the

Navier-Stokes equations, a very refined mesh would be required to capture the eddies

taking place on a wide range of length scales, and a special attention should be devoted
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to the unsteady resolution of the turbulent phenomena, that take place at a very high

frequency [Versteeg 95]. The mesh refinement and the time step required for this

purpose are not yet computationally affordable and a turbulence model should be

implemented in order to evaluate these turbulent eddies. Most of these turbulence

models are based upon decomposing the involved variables into a mean value (within a

time increment) and a fluctuating term that depends on time. As a consequence of this

approach, a term that evaluates the turbulent losses as a function of a so-called eddy

viscosity v^, is obtained. To evaluate this eddy or turbulent viscosity, a specific

turbulence model such as the k-^ model should be introduced. Making use of these

turbulence models, the turbulent viscosity is calculated for each time step and position,

allowing for the capturing of these eddies [Rodi 93]. Some other flow models evaluate

this eddy viscosity as a constant within the flow domain, such as the RMA2 flow model

developed by the Brigham University, which is one of the most commonly used

programs to evaluate the flow in channels.

Another approach to the turbulent problems would be to use the Manning

formula. The integration in depth of the 3D Navier-Stokes equations allows for the

empirical evaluation of the energy losses taking place in flows that can be regarded as

shallow. The Manning formula evaluates empirically the overall energy losses taking

place in the fluid flow, including those related with the turbulent effects. This

formulation does not capture the turbulent eddies taking place within the fluid flow but

takes into account the turbulent energy losses. Many numerical resolutions of the

incompressible flow use the Manning approach to evaluate these turbulent effects.

However, most of the available numerical models neglect the viscous effects compared

to the turbulent ones and the viscous term is dropped from the equations.

Some other Navier-Stokes flow models ignore the turbulent effects, and make

use of the plain Navier-Stokes equations. As a consequence, they can only be used for a

moderate Reynolds number, even when a stabilization technique is used, and even for

very refined meshes. In comparison to those which evaluate the turbulence on a

Manning basis, these models provide a finer approach to the problems characterised by

a moderate Reynolds number, as they keep the real forces balance.

•
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The formulation presented in this work solves the Navier-Stokes equations

making use of a SUPG type stabilization technique, allowing for the resolution of the

flow when the Reynolds number is of a moderate order. A Shallow Water algorithm

that incorporates a Manning ternn is also presented, nonetheless this formulation does

not get rid of the viscous term, allowing for the incorporation of a turbulent model that

evaluates the eddy viscosity as a function of time and space. A k-E turbulence model

has been developed in our research group and it will be added as a further development.

This module has been proved to work properly when used in connection with the

RMA2 model, which uses a constant eddy viscosiry.

Once the code has been validated, it will be used to evaluate the flow in some

water treatment engineering problems, and their results will be presented. Some of these

wastewater flow problems will be used as part of the research being carried out in the

sanitary engineering area of the Escuela Técnica Superior de Ingenieros de Caminos,

Canales y Puertos de La Coruña.

1.2. Numerical resolution of the flow problem

The Navier-Stokes equations have an analytical solution for a very small set of

simple flows. In any other case a numerical procedure giving an approximate solution

of the flow, should be used in its resolution.

Many numerical techniques have been developed for the resolution of the

incompressible flow. The four main groups into which these numerical techniques can

be separated, are the Finite Difference, Finite Volume, Spectral and Finite Element

Methods. The Finite Difference Method is based upon the use of the finite difference

approximation of the derivatives included in the equations to be solved, being used by

many authors in the resolution of some particular incompressible flow problems

[Richtmyer 67], [Roaches 76], [Baker 83], [Katopodes 84], [Smith 85]. The Spectral

Method approximates the unknowns in the Navier-Stokes equation by the use of the

Fourier series or the Chebyshev polynomials [Gottlieb 77], nonetheless the Spectral

Method shows some important problems when the boundary conditions are not periodic

[Canuto 88]. The Finite Volume Method was first developed as a special finite
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Chapter 1. Introducrion and governing equations

difference formulation to be used in fluids, based upon the splitting of the domain into

a finite number of control volumes. The governing equations are integrated over all the

control volumes of the domain, and the discretization to be carried out involves the use

of some finite difference type approximations. There are many different versions of the

Finite Volume Method that have been extensively used in the resolution of the Navier-

Stokes equations [Patankar 80], [Roe 89], [Hubbard 93], and still are used with very

good results. These difference based algorithms can be regarded in a unified way, as

specific criteria within the weighted residuals framework, upon which the Finite

Element Method is based [Finlayson 72]. The Finite Element Method will be the one

used in this doctoral thesis, and will be further considered in the next chapter and

throughout the text. Apart from those, there are some other numerical methods, that

such as the Meshless [Oñate 95, 96] or the Boundary Element Methods [Onishi 84],

[Brebbia 86], have been recently used to solve the Navier-Stokes equations with very

promising results.

1.3. Finite element resolution of the flow problem

The Finite Element Method is a numerical procedure for solving the differential

equations that govern a wide variety of physical problems. This technique subdivides

the domain of definition into a finite number of smaller regions, and uses the weighted

residuals method so as to transform the governing differential equations into a set of

discrete integral equations. This system of equations gives as a result, the value of the

unknowns in the nodal points of the basic elements, being an approximation to the

problem posed in the governing equations.

The Finite Element Method was first developed in the fifties by Turner and

Clough so as to solve some structural problems of the aeronautical industry [Turner

56]. The good results obtained for structural analysis were soon transported to other

physical problems, such as elementary flow and electromagnetism problems

[Zienkiewicz 65]. The appearance of `The Finite Element Method' in 1967 by

Zienkiewicz and Taylor [Zienkiewicz 1989], establishes the basis of this numerical

technique. Since then, and thanks to an amazing improvement in the computer

performances in the second half of this century, the Finite Element Method is the

•
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numerical technique most commonly used in the approximate resolution of a wide

variety of the physical problems arisen within these years.

The application of the Finite Element Method to the flow problems requires

some modifications with respect to the formulation used for the structural stress

analysis problems, that were its first application. Some of these modifications have

been borrowed from the finite difference or finite volume approaches, and many others

have been specifically developed for finite elements. In the early seventies we find

many works regarding not only the mere existence and consistency of these flow

problems [Ladyzhenskaya 69], [Babuska 71], [Brezzi 74], but also many works that

give a finite element solution to the Navier-Stokes equations [Baker 71 ], [Oden 72],

[Fortin 72], [Crouzeix 73], [Jamet 73], [Taylor 73], [Shen 76], [Zienkiewicz 76]. Since

then, the Finite Element Method is a powerful tool for the resolution of the Navier

Stokes equations, which will be used in this doctoral thesis so as to solve the

incompressible flow, as may be seen in the sections to follow.

The material we are going to deal with, when solving the flow, is of a fluid

nature, and therefore it has not a fixed shape, which is instead a function of time. In

addition to Newton's second law, that rules any dynamic problem, an equation that

ensures for the conservation of mass should be verified. Moreover, the Navier-Stokes

equations are a set of differential equations with respect to both space and time in

which both the pressure and the velocity are the unknowns. As a consequence, the finite

element formulation used for the conventional structural analysis cannot be applied

straightforwardly.

When applying the finite element analysis to the problems of the rigid body, the

weighted residual method can be exclusively applied to the Newton second law, which

for statics clearly turns out to be the equilibrium equation; there is no use in imposing

the conservation of mass to a set of materials which do not lose their shape. On the

contrary, when dealing with fluids, the shape is not any more conserved, and apart from

stating the equilibrium of momentum, we have to ensure for the continuity of mass.

Consequently, we have two equations to be verified at the same time, and the finite

element formulation should also account for the verification of both. The only set of

unknowns in the conventional structural analysis is that of the displacements, as a
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consequence, the system obtained thanks to the application of the Finite Element

Method, gives the displacements in the structure depending on the stiffness matrix (that

features the structure), and the load vector. In the flow problems, we are headed towards

the so-called mixed Finite Element Methods, in which both the velocity and pressure

set of unknowns have to be treated simultaneously.

Depending on how these two sets of equations and unknowns are tackled,

several different approaches are developed. The most intuitive of these approaches

would be simply to carry out a similar analysis for the continuity equation to that used

for the momentum equation, carrying along both velocity and pressure as the unknowns

up to the end of the problem, [Baker 71] [Oden 72], [Zienkiewicz 76]. This apparently

straightforward way of dealing with our equations is not as simple as it appears to be,

and it may be the reason of the obtaining of a meaningless solution when used in

connection with a faulty basic element [Babuska 71], [Taylor 73], [Brezzi 74]. Besides

a big expense in the storing memory, the so-called mixed formulation, leads to some

consistency problems in the obtaining of the solution when a wrong choice in the basic

functions has been made. As a consequence, many different formulations have been

used trying to overcome these difficulties. In this work, some of these different

approaches will be employed and discussed.

The 2D Navier-Stokes equations assume a flow that takes place on a two-

dimensional plane, and it is therefore laminar in that sense. The Shallow Water

formulation has been also considered as a way of including the third dimension in the

calculations, being able to give a meaningful solution for flows in which the depth is

small compared to the horizontal dimension. The integration in depth of the 3D Navier-

Stokes formulation, causes the dependence of the continuity equation with respect to

depth, and consequently the appearance of some quasi-non-linear terms that depend on

both the velocity and the depth. These equations are solved thanks to a newly developed

iterative algorithm, which will be solved on a mixed formulation basis to be regarded in

full in section 2.5.

The use of a Galerkin formulation, that takes weighting functions equal to trial

functions, when solving the Navier-Stokes equations, may lead to some problems of

instability in the flow solution by the Finite Element Method. To avoid this difficulty,

t
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Chapter 1. Introducŭon and goveming equations

some so-called stabilization procedures have been released since the MAFELAP

conference in 1975 [Zienkiewicz 76]. The stiffness matrix resulting from structural

problems solved by the Finite Element Method is symmetric, instead the `stiffness'

matrix obtained for fluids is non-symmetric and the use of symmetric weighting

functions may lead to some instability problems. The faster the flow turns, the more

non-symmetric the coefficient matrix becomes. In practice this is featured by the

appearance of some spurious node-to-node oscillations also known as `wiggles' . One

way of avoiding these oscillations is to carry out a refinement in the mesh, such that

convection no longer dominates on an element level, but this refinement turns to be a

memory resources sink. This point will be avoided in this work by the use of an

stabilization technique of the SUPG type, for all the algorithms considered in it.

The SUPG (Streamline/Upwinding Petrov-Galerkin) technique, first developed

by Brookes [Brookes 82], succeeds in eliminating the spurious velocity field, without

carrying out a severe refinement in the mesh, by considering weighting functions that

differ from trial functions in an upwinding term. Tfiis method was first released for the

transport equation, and its generalisation to the Navier-Stokes equation brings an

additional problem; that is the appearance of an excessive diffusion normal to the flow.

The SUPG method eliminates this spurious crosswind diffusion by considering an

`artificial' diffusion that acts only in the direction of the flow. These aspects will be

further considered in section 2.6.

All the particulars regarded in this introduction and some others, will be further

discussed in the following chapters. A code will be written based upon these

particulars, and will be also validated by its comparison with available numerical and

empirical reference results. Once the program has been validated, it will be used in the

resolution of some wastewater problems. In the present chapter, the equations that rule

the viscous incompressible flow will be derived and presented, together with all the

assumptions carried out in their securing. Once the 2D Navier-Stokes and the Shallow

Water equations have been presented, chapter two will be devoted to the finite element

resolution of these equations by several different algorithms of the mixed, penalry and

segregated type. Chapter two will also focus on the definition of an stabilising

technique of the SUPG type, in order to avoid the instability showing up in the solution
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beyond a certain Reynolds number, and also in the treatment to be given to the viscous

effects. An especial mention to the solver used in the resolution of the resulting system

of differential, non-linear equations will be carried out at the end of chapter two.

In chapter number three, the mixed, penalty and segregated 2D formulations are

validated by comparing the results obtained thus, with referehce results by other authors

on the Cavity Flow benchmark problem. As a result, it is shown how these algorithms

prove to yield a better accuracy for a less refined mesh, compared to the one obtained

by other authors and regardless of the algorithm employed in the calculations, that only

plays an important role in the computational efficiency yielded.

In chapter number four a comparison is made among the experimental results

obtained for the Backward Facing Step benchmark problem of Armaly et al. [Armaly

83) and the results obtained by using the 2D algorithm proposed in this doctoral thesis.

As a result, the solution obtained by the present author seems to be in a better

agreement with the experimental results than those obtained numerically by Armaly as

can be regarded in the information provided in this chapter.

Chapter number five is devoted to the analysis of the influence of the

consideration of the Manning term in the formulation. The Manning term as explained

in chapter two manages to evaluate the turbulent effects that show up , in the real flows

when a certain Reynolds number is overcome. Beyond that number, the turbulence can

not be denied in order to give solution to the physical phenomenon, and the

consideration of the Manning coefficient manages to evaluate the overall turbulent

energy losses, as shown in the examples provided in this chapter, that also considers the

evolution in time of the unsteady algorithm.

Chapter six is concerned with the comparison between the 2D laminar and

Shallow Water formulations. As it was expected, the 2D algorithm dces not manage to

evaluate the conservation of mass in a three-dimensional manner, especially when the

conditions of the flow force a change in the depth of the flow. Nonetheless the Shallow

Water algorithm presented in chapter two provides an optimum tool for this purpose.

Finally, chapter seven is devoted to the resolution of some real flow problems

related with the wastewater industry, and provides some results very valuable in the

designing of the water treatment plants.

•
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•

1.4. Governing equations

Our first task will be to obtain the governing equations that rule our physical

problem; this is the resolution of the unsteady, incompressible flow. As in any other

dynamic problem, the equation we are going to refer to, is the Newton second law,

which gives the variation in the momentum as the summation of the acting forces on

the volume of integration. To this condition we should add another one, due to the fact

that we are dealing with a shape-changing matter in which we have to ensure the

continuity of mass. Both equations make up the Navier-Stokes equations. These

equations are named after their discoverer, the French civil engineer Claude-Louis

Navier (1785-1836), who in 1821 formulated the equations that rule the incompressible

flow. The Navier-Stokes equations also bear the name of the Irish mathematician

George Gabriel Stokes (1819-1903), who not knowing the previous discoveries made

by Navier, Poisson and Saint-Venant, re-obtained the Navier-Stokes equations for

slightly different assumptions, and published these works in 1845. The Irish

mathematician gives also his name to the simplified version of the Navier-Stokes

equations, in which the convective terms are dropped.

The complexity of the Navier-Stokes equations leads to the use of some other

simplified governing equations. Most of the difficulties found in the resolution of the

Navier-Stokes equations are derived from the presence of the convective term in the

dynamic equations, as will be explained later. The Stokes equations assumes ^that the

convective part of the dynamic equation in the Navier-Stokes formulation is not

significant and can be denied [Carey 84]. This assumption removes the non-linearities

from the Navier-Stokes equations, and consequently avoids most of the problems that

the consideration of this term causes in the resolution of the flow when a large enough

Reynolds number features the flow. In fact, the convective acceleration usually

dominates the flow, and the Stokes assumption can only be considered for the so-called

`creeping flows,' or in other words, slow flows with scant depth. Therefore, a

convective-term-including formulation is required in order to solve the real flow

problems, and the Stokes simplification will not be used in this work, apart from

comparison purposes.
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The 2D Navier-Stokes equations will be used in this thesis to solve many

benchmark problems of the related literature with very good results, as will became

clear later in the text. The 2D or laminar (in the sense of planar) Navier-Stokes

equations do not take into account the third dimension in space, ^and provide with the

velocities and pressures of a theoretical planar flow. Nevertheless, for many real flow

problems, the third dimension in space is very important and the 3D Navier-Stokes

equations should be considered. The three-dimensional Navier-Stokes equations result

in a very large-dimensioned system of equations, that involves very high computational

costs. Moreover the 3D schemes present a great difficulty in the treatment of the free

surface. For flows in which the horizontal dimension is small compared to depth, the

Shallow Water formulation can be employed as a simplification of the 3D Navier-

Stokes equations, [Weiyan 92].

The Shallow Water equations are a simplification of the Navier-Stokes

equations, which can be used when the main direction of the flow is the horizontal one

and the distribution of the horizontal velocity along the vertical direction can be

assumed as uniform. These equations assume that the vertical acceleration of the fluid

is negligible and that a hydrostatic distribution of the pressure can be adopted. The

Shallow Water equations are obtained by integrating the 3D Navier-Stokes equations in

depth, and give a meaningful solution for flows in which the horizontal dimension is

small compared with the depth. When a 2D Navier-Stokes equation is used, no

attention is paid to the third dimension in space, and the results are based upon a 2D

approach to the flow problem. Therefore, the continuity equation is only held on a 2D

basis. So as to get some information about the variations in depth along the flow, either

a 3D Navier-Stokes equation or the Shallow Water equations (if the flow can be

regárded as shallow), should be used. The Shallow Water equations are solved in this

work for that purpose.

Before obtaining the Navier-Stokes equations, let us first define the system of

reference we are going to use to translate our physical problem into mathematical

language. Due to the variation in shape of fluids, the traditional Lagrangian reference

system used in the mechanics of the rigid bodies is no longer useful. When using

Lagrangian co-ordinates in fluids, we are going to express all the quantities with respect

•
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to the initial position of each particle; this is f= f (a;,t). The use of an Eulerian frame

is more appropriate for fluids, since the consideration of the spatial directions x; and

time, as independent variables, permits us to express the dependent variables velocity

( u; ) and pressure ( p), as a function of the position of the particles at the current time

Ĵ = Ĵ^x;,t}.

1.4.1. Conservation of mass

The continuity equation will be obtained by writing in mathematical words the

principle of the conservation of mass, which states that in any physical system the total

mass is conserved in the absence of sources and sinks. This of course, should be also

verified for fluids and therefore, the total mass in an a^fiitrary volume V(t^, moving

with the fluid is a constant in time. Consequently, given a fluid of velocity u; (x; , t} and

density p(x; , t}, the variation in time of the total mass in that arbitrary volume moving

with the fluid should be null, or equivalently:

d Jdm = d J pdV = 0
dt M dt v(r^

(1.4.1.1)

As V= V(t } is a function of time, we cannot simply bring the derivative into the

integral sign without doing a few further operations, ŝometimes referred as the

Transport Theorem. Let us carry out a change in the integrating variable, so as to allow

for an easier bringing of the derivative into the integral sign. The time-dependent

variable of integration V is going to be replaced by a constant-with-respect-to-time

initial volume Vo . Being I JI the Jacobian determinant of the transformation, the

differential of V can be expressed as:

dV = IJIdVo

and accordingly equation (1.4.1.1), may be written as:

^s
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^^p^J,^Vo = dpiJ^+p dI Jl Vo = 0 1.4.1.2^ dt J dt dt ( }
^o ^o

The material derivative of the Jacobian could be written as the product of the

divergence of the velocity and the Jacobian itself, that is:

p dI Jl = p du^ ^J^dt dx;
(1.4.1.3)

Let us prove this point for the two-dimensional case for simplicity: thus, expanding the

material derivative of the Jacobian determinant, we would obtain:

dI Jl á^J^ a^Jl a ax ay ax ay au ay ax av au ay ax av
dt = at + ax; ^i - át á^ á^ - a^ á^ = á^ á^ + á^ á^ - á^ a^ - á^ á^ _

au ax ay ax av ay au ax ay ax av ay au.
- ^x á^ á^ + á^ c3Y á^, - áx a^ á^ - ci^ ay á^ = ax; IJI (1.4.1.4)

Hence, replacing (1.4.1.3) in (1.4.1.2) and returning to an integration with respect tó V,

we have:

dp+pau;
y=0,

J dt ax;v
(1.4.1.5)

where V is an arbitrary volume in the flow domain S2 , and therefore the so-called

continuity equation is upheld:

^+ p áx` = 0 in SZ
^

(1.4.1.ó}

In the following analysis, we will not be concerned with fluids in their general

conception but only with those in which the volume for a given mass is a constant. The

density p is consequently an invariant, and expression (1.4.1.6) can be re-written in its

indicial notation as:

s

26



Chapter 1. Introduction and governing equations

u;^ = 0 (1.4.1.7)

which is generally known as the continuiry equation for incompressible fluids or

incompressibility constraint, being one of the two equations included in the Navier-

Stokes formulation. ^

1.4.2. Conservation of momentum

Apart from taking into account the continuiry equation, we should not forget

that we have to solve a dynamic problem, and hence the Newton second law should be

verified. Newton's second law gives the variation in the momentum as the summation

of the acting forces in the volume of integration:

d^^^=^F (1.4.2.1)
dt

The rate of change in the momentum of the fluid in V(t ) is the summation of the body

and boundary forces acting on this volume:

^t j pu;dV = ^ (F;^ + F;av 1v(r) 1 (1.4.2.2)

Let us transform first the left-hand side of the equality, bringing the material derivative

into the integral sign by applying the Transport Theorem, just as we did with the

continuity equation:

^ jpu;dV =J a(pu;^J^)dVo = f dpu` ^J^+ pu; aIJI dVo =
dt,,(t) ,,o dt ,,o dt ax^

dpu. au. dpu. au ^
J ' IJI + pu; ` IJIdVo = J `+ pu; ' dV (1.4.2.3)
„o dt ax^ ,,(t) dt ax^
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Since u^,^ is equal to zero, equation (1.4.2.3} can be written as:

^ d j pu;dV = j aput + apu^ ax; dV
dt,,(^^ ^(^^ at ax^ at

(1.4.2.4)

p is a constant for incompressible fluids, therefore equation (1.4.2.2) results in:

J pdt+pu^aX'dV=^(F;`'+F,.av)
^(^^ d a f

(1.4.2.5)

In order to evaluate the second member in equation (1.4.2.5) we should take into

account the equilibrium of forces acting on volume V. These acting forces can be

gathered as body forces and boundary forces. The body forces are those acting within

the regarded volume and can be expressed as:

^ F.^ = J pf,dV (1.4.2.6)
v(^)

where f is the body force per unit mass.

Let us regard now the summation of the forces acting on the boundary

(^ F,.av ). A simple way of evaluating the stresses among particles, would be to assume

them to be proportional to the variation of the velocity with respect to space, when

carrying out a one dimensional analysis of the flow. As a consequence of this

assumption, Newton law of viscosity gives the shear stress of a parallel flow as:

^ = µ dn
(1.4.2.7)

where n stands for the direction normal to the interface and parallel to the flow, and µ

is the dynamic viscosity coefficient, assumed to be a constant for each fluid.

•
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.

The Newton Law is in fact a particularisation of a more complex and general

law, known as the Stokes viscosity law, which gives the stresses of all the spatial co-

ordinates as a function of the so-called rates of deformation ^;; and the pressure p. The

stresses on a cubic 3D domain ^i;; Ĵ are commonly expressed as a function of 34

different constants c;;^ , i.e.:

^;; _ -S;; p + c^;^^k^

where S;; is the Kronecker delta and the rate of deformation (^;; ^ is defined as:

^ - 1 au; + au;

^^ 2 aX; aX;

(1.4.2.8)

(1.4.2.9)

Figure 1.4.2.1. Stresses on an elementary cube

Due to the symmetry in the equilibrium of forces and in the definition of the rate

of deformation, we have that E;; = E;; and i;; = z;; . Therefore, the number of

independent constants can be reduced to 2232 , i.e.:
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^^ _ -p+C11^^ +C12^», +Ci3^zz +C14^xy +Cis^xz +^16^yx

Zyy =-p + CZlĉ^ + C22ĉyy
+ C23ĉu + C24E^, + CZSĉ^ + C26ĉyx

^u =-p + c31^^ + C32ĉ yy + C33^u + C^^^, + C35Exz + C36E yx

^^, =C41ĉ^ +C42ĉyy +C43Ĝu +C44ĉx), +C45^xz +C46^yx

T xZ = Cslĉ^ + CSZ^yy + C53^u + C^ĉx3, + CSSĉu + C5óĉyx

Zyz - C61^xx + C62^YY + C63ĉu + C^ĉ^, + C65^^ + C66ĉ yx ^ 1.4.2.10)

In the case of isotropic fluids it can be easily proved by carrying out a change in the

reference system, that some of these coefficients became zero and the stresses can be

expressed in terms of two single constants, µ and µ' ,[Chaudhry 99], i.e.:

z,; = S,; (- P+ µ'^^ Ĵ+ 2µ^;^ with i<_ j (1.4.2.11)

making the summation z;; and taking into account that this quantiry amounts -3p, it is

obtained:

T^+i^,+zu =-3p=-3p+2µ^^^+^ri+^^)+3µ'^^^+^yy+^tt Ĵ

that is

0 = (2µ + 3µ'^E;; (1.4.2.12)

In other words, we have found out a relationship between µ and µ' , i.e.:

2
µ'=-3µ (1.4.2.13)

For any incompressible fluid we can ensure that the incompressibiliry constraint

u;^ = 0 is also verified, and therefore the summation ^t; is equal to zero. Making use of

these equalities, the stresses acting on the elementary volume may be expressed as:
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au. au .
z;; = µ ` + ' - pS;; (1.4.2.14)

ax; ax;

Once we have determined the stresses acting on a surface aV in terms of the

rates of deformation and the pressure, the forces acting on aV will equal the stress

tensor 2';; times the outward unit vector n; normal to the surface. Next, if we write the

expression (1.4.2.5.) in terms of the so-calculated body and boundary forces, we have

the integral equation:

j P a^^ + pu; au` dV = j pf dV + jT;;n;dS (1.4.2.15)^(^^ at ax; ^<<, a^

The application of the Gauss Divergence Theorem to the last term of this equality,

allows us to write the following expression:

j P au; +^^ au^ dV = j pf;dV +
j aT'' dV

(1.4.2.16)v<<^ at ax; ^(,^ ^(^^ax;

making use of (1.4.2.14), and being V an arbitrary volume within the flow domain S2 ,

we have:

au; au; _ a

+ Pu;P ^ + µ

au; au;

+

_ ap
in S2 (1 4 2 17)• at ax; ` ax; ax; ax;

. . .
ax;

This equation can be written in a compressed notation as:

ui,^ +u^u^,i = f +v^u^,i +u1,^ ^; - 1 p,^
P

in S2 (1.4.2.18)

Equation (1.4.2.18) together with the incompressibility constraint (1.4.1.7), constitute

the so-called Navier-Stokes equations, that rule the viscous incompressible flow.
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1.5. The 2D laminar Navier-Stokes equations

The differential problem can be consequently expressed as finding the

unknowns (velocity u^ and pressure p), which give solution to the partial differential

equations:

u;,t +u^u;>; = f; +v(u;>> +u^^ )^ - 1 p^
P

= 0 (1.5.1)

So as to properly define the differential problem, initial and boundary conditions should

be specified. The conditions to be used will be of the Dirichlet and Newman type:

u; ]r = b; 6;^ n^ ^, = t; (1.5 .2)
, 2

where I'1 and r2 are two non overlapping subsets of the boundary I' , b; is the velocity

vector prescribed on I'1, t^ is the traction vector prescribed on I'2 , n; is the outward unit

vector normal I'2 and 6;^ is the stress along the boundary I'2 . The initial conditions are

given by:

u; ^x^,0^= u;o ^x^ ^ with u;o^ = 0 (1.5.3)

Let us now expand the indicial notation by writing as u, v and w the components

of the velocity along the axes x, y and z. The Navier-Stokes equations could be then

written as:

c?u ^r^u ^3u au 1 ap a acc au a au av a au aw
^+u^+v^y+w^=-p^+v ax

^x+^x +^y ^y+^x +aZ o^+^3x
+fx

o^v í^v ^?v í^v 1 ap - a av au a c3v í^v a av aw
-+u-+v-+w-=---+V - -+- +- -+- +- -+- + fy
^ ^ ^ ^ p ^ ax ^ ^ ^ ^ ^ az ^ ay

r

•
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aW aw aw aW ^ a^ a aW au a aw av a aW aW
^+u^+v^+w^z=-p^z+v ^x í^z+^3i +aY aY+í^z +^z ^?z+^z +fz

au av aw
-+-+-=0aX ay az (1.5.4)

rearranging the viscosity term in the dynamic equation, (1.5.4) could be written as:

au au au au 1 ap a au av aw a au a au a au^ +u ^+v^+w^ =-P ^+v ax ^+-+- +- - +- - +- - + fzay az aX aX ay ay aZ aZ
a^ av av av ^ a^ a av a av a au av aW a av^+u^+v^+w^=-p^+v aX ^ +^ ^ +^ ^+^+^ +aZ ^ +fy

aw aW aw aW ^ a^ a aW a aW a au av aW a aw^ +u^ +v-+w-=---+v - - +- -+ +- -+-+- +- - + fza^ aZ p az aX a^ ay ay aZ ax a^ az aZ az

If we take into account the continuity condition, the dynamic equation is

simplified, and the Navier-Stokes equations can be expressed as:

au au au au 1 a^ a 2u a Zu a Zu
^+u^+v^+w^=-p^+v ^2 +^Z +^2 +fX

a^ a►^ av aw ^ a^ a Zv a Zv a 2v
^+u^+v^+w y =-p^+v ^2+^2+^2 +fy

arv arv arv aw 1 ap a Zw a Zw a 2w
^ +u ^ +v ^ +w aZ =- P ^ +v ^2 + ^2 + ^2 +fZ

^x+^+ á =oay Z

or in its 2D version as:

2 2

^+u^+v^`=-1 ^+v a u+a u +fz
^ p ^ ^

2 2

^ +u^+v^ =-1 ^+v a 2 +a 2 +fy^ P^ ^ ^

(1.5.5)
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óu+^ =0
ax c3y

(1.5.6)
•

Writing (1.5.6) in its indicial notation, this problem is given by:

u;^t +uiu^,i =- 1 1^,; +VU;,ii +.f
P

u;,; = 0 in S2 (1.5.7)

with the initial and boundary conditions:

u; ^x^,0^= u;o ^x^ ) with u;o^; = 0

u; ^.^ = b; 6;^ni ^, = t; (1.5.8)z

The differential problem posed in equations 1.5.7 and 1.5.8 is a major problem

in engineering. These equations rule the viscous incompressible flow, and therefore the

dynamic behaviour of any liquid matter in nature. Many simplifications, useful in many

particular cases, can be made based upon these equations, but the Navier-Stokes in

1.5.7 and 1.5.8 (as first posed by Claude Navier in 1821) are the overall frame that

solves the behaviour of the incompressible fluids. The obtaining of the velocity and

pressure unknowns is a complicated task that has an analytical solution for a very scant

set of simplified problems. The resolution of these differential, non linear equations will

involve some problems to be overcome in its treatment by the Finite Element Method to

be used in this thesis, and some numerical devices will be developed for that purpose.

All these aspects and some others will be considered in the sections to follow.

1.6. The Shallow Water equations

Up to this point we have obtained the Navier-Stokes equations that rule the

viscous incompressible flow. These equations will be solved in their two dimensional

version in this work. The resolution of the so-obtained equations will lead to a laminar
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Chapter 1. Introduction and governing equations

approximation of the viscous flow which assumes not only that velocities and

accelerations along the z-axis are negligible, but also that the third dimension in space

has no influence at all on the flow.

To consider the third dimension in space, we can either use the 3D Navier-

Stokes equations or the Shallow Water simplification, when the flow can be regarded as

shallow. We can describe a flow as shallow when the depth of the water is small in

comparison with the horizontal size of the basin. The assumptions we are going to

make for the obtaining of the Shallow Water simplification are the following:

The distribution of the horizontal velociry along the vertical direction is assumed to

be uniform. An integration in height is carried out, and the horizontal velocity is

taken as the mean value of the distribution of the horizontal velocities along the

vertical direction.

The main direction of the flow is the horizontal one, and only very small flows take

place on vertical planes.

The acceleration in the vertical direction is negligible compared to gravity and a

hydrostatic distribution of the pressure is assumed.

In order to obtain the Shallow Water equations we are going to impose these

simplifications on the equations obtained in section 1.4, which in their expanded form

can be written as:

Continuiry equation:

^+°^+°^`'=0
^ ^

Dynamic equation:

a^ ^ au au 1 a^ a 2u a 2u a Zu
^+u^+v^+w^=-P^+v ^2 +^2 +^2 +fs

a^ av av av 1 a^ a 2v a Zv a Zv
^+u^+v^+w^=-p^+v ^Z +^2 +^2 +fY

(1.6.1)
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Chapter 1. Introduction and goveming equations

aW aW aW aW 1 Ó̂ I a 2 w a 2 w a 2 w
^+u^+v^y+w^=-P^+v ^2 +ay2 +^2 +fz (1.6.2)

•

1.6.1. Continuity equation

Integrating the continuiry equation along the z-axis between the bottom and the

free surface (Zb, Z), it is obtained:

J ^ dz + J ]̂,^ dz + w(Z) -w(Zb ) = 0 (1.6.1.1)
Zb ^ Z6 "

The integrals in this equation can be re-written making use of the Leibnitz rule to bring

the derivatives into the integral sign, yielding:

j^dz= ]̀̂ ,^

Judz-u(Z)`7Z+u(Zb)aZb
Zb aX v^ Zb ax aX

Ĵ `h1^ dz= a Ĵvdz-v(Z)^+v(Zb)^b
Zb `J ^ Zb ^ ^

Now the substitution of (1.6.1.2) into (1.6.1.1) allows us to write:

(1.6.1.2)

`^ f udz-u(Z)`^+u(Zb)^b + a JVC.IZ-V(Z)`^+V(Zb)^̂b" +w(Z)-w(Zb)=^
^ Z, ^ ^ ^Y Z, ^ --J

(1.6.1.3)

If Z(x, y, t) gives the free surface of the flow, its material derivative w(Z) is given by the

expression:

w(Z)- ^Z = ^ +u(Z)^ +v(Z)aZ
^Y

and w can be evaluated in the bottom as:

(1.6.1.4)
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Chapter 1. Introduction and govecning equations

wlZb l- d b- u\Zb ^+ v lZb ^^
ax

Substituting (1.6.1.4) and (1.6.1.5) in (1.6.1.3) we obtain:

aY

a Ĵudz-w(Z)+a?+ a jvdz+w(Zb)+w(Z)-w(Zb)=0 (1.6.1.6)^ Zb at ^ Z6

•

If we denote by u, v the mean values of the horizontal velocity:

u=^ JZUdz v = ^ jZV dz

where d=Z-Zb, is the depth. The expression ( 1.6.1.6) results in:

a?+ar^)+ard) =o
at ax ^

(1.6.1.5)

(1.6.1.7)

(1.6.1.8)

which is one of the most common ways of writing the continuity Shallow Water

equations.

1.6.2. Dynamic equation

As a consequence of assuming negligible vertical accelerations, the total

derivative of w and the viscous term in the third dynamic equation can be removed, to

obtain:

fZ- 1 ^ =0 (1.6.2.1)
P

Integrating now (1.6.2.1) along the z-axis between the free surface Z and a generic point

z and taking the atmospheric pressure as zero, we have:
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Chapter 1. Introduction and governing e^uations

P=PĴz(z-Z) (1.6.2.2)

!

If we derive this equation with respect to x and y, it follows that :

1 ap aZ
-p^= ĴZ^

_ 1 ap = fz az
P ^ ^Y

(1.6.2.3)

Let us multiply now the continuiry equation (1.6.1.8) by u, add it to the first dynamic

equation in (1.6.2), and substitute the second equation in (1.6.2.3), to obtain:

au a^ aw au au au au az a Zu a Zu a Zu
u^+u^y+u^+^+u^+v^y+w^=fz^+v ^2+ay2+^2 +fx=0

an expression that can be also written as

í^u+°^uZ +a(uv)+a(uw)=
fz+ fZ ^+v a2u+a2u+a2u (1.6.2.4)at ax ay az ax ax ay az

If we proceed in an analogous way, multiplying the continuity equation (1.6.1.8) by v,

adding it to the second dynamic equation in (1.6.2), and substituting the second

equality in (1.6.2.3), we obtain:

av a(uv) av2 a (vw) az a 2v a Zv a 2v
^ + ^ + ^y + ^ = fy + fz ^y +v ^2 + ay2 + ^2 (1.6.2.s)

Let us integrate now equation (1.6.2.4) in z, between the bottom and the free

surface. If we use the Leibnitz rule, we have:

•
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Chapter 1. Introduction and governing equations

^ jZbudz-u(Z^+ a j^u2 dz-u2(Z)°^+u2(Zb)°^b +
a! at ax ax ax

a j uV dz - u(Z)V(Z) ^ + u(Zb )V(Zb ) ^b + u(Z)W(Z) - u(Zb )w(Zb ) -
^ Zb ^ ^

Ĵx + Ĵz ^+ Z w,y dz
^ ^b

and similarly for (1.6.2.5):

(1.6.2.6)

^ j^b v dz - v (Z^ + ^ jZ uv dz - u (Z )v(Z ) °^ + u (Zb }v (Zb ) ^b +
v[ fJ^l lJ^X Zb CJ^X lJ^X

a jZbV2 dz-VZ(Z)^+VZ(Zb/ +V(Z^(Z/-V(Zb^Zbl-^ ^ ^
aZ Z

fy + fz ^ + j^w,y dz (1.6.2.7)

If we make use of equations (1.6.1.4) and (1.6.1.6), the equations (1.6.2.6) and

(1.6.2.7) can be written as:

`^ry-^ "̂ jZU dz+a jZU2 dz+ `^ jZUVdz-u(Z)^ -u(Z u(Z1̂- +v(Z^
v• Zb ^ Zb ^ Zb (^ v^. (^

♦ u(Zb IL(Zb ^ +V(Zb^ +u(Z)W(Z)-ll(Zb)1N(Zb)- fz ♦ fz ^ +^ZVI[,y dz
C^ ^ e

(1.6.2.8)

a jZU dz+ `^ jZUVdz+ `^ jZV2 dz-v(Z)^ -v(Z u(Z}°^ +v(Z^
^ Z° ax Zb ay Zb at aX í^y

+V(Zb u(Zb^+V(Zb^ + V(Z)IN(Z)-V(Zb)YV(Zb)= fy+ fz aG1_ + j2 w.l1 dZ
^ /7V b^^_JJJ

(1.6.2.9)

Moreover, if we take into account that the xy plane is parallel to the channel bottom and

Zb is a constant, we have:
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Chapter 1. Intraiuction and governictg equations

az__a(zó+d)__ad
ax ax ax '

az__a(zó+d)__ad
aY aY aY

(1.6.2.10)
.

Considering the mean values of u and v, we can write (1.6.2.8) and (1.6.2.9) as:

a^ud) a ú2d a^d)_ ad Z
^ + ^ + ^ - Ĵz + ĴZ ^ + Jvu,^ dz (1.6.2.11)

Zb

a^d) a^d) av2d _ ad Z
^ + ^ + ^ - fY + fz ^ + jvv,y dz (1.6.2.12)

Ĝp

One of the most challenging problems when solving the Navier-Stokes

equations is the treatment of the viscous effects considered in the last term of the

former equations. This is not a straightforward matter, and should be considered with

special care. In the following section we will explain the nature of these viscous forces

and provide the adequate formulation in order to evaluate them.

1.6.3. Treatment of the viscosity effects.

The incompressible flow becomes unstable for a certain value of the Reynolds

number, beyond which turbulence occurs. The Reynolds number, defined as

UUv, where U and L are the characteristic velocity and length of the flow, provides a

measure of the relative importance of the inertia forces (associated with the convective

effects) and the viscous forces. For a Reynolds number beyond the critical one, the flow

becomes intrinsically unsteady, independent of the fixed boundary conditions being

imposed. Consequently, some random eddying motions of a wide range of length scales

(including very small ones) take place with a frequency of some tens of KHz. A direct

simulation of a fully developed turbulent flow would require unaffordable

computational requirements. Instead, some computational procedures are developed so

as to model the turbulent behaviour of the flows with less computational requirements.

The consideration of the time-averaged properties of the flow is the most

commonly used procedure that allows for this turbulence modelling. The involved

variables are decomposed into a mean value within a time increment, and an additive
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Chapcer 1. Introduccion and governing e^uations

t term that depends on time. The velociry of the flow u^(t) would be consequently

decomposed into a steady mean value ^, and a fluctuating component u^ (t). If these

time dependent values are replaced in the Navier-Stokes equations, an additional

turbulent stress (or Reynolds stress) term shows up.

Substituting the values of velociry and pressure by their expression in terms of

the mean values with respect to time and the fluctuating term, this is u; _^; + u^ and

p=^+ p' , equation (1.5.7) is transformed into:

^^^ + a^a^,> _ -1 ^,i +^i,y + Ĵ; - (u,u; )p ,^

^c;,; = 0 (1.6.3.0)

Using the formula proposed back in 1877 by Boussinesq, that gives the turbulent

stresses as a function of the mean rates of deformation, we have the Reynolds

equations:

rz. + a.tz. . - _ 1 + (v +v ^.^,^ ^ ^,^ - P ^r ^ t,ii

•

where vr is the eddy viscosiry. Different turbulence models such as the mixing length,

k- E, or the algebraic stress models, attempt to evaluate these Reynolds stresses in

different ways. One of the most broadly used turbulence schemes is the k- E model,

which is a two-equation model that evaluates the turbulent effects by considering a

system of equations that gives the kinetic energy of the flow k(x;,t) and the rate of

dissipation per unit mass E(x,,t) on each point for each iteration, allowing to evaluate

the turbulent viscosiry as vf = c^k2 /^ , being cµ a dimensionless constant [Versteeg

95] .

The problems involving Réynolds numbers of a moderate magnitude would not

require the consideration of the Reynolds stresses in themselves, and therefore the

viscosity used in the calculations will be the kinetic one and not the eddy or turbulent
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Chapt^ 1. Intcoduction and governing equations

viscosity. As the turbulent effects get bigger, the kinetic viscosity happens to be very

small compared to the eddy viscosity and may be ignored [Rodi 93]. However, as it will

be seen later on in this section, the evaluation of the friction slope on a Manning term

basis, accounts for the turbulent losses as a whole. The inclusion of this empirically

evaluated Manning term, does not obviously allow us to detect the random eddies

taking place in the turbulent state conditions, but can evaluate the total amount of

energy loss caused by the turbulent flow conditions.

The shear stress term in equation (1.6.3.0) can be expressed in a more general

anisotropic way as:

^^,ii = E;^u;^v (1.6.3.1)

where E;! are the directional viscosity coefficients. This equation can be simplified so

as to make it depend upon two single constants E^, and EZ (see for instance [Chaudhry

99]), for the horizontal and vertical directions of the flow respectively, i.e.:

E^, ^u;^ +u;,^, ^+EZu;,u (1.6.3.2)

In order to obtain the Shallow Water formulation, the Navier-Stokes equations have

been integrated in depth. The shear stress term can be integrated in z to yield:

E^, (u;^ +u;,^,)+Ezu;,udz1ZZb

Carrying out this integration along z for i= x, y, we arrive to:

^^ a a jZ udZ-u(Z^+u(Zb^-au(z)az+au(Zb)aZb +
ax ax b ax ax ax ax ax ax

^ a a jZ udz-u(z)az +u(Zb )azb _ au(z) az + au(zb ) azb +
^ ^ ^ b ay ^ ^ ay ^ ^

^z ^(Z) - ^(Zb )
^z az

(1.6.3.3)

(1.6.3.4)

f
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Chapter 1. Introduction and goveming equations

and

^^ a a JZbvdz-v(Z^+v(Zb)aZb -av(Z)aZ+av(Zb)aZb +
ax ax ax ax ax ax ax ax

^^ a a JZb vdZ _ v(z)aZ + v(Zb )aZb _ av(Z) az + av(zb ) aZb +
ay ay ay ay ay ay ay ay

^z ^(z)_^(zb)
az dz

Following [Weiyan 92], the shear stress terms can be simplified into:

a2u a2u

^^ ax2 + ayz +zss -^b^

(

(1.6.3.5)

E^,^aX2 + ^2 ^d +zs -^b (1.6.3.6)
J y Y

a2v a2v

where zSt,Ts and zb ,zb are the shear stresses acting on the water surface and on the
Y = Y

channel bottom respectively. The shear stresses caused by the action of the wind on the

water surface can be ignored in comparison with the forces caused by the roughness of

the bottom [Chaudhry 99]. These effects can then be evaluated making use of an

empirical formulation of the Manning type as:

n2u; u^u^
^b^ - gdsf - gd Rais (1.6.3.7)

h

where Rh is the hydraulic radius of the channel, defined on an element basis as seen

later on in this section, and n is the Manning roughness ccefficient that depends on the

features of the bed. This coefficient is empirically determined and tabulated (see for

instance [Chadwick 1986]).

The consideration of a Manning-type formulation for the friction slope with the

conventional tabulated Manning ccefficients, allows for the inclusion of the energy
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Chapter 1. Introduction and govecning equations

losses in the formulation. This energy losses correspond not only to the friction with the

bed but also embrace the friction losses that account for the turbulent stresses,

constituting a simple turbulent approach in its evaluation of the Reynolds stresses.

Mathematically speaking, the Manning term gives an energy losses term that depends

quadratically on the velocity. Meanwhile, the viscous energy losses taken into account

within the viscous term are linear with respect to the veloci.ry.

Substituting (1.6.3.6) and (1.6.3.7) into (1.6.3.4) and (1.6.3.5), and taking into

account the definition of the mean velocities, the following expression is obtained:

a^ud)+a u2d +a uvd)_ fz+ f ad +v ^Zu+^2u _ dnZU u2+v2

at ax ay z ax ax2
^y2 g R ar3

h

a^d)+aCuvd)+^ v2d - f+ f ^
+v a2v+^2v _

d n2v u2+v2

R ai3^ ax a,^ y z ay aXZ ay2 g h
(1.6.3.8)

These two equations together with the conrinuity equation, constitute the 2D

Shallow Water equations, with respect to a co-ordinate system parallel to the bottom of

the channel.

If we want to express the former equations with respect to a horizontal reference

system, we would have to carry out a change in the co-ordinate system. After some

trigonometric simplifications [Chadwick 86] and dropping the mean notation, we could

write the 2D Navier-Stokes equations in one of its most common expressions as:

^ + a(^uh) + a(vh) = 0
^

a(uh)+a{u2h)+a{uvh)__ah h+v a2u+a2u
+ h S -S^ ax ay ax g ax2 ^,2 g( os ^)

a(vh)+a(uvh)+a^vZh)___ah h+v a2v+a2v + h(S -S lg ^XZ ^2 g\ Oz fy l

(1.6.3.9)

r
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where Sox , So y and Sh , S^, , are the geometric and friction slopes in the x and y

directions, defined as:

S _ nZu u2 +v2 . S _ n2v u2 +v2

!x R4/3 ° fY R4/3
h h

(1.6.2.10)

There are several different ways of writing the 2D Shallow Water equations, one

of these alternative formulations would be that in which the derivatives in (1.6.3.9) are

expanded, and the terms corresponding to the continuity condition are removed from

the dynamic equation, i.e.:

ah a(uh) a(vh) _ ah aic ah c3v ah
^+ ^ + ^ - ^+h^+u^+h^+v^=0

•

a(uh)+a(u2h)+a(uvh)=h^+uah+2u^h+u2ah+vh^+u h^+vah -
at ax ay at at ax ax aY aY aY

óu í^u ^3u ah ^3u ah c^v ah ah
_ ^+u^+v^ +u ^+^h+u^+h^+v^ = Sox+^ h-ghSh

z 2
_-^ gh +v á u+ a u + gh^Sox - S^ ^

^Y

a(vh)+a(uvh)+a(v2h)=h^+v`^h+vh`^+u h`^+v°^h +2v`^h+v2ah-
at ax ay at at ax ax ax í^y c!y

av av av ah au ah av ah ah
=h ^+u^+v^ + ^+h^+u^+^h+v^ = Soy+^ h-ghS^,

2 z
- ah gh +v á 2+ a Z + gh(Soz - S^ )

aY ^Y

or

c
^+h^+u^+h`^+vah=0

aY ^Y

(1.6.3.11)

2 2

^+u^+v^`=-^g+^ a u+a u
+g(Sox-s^)=oay ax ?y
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Chapter 1. Introducrion and goveming equations

a^ a^ a^ ah aZv 2 )^+u^+v-=-^g+v ax2+a 2 +g(Soy-Sh =0
^ ay

In their indicial notation these equations can be written as:

(1.6.3.12)

h^ +hu;^ +u;h^ =0 (1.6.3.13)

u;^+u^u;^^ =-gh^; +vu;,^ +g^So; -Sfi) (1.6.3.14)

with the initial and boundary conditions:

u; ^x^,0)= u;o ^x^ ) with u;o,; = 0 (1.6.3.15)

u; ]I.^ = b; 6;^n^ k= t; , (1.6.3.16)2

which is one of the most common ways of writing the Shallow Water differential

equations.

Note that so as to obtain the Shallow Water equations, and besides the

conventional assumptions for the Shallow Water flow, we have also made some other

simplifications, such as those related with the obtaining of the shear stress term or the

denial of the trigonometric terms of higher order when changing the reference system.

Therefore, the equations in (1.6.3.13) and (1.6.3.14) are an approximation only useful

for the Shallow Water flow simplification. We have not taken into account the effects

of the wind on the surface or the Coriolis forces, as the problems we are going to solve

with this formulation are small-sized flow cases, taking place in basins and channels. If

an evaluation of the flow in estuaries or open sea were required, both would be needed

to evaluate the flow in a proper way.

Finally, let us regard some final assumptions we are going to make when solving

equations (1.6.3.13) to (1.6.3.16) numerically. As we have already mentioned above,

we are going to evaluate the friction slope by using the Manning coefficient. We are

going to carry out a finite element resolution of these equations, and therefore the

•
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•

friction slope should be introduced on an element basis. The friction slope can be

defined as:

n2u; u^
Sr - Rai3

h

(1.6.3.17)

where the hydraulic radius in the denominator is defined as the cross section area over

the wetted perimeter. The Shallow Water equations are going to be solved by using the

Finite Element Method, that solves the flow by giving the unknowns on the nodes of

the elements in which the continuous domain is split. On an element basis, the

hydraulic radius would be evaluated on an interior basic element as:

Rh=hb" =h
b;^

W

bb

Therefore, the friction slope in an interior basic element can be taken as:

n2u^ u^
Sh - hais (1.6.3.18)

For a basic element laying on the boundary of the domain, a modified Manning

coefficient, n' could be defined in order to account for the energy losses caused by the

friction with the lateral sides and allowing for the use of the depth h as the hydraulic

radius. By doing so, the boundary basic element could be treated as an interior basic

element, but with a different Manning coefficient. Let us determine n' in order to verify

the equality:

n2u; u^u^ _ (n'^u; u^u^
bbh ai3

bb + h

hais (1.6.3.19)
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Therefore:

2/3

n'=n 1+ h
bb

(1.6.3.20)

Consequently the new modified Manning coefficient will be a function of the

conventional coefficient, which depends on the pitted texture of the boundaries, and the

ratio between the depth and the basic element size.

Note that in the present formulation, apart from the empirically determined

Manning term, we have kept the contribution of the viscous effects to the dynamic

equation. Some available and broadly used programs such as the RMA2 of the Brigham

University, include the turbulent effects in the Navier-Stokes equations, by applying a

constant turbulent viscosiry instead of evaluating the variation of the turbulent viscosiry

with respect to space and time. To do so, a turbulence model is required. A k-E

turbulence model has been developed and successfully tested in our research group

[Bonillo 00^, and will be incorporated into the present formulation as a further

development. This model is prepared in consequence to include the contributions of

both the eddy viscosiry and Manning energy losses, allowing for a more realistic

evaluation of the flow problems.

In the following sections, both the 2D Navier-Stokes equations and the Shallow

Water equations will be solved by making use of several algorithms, to be defined in

Chapter two. The governing equations regarded in this chapter are a set of non-linear

differential equations with respect to both space and time. The non-linearities will be

solved and as a consequence, the coefficient matrix will be found to be non-symmetric

and this fact will be the cause of some difficulties when using the conventional finite

element approach as will be seen later on in the text. The unknowns of the problem will

be of the mixed type (i.e. velocity and pressure) and as a consequence, several different

algorithms will be used to handle them. All these particulars turn the resolution of the

Navier-Stokes equations into a challenging problem, in which some numerical devices

will have to be introduced in order to bring the problem to an adequate solution. All

these aspects will be considered in the next chapter.

•

•
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Nessuna umana investigaúone si poi dimandara vera
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No human research can be considered as
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Chapter 2. Finite element resolution of the viscous incompressible flow

CAAPTER 2. FI1^IITE ELEMENT RESOLUTION OF THE VISCOUS

INCOMPRESSIBLE FLOW

2.1. Finite element formulation of the viscous incompressible flow

In chapter one we have obtained the Navier-Stokes equations, that rule the

viscous incompressible flow, and the problem has been reduced to finding the velocity

u; (x;,t) and the pressure p(x;,t) verifying the partial differential equations:

ui,^ + uiu^,^ _- 1 P,; + vu;,l^ + Ĵi

P

u;^; = 0 (2.1.1)

•

with the initial and boundary conditions:

u; ]rl = b; 6;^n^ ^, = t;
2

u; ^x^,0^= u;o ^x^ ^ (2.1.2)

where u^ is the velocity, p is the pressure, f is the body force per unit mass, p is

density, v is the cinematic viscosity, I'1 and I'2 are two non overlapping subsets of the

piecewise smooth domain boundary I' , b; is the velocity vector prescribed in I'1, t^ is

the traction vector prescribed on I'Z , 6;^ is the stress along the boundary I'2 , and n^ is

the outward unit vector normal to I'Z .

The F'uiite Element Method was first developed to give solution to structural

problems and its achievements were transmitted afterwards to many other physical

problems. The Navier-Stokes equations, that rule the viscous incompressible flows,

have an analytical solution for a very small number of particular cases, and a numerical

solution is required for most of the practical problems. As a result, several numerical

techniques have been employed in their resolution, being the Finite Volume and Finite

Element Methods, the most commonly used of them. Both methods can be viewed in a

unified manner as a particular case within a weighted residuals framework. In this work
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Chapter 2. Finite element resolution of the viscous incompressible flow

the Finite Element Method^ will be used to give solution to the viscous incompressible

flow problems.

The Finite Element Method splits the domain of the problem into a set of finite-

numbered basic elements, and uses piecewise polynomial functions defined on a local

basis so as to describe in an approximate way the variation of the flow variables within

the domain. When this approximation is introduced, the governing equations are not

held exactly and the corresponding residuals are defined. The minimization of these

residuals is carried out by its multiplication by a set of weighting functions and its

integration within the domain.

First of all, we are going to define some function spaces to which our variables

will belong. Let L2 (S2^ be the Hilbert space of functions that are square integrable over

the domain S2 , and let the Sobolev space Hk (S2), be the subspace of LZ (S2) in which

the derivatives of order up to k belong also to the space LZ (S2). Ló (S2) is defined as the

subspace of L2 (S2) with the constraint of having a zero mean over the domain S2 . This

subspace can be used in connection with the pressure unknown or be replaced by the

constraint of fixing the pressure at a point. Of particular interest is the subspace Hó ,

which is formed by functions that belonging to H 1, vanish on the boundary I'1.

2.1.1. The weighted residuals method

First, we are going to apply the weighted residuals method, so as to transform

our differential problem into an integral equation over the domain S2 .

The existence of two different sets of unknowns in the equations to be solved

and the need of the verification of both the dynamic and the continuity equations in

these problems, lead us to the so-called mixed finite element problems. Several finite

element approaches can be considered, depending on the way in which both the

constitutive (dynamic) and the equilibrium (continuity) equations are handled. Among

these methods, we will be using the mixed, the penalty and the segregated techniques.

These are the three main available techniques, into which many authors agree to split

•

•

so



Chapter 2. Finite element resolution of the viscous incompressible flow

the finite element treatment of the viscous incompressible flow problems [Kim 88],

[Choi 94]. A full explanation of these approaches and the justification of their use will

be given in the following sections.

The so-called constrained variational formulation would be one of these

feasible approaches, and consists in applying the weighted residuals method only to the

dynamic equation, while the incompressibility condition will be viewed as a constraint,

that should be satisfied in advance by all the admissible solutions. That is, the space for

feasible u; functions is not Hl but a subspace V of the former, in which the restriction

u;^ = 0, is verified [Carey 84]. By doing so, the continuity equation is dropped and the

remaining dynamic equation turns, by means of the weighted residuals method, into the

equation:

Jw; u;^ +uiut,^ + 1 P^ - Ĵr -^^u^,y ^ = 0 (2.1.1.1)
Q P

The weighting functions wl to be used are also chosen so as to satisfy the

incompressibility condition, and therefore, once the weak form has been obtained (see

section 2.1.2), the pressure term can be dropped and together with it, the pressure set of

unknowns.

Up to this point, this method seems to be a natural and inexpensive way of

getting rid of the unwanted pressure unknown, but this is not so straightforward. In fact,

the searching of a piecewise subspace V^` that not only belongs to HI but also ensures

that every function belonging to it satisfies the condition u^= 0, is quite a difficult

task. Instead, the less restrictive condition Jqu;^;dS2e = 0 can be imposed in addition to
^^

the weighted dynamic equation. By doing so, both velocity and pressure would be the

unknowns of the problem. This approach would lead us to the mixed finite element

algorithm, which has been broadly used by many authors [Zienkiewicz 67,89], [Sani

81], [Kim 88], [Cruchaga 97].

Let us now introduce the finite element formulation of the mixed Navier-Stokes

equations. Multiplying our differential equations by a set of weighting functions w; , q
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Chapter 2. Finite element resolutiaa of the viscous incompressible flow

belonging to H' and integrating the equations over the domain, the following equations •

are obtained:

Jw; u;^ +u;u; ^ + 1 P,; -vu;,^ - Ĵ, S2 = 0 (2.1.1.2)
n

,
p

jqu;^
Q

dS2 = 0 (2.1.1.3)

which constitutes an integral equation that solves (2.1.1), having both u; and p as

unknowns.

2.1.2. Obtaining of a weak form

Next, we are going to apply the Gauss theorem to find out the weak version of

the former equations, so as to reduce the order of the derivatives involved and, together

with it, the derivability requirements of the involved functions.

Let us regard the diffusive term in equation (2.1.1.2) for the two dimensional

case:

a2u; a2u;
-v jw;u;^ydSi = v Jw; 2+ 2 S2

n n ax ?y
(2.1.2.1)

carrying out a two-dimensional integration by parts of the first term in equation

(2.1.2.1), we have:

1=11,z w a au;
y= j( j^d^ ^y

' ax ax

_ a au; _ au;
(2.1.2.2)where r) = w;

^ - ^ ax 3x ax
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yB

Figure 2.1.2.1. Domain of integration.

and the integration by parts results in:

x

XR

1= J^
w. au' dy - J r c^w` au

` dxdy (2. i.2.3)
y8 ` ax xL J^ óx óx

•

assuming I' as a closed boundary, the equation dy = nxdI' is verified in the right hand

side of the border, where nx is the director cosine of the angle between the normal and

the x-direction. In the left hand side part of I' we have dy =-nxdi' . Therefore the

integral l can be written as:

I=^ w. au` n dI' - J^ ^' au `dS2 (2.1.2.4)
' ax x ax ax

Proceeding in an analogous way for the derivatives with respect to y in the

integral (2.1.2.1), we arrive at the expression:

a au. _ au. c^rv. au.
J^w; ay ay -^w; ^ nydI'- j^ ^^S2 (2.1.2.5)

53



Chapter 2. Finite element resolution of the viscous incompressible flow

where ny is the director cosine of the angle between the outward normal unit vector and

the y-dŭection. This procedure would be applied in a similar way for more than one

single closed boundary. The diffusive term in (2.1.2.1.) is then reduced to the weak

expression:

-v Jw;u;,^;dS2=v Jw;,iu;,^dS2-v Jw;u;,inidI' (2.1.2.ó)
n s^ r

Applying the Gauss theorem in the same way for the gradient of pressures term

we have:

1 jw;p^;dS2=-1 lw;^;pdS2+ 1 fw;P^;n;dT (2.1.2.7)
Pn Pn Pr

Once we have applied the Gauss theorem to both the diffusive and pressure

terms, we obtain the weak version of our integral equations. Our problem has been

reduced to finding u; , p E H' , such that:

Jw;(u;^+u^u;,^ - f;^IS2+v J w;,^u;,^dS2- 1^w;^;pdS2-^ t;w;dT2 =0;
Q n P 2

Jqu;^;dS2 = 0
Q

b'w; E Hó t^q E H t, with u; ]I.1 = b; u; ^x^,0)= u;o ^x^ ) (2.1.2.8)

The present integral equation gives the exact solution of the differential problem

posed in equation (2.1.1). The Finite Element Method is based upon obtaining an

approximate solution of the problem not on every single point of the domain, but only

on a set of finite locations. Let us regazd how the splitting of the continuously defined

variables within the domain, is carried out in terms of theŭ value on some finite-

numbered points.

2.1.3. Discretization

The Next step in the resolution of our partial differential equations by the Finite

Element Method, will be the splitting of our arbitrarily-shaped domain S2 , into a set of
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Chaptea 2. Finite elemeut resolution of the viscous incompressible flow

basic elements, which assembled together may approximate the shape of S2. The

velocity and pressure unknowns will be approximated by a set of polynomial functions

defined on the nodes of the basic elements. When these functions are substituted in the

weighted integral equations, the result to be obtained, will be an approximation to the

exact solution of the differential equations in (2.1.1), which will be given only on a few

points of the domain.

We are going to obtain our approximate solution once we have determined u h

and ph belonging to some subspaces Vó E H 1(S2) and Só E Ló (S2), where h is a

parameter related to the size of the grid in which the domain S2 is subdivided.

Thus, velocity and pressure can be expressed in terms of this discretizaton as:

M N

uh^xk^=^,a'v'^xk^ and Pk^xk^=^,^'q'^Xk Ĵ (2.1.3.1)
i=1 i=1

where v and q are known as the trial functions.

We will approximate our set of unknowns (velocity and pressure) as a function

of a local basis of shape functions defined on every single element (this point will be

further considered in the appendix).

As a first guess we are going to use a Galerkin-type finite element formulation,

therefore the weighting functions will be chosen to be equal to the trial functions. In

section 2.6, the Galerkin (also known as Bubnov-Galerkin) formulation, and together

with it the imposition of choosing weighting functions equal to trial functions, will be

modified in order to adjust the finite element formulation to the complex features of

fluids.

Introducing the approximations to the solution uh and pk , into equation

(2.1.2.8}, the following expression is obtained:

k h h k k h k 1 h k k kJw; (u;^ +uiu;,i - Ĵ; ^iS2+v^w;,iu;,idSZ- p^w;^; p dS2-^ t; w; dI'2 =0
z

Jqku^,dS2 = 0 (2.1.3.2)
n
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Chapter 2. Finite element resolution of the viscous incompressible flow

b'W;`EVó bqh E Sá , with wh ^,1 = 0 uh ^.^ = b; uh ^x^,0^= u,a (x^ }

In the finite element approach to problems such as the linear elasticity theory,

the mere inclusion of the discrete spaces Vó and Só within the underlying function

spaces, is enough to ensure stable and meaningful solutions, as accurate as possible for

the type of interpolating functions being used. When using mixed finite elements in

fluids, the inclusions Vó E H1(S2} and Só E Ló (S2 Ĵ are not sufficient to ensure the

accuracy, convergence, stability and mere existence of the solution to this problem. The

election of the basic element is not a trivial task, on the contrary it is a complex matter

that involves a heavy mathematical display related with the verification of certain

algebraic conditions. The mathematical expertise required to develop these concepts is

beyond the scope of this doctoral thesis, since the consideration of this subject requires

a thoroughout knowledge of some mathematical preliminaries and would lead to a long

discussion not yet closed. Therefore, these particulars will be omitted in order to

concentrate our efforts into the resolution of the physical problem of the viscous flow.

Nonetheless, we are going to give a quick overview on this point, so as to justify the

election of the basic elements, (these aspects are further considered in [Ladyzhenskaya

69], [Babuska 71] [Brezzi 74] and [Boland 85]). '

These algebraic relationships are the boundedness, coercivity and div-stability

conditions. In order to express these conditions, let us define the L2 (S2} norm II•^o and the

Z 1/2

H' seminorm I•I1, as Ilqllo =( j^ dS2^2 and -^I II ^ res tivel0 44 qlt - q,^ P^ Y•
^=t o

The continuity or boundedness conditions require the existence of three positive

constants Cl, C2, and C3 independent of h such that:

v luh^wh^dS2
I Qh

J qhu ^^
nn

S Cllu;'I Iw;`I for all u;',wh E Vot t

<_C2l u;`I ^ for all u;` E Vó and qh E So

•
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jwhuh^vl dS2
^h

^ C3 whltluh tlvh t for all u,.",vh,w;` E Vó (2.1.3.3)

The coercivity condition can be expressed as:

v Juh fuh^dS2 >_ Coluhl2 for all uh E Hó (2.1.3.4)
^h

where Co is a positive constant independent of h.

The most important and restrictive of these conditions is the Ladyzhenskaya-

Babuska-Brezzi, or divergence-stability or consistency condition. The LBB condition

states that given any qh E Só :

su IJQ qhv^d^l > ,,
^vh ^yo yh - ^Iq ^o

I I^

(2.1.3.5)

where the constant y> 0 can be chosen independently of both h and the particular

choice of qh E H`` . Loosely speaking, the div-stability condition ensures (as h tends to

0 at least) that discretely solenoidal (divergence free) functions tend to solenoidal

functions.

An election of an inappropriate combination of these interpolating functions for

both velocity and pressure, may be the source of a certain instability in the resolution of

the problem. For instance, the usage of an equal order interpolation for both variables,

may lead to the obtaining of a meaningless solution for the pressure field depending on

the splitting of the mesh. This is due to the fact that some of these interpolating

functions do not satisfy the LBB condition, and therefore the existence of a unique

solution of the problem may not be ensured. There are many different ways in which

the arbitrarily chosen finite element space may fail to satisfy the divergence-stability

condition, being some of them being stricter than others. Anyway, it is possible to

define meaningful approximations even when the finite element spaces do not strictly

satisfy the divergence-stability conditions.
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Chapter 2. Finite element resolution of the viscous incompressible flow

To illustrate this point let us consider the 2D problem of a flow in a squaze

domain with the same boundary conditions as those imposed in the well known Driven

Caviry F1ow problem, to be solved in chapter number three. These boundary conditions

are the velociry in the borders and the pressure given at a node. If we solve this problem

by using a mixed finite element formulation and the number of equations and

unknowns involved into the resulting continuity equation is evaluated for different

basic elements, some important points could be found out.

As a first guess we may consider the possibility of using an interpolation in

terms of piecewise linear functions for the velocities and discontinuous constant

functions for the pressures, (the PIPo pair), with respect to a triangulation as seen in

figure 2.1.3.1. The resulting number of continuiry equations involved in the resolution

of the so-defined problem in this case would be 2(n -1 Ĵ^ -1, and the number of

unknowns would be 2^n - 2^ . Hence, the only possible solution would be the trivial

one, and consequently this kind of discretization cannot be used.

1
1

2

3

2 3

Fgure 2.1.3.1. The PIPo basic element. Mesh and interpolating functions for velocity and pressure

To overcome this problem we could increase the number of velocity unknowns

compared to those of the pressure, so as not to over-constrain the approximate solution.

As a result, a different mesh could be used to interpolate the velociry and pressure

unknowns. Let us use for instance an interpolation in terms of constant discontinuous

functions for pressure, together with a linear continuous interpolation for the velocity,

but this time referred to a finer mesh as seen in the figure (2.1.3.2}. For this basic

element and the flow problem considered, we would have 2(n-1)2-1 continuity

equations and 2(2n-3)2 unknowns. The number of degrees of freedom is greater than
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Chapter 2. Finite elemettt resolution of the visoous incoa^pressible flow

•

•

the number of equations for every feasible n and consequently, there is more than one

possible solution if we regard the dimension of the continuity coefficient matrix. This

pair not only allows for a non-trivial solution of the continuity system, but also results

into a divergence-stabiliry stable pair [Boland 85].

Figure 2.1.3.2. Unequal velocity-pressure mesh. Inteipolating functions for velocity and pressure

When using structured meshes we will find the same restriction. We can

consider as an example the QIPo (bilinear velocity-constant pressure) pair which leads

to a mixed order interpolation with the velocities being approached by a set of bilinear

continuous functions, and the pressure being inteipolated in terms of discontinuous

constant functions on each basic square element (see figure 2.1.3.3). In this case the

number of equations obtained for the continuiry equation would be (n -1 Ĵ^ -1, and the

number of unknowns would be 2(n - 2 Ĵ^ .

1
1 2 3

f
2

3
i

Figure 2.1.3.3. The Q1Po basic element. Mesh and interpolating functions for velocity and pressure

The number of degrees of freedom is in this case greater than the number of

equations for every feasible n. This pair seems to be able to give a solution different

from the trivial one, but is still not necessarily exact. As it has been shown by many

authors [Brookes 82], [Boland 85], the use of this basic element may lead, under
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Chapter 2. Finite element resoludon of the viscous incompressible flow

certain types of boundary conditions, to the obtaining of spurious solutions for the

pressure field, the well-known checkerboard pressure field, featured by an oscillation

in the pressure values element by element. In this case the failure of the divergence

stability condition would be caused by the fact that for one or a few, but not for all

qh E So we have that J^ q^v ^ dS2 = 0 for all vh E Vó , so that y= 0.

Searching for other types of stable basic elements, we could consider the

biquadratic velocity-bilinear pressure pair; also known as the Taylor-Hood basic

element (see [Taylor 73]). For this basic element, the velocity is given on corners, mid-

sides and centroid of the basic square, and pressure is meanwhile given only on corners.

In figure (2.1.3.4), both this pair and its serendipity counterpart, in which the centroid

node is eliminated, are sketched in its quadrilateral version. Any of these basic elements

not only manages to increase the number of interpolating points for the same number of

basic elements, but also results into a divergence-stable pair

O Velocity and pressure node

O Velocity node

Fig 2.1.3.4. The biquadratic velocity-bilinear pressure pair in its Lagrange and Serendipiry versions

Even though the Taylor-Hood elements may yield better accuracy than the

others due to the greater grade of the interpolating polynomials, this level of accuracy

may be also achieved by refining the number of elements instead of the number of

nodes in each element, with a similar computational cost. Nevertheless in some cases

where there is a large amount of recirculation, it is found that the Taylor-Hood element

yields unsatisfactory streamline patterns [Thatcher 87]. Anyway, it is questionable that

the use of higher-order elements to interpolate the usually smooth solution of the

Navier-Stokes equation is profitable compared with an interpolation with functions of

less order and the same number of nodes, and depends on the conditions of each

particular problem being considered. Moreover, the computational costs caused by the

numerical integration associated with the Taylor-Hood basic pair, will in general be

•
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•

higher, since a higher order quadrature rule is required to evaluate the resulting

expressions.

The checkerboard pressure field to which the Q^Po pair may lead, is either

absent, or can be easily filtered out by an smoothing technique in the post-processing of

the results [Lee 79]. As a consequence, this mixed-order pair is one of the most

commonly used basic elements, due to its simplicity and good results obtained, even

being a non strictly divergence-stability stable basic element.

In this work, both the QIPo and the serendipity quadrilateral Taylor Hood

element were used in the calculations of some of the examples, obtaining accurate

results in both cases, but with less computational cost when the Q1Po basic element was

used. The checkerboard pattern for the pressure field was absent in all the examples

considered, and no smoothing of the solution was required on any of them. Therefore,

the Q^Po basic element was used in all the numerical examples showed in the following

chapters, with optimum results.

2.2. Mixed formulation

The finite element formulation in section 2.1.3. was obtained on the assumption

that a mixed formulation was being used. Therefore, both the dynamic and the

continuity equations were present in the integral equations and the solution to the

problem was obtained once the velocity and pressure sets of unknowns were

determined. Rewriting the differential problem as posed in 2.1.3.2, our task will be to

find uh and ph, belonging to some subspaces Vh E H'(S2) and Só E Ló(S2), such that:

Q„ P

Jqhu^dS2 = 0
ny

b^w;' E Vó `dqh E Só , with w;' ^., = 0 u;` ^. = b;^ ^

h h h h h h h 1 h h ^ h hJw; (u;^ +uiu,,i - f^ ^iS2+v JQA w,,iu,,idS2-- jnAw;^p dS2- t; w; dI'Z =0
Z

(2.2.1)

u h (x;,UĴ= u,o (x; )
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Once the elementary matrices are evaluated and assembled, the integral equation

(2.2.1) can be expressed in matrix notation as:

M„ á +Cu(u,v)^+vAvv_-Bp=f

BTv = 0 (2.2.2)

where M„ is the mass matrix, C„ (u, v) is the convective matrix, A„ is the viscous

matrix, B is the pressure matrix, f is external forces vector, p is the pressure vector, u is

the velocity vector in the x direction, v is the velocity vector in the y direction and ^ is

the velocity vector, all of them to be defined in detail in section 2.7. This is a system of

differential, non-linear equations that solves the viscous incompressible flow.

Equivalently, in its expanded 2D matrix form, this equation can be expressed as:

M SZ S2 u C(u, v) S2 S2 u vA S2 -Bs u fs

S2 M S2

a

a v + S2 C(u, v) S2 v + S2, vA -By v = fy

S2 S2 S2
t

p S2 S2 SZ p (Bx^T l^y^ S2 p S2

(2.2.3)

The sub-matrices included in this formulation will be explicitly presented

further on in section 2.7.3. Even with the restrictions already referred in section 2.1.3,

the mixed formulation is a quite intuitive formulation to solve the viscous

incompressible flow that gives very good results when used in flow problems. As has

already been pointed out, when used in connection with the Q1Po basic element, it has

not produced the well known checkerboard pressure mode for the flow problems to be

considered further on in chapter three and in subsequent chapters.

The mixed formulation is however quite expensive in terms of storing memory

requirements, with the associated coefficient matrix of the resulting system being

2M+N dimensional, where M and N are the number of the velocity and pressure

unknowns respectively. The coefficient matrix is not only large dimensioned but also

differs in an ostentatious way from a narrow-band matrix, and consequently, the use of

a direct solver can lead to a great memory consumption. These aspects will be further

considered in section 2.7.

•
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2.3. Penalty formulation

2.3.1. Introduction

The main difficulty found when obtaining a numerical solution for the Navier-

Stokes equations is that apart from verifying the dynamic constitutive equation, the

solutions must satisfy in addition the incompressibility condition. This restriction can

be imposed on the algebraic spaces to which the solutions must belong, as we pointed

out in section 2.1.1, leading to the so-called constrained variational formulation. The

mixed finite element formulation allows for a different approach to the incompressible

flow problem, leading to a system in which both velocity and pressure are taken as

unknowns. This is the most natural and intuitive way of solving the viscous flow.

Nonetheless, besides the problems entailed in the election of the basic elements in order

to allow for the div-stability condition to be held, mixed methods result in a system of

dimension twice the number of velocity unknowns plus the number of pressure

unknowns. Therefore, not only a larger dimension has to be handled with its

corresponding increased memory requirements, but also the stiffness matrix is found to

be radically different to the narrow-band type of matrix which is preferred for the direct

resolution of the system of equations.

To overcome these shortcomings, a different formulation able to avoid the

obtaining of these large dimensioned systems is to be developed and some of these

methods are presented here. The streamfunction-vorticity formulation, for instance,

achieves this end by substituting the velocity and pressure unknowns by two new sets

of variables, based upon the mathematical properties of vector fields [Carey 84],

[Goyon 96). An alternative approach (besides the segregated methods to be regarded in

section 2.4.) is the penalty formulation, to be discussed in the present section.

The penalty formulation provides with the possibility of imposing the

incompressibility constraint without solving an auxiliary pressure equation, by

replacing the continuity equation with the expression:

u,,^ _ -^p
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where the so-called penalty parameter E is a number close to zero. This equation is

incorporated into the dynamic equation, and therefore a system that depends on both

velociry and pressure is transformed into a velociry-dependant single equation, that

converges to the fully incompressible problem as E approaches zero [Hughes 79],

[Heinrich 81], [Reddy 84], [Sohn 90], [Hannai 95]. In the following section the

mathematical basis that justifies this point is reviewed.

2.3.2. The variational Lagrange-multipliers technique

Let us regard for simpliciry the two-dimensional steady Navier-Stokes equations

for the Stokes flow, with a Dirichlet boundary condition imposed on aS2 :

-^^,;^ + 1 P,; = Ĵr
P

u;^ = 0 (2.3.1)

The variational Lagrange-multipliers technique gives solution to the problem of

finding the stationary values of a x;-dependant function I(xt), constrained by an

additional equaliry J(x,) = 0. This is achieved by transforming the problem into the

obtaining of the stationary values of the modified expression I(x; ,^, )= I(x; ^+ í1.1(x; ),

where ^, is the so-called Lagrange multiplier. This technique is very commonly used in

mathematics and is a powerful tool for finding out the solution to many physical

problems [Simmons 93]. Initially released to give solution to the so-called iso-perimeter

problems, this technique was deeply considered by Euler, who settled the mathematical

basis of these methods. This Lagrange-multipliers technique was rescued for its use in

the Finite Element Method by Zienkiewicz, who in 1974 first solved a mixed

differential problem by using a penalty method. Thanks to the use of the multiplier

methods, the incompressibiliry condition may be viewed as a constraint and

consequently incorporated into the variational statement of the problem.

Let us consider the problem of finding the stationary values of the two-

dimensional functional:

v
1(u;,í1,)= J- u;,;u,,; - Ĵ;u; +í^u;^;dS2

n2
(2.3.2)
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•

•

Let us prove now that the problem of finding u^ and í^ , such that the expression

(2.3.2) takes the value of a stationary point, is equal to the resolution of the problem

posed in equation (2.3.1). If we write equation (2.3.2) in an expanded two-dimensional

form, we arrive at the expression:

2 2 z

r u,v,^, = J^ au + au + av + a^ _ su + v+ au +^^ )( )^ 2 ax ay ax ay ^ f s) ax ay (2.3 .3

In order to solve this variational problem, let us relax the exact solution values u,

v, and ^,, by adding to them the functional r^ = r^(x, y), known as the perturbation

function, with the constraint of being a sufficiently smooth function that vanishes on

the boundazy aS2 :

^(x, y)= u(x, y)+a^r^(x, y)

^(x, y)= v(X, y)+azr^(x, y)

^(x, y)= ^(x, y)+a3^(x, y) (2.3.4)

where a; (i=1,2,3) is a set of azbitrary constants. The values of u,v and ^, that give the

stationary solution of (2.3.3) are replaced by ^, ^ and íL , that differ from the former in

the perturbation function r^ . This perturbation function will be afterward removed in

order to find out the stationary solutions of the problem. The equivalent expression for

(2.3.3) in terms of the relaxed values ú,^ and í^ is:

I(^^^^^)= r v a^ 2+ a^ 2+ a^ Z+^ 2_(^.s^+ fy^)+ a^ +^ ^
JQ 2 ax ay ax ay ax ay

(2.3.5)

By definition ^,^ and í^ differ from the exact solution in a quantity a;rl(x, y)

(i=1,2,3), and for a; =0, equation (2.3.5) is equal to (2.3.3). The stationary values of

(2.3.5) are those verifying the equations:

at
= 0 for i=1,2,3 (2.3.6)

aa;
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•

Deriving now equation (2.3.5) with respect to «t , we have:

al(^,^,^) _ v a a^ 2 a^ 2 a^ 2 a^ 2 a a^ av
- + - + - + - - fxr]+í^ -+- S2a«1 - n 2 a«, ax ay ax ay a«, ax ay

If we make use of the equalities in (2.3.4), this equation may be written as.

al (ú,^,í^) _ rv a a^ a^ + a a^ a^ _Ĵx^1 +í^ a^ dS2a«, JQ a«i ax ax a«1 ay ay ax

or identically:

aI(^,^,^^_ jJ^ a^ a^-+a^ a^ _fx^+^a^^ya«1 áx ax ay ay ax

(2.3.7)

(2.3.8)

(2.3.9)

Making equation (2.3.9) equal to zero, we can affum that the values for the functions

ú,^ and í^ are not any, but the stationary values u, v, and 7^. Re-anranging terms in

(2.3.9), we have:

.Ífáx v áx +^, dy _ j jrtfxdxdy +
j j ar^ v au y= o

ay ay (2.3.10)

ff the first term in equation (2.3.10) is integrated by parts with respect to x, and taking

into account that for this integral, y can be considered as a constant, this first

integration by parts results in:

.Íj a^, ^ au +^ y_ J( v au +^ x` _ J,^ ^ a au + aa^ )dy (2.3 .11)
ax ax ax ax az ax

xo

Due to the fact that 7) takes a value of zero along the boundary aS2 , the former

expression can be written as:
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_ J J^ v ax au + aa, dy (2.3.12>
ax ax

If we carry out now an analogous integration by parts of the third term in (2.3.10), we

have:

Yl 2 2

!1 a^ ^ au y= j( v
au ,^ _ J^ v a u )dy = v J J,^ a u y^

ay y ay yo ax ax

(2.3.13)

If we append now (2.3.13) to (2.3.12), equation (2.3.10) is transformed into:

2 2

J.Í-^ ^ áxu + a u+ fX + áx y= o (2.3.14)^

•

The integral (2.3.14) is identically zero for any r^(x, y), belonging to CZ and being equal

to zero on the boundary aS2 , and therefore we can conclude that:

a2u a2u aa, _
-v ax2 + a^y2

ax - Ĵx (2.3.15)

Proceeding in an analogous way for the derivatives of I with respect to a2 , we obtain:

a2v aZv a^-v ax2 + ay2 - ^y - fy

For the third equation we have:

al(^,^,^) = a J(^ ^^ ^^t ^ _ f^; +^^,; )^ = j a^ ^;^^
aa3 aa3 Q 2 ^ aa3

(2.3.16)

(2.3.17)

Making the above equation equal to zero, the values of ú,^ are precisely the stationary

velocities u and v, that is:
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al
= Jriu;^dS2 = 0

aa3 n
(2.3.18)

.

The stationary value of the integral equation (2.3.18) is the one that makes the partial

derivative equal to zero for any feasible value of r^ , that is the imposition of a

solenoidal velocity field. The former equation together with (2.3.15) and (2.3.16) yield:

a2u a2u a^ _ fz
-v ax2 + ^2

ax

a2v aZV aa,
-v ax2 + ^2 - ^ = fy

u;; =0,

(2.3.19)

(2.3.20)

(2.3.21)

When comparing equations (2.3.19) to (2.3.21), it can be noticed that they are

the same except for the value of í^ in (2.3.19) and (2.3.20), that plays the role of minus

the pressure over the density in equation (2.3.1). By making this multiplier analysis, we

have succeeded in eliminating the unwanted continuity condition from the extremizing

version of the Stokes equations.

2.3.3. The penalty approach to the Navier-Stokes equations

In the formal statement of the penalty formulation posed by Zienkiewicz

[Zienkiewicz 74j the pressure is obtained as: •

P = -^^, (2.3.22)

and the penalized functional may be consequently written as:

r v ^,=
I(u,v,^,) J ( 2 u;,,u;,^ - f u; + 2u;^u;, )dS2 (2.3.23)

n

If we consider now the stationary-values of this problem, as those making the

variation SI equal to zero for admissible variations 8u; and 8^, , and we use the so-

^a
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called penalty parameter coefficient defined as E_^ instead of ^,, we arrive at the

expression:

f(vu=,;Su;,; - Ĵ,Su; + É u;^8u;^ )dS2 = 0 (2.3.24)
n

The penalty problem can be posed now, as finding u; E H t, such that:

1
J(^+,; w^,^ - Ĵ^ wr +^ u^,^ w^,^ )^ = 0 (2.3.25)
n

for all test functions w; E H 1.

It may be proved that as E approaches to zero, the solution for u; and p given by

(2.3.25) converges to the solution of the Stokes problem posed in (2.3.1), provided that

a consistency condition holds for the penalry method [Carey 84]. The penalty method is

said to be consistent if there exists a positive constant (3 independent of ^ such that:

su I1
pEu;^;dS2l >

o^ Po ^ lu I -^ P
1

E (2.3.26)

for any p E E P= L2 (S2 )/ R

For practical purposes, the value of ^ must be balanced between a sufficiently

small value, in order to achieve a solution closer to the real one, and a large enough

value so as not to promote the ill-conditioning of the stiffness matrix. For very small

values of E, the data from the penalty term are very extensive compared to those of the

viscous term. Consequently, the value of E depends on the word length of the

ĉomputer, which has to be able to hold the information from both the penalty and the

viscous terms. Hughes [Hughes 79], proposes a penalry parameter as follows:

E ^ (cmax(v,vRe)^-1

where Re is the Reynolds number, c is a constant which depends on the word length of

the computer and can be taken as 10^ for a 64 bit floating point word length, and it can
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vary two or three orders of magnitude with negligible effects on the solutions obtained

[Hughes 79].

If we introduce the approximation of the velocity field to make it depend upon

the trial functions, the discrete solution to the Stokes problem in (2.3.25) can be

obtained by solving the equation:

h h h 1 h hJ(vu;,^ w;,^ - ft w; + ^ u;^ w;^; )dS2 = 0 (2.3.27)
n

Afterward, the value of the pressure field can be post-processed by using:

The solution to equation (2.3.27) will approximate that of the initial problem as

E tends to zero, provided that the penalty consistency condition is verified. If not, the

use of the penalty formulation could lead to the obtaining of a non-singular coefficient

matrix associated to the penalty term:

1 ju^,w^dS2 (2.3.28)
EQ

As E tends to zero, this term may dominate the system of equations, therefore

the whole próblem could be over-constrained, and the only possible solution could be

the trivial one. For example, when using linear functions to interpolate the velocities on

a triangular basic element, and an exact integration of the penalty term is carried out,

`locking' occurs and the only possible solution seems to be the trivial one. This is a

problem totally analogous to the one obtained when a linear velocity and a constant

pressure is employed when using a mixed formulation. The discrete formulation in

(2.3.27) would not be consistent according to (2.3.26) and the algorithm would not

achieve convergence [Hughes 79].

This problem can be avoided by making a so-called selective reduced

integration of the elementary matrices involved in the resolution of the problem. A

reduced numerical integration consists in using a quadrature rule that is not exact for

the polynomials considered. The use of a one point Gauss quadrature rule (see

•

•
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appendix) for the integration of the quadratic functions in the penalty term, transforms

the associated `penalty' matrix into a rank deficient matrix and consequently `unlocks'

the obtaining of a non-trivial solution. For more details on this topic you can refer to

[Carey 84].

The penalized version of the unsteady Navier-Stokes problem, as posed in

(1.4.7), would be now to find u;` belonging to Vó E H'(S2 Ĵ such that:

h h h h h h h 1 h h h hjw; (u;^ +u^u;,^ - f; )+v Jnw;,^u;,^dS2+ j^ u;^;w;^;dS2-^2t; w; dI'2 =0
h

(2.3.29)

for every wh belonging to Vó .

Once the elementary matrices are evaluated and assembled, the integral equation

(2.3.29) can be expressed in matrix notation as:

M„ á +C„(u,v)u+vA„v_+ 1 BEv_=f (2.3.30)
E

•

where M„ is the mass matrix, C„ (u, v) is the convective matrix, A„ is the viscous

matrix, BE is the penalty matrix, u is the velocity vector in the x direction, v is the

velocity vector in the y direction, f is external forces vector and v_ is the velocity vector,

or equivalently in expanded 2D matrix form:

M S2 a u C(u, v) S2 u A S2 u 1 Bs D u fx

S2 M at v+ S2 C(u, v) v+ v S2 A v+ E DT B y v fy

(2.3.31)

The detailed expression of the sub-matrices in (2.3.31) will be further regarded in

section (2.7.3).
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2.4.- Segregated formulation

2.4.1. Introduction

To overcome the drawbacks arising from the resolution of the integrated

velocity-pressure and penalty formulations of the viscous flow, the so-called segregated

methods are developed in order to reduce the memory requirements when solving the

Navier-Stokes equations. The most commonly used of these segregated methods, that

obtain the flow variables in a sequential way, are the fractional step method [Donea

82], [Laval 90], [Ramaswamy 92], [Choi 97], and those based upon a SIMPLE

algorithm [Benim 86], [Rice 86], [Choi 94], [du Toit 98]. An algorithm based upon the

SIMPLE method, first released for finite volumes, is described in this section.

The penalty method succeeded in solving the Navier-Stokes Equations with

great memory savings due to the smaller number of equations to be solved, producing

meaningful and stable solutions thanks to the use of the so-called reduced integration as

seen in section 2.3. Anyhow, the accurateness of the method depends on the election of

the parameter ^. For very small values of E, the weight of the penalty term in the

stiffness matrix happens to cancel the amount of information contributed by the viscous

term, which is very small in comparison. This information is consequently truncated

and dropped from the equations. The penalry parameter should consequently be chosen

depending on the word length of the computer. On the other hand, if the penalty

parameter selected is too large, this choice may spoilt the whole procedure, as E is

wanted to tend to zero so as to allow for convergence. Consequently, the choice of E is

not a trivial task, and a wrong selection in the parameter may lead to a meaningless

solution. Moreover, the penalty formulation achieves a great reduction in the storing

requirements, compared to the mixed formulation (the 2N+M equations in the mixed

formulation are reduced to a 2N dimensioned system in the penalty formulation). Still,

the stiffness matrix is far from being a narrow band type of matrix despite the

renumbering of the nodes.

Many of these shortcomings are not present in the so-called segregated methods,

that are broadly employed by many authors so as to solve the Navier-Stokes equations

in both their finite element and finite volume numerical resolutions. Following the

♦
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• success of the Finite Volumes Method [Patankar 80], several authors adopted the

formulation in the SIMPLE and SIMPLEST methods to the finite element approach

[Scheneider 78], [Benim 86], [Rice 86], [Shaw 91], [Haroutunian 93], [Ferzinger 96].

These segregated finite element schemes give solution to the problem of the viscous

incompressible flow, by employing a procedure in which the velociry and pressure

unknowns are not obtained simultaneously but in a sequential way. The segregated

formulations calculate velocities and pressures in an alternative iterative sequence,

requiring much less storing needs than the mixed methods. Moreover, these algorithms

not only achieve a greater reduction in the number of equations compared to the penalry

method (in this formulation the dimension of the system to be solved is equal to the

number of nodes), but also allow for the production of narrow band stiffness matrices,

when a proper renumbering of the nodes has been carried out. The segregated method

also avoids the use of the sometimes inconvenient penalty parameter.

Another gain of these segregated algorithms is that a mixed-order interpolation

can be used [Schneider 78], [Rice 86]. As has akeady been said, the mixed and penalry

methods require a velociry approximation different from that of the pressure. The

easier-to-implement discretization of the domain in terms of the same basic functions

for both velocity and pressure, leads to oscillation-free solutions, and the tendency to

produce the checkerboard pressure distribution is therefore eliminated.

2.4.2. The segregated approach to the Navier•Stokes equations

•
In the segregated formulation the calculations are split into two main systems;

the dynamic, that gives the values of the velociry unknown, and the continuity system

that gives the pressure. The momentum equations are treated by using the weighted

residuals Finite Element Method, but now the pressure term jn w; p^; dS2 is not

considered as an unknown, being included in the right hand side of the system. For the

first iteration the pressures are taken as zero as a first^ guess, and for the following, this

zero value will be properly corrected. With this, we do not only get rid of the, by now,

unwanted pressure unknown, but also accomplish a system that is of N dimension, due
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to the independence of the x-component dynamic equation with respect to v, and that of

the y-component equation with respect to u.

If we recover the weighted steady dynamic equation derived in section 2.1.1:

Jw^ uiu^,i + 1 p,^ -^^,ii -.f ^_ ^
n P

and do not apply the Gauss theorem upon the pressure term, we obtain a weak form that

differs slightly from the dynamic equation in (2.1.2.8). The difference is that now, we

find pressure gradients in the pressure term, instead of gradients of the weighting

functions. Once the interpolation in terms of a Ql QI basic element is carried out, our

problem will be now to find uh belonging to the subspace V h E H' (SZ), for a known

p`' , such that:

J^v;`(u;u;'; -.fth^lŜZ+vJQwh;u;`^dS2+ 1 Juwhp;`.dS2- jr thw;'dT'2 =0 (2.4.1)
Q P 2

for all wh belonging to Vó , where the pressure is considered as a given value

throughout the domain. After the assembling of the elementary matrices has been done,

equation (2.4.1.) can be expressed in matrix form as:

C(u,v^u+vAu = Gu =fs - J^w; aN' p^dS2
ax

C(u, v}v + vAv = Gv = fy - j^ w^ aN' p^ dS2 (2.4.2)
ay

where C(u,v) is the convective matrix, A is the viscous matrix, G is the overall

coefficient matrix, fX and fy are the external forces vectors in the x and y direction, u

and v are the velocity vectors in the x and y directions, w are the weighting functions, N

are the shape functions and p is the pressure, all of them to be defined in detail in

section 2.7.4. The pressure gradient term has been brought to the right hand side of the

system, as a consequence of being a known vector that takes a value of zero for the first

•

•
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• iteration and is progressively corrected. The pressure results to be re-fed in equation

(2.4.2) for the iterations to follow will be obtained from the continuity system, to be

defined further on.

So as to link the velocity values obtained from the dynamic system with the

continuity system, the so-called pseudo-velocities are to be defined. Let us first write

the system (2.4.2) as:

aN^ ^1

Ói;ui +^jOi;u; = Ĵxi - J wi P; dSL

n axjxi

aN.
giivi + ^Si;v; = fy; - jnw; ^' pj dS2 (2.4.3)

jsi

In (2.4.3) we have split the coefficient matrices into a diagonal matrix and a full

matrix with zeros in the diagonal positions. This breaking down of the coefficient

matrix of the dynamic system will be used in the definition of the pseudo-velocities. We

can re-arrange the terms in equation (2.4.3.) to yield:

ui = p1 -^jÓi;u; +JZi -

O ii ;^i

vi = p1 -^Si;v; +fyi -

O i; ;^i

•

JQ wi aN'
P; dS2

ax

^Q wi aN^
p; dS2

^Y

If the pseudo-velocities txi and D'i are defined as:

ai = 1p -^8i;u; +fxi
Oii ixj

^ _ ^ -^gijv; + fyi

Oii ixj

(2.4.3a)

(2.4.4)

we can express the velocities in terms of the so-defined pseudo-velocities plus a

function that depends on the gradient of pressures:

• aN. aN.ui = ai _ Kiv f p^ v; = o; - Kip ^' Pj (2.4.5)
ax
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r

where the pressure-velocity coupling coefficients K,P , are equal to:

K;p = 1 ju w;dS2 (2.4.6)
b' ^r

The relationship between the nodal velocities and the pressure gradients given

by (2.4.4.) to (2.4.6) is not exact but only an approximation, being one of the

fundamental basis of the segregated method. This approximation has been used with

great success by many authors such as [Rice 86], [Zij191] and [Hi1195], having proved

to be able to achieve the right resolution of the incompressible viscous flow problems.

Note that once we have solved (2.4.2) for the velocities, we can calculate the

value of the pseudo-velocities from (2.4.4), and consequently we have a relationship

(2.4.5), that gives the velocity field as a function of both the so-defined pseudo-

velocities and the pressure gradients. The approximation (2.4.4) will be the required

relationship between velocity and pressures. If we replace the velocities in the

continuity equation by their value in terms of both the pseudo velocities and the

gradients of pressure, a system which can be solved for pressure is yielded. Since an

equal order bilinear approximation is also used for pressure, the continuity residual is

obtained by using the same weighting functions as those used in the dynamic equation.

The weighted continuity equation is consequently:

Jw;u^,;dS2 = 0
n

(2.4.7)

If the divergence theorem in used in the same way as in section (2.1.2) for the

dynamic equation and the approximation of the unknowns in terms of the trial

functions is introduced, the following weak expression is obtained

Jwhlu^dS2- f w;'u^n^dt'2 =0 (2.4.8)
n r2

76



Chapter 2. Finite element resolution of the viscous incompressible flow

• where n^ is the normal unitary outward vector with respect to the boundary I'2.

Dropping the h for simplicity and expandinĝ the terms, (2.4.8) can be re-written as:

arv. aw.
J^+ ` v dS2 = J w, (unx + vny } dI'2 (2.4.9)Q ^ ^y rZ

Substituting now (2.4.5) into (2.4.8), we obtain the continuity system, that can be

expressed as:

K °p = f p (2.4.10)

where the matrices KP and f P are defined as:

k^p - J Q(^^ Nk Ká
aN^

+^` Nk Kk aN' } dSl
ax ax ay c^y

.fip = fQ(^`N^A'; +^` N14;)dS2- Jrw;^N;u;nz +N;v;ny^dI'2
ax ay

The f P vector in (2.4.10) is a known vector that depends on the pseudo

velocities, which have been previously determined making use of (2.4.4). The

continuity system is solved for pressure, and the so-obtained values are re-fed in the

dynamic system posed in (2.4.2). The resulting ccefficient matrix of the continuity or

pressure system is analogous to the diffusive matrix in the dynamic equation for any of

the formulation considered, and no stability problems are found in the obtaining of the

pressure field in this way.

To solve this pressure equation we should take into account not only the

prescribed nodal pressure values, which are usually given at the outlets and are

certainly given at some point, but also the implicitly prescribed pressures on the nodes

where the velocity is given. For this type of implicitly imposed pressure, the pseudo-

velocities are set equal to the pres ĉribed nodal velocities, and therefore the value of K;p

is taken as zero. Once we have solved the pressure system, velocities are updated using:

n
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1 aN 1 aN
u; = t^i -- f n wt ' p j dS2 vi = 9'i -- Jn wt ' p ^ dS2 (2.4.11 }b<i ax bl^ ay

to ensure continuity.

The iterative process is based upon assuming a zero pressure field for a first

guess in the resolution of the dynamic equation, providing the velocity field as the

output. Once the pseudo-velocities and the pressure-velocity coupling coefficients have

been calculated, the continuity system is assembled and solved, and thus the values for

the pressure field are obtained. Finally, the velocities are updated, making use of the

newly determined pressure field, and with both the new velocities and pressures the

dynamic equations are reassembled, solved and the same procedure is repeated until

convergence is achieved.

When using a segregated algorithm, the use of uncoupled velocity and pressure

fields may lead to the divergence of the whole process. To avoid this problem, an

under-relaxation of the unknowns can be introduced so as to guarantee the convergence

of the process. The linear relaxation formulae to be used for this purpose is:

^" - ^"-1 + a(^" - ^"-t J (2.4.12)

where ^" and ^"-1 are the values of the unknowns (either velocity or pressure) at the

present and former iterations. This kind of under-relaxation is often introduced in the

segregated formulations by other authors as can be seen in [Benim 86] and [Shaw 91].

The momentum equations are also under-relaxed making use of an inertial relaxation

factor r^ defined as:

r,. = j w;dS2
n

(2.4.13)

with r; being added to the terms in the diagonal of the dynamic coefficient matrix as

follows:

aN . n

lOii +ri^i +^Si;u; =fii -d12w;
^^ pj dJL+r;u"-t

jxi

•
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aN .
^gii +ri)vi +^,gijv^ = fy; - Jnw; ^' pj dS2+r;v"-^ (2.4.14)

jxi

with u; "1 and v,.""1 being the values of the velocities obtained in the previous iteration.

Analogous definitions of the relaxation factor r^ can be found in [Choi 97] and [du Toit

98].

The use of this formulation based upon the one developed by [Zijl 91], [Choi

97] and [du Toit 98], leads to a N-dimensioned narrow band coefficient matrix, and

consequently to further memory savings in the resolution of the Navier-Stokes

equations.

2.5. Shallow water formulation

2.5.1. The equations to be solved

In section 1.5.2 the Shallow Water equations were derived and the assumptions

under which the algorithm was potentially useful were exposed. The equations we are

going to work with can be expressed as: ^

u; ^+ u j u,, j =-b'h^; + vu;, y + 8^Soi - Sf ^

h^ +hu;^; +u;h^ = 0 . (2.5.1)
•

with boundary and initial conditions:

u; ^x j,0^= u;o ^zj^ with u;o^; = 0

u; ]^.^ = b; 6ijn j^, = t; (2.5.2)^

In order to solve these equations by the Finite Element Method, the usual

procedure that begins with the application of the weighted residuals method is going to

be used on equations (2.5.1). The mixed approach will be used for the Shallow Water
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equations and therefore, both the momentum and the continuity equations will be

multiplied by the weighting functions and integrated over the domain, in a similar way

as that used for the mixed formulation of the 2D Navier-Stokes equations. Chapter

three has been devoted to the comparison of the results obtained for the mixed, penalty

and segregated algorithms among themselves, and compared with those of other

authors, broadly used as reference results. As this chapter will explain, the results

obtained for the three of them will be totally analogous and there is no point in

programming the Shallow Water equations with those three different formulations.

Multiplying the two equations by a set of weighting functions and integrating

them over the domain S2 we have:

lw;^u;,r+u^ut,i +gh^ -^^,ii -g^so; -Sfi^^=O
>Z

Jq(h^ +hu;^ +u;h^ ^dS2 =0 (2.5.3)
n

Applying the Gauss theorem in the same way as we did in section 2.1.2, the following

weak form would be obtained for the momentum equation:

j w; (u;.^ + u; u;.; - S^So; - S f )^iS2 + v JQ w,.^ u;.^ dS2 - g J^ w; ; hdS2 - jrZ t; w; dI'2 = 0
n

(2.5.4)

After the approximation of the velocity and the depth unknowns has been

carried out in terms of the trial functions, the problem is now to find u h and hh ,

belonging to some subspaces Vó E H' (S2) and Sá E Ló (S2 Ĵ , such that:

^wh ^uh + Uhuh - g(Sh - Sh )^IS2 +v J w^ uh dS2 - g J wh.hhdS2 - J thw.``dI' = 0
t ^.t ! ^.J Di f t .! ^.J ^,i n t t 2

^ ^ti ^h rz
n

J qh ^h^ + hhu^; + u;`h^ ^dS2 = 0 ^/w;` E Vó b'qh E So (2.5.5)
^A

with the boundary and initial conditions:

/

•
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•

w;' ^.^ = 0 u;` ^.1 = b; u;' (x^,0)= u ó(x^ ) (2.5.6)

Tfiis mixed Shallow Water formulation has the same advantages and

shortcomings as those found in the mixed 2D Navier-Stokes algorithm, with respect to

the other formulations considered in the former sections. As a consequence, the

divergence-stability condition may be failed for a certain selection in the basic element,

in terms of which the domain is split. An interpolation of different order for the velociry

and depth unknowns has to be consequently employed, and the Q 1 PO element will be

the one used for the same reasons as those expressed in section 2.1.3.

2.5.2. Numerical procedure: the star depths and star gradients of depth

Now we have a new difficulty that did not appear in the numerical approach to

the 2D Navier-Stokes equations presented previously: we have the depth itself and the

gradient of depth being included as part of the continuiry equation. In fact, the

inclusion of the depth and the gradient of depth in the continuity equation, allows for

the verification of the conservation of mass in a pseudo-3D basis and not on a 2D

laminar sense, as a consequence of having carried out an integration in depth of the

Navier-Stokes equations. As a consequence, some pseudo-non-linearities show up in

the continuity equation, that should be considered in addition to the non-linearity

resulting from the convective quadratic term. The Shallow Water equations will be

integrated in order to cope with this problem.

Let us introduce the following approach; we are going to assume that the depth

values in the continuity equation are going to be constant all over the domain for the

first iteration, and equal to the outflow given depth. In the following iterations ca><ried

out in order to solve the convection, the depths and gradients of depth in the continuity

equation will be evaluated from the results of the former iteration, and this evaluation

will be carried out in terms of a finite difference approach. Since a non-equal order

interpolation of the unknowns must be used in order for the mixed algorithm to

converge, the velocities and the depths are calculated on a different mesh. The depths to
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Chapter 2. Finite element resolution of the viscous incompressible flow

be re-fed in the continuity equation for the second and the following iterations, are

going to be evaluated on the velocity mesh points. Recall that the basic element used in

this formulation is the Q 1 PO basic element, or in other words, the velocity is

interpolated in terms of bilinear continuous functions with respect to a four-nodded

basic element, and the depth is interpolated in terrns of constant discontinuous

functions within the basic element. The depth at a velocity node h; will be taken as the

mean value of the depths for the former iteration in the surroundin^ basic elements, i.e.:
h^r^l h»i^z

n

h =-^h^ (2.5.7)
n ;_1

Figure 2.5.1. Evaluation of depth on the velocity mesh nodes ( h)

where n takes a value of 1, 2, 3 or 4 depending on the velocity node being a convex

corner, a side, a concave corner or an inside node, and ht is the constant depth in the

surrounding elements. The gradients of depth on the velocity mesh
ah' ?h.'

' , ' , will be
ax ?y

evaluated from the star depths h' on a finite difference basis:

s s
_ _ 1 ^ ^ h^^ - h^

h^,^ L.^
n k=1 i=1 x^, - xt

1"
h;y=-^

n k=,

3 s '^ h,^^ - h;

^_^ y^, - y^ r-^ h:}^-^ h',^

(2.5.8)

Figure 2.5.2. Evaluation of the gradient of depth on the velocity mesh nodes

where hw^ are the star depths on the velocity nodes in the basic element k, that shares a

common node (i) with hs , x,^^ and y^^ are the x and y co-ordinates of the nodes in the

♦
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•

•

basic element k, that shares a common node (i) with h^ , x; and y, are the co-ordinates

of the node where the gradient of depth is being evaluated and n is defined in the same

way as for the star depths. The contribution to the derivative with respect to z by nodes

with the same abscise is ignored, and so is the contribution to the derivative with

respect to y by nodes with the same ordinate, in order to avoid a division by zero.

After each iteration for convection has been solved, the star depths and star

gradients of the depth are calculated and re-fed into the continuity equation. The

iterative algorithm to be used will be more clearly explained in section 2.7.5, once the

general treatment of the convective term has been explained. This numerical procedure

has been developed by the author, and has shown to be able to yield very good results

in the resolution of the Shallow Water equations as will be shown in the numerical

examples in chapter six. In fact, this is a finite difference numerical approach to the

depth field within the finite element frame. The use of a finite difference evaluation of

the derivatives is a common practice in the mixed finite element field, which is broadly

used in the resolution of the unsteadiness of the Navier-Stokes equations, and in

particular will also be used in this thesis, as section 2.7.2 will show.

The use of this algorithm in the resolution of the Shallow Water equations

achieves very good numerical results as will be seen in chapter six. These results are

substantially better compared to those of other authors taking the depth in the

continuity equation as a constant or solving the quasi-non-linearities using the a single

mesh for all the unknowns present in the equations, and consequently leading to some

div-stability problems [Weiyan 92].

The general procedure for the obtaining of the steady system of differential

equations could be written in its matrix form as:

C„(u,v}u+vA„^-Bh=f

D(h' ^ + E(ĥ ' ^ = 0 (2.5.9)

where C„(u, v) is the convective matrix, Av is the viscous matrix, B is the depth matrix,

f is external forces vector, D(h') is the star depth matrix, E(li' ) is the star gradient of

83



Ct^apter 2. Finite element resolution of the viscous incompressible flow

depth matrix, f is the external forces vector, h is the depth vector and v_ is the velocity

vector. All of them will be defined in detail in section 2.7. In expanded matrix form this

system of equations can be written as:

C(u, v) S2 S2 u vA S2 - BX u fx

S2 C(u,v} S2 v+ S2 vA -By v= fY

S2 S2 S2 h Dx ^h" }+Ex (^i' ) D y^h' )+ E y(6' ^ S2 h S2

(2.5.10)

The Shallow Water formulation will allow for the verification of the continuity

condition on a 3D basis and not only on a laminar sense, and therefore constitutes a

better approach for solving real flow problems, as will be regarded in chapter six. It is

also a formulation that allows for the consideration of the turbulent effects as it has

been explained in section 1.6.3. The results obtained for this formulation are very good

as chapters three and subsequent chapters will show.

2.6. SUPG formulation

2.6.1. Introduction

Up to this point we have obtained a set of partial differential equations that rule

our physical problem, we have applied onto them a finite element numerical approach,

and as a result, a system of differential non-linear equations has been obtained. The

finite element approach has been applied in several manners, depending on the way

both the continuity and the dynamic equations on one side, and the velocity and

pressure unknowns on the other, have been handled. For all the algorithms considered,

a Galerkin formulation has been used, and therefore the weighting functions were

chosen to be equal to the trial functions. Nonetheless the use of a Galerkin (or also

known as Bubnov-Galerkin formulation), may lead to some problems in the obtaining

of the solution by the Finite Element Method. This section will be devoted to the

development of an alternative approach in order to overcome this drawback.

The Finite Element Method was applied when first released to structural

problems. The finite element solution obtained in conventional structural analysis had

•

•
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Chapter 2. Finite elemeat resolution of the viscous incompressible flow

s the `best approximation' property, that is, the difference between the numerical and the

exact solutions was reduced with respect to a certain norm [Brooks 82]. The so-

obtained stiffness matrix resulting from the conventional structural problems solved by

the FEM is symmetric. Instead, the `stiffness' matrix obtained for fluids is only

symmetric if we consider the Stokes simplification, i.e. if we neglect the non-linear

convective term u^u^,1. This simplification can only be made for the so-called creeping

flow, or in other words sufficiently slow flows with scant depth. In any other case the

ccefficient matrix of the resulting system of equations is going to be non-symmetric

and as a result, the `best approximation' property is lost. The faster the flow turns, the

more non-symmetric the coefficient matrix becomes. This can be easily observed if we

regard the terms in the constitutive equation: the faster the flow, the bigger the

Reynolds number and alongside it the magnitude of the non-symmetric convective term

in comparison with the symmetric viscous term. In practice, this kind of instability is

featured by the appearance of some spurious node-to-node oscillations, also known as

`wiggles', when a downstream boundary condition forces a sudden change in the

velocity field solution [Roache 76). One way of avoiding these oscillations is to carry

out a refinement of the mesh, such that convection no longer dominates on an element

level, this is however the cause of very high computational expenses.

Many different formulations aiming to avoid this instability have been

developed, such as the Petrov-Galerkin [Sampaio 91], SUPG, Galerkin Least Squares

[Hughes 89], and Characteristic Galerkin [Lee 87]. The SUPG stabilization technique

will be used in this work so as to avoid the use of very refined meshes, having proved to

be a powerful tool for that purpose.

The SUPG (Streamline Upwinding Petrov-Galerkin) Method succeeds in

eliminating the spurious velocity field, without carlying out an excessive refinement of

the mesh, by making a different selection in the weighting functions so as to fit the

special requirements found in fluids. In the sections that follow we are going to justify

and characterize the use of this newly defined stabilization method, still we should not

forget however, that this modification dces not affect the physical formulation of the

problem, but only its numerical approach. This method was first released to solve the

advection-diffusion equation [Brooks 80], and afterward was successfully transferred to

85



Chapter 2. Finite element resolution of the viscpus incompressible flow

the problem of the viscous incompressible flow [Brooks 82]. Let us first regard how

this method works in transport problems.

2.6.2. The upwind finite difference stabilization technique for the

advection-diffusion equation

The oscillations reported for the finite element solution of the Navier-Stokes

equations are also prresent in the resolution of the advection-diffusion problems

[Roache 76]. The SUPG method was first developed as a natural way of avoiding these

oscillations for the transport equation. The advection-diffusion equation governs for

example, the concentration of a substance in a viscous incompressible flow and can be

written as:

^,^ + ^ui^ - kii^,i ^,i = Ĵ (2.6.2.1)

with boundary and initial conditions:

^]l-1 = U - 6n ]l-2 = t `Y \xi ^O/- 7'0 \xi l (2.6.2.2)

where tp is the concentration, ui is a given velocity field, f is the source term, ki^ is the

diffusion that depends of the fluid nature, b and t are given functions of xi and t, and tpo

is a given function of x^. When regarding a homogeneous and isotropic one-

dimensional, steady problem, in absence of the source term, the formula urp^ = ktp,^,

could be used as a particular case of the general law. The finite difference solutions of

the transport problems are also affected by these oscillations reported for the finite

element resolution of the transport equation. In the finite difference approaches, the use

of an upwind differencing technique was discovered to be useful in the obtaining of

stable solutions [Christie 76]. Let us regard first the finite difference approach to the

one-dimensional advection-diffusion problem, to be later extended to the finite element

resolution of the Navier-Stokes equations.

!
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Chapter 2. Finite element resolution of the visoous incompressible flow

In the finite difference method, the differential operators are approximated by

difference operators. The central and lateral finite difference approximation of a

derivative df (x^ may be expressed as:
dx

Central:

tg^ = f^(x)_ Ĵ(x+h)- f (x-h^ = tga
2h

Lateral:

tg^= f^(x)_ Ĵ (x^- Ĵ(x-h)=tgy; for u>0
h

tg^3 = f'(x)_ f(x+h)- f (x)=tge; for u<0
h

(2.6.2.3)

Figure 2.6.2.1. Finite difference approximation

The left and right hand-side lateral approximations will be upwind approaches

for positive and negative velocities respectively, in the 1D finite difference solution of

the transport equation. We can now transform a central approximation of the

derivatives into a lateral one, by adding a central second order approximation. The

Taylor series expansion of a function f(x) around the abscise x to the right and left

hand sides may be written as:

s^



Chapter 2. Finite element resolutio^n of the viscaus ir ►compressible flow

f(x+h}= f(x}+hf'(x}+h2 f"(x}+•••
2

2

f(x-h}=f(x}-hf'(x}+ 2 f"(x}+•••

for a positive distance h. Therefore, the first order central approximation of the second

derivative can be written as:

f"(x}_ f (x+h}+ f (x-h}-2 f (x}
h2

(2.6.2.4)

If we add to the central approximation of the first derivatives, a central second

derivative affected by a coefficient k= uh / 2, we obtain an upwind approximation of

the first derivative. Consequently, by using this form of artificial diffusion k, we can

solve the problem on an upwind differences approach. The upwind approximation of

the derivatives avoids the oscillations showing up for the central differences approach.

Nevertheless the upwind solution of the transport problem is proved to be overdiffusive

and meanwhile the central difference approach is known to be underdiffusive [Hughes

79] . Consequently, the upwinding methods are based upon adding the proper amount of

artificial diffusion to the central difference method. The problem is therefore solved, by

considering an artificial diffusion coefficient k, that depends on a factor ^, being a

function of the Peclet number a, that affects the amount of oscillations:

^= 2 ^(a) a = uh l 2k (2.6.2.5)

The most commonly used analytic expressions for the function g are:

a/3, -3<_a<_3 1
^= or ^=cotha-- (2.6.2.6)

sgna, la > 3I a

•
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• ^

1^ ^

-15 -10 -5 5 10 15 a

Figure 2.6.2.2. The g function

This method was first used in [Hughes 79], as a non-expensive way of avoiding

the oscillations in the obtaining of the solution of the one dimensional transport

equation, with very good results.

2.6.3. The finite element SUPG stabilization technique for the advection-

diffusion equation

Following the success obtained in the upwinded Finite Difference Method, this

procedure was applied to the F'uŭte Element Method [Heinrich and Huyakorn 77],

[Heinrich and Zienkiewicz 77]. The Galerkin formulation is known to lead to a central

difference approximation. The upwinding method was extended to the FEM by using

non-symmetric Petrov-Galerkin weighting functions, to make the element upwind of a

node heavier than the one downwind (see figure 2.6.3.1). This method is known as the

Petrov-Galerkin formulation.

Figure 2.6.3.1. Galerlán and Petrov-Galerkin weighting functions depending on the ílow direction

The upwinding effect could be also obtained by adding an artificial diffusion to

the physical one, in the same way as we did for finite differences. By doing so, an

additional problem is found in the multi-dimensional generalisation of the upwind

treatment of the advection-diffusion equation. This problem is the appearance of an

excessive diffusion in the crosswind direction. The so-called Streamline Upwind
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Method eliminates this spurious crosswind diffusion by considering and artificial

diffusion k;! that acts only in the direction of the flow, defined as:

k;^ = kA;Q^ (2.6.3.1)

where tt; = u` , I^I2 = u;u; and k is the one-dimensional `artificial' diffusion
^^°^^

coefficient [Kelly 80]. By using this Streamline Upwind Finite Element Method, the

spurious crosswind diffusion is consequently eliminated in a simple way, but still there

were some problems. These drawbacks were the obtaining of an excessive diffusion,

caused by the fact that the upwinded convective term was not consistent with the

source and transient terms, that were discretized on an symmetrical weighting basis.

The so-called Streamline Upwind Petrov-Galerkin Method was successfully

extended to the finite element resolution of the advection-diffusion equation [Raymond

76], [Brooks 80]. In this method, the streamline upwind effect is produced by using

non-symmetric .weighting functions, which affect all the terms in the equations to be

solved. The new weighting functions will now contain an additional term:

iî =w+p

ff we apply the weighting residuals method to the all-term-including transport

equation, the following integral expression is obtained:

j w^^p^ + ^u;^p - k;^^p,i )^ - Ĵ^S2 = 0 (2.6.3.2)
n

applying the Gauss theorem to the diffusive term, we have:

jw^^p j+^u,^P Ĵ^ ĴdS2+ Jw,;k;i^p,i dS2 = Jwf dS2+ lx^t dt'2 (2.6.3.3)
n Q Q r2

In order to turn our symmetric weighting functions into upwinding weighting
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Chapter 2. Finite element resolution of the viscous incompressible flow

• functions, we are going to add a p-dependent term to this weighted formulation, where

p is a function to be defined later in the text. Therefore we have:

f w(^P,r+^u<<A^,;^+w,^k^i^,i ^+^, Jp^rP,^+^u^^-kt^^,i^t -f1= JwĴ dS2+ jwtdl2
n e t2^ f2 I'2

As we have already explained, the natural way. of introducing the streamline

upwind contribution, would be to add an artificial diffusion term (as the one defined in

2.6.3.1), to the natural diffusion coefficient, to yield:

J w^; (k;^ + k;^ )rp, J dS2 = J w^; (k;^ + ktl; Q^ ^p,^ dS2 (2.6.3.4)
n Q

We could obtain the same artificial diffusive term from the advective part of the

constitutive equation, if we consider the p contribution to the weighting function:

jwu;^p^;dS2 = J(w+ p^u;rp^dS2 (2.6.3.5)
a n

.

Following [Brooks 80], the p function is defined as:

_ ktl^w,^

p I^I
(2.6.3.6)

By using this modified weighting function, we have defined an artificial

diffusive coefficient, equivalent to the one used in the streamline upwind method, but

this time we have kept consistency in the equation due to the use of the same weighting

function for all the terms in the constitutive equation. By doing so, we benefit from the

advantages of the streamline upwinding approach, without producing excessively

diffusive solutions. This method, known as the Streamline Upwinding Petrov-Galerkin

formulation, has proved not only to be a powerful tool for the resolution of the transport

equation at a low computational cost, but has also been extended to the Navier-Stokes
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Chapter 2. Finite element resolution of the visoous incompressible flow

equations with optimum results.

2.6.4. The finite eflement SUPG stabilization technique for the mixed

Navier-Stokes formulation

In the resolution of the Navier-Stokes equations we have the same oscillations

found in the obtaining of the solution of the advection-diffusion equation, but this time

these oscillations are materialised as oscillations in the velocity streamlines. These so-

called `wiggles' are specially important for high Reynolds numbers or in other words

for systems including large convective matrices. The extension of the SUPG technique

to the Navier-Stokes equation, manages to overcome these oscillations without refining

the mesh, simply by using these newly defined weighting functions. Let us extend the

SUPG approach to the mixed Navier-Stokes formulation as a start. The streamline

upwind Petrov-Galerkin weighting functions to be considered now are of the form:

^i; = w; + ^; (2.6.4.1.)

and therefore an extra term should be considered in equation (2.2.1) to yield:

jwh(uht +ujuhj - Ĵih^S2+V j Whjl[;`jdS2- 1 J W^;pdS2-J t;`Whdl'2 +

n ^° P ^" r2h

+^ J^h(u,^+u^u.^^,.-vu,.h^..+l p;`-f;h dS2=0;
e ^^

jq^^ ^ds^ = o
n^

(2.6.4.2)

where ^;' is the discretized streamline upwind contribution to the weighting

function and can be defined [see Brooks 82] in analogous way to (2.6.3.6) as:

h
- l^di whi

i'^

Iluh II

(2.6.4.3)

•
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where the multi-dimensional definition of k is given by:

^ - ^u^ h^ + ^uñ h.^

2

with

^ = cotha^ - á ^ = cotha,^ - 1
^ an

•

a = a =

h hu^ h^ u,^ hn

(2.6.4.4)

u^ = e^;ué uñ = e,^,ué (2.6.4.5)

where h^ , h,^ and e^; , e.^; are the characteristic basic-element lengths and unit

vectors in the direction of the local axes ^ and rl (see figure 2.6.4.1). The

parameters a^ and an are the directional Reynolds numbers of the basic element,

ué is the velocity in the interior of the element and v is the kinematic viscosity of

the fluid. Different versions of the streamline upwind formulation have been used by

other authors and can be found in [Franca 91], [Sampaio 91], [Hill 95], [Hannani

95], [Cruchaga 96], and [Choi 97]. For the present work, the stabilization technique

will be based upon the streamline upwind Petrov-Galerkin weighting functions as

defined in (2.6.4.1) to (2.6.4.5). These weighting functions will be applied on the

formulation as specified in sections 2.6.4 to 2.6.7, with very good results as will be

seen in the numerical examples shown in the following sections. Other alternative

SUPG formulations, as those found in [Franca 92] and [Hannani 95], were also

attempted, with worse results compared to the stabilization provided by the so-

defined SUPG formulation.
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•

Figure 2.6.4.1. Characteristic basic-element lengths and unit vectors

2.6.5. The finite eleanent SUPG stabilization technique for the penalty

Navier-Stokes formulation

The SUPG penalty formulation can be expressed now as:

J Wh (l[ {+li^uh^ - fi ^Si+V^^h Wh^l^lh^di ♦ J ^l[(^Wê .di-^zt;`W;`dP2+
^h Qh

+^ j^h u^+uJu^-vu^;-^^u^^^-f^ dS2=0 (2.6.5.1)
e Q^

with the pressure being post-processed from the formula:

Ph =-^ uht (2.6.5.2)

where the definition of ph is the same as that in (2.6.4.3). The SUPG stabilization

technique gives the same good results as those obtained for the mixed formulation as

is clear from the numerical examples shown in chapter number three and in

following chapters.
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•

2.6.6. The finite element SUPG stabilization technique for the segregated

Navier-Stokes formulation

The segregated finite element formulations adopted in [Scheneider 78] and

[Benim 86], give a successful equal order approach to the viscous flow problems,

which do not suffer from the spurious pressure modes found in the equal order mixed

formulation. Moreover it accomplishes a great reduction in the memory requirements.

However, it still suffers from the same shortcomings found in the mixed and penalty

formulations, used in connection with the Bubnov-Galerkin weighting functions. In

[Benim 86] a segregated formulation with SUPG stabilization that affects only the

convective terms in the formulation is used. As shown by [Hughes 79], the use of the

SUPG weighting functions on not every single term of the discretized equations, may

lead to some inconsistency problems between the so-weighted terms, and those being

centrally weighted by the conventional Galerkin functions. In [du Toit 98], it can be

found a segregated finite element formulation that applies the SUPG weighting

functions to all the terms in the dynamic equation. In that formulation the resulting

continuity terms in the momentum equations are retained in the formulation, as they are

thought to be able to contribute to the stabilization or smoothing of the convergence

process. The segregated formulation proposed by the author of this thesis, uses the

SUPG technique on every term in the dynamic equation, using the conventional

Galerkin weighting functions for the continuity equation. The continuiry terms included

in the dynamic equation are dsopped as in other formulation considered within this text.

The results to be obtained are optimum, and can be seen in the numerical examples in

chapter three.

For the segregated algorithm, the SUPG formulation to be adopted is:

f w;`^u^uh^ - f,.h^S2+v^wh^u^fdS2+ J w;'p^dS2-^ t;`w;'dI'2+
Q zn

+^ J^;'(u^u^-vu^+Ph- Ĵ^)dS2=0
e Q^

(2.6.6.1)
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•

where the gradients of pressure term is considered as an unknown. The system (2.6.6.1)

is re-written as:

ĵ aN;
8^,u^ _-^, gr;u; + ĴX^ - Jn ^i; ax p; dS2jxi

aN.
b'^;v, _-^ 8^;v; + Ĵy, - J^ í^, ^' p; dS2 (2.6.6.2.)

;sr

The pseudo-velocities are defined in the same way as in (2.4.4) to (2.4.6) except for the

pressure-velocity coupling coefficient Ktp , that is equal to:

K;p = 1 J w;dS2 (2.6.6.3)
8^^ n

The SUPG formulation will not affect the continuity equations at all. These will remain

as:

^ ^.v. aN . ^,,,. aN .

h ax^ Nk Kk ax p'
+ ^ Nk Kk ^ p; dS2 =

= JQh a' N^fx;+^` N;D'; dS2-^n w;(N;u;nx +N;v;ny)dI'2 (2.6.6.4)
^

Once we have solved the pressure system, the velocities are updated using:

1 aN^ 1 aN^
u^ = tt^ -- Jn w^ a^ p; dS2 vt = t^^ -- jn w^ a ' p; dS2

8 ^^ S ^^ Y
(2.6.6.5)

so as to ensure continuity. The SUPG segregated formulation will use the same

assumptions and implicitly imposed boundary conditions as those shown in section

2.4.2.
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2.6.7. The finite element SUPG stabilization technique for the mixed

Shallow Water formulation

Proceeding in an analogous way to that carried out in 2.6.4., we obtain

the equations:

h h h h h h h h h h h hJw, u;,t+u^u,,^ -g{Sor-Sf )Ĵ+v Ĵ hw,,^u;,idS2-g jnA w;^;h dS2-^2 t; w; dI^2+
h

+^ J^^^u,^+u^u^ -vu^ +gh^ - f;h)dS2=0

Jq`` ^h^ +h'u^, +uhh^ ĴdS2 =0 (2.6.7.1)
n^

where ^; , takes the value showed in 2.6.4.3.

The implementation of a SUPG-type stabilisation algorithm allows for good

results on not very refined meshes and flows featured by a high Reynolds number in

the three types of formulations considered, as will be shown in the numerical

examples. The uŝe of a very dense mesh involves high computational costs and

consequently large amounts of inemory requirements and long CPU times. The

SUPG formulation yields, as a result a better computational efficiency [Franca 92],

[Hannani 95], [Choi 97], [du Toit 98]. .

2.7. Resolution of the system of equatioas

As a consequence of the use of a finite element numerical procedure, we have

reduced the physical problem of the fluid flow, with analytical solution for a limited set

of particular cases, to a system of equations that gives an approximate solution on a

certain set of finite points. We do not have now any spatial derivatives in our resulting

system of equations, but we do still have derivatives with respect to time for the
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Chapter 2. Finite element resolution of the viscous incompressible flow

unsteady formulation, and besides we have some non-linearities in the convective term.

Let us regard now how the partial differential, non-linear system of equations is

transformed into an algebraic one and how the former is solved.

2.7.1. Transforming the non-linear system into a linear system of equations

The convective term C(u, v}u that appeazs in all the formulations considered, is

not the product of a ccefficient matrix times a vector of unknowns, but a non-linear

velocity-dependent function. This term should be eliminated in order to transform the

resulting system into a linear system of equations. The numerical scheme to be used for

this transformation could be, in principle, any of the procedures used iri numerical

analysis for this purpose, such as the well-known Newton-Raphson numerical

technique or the simpler Picard approximation method.

The Picard method is simply based upon treating the convective term as a

known vector, brought to the right hand side of the equation by using the velocity field

values of the previous iteration. This simple method results in divergent solutions for

Reynolds numbers larger than 102 in most of the practical problems, and particularly in

the Cavity Flow problems to be shown later [Carey 84]. Even for the convergent cases

this procedure is often very slow.

The well known Newton-Raphson method converges quadratically in the

vicinity of the solution, but the necessity of an appropriate initial guess may prevent the

solutions from converging [Jamet 73]. A continuation technique, or in other words the

obtaining of a solution for a lower Reynolds number (which is employed as a first

guess), is often used in connection with the Newton method. Moreover the fast rate of

convergence of this methods is scarcely useful due to the usually small range of

convergence in most of the practical examples.

The method used for the linearization of the system of equations in this work

will be the so-called successive approximation method, because of its simplicity and

the good results achieved for problems with Reynolds numbers of moderate order (up to

103), [Gartling 74]. The method converges linearly but in most of the practical

problems it reaches the solution in less than 10 iterations. In this method the convective

•
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coefficient matrix is iteratively obtained as a function of the previously determined

values of the velocity field. The non-linear velocity-dependant convective term

C(u, v)u , is taken for the n-th iteration as the product of the coefficient matrix

C(un-1' vn-1 ^n ,^sumed as a function of the velocity field obtained in the previous

iteration.

C(un, vn ^n ^ C(un-^ ^ vn-^ ^n (2.7.1.1)

For the SUPG convective integral term being defined in all formulations

((2.6.4.2), (2.6.5.1), (2.6.6.1), and (2.6.7.1)) as:

1 ^' u^"'>>^
nh

(2.7.1.2)

the linearization by the successive approximation method would lead to the

approximate convective term defined as:

J^; u^-lu"^dS2 (2.7.1.3)
QA

The matrix C is not anymore a function of the present unknowns but depends on

the previous values of the vector field, and is taken as zero as a first guess. The solution

is usually achieved within some tens of iterations and depends on the Reynolds number

of the flow, or in other words on the amount of convection we have to deal with. The

iterative process will be repeated until convergence is achieved.

2.7.2. Transforming the differential system into an algebraic one

For the derivatives with respect to time, a finite difference approach will be used

in order to transform our partial differential system into an algebraic one. Once the
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unsteady term J w; u;^dS2 is discretized and the elementary matrices are assembled, the
^A

differential matrix term can be obtained on a backward differencing scheme as:

av R -vn-[v_

M M

_
7 1)(2 2

v at v
.. .

Lu

where 1^n is the unknowns vector at the present iteration and ^^-1 is the unknowns

vector obtained in the former iteration. Therefore, the second term in expression

(2.7.2.1) can be brought to the right hand side of the equality. The matrix equation for

the mixed and penalty formulation is consequently:

^M„v_" +Cv(un,v",t^n +vA„v_" -Bpn =f+^M„v_n-1

BTv_R =U (2.7.2.2)

and equivalently for the penalized expression:

^M„v_" +C„(u",v°^un +vA„v_R +^Bv_° = f + ^M„v_"-' (2.7.2.3)

In both cases we are going to solve the non-linearities of the convective term for

each time step. Once the convection is solved for that time-step with the convergence

criterion selected, the calculations for the next time step are carried out, up to the point

in which the required elapsed time is reached.

In the following sections we are going to detail the basic integral terms

appearing in the mixed and penalty (section 2.7.3), segregated (section 2.7.4) and

Shallow Water mixed formulations (section 2.7.5), with all the numerical assumptions

and stabilizing techniques to be used on each one.

•
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• 2.7.3. Detailed matrix expression of the mixed and penalty formulation

For the velocity-pressure integrated method, the expanded matrix equation that

gives solution to the viscous flow problem, can be expressed as:

M S2 S2 u" C(u" , v" ) S2 S2 u"

^ S2 M S2 v" + S2 C(u" , v" ) S2 v" +

S2 S2 S2 p" S2 S2 S2 p"

vA S2 - BX u" fx M S2 S2 un-1
S2 vA - By v" = fY +^ S2 M S2 v"-' (2.7.3.1)

(Bx Ĵr (B y^ S2 P" S2 S2 S2 S2 p"-'

where un"1, v n"1 and p"'1 are the unknowns at the previous step time. The matrices

involved in the system of algebraic equations (2.7.3.1) result from the assembling of the

elementary matrices:

aN. aN.
M;f = j^i;N; dS2 C;; = jw; Nkuk az +Nkvk ay dS2

< <

^; aN; + aw; c1N; dS2
^^=j^^^^ ^^

•

a^;
BX;; = jQe ^ ,^; dS2

ĴX^ = j ^^ĴxtdS2 + ^. w;tz dS2
n. ^

By;; = j ^' ,^;dS2,Z° aY

Ĵy^ = j ^,Ĵy^dS2+ jr ^?ty;dS2
^. .

(2.7.3.2)

where N; and x; are the velocity and pressure Q1P0 shape functions, as defined in the

appendix. When the penalty finite element formulation is used, the following single

matrix equation is obtained:

1 l^ ^ u" C(u" , v" ) S2 u" vA S2 u"
^t S2 M v" + S2 C(u" , v" ) v" + S2 vA v" +
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•

1 gx D un fx 1 M ^ un-^

+^ DT By v" fy + t1t S2 M v,►-i (2.7.3.3)

where the elementary matrices are:

M;^ = Jw;N; dS2
II^

aN aN

aN ^ aN ^
C;^ = f w; Nkuk aX + NkVk ^' dS2

^e

_ ! ^` ' + °^` ' dS2
^`' n< <3z ^3x aY aY

_ r ^. aN .
B^f - Jn^ ^, aY dS2

Ĵx, = J ►̂ ^Ĵx; dS2 +^ w; tŝdS2
^< <

_ a^. aN .
By`' - ^n^ o^x c3x

dS2

r?^y. aN .
D;;=J ^ ^ dS2

Q^

fy; - JQC ^i; f y;dS2 + ^,^ ^v;ty;dS2

(2.7.3.4)

2.7.4. Detailed matrix expression of tóe segregated formulation

The detailed matrix expression of the dynamic system in the segregated

formulation, can be written as:

L^\u^ V^luJ+ Lv^luJ- Lf x J- LDz 1!'^

^C^u^ v^lv^+ ^vAlv^= ^f y ^- l^ y 1P^

(2.7.4.1)

with

aN . aN -

C;; = jí^; Nkuk
ax' +Nkvk ^' dS2

n^

^v^ aN; + ^-v;
aN; dS2`^^ = j^^ ^ ^ ^ ^

a^;; _ ! w; aN^ dsZ
^^ ax
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• Ĵx^ = J^iĴxrdS2+^ r^i;tzdS2 fY; = J ^i;fy;dS2+^, w;ty;dS2
n< < n< <

and the detailed matrix expression of the continuity equation can be written as

^KP1P^-Lfp^

where:

k'P - Jn ^t Nk Kk aN^ +^t Nk Kk aN^ dS2° c3x c)x aY ^y

(2.7.4.2)

(2.7.4.3)

f;p = ^` N^R^ + ^' N^Q^dS2 (2.7.4.4)J^^ ^ ^

where R; and 4; are the pseudo-velocities and Kk is the velociry-pressure coupling

ccefficient as defined in section 2.4. The iterative process can be resumed in the

following flow diagram:

Imóal guesv far velaciry and pc^ra

Calalau the ca^dems fa the dyusmic
^^

APP^Y velociry baundary oamditrom.

Solve the dynamic equaúm fa veloáty,
witá g^+essed Pr^mue.

Calalate oxfl'ciems fa the omcimiity
equanoo

^►PP^Y P^vro bau^dacy oouditio^.

Solve the comtimiiry equation fQ p^rssuce.

Update veloáú^s.

^ Update cooveaive effaxs on tAe dynamic
equation.
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•

The convergence process will be stopped once the convergence criterion is held.

2.7.5. Detailed matrix expression of the mixed Shallow Water formulation

The system to be solved for the Shallow Water equations will be:

C(u,v) S2 S2 u vA S2 -Bx u fX

S2 C(u, v) S2 v+ S2 vA - B Y v= f y

S2 S2 S2 h Dz (h ` )+ Ex (li' ) D y(h `)+ E y(ĥ ' ) S2 h S2

(2.7.5.1)

where h` and 6' are the depth star and the gradient of depth star as defined in 2.5.2.,

which constitute an original contribution by this thesis.

The matrices involved in this system of differential equations result from the

assembling of the elementary matrices, which can be written as:

aN . aN .
C;, = Jw; Nkuk ax^ +NkVk ^ dS2

Q^

dr̂v; aN^ + `v` aN' dS2

`^'_^^^^ ^^
` a^;

BX^i = gJ^^ ^ xidS2

_ aN .
D^^ - J^ h^ x; ^ dSL

^

E^;^ - j^^ hi.x.^; Ni dS2

Ĵx; _,^ A^ fX,dS2 +^^; tz dS2< <

B y;i ^`= gln^ ^ x;ds^

aN .
Dy^; = j h; x; ^ dS2n^

Eyti = Jn^ hi.y x^ N^ dS2

fy; - JQ^ í^i; fy;dS2 +^^ í^;ty;dS2

(2.7.5.2)

where h,.` and h.^ , h; y are the -star depth and star gradient of depth as defined in

section 2.5.2.

.
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Initial gu^a fa star deplss and star
gadients aff deph.

^

Cala^lare che ooeffiámt tnau'uc.

^

ApplY the boundary oonditioac.

Solve the sysum af equaŭ^c fa velocity
and depth

Yn

Calcvlate the atar dep[h aud star Badiem ^
^•

^

Upda[e oonvmive effeas oc tbe dynunic
aquaáam.

The iterative process to be carried out in order to achieve the convective effect

for all the algorithms considered will be stopped when we have reached convergence.

Once we have obtained the algebraic system for all the formulations considered, a

solver sub-programme will be devoted to its resolution. The solver chosen for each of

the formulations considered will not be same one and this point will be discussed in the

following section.

2.7.6. The direct solver with skyline storing

As has already been said, the mixed formulation results in a system of 2M+N

algebraic equations in which only the equations corresponding to the boundary

conditions can be eliminated from the global resolution of the flow problem. Anyway,

these ádditional conditions do not usually imply a drastic decrease in the number of

unknowns. The storage of such a big amount of information requires a clever data-

keeping strategy. If we are trying to store a system of equations that gives solution to a

flow problem calculated on a Q1P0 mesh of some few elements, say a side of a ten, we

will find out that we are dealing with an associated coefficient matrix of about lOs

elements. For apparently coarse grids, the memory requirements involved become

amazingly large and prevent us from using a whole matrix storage procedure.
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Chapter 2. Finite element resolution of the viscous incompressible flow

When using a direct numerical method for the resolution of the system of

equations, an alternative way of data storing is the so-called `Skyline' or column profile

storage. The matrices we are dealing with are sparse, or in other words are matrices that

contain a small number of non-zero elements. Instead of storing every single matrix-

element, we could think of storing only the first non-zero element of each column and

the following elements in that column up to the diagonal. By doing so, .we would avoid

the storage of many zero elements. This method will be especially efficient if we have

previously re-numerated the mesh so as to reduce the band width to a minimum, and

together with it, the height of the `buildings' to be stored. All the non-zero upper-

triangular-matrix elements together with some zeros, will be therefore stored, iri a

vector-valued variable. Due to the fact that we are dealing with a convective-term

including formulation, the coefficient matrix associated to the system is going to be

non-symmetric, and another vector-valued variable is required for the storing of the

lower triangular matrix.

Together with the definition of the vector-valued variable v, an additional

pointer vector p has to be defined, so as to indicate the position of the elements. In this

integer vector p of dimension n(the dimension of the matrix to be stored} will be stored

for each column, the position occupied in v by the diagonal element of that column.

0 Non-stored zero element.

^ Stored non-zero element.

^ Stored zero element.

Figure 2.7.6.1. `Skyline' storing

For instance, the pointer vector for the upper triangular matrix shown in figure 2.7.6.1

would be:

p=(1, 2, 3, 7, 10, 11,12,....)
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Chapter 2. Finite element resolution of the viscous incompressible flow

and the corresponding v vector would contain the elements:

v=(all^ a22^ a33^ a14^ a24^ a34^ a44^ Q35^ a45^ a55^ a66^ a77, •••)

•

Therefore, the generic diagonal element a^; will be stored in v(p(j)) and element al^ will

be stored in v( p(j)-(j-i) ).

Special attention should be paid to the fact that neither the basement nor the

penthouse neighbours are allowed in this town, and therefore the inequaliry:

OS j-i<p^j^-P^I-1^ (2.7.6.1)

should be always verified throughout the program calculations.

When programming these aspects and after the conectiviry data of the problem

have been read, a program module should be devoted to construct the pointer vector, or

in other words the `shape of the stiffness matrix', that will be the same for both the

upper and lower triangulaz matrices. Once the pointer has been defined, it will be used

for every single reference to the elements in each of the elementary matrices that make

up the coefficient matrix.

It can be proved that, when using a direct resolution of the system and due to the

matrix operations involved in it, no element is going to be thrown out of the `buildings'

when a skyline storage procedure is employed, and therefore no data is going to be

`lost' in this way. The implementation of a direct solver as a result, allows for the use of

this kind of storage.

The method used for the direct resolution of the system, should work on non-

symmetric matrices, and as long as the non-symmetric coefficient matrix remains as

positive definite, a Crout factorization can be used. The Crout method factorises the

coefficient matrix A into the product of a lower and an upper triangulaz matrices,

A=L•U. Then, in order to solve the system of equations A•x=b, it is enough to solve the

problem within the two following stages:

L•z=b solve for z

lo^
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U•x=z solve for x

where the matrices L, U can be expanded as:

L=

l„ 0 0

l21 l22 0

l31 l32 l33

0

0

^

...

...

...

... ... ... ... ...

llnl ln2 ln3
•••

lnn ,^

(2.7.6.2)

...
11 12 u13 ln

...
u22 u23 u2n

U= 0 0 u33 ••• u3n

... ... ... ... ...

^ ^ ^ ...
unn J

(2.7.6.3)

The lower matrix system can be easily solved by obtaining sequentially the values of z^

from i=1, by making use of the simple algorithm:

1 i-1

Zi =-T ^i -^^iJZJ
Lii i=1

(2.7.6.4)

and in an analogous way for the resolution of the upper system U•x=b.

The LU decomposition of the coefficient matrix is not still uniquely determined.

One way of avoiding this point is to set the diagonal values of the matrix L as 1, as a

consequence, the factorization can be calculated by using the formulae:

ul^ = al^

`il = a'1
j

k-1

u^ =a^ -^l^pup^
r-1

1 k-1
> 1 l ua -^ lip pkik ik

ull ukk p=1

j >_ k (2.7.6.5)

i > k (2.7.6.6)

For details you can refer to [Kincaid 96] for instance. This direct solver of the

Crout type, together with the column profile storing will be used in some of the

fornnulations as explained later in the text.

•
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a 2.7.7. The iterative solvers used in connection with sparse storing

The direct schemes for the resolution of systems of equations are one-step

methods that give an exact solution to the algebraic systems. Nevertheless, when either

the mesh is progressively refined or very large domains are going to be considered, the

memory requirements involved became extraordinarily high and unapproachable for

many of the available computers, even if some kind of clever storage procedure is used,

such as the band or the `Skyline' storing. In order to avoid this problem an alternative

and more efficient storing schedule should be used.

The `cheapest' storing mechanism is to keep in memory exclusively those

elements different from zero. This is a more efficient procedure compared to the

`Skyline' storing, that avoids wasting memory resources in storing mid-height zeros,

which can be more numerous than the number of non-zero elements, even when the

mesh is re-numbered so as to reduce the band width to a minimum. This effect can be

easily observed in the coefficient matrices obtained for the mixed and penalty

resolution of the fluid flow (see figure 2.7.7.1). The nature of the formulation implies

that the employment of a skyline storing is going to involve the use of a fairly large

amount of inemory requirements, regardless of the renumbering of the mesh.

Figure 2.7.7.1. `Skyline' storage of the mixed, penalry and segregated `stiffness' matrices

Provided that the sparse storage cannot be used in combination with a Crout

solver, due to the fact that some elements could be `thrown out' of the sparse stencil,

when this type of storage is used, some other algorithm should be employed in order to

solve the system of algebraic equations.
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i

q Non-stored zero element.

^ Stored non-zero element.

Figure 2.7.7.2. Sparse storing

There is not a standard scheme for the so-called indexed storage of sparse

matrices, on the contrary, it can be carried out in many different ways. One of the most

commonly used is the row-indexed sparse storage mode, that requires a memory space

of only twice the number of the non-zero matrix elements. Two vector-valued functions

are requŭed: an integer pointer vector (p) and a real vector (v), where the sparse

elements themselves are loaded.

The general rules are: the first n locations of v, store the diagonal elements in

order. Each of the first n locations of p stores the index of the component of the vector v

that contains the first off-diagonal element of the corresponding row of the matrix. ff

there are not off-diagonal elements for that row, it is one unit greater than the index of

the component of v, of the most recently stored element of a previous row.

The first component in p is p(1)=n+2. The value of p(n+l ) is one unit greater

than the index of the v-component of the last off-diagonal element of the last row. The

value of v(n+l ) is not specified. Entries in v at locations greater or equal than n+2

contain the off-diagonal values, ordered by rows from left two right. Entries in p at

locations greater or equal than n+2 contain the column number of the corresponding

element in v.

The storing of a viscosity matrix A, corresponding to a domain with two Q1Po

basic elements is shown as an example.
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♦ 0
II

O

4 5

!

F'igure 2.7.7.3. Two Q,Pa basic element domain.

The elementary diffusive matrix for a square element of side two would be:

Ae - v

6

2

I

4 -1 -2 -1

-1 4 -1 -2

-2 -1 4 -1 '

-1 -2 -1 4

assembling the two elementary matrices, the following diffusive matrix is obtained:

A=v
6

1 2 3 4 5 6

1 4 -1 °:: -1 -2

^2 -1 8 -1 -2 -2 -2

3 ^ -1 4 -2 -1

4 -1 -2 • .^ : 4 -1

+S -2 -2 -2 -1 8 -1

6 . . -2 -1 -1 4

Proceeding as explained in the fundamental rules, the row-indexed storage of the

former matrix would be:

1 2 3 4 5 6 7 8 9 !0 11 12 13 I4

p 8 11 16 19 22 27 30 2 4 5 1 3 4 5

v 4 8 4 4 8 4 -1 -1 -2 -1 -1 -2 -2

IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29

6 2 5 6 1 2 5 1 2 3 4 6 2 3 5

-2 -1 -2 -1 -1 -2 -1 -2 -2 -2 -1 -1 -2 -1 -1
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A program module is to be devoted to the conversion of the geometric data of

the problem into a sparse matrix stencil, or in other words a pointer vector has to be

defined to address the data vector.

The benefits achieved by the use of this compact storing scheme would be

useless if a Crout solver were to be employed. As it has already been said, these two

techniques are not compatible. On the contrary, the so-called Krylov iterative

techniques provide an efficient iterative method to solve a system of equations,

when the indexed sparse matrix storage is chosen for the handling of the problem

data.

2.7.8. The iterative solver. The Biconjugate Gradient Method

The main drawbacks of the direct methods are the high computational costs

involved in their resolution (O(n3)), and the restrictions derived from the storing of

the coefficient matrix. On the other hand, they give as a result the exact solution of

the equations and they can be solved for a different election of the right hand side

vector b. For large dimensioned systems, the iterative solvers are preferred as a

general rule. In these methods the solution of the system of equations is obtained

from a succession of vectors x'`+^_ Rk+l(Xk), the last of which will be the required

approximation to the exact solution. These iterative solvers can be of the stationary

type such as the Jacobi, Gauss-Seidel, or the SOR (Successive Overrelaxation)

methods. In these stationary iterative methods the transition from xk to ^c+1 does not

depend on the previous iterations.

in the so-called Krylov methods, the solution of the linear system of

equations is obtained by minimizing a quadratic functional. This minimization takes

place over certain vector spaces, the Krylov spaces, from which this family of

iterative methods takes its name. The Conjugate Gradient, Lanczos, Arnoldi and

GMRES methods are some of these techniques. These methods not only allow for

the use of a sparse matrix storage scheme, but also permits to reference the

coefficient matrix only through its multiplication by a vector. Moreover these

methods can give the exact solution to the problem in, at most, n iterations with

exact arithmetic. The accurateness of the solution will depend upon the round-off

•

•
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error of the computer used in the calculations. Compared to other iterative methods,

such as the Gauss-Seidel or the SOR methods, the Krylov methods converge with a

faster rate [Axelson 96]. Although the number of iterations depends heavily on the

numerical parameters chosen in its resolution, these methods are broadly employed

when a large system of equations has to be solved.

The Krylov methods, sometimes also referred as Conjugate Gradient Methods

as a whole, were first presented by Lanczos in the early fifties [Lanczos 50], and

since then many different approaches within this frame have been developed. The

formal Conjugate Gradient Method was first developed by Hestenes and Stiefel in

1952 [Hestenes 52]. The Conjugate Gradient Method is based upon obtaining a

successive approximation of the solution by adding to the k-th iteration xk , a term

that depends on a set of orthogonal directions pk .

xk+t - xk +akpk (2.7.8.1)

This set of vectors p^ is chosen to be a conjugate or orthogonal set with

respect to the coefficient matrix A, and therefore p^ A p^ = 0, for every i^ j. The

problem of solving the system Ax = b can be also regarded as finding the vector x

that minimizes the function:

f(x)= ix•A•x-b•x
2

(2.7.8.2)

This function is minimized when its gradient f^; = A• x- b equals zero, which is

equivalent to solving the initial system Ax = b.

A succession of search orthogonal directions pk and improved minimizers xk

is generated in order to carry out the minimization of the function (2.7.8.2). At each

stage, a quantity ak is found that minimizes f (xk +akpk ), and xk+l is set equal to

the new point. The plain Conjugate Gradient method can only be used in connection

with symmetric and positive definite coefficient matrices. As we already know, the

ccefficient matrices resulting from the use of the Navier-Stokes equations is non-
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symmetric as a consequence of the presence of the convective term, and the plain

Conjugate Gradient method cannot be used.

During the seventies, several algorithms of the Krylov type were extended to

the resolution of not necessarily symmetric and positive definite matrices such as the

methods developed in 1976 by Vinsome and Golub [Golub 76]. The formal

Conjugate Gradient Method can be regarded as a particular case of the more general

Biconjugate Gradient method, that can be used on not necessarily symmetric and

positive definite coefficient matrices. The BCG method was presented by [Fletcher

76], having proved to be a robust and effective method [Golub 89]. An algorithm of

the BCG type will be used in this doctoral thesis for the resolution of the linear

systems of equations, as one of the most commonly used schemes for solving not

necessarily symmetric and positive definite coefficient matrices. The BCG method

constructs four sequences of vectors, rk,^k,Pk,flk, with k=1,2,... For the first

iteration, the values of rl, P^ are given as a first guess and the others are taken as

pl = r,, ^t =^; . The series of vectors are taken as (see [Press 92]):

^`k ' rk

f^k ' A'Pk
rk+l - rk - ak A ' P k gk+l - gk - ak AT ' Yk

i^k = ^kF+rt . ^k+l
pk+t - rk + ^kPk Yk+l - gk + I^kYkY

k k

(2.7.8.3)

The Conjugate Gradient Method is a particularization of the BCG method in

which Fk = rk and ^k = pk for all k, and can be used only when the coefficient

matrix is known to be symmetric and positive definite.

The iterative process to be carried out is the following:

-For the first iteration r,, Y't, pt, and pt are taken as the residual b- A- xl , where xl 'is

the initial guess for the solution of the system.

-Then the series terms in equations (2.7.8.3) are calculated.

-The next improved minimizer xk+l is taken as xk+, = xk +akpk . This equation

guarantees that rk+t from the recur•rence, is in fact the residual b- A• xk+, .

•
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Chapter 2. Finite elemer►t resolution of the viscous inco^ressible flow

• -The iterative process will be halted once the solution is considered to be accurate

enough. For the calculations included in this work, the process will be stopped when

the quantity I A • x-bl/Ibl is less than a minimum tolerance error, the `tol' parameter,

to be specified for each particular case.

This method should arrive at the exact solution of a system of not necessarily

positive definite or symmetric equations in less than n iterations; if more, we would

run out of linearly independent orthogonal directions. But this exactitude may not

take place in practice in less than n iterations, due to the round-off error. In that

case, the subroutine can be called again up to the point in which the tolerance

criterion is verified.

The number of iterations in which the system is considered to be solved, can

be reduced by using a variant of this method, known as the Preconditioned

BiConjugate Gradient Method (PBCG). This method is based on the idea of pre-

multiplying our system of equations by the inverse of a matrix ^, loosely speaking

as similar to A as possible, and known as the preconditioning matrix.

(A-1. A). x = ^i-1 • b (2.7.8.4)

s

In the best possible election t^ is equal to A, and the solution is reached

straightforwardly. There is a vast literature about the question, still not solved, of

what preconditioning matrix could achieve a better convergence [Pini 90]. For our

purposes the Á matrix will be taken as the diagonal of A, for any non-zero diagonal

element, case in which it will substituted by one. For an efficient implementation of

the PBCG method, two additional sets of vectors, zk and Zk are introduced:

t^'Zk =Tk and .^T •^k =gá (2.7.8.5)

where the newly defined variables in (2.7.8.3) are:
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Chapter 2. Finite element resolution of the viscous incompressible flow

_ ^k ' Z k /^ __ gk+l ' Z k+l

ak ^k ' A ' P k (J k ^k ' Zk

Pk+l - Zk + Nkpk Yk+l - ^k + i^kYk (2.7.8.6)

The PBCG subroutine used in this thesis has been adapted from the one in

[Press 92].

These direct and iterative ways of solving the resulting system of algebraic

equations have been implemented, and the so-obtained procedures have been used to

solve the viscous incompressible flow.

The storing of the data on a full matrix basis simplifies considerably the

writing of the code, but it is only affordable for very small meshes, of say 102 nodes

when run in a conventional personal computer, and beyond this level results in a

memory overdraft. The FEM is usually used on a more refined mesh than that, even

for small domains, and therefore this storing procedure is not very useful at all,

except for verifying purposes.

The column profile storage procedure achieves a considerable reduction in

the memory requirements, compared to the full matrix storing, and allows for a

direct resolution of the system. Thus, an exact solution of the problem is obtained,

with a fairly high computational cost. A considerable amount of inemory is wasted

in the storage of some mid-height zeros, and this loss cannot be avoided with an

adequate renumbering of the nodes when using the núxed and penalty algorithms,

due to the own nature of these so-defined formulations. As a consequence, in the

examples showed in this thesis, this kind of solver will be only used for the

segregated formulation. For this formulation, the size of the system to be solved is

only of n, dimension, with n being the number of nodes in which the domain is split

on an equal-order basis for both velocity and pressure. Moreover, a properly carried

out renumbering of the mesh, considerably reduces the memory requirements in the

segregated formulation.

The sparse matrix storage, and specially the row-indexed sparse storage mode,

used in connection with an iterative Preconditioned Biconjugate Gradient Method,

allows for great memory savings with low computational cost. Only twice the
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Chapter 2. Finite element resolution of the viscous incompressible flow

number of non-zero elements are needed to be stored, and much more refined

meshes can consequently be used. The method has for this reason been used in the

calculations of the mixed and penalty formulations, which present very high

computational costs when used in connection with a direct solver. The shortcomings

in the iterative solver are derived from the fact that the solutions so-obtained are not

exact (due to the use of a non-exact arithmetic), and the need for a proper selection

of the preconditioning matrix and the tolerance parameter, so as to allow for an

efficient convergence. Nonetheless the PBCG method reduces considerably the

memory requirements for the mixed and penalty formulation and provides a very

accurate solution.

In chapter two, the methodology to be used in the resolution of the

incompressible flow has been presented. In the following chapters several examples

of the good behaviour of the algorithms will be presented and commented upon.

•

117



CHAPTER 3

VALIDATION OF THE MIXED, PENALTY AND
SEGREGATED ALGORITHMS MAKING USE OF THE

CAVTTY FLOW BENCHMARK PROBLEM

•

Los estatuas sufren con los ojos
por la oscuridad de los ararídes,

pero sufren mucho más
por el agua que no desemboca.

...que no desemboca.

Feduico García L,orca, 1899-1936
Poera en Nueva York, Niña ahogada en el pequeño pozo
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•

CHAPTER 3. VALIDATION OF THE MIXED, PENALTY AND SEGREGATED

ALGORITHMS MAKING USE OF THE CAVITY FLOW BENCHMARK PROBLEM

This chapter has been devoted to the validation of the algorithms implemented in this

thesis by comparing the results obtained with the 2D Navier-Stokes fonmulations explained in

the previous sections, with reference results obtained by other authors. These comparisons will

be made upon the well-known Driven Cavity Flow benchmark problem, often used in the related

literature for this purpose.

As has already been said, many authors agree to split the finite element formulations for

solving the Navier-Stokes equations into three main different groups, depending on how the

primitive variables velocity and pressure are treated. These categories are the mixed, penalty and

segregated formulations. One of each of these algorithms has been implemented making use of a

stabilization technique of the SUPG type, as explained in section 2.6. The Cavity F1ow benchmark

problem has been numerically solved by using these formulations. The results for this academic

problem will be the same for the three of them as expected, due to the fact that the numerical

devices used in their resolution have no influence on the results to be obtained. These results will

also be in good agreement with those of other authors, as will become clear in later sections.

3.1. The Driven Cavity Flow benchmark problem

The driven cavity flow is a classical test used by many authors to check the quality of the

methodology employed in the resolution of the 2D Navier-Stokes equations. This benchmark

problem is based upon the flow in a square cavity with prescribed horizontal velocity in the upper

side and solid boundaries in the lateral and bottom sides. This is a challenging problem due to the

presence of several re-circulating regions in which the solution changes rapidly, and because of

the pressure singularities that show up in the upper comers. This benchmark test will be used,

therefore, to validate the algorithms developed in this thesis by its comparison with the results

obtained by other authors. The results to compare with, will be those of:
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Chapter 3. Validation of the mixed, penalty and segregated algorithms

- The benchmark solution of Ghia et al. [Ghia 82] obtained by employing a second order

accurate finite difference multigrid method, with a mesh of 129x 129 nodes.

- The results obtained by Hannani et al. in [Hannani 95] with a finite element SUPG

algorithm. The results from Hannani were obtained on non-uniform meshes of 32x32, 45x45

and 80x80 Q1P0, basic elements.

- The results by Kondo et al. in [Kondo 91], making use of a so-called third order

upwind finite element scheme developed by themselves, based upon a Petrov-Galerkin

formulation in which a modified weighting function is expressed by the sum of a standard weighting

function and its second and third spatial derivatives. The examples by this author to be considered

in this work are calculated on a 40x40 element mesh of four-node, non regular basic elements.

All of them can be considered as reference results, specially those of Ghia, that are

commonly employed to check the validity of the algorithms by most of the authors in the related

bibliography. Experimental results are not available for the Cavity Flow problem, but Ghia's

results are broadly used, nevertheless, as reference values. The results by Hannani and Kondo

have been selected as well-known accurate results, obtained on a mesh of a similar refinement

compared to the one used in this doctoral thesis.

The most commonly used comparison results for this benchmark problem, are the

horizontal velocities along a vertical central line. These velocities will be plotted for all the cases

considered and compared with the graphs obtained by the other authors.

The boundary conditions used for this problem have been of the Dirichlet type in all the

boundaries. A unitary horizontal velocity heading towards the right hand side has been prescribetl

for the top side (including the upper corners), and the no-slip condition has been considered for

the rest of the boundary. The Reynolds numbers used have been 100,1000, 5000 and 10000,

with the Reynolds number been defined as Re = U•L / v, where U is the velocity in the upper

side, L is the length of the side of the square domain, and v is the kinematic viscosity. The value

of Reynolds =10000 is considered as a limit for the steady Cavity Flow calculations, since

[Shen 76] has shown through detailed numerical experiments that above this bound, the stationary

solution ceases to be stable.

s

•
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Chapter 3. Validation of the mixed, penalty and segregated algorithms

The discretized domain used in the calculations has been a 1681-node non-regular mesh

with 1600 Q 1 PO elements. A bias parameter of 0.1 has been used for the dimensioning of the

basic square elements. The dimensions of the square domain are 400x400, nonetheless the

results for the horizontal velocity along a central vertical line have been scaled within the interval

[0, 1].

aoo
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100

50

100 200
X

300 400

Figure 3.11. Cavity Flow 41x41 non-regular mesh

This benchmark problem has been solved making used of the mixed, penalty and

segregated algorithms shown in sections 2.2, 2.3, and 2.4, and the results obtained for each of

the Reynolds numbers considered have been compared and commented upon.
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Chapter 3. Validation of the mixed, penalty and segregated algorithms

3.2. Resolution of the Cavity Flow by the mixed approach

To begin with, a formulation in which both velocity and pressure have been considered

as unknowns of the resulting system of equations is used together with a SUPG stabilization

technique as explained in 2.2. The PBCG solver has been employed in its resolution so as to

allow for the sparse matrix storing, that results in large memory savings. For the first iteration, a

velocity equal to zero has been assumed in every single point of the domain and in the successive

iterations that follow it has been corrected in the non-linear term, using the previous iteration

values in a successive approximation scheme as explained in section 2.7. A pressure reference

value of zero, has been imposed in the middle of the lower side of the cavity. A tol parameter of

10^ as defined in 2.7 has been used for the resolution of the system of equations by the PBCG

method. The results obtained can be seen in figures 3,2.1 to 3.2.20. The use of an iterative solver

for the mixed algorithm has been imposed because of the nature of the coefficient matrix, that not

only is of dimension twice the number of velocity nodes plus the number of pressure nodes, but

also differs ostentatiously in shape from that of a narrow band matrix, that would be the optimum

for a direct solving with `skyline' storing.

The calculations have been cairied out making use of the Digital Alpha Server 4000 with

1 Gb of inemory. The number of iterations required for the imposed rate of accuracy have been

10,15,150 and 321 iterations for Reynolds numbers of 100,1000, 5000 and 10000, with CPU

times involved of 59",156", 2012" and 6156" respectively.

The figures corresponding to the results obtained for velocity and pressure follow. The

plots for the streamlines, vector field, contour pressure field and surface pressure field corresponding

to a Reynolds number of 100 have been plotted in figures 3.2.1 to 3.2.4. In figures 3.2.5 to

3.2.8, figures 3.2.9 to 3.2.12 and figures 3.2.13 to 3.2.16, the corresponding graphs for Reynolds

numbers of 1000, 5000 and 10000 have been plotted.

Finally, the horizontal velocities along a central vertical line for Reynolds numbers of 100,

1000, 5000 and 10000, obtained for the mixed formulation, are graphed and compared to those

of other authors, as shown in figures 3.2.17 to 3.2.20.
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Figure 3.2.1. Cavity flow. Streamlines for Re = 100, mixed algorithm
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Figure 3.203. Cavity flow^ Contour pressure field for Re = 100, mixed algorithm

Figure 3.2.4. Cavity flow. Surface pressure field for Re =100, mixed algorithm

123



Chapter 3. Validation of the mixed, penalty and segregated algorithms

Figure 3.2.5. Cavity flow. Streamlines for Re =1000, mixed algorithm

Figure 3.2.6. Cavity flow. Velociry field for Re =1000, mixed algorithm
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Figure 3.2.9. Cavity tlow. Streamlines for Re = 5000, mixed algorithm
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Figure 3.2.13. Cavity flow. Streamlines for Re =10000, mixed algorithm
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Figure 3.2.15. Cavity flow. Contour pressure field for Re =10000, mixed algorithm

^igure 3.2.16. Cavity flow. Surface pressure field for Re =10000, mixed algorithm
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Figure 3.2.17. Horizontal velocities along a central vertical line for a Reynolds number of 100.
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Figure 3.2.18. Horizontal velocities along a central vertical line for a Reynolds number of 1000.
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Figure 3.2.19. Horizontal velocities along a central vertical line for a Reynolds number of 5000
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3.3. Resolution of the Cavity Flow by the penalty approach

The penalty formulation as explained in section 2.3 has been used to calculate the Cavity

Flow benchmark problem The penalty parameter used in the calculations has been E=10d. The

velocity field for the first iteration has been taken as zero on every node of the domain and has

been progressively coxrected. Once the convergence is achieved, the pressure unknown is post-

processed and its results are shown in graphs 3.3.1. to 3.3.8, together with those of the velocity

field. When making use of the penalized formulation, the dimension of the system of equations to

be solved is not so lazge as it used to be in the mixed formulation, nonetheless the iterative PBCG

algorithm with tol =10^ has been used to solve the resulting system of linearized equations. In

the penalty formulation, the coefficients matrices are of dimension twice the number of velocity

nodes, and they are again far from being of the narrow-band type. Sparse storing has therefore

been considered to be more convenient.

The calculations have been carried out in the Digital Alpha Server 4000. The number of

iterations involved in the convergence process for the four Reynolds numbers considered have

been 7, 14, 40 and 271. The CPU times involved in the calculations have been 92", 696",

3941 " and 15230" , for each of the Reynolds numbers considered.

The figures corresponding to the results obtained for velocity and pressure aze shown in

the following pages . The plots for the streamlines, vector field, contour pressure field and surface

pressure field corresponding to a Reynolds number of 100 can be seen in figure 3.3.1. In figures

3.3.2, 3.3.3 and 3.3.4 the corresponding graphs for Reynolds numbers of 1000, 5000 and

10000 have been plotted.

The horizontal velocities along a central vertical line for Reynolds numbers 100,1000,

5000 and 10000, obtained for the penalty formulation, aze graphed and compared to those of

other authors in figures 3.3.5 to 3.3.8.
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Figure 3.3. l. Cavity flow. Velocity and pressure fields for Re =100, penalty algorithrrY

Figure 3.3.2. Cavity flow. Velocity and pressure fields for Re =10O0, penalty algorithm
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3.4. Resolution of the Cavity Florv by the segregated approach

The segregated formulation as explained in 2.4 has been used to solve the Cavity F1ow

benchmark problem. Boundary conditions of the Dirichlet type have been imposed on the four

sides of the cavity, therefore K; (as defined in 2.4.) has been set equal to zero in the domain

boundaries. The pressure has been imposed as being equal to zero in the middle point of the

lower side, as a reference value. The relaxation parameters chosen for this problem have been

au = 0.7 and a= 0.2 respectively for velocity and pressure, and they have been determined by

trial and error. For the first iteration an initial guess of velocity and pressure equal to zero has

been used in the resolution for Reynolds 100. Then, the converged solution has been used as an

initial guess for Re =1000 and so forth.l'he resulting system of linear equations has been solved

using a direct Crout solver with a column profile storing.

The number of iterations involved in the calculations have been 237, 322, 413, and 615

with CPU times involved of 3651 ",11807", 28266", and 72297".

The figures corresponding to theresults obtained forvelocity andpressure are the following;

the plots for the streamlines, vector field, contour pressure field and surface pressure field

corresponding to a Reynolds number of 100 can be seen in figure 3.4.1. In figures 3.4.2, 3.4.3

and 3.4.4 the corresponding graphs for Reynolds numbers 1000, 5000 and 10000 have been

plotted. The horizontal velocities along a central vertical line for Reynolds numbers 100,1000,

5000 and 10000, obtained for the segregated formulation, are graphed and compared to those

of other authors in figures 3.4.5 to 3.4.8.
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3.5. Conclusions

As can be seen from the plots, the results for the three formulations considered are totally

analogous and are in good agreement with the results from the other authors. If we regard the

streamlines, the lower secondary vortices show up for the smallest Reynolds number considered

and are developed as the Reynolds number is increased. The upper secondary vortex does nót

appear up to a Reynolds number of 5000, as expected. The horizontal velocity profiles along a

central vertical line adjust to the reference values of [Ghia 82], with a much finer mesh and are

also substantially better than those of [Hannani 95] and [Kondo 91], for a mesh with a similar

refinement and even a finer one. No substantial differences are observed among the results of the

three formulations used for the velocity results nor for the pressure field results, which are also in

good agreement with the benchmark solutions of the problem obtained by those authors.

The good results obtained in the velocity profiles have made useless the employment of

a finer mesh, that would necesitate a much longer CPU time. As has akeady been pointed out,

the calculation times are shorter for the mixed algorithm and of increasing magnitude for the

penalty and segregated method. For the penalty solution, the introduction of the penalty parameter

makes the linear system of equations more difficult to solve, since the penalty parameter tends to

zero. This computational time can be reduced, anyhow, by the use of a properly weighted penalty

parameter. For the segregated resolution of the flow, a direct solver has been used in the calculations,

with a definitively greater computational cost, and the convergence process is consequently slowed

down. If an iterative solver was used, a considerable improvement in the CPU times involved

would be achieved.

The algorithms implemented have proved to give very accurate results even for a less

refined rr^esh, showing that the upwind weighting implemented in the numerical scheme is a powerful

tool to solve some flow problems without using very refined meshes, and with no wiggles in the

so-obtained solution. The good results obtained for this benchmark problem entitle us to use the

checked algorithms in some other theoretical and practical problems; these follow.

•
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CHAPTER 4

CHECKING THE ALGORITHM WITH EXPERIMENTAL
RESULTS. THE FLOW OVER A BACKWARD FACING STEP

Sine experientia nihil sufficienter scire potest.

Nothing is certain without experience.

Roger Bacon, 12141294
Opus majus. VI. 1
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CHAPTER 4. FLOW OVER A BACKWARD FACING STEP. CHECKING THE

ALGORITHM WITH EXPERIMENTAL RESULTS

4.1. Introduction

The purpose of this chapter is to check the numerical algorithms considered in this work

with available experimental results. The laminar Backward Facing Step benchmark problem is

presented next, as one of the most commonly used benchmark problems in the literature, in

order to validate the algorithms that give solution to the Navier-Stokes equations. The backward

step is based upon a simple geometry where flow separation and reattachment occur. Expeiimental

data for this problem can be found in Armaly [83], who also solved this problem numerically by

using a control-volume-based Finite Difference Method. The problem of the backward step

flow will be solved in this section by using the penalty algorithm, and its results will be compared

with those of Armaly, which are generally used as verification data. As has already been shown

in chapter three, the formulations considered for the laminar Navier-Stokes equations provide

identical results in the resolution of the flow problems. For the solvers considered, both the

mixed and penalty algorithms result in less computational time. The penalty algorithm will be used

in the resolution of this benchmark problem with optimum results, as will be shown later in this

chapter.

4.2. The flow over the Backward Facing Step benchmark problem

The geometry and boundary conditions considered for this benchmark problem, have

been those used in [Armaly 83]. An expansion ratio of 1:1.94 has been considered for the

widening of the channel, which has a total length of 50 so as to allow for the vortices to take

place. The inlet boundary has been located at 3.5 step heights upstream of the expansion corner.

The domain has been split into 2850 Q1P0 basic non-regular elements with 3021 nodes. The

mesh is coarser at the outlet and more refined at the left-hand side of the channel, so as to allow

for a better accuracy in the regions where the primary vortices occur. A bias parameter of 0.5

has been used for this purpose along the x-axis, therefore the width of the basic elements at the inlet
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is one half of that of the elements at the outlet, and the height of the basic elements is uniform

within the whole domain. The mesh can be seen in figure 4. l, where a magnifying factor of two

has been used for the y-axis. A parabolic horizontal velocity profile has been imposed at the inlet

with a maximum velocity of 1, and the velocity is equal to zero at the boundaries. The lateral sides

have been considered as solid boundaries and the no-slip condition has been imposed on them.

Finally, a zero traction condition has been imposed at the outlet.

. ^ -_. ,, _T_ _ -
^:^^'^' l;.

. . _.^.___T - _. __.Y '

5

Figure 4.1. Backward Facing Step. Mesh

4.3. Results

The flow has been obtained for a Reynolds number between 100 and 1200. The Reynolds

number has been defined as Re = u•D / v, where u is the average inlet velocity, D is the hydraulic

diameter and the kinematic viscosity v has been altered so as to make the Reynolds number vary.

The flow has been solved making use of the penalty formulation with a PBCG solver, and

numerical parameters: E= 10-4 and tol= 10-4, as defined in chapter two. The flow has been

calculated for several Reynolds numbers, and the streamlines, vector field and pressure contour

graphs for Reynolds numbers 200, 400, 500, 600, 800 and 1200 have been depicted in figures

4.3 to 4.8, respectively. In the streamline plots, the appearance of the re-circulation vortices can

be easily detected as expected, something which is also clear from the coloured velocity field,

where the colour in which the vector is depicted depends on the magnitude of the velocity modulus.

In this velocity field plot, the parabolic distribution of the velocity in every cross section along the

channel may also be clearly observed. The third graph in each figure shows the pressure field in

the domain by plotting the isobars. The pressure surface graphs for the Reynolds numbers 200,

400, 600, 800, 1000 and 1200 can also be seen in figures 4.9 to 4.14 as a surface plot.
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The convergence record with the number of iterations and CPU time employed in the

resolution of the flow in the Digital Alpha Server 4000 with 1Gb of inemory, can be seen in table

4.1, depending on the different Reynolds numbers used in their calculation.

Reynolds number Iterations CPU time

100 8 1333"
200 12 ^ 3441"
300 17 5405"
400 23 9297"
500 28 11601"
600 34 16227"
700 38 18549"
800 43 21301"
1000 47 26683"
1200 53 32219"

Table 4.1. Flow in a Backward Facing Step.
Iterations and CPU time for Reynolds numbers from 100 to 1200

r

As foretold by the experimental results in [Annaly 83], there exists a single re-circulation

zone at the expansion corner up to a Reynolds number of about 450, beyond which a second

vortex shows up at the top boundary, and gets bigger as the Reynolds number is increased. As

can be seen in figure 4.3, the primary vortex at the expansion corner shows up for a Reynolds

number of 200, the smallest shown in the figures, and increases its length as the kinematic viscosity

is decreased. The secondary vortex does not take place up to the point in which Re = 500.

Figure 4.2. Flow over a Backward Facing Step. Sketch of the vortices and recirculation lengths
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The size of the reattachment zones s^ versus the Reynolds number are compared with the

experimental results, as well as those of a control-volume-based finite difference method by

Armaly; these results can be seen in figures 4.15 to 4.17 and table 4.2. The reattachment locations

of the vortices are defined as follows; sl is the reattachment location of the primary vortex, s2 is

the separation location of the secondary top boundary vortex and s3 is the reattachment location

of the secondary vortex. All of them have been measured from the expansion corner, as depicted

in figure 4.2.

s1 s2 s3

Reynolds

100 3
200 4.9
300 6.6
400 8
500 8.9 8.4 1 2.2
600 9.7 8.8 14.8
700 10.5 9 17
800 10.9 9.3 19.2
1000 11.9 9.8 22.8
1200 13 10.7 26.3

Table 4.2. F1ow over a backward-facing step. Reattachment lengths

•
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Figure 4.9. Backward Facing Step pressure tield. Surface plot for Re = 200

Z

Figure 4.10. Backward Facing Step pressure field. Surface plot for Re = 400

x

Figure 4.11. Backward Facing Step pressure field. Surface plot for Re =600
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Figure 4.12, Backward F'acing Step pressure field. Surface plot for Re = 800

Figure 4.13, Backward Facing Step pressure field. Surface plot for Re =1000

Z

Figure 4.14. Backward Facing Step pressure field. Surface plot for Re =1200
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Figure 4.15. Reattachment length sl versus Reynolds number for the Backward Facing Step
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Figure 4.16. Reattachment length s2 versus Reynolds number for the Backward Facing Step
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Figure 4.17. Reattachment length s3 versus Reynolds number for the Backward Facing Step
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4.4. Conclusions

As seen in figures 4.15 to 4.17, the computed results obtained in the present work

compare more favourably with experimental data than the numerical results fromArmaly. Although

the present results are totally analogous to the experimental data in [Armaly 83] for s3 and for all

the Reynolds numbers considered, when taking about s2 and specially sl, the experimental data

differ from the calculated results beyond a Reynolds number of about 400. This difference between

measured and calculated values is not only shown in the numerical results by Armaly, but also in

the results by [Kim 88] and [Kwack 85] among many others. The differences in these values are

due to the fact that the 3D effect becomes very important as the Reynolds number is increased.

As pointed out by Armaly, these effects became predominant beyond a Reynolds number of

1300. Beyond this point the 2D laminar results became less meaningful to evaluate the real case,

and as a consequence a 3D model is required.

As a consequence of the numerical devices introduced into the formulation, the results

obtained in the present study are more accurate than the reference numerical values from Armaly.

w

•
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CONSIDERATION OF THE FRICTION SLOPE AND THE
UNSTEADY DEVELOPMENT OF THE FLOW. FLOW IN A
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CHAPTER 5. CONSIDERATION OF THE FRICTION SLOPE AND THE

UNSTEADY DEVELOPMENT OF THE FLOW. FLOW IN A WATER

DISTRIBUTION CHAMBER

5.1. Introduction

In this chapter, the flow that takes place in a chamber that splits the incoming flow of

water into tllree different outlets is observed. This type of water distribution basin can commonly

be found in many hydraulic plants used for a number of purposes. This flow problem will also be

used for the evaluation of the effects caused by the frictional forces with the boundaries and for

the verification of the unsteady algorithm.

Let us regard the problem of a cavity in which we split a normal lateral inflow into three

outflows, one of them on the opposite side (exit number three in figure 5.1) and the other two on

the adjacent sides (e^cits one and two). A wall is placed between outlets one and two so as to

observe the influence of this structure in the distribution of the water inflow. A typology similar to

this one can be found in many tanks in wastewater treatment plants [AWWA 88].

C

.

Figure 5.1. F1ow in a water distribution chamber. Sketch of the chamber

The geometry used for this simulation has been a rectangular domain 400 cm high and

300 cm wide, split into a regular 1200-node mesh with 1131 basic Q1/PO elements. The inflow

channel and outlet number 3 have a width of 100 cm, whereas outlets 1 and 2 spread over the

is^



^tiapter 5 Consideration of the friction slope and the unsieady development of the flow. F7ow in a water distribution chamber

whole bottom side. The distribution wall is placed on abscise 145 cm and has a height of 100

cm. These geometrical proportions are similar to those found in a conventional chamber for

distributing a single wastewater flow among three different outlets, such as those used in the As

Pontes treatment plant (ENDESA), which is considered in the project 1FD1997-0053/HID1

funded by the F'EDER, one of the sponsors of this thesis . A unitary, normal and constant inflow

is considered at the inlet. The no-slip condition has been imposed on the solid boundaries and the

velocity at the outlets has been considered as an unknown and a zero-traction condition has been

imposed on it, The problem has been solved by making use of the penalized laminar Navier-

Stokes algorithm with a penalty parameter of E=10-6, and a tolerance of 10-6 in the PBCG

solver. The flow has been solved for a Reynolds number that varies between 30 and 300. "I'he

Reynolds number has been taken as the quotient of the inflow velocity times the width of the

rectangle over the kinematic viscosity of the fluid.

300 400

Figure 5.2. F1ow in a water distribution chamber. Mesh

5.2. Resolution of tĥe flow for several Reynolds numbers

The velocity and pressure fields have been obtained for a so-defined Reynolds number

of 30, 6U, 100 and 300. The convergence is achieved for 8, 9,10 and 18 iterations for each of

the different cases considered and the CPU time employed to carry out the calculations in the

Alpha Server 4000 (1 GB and 433 MHz) computer was 43", 64", 88" and 282" respectively.
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The velocity field and streamlines for the four cases considered can be seen in figures 5.3 to 5.6,

whereas the pressure plots with a reference value of p/p =1000 cm2s-^ are shown in figure 5.7.

, Frome 001 '^, 01 Jun 2000 : RERAC Frame 001 ^i 01 Jun 2000 RERAC

400

350

300

250

>200

150

100

50 F-

or ^ i i i
0 100 200 300

ñ

E^_

Figure 5.3. Flow in a water distribution chamber. Streamlines and velocity field (Re=30)
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Figure 5.4.- Flow in a water distribution chamber. Streamlines and velocity field (Re=60)
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Figure 5.5. F1ow in a water distribution chamber. Streamlines and velocity field (Re=100)
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Figure 5.6. Flow in a water distribution chamber. Súeamlines and velocity field (Re=300)
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Figure 5.7. Flow in a water distribution chamber. Pressures plots for Re = 30, 60, 100 and 3(^
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The primaty vortex (see figure 5.8), shows up for the flow featured by a Reynolds number

of 30. In this case, the secondary vortex is not yet well formed. With the increasing value of the

Reynolds number, vortices one and two are progressively developed and vortex one happens to

`obstruct' outlet number one. For the largest Reynolds number considered, the flow turns to

head inwards in gate number one.

The results obtained for the flow cases considered are in good agreement with the hydraulic

behaviour of the chamber as can be seen in the experimental results obtained for a similar scale

model of a distribution basin, carried out in the Escuela Técnica Superior de Ingenieros de

Caminos, Canales y Puertos de La Coruña [Bonillo 00].

Figure 5.8. Flow in a water distribution chamber. Streamlines sketch

In figures 5.9 and 5.10, the velocity modulus along the outlets number one, two and three

has been plotted. Graphs corresponding to outlets one and two expand from left to right and the

third plot expands from top to bottom. The resulting curves are parabolic profiles as expected.

For outlet number one the velocity distribution is symmetric with respect to a vertical central

axis. Note that the velocity profile for a Reynolds number of 300 is only positive as a result of

plotting the velocity modulus, but the flow is heading inwands for thatparticular case. This symmetry

is lost in outlets number two and three, as a consequence of the reorientation of the flow towards

the right hand side for gate two, and towards the bottom for outlet number three. For gate

number three the increment in the tangent flow with respect to the lower side of the outlet, results

in a velocity peak as shown in the figure 5.10.
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Figure 5.9. F1ow in a water distribution chamber. Velocity profiles along outlets 1 and 2

Figure 5.10. Flow in a water distribuŬon chamber. Velocity protiles along outlet 3

Figures 5.11 and 5.12 show the vertical component of the velocity for outlets one and

two and the horizontal component for outlet three. In the first plot we see how the vertical

component of the flow coming out of gate one, gets smaller as the Reynolds number is increased,

up to a point at which the direction of the flow is inverted, when the primary vortex happens to

reach the splitting wall. Meanwhile, the flow going out through outlet number two is progressively

increased as the Reynolds gets bigger, and in outlet number three the flow is sent towards the

lower side of the gate. This point can also be observed in the velocity field graphs, where the

main flow is progressively reoriented towards the right hand side. Figure 5.12 depicts how a

third vortex is formed in outlet number three and how the flow turns inwards through the topside

of the outlet for Reynolds 100 and 300, this being the cause of the appearance of a third and

smaller vortex.
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Figure 5.11. Flow in a water distribution chamber. Vertical velocity profiles along outlets 1 and 2
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Figure 5.12. Flow in a water distribution chamber. Horizontal velocity profiles along outlet 3

Figure 5.13 shows the x and ^ components of the velocity along a central horizontal line.

In the second plot in 5.13, it can be seen how the vertical velocity graph deflects towards the

right for increasing Reynolds numbers, as the primary vortex increases its dimensions, while the

flow is headed towards the right hand side. The plot also showes how the centre of the primary

vortex (vy 0) moves towards the right hand side as the Reynolds number is increased
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Figure 5.13 Flow in a water distribution chamber.
Horizontal and vertical velocity profiles along a central horizontal line

5.3. Consideration of the friction slope

In all the calculations carried out up to this point, no contributions have been added to the
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M

source term in order to account for the energy losses caused by the friction with the boundary.

We could take into account these contributions by includ.ing within the source term an additive

function depending on the Manning coefficient, that could be evaluated as:

n2u; u^
S f h/

in a similar way as we proceeded in section 1.6, where n is the Manning coefficient, g is the

gravity acceleration, Sfis the friction slope and h is the depth.

For the following calculations a Manning coefficient equal to 2.5• 10-3, 5.0• 10-3, and

7.5• 10^3 cm-'^3s has been used, where the first of these corresponds to a smooth concrete bed

and the largest is a typical one for rivers with a fine gravel bed. As this is not a Shallow Water

analysis and the continuity is only verified on a 2D basis, we will assume a constant depth of 5 cm

all over the domain. All the computations have been can^ied out for a Reynolds number of 100.

For this Reynolds number the primary vortex is well formed and therefore, the decrease in its

size can be more easily observed as the Manning coefficient is increased.

The results for this analysis are shown in figure 5.14. As already explained in section 1.6,

the Manning formula is an empirical-based expression that accounts not only for the energy

losses caused by the friction with the bed, but also for the overall energy losses taking place in the

flow, and in most of the cases the energy loses included in the viscosity term are negligible

compared to them As it can be seen from the plots, the effects of considering the friction with the

bed are similar to the energy losses caused by the consideration of a bigger viscosity, and

consequently the imposition of a greater friction among particles. As a result, the streamline map

of the flow for the harder roughness conditions is similar to the one obtained for Reynolds = 30

instead of 100. The depth used in the calculations is deliberately very small, so as to achieve a

greater amount of energy loss, caused by the roughness with the boundary. To conclude, the

consideration of the Manning term, gives a more practical evaluation of the energy losses taking

place in a real flow, which as explained in chapter two allows for the consideration of the turbulent

effects as a whole.
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•

•

5.4. Unsteady development of the flow

Finally, the unsteady algorithm as explained in section 2.7.2 has been used to solve the

flow in the chamber. For this problem, the fully developed flow can be obtained directly from the

steady formulation, as we have no turbulent eddies taking place for the Reynolds numbers

considered and no changing boundary conditions. Nonetheless the use of tLe unsteady algorithm

gives the evolution in the velocity and pressure fields at increments of time from instant t= 0, up

to the steady state conditions. For this unsteady evolution of the flow, we have used the same

assumptions made for the steady problem. The time integration has been done in terms of a

backward differencing scheme, with time increments of l, 10 and 100 seconds.

In plots 5.15 to 5.18 the evolution in the velocity and pressure fields for the instants 1, 3,

10, 50,100, 300 and 500 seconds have been represented , and finally the steady state conditions,

all of them for a Reynols number of 30. As seen in the plots, the steady state conditions have

been reached for a time increment of about 500 seconds, the time employed by the last pazticle

in travelling the whole length of the chamber.

The analysis of the flow distribution in the chamber provides a valuable tool for the

desig of the basin. The so-defined geometry results in the appeazance of two energy dissipating

vortices, which get bigger as the Reynolds number is increased. The appearance of these

recirculation zones can be a desirable feature in order to dissipate some energy, and allow for

particle settlement in these zones. On the contrazy, for some other purposes it can be an unwanted

effect that happens to obstruct the left hand side outlet, resulting in an unequal distribution among

the three outlets. Anyway the numerical evaluation of the flow in the chamber, forecasting the

behaviour of the water, is without any doubt a powerful tool for its desig.
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Figure 5.17. Flow in a water distribution chamber.
Pressure fields for instants t= 1, 3, 10, and 50 s (Re=30)
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Figure 5.18. Flow in a water distribution chamber. Pressure field for instants t= 100, 300, 500 s and the
steady state (Re=30)
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CHAPTER 6

THE 2D LAMINAR NAVIER-STOKES vs
THE SHALLOW WATER FORMULATIONS

.

Wateris acthe origin of everything.

Thales of Milet
In Aristóteles' Mewphysics, I, 3, 983 b 6
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CHAPTER 6. THE 2D LAMINAR NAVIER-STOKES vs THE SHALLOW WATER

FORMULATIONS

6.1.- Introducdon

As it has already been said, the laminar Navier-Stokes equations ignore the third dimension

in space and carry out the mass balance in a 2D basis, and therefore pay no attention to the

influence that the depth may have on the verification of the continuity equation. When the geometric

and friction slopes are not denied, and the downstream depth boundary conditions are taken into

account, the variations in depth may become very important, and making the divergence of the

two dimensional velocity equal to zero no longer ensures the mass balance. The Shallow Water

algorithm explained in section 1.6 solves this problem by integrating the 3D Navier-Stokes

equations in depth. As has been said in section 1.6, a friction slope of the Manning type has been

included in the Shallow Water formulation so as to account not only for the frictional forces

caused by the roughness of the bed, but also for all the energy losses taking place within the flow.

The Shallow Water equations are therefore a useful tool in order to evaluate the flow for `hydraulic

conditions' . The differences in the solution obtained for both the 2D laminar Navier-Stokes and

the Shallow Water formulations are shown by making use of the numerical example of a channel

in which the width is sharply doubled in the flow direction. By using this example with a well

defined main direction, we can observe some important features of the flow, to conclude on the

convenience of the use of the Shallow Water formulation as will be later shown in this chapter.

The flow of a shallow water sheet in a channel that widens to twice its width has been

solved making use of the Shallow Water algorithm described in section 1.6. The shallow flow in

the widening channel has been obtained by using the mixed Shallow Water equations with a

tolerance parameter to1=10^6. The kinematic viscosity has been taken as 10-6 m2/s. The channel

has a length of 100 m, and spreads from 10 meters of width at the inlet, up to 20 m at a distance

of 13 m from the inlet. A hydrostatic pressure of 1 m has been imposed at the outlet, and a

roughness Manning coefficient of 0.01 m«s has been considered throughout the channel length

for all the examples in this chapter.
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The domain has been split into a 1171-node, non-regular mesh with 1090 Q1P0 basic

elements. The height of the basic elements is a constánt all over the domain, whereas the width

has been chosen using a bias parameter of two. Several flow conditions, to be regarded in the

sections to follow, have been considered for this example.

6.2. Flow for natural and adverse slope conditions

An inflow normal uniform velocity of 3 cm/s has been imposed along the inlet and to

begin with, a natural slope in the direction of the flow of 10-3 has been considered all over the

domain, for these flow conditions, a parallel flow is achieved in the expansion comer. Figures 6.2

to 6.4 show the velocity and depth fields for this numerical example. By the observation of the

velocity and the depth plots it can be seen how the continuity equation is verified on a 3D basis,

but this point will be shown more clearly in section 6.3.

The case in which the flow has to overcome an adverse slope against the main flow

direction of magnitude 10-3, is also implemented (see figures 6.5 to 6.7). The velocity plots are

similar to those obtained for the natural slope, nonetheless the depth plots show great differences

compared to those of the natural slope.
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•

The depth plot is of increasing magnitude for the natural slope (figure 6.4) and decreasing

magnitude for the adverse slope case (figure 6.7), as expected from the well known analytical

one-dimensional resolution of the flow. To clarify this point let us consider the analytical one-

dimensional analysis of a gradually varied flow, that for this particular example in which we have

a main flow direction, may be of great help.

As we are moving within a Froude number much smaller than the unity in all these

examples, the flow may be described as subcritical with Fr«1, where the Froude number is

defined as:

v
Fr =

gh

where v stands for the one dimensional velocity, g is the gravity acceleration and h is the depth.

The general equation of the gradually varied flow in one dimension (see for instance [Chadwick

86]) can be written as:

dh S^

dx 1-Fr2

•

where dh/dx is the variation in depth along the length of the channel, and So and Sf are the

geometric and friction slopes respectively. In its increment version this formula can be expressed

as:

Qx 1_Fr2

^h So-Sf

Due to the small value of the friction slope (Sf), compared to the absolute value of the geometric

slope (So), and the already commented small value of Fr«1, the variation in depth could be

assumed as:

4x 1

^h ^ So

As can be seen in plots 6.4 and 6.7, the depth distribution behaves accord.ing to this law.
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6.3. Flow for an adverse steep slope. The Navier-Stokes vs Shallow Water equations

A final case has been considered in which an adverse steeper slope of 10-2 has been

imposed in the widening channel. In this example the inflow velocity equals 3 cm/s along the inlet,

being parallel to the longer sides of the domain. By setting this steep slope some important

features of the algorithm are demostrated.

The strearnlines remain parallel in the expansion comer. As a consequence of the steeper

slope, the variation in the depth along the channel is more evident and the verification of thé

continuity condition can be easily observed. The x-component of the velocity is plotted along

the domain for both the two dimensional Navier-Stokes and the Shallow-Water algorithms, so

as to compare them. As can be seen in plots 6.9 and 6.10, the continuity equation is not verified

for the Navier-Stokes formulation and for the conditions considered. For the Navier-Stokes

formulation the discharge at the inflow is 0.03 m/s• 10 m• 1.468 m, this is 0.440 m3/s, and at the

outlet the discharge is 0.0145 m/s•20 m•0.992 m, this is equal to 0.286 m3/s. The continuity

equation is not verified as this algorithm can only be applied to the simplification of a 2D flow.

On the contrary, when the Shallow-Water equation is used both discharges at the inlet

and at the outlet are equal to 0.587 m3/s (.03 m/s• 1.922 m• 10 m= 0.0296 m/s•0.992 m•20 m).

The mass is therefore conserved along the channel, as a result of having considered the integration

along the z-axis for the continuity equation and the numerical particulars regarded in section 1.6.

The variation in the pressure plots is the expected for ^So^ > S f and Fr <<1, as follows from the

fonmulae in section 6.2.

In all the cases considered for the Shallow Water flow in the widening channel, the

number of iterations required is smaller than 6 and the CPU time employed in their resolution has

been less than 10 seconds.

•

•
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As can be seen from the examples considered in this chapter, the 2D laminar Navier-

Stokes equations can provide a good evaluation of the shallow flow in which no major changes

in the depth are taking place, but when an important variation in the depth occurs, the Shallow

Water formulation is a more appropriate formulation that allows for the conservation of mass

throughout the domain. The Shallow Water algorithm developed in section 2.5 proves to be a

reliable, mass conserving approach, by its comparison with the one-dimensional analytical results

for the widening channel.
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Figure 6.8. F7ow in a widening canal (ve1= 3 cm/s, So =-10-^). Velocity field
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CHAPTER 7

APPLICATION TO SOME WASTEWATER
TREATMENT PROBLEMS

:

Entre les savants proprement dits et les directeurs effectives des travaux productifs,
il commence á se former de nos jours une classe intermédiaire, celles des ingénieurs,

dont la destination spéciale est d'organiser les relationsde la théorie et de la practique.

Between pure resear+chers and the actual directors of productive work,
an intermediate class is rising, and it is that of the engineers,

whose special destiny is to organise the relationships between theory and practise.

Auguste Comte,1798-1857
Cours de philosop6ie posirive, I
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•

CHAPTER 7. APPLICATION TO SOME WASTEWATER TREATMENT

PROBLEMS

Once the code has been checked on some well-known benchmark problems with

optimum results, it has been used to solve some real flow problems related with the civil

engineering technology and in particular with the wastewater treatment industry.

The Navier-Stokes formulation considered in chapter two provides an adequate frame•

to solve the problem of the viscous incompressible flow, but it does not include a turbulence

model, that should be taken into account in order to solve many of the practical problems related

to the water engineering technology. When considering the flow of water in channels, rivers and

estuaries, the Reynolds number exceeds, in most cases, those in which the turbulence effects

can be ignored, and a turbulence model should be used in order to capture the eddy flows taking

place on them. However, the plain Navier-Stokes formulation achieves optimum results in the

resolution of several problems found in the engineering practice.

The first main group of these practical problems consists of those involving the flow of

fluids featured by a high viscosity. We could quote here all the problems related with polymer

processing and hot forming engineering. In these flows, the viscous forces are very significant

compared to those derived from the convective acceleration, the Reynolds number is not very

high (<2500 in pipes) and the turbulent effects are never reached.

The second main group of these engineering problems, are those involving slow

water flows. In this case the viscosity of the water is small (0.8• 10-6 m2/s), but the Reynolds

number is kept far from those being the cause of the appearance of the turbulent effects,

thanks to the slow velocity that features these flows. When this velocity is specially small,

a further simplifying hypothesis could be made, this is the Stokes hypothesis, or in other

words the ignorance of the convective term. The Potential Flow equations are also used by

some authors [Espert 96] to evaluate these flows. When we use these simplifications, we

can obtain an approximation of the flow for slow creeping conditions, but only the resolution of

the all-term-including Navier-Stokes equations will allow us to detect the real streamlines and

the vortices that show up even for very slow water flows.

iso
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Finally, the plain Navier-Stokes equations achieve very good results in the large-

scale evaluation of flows featured by any Reynolds number, when a Manning-type frictional

slope is included in the source term (see section 1.6), without the need of a specific turbulence

model.

Some flow problems related to sewage disposal will be solved by making use of our

code, and their results will be commented upon. The flow of wasté-water in a treatment plant

behaves in most cases as a slow laminar flow, therefore the algorithms presented in this thesis

provide an ideal frame for its resolution. We will focus on the obtaining of the flow in some of the

most commonly used clarification and flocculation basins, considering also the research that has

been carried out in the sanitary engineering laboratory of the Escuela Técnica Superior de

Ingenieros de Caminos, Canales y Puertos de La Coruña, on the topic of the design of clarification

basins with biological treatment.

7.1. Flow in a clarification basin

The flow of water in several clarification tanks has been considered. Clarification

has two main applications in the water treatment processes. Its most usual aim is to reduce

the solids load after coagulation and flocculation have taken place. Its second application is the

removal of heavy settleable solids from a turbid source to lessen the solids load in water.

The simplest type of clarification pool is the so-called horizontal-flow sedimentation basin,

in either its rectangular, square or circular design. The aim of a good clarification basin design is

the obtaining of a sufficiently stable flow, so as to achieve a better sedimentation. There is a large

number of non-conventional devices for high rate clarification, such as tube or plate settlers,

dissolved air flotation clarifiers, sludge blanket or slurry recirculation clarifiers. The choice of one

of those depends on the features of the inflow water, the outflow water requirements, and on the

time, space and budget availability to carry out the purification of the water, and should be

determined for each particular case. The description of the flow may be a powerful tool to attain

an optimum shape in the designing of these structures, in order to make the most of the plant

resources.

•
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•

The clarification basins calculated as an example have been a rectangular and a

circular conventional clarifiers, and also a plate settler. To do so, the laminar Navier-Stokes

equations have been used in their penalty version, together with the usual computational and

physical parameters.

The rectangular and circular basins are the most commonly used clarification devices,

in spite of their simplicity, they have achieved ezcellent results with scant maintenance costs.

These basins were originally designed with the capacity to store sludge for several months and

were periodically taken out of service for manual cleaning. Today, most of the clarification basins

include a continuous cleaning mechanical equipment, such as dragging chains that plow the sludge

along the basin floor to hoppers. Nevertheless, these mobile devices for cleaning and other

purposes do not have an important influence in the streamline distribution, and can be ignored

when the flow is calculated (for further details on clarification basins you can refer to [Metcalf

95].

7.1.1. Rectangular clarifier

As a first example, the flow in a conventional horizontal-flow rectangular basin is

observed. The tank dimensions are:

- Width: 9 m

- Length: 24 m

- Depth: 3.3 m

A slope of 1.25% has been given to the floor in order to allow for sludge concentration

and withdrawal. The design parameters for a good response of the so dimensioned clarifier

could be:

-Detention time: 3 h

-Surface Loading Rate: 1 m/h
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When working with clarifying basins, one of the criteria to be used in their definition

is that of achieving a maximum head loss at the inlet, so as not to disturb the slow flow of

the water mass being treated. Therefore, we should avoid turbulence by placing some kind

of energy dissipating structure in the faster zone, that is the inlet (see figure 7.1). One of

these maze-looking dissipating structures has been considered for the inlet of our rectangular

clarifier, being placed in the left-hand side. For the outlet, a conventional overflow launder

has been disposed in the right-hand side, and the main streamlines are therefore travelling from

left to right. For the outlet, a baffle plate has been placed at a distance of O.Sm from the spillway

so as to avoid floating stuff getting into the effluent nozzle.

Intluent intake Foam launder Foam sweeper
Baft1e plate

Overtlow
launder

T
Sludge Scraper

^ Sludge Withdrawal

Figure 7.1. Rectangular clarifier with bottom sludge scraper
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The domain in which the flow takes place has been split into 949 Q1P0 basic elements

with 1052 nodes. For the working parameters chosen and an inflow section of 0.6 m, a

velocity of 1 cm/s has been imposed at the inlet. The no-slip condition has been imposed at

the bottom and lateral sides, and the spillway has been left free with a zero traction boundary

condition. For the topside, the vertical velocity has been fixed as zero and the horizontal

velocity has been left free.

The results for this example, obtained by making use of the penalty formulation, have

taken 5 iterations, and 263" in the Alpha Server 4000 (1Gb, 433 MHz) and can be seen in

figures 7.3, 7.4 and 7.5.

zaaoa ^^^^ ^m ^^^^
200.00 600.00 1000.00 1400.00 1800.00

Figure 7.5. Flow in a rectangulaz clazifying basin.

Contour and Surface pressure plots (pressure in cm)
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As can be seen in the streamline plot, a re-circulation zone happens to occur at the

inlet, and a bigger one shows up besides the inflow baffle plate. The first one is a consequence

of the leftward direction of the inflow. This is a wanted effect so as not to disturb the flow

in the chamber by the entrance of the water. The second and bigger one takes different sizes for

varying inflow velocity values, and would vanish for a Stokes analysis that ignores the convective

effects [see Espert 96]. Its mere existence provokes the increasing of the settling rate on the floor ^

below the vortex, that should be cleaned in a more exhaustive way compared to that of rest of

the bottom, although anyway its proximity to the sludge hopper makes its removal easier and

faster. Figure 7.5 represents the isobars graph and surface plot for the pressure field within a

vertical section of the rectangular clarifier, in both of them the pressure is expressed in cm. The

so-obtained pressure field is similar to that of the hydrostatic problem as expected. .

•
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7.1.2. Circular Clarifier

The other horizontal-flow sedimentation basin considered has been a circular basin

with central feeding. The dimensions of the basin are:

-- Depth: 3.65 m

- Diameter: 17.5 m

A slope of 8^Ic has been considered for the bed. The design parameters used in its

definition are:

-Detention time: 3 h

-Surface Loading Rate: 1 m/h

To avoid turbulence at the inlet, a 1 m high baffle plate with a diameter of 1.7 m has

been placed around the inflow central cylinder, where the horizontal inflow velocity is

imposed from height 265cm up to height 365 cm. The outlets are situated at the circumference

perimeter, where an overflow launder endowed with a baffle plate, has been disposed.

The flow is obtained by considering a laminar slice that is solved in one half, and

then mirrored by the vertical axis so as to obtain the whole flow diagram. Hence, the flow

is calculated in a faster way for the same rate of accuracy by using its symmetry property.

Walkway Foam sweepers

óafFle Overttow

plale Bafffle slab Foam launder launder

^

I^J(liieiit

P {k

Sludge tapper

._J

Figure 7.6. Circular clarifier. Vertical cross section
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^This half-domain has been divided into 756 Q1P0 basic elements with 817 nodes, A

Dirichlet boundary condition of velocity equal to 1 cm/s has been imposed along the 1 m height

of the inlet so as to fit the designed parameters. The no-slip condition is again imposed at the

bottom and the lateral sides, and the spillway is left free with a zero traction boundary condition.

For the topside, the vertical velocity has been fixed as being equal to zero and the horizontal

velocity has been left free.

The results for this example have taken 5 iterations and 233" and can be seen in

plots 7N8 to 7.10.

Fnrt^007 Yfl.MY000 rtEMC

Figure 7.7. Flow in a circular clarifying basin. l^Iesh
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Figure 7^8. Flow in a circular clarifying basin. Streamlines
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Figure 7.10. Flow in a circular clarifying basin.

Contour and Surface pressure plots of the half domain (pressures in cm).

The streamline plot shows a primary vortex that takes up most of the room, and two

secondary vortices, one of them at the inside bottom zone and a smaller one showing up at

the lower external side of the domain. The appearance of these new vortices and the bigger

dimensions of the primary one, compared to the rectangular basin, are a consequence of the

lesser shallowness of the flow, where the dimension of the vortices depend on the inflow velocity.

The pressure values are again similar to those of the hydrostatic problem, and can be seen in

figure 7.10 in both its isobars and surface plot versions, with pressure units given in cm.
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7.2. Flow in a lamellar `LUPA' clarifier

To end up with the calculation of the flow in some clarifiers, the behaviour of the

water flow in a lamellar settler is also evaluated. Following the research being carried out in

the environmental and sanitary engineering area of the Escuela Técnica Superior de

Ingenieros de Caminos, Canales y Puertos de La Coruña, the flow in a so-called `LUPA'

prototype is solved.

When taking about generalities on clarification, we had already pointed out the

existence of some clarifying devices different from the -up to this point regarded- horizontal

flow basins. One of these devices was the plate settler, in which the settling area is increased

by the disposal of several lamella plates, placed at a 60 degree angle along the basin. By doing

so, the settled solids in the plates are dropped and removed, and therefore the settling rate is

improved. Figure 7.11 shows the plan and cross-section of a standard plate settler.

I^ I IIIIIIIIIIIIIIIIIII^1^

Discharge tlumes

Lamella plates

Sludge hopper Flocculation chamber

Figure 7.11. Conventional plate settler. Plan and cross section

t

^^^f ^?`^^̂
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The environmental and sanitary engineering area of the ETSICCPC is developing

the design of a lamellar settler equipped with a permeable bio-film that carries out a biological

treatment of the water. As part of this researching work, a prototype of the `LUPA' clarifier

has been constructed and the flow along the model has been evaluated (see Picture 1).

Picture 1. The `LUPA' prototype

'The code is used to evaluate the behaviour of the water between two of the lamellas

of this plate settler. The box, with dimensions 80x30x10 cm3 has a water inflow at the

bottom through four inlets, and a free overflow at the top. The box is placed at a 50.1 degree

angle with respect to the horizontal.

The flow has been calculated with the same assumptions to those considered for the

horizontal flow clarifiers. That is9 with no-slip condition on solid boundaries and vertical velocity

equal to zero on the free surfacea The definition of the boundary conditions is completed with a

Dirichlet relationship at the inlet and a Newman equality with zero traction at the outlet. The

longitudinal section of the clarifier has been divided into 1760 Q1P0 basic elements and 1916

nodeso The velocity at the inflow is set parallel to the walls. The flow has been calculated for a

discharge of 151/day, 1501/day and 15001/day corresponding with inflow velocities of 5^ 10-3,

5• 10-z and 5• 10 3 cm/sg. The results have taken 6, 6 and 7 iterations and a CPU time of 31 ",

50" and 935 99 respectively, and can be seen in figures 7.12 to 7.18.
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Figure 7.12. F1ow in the LUPA prototype (Q = 15 1/day). Velocity tield

Figure 7.13. F1ow in the LUPA prototype (Q = 15 1/day). Streamlines
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Figure 7.14. Flow in the LUPA prototype (Q = 1501/day). Velociry field
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Figure 7.15. Flow in the LUPA prototype (Q ^ 1501/day). Streamlines
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Figure 7.16. Flow in the L,UPA prototype (Q = 15(x) Uday). Velociry field

50

40

y 30

20

10

10 20 30 40 50 60
X

Figure 7.17. Flow in the LUPA prototype (Q = 1500 l/day). Streamlines
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Figure 7.18. Flow in the LUPA prototype.

Contour and surface pressure plots (pressure in cm)

From the plots, we can observe how two primary vortices show up at both sides of

the inlet for very slow flows (15 llday). The bigger one is generated at the right-hand side,

which is the lower and larger side, and a smaller one can be seen in the left-hand side. As the

discharge is increased, not only the size of the primary vordces is increased, in particular for the

right-hand side one, but how a secondary vortex shows up, can also be seen. This secondary

vortex not only alters the course of the flow, but also allows for an increase in the contact time of

the water with the upper lamella, and consequently with the bio-film on it. The pressure graphs

pay no notice to the variation in the discharge, in figure 7.18 we can see the isobars and surface

pressure plots for the vertical cross section of the `LUPA' clarifier, with the pressure given in cm.

•

•
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•

7.3. Flow in a maze tlocculator

The flow along a maze chamber, often used in the flocculation processes, has been

calculated. Flocculation is defined as the agglomeration of small particles and colloids to

form settleable or filterable particles. A separate flocculation process, where chemical aids

are added to water, is very often included in the treatment train to enhance contact of

destabilized particles and to build dense floc particles of optimum size. The hydraulic

flocculators, in opposition to the mechanical ones, allow for the formation of the flocs

without the help of any mechanical device. This type of flocculation is simple and effecdve,

especially for relatively constant flows.

This sort of chambers is also used in chlorination processes. Chlorination forms part of

the chemical disinfection treatments that are carried out on supply water in order to achieve its

purification and transformation into drinkable water.

The aim of this winding design is to achieve a slow and steady flow over a long distance

to allow for the flocs to form. In chlorine disinfection processes, this slowness enables water to

maintain contact with the chemical reagent over a long period of time (see [Metcalf 95] for

further details on maze flocculators). The velocities involved are quite slow, and a laminar flow is

expected, however, small vortices can show up and the Stokes evaluation of the flow could not

detect them. For this reason, a convective-term-including formulation is required.

A rectangular chamber, in which water is re-circulated along a winding path, often

constitutes this kind of basins, and for this particular case will be modelled as a prismatic tank

with dimensions 8m wide and 10 m long, in which a twisting channel is inscribed, split into 10

straight segments. The design parameters chosen for the chlorination tank are the following:

- Tank dimensions: 8x10x2 m3

- Channel width: lm

- Channel length: 80 m

- Horizontal velocity: 6.6 cm/s

- Contact time: 20.2 minutes

198



t^hapter 7 Application to some wastewater treatment problems

A 2091-node regular mesh with 2000 Q 1 PO basic elements has been chosen to

model the tank. The mixecí Shallow Water algorithm has been used with a Manning coefficient

of 0.012 m-13/s

A Dirichlet boundary condition has been prescribed at the inlet, where a parabolic

velocity of 6.6 crt^/s has been settled at the six lower left-hand-side nodes. At the outlet9 the

velocity on the six lower right-hand-side nodes has been considered as an unknown, and a

hydrostatic pressure boundary condition of 2 m depth has been prescribed. A slope of 10^3 has

been considered falling rightward all over the domain. A viscosity of 1.0• 10-^ m2/s has been used

for the wastewater9 and a parameter of to1=10-^ has been used in the code as usual.
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Figure 7.19. F^1ow in a maze flocculator. Mesh
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As a first guess, the programme is used on a Stokes assumption, and the re-circulation

obtained is null as expected. The flow is driven `peacefully' towards the outlet and the

parabolic profile is conserved all over the channel length. The results are obtained within 23" in

a single iterationo The results can be seen in figures 7.20 and 7.21.

Figurc 7.20. Stokes tlow in the maze flocculator. Velocity field

soo

aoo

^^
^/ :: ^ / ^Í^ ',j;`^j ^^

700

soo

soo
r

aoo

^

II
liI,I,II

^ I^

I ^^ ^ ^^^300 , I ^I I. I^^
il II II 'II ^Ii

^.^^ ^II' ili 'Il^ illi
^.ii ^:ii^^ :^II^ ^ii, ^Ii^

200 ^^ II I
^I! 'II' ^Iii 'Il' ^II^

^
Ili 'IIi ^^^' ^II^

^Iii I;.

100 `' ^rll^ 'I1 l,
^ ^ ' . . ^ ^

C
^ ^ ^'

^ 250 500 750
X

^

1000

Figure 7.21. Stokes flow in the maze tlocculator. Streamlines
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When the convective term is included, small re-circulation zones show up besides

the corners. The results are obtained after 8 iterations and an elapsed CPU time of 2294'9:

These results are plotted in iigures 7^22 and 7,23.

eoo

Figure 7a ^2 C®nvective flow in the maze flocculator. Velocity field

Figure 7.23, Convective flow in the maze tlocculator. Streamlines
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Figure 7.24. M^c flocculator. Pressure plot (pressure in m)

By comparing the results for the Stokes flow and for the full convective-term-

including formulation, we can observe sóme differences in the velocity and streamlines

plots. For the first approach the streamlines are kept in an equidistant position with respect

to the sides of the winding channel all along the path length, and the parabolic profile of the

velocities is also maintained in all the cross sections. Meanwhile, the streamlines in the full

convective formulation are sent towards the right hand side of the channel once they have taken

over the corner. The appearance of a small re-circulation area at these twisting zones can also be

observed for the convective formulation. This re-circulation is the responsible for both the

appearance of sediments besides the corners and also is the cause of a certain energy loss, as

can be seen in the pressure plot (figure 7.24). These effects, if unwanted, could be removed by

either decreasing the velocity of the flow or the re-shaping of the channel.

7.4. Conclusions

The numerical code elaborated in this thesis has been used in the resolution of some

flows related with the wastewater treatment industry. The algorithms regarded in this work

provide a perfect frame for the resolution of this kind of problem, since the turbulent effects do

not play a very significant role on them. Nonetheless, the algorithms used provide an accurate

model that takes into account the convective effects and the overall energy
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losses considered within the Manning term. This evaluation of the flow in wastewater

treatment plants basins is consequently a very accurate approximation, that overcomes

those found in other related literature as explained before.

The evaluation of the pressure and velocity of the flow in these basins provides very

useful information about the flow properties. The data about the streamlines and velocity field

distribution allows us to know where the main recirculation regions are taking place. This

information will be priceless for the purpose of obtaining the geometrical parameters of the

basins in order to achieve a better performance for the treatment plant. The obtaining of this

optimum geometry will allow for a further recirculation, if the energy losses are required; or will

enable its avoidance if unwanted, modifying in this way the detention times within the basin. The

velocity and pressure fields also provide invaluable information about the distribution of the

discharge among the outlets, which again can be redefined in order to improve the behaviour of

the plant. Thanks to the information obtained by this numerical evaluation of the flow, the water

treatment basins and channels can consequently be designed to fit the requirements of the

processes being carried out.

•
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CONCLUSIONS AND FURTHER
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Es wird nie ein Denker aus ihm:
er wiederholt sich zu selten.

He will never become a thinker,
he does not repeat himself enough.

Elías Canetti, Bulgarian writter, 1905-1994
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CHAPTER 8. CONCLUSIONS AND FURI'I^R DEVELOPMENTS

8.1. Conclusions

In this work, an exhaustive analysis of the incompressible flow has been carried

out, from the very definition of the governing equations, up to the resolution of some

practical problems, passing through the comprehensive study of the numerical

techniques used in their resolution. As a direct consequence of this study, a code has

been written based upon this analysis, which allows for a modelling of the

incompressible flow based upon a realistic interpretation of the forces taking place

within the flow, and gives optimum results.

When using a F'inite Element Method for solving the laminar Navier-Stokes

equations, three main different approaches are employed in the related literature. These

approaches are the mixed (or velocity-pressure integrated), the penalty and the

segregated algorithms. The complexity of the fluid flow creates the need for the use of

some numerical devices, so as to avoid the numerical problems that appear in the

resolution of the Navier-Stokes equations by the Finite Element Method. One of the

sources of instability is that produced by an inappropriate combination of these

interpolation functions for the velocity and pressure unknowns. This fact means that the

election of the basic elements, in terms of which the domain is going to be discretized,

is not at all a trivial task. Some sections have been devoted to the justification of the

election of the basic elements. As a consequence some spurious solutions, such as the

checkerboard pressure modes, have been eliminated and do not appear at all in the

present formulation.

The other main source of instability in the obtaining of the flow solutions is due

to the presence of the convective term; the symmetric treatment óf this term by a

standard Galerkin Finite Element formulation is the source of this kind of instability,

being the cause of the oscillations that show up in the solution as the Reynolds number

is increased. In all the algorithms implemented in the code, a stabilization technique of

the SUPG type has been used so as to avoid the instability that shows up in the

resolution of the pressure and the velocity field when a moderate Reynolds number is

used in the calculations. The employment of such a stabilization technique allows us to
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avoid an excessive refinement of the mesh, in order to prevent the obtaining of the

unwanted `wiggles' in the solution. A SUPG-type stabilization technique has been used

with optirnum results providing very accurate and computationally effective results as

has been demonstrated in the numerical examples provided.

All three different approaches: mixed, penalry and segregated, have been

implemented and their results have been checked and verified by their comparison of

the three of them among themselves and also against some reference results. As a

consequence, several conclusions have been reached. The first is that, as expected, the

results obtained by the three of them in the resolution of some benchmark problems

have been identical, in a comparison study that had not been canried out prior to this

work. The different approaches result in a different computer efficiency that depends

not only on the algorithm employed, but also on the numerical solver used to obtain the

solution to the resulting system of equations. Nonetheless the algorithm used does not

affect the accuracy of the solutions when an adequate selection of the numerical

parameters has been carried out. The second conclusion is that all the results compare

very favourably with the reference numerical and empirical results by other authors. As

a consequence, the code not only enables a comparison study of the available Finite

Element numerical techniques for the resolution of the Navier-Stokes equations, but

also, as proved by the examples provided, contributes to a better and faster approach to

these problems.

The laminar Navier-Stokes equations solve the problem of the fluid flow but

only on a two dimensional basis. The consideration of the third dimension in space

requires a high-rate computational-resources consuming three dimensional algorithm,

that often results in very high computational times involved. An alternative approach to

handle the three dimensional problems, would be the use of the so-called Shallow Water

equations, which can be used when the vertical dimension of the flow is small compared

to the horizontal one. The obtaining of the Shallow Water equations is carried out

thanks to an integration in depth of the three dimensional Navier-Stokes equations. A

newly developed algorithm for the resolution of the Shallow Water equation, making

use of the finite difference tools within the finite element frame, has been implemented

with optimum results.
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As a consequence of the integration in depth of the three dimensional equations,

a friction term shows up in the formulation that can be evaluated in several ways. In the

present calculations the evaluation of this friction term is based upon on a Manning type

formula, that makes use of the empirically determined Manning roughness coefficient.

This term accounts not only for the energy losses that take place because of the friction

with the wetted perimeter, but also for the overall turbulent losses that take place over

the whole domain of integration. Many of the real flows found in engineering practice

are beyond the laminar state and into the turbulent one, and a turbulence model is

required. The consideration of the Manning term accounts for the turbulent energy

losses as a whole, providing a meaningful solution for turbulent flows. The turbulent

eddies taking place within the flow are not detected, but the turbulent energy losses are

taken into account thanks to this empirically determined formula, which provides a

meaningful solution for practical flows.

Some of the most commonly used hydrodynamic models used for the flow

calculations (such as the RMA2 model developed by the Brigham University, which is

broadly used world-wide), incorporate a turbulence model featured by a constant eddy

viscosiry which is not hydraulically speaking well justified. In contrast, the Shallow

Water algorithm developed by the author includes an empirically determined turbulent

losses term but also keeps the Navier-Stokes formulation of the problem, being ready to

incorporate a k-E turbulent model that has been developed within the research group and

provides an eddy viscosiry that varies in time and space.

The accuracy of the numerical solutions so-obtained has been checked by using

some reference benchmark numerical and empirical solutions with great success, and

once the program has been validated, it has been used in the resolution of some

wastewater treatment flow problems. The so-defined creates an optimum frame for the

evaluation of the flow in some wastewater treatment basins, which is an essential tool in

the designing of the wastewater treatment plants for the optimisation of their behaviour.

Making use of the code, the flow has been evaluated in some conventional wastewater

tanks in common use, and also has also been employed in the designing of some newly

developed basins for wastewater biological treatment as part of the research being

carried out in the School of Civil Engineering of La Coruña.
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8.2. Further developments

The so-defined code will be connected with some other modules that have been

developed in the research group and which are concerned with the transport of

pollutants and sediments. The k-E turbulence model developed within the group will

also be incorporated, so as to provide a hydrodynamic code able to evaluate the

tutfiulent eddies taking place within the flow for large enough Reynolds numbers.

Another line for further research will be the consideration of large scale flows,

such as those taking place not only in estuaries but also in the open sea, where the

Coriolis effects and the tidal movements cannot be ignored, and must to be considered

in order to provide an adequate solution to the flow problems.

In addition, the effects of the changes in temperature will be considered so that

theoretical problems, such as natural convection in a square cavity, and large scale real

flow problems, in which the thermal currents may play a significant role, may both

solved.

The laboratory facilities provided by the CTTEEC (Centre for Technological

Innovation in Building and Civil Engineering) within the University of La Coruña, will

be used to cany out experiments which may cast some light on the adjustment of some

hydraulic parameters related to the flow of a fluid and be used in the numerical

calculations.

The incotporation of the modules regarding the transport of pollutants and

sediments together with the thermal and tidal effects may provide a very significant tool

in the resolution of some environmental problems that show up on the Galician coast

which is notable for the presence of countless estuaries. These environmental

considerations are a topic of definitely growing interest, and are of special importance in

a region to which the School of Civil Engineering of La Coruña is so closely linked.

The vocation of this work is not only to be used in the scope of this research

group and in connection with the maritime and sanitary engineering groups within the

School of Civil Engineering of La Coruña, but also to be released on an user-friendly

frame to the general public. This hydrodynamic code is intended to be released to give

solution to the major problems related to the flows found in engineering practice, and

would incorporate all the modules previously referred to.

•

•
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O God, l could be bounded in a
nutshell and count myself a King

of infinite space.

William Shakespeare, 15641616
Namlet, II, 2
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APPENDIX

Al. The finite element local reference system

The Finite Element Method is a numerical procedure for solving differential

equations, based upon the obtaining of an approximate value of the unknowns at a

certain set of finite points within the domain of definition. In the text, the approximation

of the unknowns has been made with respect to a set of so-called trial functions, which

for a start are referred to a global axis system. The F'inite Element Method, in opposition

to some other numerical procedures such us the Ritz method, gives the approximate

value of the unknowns with respect to a local system of reference, defined on each of

the basic elements in which the domain is split. The unknowns will now depend upon

the local variables ^ and n, for the two-dimensional case considered.

Velocity and pressure can thus be expressed in terms of this discretizaton as:

uh(^^^ Ĵ=^u'N'(^^i Ĵ v``(^,^n^=^v'N'(Ŝ^^ Ĵ Pk(^^^ Ĵ=^P'x'^^^n^
i=1 i=1 ;=1

(A.1)

where N and x are known as the shape functions. Let us now regard this change in the

reference system works with the QrPo basic element. ^

So as to interpolate the velocity field, a set of shape functions N; (^,^), with

i=1,..,4 , is going to be used. N; is a set of bilinear functions that takes a unitary value

on the node i and 0 on any other node. The shape function for pressure ( x) is a constant

function of unitary value.

N, = 4(^+1 Ĵ(r1+1);

N2 = 4 (^+1X^1-1^

N3 = 4(^ -1X^1-1^

N4 = 4 (^ -1Xrl +1) (A.2)

Fig A.1. Q1Po basic element
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Proceeding in the same way for the serendipiry quadrilateral Taylor Hood basic

element, the shape functions N; (^,rl) with i=1, 2,.., 8 and x t(^ ,^) with i=1, 3, 5, 7,

would be defined as follows:

Fig A2. Serendipity quadrilateral

Taylor Hood basic element.

N, _ ^(-1+ Ĉ̂ i^+^2 +i^2 +^2^+^^2)

NZ = 4(-1-^^i+^2 +Í2 -^Z^Í +^^l2)

N3 = 4(-l+^i]+^2 +1^2 -^2^Í-^Í2)

N4 =^(-l+^i]+^2+1^2+SZ^%-^^2)

1
2 -^^12 )Ns = 2 (1+^ -r1 N6 = 2(1+^1- Ŝ Z+^1^2)

N^ = 2 (1-^ -r12 +^^12) Ns = 2(1+^1-^Z -^1^2)

x, = 4 (^ +1)(^1+1) .^3 = 4 ^^ + 1XrI -1^

.^s = 4(^-1X^1-1) .^^ = 4 ^^ -iX^l+1)

(A.3)

Each of the elementary matrices taking part in the coefficient matrix of the

systems of equations shown in the text, was obtained by integrating the corresponding

differential term within the domain S2. For every single basic element, we have to

transform each of its surface integral term, depending on the x and y global variables,

into an integral that depends on the local variables ^ and ri , i.e.:

JĴ (x, y^^ = J JĴ (x, y^dy = J f g(^,^^^d^ (A.4>
^

•
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Hence, we have to carry out a change in the integrating variables in order to

allow for a local surface integration. Let us integrate as a first step the x and y dependent

function f with respect to y:

jĴcx^y^^ = f c f fcx^Y^Y)^
Q

The differentials dx, dy can be expressed in terms of d^,d^ as:

(A.5)

dx = áx d^ + áx dr^ dy = áy d^ + áydr^ (A.6)
^ ^ ^ ^

If we let rl take the place of y in this first integration, where x behaves as a constant, the

relationship (A.6) is transformed into:

0= áx d^ + áx dr^ dy = á d^ + á d^ (A.7)
^ ^ ^ ^

Removing d^ from the system of equations (A.7), the following is obtained:

dy = I Jl d^axa^ ' (A.8)

where ^^ = ax á ax á , is the jacobian determinant of the transformation. If we
^ ^ ^ ^

substitute now (A.8) in (A.5) we have:

fĴ (x, y^^ = f( f f(x, y) 'I d^1 k^
^ axa^

and now we can reverse the order of integration to write:
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jf(x,y^^ = Jcjf(x,y ^̂! ^^^
^ axa^

(A.9)
•

Regarding now the integration with respect to x, r^ would behave as a constant, and d^

would equal zero, and from the first equation in (A.6) we would have:

dx = ax d^a^

substituting the equality (A.10) into (A.9) we arrive at:

(A.10)

11 f^x, y^dy = f f f^x, y^J^a^dr^ (A.11)

expression that gives the change of the integrating variables in the surface integr ^1.

Once we know how to carry out a change in the integrating variable: ^, let us

transform our global co-ordinates-depending function f, into a function that +iepends

exclusively on the local co-ordinates. The function here referred as f(x, y,) , takes

different values for each of the constitutive terms of the Navier-Stokes equatic ^ns, and

can be expressed in all the cases as a combination of both the shape functions N^ and

the derivatives of the shape functions with respect to the global spatial variables ( áX `),
^

where N;(^,77) is a set of functions that depend upon the new local spatial variables.

Consequently, we are going to expand the derivatives N^^, so as to transfarm the

derivatives with respect to the global-basis variables x and y, into derivativ^;s with

respect to the local-basis variables ^ and r► :

aN; _ aN; a^ + aN, arl

ax^ a^ ax^ arl ax^

.

•
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• If we now express equation (A.6) in a matrix notation and we write down the

analogous matrix relationship that gives d^ and dr) as a function of dx and dy, we

have:

^ ^ a^ a^

^d ^- ^ ^ dn^ ^d ^dnJ an ^ d ^ (A.i2>
^ an ^ ^

Calculating now the inverse matrix of the first system of equations in (A.12), we can

make it equal to the second system to obtain:

a^ ^ ag ag
d^ l _ i ^ -^ f^l ^ vy ^l

d^iJ ^^ ^ -`^ ^ LdYJ `^1 drl dyJ
ag á^ a^ a^

and consequently:

a^_lay a^_ lax
í^x -^.1^ ^7) ^y - jJ^ ^^

a^ _ 1 ay
áx --^^^ á^

a^ __ 1 ax
ay ^J a^ (A.13)

Using these equalities, the derivatives N^^ can then be expressed as:

aN, _ 1 aN; ay _ aN; ay

^ I^I a^ ^n an ^^
aN; _ 1 _ aN; ax + aN; ax

^ I JI a^ an an a^

or equivalently

aN; __ 1 aN; 4 aNk _ aN; 4 aNk

^ ^ J^^ ^^1 ^ a^ x=, yk ^,1
^,l K 1, yk a^

aN; _ 1 _ aN; ° aNk aN; ° aNk

aY ^J^Ŝ ^^1 ^ aŜ r^=1 xk ^1 +^1 ,^_, xk aŜ

where the jacobian determinant can be written in terms of the variables (^,r^), as:

(A.14)

(A.15)
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4 aN; 4 aN; 4 aN; 4 aN;
J x; x
^ ^_ ^_^ a^ ;-, y' an ^`^ ^ yt a^

(A.1 f ^)

The elementary matrices in sections 2.7.3 to 2.7.5, can now be expressed as tr^.e

integral of a term constituted by the combination of some derivatives with respect ^ o

(^,r^ }, of functions that depend on (^,r^ ). If we regard, for instance, the viscous term i n

the dynamic Navier Stokes equation, it can be written as:

aN; aN^ aN; aN^ _ aN. aN aN. aN
A=(^, )= v jQ ax ax + í^y aY ^y v^n ax^ ax + ^ i Jl d^dt]

^Y aY

or in its matrix form as:
(A.1'1)

^^ ^^ c?vi c^v2 o^vl ^ ^^ ^^ ^^ ^^

dr dr+^ ^ ^ ^+^ ^ ^ ^+^ ^ ^ ^+^ ^
c?v2c7v1 ^^ ^^ ^^ ^^ ^^ ^^ ^^

A=^ji^ `^ ^+^ ^ ^ ^+^ ^ ^ ^+^ ^ ^ ^+^ ^ ,^
^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^
d^ d^+^ ^ ^ c^+^ ^ ^ ^+^ ^ ^ ^±^ ^
^^ ^^ ^^ ^^ ^^ ^^ ^^ ^^
a^ a^+^ ^ ^ ^+^ ^ ^ ^+^ ^ ^ ^+^ ^

(A. l 8)

Writing now the viscous elementary matrix A;^ as a function that depends exclusively on

(^,^ }, we have:

aN; 4 aNk aN; 4 aNk aN^ 4 aNk aN^ 4 aNkA,, = vf a^ ^ yá ^-^^ yk a^ a^ ^ yk ^-^^ yk a+
^

- aN; ^, x aNk + aN; ^. x aNk - aN; ^, x aNk + aN; ^, x aNk d^d^

a^ áL^l. k an a^n KL=•1 k a^ a^ kL=1• k^1 ^1 xL=^i k a^

(A.19)

Our next task, will be to carry out a numerical integration of the elemen^ ary

matrices, so as to obtain a finite set of matrices constituted by real numbers. This p^^int

will be discussed in the next section.

•
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•

•

These calculations would be equivalently carried out for the rest of the terms

included in all of the formulations considered within the text, and for every single basic

element. Once all the elementary matrices have been evaluated, they have to be

assembled to make up the system of equations that will give solution to the physical

problem of the incompressible flow.

Let us regard as an example how the values of the elements in the elementary

viscous matrix A are obtained for the simple case of a basic square Q^Po element of

sides 2 length units. The derivatives of the shape functions with respect to the local

spatial variables are:

aN,
_ 1(t1 + 1)

aN2 -=1(^ -1)
aN3 = 1(^1-1)

aN4 -=1(^ + 1)

a^ 4 a^ 4 a^ 4 a^ 4

aN, _ 1 aN2 _ 1 aN3 _ 1 aN 1
^ -4(^+1) ^ 4 (Ŝ +1) ^ -4(^-1) ^ = 4 (Ŝ -1^

and the relative lengths are:

y (x^,ya)
♦

,^3 - X2 = y3 y4 = -2

(x3.y3i

2

2

lx1.y1)

(xz.yzl

x

xl - X4 = yl y2 - Ĝ

Xl - X2 = X3 - X4 = O

y^-y4=y3-y2=o

The summations to be included in the elementary matrices are in this particular case:

a aN1 -1

^ Xr a^ 4 [(11 + 1Xz1- xa )+ (i1-1 Ĵ^x3 - x2 )] =1

` aN; - 1^ y^ ^ 4 [(^ + iXy^ - y2 )+ (^ -1Xy3 - y4 )] = i
4 aN; _ ^

^x^ ^ 4[(^+iXy^-y2)+(^-1Xy3-y4)]=o
;-^
a aNe - 1

^ yt a [(r1 + iXy^ - y4 )+ (1^ -1Xys - Yz )] = o
^_^
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and matrix A, may consequently be written as:

i^

A=v J!16 _^ _^

(^1+1^2 +(Ŝ +1^2 -^^Z -1Ĵ -(^+1^2 (rlZ -1^+(^2 -1^ -(^I+1^2 -^Ŝ Z -1^^

SIM.

(^1-1)2 +(Ŝ +1)2 -(^1-1)2.-(^2 -1) ^n2 -1)+(^z -1)
... (^1-1^2+(Ŝ -1Ĵ^ -(r^2-1^-(^-1^

^l^dr

(^1 + l^Z + (Ŝ -1^2 ^

Solving the surface integrals we have:

^^ ^^ 4
J J(^ + l^d^dr^ = J J(^ + l^d^dr^ = 3
a -i -i -i

-^ -^ -^ -^

Ĝ
3

Now we can substitute these integrals into the elementary viscous matrix and the

elementary pressure matrix for the mixed formulation, to yield: ^

Ae - v

6

4 -1 -2 -1

-1 4 -1 -2

-2 -1 4 -1

-1 -2 -1 4

^^ ^^ ,^4

J J (^ - l^d^d^ - J J(^ - l^d^^ 3
-^ -^ -^ -^

Be =x

1

1

-1

-1

By =

1

-1

-1

1

These analytical results can be used for verification purposes, but obvio^isly

cannot be carried out for every single basic element in the domain of definition. In o.rder

to evaluate the elementary ma¢rices, a numerical integration ^should be carried out.

These aspects will be regarded in the next section.

A2. Numerical integration

The most obvious procedure to carry out a numerical integration of a gi ven

function, is to use the Newton-Cotes integrating law, which gives the value of a defi; ŭte

integral between the points -1 and 1, as the summation of the function to be integra^:ed,

Zis



Appendix

evaluated on some equidistant values of the variable of integration ^, altered by a

certain set of ccefficients H^, that is:

I= J11 Ĵ(^^^=^,H.Ĵ ^^^)
^_^

.(A.20)

The values of H^ depend upon the number of interpolating points (n) and result into the

well-known trapezoid rule for n=2:

1= f ( 1)+ f (1) (A.21)

and the `third' Simpson rule for n=3:

I= 3 Cf ^ iĴ+ 4Ĵ ^0^+ Ĵ ^1 ^^ (A.22)

and so on, for increasing values of n. The trapezoid rule is exact to integrate

polynomials of grade one and the Simpson rule is able to integrate exactly cubic

polynomials.

When a Gauss integrating rule is used, instead of fixing the abscises of the

interpolating points, these abscises are considered as unknowns in order to obtain the

most accurate numerical solution of the integral. The abscises of these evaluating points

and its coefficients can be obtained by making use of the Legendre polynomials. These

ccefficients can be consulted in any numerical methods handbook. The Gauss

quadrature rule results in an approximation with a degree of precision of 2n-1, this

means that with n integrating points we can exactly evaluate polynomials of grade up to

2n-1.

The integrals we have to evaluate in order to calculate the elementary matrices

of our flow problems are surface integrals. Let us now regard the expression that gives

the approximate solution of a definite surface integral of an^ and rl depending

function, between -1 and 1 in both directions of the space. This integral could be

expressed as:
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1-l1^J_11 Ĵ^^^^1^^d^1 (^,.23)
•

Integrating I with respect to ^ and therefore keeping r^ as a constant, equ; ^tion

A.23 results into:

n

I = ^ ( jl Ĵ ^^^^Íd^)dn = Jl (^H^ ^^; ^^1 ^d^l = Jl g^^1 ^^1 (E ►.24)
^ ^ ^ ^

i=1

where g is a function that depends exclusively on ^. Carrying out the se cond

integration, this time with respect to ^, we have:

J-i8^^1^^1=^,H^S(^1^ Ĵ=^,Ht^,H;Ĵ^^;^^1r)=^^HtH;Ĵ IŜ ;^^]^^ (^^.25)
^=i ^=i ;=i ^=i ;=i

We conclude that the numerical integration for both Newton-Cotes and ( iauss

quadrature rules can be made in terms of the double summation:

I -11^11, Ĵ^^,^^^d^=^^H;H;Ĵ%;,^^)
t=i ;=i

(: ^.26)

where the values of the evaluating points and their coe^cients, are tabulated below for

n=1,2,3

n ^; _ ^1, Ht=HI

q 1 1.0 2.0

O 2 ± 1.0 1.0

^ 3 ± 1.0

0.0

0.33333

1.33333

Figure A3. Newton-Cotes quadrature rule ccefficient;s and evaluating points

•

•
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n ^^ - ^^ H^=H^

q 1 0 2.0

O 2 ± 0.57735 1.0

^ 3 0.0

± 0.77459

0.88888

0.55555

-1

^O ^

1

^ r

O^

-1

Figure A.4. Gauss quadrature rule coefficients and evaluating points

A 2x2 point Gauss quadrature rule has been used throughout this work.

Apparently the Gauss integration is the most efficient of the two methods to carry out

the numerical integration of polynomials, and the greater the number of evaluating

points, the more aĉcurate the solution for a high enough grade of the polynomials to be

integrated. Nonetheless, as was shown in section 2.3, the use of a non-exact evaluadon

of the integrals can be required for certain calculations. In particular the so-called

selective reduced integration will be employed when using the penalised algorithm (see

section 2.3), so as to allow for a good convergence of the solution. In this case, a

Newton-Cotes rule of 1 x 1 point will be used to integrate in a non-exact way the bilinear

polynomials of the Q1Po basic elements.
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ON THE RESOLUTION OF THE NAVIER-STOKES

EQUATIONS BY THE FINITE ELEMENT METHOD

USING A SUPG STABILIZATION TECHNIQUE

Application to some wastewater treatment problems

by
Pablo Rodríguez-Vellando Fernández-Carvajal

In this work an e^austive analysis of the incompressible flow
has been carried out, from the very definition of the governing
equations, up to the resolution of some practical problems, passing
through the comprehensive study of the stabilized finite element
techniques used in their resolution. As a consequence of this analysis, a
code based upon a realistic interpretation of the forces has been written,
which allows for the modelling of the open channel flow, with optimum
results in the resolution of some benchmark and real flow problems
related with the wastewater industry.
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