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NOTATION

The indicial notation will be used throughout the text, together with the usual
summation convention for repeated indices. The indices after commas will stand for
derivatives with respect to the variables specified in the index. Variables in boldface
refer to vectors or matrices as a whole. The international system of units (SI) will be
used throughout the text except for the cases in which a different unit is of common use.

The symbols included in this thesis stand for the following variables:

Latin symbols
A Reduced viscous coefficient matrix
A, Viscous coefficient matrix
A PBCG preconditioning matrix
B Gradient of pressure matrix
B, Penalty matrix
by Wetted perimeter of a boundary basic element
b; Prescribed velocity
bis Wetted perimeter of an interior basic element

C, (u, v) Convective coefficient matrix

Cf{u,v) Reduced convective coefficient matrix

d Depth with respect to a system parallel to the bottom of the channel
egse,  Unit vectors in the & and 7 directions

f Body force vector

fi Body forces components

g Gravity force

h Depth vector

h Depth with respect to a horizontal reference system or size of the grid
Iy Star depth

H; Quadrature rule coefficient



n Star gradient of depths

H* (Q) Sobolev space of order k over the domain Q

by sh, Characteristic basic element lengths in the £ and 7 directions

HL(Q)  Subspace of H'(Q) vanishing on T,

J Jacobian determinant of the transformation

ki Diffusion

k; Artificial diffusion

Kf Pressure-velocity coupling coefficient
Lower triangular matrix

I*(Q)  Hilbert space over the domain Q

Li(Q)  Subspace of I?(Q) with zero mean over the domain Q

m Mass

M Number of pressure nodes

M Unsteady reduced coefficient matrix

M, Unsteady coefficient matrix

ma Momentum

n Manning roughness coef. or outward unit vector normal to the interface
N Number of velocity nodes

n’ Modified Manning roughness coefficient

nn Number of nodes

ne Number of elements

N;: Velocity shape function

P Pressure vector

p Pressure

P Discretized pressure

7 SUPG contribution to the weighting function

P> D PBCG sequences of vectors
q Weighting function

Py Bilinear velocity-constant pressure basic element



Re
Ry

r,L

wi

Xi

Zp02,

Inertial relaxation factor

Reynolds number

Hydraulic radius

PBCG sequences of vectors

Geometric slope

Friction slope

Discretized subspace belonging to L3 (Q2) over the domain Q
Time

Traction vector

Upper triangular matrix

Velocity along the x direction

Velocity vector in the x direction
Discretized velocity

Velocity

Mean horizontal velocities in the x direction
Pseudo-velocities in the x direction
Velocity along the y direction

Velocity vector along the y direction
Volume of integration

Discretized subspace belonging to H'(Q) over the domain Q

Initial volume

Mean horizontal velocities in the y direction
Pseudo-velocity in the y direction

Velocity along the z direction

Weighting functions

Spatial directions

Height of the free water sarface

Height of the bottom of the channel

PBCG sequences of vectors



Greek symbols

Pressure relaxation parameter

Velocity relaxation parameter

Directional Reynolds numbers in the £ and n directions

Peclet number

Boundary of the Q domain
Kronecker delta

Penalty parameter

Eddy viscosity coefficients
Rate of deformation

Local spatial variable
Perturbation function
Lagrange-multiplier

Dynamic viscosity of the fluid

Kinematic viscosity of the fluid
Local spatial variable

Density of the fluid
Stress along the boundary

Shear stress acting on the water bottom

Stress

Shear stress acting on the water surface

Concentration

Velocity vector
Pressure shape function
Domain of integration
Discretized domain

Volume V boundary
Domain boundary
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INTRODUCCION, RESUMEN Y CONCLUSIONES

Las ecuaciones de Navier-Stokes, que rigen el flujo viscoso incompresible, s6lo
tienen solucién analitica para un limitado numero de casos simplificativos. Para
conseguir un procedimiento que resuelva de manera sistemética los problemas del flujo
incompresible, debemos recurrir a alguna técnica numérica que nos aporte una solucién
aproximada de los problemas reales. El Método de los Elementos Finitos es junto con el
de los Volimenes Finitos la técnica numérica mas cominmente utilizada hasta la fecha
para resolver las ecuaciones de Navier-Stokes.

El Método de los Elementos Finitos fue desarrollade en un principio para el
célculo de estructuras, sin embargo la resclucidn del flujo viscoso incompresible
requiere un tratamiento especial para resolver ciertos problemas que no aparecen en el
cdlculo convencional de estructuras. Estos problemas derivan de la necesidad de
verificacién de la ley de conservacién de la masa, en una sustancia que cambia
constantemente de forma, de la existencia de dos tipos distintos de incdgnitas en la
ecuacion constitutiva (velocidad y presién), de la asimetria de la matriz de ‘rigidez’
debido a la presencia de los términos convectivos, de la existencia de fuerzas viscosas
entre particulas, de 1a dependencia de las variables con respecto del tempo, etc.
Algunas de estas dificultades pueden ser ignoradas si se hacen ciertas simplificaciones,
que como la de Stokes ignoran los términos convectivos, o la de flujo potencial que
hace caso omiso de los esfuerzos viscosos. Sin embargo, estas simplificaciones sélo nos
dan una aproximacién para ciertos casos sencillos de flujo.

Todas estas particularidades exigen la utilizacién de una formulacién en
elementos finitos que se adapte a las caracteristicas singulares de los fluidos. Los tipos
de formulacién usados en la resolucién de las ecuaciones 2D de Navier-Stokes por el
Método de los Elementos Finitos en este trabajo, han sido las formulaciones mixta,
penalizada y segregada, y reciben esta denominacién dependiendo de la forma en la que
se tratan las incdgnitas velocidad y presién por un lado, y las ecuaciones dindmica y de
continuidad por otro. Estos tres tipos de algoritmos son los mé4s comiinmente utilizados
en la literatura afin, siendo estos meétodos en los que muchos autores acuerdan en
dividir las formas de resolver las ecuaciones de Navier-Stokes por el Método de los
Elementos Finitos [Kim 88], {Choi 94].
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La forma mis intuitiva de las tres de resolver el problema del flujo
incompresible es la formuiacién mixta, que se basa en aplicar el método de los residuos
ponderados directamente sobre las dos ecuaciones de la ley de Navier-Stokes, esto es

ecuacién dindmica y de continuidad,

F )

lwf (u:", +utu” —fi)+vjnwﬁjuﬁjd§2—%Lw{fipdg—_';ztf'wf‘dl"z =0
[q'uta=0
Q

Una vez se ha obtenido una forma débil y la aproximacién ha sido introducida
en la formulacién, se llega a un sistema de 2N+M ecuaciones diferenciales para el caso
2D, siendo N'y M e} mimero de nodos de interpolacién de velocidades y presiones en
los que se ha dividido el dominio. Las necesidades de memoria para almacenar los datos
implicados como consecuencia de la utilizacién de una formulacién de tipo mixto son
muy grandes. Por otra parte, el proceso iterativo encaminado a la resolucién de la
conveccién es més directe que en los otros casos que veremos a continuacién.

De otro lado, los problemas de consistencia que emergen como resultado de la
necesidad de verificacién de la condicién de divergencia-estabilidad (o también llamada
condicion de Ladyzhenskaya-Babuska-Brezzi en honor a sus descubridores y
estudiosos), hacen que la eleccidn de los elementos basicos en términos de los cuales el
dominio de deﬁm'cién es dicretizado sea una cuestién de vital importancia [Babuska
71], [Brezzi 74]. La eleccién de un elemento bésico inadecuado (como la aparentemente
inofensiva utilizacién de una malla de igual orden para las incégnitas velocidad y
presidn), puede provocar la obtencién de la solucién trivial como dnica posible, dar
lugar a la divergencia del proceso iterativo o provocar la aparicién de oscilaciones nodo
a nodo en el campo de presiones (solucién también conocida como ‘presion en tablero
de gjedrez’). Estos tipos de soluciones espurias fueron detectadas y caracterizadas por
Taylor y Hood en un articulo de 1973 [Taylor 73]. Para evitar este tipo de inestabilidad,
Taylor y sus colaboradores idearon un elemento bésico conocido con el nombre de par
de ‘Taylor-Hood’, que cumple estrictamente la condicién LBB y con ¢l que obtuvieron
~ buenos resultados en la resolucién del flujo viscoso incompresible. Sin embargo, existen
elementos bdsicos, como es el caso del elemento Q1P0, que sin cumplir estrictamente la

condicién de divergencia-estabilidad, han permitido obtener soluciones estables. Los
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buenos resultados obtenidos en el presente trabajo, con el elemento bésico de tipo Q1P0
(velocidad bilineal, presién constante), que ni siquiera ha mostrado dar lugar a los
campos de presion en tablero de ajedrez que aparecen en los trabajos de otros autores
(ver por ejemplo [Fortin 77] y [Brooks 82]), nos ha llevado a utilizar este elemento
bésico en todos nuestros célculos con éptimos resultados.

La formulacién penalizada, también utilizada en este trabajo permite gracias a la
utilizacién de un aparato matemético basado en el calculo variacional y recuperado por
Zienkiewicz en 1974 para el Método de los Elementos Finitos, la reduccién en el
nimero de ecuaciones presentes en el sistema algebraico a una cantidad igual a dos
veces el ndmero de incégnitas de velocidad del dominio [Zienkiewicz 74]. El trabajo de
Zienkiewicz serfa continuado en [Teman 77], [Bercovier 79], {Hughes 79] y [Brooks
82]. El campo de presiones en los algoritmos penalizados es obtenido a posteriori como
un valor de postproceso y por lo tanto no consume recursos a la hora de ia resolucién

del sistema. La formulacién podria presentarse de forma simplificada como:

(RN

1 1
_[W,-h (u?, +ujuy; ‘ﬂFVLWZJ“f’:de"' I;“!"W#'M‘Lf}'w‘?dfx =0;  pl=——u
Q Q,

Esta formulaci6n, elimina la ecuactén de continuidad del sistema a resolver, pero
a cambio introduce un parémetro numérico llamado de penalizacién (€) préximo a
cero, cuya eleccién va a ser muy importante en la obtencién de una convergencia
adecuada. La eleccién de un pardmetro de penalizacién demasiado pequefio va a
provocar que el término de penalizaci6n sea varios Grdenes de magnitud mayor que el
término viscoso. Una correcta eleccién de € implicard un equilibrio entre un némero
suficientemente grande como para que el tamaiio de una unidad basica de memoria del
ordenador sea capaz de almacenar la informaci6n de los términos viscoso (pequefio) y
penalizado (grande) en el misma variable; y un nimero suficientemente préximo a cero
como para permitir la correcta convergencia del problema.

Por otra parte, en las formulaciones penalizadas aparece un problema andlogo al
que se nos presentaba en la formulacién mixta cuando se usaba una interpolacién del
mismo orden para las inc6gnitas velocidad y presién, Cuando en la formulacién de
penalizacién los términos implicados son integrados con leyes de cuadratura del mismo
orden de error, podemos encontramos con que la tnica solucién posible del sistema es

la trivial. Este fallo en la resolucién del flujo puede evitarse mediante lo que conocemos
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como una ‘integracién reducida selectiva’, que consiste en integrar las matrices
elementales de penalizacidn con una ley de cuadratura de orden inferior a la usada en el
resto de los términos. De esta forma, el término de penalizacién no es exacto, la matriz
asociada correspondiente deja de ser regular, y con ello se “desbloquea’ la obtencién de
la solucién trivial.

Por iiltimo, la formulacidn segregada consiste en una resolucién secuencial de
las variables presién y velocidad, a través de la resolucién de dos sistemas diferenciados
para la ecuacién dindmica y de continuidad, que se obtienen gracias a la aplicacién del
método de los residuos ponderados. El método fue desarrollado en un principio para las
formulaciones en diferencias finitas y vohimenes finitos [Patankar 80], [Ferzinger 96].
Debido a sus buenos resultados fue extendido en la década de los 70 al Método de los
Elementos Finitos. Desde entonces muchos autores han realizado aportaciones en este
sentido, entre las cuales se pueden destacar Jas de [Scheneider 78], [Benim 86], [Rice
86], [Shaw 91] y [Haroutunian 93] entre otros. La formulacion aquf utilizada serd una
variante de la empleada por Rice sobre la que han trabajado muchos otros autores como
[Zijl 91], [Chot 971, [du Toit 98]. El fundamento de esta formulacién parte de aplicar el
método de los residuos ponderados a las ecuaciones dindmica y de continuidad, para
obtener:

Sistema dindmico:

Jutlat, +ulul, HO+v | whul,dQ = jw fdQ—-—Lw p,,dQ+jrt"w”dF
o

Sistema de continnidad:
j utdQ— jw'*u*n’*dr =0

En la primera iteracién se hace una suposicién para el campo de presiones, en
funcidn de la cual de obtiene un resultado para el campo de velocidades en el sistema
dindmico, que una vez obtenido es realimentado en el sistema de continuidad. La
conexién entre ambos sistemas s¢ hace mediante la definicién de un conjunto de

variables &, y ¥,, conocidas con el nombre de pseudovelocidades y definidas de la

=il g )

forma:

il e
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donde g; es la matriz de coeficientes del sisterna dindmico, que segin esto se¢ puede

e
i

donde la relacién entre las velocidades y las pseudovelocidades, y los coeficientes de

€xXpresar como:

aN,
g"( D8ttt fu=| Wi

i

conexién K pueden escribirse matematicamente como:

oN; oN;
=0 -Kf' —~ w Lp;s = A-K”-anj, ; —-g—_[ w.dQ

Una vez se han resuelto ambos sistemas, las velocidades son corregidas y el
proceso se repite hasta alcanzar la convergencia. Para que este algoritmo llegue a
converger, serd necesario introducir una relajacién en las variables incégnita, funcién de
un pardmetro que sera obtenido por tanteo numérico.

La formulacién segregada, aparte de permitir la utilizacién de una misma malla
en la interpolacién de las variables velocidad y presién sin provocar problemas de
consistencia, consigue que el tamaiio de los sistemas a resolver sea reducido al nimero
de nodos de velocidad o presidn, con lo que la matriz de coeficientes es de menor
tamaito. Ademds, por la propia definicién de la formulacién, la matriz de coeficientes
asociada a los sistemas se puede expresar como una matriz de ancho de banda estrecho,
cuando se lleva a cabo una correcta renumeracién de los nodos.

Los algoritmos hasta ahora expuestos resuelven las ecuaciones de Navier—Stokes
en dos dimensiones, de forma que la tercera dimensién del espacio es totalmente
ignorada. La formulacién de Aguas Someras es utilizada como una manera de incluir la
tercera dimensién, para los casos en los que el calado del flujo es pequefio en
comparacion con la dimensién horizontal. Este algoritmo hace la suposicién de que la
direcci6n principal del flujo es la horizontal, y sélo flujos despreciables tienen lugar en
planos verticales. Asimismo, la aceleracién en la direccién vertical es considerada
despreciable en comparacién con la gravedad, y se asume una distribucién hidrostitica
de presiones, La simplificacién de Aguas Someras supone que la distribucién de las
velocidades horizontales a lo largo de la direccion vertical es uniforme, y en

consecuencia se lleva a cabo una integracién en altura, para asi considerar como
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velocidad horizontal la media de velocidades a lo largo de la vertical. Ei calado y el
gradiente del calado entran ahora a formar parte de la ecuacién de continuidad,
permitiendo as{ que la tercera dimensién afecte a la conservacién de la masa, y que de
esta forma el balance de masas no se haga en funcién de las dos dimensiones
horizontales del flujo.

Para valores suficientemnente grandes del nimero de Reynolds, aparece en los
fluidos una forma de flujo cabtico vy no permanente de manera intrinseca, que
conocemos como turbulencia. El estado turbulento va a suponer la aparicién de

remolinos de muy escaso tamaifio (del orden de hasta 10 pim ), y elevada frecuencia (del

orden de 10KHZ), con lo que la captacién de estos fendmenos requeriria una malla
extrernadamente fina, si no se utiliza un modelo especifico de turbulencia. La forma
mis habitual de abordar los estados turbulentos es descomponer las magnitudes
implicadas en el flujo en un instante dado, en la media temporal de esas variables en un
determinado intervalo, mds un cierto término funcién del tiempo. La evaluacién de la
velocidad y la presion del flujo en esta forma, dard lugar a la aparicién de un término
~ adicional en las ecuaciones de Navier-Stokes, conocide como término de tensiones de
Reynolds. Este términc puede ser evaluado mediante un modelo especifico de
turbulencia de una o varias ecuaciones, como es el caso de los modelos de longitud de
mezcla o el modelo k-2 En esta tesis no se ha considerado un modelo especifico de
turbulencia, ya que los casos a los que se va a aplicar no lo requieren. Sin embargo, se
ha incluido una evaluacién de la pendiente motriz en términos de la férmula empirica de
Manning, que si bien no permite captar los remolinos del flujo turbulento, si que estima
las pérdidas de energia globales, que incluyen también las tensiones turbulentas.

La resolucidn de las ecuaci6n de aguas someras se hard segiin un algoritmo de
tipo mixto, que por lo tanto participari de las mismas ventajas € inconvenientes
expuestos para la formulacién mixta 2D de Navier-Stokes. Para materializar la
influencia del calado sobre la ecuacién de continuidad, se definirdn unos valores
intermedios del calado h” y dei gradiente del calado h’, evaluados segin un esquema
en diferencias finitas desarrollado por el autor, para asi eliminar los términos con cuasi-
no-linealidades.
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jw —glss-si v Wl dQ=g [ whiitdQ- [ thwldr, =0
[q" (™l +uth} i =0
2

Aparte de los problemas de inestabilidad que surgen como consecuencia de la
forma en que son tratadas las incégnitas presién y velocidad, y de la eleccién de los
elementos bésicos en funcién de los cuales el dominio es discretizado, otro grupo de
problemas de inestabilidad numérica potencial que aparece a la hora de resolver los
problemas del flujo viscoso, es el de los provocados por la forma en que el método de
los residuos ponderados se aplica sobre el término de conveccién de la ecuacién
dindmica. En efecto, la forma simétrica en que la formulacién de Galerkin (funciones de
peso ignales a funciones prueba), trata al término convectivo no simétrico, resulta ser el
origen de una fuente de inestabilidad en la obtencién de la solucién de las ecuaciones de
Navier-Stokes. Esta inestabilidad aparece en forma de oscilaciones espurias nodo a
nodo en el campo de velocidades, que en la literatura anglosajona se suelen conocer
como ‘wiggles’. Estas oscilaciones que aparecen como conseéuencia de la existencia del
término de conveccién en las ecuaciones de Navier-Stokes, se hacen 16gicamente més
ostentosas cuanto mayor es el peso de la conveccién en el flujo, y por lo tanto son
mayores cuanto més grande es el ndmero de Reynolds. Estas oscilaciones se pueden
eliminar llevando a cabo un exhaustivo refinamiento de la malla, especialmente en
aquellos lugares donde existe un cambio brusco en las condiciones del flujo. Sin
embargo, este refinamiento puede implicar unos costes computacionales muy altos, que
depende de las condiciones particulares del flujo en cuestién y pueden convertir el
problema en inabordable para ciertos casos caracterizados por mimeros de Reynolds
suficientemente altos. Fue en el congreso MAFELAP de 1975, cuando Zienkiewicz
planted una forma de resolucién de estos problemas del flujo incompresible mediante
un algoritmo de estabilizacién [Zienkiewicz 76]. Como consecuencia de este encuentro,
surgen trabajos [Heinrich and Huyakorn 77], [Heinrich and Zienkiewicz 77], que
proponen la utilizacién de esquemas, que llamados de Petrov-Galerkin, permiten la
estabilizacion de la ecuacién de convecidn-difusién mediante la utilizacién de funciones
de peso y de prueba distintas. '

Sin embargo, cuando se intenté generalizar este procedimiento de estabilizacién

a las ecuaciones de Navier-Stokes, se encontr6 que aparecfan unos modos de difusién
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espurios en la direccién ortogonal al flujo. Para evitar este aspecto, Brooks y Hughes
publican en 1982 un articulo [Brooks 82], en el que establecen las bases del asi llamado
método SUPG, que aparte de utilizar una formulacién de Petrov-Galetkin en la
resolucidén de las ecuaciones de Navier-Stokes, afiade un término de difusién artificial
que actia sélo en la direccidn del flujo, consiguiendo eliminar asi la difusién espunia
oriogonal a éste. Estos trabajos son la base teérica en la que se apoya el método SUPG
en sus miltiples variantes, que tan extensamente ha sido utilizado en la literatura al
respecto durante estos afios. Otro de los métodos més comiinmente utilizados para la
estabilizacién de las ecuaciones de Navier-Stokes es el de Galerkin Least-Squares
{GLS), que generaliza la formulacién SUPG para elementos de mayor orden mediante
la adicién de un residuo de minimos cuadrados a la formulacién de Galerkin, v que fue
desarrollado por Hughes v Franca en 1989 [Hughes 89]. Diferentes versiones de la
formulacién SUPG pueden encontrarse en la bibliografia especializada (ver por ejemplo
[Sampaio 91], [Zijl 91], [Franca 92], [Kondo 94], [Hannani 95}, [Choi 97]). Un
algoritmo de tipo SUPG adaptado a las formulaciones consideradas ha sido utilizado en
este trabajo para dar estabiiidad a la solucién de nuestro sistema de ecuaciones. Sus
fundamentos tedricos y aplicacién a la formulacion uwsada pueden verse de forma
desarrollada en el capitulo 2.6.

Una vez que hemos obtenido la formulacién integral estabilizada del problema
del flujo incompresible, se introduce ia aproximacién en téminos de los elementos
bésicos considerados para cada formulacién. Fl sistema diferencial y no lineal de
ecuaciones se transforma utilizando una aproximacién en diferencias finitas hacia atrds
para las derivadas con respecto del tiempo, ¥ un algoritmo de aproximaciones sucesivas
para los elementos no lineales. La obtencidn de la conveecidn por medio del método de
aproximaciones sucesivas, implica una convergencia de tipo lineal, frente a la
cuadritica de otros métodos como el de Newton-Raphson; sin embargo el primero
consigue la convergencia en una decena de iteraciones para la mayoria de los casos
pricticos y para niimeros de Reynolds del orden de 10, Por el contrario, el método de
Newton precisa una primera solucién de tanteo suficientemente cercana a la solucion
del problema, 1o que en muchos casos puede obligar a la utilizacién de una asi lamada
técnica de continuacion, que en la ecuacidn de Navier-Stokes supone un incremento

escalonado del valor del nimero de Reynolds hasta llegar al valor real de €ste. Por otra
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parte, la mejora en la velocidad de convergencia de este método cuadrético no llega a
ser sensiblemente ventajosa, debido al pequefio rango de convergencia de muchos de los
problemas reales. .

En este punto se integran las matrices elementales para cada elemento, haciendo
uso de una cuadratura numérica exacta, o de una aproximada en el caso de que se
requiera una integracién selectiva reducida (formulacién penalizada). Las matrices
elementales asi obtenidas se ensamblan adecuadamente y a continuacién se lleva a cabo
la resclucién del sisterna.

La resolucién del sistema algebraico se ha llevado a cabo por varios métodos. En
una primera instancia, la resolucién del sistema se hace por medio de un método directo
de Crout con almacenamiento en matriz llena. Esta forma de almacenamiento, aunque Ia
més sencilla de programar, provoca que para mallas no excesivamente refinadas, el
volumen de datos a almacenar sc convierta en inabordable. La forma de mejorar la
compactacién en el almacenamiento de la informacién, ha sido la utilizacién de un
almacenamiento en “Skyline’ o ‘perfil en columnas’. Este tipo de almacenamiento es
m4s efectivo que el almacenarniento en banda, y consiste en guardar exclusivamente los
datos de las columnas a partir del primer elemento distinto de cero hasta el elemento de
la diagonal. Los datos se almacenarén en dos vectores, uno el de punteros, de la misma
dimensién que el propio sistema, y otro de datos, en el que aparte de los elementos no
nulos, estardn embebidos un cierto nimero de ceros. Dado que las matrices de
coeficientes del sistema con las que estamos trabajando incluyen una parte relativa a la
aceleracién convectiva, éstas no son simétricas y por lo tanto cada matriz requeriri
utilizar dos vectores de datos, uno para cada matriz triangular. La utilizacién de este tipo
de almacenamiento es compatible con una resclucién directa del sistema de tipo Crout,
que por lo tanto dard lugar a la obtencién de la solucién exacta del sistema de
ecuaciones. La propia definicién de los algoritmos mixto y penalizado conduce a una
configuracion de la matriz de ‘rigidez’ que difiere con mucho de ser una matriz de tipo
banda (ver figura adjunta). Por tanto, una adecuada renumeracién de los nodos dard
lugar a una reduccién de las necesidades de memoria, pero no contribuird de forma
definitiva a un almacenamiento eficiente. Por ¢l contrario, la formulacién segregada no
sélo dard lugar a una matriz de coeficientes de dimensién el nimero de nodos incégnita,

sino que permitird que una adecuada renumeracién de los nodos de lugar a una
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reduccidn drastica en los requerimientos de memoria, si utilizamos un almacenamiento

en ‘skyline’.

Almacenamiento de la matriz de ‘rigidez’ en ‘Skyline’ para las formulaciones mixta, penalizada y segregada.

Para las formulaciones mixta y penalizada serd en cambio necesario recurrir a un
almacenamiento en matriz dispersa, que como sabemos es incompatible con una
resolucién directa del sistema. El almacenamiento en matriz dispersa se llevaré a cabo
mediante una técnica de ‘filas numeradas’, y ¢l volumen de almacenamiento ser sélo el
doble de los datos no nulos presentes en la matriz de rigidez. Este tipo de
almacenamiento es incompatible con una resolucién directa y habré que recurir a un
procedimiento de tipo iterativo. El método utilizado ha sido de tipo PBCG o método
‘Precondicionado de Gradientes Biconjugados’, que permite obtener muy buenas
aproximaciones en un nimero reducido de iteraciones. '

Los algoritmos anteriormente resefiados han sido empleados en la resolucién de
varios casos particulares. Los problemas académicos nos han servido para validar el
algoritmo, tras lo cual el programa ha sido empleado en la resolucién de varios casos
précticos. Como primer ejemplo académico, en el capftulo 3 se han utlizado los
algoritmos mixto, segregado, y penalizado, para resolver el flujo en una cavidad
cvadrada con velocidad tangente y unitaria en el lado superior, y condicién de no
deslizamiento en el resto, Este es uno de los tests mds cominmente utilizados en la
verificaci6n de las formulaciones de Navier-Stokes. Este ejemplo académico presenta
varias zonas de recirculacién y singularidades del campo de presiones en las esquinas
superiores, lo que junto con la amplia literatura disponible al respecto, lo convierten en
un problema de referencia. Los resultados obtenidos para las tres formulaciones
tanteadas han sido totalmente andlogos, como podia esperarse de la idéntica forma de

tratar los tres tipos de formulacién implementados. También se ha observado, que las
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gréficas de las velocidades horizontales a lo largo de una linea vertical centrada de la
cavidad, estdn en consonancia con los resultados de referencia de [Ghia 82], [Kendo 91]
y [Hannani 95], con los que se han comparado. De hecho, se han obtenido resultados
muy aproximados a la solucién numérica de Ghia para una malla de 129x129 nodos
(que es la solucion de referencia por excelencia de los problemas de Flujo en una
Cavidad), para un refinamiento de malla de tan s6lo 40x40 elementos basicos de tipo
Q1P0, mejorando as{ los resultados de Hannani y Kondo para una malla de similar
refinamiento, gracias a la utilizacién del método de estabilizacién especificado en el
apartado 2.6.

Si bien los resultados obtenidos para los tres tipos de formulacién son totalmente
andlogos, los tiempos de computacién empleados en los mismos difieren de una manera
ostentosa. Tanto en Ia formulacién mixta como en la penalizada, se ha utilizado una
resolucion del sistema algebraico de tipo PBCG (Gradientes Biconjugados
Precondicionados), que consigue la convergencia de la solucién para tiempos de
computacién més reducidos que los que se han obtenido cono resultado de emplear una
formulacién de tipo segregada en combinacién con una resolucién directa del sistema de
ecuaciones. Por tanto, la economia computacional que ha supuesto la reduccién en el
volumen de almacenamiento de la matriz de coeficientes del sistema a resolver en el
método segregado, ha sido rebasada por los mayores costes computacionales que
implica la resolucién de un sistema, de menor dimensi6n, pero de forma directa. Por
otro lado, la resoluci6n iterativa de los algoritmos mixto y penalizado, ha dado lugar a
tiempos de computacién similares, siendo superiores los del algoritmo penalizado en los
resultados del problema del Flujo en una Cavidad. Sin embargo, en el método de
penalizacién, la seleccién del pardmetro € para cada problema particular, da lugar a
importantes variaciones en el tiempo de computacién, que puede llegar a ser menor que
el empleado en una resolucién mixta, si se evalda convenientemente la magnitud del
pardmetro de penalizacidn. A la vista de los resultados obtenidos para el flujo tangencial
en una cavidad cuadrada, en lo sucesivo se ha utilizado indistintamente el algoritmo
mixto y penalizado para la resolucién de los problemas planteados.

Una vez verificado el correcto funcionamiento de las tres formulaciones de
Navier-Stokes, en el capitulo 4 se presentan los resultados obtenidos con el programa en

la resolucién del flujo en un canal con un ensanchamiento brusco en la secci6n,
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conocido en la bibliografia anglosajona como ‘Backward Facing Step’. Este es uno de
los problemas académicos mds comdinmente utilizados en la literatura al respecto, en el
que se puede observar la formacién de varios vortices de recirculacién a lo largo de la
longitud del canal, como consecuencia de dicho ensanchamiento en la seccién. Ademds
de numerosos resultados numéricos presentados por varios autores cldsicos, existen
datos experimentales de [Armaly 83], que permiten hacer una comparacién entre los
datos numéricos y los reales. Esta comparacién con los datos experimentales de
Armaly, se hace en términos de las longitudes de reacoplamiento, que estan tabuladas
para distintos mimeros de Reynolds. Los resultados obtenidos mediante la utilizacion
del algoritmo recogido en esta tesis doctoral, mejoran apreciablemente los datos
numéricos de Armaly obtenidos mediante una formulacién en voldmenes finitos,
acercandose de una manera manifiesta a los datos experimentaies obtenidos por el
propio autor. Asimismo, los resultados numéricos presentados en este trabajo estdn en
absoluta conscnancia con los conocidos resultados de [Kim 88} y [Choi 94], obtenidos a
partir de formulaciones mixta y segregada respectivamente.

En el capitulo 5 se evalda el flujo en una cavidad rectangular, en la que se
distribuye el caudal de entrada en tres diferentes canales de salida. Se trata ésta de una
estructura que se puede encontrar con frecuencia en las plantas de tratamiento de aguas
residuales. Como un primer paso, se obtienen los campos de velocidades para distintos
nimeros de Reynolds, y se observa la evolucién en las lineas de corriente para los
distintos casos. La observacién del recorrido del fluido puede ser esencial a la hora de
evaluar el dimensionamiento de una cavidad de distibucién de agua, impidiendo la
aparicién de remolinos en caso de que las pérdidas de energia no nos interesen, o por el
contrario favorectendo la formacién de los mismos, en el caso de que los fenémenos de
recirculacién sean favorables, para por ejemplo aumentar el tiempo de retencidn del
fluido y favorecer asi la sedimentacion de particulas.

También se ha introducido un término de pérdidas por friccién de tipo Manning
para la resolucidn del flujo en esta cavidad de distibucién. La inclusién de un término
de Manning, andlogo al definido en el apartado 1.6, permite evaluar las pérdidas por
friccién de una manera empirica y como puede verse en las figuras mostradas en el
capitulo 5, con resultados similares a los producidos al aumentar la viscosidad

cinemaitica del fluido.
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Aunque la solucién del flujo en la cavidad de distribucién se obtiene por
aplicacién del algoritmo permanente en solo paso, se ha resuelto también mediante
incrementos progresivos de tiempo en el algoritmo no permanente. El resultado
obtenido mediante la consideracién de la variacién del flujo a intervalos de tiempo
finitos, permite observar la evolucién del caudal de entrada en la cavidad hasta llegar a
las condiciones de régimen, que se alcanzan en el momento en el que la (ltima particula
que accede por el canal de entrada llega hasta el canal de salida. Como puede verse en
los resultados del capitulo 5, estas condiciones de régimen se consiguen para el tiempo
que la dltima particula tarda en recorrer la cavidad de distribucién.

En el capitulo 6 se han utilizado los algoritmos de Navier-Stokes en dos
dimensiones y de Aguas Someras, para resolver el flujo en un canal que se expande al
doble de su anchura de forma brusca. Como era de esperar, la resolucién por medio de
la formulacién en dos dimensiones de Navier-Stokes no asegura el cumplimiento de la
ley de continuidad de la masa, y el producto de la velocidad por el 4rea de la seccién
transversal no se conserva cuando se impone una ley hidrostitica de presiones aguas -
abajo. Sin embargo, Ia utilizacién de las ecuaciones integradas en altura, permite la
conservacion del caudal a lo largo de todo el canal, gracias al uso del algoritmo
detallado en la secci6n 2.5, y desarrollado por el propio autor.

Finalmente, en el capitulo 7 se presentan algunos ejemplos de resolucién del
flujo en estructuras empleadas en la depuracién de aguas residuales, a saber;
decantadores de flujo horizontal, en sus variantes rectangular y circular, decantador de
lamelas “LUPA’ (prototipo que estd siendo desarroliado en la Escuela Técnica Superior
de Ingenieros de Caminos, Canales y Puertos de La Corufia), y floculador en laberinto.
La obtencién de las caracteristicas del flujo en todos ellos, es muy importante a la hora
del dimensionamiento de estas estructuras.

A modo de conclusidn, este proyecto de tesis doctoral realiza un anélisis
exhaustivo de las ecuaciones que gobiernan el flujo incompresible y de su solucién por
el Método de los Elementos Finitos. Como consecuencia de ese andlisis, se ha elaborado
un programa que obtiene resultados 6ptimos en el cdlculo del flujo incompresible.

El programa soluciona las ecuaciones laminares de Navier-Stokes por los tres
algoritmos més comdinmente utilizados dentro del marco de los elementos finitos, lo

cual supone un estudio comparativo inédito. Como consecuencia, no sélo se comprueba
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que como era de esperar la solucién es la misma para las tres formulaciones
consideradas, sino que ademés la solucién obtenida mejora la de varios autores de
referencia, cuyos resultados se aportan para realizar la comparacidn, gracias a la
utilizacién de los mecanismos estabilizadores resefiados en el texto.

Ademds, este trabajo presenta un algoritmo, que desarrollado por el autor,
permite la resolucidn de las ecuaciones de aguas someras gracias a la incorporacién de
un mddulo basade en un esquerna en diferencias finitas dentro del marco del Método de
los Elementos Finitos. Este médulo contiene ademés un modelo de evaluacién de los
efectos turbulentos en funcién de la formula de Manning, que permite resolver la
turbulencia en un gran mimero de los flujos relacionados con la ingemieria civil, sin
perder la estructura de la ecnacién de Navier-Stokes, que queda preparada para la
incorporacién de un modelo de turbulencia de tipo £-£, desarrollado en el propio grupo
de investigacién [Bonillo 00]. Este médulo que serd incorporado como un futuro
desarrollo, permitird superar con creces los modelos que, como ¢l RMA2 de la
Universidad de Brigham, se utilizan en la actualidad para el cilculo hidrodindmico de
manera comercial y que hacen uso de una viscosidad turbulenta constante.

Por iltimo, los algoritmos desarrollados han sido utilizados en la resolucién de
algunos casos préicticos relacionados con las estructuras de 1a.§ plantas de tratamiento de
aguas residuales, lo cual tiene una aplicacién directa en la mejora del rendimiento de las

mismas.
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CHAPTER 1

INTRODUCTION AND GOVERNING EQUATIONS

The philosophy is written in this vast book which is permanemily in front of our eyes (I am referring 1o the universe),
which nevertheless, cannot be understood if one has not learnt to understand its language and to know the alphabet in
which it is written. And is written in the language of mathematics, being its script that of the triangles, circles and
other geometric figures, without which we could only wander through dark mazes.

Galileo Galilet, 1564-1642
Il Saggiarore, V1, 232
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CHAPTER 1. INTRODUCTION AND GOVERNING EQUATIONS

1.1. The physical problem

The aim of this thesis, framed within the numerical and hydraulic research being
carried out in the Civil Engineering School of La Corufia, has been to explore the
feasible numerical techniques that solve the open channel flow problems. Several
formulations have been developed, implemented and validated with some available
experimental and numerical data. An efficient code has been released in order to give
solution to these flow problems in a stable and efficient way with great success.

Once this code has been evaluated, it has been used in the resolution of some
practical engineering problems related to the wastewater industry. The obtaining of the
flow variables in these real cases may provide a powerful tool in order to allow for an
improvement in the geometric features of the flow basins. Only through the
comprehensive knowledge of the hydrodynamic variables, will the flow be not only
evaluated but also fully understood. As a consequence, an adequate design of the basins
and channels may be carried out, based upon an efficient and reliable numerical
technique, resulting in great cost savings.

The equations that rule the physical problem of the unsteady incompressible
flow are based upon the Newton second law (as in any other dynamic problem), and the
continuity equation, that ensures the conservation of mass in a material that has not a
fixed shape. Both equalities constitute the so-called Navier-Stokes equations to be used
within this work.

All the flows found in civil engineering practice can be featured by the Reynolds
number (UL/v, where U and L are the characteristic velocity and length of the flow and
Vv is the kinematic viscosity that depends on the fluid nature). For small Reynolds
numbers, the flow can be regarded as laminar, and the streamlines are parallel to each
other. As the Reynolds number is increased, a chaotic, random and intrinsically
unsteady type of motion appears. If these turbulent effects are to be solved by using the
Navier-Stokes equations, a very refined mesh would be required to capture the eddies

taking place on a wide range of length scales, and a special attention should be devoted
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to the unsteady resolution of the turbulent phenomena, that take place at a very high
frequency [Versteeg 95]. The mesh refinement and the time step required for this
purpose are not yet computationally affordable and a turbulence model should be
implemented in order to evaluate these turbulent eddies. Most of these turbulence
models are based upon decomposing the involved variables into a mean value (within a
time increment) and a fluctuating term that depends on time. As a consequence of this
approach, a term that evaluates the tarbulent losses as a function of a so-calied eddy
viscosity V,, is obtained. To evaluate this eddy or turbulent viscosity, a specific
turbulence model such as the k-ge model should be introduced. Making use of these
turbulence models, the turbulent viscosity is calculated for each time step and position,
allowing for the capturing of these eddies [Rodi 93]. Some other flow models evaluate
this eddy viscosity as a constant within the flow domain, such as the RMAZ2 flow model
developed by the Brigham University, which is one of the most commonly used
programs to ¢valuate the flow in channels.

Another approach to the wmrbulent problems would be to use the Manning
formula. The integration in depth of the 3D Navier-Stokes equations allows for the
empirical evaluation of the energy losses taking place in flows that can be regarded as
shallow. The Manning formula evaluates empirically the overall energy losses taking
place in the fluid flow, including those related with the turbulent effects. This
formulation does not capture the turbulent eddies taking place within the fluid flow but
takes into account the turbulent energy losses. Many numerical resolutions of the
incompressible flow use the Manning approach to evaluate these turbulent effects.
However, most of the available numerical models neglect the viscous effects compared
to the turbulent ones and the viscous term is dropped from the equations.

Some other Navier-Stokes flow models ignore the turbulent effects, and make
use of the plain Navier-Stokes equations. As a consequence, they can only be used for a
moderate Reynolds number, even when a stabilization technique is used, and even for
very refined meshes. In comparison t0 those which evaluate the tarbulence on a
Manning basis, these models provide a finer approach to the problems characterised by

a moderate Reynolds number, as they keep the real forces balance.
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The formulation presented in this work solves the Navier-Stokes equations
making use of a SUPG type stabilization technique, allowing for the resolution of the
flow when the Reynolds number is of a moderate order. A Shallow Water algorithm
that incorporates a Manning term is also presented, nonetheless this formulation does
not get rid of the viscouns term, allowing for the incorporation of a turbulent model that
evaluates the eddy viscosity as a function of time and space. A k-¢ turbulence model
has been developed in our research group and it will be added as a further development.
This module has been proved to work properly when used in connection with the
RMA? model, which uses a constant eddy viscosity.

Once the code has been validated, it will be used to evaluate the flow in some
water treatment engineering problems, and their results will be presented. Some of these
wastewater flow problems will be used as part of the research being carried out in the
sanitary engineering area of the Escuela Técnica Superior de Ingenieros de Caminos,

Canales y Puertos de La Corufia.
1.2. Numerical resolution of the flow problem

The Navier-Stokes equations have an analytical solution for a very small set of
simple flows. In any other case a numerical procedure giving an approximate solution
of the flow, should be used in its resolution.

Many numerical techniques have been developed for the resolution of the
incompressible flow. The four main groups into which these numerical techniques can
be separated, are the Finite Difference, Finite Volume, Spectral and Finite Element
Methods. The Finite Difference Method is based upon the use of the finite difference
approximation of the derivatives included in the equations to be solved, being used by
many authors in the resolution of some particular incompressible flow problems
[Richtmyer 67], [Roaches 76], [Baker 83], [Katopodes 84], [Smith 85]. The Spectral
Method approximates the unknowns in the Navier-Stokes equation by the use of the
Fourier series or the Chebyshev polynomials [Gottlieb 77], nonetheless the Spectral
Method shows some important problems when the boundary conditions are not periodic

[Canuto 88). The Finite Volume Method was first developed as a special finite
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difference formulation to be used in fluids, based upon the splitting of the domain into
a finite number of control volumes. The governing equations are integrated over all the
control volumes of the domain, and the discretization to be carried out involves the use
of some finite difference type approximations. There are many different versions of the
Finite Volume Method that have been extensively used in the resolution of the Navier-
Stokes equations [Patankar 80], [Roe 89], [Hubbard 93], and still are used with very
good results. These difference based algorithms can be regarded in a unified way, as
specific criteria within the weighted residuals framework, upon which the Finite
Element Method is based [Finlayson 72]. The Finite Element Method will be the one
used in this doctoral thesis, and will be further considered in the next chapter and
throughout the text. Apart from those, there are some other numerical methods, that
such as the Meshless [Ofate 95, 96] or the Boundary Element Methods [Onishi 84],
[Brebbia 86], have been recently used to solve the Navier-Stokes equations with very

promising results.

1.3. Finite element resolution of the flow problem

The Finite Element Method is a numericat procedure for solving the differential
equations that govern a wide variety of physical problems. This technique subdivides
the domain of definition into a finite number of smaller regions, and uses the weighted
residuals method so as to transform the governing differential equations into a set of
discrete integral equations. This system of equations gives as a result, the vaiuve of the
unknowns in the nodal points of the basic elements, being an approximation to the
problem posed in the governing equations.

The Finite Element Method was first developed in the fifties by Turner and
Clough so as to solve some structural problems of the aeronautical industry [Tumer
56]. The good results obtained for structural analysis were soon transported to other
physical problems, such as elementary flow and electromagnetism probiems
[Zienkiewicz 65]. The appearance of ‘The Finite Element Method’ in 1967 by
Zienkiewicz and Taylor [Zienkiewicz 1989}, establishes the basis of this numerical
technique. Since then, and thanks to an amazing improvement in the computer

performances in the second half of this century, the Finite Element Method is the
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numerical technique most commonly used in the approximate resolution of a wide
variety of the physical problems arisen within these years.

The application of the Finite Element Method to the flow problems requires
some modifications with respect to the formulation used for the struciural stress
analysis problems, that were its first application. Some of these modifications have
been borrowed from the finite difference or finite volume approaches, and many others
have been specifically developed for finite elements. In the early seventies we find
many works regarding not only the mere existence and consistency of these flow
problems [Ladyzhenskaya 69], [Babuska 71], [Brezzi 74], but also many works that
give a finite element solution to the Navier-Stokes equations [Baker 71], [Oden 72],
[Fortin 72], [Crouzeix 73], [Jamet 73], [Taylor 73], [Shen 76), {Zienkiewicz 76]. Since
then, the Finite Element Method is a powerful tool for the resolution of the Navier
Stokes equations, which will be used in this doctoral thesis so as to solve the
incompressible flow, as may be seen in the sections to follow.

The material we are going to deal with, when solving the flow, is of a fluid
nature, and therefore it has not a fixed shape, which is instead a funcﬁon of time. In
addition to Newton's second law, that rules any dynamic problem, an equation that
ensures for the conservation of mass should be verified. Moreover, the Navier-Stokes
equations are a set of differential equations with respect to both space and time in
which both the pressure and the velocity are the unknowns. As a consequence, the finite
element formulation used for the conventional structural analysis cannot be applied
straightforwardly.

When applying the finite element analysis to the problems of the rigid body, the
weighted residual method can be exclusively applied to the Newton second law, which
for statics clearly turns out to be the equilibrium equation; there is no use in imposing
the conservation of mass to a set of materials which do not lose their shape, On the
contrary, when dealing with fluids, the shape is not any more conserved, and apart from
stating the equilibium of momentum, we have to ensure for the continuity of mass.
Consequently, we have two equations to be verified at the same time, and the finite
element formulation should also account for the verification of both. The only set of

unknowns in the conventional structural analysis is that of the displacements, as a
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consequence, the system obtained thanks to the application of the Finite Element
Method, gives the displacements in the structure depending on the stiffness matrix (that
features the structure), and the load vector. In the flow problems, we are headed towards
the so-called mixed Finite Element Methods, in which both the velocity and pressure
set of unknowns have to be treated simultaneously.

Depending on how these two sets of equations and unknowns are tackled,
several different approaches are developed. The most intuitive of these approaches
would be simply to carry out a similar analysis for the continuity equation to that used
for the momentum equation, carrying along both velocity and pressure as the unknowns
up to the end of the problem, [Baker 71] [Oden 72], [Zienkiewicz 76]. This apparently
straightforward way of dealing with our equations is not as simple as it appears to be,
and it may be the reason of the obtaining of a meaningless solution when used in
connection with a faulty basic element [Babuska 71], [Taylor 73], [Brezzi 74]. Besides
a big expense in the storing memory, the so-called mixed formulation, leads to some
consistency problems in the obtaining of the solution when a wrong choice in the basic
functions has been made. As a consequence, many different formulations have been
vsed trying to overcome these difficulties. In this work, some of these different
approaches will be employed and discussed.

The 2D Navier-Stokes equations assume a flow that takes place on a two-
dimensional plane, and it is therefore laminar in that sense. The Shallow Water
formulation has been also considered as a way of including the third dimension in the
calculations, being able to give a meaningful solution for flows in which the depth is
small compared to the horizontal dimension. The integration in depth of the 3D Navier-
Stokes formulation, causes the dependence of the continuity equation with respect to
depth, and consequently the appearance of some quasi-non-linear terms that depend on
both the velocity and the depth. These equations are solved thanks to a newly developed
iterative algorithm, which will be solved on a mixed formulation basis to be regarded in
full in section 2.5.

The use of a Galerkin formulation, that takes weighting functions equal to trial
functions, when solving the Navier-Stokes equations, may lead to some problems of
instability in the flow solution by the Finite Element'Method. To avoid this difficulty,
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some so-catled stabilization procedures have been released since the MAFELAP
conference in 1975 [Zienkiewicz 76). The stiffness matrix resulting from structural
problems solved by the Finite Element Method is symmetric, instead the ‘stiffness’
matrix obtained for fluids is non-symmetric and the use of symmetric weighting
functions may lead to some instability problems. The faster the flow turns, the more
non-symmetric the coefficient matrix becomes. In-practice this is featured by the
appearance of some spurious node-to-node oscillations also known as ‘wiggles’. One
way of avoiding these oscillations is to carry out a refinement in the mesh, such that
convection no longer dominates on an element level, but this refinement turns to be a
memory resources sink. This point will be avoided in this work by the use of an
stabilization technique of the SUPG type, for all the algorithms considered in it.

The SUPG (Streamline/Upwinding Petrov-Galerkin) technique, first developed
by Brookes [Brookes 82], succeeds in eliminating the spurious velocity field, without
catrying out a severe refinement in the mesh, by considering weighting functions that
differ from trial functions in an upwinding term. This method was first released for the
transport equation, and its generalisation to the Navier-Stokes equation brings an
additional problem; that is the appearance of an excessive diffusion normal to the flow.
The SUPG method eliminates this spurious crosswind diffusion by considering an
‘artificial’ diffusion that acts only in the direction of the flow. These aspects will be
further considered in section 2.6.

All the particutars regarded in this introduction and some others, will be further
discussed in the following chapters. A code will be written based upon these
particulars, and will be also validated by its comparison with available numerical and
empirical reference results. Once the program has been validated, it will be used in the
resolution of some wastewater problems. In the present chapter, the equations that rule
the viscous incompressible flow will be derived and presented, together with all the
assumptions catried out in their securing. Once the 2D Navier-Stokes and the Shallow
Water equations have been presented, chapter two will be devoted to the finite element
resolution of these equations by several different algorithms of the mixed, penalty and
segregated type. Chapter two will also focus on the definition of an stabilising
technique of the SUPG type, in order to avoid the instability showing up in the solution
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beyond a certain Reynolds number, and also in the treatment to be given to the viscous
effects. An especial mention to the solver nused in the resolution of the resulting system
of differential, non-linear equations will be carried out at the end of chapter two.

In chapter number three, the mixed, penalty and segregated 2D formulations are
validated by comparing the results obtained thus, with reference results by other authors
on the Cavity Flow benchmark problem. As a result, it is shown how these algorithms
prove to yield a better accuracy for a less refined mesh, compared to the one obtained
by other authors and regardless of the algorithm employed in the calculations, that only
plays an important role in the computational efficiency vielded.

In chapter number four a comparison is made among the experimental results
obtained for the Backward Facing Step benchmark problem of Armaly et al. [Armaly
83] and the results obtained by using the 2D algorithm proposed in this doctoral thesis.
As a result, the solution obtained by the present author seems to be in a better
agreement with the experimental results than those obtained numerically by Armaly as
can be regarded in the information provided in this chapter.

Chapter number five is devoted to the analysis of the influence of the
consideration of the Manning term in the formulation. The Manning term as explained
in chapter two manages to evaluate the turbulent effects that show up in the real flows
when a certain Reynolds number is overcome. Beyond that number, the turbulence can
not be denied in order to give solution to the physical phenomenon, and the
consideration of the Manning coefficient manages to evaluate the overall turbulent
energy losses, as shown in the examples provided in this chapter, that also considers the
evolution in time of the unsteady algorithm.

Chapter six is concerned with the comparison between the 2D laminar and
Shallow Water formulations. As it was expected, the 2D algorithm does not manage to
evaluate the conservation of mass in a three-dimensional manner, especially when the
conditions of the flow force a change in the depth of the flow. Nonetheless the Shallow
Water algorithm presented in chapter two provides an optimum tool for this purpose.

Finally, chapter seven is devoted to the resolution of some real flow problems
related with the wastewater industry, and provides some results very valuable in the

designing of the water treatment plants.
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1.4. Governing equations

Our first task will be to obtain the governing equations that rule our physical
problem; this is the resolution of the unsteady, incompressible flow. As in any other
dynamic problem, the equation we are going to refer to, is the Newton second law,
which gives the variation in the momentum as the summation of the acting forces on
the volume of integration. To this condition we should add another one, due to the fact
that we are dealing with a shape-changing matter in which we have to ensure the
continuity of mass. Both equations make up the Navier-Stokes equations. These
equations are named after their discoverer, the French civil engineer Claude-Louis
Navier (1785-1836), who in 1821 formulated the equations that rule the incompressible
flow. The Navier-Stokes equations also bear the name of the Irish mathematician
George Gabriel Stokes (1819-1903), who not knowing the previous discoveries made
by Navier, Poisson and Saint-Venant, re-obtained the Navier-Stokes equations for
slightly different assumptions, and published these works in 1845. The Irish
mathematician gives also his name to the simplified version of the Navier-Stokes
equations, in which the convective terms are dropped.

The complexity of the Navier-Stokes equations leads to the use of some other
simplified governing equations. Most of the difficulties found in the resolution of the
Navier-Stokes equations are derived from the presence of the convective term in the
dynamic equations, as will be explained later. The Stokes equations assumes that the
convective part of the dynamic equation in the Navier-Stokes formulation is not
significant and can be denied [Carey 84]. This assumption removes the non-linearities
from the Navier-Stokes equations, and consequently avoids most of the problems that
the consideration of this term causes in the resolution of the flow when a large enough
Reynolds number features the flow. In fact, the convective acceleration usually
dominates the flow, and the Stokes assumption can only be considered for the so-called
‘creeping flows,” or in other words, slow flows with scant depth. Therefore, a
convective-term-including formulation is required in order to solve the real flow
problems, and the Stokes simplification will not be used in this work, apart from

COMPpArison purposes.
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The 2D Navier-Stokes equations will be used in this thesis to solve many
benchmark problems of the related literature with very good resulis, as will became
clear later in the text. The 2D or laminar (in the sense of planar) Navier-Stokes
equations do not take into account the third dimension in space, and provide with the
velocities and pressures of a theoretical planar flow. Nevertheless, for many real flow
problems, the third dimension in space is very important and the 3D Navier-Stokes
equations should be considered. The three-dimensional Navier-Stokes equations result
in a very large-dimensioned system of equations, that involves very high computational
costs. Moreover the 3D schemes present a great difficulty in the treatment of the free
surface. For flows in which the horizontal dimension is small compared to depth, the
Shallow Water formulation can be employed as a simplification of the 3D Navier-
Stokes equations, [Weiyan 92].

The Shallow Water equations are a simplification of the Navier-Stokes
equations, which can be used when the main direction of the flow is the horizontal one
and the distribution of the horizontal velocity along the vertical direction can be
assumed as uniform. These equations assume that the vertical acceleration of the fluid
is negligible and that a hydrostatic distribution of the pressure can be adopted. The
Shallow Water equations are obtained by integrating the 3D Navier-Stokes equations in
depth, and give a meaningful solution for flows in which the horizontal dimension is
small compared with the depth. When a 2D Navier-Stokes equation is used, no
attention is paid to the third dimension in space, and the results are based upon a 2D
approach to the flow problem. Therefore, the continuity equation is only held on a 2D
basis. So as to get some information about the variations in depth along the flow, either
a 3D Navier-Stokes equation or the Shallow Water equations (if the flow can be
regarded as shallow), should be used. The Shallow Water equations are solved in this
work for that purpose.

Before obtaining the Navier-Stokes equations, let us first define the system of
reference we are going to use to translate our physical problem into mathematical
language. Due to the variation in shape of fluids, the traditional Lagrangian reference
system used in the mechanics of the rigid bodies is no longer useful. When using

Lagrangian co-ordinates in fluids, we are going to express all the quantities with respect
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to the initial position of each particle; this is f = f (aj,r). The use of an Eulerian frame
is more appropriate for fluids, since the consideration of the spatial directions x, and

time, as independent variables, permits us to express the dependent variables velocity

{u;) and pressure ( p ), as a function of the position of the particles at the current time

f = f (JL‘,-,I‘ )
1.4.1. Conservation of mass

The continuity equation will be obtained by writing in mathematical words the
principle of the conservation of mass, which states that in any physical system the total
mass is conserved in the absence of sources and sinks. This of course, should be also

verified for fluids and therefore, the total mass in an arbitrary volume V(t), moving
with the fluid is a constant in time. Consequently, given a fluid of velocity u,{x,,¢) and
density p(x,.,r), the variation in time of the total mass in that arbitrary volume moving

with the fluid should be null, or equivalently:

L3 dm=—jpdv=0 (14.1.1)

As V =V(t) is a function of time, we cannot simply bring the derivative into the
integral sign without doing a few further operations, sometimes referred as the
Transport Theorem. Let us carry out a change in the integrating variable, so as 1o allow
for an easier bringing of the derivative into the integral sign. The time-dependent
variable of in&gral:ion V is going to be replaced by a constant-with-respect-to-time
initial volume V,. Being !J| the Jacobian determinant of the transformation, the
differential of V can be expressed as:

dv =|J|av,

and accordingly equation (1.4.1.1), may be written as:
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d dp dlJ
VJE(PM)WO = J(E?'J |+P:L7|}Vo =0 (14.1.2)

The material derivative of the Jacobian could be written as the product of the

divergence of the velocity and the Jacobian itself, that is:

dl"l du,
‘Et__p;';.ljl (1.4.1.3)

Let us prove this point for the two-dimensional case for simplicity: thus, expanding the

material derivative of the Jacobian determinant, we would obtain:

ayi_aui, | Oxdy Oxdy| dudy Odxdv dudy dxdv_
ar ok a: 3E an anag 9Ean dEan omoEt omot

Ouodxdy drdvdy oudxdy Ixadvdy du
=—— J 1414
5x5E9n 32 3yon Ixom3E anaydE am | (1414

Hence, replacing (1.4.1.3) in (1.4.1.2) and returning to an integration with respect to V,

dp ou _
J(E+pa_;g]’v‘o' (1.4.1.5)

we have:

where V is an arbitrary volume in the flow domain €2, and therefore the so-called
continuity equation is upheld:
dp + du

o in 14.1.6
dt pax i ( )

In the following anatysis, we will not be concerned with fluids in their general
conception but only with those in which the volume for a given mass is a constant. The
density p is consequently an invariant, and expression (1.4.1.6) can be re-written in its

indicial notation as:
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w,. =10 (14.1.7)

which is generally known as the continuity equation for incompressible fluids or
incompressibility constraint, being one of the two equations included in the Navier-

Stokes formulation.

1.4.2. Conservation of momentum

Apart from taking into account the continuity equation, we should not forget
that we have to solve a dynamic problem, and hence the Newton second law should be
verified. Newton's second law gives the variation in the momentum as the summation

of the acting forces in the volume of integration:
d (ma)
———=3%F 1421
b (1.4.2.1)

The rate of change in the momentum of the fluid in V(¢) is the summation of the body

and boundary forces acting on this volume:

—g—jpudv S{E +FEY) (1422)

Let us transform first the left-hand side of the equality, bringing the material derivative
into the integral sign by applying the Transport Theorem, just as we did with the

continuity equation:

—jp dV_j {pu | IV, jdp“ 1+ pu ,j Ia’V =

j U 114 o |JdV j LY .g-'—‘~dv (1.42.3)

4
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Since u; ; is equal to zero, equation (1.4.2.3) can be written as:

0
d pudV = opu; apu‘ x;

—dv 1424
AT E T o (1429

p is a constant for incompressible fluids, therefore equation (1.4.2.2) results in:

Jp-——-—+pj dV S(F +F”)  1425)
%0

In order to evaluate the second member in equation (1.4.2.5) we should take into
account the equilibrium of forces acting on volume V. These acting forces can be
gathered as body forces and boundary forces, The body forces are those acting within

the regarded volume and can be expressed as:

S E = [pfav (1.4.2.6)
v{r)

where f; is the body force per unit mass.
Let us regard now the summation of the forces acting on the boundary
(Zf}a" }. A simple way of evaluating the stresses among particles, would be to assume

them to be proportional to the variation of the velocity with respect to space, when
carrying out a cne dimensional analysis of the flow. As a consequence of this

assumption, Newton law of viscosity gives the shear stress of a parallel flow as:
r=p (142.7)
dn

where n stands for the direction normal to the interface and parallel to the flow, and

is the dynamic viscosity coefficient, assumed to be a constant for each fluid.
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The Newton Law is in fact a particularisation of a more complex and general
law, known as the Stokes viscosity law, which gives the stresses of all the spatial co-

ordinates as a function of the so-called rates of deformation €, and the pressure p. The
stresses on a cubic 3D domain (‘L’u) are commonly expressed as a function of 3°

different constants ¢, , i.€.:
T, = —5Up+ Cin€y (1.4.2.8)

where &, is the Kronecker delta and the rate of deformation (eu) is defined as:

— 1 aus au.i
g; = 5[8}:}. + ™ ] (1.4.2.9)

z A
Tz

x

Figure 1.4.2.1. Stresses on an elementary cube

Due to the symmetry in the equilibrium of forces and in the definition of the rate

of deformation, we have that €;=€; and 7;=7;. Therefore, the number of

independent constants can be reduced to 2%3° ,l.e

9
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T,=—p+e,€, +c128” +c,8, +Cldsry +C5€, 06,
Ty, =—P+CnE,+ cus” t ey, +C8,, +Co€,, + czéewr
T, =—P+e6,& +csze” +e€ + cyszy +Cy €, T cweﬁ
Ty SCuEn FCGE,, T CRE, + 08, +C €, +Cyf
Ty =Cg€a 008, FCuf,, T 08, T 058, TCiE,,

Ty =CEn +Cuf,, +CouE T 0 +Ce€ o +Cee€ (14210

In the case of isotropic fluids it can be easily proved by carrying out a change in the
reference system, that some of these coefficients became zero and the stresses can be

expressed in terms of two single constants, ¢ and 4, [Chaudhry 99], ie.:

T, =8,(~ p+pey 1+ 2ue, Cwithi<j  (14211)
making the summation 7, and taking into account that this quantity amounts —3p, it is
obtained:

T, +T, +T, =-3p=-3p+2ule, +e +e,)+3ule +e, +e,)

that is
0=0u+3u’k, (1.4.2.12)

In other words, we have found out a relationship between g and ', ie.:
R (1.4.2.13)

For any incompressible fluid we can ensure that the incompressibility constraint

u;; =0 is also verified, and therefore the summation £; is equal to zero. Making use of

these equalities, the stresses acting on the elementary volume may be expressed as:
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Tij :ﬂ{g+§x|-—}— p5,-j (14214)

Once we have determined the stresses acting on a surface dV in terms of the
rates of deformation and the pressure, the forces acting on dV will equal the stress

tensor 7; times the outward unit vector n ; normal to the surface. Next, if we write the

expression (1.4.2.5.) in terms of the so-calculated body and boundary forces, we have

the integral equation:

du ou,
V_([)pa—+p etV = jpde+I1' n,ds (1i4.2.15)

The application of the Gauss Divergence Theorem to the last term of this equality,

allows us to write the following expression:

au au |
s puJa LV = j'pde+J' ’dV (1.4.2.16)

vie) V(rJ

makihg use of (1.4.2.14), and being V an arbitrary volume within the flow domain Q,

we have:

u; a 3 auj auj ap .
5 p,a mﬂ+ua—%_-[5;;+a—&}—axj in Q (142.17)

This equation can be written in a compressed notation as:

w, +uu; = f+vi, +u, )—-F-)—p’( in Q (14.2.18)

Equation (1.4.2.18) together with the incompressibility constraint (1.4.1.7), constitute

the so-called Navier-Stokes equations, that rule the viscous incompressible flow.
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L.5. The 2D laminar Navier-Stokes equations

The differential problem can be consequently expressed as finding the

unknowns (velocity #; and pressure p), which give solution to the partial differential
equations:

4, =0 (1.5.1)

So as to properly define the differential problem, initial and boundary conditions should
be specified. The conditions to be used will be of the Dirichiet and Newman type:

u ). =b, ok =t (1.5.2)

where I and T, are two non overlapping subsets of the boundary I, b; is the velocity
vector prescribed on I, 1; is the traction vector prescribed on T,, n;is the outward unit
vector normal T, and &, is the stress along the boundary T, . The initial conditions are
given by:

ui(xj,0)=ui0(xj) with u,,, =0 (1.5.3)

Let us now expand the indicial notation by writing as u, v and w the components

of the velocity along the axes x, y and z. The Navier-Stokes equations could be then

written as:

e u e 1, [0 ) D H) I dw
§+u§x—+v§+w§z—_ p&x+v(ax[&v+3xJ+&y[c}§:+&r az(afax)]”*
P F L F 1 (K u) dfdv ) Ofdv, dw

3:+ 3x+ 3y+way p8y+v[ax(3x+8yJ+By(3y ay}“az[a{’ay)}fy
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W MM O Lp, [Ofdw u) dfdw ) 9fdw dw
aI+u‘9x+vay+waz— 0% b{ax[ax+az) ay(3y+8z]+az(az+az])+fz
ou, . w_g (1.5.4)

axay oz

rearranging the viscosity term in the dynamic equation, (1.5.4} could be written as:

ou, ou Ou w1 [Ofdu b w) dfcu) 3fdu) 9fdu
a:”ax”aywaz p8x+v(8x[8x+6y+c?z]+8x(5x]+ay(&y}az(azﬂ+f’
PP H A [Of) dfdv) 9k o ow) dfov

— U= 8y+ 5 pay+v(ax(ax)+ay(ay)+ay(ax+ay+az)+az(azJ]+f’
o w, w w1 (0(w) 3w ) @k & dw) 3fdw
§+u§+v§+w-é?— . az+v[ax[at]+ay[ay+}+az(ax+ay+&J+az[az}]+fz

If we take into account the continvity condition, the dynamic equation is

simplified, and the Navier-Stokes equations can be expressed as:

%+u%+v%+w%=-%%+v(%+%+%}+fi
%+u§:—+v%+ w%:—%%+v(§;+%+‘;—?]+fy
%"L%J’%— (1.5.5)
orin its 2D version as:
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—+—=0 (1.5.6)
Wiriting (1.5.6) in its indicial notation, this problem is given by:

1
iy Ul ;= _; pitv i+

u.=0 in Q (1.5.7)

with the initial and boundary conditions:

ulr;0)=u,lx;)  with u,, =0
u) =b, ok =1, (15.8)

The differential problem posed in equations 1.5.7 and 1.5.8 is a2 major problem
in engineering. These equations rule the viscous incompressible flow, and therefore the
dynamic behaviour of any liquid matter in nature. Many simplifications, useful in many
particular cases, can be made based upon these equations, but the Navier-Stokes in
1.5.7 and 1.5.8 (as first posed by Claude Navier in 1821) are the overall frame that
solves the behaviour of the incompressible fluids. The obtaining of the velocity and
pressure unknowns is a complicated task that has an analytical solution for a very scant
set of simplified problems. The resolution of these differential, non linear equations will
involve some problems to be overcome in its treatment by the Finite Element Method to
be used in this thesis, and some numerical devices will be developed for that purpose.

All these aspects and some others will be considered in the sections to follow.
1.6. The Shallow Water equations
Up to this point we have obtained the Navier-Stokes equations that rule the

viscous incompressible flow. These equations will be solved in their two dimensional

version in this work. The resolution of the so-obtained equations will lead to a laminar
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approximation of the viscous flow which assumes not only that velocities and
accelerations along the z-axis are negligible, but also that the third dimension in space
has no influence at all on the flow.

To consider the third dimension in space, we can either use the 3D Navier-
Stokes equations or the Shallow Water simplification, when the flow can be regarded as
shallow. We can describe a flow as shallow when the depth of the water is small in
comparison with the horizontal size of the basin. The assumptions we are going to

make for the obtaining of the Shallow Water simplification are the following:

— The distribution of the horizontal velocity along the vertical direction is assumed to
be uniform. An integration in height is carried out, and the horizontal velocity is
taken as the mean value of the distribution of the horizontal velocities along the
vertical direction.

— The main direction of the flow is the horizontal one, and only very small flows take
place on vertical planes.

- The acceleration in the vertical direction is negligible compared to gravity and a

hydrostatic distribution of the pressure is assumed.

In order to obtain the Shallow Water equations we are going to impose these
simplifications on the equations obtained in section 1.4, which in their expanded form

can be written as:

Continuity equation:
du v ow
—+—+—=0 1.6.1
ax+ay % (1.6.1)
Dynamic equation:
du, ou du_  du_ 1ap d*u d*u  d'u
5[‘+H;+V5+W§='—;g+\/[&,z +ay2 +aZ2 ]+fx
i@,+u&+v&+w§.",=_i§3+v 3_2v+£92+3_2v +f
o o ay & pay P ayz P ¥
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+u

P
PR

(1.6.2)

2 2 2
”%;‘ Lo 1 ap v(9w+aw+8wJ+fz

% pax & ¥ &
1.6.1. Continuity equation

Integrating the continuity equation along the z-axis between the bottom and the
free surface (Z;, Z), it is obtained:

% dz+w(Z)-w(Z,)=0 (1.6.1.1)

N ey g
u‘-\“-—'-N

¥,
o

The integrals in this equation can be re-written making use of the Leibnitz rule to bring
the derivatives into the integral sign, yielding:

3u J %
9} =-8-x—2[ udz — u(Z)—+u(Z )—

Jli | W— Y

(1.6.1.2)

Ne—N

zZ
(il =iJ‘ dz—
9y s, 3y
Now the substitution of (1.6.1.2} into (1.6.1.1) allows us to write:

j udz — u(Z)gﬂt(Z ) ay jvdz —v(Z)%+v(Zb)%zyi+ w(Z}-w(Z,)=0
(1.6.1.3)

If Z(x, y, t} gives the free surface of the flow, its material derivative w(Z) is given by the

expression:

wZ)="2 = 2 4 u(2) = +v(Z2) = (1.6.1.4)

and w can be evaluated in the bottom as:
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dz az oz
w(zb)=7b_=u(z,,)¥b+v(z,,)gb (1.6.1.5)
Substituting (1.6.1.4) and (1.6.1.5) in (1.6.1.3) we obtain:

97 °oZ o0 %
§x_z{udz_w(z)+'a?+$ Zj vdz+w(Z, J+ w(Z)-w(Z,)}=0 (1.6.1.6)

If we denote by u, v the mean values of the horizontal velocity:

__1 4 __1 Z
u——a;Lthdz v=_lya (1.6.1.7)

where d=Z7-Z,, is the depth. The expression (1.6.1.6) results in:

oz Hud) d(d)_
g =0 (1.6.1.8)

which is one of the most common ways of writing the continuity Shallow Water

equations.
1.6.2. Dynamic equation
As a consequence of assuming negligible vertical accelerations, the total

derivative of w and the viscous term in the third dynamic equation can be removed, to

obtain;

_La_, (1.6.2.1)

Integrating now (1.6.2.1) along the z-axis between the free surface Z and a generic point

z and taking the atmospheric pressure as zero, we have:

n
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p=pf,(z-2)} (1.6.2.2)

If we derive this equation with respect to x and y, it follows that :

]
b

(1.6.2.3)

O~ o=
Y e
:.I_Ih

Iy ¥

Let us multiply now the continuity equation (1.6.1.8) by w, add it to the first dynamic
equation in (1.6..2), and substitute the second equation in (1.6.2.3), to obtain:

ow du ou ou  ou_ .92 [du Jw du
W—= -ér_2_+§y-?+-a?- +f,=0

an expression that can be also written as

.3£ u® a(uv) B(uw)

du A
> ax By ) (1.6.2.4)

JZ
“fx+fz§;+v( +8y2

If we proceed in an analogous way, multiplying the continuity equation (1.6.1.8) by v,
adding it to the second dynamic equation in (1.6.2), and substituting the second
equality in (1.6.2.3), we obtain:

2 2 2 2
g_:_ agcxv) 2 ag;w) f+fzay [8:+%_2‘1+%21) (1.6.2.5)

Let us integrate now equation (1.6.2.4) in z, between the bottom and the free

surface. If we use the Leibnitz rule, we have:
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%I udz— u(Z)—+—j wdz-u (Z)—+u (z, )-—-—+

uv dz — u(Z)(Z) Zyz u(Z, (2, )%’1+ W Z)W(Z)-u(Z, W(Z, )=

(fﬁfz%)ﬂfbm,j dz (1.6.2.6)

o

and similarly for (1.6.2.5):

%j vaz- v(z)_+_j w dz—u(ZW(Z ) (z,,)v(z,,)%+
o R O e S A VAR

3y %
[fy +f, %}H Ew,, dz (1.6.2.7)

If we make use of equations (1.6.1.4) and (1.6.1.6), the equations (1.6.2.6} and
(1.6.2.7) can be written as:

I wdz+—| wldz+—

=) j uvdz - uz)% u(Z{u z)—+v(z)—J

2
I
+u(Z {(z vz, )—]+u2)w(2) u(z (fﬁfz )d L"“ dz
(1.6.2.8)

5 o vz)__v(z{ (Z}‘%w(z)%J

ke 5k
+v(Z, {u(z,,)%+ v(Z,,)a—gyi} v(ZW(Z)-v(z, )W(Zb)=(fy +/, %Jﬂ "‘jzzbw,ﬁ dz

(1.6.2.9)

Moreover, if we take into account that the xy plane is parallel to the channel bottom and

udzs+ » juvdz+

Z,is a constant, we have:
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oL _o\,*d) oad (1.6.2.10)

Considering the mean values of u and v, we can write (1.6.2.8) and (1.6.2.9) as:

a(Ed a(‘ )8(_d (f+f‘ax)d J'vu,j,.dz (1.6.2.11)

3w} duvd) Btvzd!_ ad),
5t _(fy+fz§]d+z{w,ﬁdz (1.6.2.12)

One of the most challenging problems when solving the Navier-Stokes
equations is the treatment of the viscous effects considered in the last term of the
former equations. This is not a straightforward matter, and should be considered with
special care. In the following section we will explain the nature of these viscous forces

and provide the adequate formulation in order to evaluate them.
1.6.3. Treatment of the viscosity effects.

The incompressible flow becomes unstable for a certain value of the Reynolds
number, beyond which turbulence occurs. The Reynolds number, defined as
UL/v, where U and L are the characteristic velocity and length of the flow, provides a
measure of the relative importance of the inertia forces (associated with the convective
effects) and the viscous forces. For a Reynolds number beyond the critical one, the flow
becomes intrinsically unsteady, independent of the fixed boundary conditions being
imposed. Consequently, some random eddying motions of a wide range of length scales
(including very small cnes) take place with a frequency of some tens of KHz. A direct
simulation of a fully developed turbulent flow would require unaffordable
computational requirements. Instead, some computational procedures are developed so
as to model the turbulent behaviour of the flows with less computational requirements.

The consideration of the time-averaged properties of the flow is the most
commonly used procedure that allows for this turbulence modelling. The involved

variables are decomposed into a mean value within a time increment, and an additive
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term that depends on time. The velocity of the flow ui(t) would be consequently
decomposed into a steady mean value #; and a fluctuating component u; 7t). If these
time dependent values are replaced in the Navier-Stokes equations, an additional
turbulent stress (or Reynolds stress) term shows up.

Substituting the values of velocity and pressure by their expression in terms of

the mean values with respect to time and the fluctuating term, this is «, =&, +u and

p=p+p’,equation (1.5.7) is transformed into:

1 r
H +HJEJ ;p-,( +‘m-|',j+fi-(u:uj),j

g, =0 (1.6.3.0)

Using the formula proposed back in 1877 by Boussinesq, that gives the turbulent
stresses as a function of the mean rates of deformation, we have the Reynolds

equations:

T, +00, =——p, ++v,

i

1
p
=0

where v, is the eddy viscosity. Different turbulence models such as the mixing length,

k—g, or the algebraic stress models, attempt to evaluate these Reynolds stresses in
different ways. One of the most broadly used turbulence schemes is the k —& model,
which is a two-equation model that evaluates the turbulent effects by considering a

system of equations that gives the kinetic energy of the flow k(x,,t) and the rate of
dissipation per unit mass &(x,,) on each point for each iteration, allowing to evaluate
the turbulent viscosity as v, =c,,kzl €, being ¢, a dimensionless constant [Versteeg

95].
The problems involving Reéynolds numbers of a moderate magnitude would not
require the consideration of the Reynolds stresses in themselves, and therefore the

viscosity used in the calculations will be the kinetic one and not the eddy or turbulent
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viscosity. As the turbulent effects get bigger, the kinetic viscosity happens to be very
small compared to the eddy viscosity and may be ignored [Rodi 93]. However, as it will
be seen later on in this section, the evaluation of the friction slope on a Manning term
basis, accounts for the turbulent losses as a whole. The inclusion of this empirically
evaluated Manning term, does not obviously allow us to detect the random eddies
taking place in the turbulent state conditions, but can evaluate the total amount of
energy loss caused by the turbulent flow conditions.
The shear stress term in equation {1.6.3.0) can be expressed in a more general
anisotropic way as:
VU, . =€, (1.6.3.1)

Lt Lty

where &, are the directional viscosity coefficients. This equation can be simplified so
as to make it depend upon two single constants €, and €, (see for instance [Chaudhry

99]), for the horizontal and vertical directions of the flow respectively, i.e..
£l T, e, 1.63.2)

In order to obtain the Shallow Water formulation, the Navier-Stokes equations have

been integrated in depth. The shear stress term can be integrated in z to yield:
[} enlum tuy ez (1.63.3)

Carrying out this integration along z for i = x, y, we arrive to:

afa 9z, ou(z)oZ du(z,)dz,
”E[é—f ude o2V il -2 B 2 3;}‘

A 9 ¢t 82 9Z, ou(Z )BZ ou(z,)oz,
—| = udz—u Z,,\‘ —
E”ay[ayz»dz e Ty ayJ

E{%Z_)_Q%%_)J (1.6.3.4)
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and
R =
g e )g_zw(z,,)aj; s
e{%z)——a—”—g‘:—”)] (1.6.3.5)

Following [Weiyan 92], the shear stress terms can be simplified into:

’u  'u
Exy ax—2+§y-? +T5x _Tb‘

2 2
sg(%@y_j)d”s, -1, (163.6)

where 7,75 and 7, ,7, are the shear stresses acting on the water surface and on the

channel bottom respectively. The shear stresses caused by the action of the wind on the
water surface can be ignored in comparison with the forces caused by the roughness of
the bottom [Chaudhry 99]. These effects can then be evaluated making use of an
empirical formulation of the Manning type as:

n2u‘.,.jujuj (1.63.7)

where R, is the hydraulic radius of the channel, defined on an element basis as seen

later on in this section, and n is the Manning roughness coefficient that depends on the
features of the bed. This coefficient is empirically determined and tabulated (see for
instance [Chadwick 1986]).

The consideration of a Manning-type formulation for the friction slope with the

conventional tabulated Manning coefficients, allows for the inclusion of the energy
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losses in the formulation. This energy losses correspond not only to the friction with the
bed but also embrace the friction losses that account for the turbulent stresses,
constituting a simple turbulent approach in its evalvation of the Reynolds stresses.
Mathematically speaking, the Manning term gives an energy losses term that depends
quadratically on the velocity. Meanwhile, the viscous energy losses taken into account
within the viscous term are linear with respect to the velocity.

Substituting (1.6.3.6) and (1.6.3.7) into (1.6.3.4) and (1.6.3.5), and taking into

account the definition of the mean velocities, the following expression is obtained:

4!3

ad) ole’a), alwd) ad Fu du),  nhile+7
3:+&x+8y -(f,+fz-;_’; +[ ]d

a(‘d 8(—d af)[f”ay}’ [g’_+gj_ _gnvm

Rh4i3

(1.6.3.8)

These two equations together with the continuity equation, constitute the 2D

Shallow Water equations, with respect to a co-ordinate system parallel to the bottom of
the channel.

If we want to express the former equations with respect to a horizontal reference

system, we would have to carry out a change in the co-ordinate system. After some

trigonometric simplifications [Chadwick 86] and dropping the mean notation, we could

write the 2D Navier-Stokes equations in one of its most comrmon expressions as:

I, ) , doh) _

g & &
) ) o) 3P4 ) i, s,
ag:h)+ a(gh)+ a(;;h)=—%gh+v(—a%+g%]a+gh(sh —Sﬁ)

(16.3.9)
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where S, S, and S,, §,, are the geometric and friction slopes in the x and y

directions, defined as:

_nfusut +vt _nfwut+v?
Sp=" N (1.6.2.10)

There are several different ways of writing the 2D Shallow Water equations, one
of these alternative formulations would be that in which the derivatives in (1.6.3.9) are
expanded, and the terms corresponding to the continuity condition are removed from

the dynamic equation, i.e.:

o, a(uh) d(vh) _on % _QQ ah
o o S > hax +h8y 8y =0
2
o) A A 2B BB i B
l{';u i z} [ah+%h+ % hz; g;lJ (S i]gh ghs,,
oh u  du
=—ggh+ [—u+?}l+gh(sm-sﬁ)

5 > > -h§+v§+vh§ 3x+v§ +2v §h+v g—

’{av 3v av] \{ah+h@+ ah+éh ah) (S +ah h—ghS,,

a(vh)+a(uvh)+a(v2h)_ ., (hc?v ah) d, Lok

x &y d o I
2 2
_‘;y_"ghw[gf gy2}1+gh(so s,) (1.63.11)

or

ff'_miwﬁma"w%:o

x T ko
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oh v 9%

&N &
§+u-§x-+v$=—-a;g +V(§F+é?]+g(soy—5ﬂ)=0 (16312)

In their indicial notation these equations can be written as:

h,+hu, +uh, =0 (1.6.3.13)

w, g, =—~gh +v, ;+g(S, -5,) (1.6.3.14)
with the initial and boundary conditions:

u, (xj,0)= u, (xj) with u,, =0 (1.6.3.15)

u ) =b, ol =1, (1.6.3.16)

which is one of the most common ways of writing the Shallow Water differential
equations.

Note that so as to obtain the Shallow Water equations, and besides the
conventional assumptions for the Shallow Water flow, we have also made some other
simplifications, such as those related with the obtaining of the shear stress term or the
denial of the trigonometric terms of higher order when changing the reference system.
Therefore, the equations in (1.6.3.13) and (1.6.3.14) are an approximation only useful
for the Shallow Water flow simplification. We have not taken into account the effects
of the wind on the surface or the Coriolis forces, as the problems we are going to solve
with this formulation are small-sized flow cases, taking place in basins and channels. If
an evaluation of the flow in estuaries or open sea were required, both would be needed
to evaluate the flow in a proper way.

Finally, let us regard some final assurnptions we are going to make when solving
equations (1.6.3.13) to (1.6.3.16) numerically. As we have already mentioned above,
we are going to evaluate the friction slope by using the Manning coefficient. We are

going to carry out a finite element resolution of these equations, and therefore the
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friction slope should be introduced on an element basis. The friction slope can be
defined as:

n*u. . ju?
5. = \/_’ (1.6.3.17)

AT RY3
A

where the hydraulic radius in the denominator is defined as the cross section area over
the wetted perimeter. The Shallow Water equations are going to be solved by using the
Finite Element Method, that solves the flow by giving the unknowns on the nodes of
the elements in which the continuous domain is split. On an element basis, the

hydraulic radius would be evaluated on an interior basic element as:

by i b e
Therefore, the friction slope in an interior basic element can be taken as:

2
= nzu’@ (1.6.3.18)

i A3

For a basic element laying on the boundary of the domain, a modified Manning
coefficient, »’ could be defined in order to account for the energy losses caused by the
friction with the lateral sides and allowing for the use of the depth / as the hydraulic
radius. By doing so, the boundary basic element could be treated as an interior basic

element, but with a different Manning coefficient. Let us determine n’ in order to verify

the equality:
s - nzu,--\fujuj _ ("’Y”i\}“iuf (1.6.3.19)

£ bbh 413 hH3
b,+h
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Therefore:

‘ 2/3
n' =n(l+—£—] (1.6.3.20)

Consequently the new modified Manning coefficient will be a function of the
conventional coefficient, which depends on the pitted texture of the boundaries, and the
ratio between the depth and the basic element size.

Note that in the present formulation, apart from the empirically determined
Manning term, we have kept the contribution of the viscous effects to the dynamic
equation. Some available and broadly used programs such as the RMA?Z of the Brigham
University, include the turbulent effects in the Navier-Stokes equations, by applying a
constant turbulent viscosity instead of evaluating the variation of the turbulent viscosity
with respect to space and time. To do so, a turbulence model is required. A k-g
turbulence model has been developed and successfully tested in our research group
[Bonillo 00]), and will be incorporated into the present formulation as a further
development. This model is prepared in consequence to include the contributions of
both the eddy viscosity and Manning energy losses, allowing for a more realistic
evaluation of the flow problems.

In the following sections, both the 2D Navier-Stokes equations and the Shallow
Water equations will be solved by making use of several algorithms, to be defined in
Chapter two. The governing equations regarded in this chapter are a set of non-linear
differential equations with respect to both space and time. The non-linearities will be
solved and as a consequence, the coefficient matrix will be found to be non-symroetric
and this fact will be the cause of some difficulties when using the conventional finite
element approach as will be seen later on in the text. The unknowns of the problem will
be of the mixed type (i.e. velocity and pressure) and as a consequence, several different
algorithms will be used to handle them. All these particulars tumn the resolution of the
Navier-Stokes equations into a challenging problem, in which some numerical devices
will have to be introduced in order to bring the problem to an adequate solution. All

these aspects will be considered in the next chapter.



CHAPTER 2

FINITE ELEMENT RESOLUTION OF THE
VISCOUS INCOMPRESSIBLE FLOW

Nessuna umana investigazione si poi dimandara vera
scienzia séssa non passa per le matematiche dimonstrazione.

No human research can be considered as
true science without a mathematical proof.

Leonardo da Vinci, 1431-1463
Notebook
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CHAPTER 2. FINITE ELEMENT RESOLUTION OF THE VISCOUS
INCOMPRESSIBLE FLOW

2.1. Finite element formulation of the viscous incompressible flow

In chapter one we have obtained the Navier-Stokes equations, that rule the
viscous incompressible flow, and the problem has been reduced to finding the velocity

u,(x;,t) and the pressure p(x,,t) verifying the partial differential equations:

1
gt UM, = TPt f;

u,. =0 (2.1.1)

with the initial and boundary conditions:

ui][.l=b,. 0',.].an|_1=!,.
{x,,0)=u,{x; ) (21.2)

where u; is the velocity, p is the pressure, f; is the body force per unit mass, p is
density, v is the cinematic viscosity, I} and I, are two non overlapping subsets of the
piecewise smooth domain boundary T, b; is the velocity vector prescribed in I.gis
the traction vector prescribed on T, &, is the stress along the boundary T, and #; is

the outward unit vector normal to T, .

The Finite Element Method was first developed to give solution to structural
problems and its achievements were transmitted afterwards to many other physical
problems. The Navier-Stokes equations, that rule the viscous incompressible flows,
have an analytical solution for a very small number of particular cases, and a numerical
solution is required for most of the practical problems. As a result, several numerical
techniques have been employed in their resolution, being the Finite Volume and Finite
Element Methods, the most commonly used of them. Both methods can be viewed in a

unified manner as a particular case within a weighted residuals framework. In this work
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the Finite Element Method will be used to give solution to the viscous incompressible
flow probiems.

The Finite Element Method splits the domain of the problem into a set of finite-
numbered basic elements, and uses piecewise polynomial functions defined on a local
basis so as to describe in an approximate way the variation of the flow variables within
the domain. When this approximation is introduced, the governing equations are not
held exactly and the corresponding residuals are defined. The minimization of these
residuals is carried out by its muliiplication by a set of weighting functions and its
integration within the domain.

First of all, we are going to define some function spaces to which our variables

will belong. Let I*(Q) be the Hilbert space of functions that are square integrable over
the domain 2, and let the Sobolev space H *(Q), be the subspace of L*{Q) in which
the derivatives of order up to k belong also to the space [2(Q). L2(Q) is defined as the

subspace of 1*(Q) with the constraint of having a zero mean over the domain €. This
subspace can be used in connection with the pressure unknown or be replaced by the

constraint of fixing the pressure at a point. Of particular interest is the subspace H,,

which is formed by functions that belonging to H', vanish on the boundary T} .

2.1.1. The weighted residuals method

First, we are going to apply the weighted residuals method, so as to transform
our differential problem into an integral equation over the domain €,

The existence of two different sets of unknowns in the equations to be solved
and the need of the verification of both the dynamic and the continuity equations in
these problems, lead us to the so-called mixed finite element problems. Several finite
element approaches can be considered, depending on the way in which both the
constitutive (dynamic) and the equilibrium (continuity) equations are handled. Among
these methods, we will be using the mixed, the penalty and the segregated techniques.

These are the three main available techniques, into which many authors agree to split
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the finite element treatment of the viscous incompressible flow problems [Kim 88],
[Choi 94]. A full explanation of these approaches and the justification of their use will
be given in the following sections.

The so-called constrained variational formulation would be one of these
feasible approaches, and consists in applying the weighted residuals method only to the
dynamic equation, while the incompressibility condition will be viewed as a constraint,
that should be satisfied in advance by all the admissible solutions. That is, the space for
feasible u; functions is not H' but a subspace V of the former, in which the restriction

u;, =0, is verified [Carey 84]. By doing so, the continuity equation is dropped and the

remaining dynamic equation tums, by means of the weighted residuals method, into the

equation:
jw,.[uj,,+ujuj,j+%pd.-ﬁ —Wiuj,ﬁ}!)=0 (2.1.1.1)
Q

The weighting functions w; to be used are also chosen so as to satisfy the
incompressibility condition, and therefore, once the weak form has been obtained (see
section 2.1.2), the pressure term can be dropped and together with it, the pressure set of
unknowns.

Up to this point, this method seems to be a natural and inexpensive way of
getting rid of the unwanted pressure unknown, but this is not so straightforward. In fact,
the searching of a piecewise subspace V* that not only belongs to H' but also ensures

that every function belonging to it satisfies the condition u‘.",,. =0, is quite a difficult

task. Instead, the less restrictive condition jqui ;d, =0 can be imposed in addition to
Q,

the weighted dynamic equation. By doing so, both velocity and pressure would be the
unknowns of the problem. This approach would lead us to the mixed finite element
algorithm, which has been broadly used by many authors [Zienkiewicz 67,89), [Sani
81}, [Kim 88], [Cruchaga 97].

Let us now introduce the finite element formulation of the mixed Navier-Stokes

equations. Multiplying our differential equations by a set of weighting functions w,, ¢ -
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belonging to H' and integrating the equations over the domain, the following equations

are obtained:

J-w‘.[u,.’,+ujui,j+%p,,. -w;,j—ﬁ}i.(l:O (2.1.1.2)
Q

[quid@=0 2.1.13)
Q

which constitutes an integral equation that solves (2.1.1), having both u; and p as

unknowns.

2.1.2. Obtaining of a weak form

Next, we are going to apply the Gauss theorem to find out the weak version of
the former equations, so as to reduce the order of the derivatives involved and, together
with it, the derivability requirements of the involved functions.

Let us regard the diffusive term in equation (2.1.1.2) for the two dimensional

case:

: Fu.  u,
—viwu. .dQ = ) i 4 2.1.2.1
Vi i Viw{ ox? * ay? I ( )

carrying out a two-dimensional integration by parts of the first term in equation
(2.1.2.1), we have:

1=l Jr =S el

where 7=w, E= i(?_u_[}’x=iu_‘_ (2.1.2.2)
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Figure 2.1.2.1. Domain of integration.

and the integration by parts results in:
1= ”l:wi %} dy-| La—w—aidxd 2.1.2.3)
b3 x

assuming I" as a closed boundary, the equation dy=rn_dl is verified in the right hand

side of the border, where n, is the director cosine of the angle between the normal and

the x-direction. In the left hand side part of I' we have dy=-ndl". Therefore the

integral 7 can be written as:

;=J'r 'aa_ jLaa*: aa‘; (2.1.2.4)

Proceeding in an analogous way for the derivatives with respect to y in the

integral (2.1.2.1), we arrive at the expression:

(ol (280 ais
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where n, is the director cosine of the angle between the outward normal unit vector and
the y-direction. This procedure would be applied in a similar way for more than one
single closed boundary. The diffusive term in (2.1.2.1.) is then reduced to the weak

expression:

L LY R

—v|wu, dQ=vw, u dQ-v]|wu, ndl (2.1.2.6)
| I
Q Q r

Applying the Gauss theorem in the same way for the gradient of pressures term

we have:

ljwl.p#_ =_ljwupdg+ljw,.p,,.n,.dr (2.1.2.7)
Pa Pa Pr

Once we have applied the Gauss theorem to both the diffusive and pressure
terms, we obtain the weak version of our integral equations, Our problem has been

reduced to finding u,, pe H', such that:

_[w,-(u,.', +uu, -—f,-)19+vjnw‘.'}.u‘.,jd9—%qupdﬂ—l_ twdl, =0; ".quudQ=0
2 : 2

Vw,eH, VgeH', with ul =b w,(x,,0)=u,x, ) (2.1.2.8)

The present integral equation gives the exact solution of the differential problem
posed in equation (2.1.1). The Finite Element Method is based upon obtaining an
approximate solution of the problem not on every single point of the domain, but only
on a set of finite locations. Let us regard how the splitting of the continuously defined
variables within the domain, is carried out in terms of their value on some finite-

numbered points.

© 2.1.3. Discretization

The Next step in the resolution of our partial differential equations by the Finite
Element Method, will be the splitting of our arbitrarily-shaped domain Q, into a set of
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basic elements, which assembled together may approximate the shape of Q. The
velocity and pressure unknowns will be approximated by a set of polynomial functions
defined on the nodes of the basic elements. When these functions are substituted in the
weighted integral equations, the result to be obtained, will be an approximation to the
exact solution of the differential equations in (2.1.1), which will be given only on a few

points of the domain.

We are going to obtain our approximate solution once we have determined ;'
and p" belonging to some subspaces V'€ H'(Q) and S!eI2(Q), where & is a

parameter related to the size of the grid in which the domain  is subdivided.

Thus, velocity and pressure can be expressed in terms of this discretizaton as:

u! (x, )=f‘,a"v.-" () and p"(xk)=iﬁfq"(xk) (2.13.1)

=

where v and g are known as the trial functions.

We will approximate our set of unknowns (velocity and pressure) as a function
of a local basis of shape functions defined on every single element (this point will be
further considered in the appendix).

As a first guess we are going to use a Galerkin-type finite element formulation,
therefore the weighting functions will be chosen to be equal to the trial functions. In
section 2.6, the Galerkin (also known as Bubnov-Galerkin) formulation, énd together
with it the imposition of choosing weighting functions equal to trial functions, will be
modified in order to adjust the finite element formulation to the complex features of
fluids.

Introducing the approximations to the solution u#; and p*, into equation

(2.1.2.8), the following expression is obtained:

fwrlut, +utul, — £ HQ v [ wh ! jda-éjnw;. p'dQ-[ thwhdT, =0
0 2

[q"utda=0 (21.32)
a
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Chapter 2, Finite element resolution of the viscous incompressible flow

vwieV!  Vg'eS, with wf‘Jn =0 uf’J,.l =b, u' (xj,0)=u,."o(xj)

In the finite element approach to problems such as the linear elasticity theory,

the mere inclusion of the discrete spaces V' and S within the underlying function

spaces, is enough to ensure stable and meaningful solutions, as accurate as possible for
the type of interpolating functions being wsed. When using mixed finite elements in

fluids, the inclusions V,'e H Q) and Siel: (©2) are not sufficient to ensure the

accuracy, convergence, stability and mere existence of the solution to this problem. The
election of the basic element is not a trivial task, on the contrary it is a complex matter
that involves a heavy mathematical display related with the verification of certain
algebraic conditions. The mathematical expertise required to develop these concepts is
beyond the scope of this doctoral thesis, since the consideration of this subject requires
a thoroughout knowledge of some mathematical preliminaries and would lead to a long
discussion not yet closed. Therefore, these particulars will be omitted in order to
concentrate our efforts into the resolution of the physical problem of the viscous flow.
Nonetheless, we are going to give a quick overview on this point, so as to justify the
election of the basic elements, (these aspects are further considered in [Ladyzhenskaya
69], [Babuska 71] [Brezzi 74] and [Boland 857).

These algebraic relationships are the boundedness, coercivity and div-stability

conditions. In order to express these conditions, let us define the L*(Q) norm }| and the

n 2 V2
H; seminorm [{ , as [g], =(qud§2)vz and |q| =[2)q A ] , respectively.
=1 4]

The continuity or boundedness conditions require the existence of three positive

constants Cy, C,, and C; independent of 2 such that:

LETRRETY]

vIuP.wf‘.dK%sCJui"ll{w”l forall u,w' eV,
g,

Jq"u,."_‘.dn‘ SCz'qu"q"“U forall uf €V, and g"€ S}
2,
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Chapier 2. Finite elemeni resolution of the viscous incompressible flow

<C,

et wi | pr], forall uf,v!,w!e vy (2.13.3)

jwl."u." vidO)
2y

The coercivity condition can be expressed as:

T

v ful ut Q> Clut [ for all u' e H (2.1.3.4)
@,

where Cjy is a positive constant independent of 4.
The most important and restrictive of these conditions is the Ladyzhenskaya-
Babuska-Brezzi, or divergence-stability or consistency condition. The LBB condition

states that given any ¢" € S)':

> y||q“[|0 (2.1.3.5)

where the constanty >{ can be chosen independently of both A and the particular
choice of ¢* € H*. Loosely speaking, the div-stability condition ensures (as % tends to

0 at least) that discretely solenoidal (divergence free) functions tend to solenoidal
functions. ,

An election of an inappropriate combination of these interpolating functions for
both velocity and pressure, may be the source of a certain instability in the resolution of
the problem. For instance, the usage of an equal order interpolation for both variables,
may lead to the obtaining of a meaningless solution for the pressure field depending on
the spliting of the mesh. This is due to the fact that some of these interpolating
functions do not satisfy the LBB condition, and therefore the existence of a unique
solution of the problem may not be ensured. There are many different ways in which
the arbitrarily chosen finite element space may fail to satisfy the divergence-stability
condition, being some of them being stricter than others. Anyway, it is possible to
define meanihgful approximations even when the finite element spaces do not strictly

satisfy the divergence-stability conditions.
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Chapter 2. Finite element resolution of the viscous incompressible flow

To illustrate this point let us consider the 2D problem of a flow in a square
domain with the same boundary conditions as those imposed in the well known Driven
Cavity Flow problem, to be solved in chapter number three. These boundary conditions
are the velocity in the borders and the pressure given at a node. If we solve this probiem
by using a mixed finite element formulation and the number of equations and
unknowns involved into the resulting continuity equation is evaluated for different
basic elements, some important points could be found out.

As a first guess we may consider the possibility of using an interpolation in
terms of piecewise linear functions for the velocities and discontinuous constant
functions for the pressures, {the P;P, pair), with respect to a triangulation as seen in

figure 2.1.3.1. The resulting number of continuity equations involved in the resolution
of the so-defined problem in this case would be 2(n—1F —1, and the number of
unknowns would be 2(n—2)2. Hence, the only possible solution would be the trivial

one, and consequently this kind of discretization cannot be used.

Figure 2.1.3.1. The P1P, basic element. Mesh and interpolating functions for velocity and pressure

To overcome this problem we could increase the number of velocity unknowns
compared to those of the pressure, so as not to over-constrain the approximate solution.
As a result, a different mesh could be used to interpolate the velocity and pressure
unknowns. Let us use for instance an interpolation in terms of constant discontinuous
functions for pressure, together with a linear continunous interpolation for the velociry,
but this time referred to a finer mesh as seen in the figure (2.1.3.2). For this basic
element and the flow problem considered, we would have 2(n-1)>1 continuity

equations and 2(2n-3)* unknowns. The number of degrees of freedom is greater than
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Chapter 2, Finite element resolution of the viscous incompressible flow

the number of equations for every feasible n and consequently, there is more than one
possible solution if we regard the dimension of the continuity coefficient matrix. This
_ pair not only allows for a non-trivial solution of the continuity system, but also results

into a divergence-stability stable pair [Boland 83).

Figure 2.1.3.2. Unequal velocity-pressure mesh. Interpolating functions for velocity and pressure

When using structured meshes we will find the same restriction. We can
consider as an example the QrPy (bilinear velocity-constant pressure) pair which leads
to a mixed order interpolation with the velocities being approached by a set of bilinear
continuous functions, and the pressure being interpolated in terms of discontinuous

constant functions on each basic square element (see figure 2.1.3.3). In this case the

number of equations obtained for the continuity equation would be (n—1f -1, and the

number of unknowns would be 2(n-2Y .

Figure 2.1.3.3. The 0,Fp basic element. Mesh and interpolating fuactions for velocity and pressure

The number of degrees of freedom is in this case greater than the number of
equations for every feasible n. This pair seems to be able to give a solution different
from the trivial one, but is still not necessarily exact. As it has been shown by many

authors [Brookes 82], {Boland 85], the use of this basic element may lead, under

59



Chapter 2. Finite elemnent resolution of the viscous incompressible flow

certain types of boundary conditions, to the obtaining of spurious solutions for the
pressure field, the well-known checkerboard pressure field, featured by an oscillation
in the pressure values element by element. In this case the failure of the divergence

stability condition would be caused by the fact that for one or a few, but not for all

g" € Sy we have that Lq"vﬁ.dﬂ =0 forall v eV, sothat y=0.

Searching for other types of stable basic elements, we could consider the
biquadratic velocity-bilinear pressure pair, also known as the Taylor-Hood basic
element (see [Taylor 73]). For this basic element, the velocity is given on comers, mid-
sides and centroid of the basic square, and pressure is meanwhile given only on corners.
In figure (2.1.3.4), both this pair and its serendipity counterpart, in which the centroid
node is eliminated, are sketched in its quadrilateral version. Any of these basic elements
not only manages to increase the number of interpolating points for the same number of

basic elements, but also results into a divergence-stable pair

€] Velocity and pressure node
Q Velocity node

Fig 2.1.3.4. The biguadratic velocity-bilinear pressure pair in its Lagrange and Serendipity versions

Even though the Taylor-Hood elements may yield better accuracy than the
others due to the greater grade of the interpolating polynomials, this level of accuracy
may be also achieved by refining the number of elements instead of the number of
nodes in each element, with a similar computational cost. Nevertheless in some cases
where there is a large amount of recirculation, it is found that the Taylor-Hood element
yields unsatisfactory streamline patterns [Thatcher 87]. Anyway, it is questionable that
the use of higher-order elements to interpolate the usually smooth solution of the
Navier-Stokes equation is profitable compared with an interpolation with functions of
less order and the same number of nodes, and depends on the conditions of each
particular problem being considered. Moreover, the computational costs caused by the

numerical integration associated with the Taylor-Hood basic pair, will in general be
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higher, since a higher order quadrature rule is required to evaluate the resulting
expressions,

The checkerboard pressure field to which the Q;P; pair maiy lead, is either
absent, or can be easily filtered out by an smoothing technique in the post-processing of
the results [Lee 79]. As a consequence, this mixed-order pair is one of the most
commonly used basic elements, due to its simplicity and good results obtained, even
being a non strictly divergence-stability stable basic element.

In this work, both the QP and the serendipity quadrilateral Taylor Hood
element were used in the calculations of some of the examples, obtaining accurate
results in both cases, but with less computational cost when the @, P; basic element was
used. The checkerboard pattern for the pressure ficld was absent in ali the examples
considered, and no smoothing of the solution was required on any of them. Therefore,
the Q1P basic element was used in all the numerical examples showed in the following

chapters, with optimum results.
2.2. Mixed formulation

The finite element formulation in section 2.1.3. was obtained on the assumption
that a mixed formulation was being used. Therefore, both the dynamic and the
continuity equations were present in the integra! equations and the solution to the
problem was obtained once the velocity and pressure sets of unknowns were

determined. Rewriting the differential problem as posed in 2.1.3.2, our task will be to
find « and p*, belonging to some subspaces V,' € H'(Q) and S* € 12(Q2), such that:

jwf (u:; +ujul ~ f! )iQ +V'Lh w‘.':ju,.’ijd.(l-—ﬁjnn w‘.';p"dQ—’[_; tiwidl, =0
& :

[q'ulda=0 @.2.1)
Q,

VwleV)  Vg'es), with w'l=0 u'f =p

i

i ”?(xj’0)=u?0(xj)
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Chapter 2. Finite element resolution of the viscous incompressible flow

Once the elementary matrices are evaluated and assembled, the integral equation

(2.2.1) can be expressed in matrix notation as:

Mv%%—+cu(u,v)n+vADQ—Bp=f

B u=0 (2.2.2)

where M, is the mass matrix, C,{u,v) is the convective matrix, A, is the viscous
matrix, B is the pressure matrix, f is external forces vector, p is the pressure vector, u is
the velocity vector in the x direction, v is the velocity vector in the y direction and  is
the velocity vector, all of them to be defined in detail in section 2.7. This is a system of
differential, non-linear equations that solves the viscous incompressible flow.

Equivalently, in its expanded 2D matrix form, this equation can be expressed as:

M Q Q] [u] [Cv) @ Qfu]l [va © -B_|u

oM alllvld o Clov) Qfv{+! @ vA -B {v|=|f

coolpl o e alp |B) BF olp
(2.2.3)

The sub-matrices included in this formulation will be explicitly presented
further on in section 2.7.3. Even with the restrictions already referred in section 2.1.3,
the mixed formulation is a quite intwitive formulation to solve the viscous
incompressible flow that gives very good results when used in flow problems. As has
already been pointed out, when used in connection with the Q,P; basic element, it has
not produced the well known checkerboard pressure mode for the flow problems to be
considered further on in chapter three and in subsequent chapters.

The mixed formulation is however quite expensive in terms of storing memory
requirements, with the associated coefficient matrix of the resulting system being
2M+N dimensional, where M and N are the number of the velocity and pressure
unknowns respectively. The coefficient matrix is not only large dimensioned but also
differs in an ostentatious way from a narrow-band matrix, and consequently, the use of
a direct solver can lead to a great memory consumption. These aspects will be further

considered in section 2.7.
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Chapter 2. Finite element resclution of the viscous incompressible flow

2.3. Penalty formulation
2.3.1. Introduction

The main difficulty found when obtaining a numerical solution for the Navier-
Stokes equations is that apart from verifying the dynamic constitutive equation, the
solutions must satisfy in addition the incompressibility condition. This restriction can
be imposed on the algebraic spaces to which the solutions must belong, as we pointed
out in section 2.1.1, leading to the so-called constrained variational formulation. The
mixed finite element formulation allows for a different approach to the incompressible
flow problem, leading to a systern in which both velocity and pressure are taken as
unknowns. This is the most natural and intuitive way of solving the viscous flow.
Nonetheless, besides the problems entailed in the election of the basic elements in order
to allow for the div-stability condition to be held, mixed methods result in a system of
dimension twice the number of velocity unknowns plus the number of pressure
unknowns. Therefore, not only a larger dimension has t be handled with its
corresponding increased memory requirements, but also the stiffness matrix is found to
be radically different to the narrow-band type of matrix which is preferred for the direct
resolution of the system of equations.

To overcome these shortcomings, a different formulation able to avoid the
obtaining of these large dimensioned systems is to be developed and some of these
methods are presented here. The streamfunction-vorticity formulation, for instance,
achieves this end by substituting the velocity and pressure unknowns by two new sets
of variables, based upon the mathematical properties of vector fields [Carey 84),
[Goyon 96]. An alternative approach (besides the segregated methods to be regarded in
section 2.4.) is the penalty formulation, to be discussed in the present section.

The penalty formulation provides with the possibility of imposing the
incompressibility constraint without solving an auxiliary pressure equation, by

replacing the continuity equation with the expression:

U, =—¢gp
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Chapter 2. Finite element resolution of the viscous incompressible flow

where the so-called penalty parameter € is a number close to zero. This equation is
incorporated into the dynamic equation, and therefore a system that depends on both
velocity and pressure is transformed into a velocity-dependant singie equation, that
converges to the fully incompressible problem as & approaches zero [Hughes 79],
[Heinrich 81], [Reddy 84], [Sohn 90], [Hannai 95]. In the following section the

mathematical basis that justifies this point is reviewed.

2.3.2. The variational Lagrange-multipliers technique

Let us regard for simplicity the two-dimensional steady Navier-Stokes equations
for the Stokes flow, with a Dirichlet boundary condition imposed on 9Q :
Vit . pi=1
p

i, =0 (2.3.1)

The variational Lagrange-multipliers technique gives solution to the problem of
finding the stationary values of a x-dependant function X(x;), constrained by an
additional equality J(x;) = 0. This is achieved by transforming the problem into the
obtaining of the stationary values of the modified expression I(x,,A)=7 {x. )+ A7(x,),
where A is the so-called Lagrange multiplier. This technique is very commonly used in
mathematics and is a powerful tool for finding out the solution to many physical
problems [Simmons 93]. Initially released to give solution to the so-called iso-perimeter
problems, this technique was deeply considered by Euler, who settled the mathematical
basis of these methods. This Lagrange-multipliers technique was rescued for its use in
the Finite Element Method by Zienkiewicz, who in 1974 first solved a mixed
differential problem by using a penalty method. Thanks to the use of the multiplier
methods, the incompressibility condition may be viewed as a constraint and
consequently incorporated into the variational statement of the problem:.

Let us consider the problem of finding the stationary values of the two-
dimensional functional:

I(un/l)= J%ui,j“i,j — fi; + Au; ;dQ (2.32)
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Let us prove now that the problem of finding »; and A, such that the expression
{2.3.2) takes the value of a stationary point, is equal to the resolution of the problem
posed in equation (2.3.1). If we write equation (2.3.2) in an expanded two-dimensional

form, we arrive at the expression:

Hum)= ;E{(g_)%mz][%”g”{g_%}ﬂ 233

In order to solve this variational problem, let us relax the exact solution values u,
v, and A, by adding to them the functional 1 =7(x,y}, known as the perturbation
function, with the constraint of being a sufficiently smooth function that vanishes on
the boundary 902 : |
7(x, y)=ulx, y)+on(x, y)
v{x,y)=v(x,y)+ a,n(x, y)
Z(x,¥)=Alx, y)+anlx, y) 2349

where ¢; (i=1,2,3) is a set of arbitrary constants. The values of u,vand A that give the
stationary solution of (2.3.3) are replaced by #,v and 4, that differ from the former in
the perturbation function 77. This perturbation function will be afterward removed in

order to find out the stationary solutions of the problem. The equivalent expression for

(2.3.3) in terms of the relaxed values @, and 1 is:

a5, 7)= ﬁ[(g_g{g)z+(g]:%j]ﬁ(fwﬁ)+ %, o

(2.3.5)
By definition 7,7 and 1 differ from the exact solution in a quantity en{x,y)

(i=1,2,3), and for o, =0, equation (2.3.5) is equal to (2.3.3). The stationary values of
(2.3.5) are those verifying the equations:

a

a—txi =0 for i=1,2,3 (23-6)
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Deriving now equation (2.3.5) with respect to &, , we have:

2l E EHEH B (e 5

(2.3.7)

If we make use of the equalities in (2.3.4), this equation may be written as.

v, 1) _ m\om o (am\om| an
TR aal o Jax Ve oy oy | TR @38

or identically:

(a9, X) _ Hv[a_ﬂa_“ i’lﬁﬁ_] Fn+ I dnay 2.3.9)
oo,

Making equation (2.3.9) equal to zero, we can affirm that the values for the functions
w,# and X are not any, but the stationary values u, v, and A. Re-arranging terms in

(2.3.9), we have:
(V—+A}dxdy [fnr. dxdy+”an( =0 (2.3.10)

If the first term in equation (2.3.10) is integrated by parts with respect to x, and taking
into account that for this integral, y can be considered as a constant, this first

integration by parts results in:

(v_+,1)¢m j([(v—+l},:| ‘-jn( aax(g“) E;A}i!)d @3.11)

Due to the fact that 7} takes a value of zero along the boundary 02, the former

expression can be written as:
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T3R)

If we carry out now an analogous integration by parts of the third term in (2.3.10), we

Lt G ool e

(2.3.13)

have:

If we append now (2.3.13) to (2.3.12), equation (2.3.10) is transformed into:

[[-n {[al“ u ) fi+= }-@:0 (2.3.14)

The integral (2.3.14) is identically zero for any 7(x, y), belonging to C* and being equal

to zero on the boundary dQ, and therefore we can conclude that:

b4 2
_v(g‘; gyz) A_s (2.3.15)

Proceeding in an analogous way for the derivatives of [ with respect to @, , we obtain:

a2 2
v( gyz) %L=fy (2.3.16)
For the third equation we have:
@v,X) 9 ot
fuinlh ot At il P i A YQ = | —0. . 2.3.
Yo "7a i H &~ [ +28,) ;[aa,ﬁ"‘dg (2.3.17)

Making the above equation equal to zero, the values of 7,7 are precisely the stationary

velocities u and v, that is:
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ol

——=|"nu,,d2=0 23.18
T i s (2.3.18)
The stationary vatue of the integral equation (2.3.18) is the one that makes the partial

derivative equal to zero for any feasible value of 77, that is the imposition of a

solencidal velocity field. The former equation together with (2.3.15) and (2.3.16) yield:

2, 2
d
(a gyZJ RA_s (2.3.19)
2, 2
v(a gyz] A_g (2.3.20)
U =0 (2.2.21)

When comparing equations (2.3.19) to (2.3.21), it can be noticed that they are
the same except for the value of A in (2.3.19) and (2.3.20), that plays the role of minus
the pressure over the density in equation (2.3.1). By making this multiplier anatysis, we
have succeeded in eliminating the unwanted continuity condition from the extremizing

version of the Stokes equations.
2.3.3. The penalty approach to the Navier-Stokes equations

In the formal statement of the penalty formulation posed by Zienkiewicz
[Zienkiewicz 74] the pressure is obtained as:

p=-Au,, (23.22)
and the penalized functional may be consequently written as:
1{u,v,A)= [ Gu, u, ;- fu; 42 o, )0 (2.3.23)

If we consider now the stationary—values of this problem, as those making the

variation &/ equal to zero for admissible variations du; and 4, and we use the so-



Chapter 2. Finite element resoluticn of the viscous incompressible flow

called penalty parameter coefficient defined as & =—;: instead of A, we arrive at the

expression:

[, 80, , ~ f,6u +éuu5u,- )dQ=0 (2.3.24)
Q
The penalty problem can be posed now, as finding », € H', such that:

j(w,, w,, f,w+ u,w,,)d2 =0 (2.3.25)

i i

for all test functions w, € H'.

It may be proved that as & approaches to zero, the solution for &; and p given by
(2.3.25) converges to the solution of the Stokes problem posed in (2.3.1), provided that
a consistency condition holds for the penalty method {Carey 84]. The penalty method is

said to be consistent if there exists a positive constant 3 independent of € such that:

sup MZ )3
“

Ozu; €V,

E

p (2.3.26)

P

forany p*e P=I*{Q)/R

For practical purposes, the value of £ must be balanced between a sufficiently
small value, in order to achieve a solution closer to the real one, and a large enough
value so as not to promote the ill-conditioning of the stiffness matrix. For very small
values of £, the data from the penalty term are very extensive compared to those of the
viscous term, Consequently, the value of £ depends on the word length of the
computer, which has to be able to hold the information from both the penalty and the

viscous terms. Hughes [Hughes 79], proposes a penalty parameter as follows:

€ = (cmax(v,vRe )]

where Re is the Reynolds numbser, ¢ is a constant which depends on the word length of

the computer and can be taken as 10’ for a 64 bit floating point word length, and it can
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vary two or three orders of magnitude with negligible effects on the solutions obtained
[Hughes 79].

If we introduce the approximation of the velocity field to make it depend upon
the trial functions, the discrete solution to the Stokes problem in (2.3.25) can be
obtained by solving the equatioh:

j(w” wh = fwl + ~utw!)dQ=0 (23.27)

F R ¥}
Afterward, the value of the pressure field can be post-processed by using:

P

The solution to equation (2.3.27) will approximate that of the initial problem as
€ tends to zero, provided that the penalty consistency condition is verified. If not, the
use of the penalty formulation could lead to the obtaining of a non-singular coefficient
matrix associated to the penalty term:

ju W' dQ (2.3.28)

(A ¥y

As £ tends to zero, this term may dominate the system of equations, therefore
the whole problem could be over-constrained, and the only possible solution could be
the trivial one. For example, when using linear functions to interpolate the velocities on
a triangular basic element, and an exact integration of the penalty term is carried out,
‘locking’ occurs and the only possible solution seems to be the trivial one. This is a
problem totally analogous to the one obtained when a lincar velocity and a constant
pressure is employed when using a mixed formulation. The discrete formulation in
{2.3.27) would not be consistent according to (2.3.26) and the algorithm would not
achieve convergence [Hughes 79].

This problem can be avoided by making a so-called selective reduced
integration of the elementary matrices involved in the resolution of the problem. A
reduced numerical integration consists in using a quadrature rule that is not exact for

the polynomials considered. The use of a one point Gauss quadrature rule (see
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appendix) for the integration of the quadratic functions in the penalty term, transforms
the associated “penalty’ matrix into a rank deficient matrix and consequently ‘unlocks’
the obtaining of a non-trivial solution. For more details on this topic you can refer to
[Carey 84].

The penalized version of the unsteady Navier-Stokes problem, as posed in
(1.4.7), would be now to find ' belonging to V;" € H'(Q) such that:

1%, id i

[l +utul, = £ oy | whoul de+ J%u?‘.w?‘.dﬂ— fitwiar,=0 2329
a a,
for every w;' belonging to V,'.

Once the elementary matrices are evaluated and assembled, the integral equation

(2.3.29) can be expressed in matrix notation as:

ou
M, 2+C, o, v)i_)+vA“1_)+§BEQ=f (2.3.30)
where M, is the mass matrix, C, (u,v) is the convective matrix, A, is the viscous
matrix, B, is the penalty matrix, u is the velocity vector in the x direction, v is the
velocity vector in the y direction, f is external forces vector and v is the velocity vector,

or equivalently in expanded 2D} matrix form:

o Bl o Bl ST w L]

(2.3.31)
The detailed expression of the sub-matrices in (2.3.31) will be further regarded in
section (2.7.3).
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2.4.- Segregated formulation
2.4.1, Introduction

To overcome the drawbacks arising from the resolution of the integrated
velocity-pressure and penalty formulations of the viscous flow, the so-called segregated
methods are developed in order to reduce the memory requirements when solving the
Navier-Stokes equations. The most commonly used of these segregated methods, that
obtain the flow variables in a sequential way, are the fractional step method [Donea
82], [Laval 90], [Ramaswamy 92}, [Choi 97], and those based upon a SMPLE
algorithm [Benim 861, [Rice 86], [Choi 94], [du Toit 98]. An algorithm based upon the
SIMPLE method, first released for finite volumes, is described in this section.

The penalty method succeeded in solving the Navier-Stokes Equations with
great memory savings due to the smaller number of equations to be solved, producing
meaningful and stable solutions thanks to the use of the so-called reduced integration as
seen in section 2.3. Anyhow, the accurateness of the method depends on the election of
the parameter €. For very small values of £, the weight of the penalty term in the
stiffness matrix happens to cancel the amount of information contributed by the viscous
term, which is very small in comparison. This information is consequently truncated
and dropped from the equations. The penalty parameter should consequently be chosen
depending on the word length of the computer. On the other hand, if the penalty
parameter selected is too large, this choice may spoilt the whole procedure, as £ is
wanted to tend to zero so as to allow for convergence. Consequently, the choice of € is
not a trivial task, and a wrong selection in the parameter may lead to a meaningless
solution. Moreover, the penalty formulation achieves a great reduction in the storing
requirements, compared to the mixed formulation (the 2N+M equations in the mixed
formulation are reduced to a 2V dimensioned system in the penalty formulation). Still,
the stiffness matrix is far from being a narrow band type of matrix despite the
renumbering of the nodes.

Many of these shortcorings are not present in the so-called segregated methods,
that are broadly employed by many authors so as to solve the Navier-Stokes equations

in both their finite element and finite volume numerical resolutions. Following the
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success of the Finite Volumes Method [Patankar 80}, several authors adopted the
formulation in the SIMPLE and SIMPLEST methods to the finite element approach
{Scheneider 78], [Benim 86], [Rice 86], [Shaw 91], [Haroutunian 93-], [Ferzinger 96].
These segregated finite element schemes give solution to the problem of the viscous
incompressible flow, by employing a procedure in which the velocity and pressure
unknowns are not obtained simultanecusly but in a sequential way. The segregated
formulations calculate velocities and pressures in an alternative iterative sequence,
requiring much less storing needs than the mixed methods. Moreover, these algorithms
not only achieve a greater reduction in the number of equations compared to the penalty
method (in this formulation the dimension of the system to be solved is equal to the
number of nodes), but also allow for the production of narrow band stiffness matrices,
when a proper renumbering of the nodes has been carried out. The segregated method
also avoids the use of the sometimes inconvenient penaity parameter.

Another gain of these segregated algorithms is that a mixed-order interpolation
can be used [Schneider 78], [Rice 86]. As has already been said, the mixed and penalty
methods require a velocity approximation different from that of the pressure. The
easier-to-implement discretization of the domain in terms of the same basic functions
for both velocity and pressure, leads to oscillation-free solutions, and the tendency to

produce the checkerboard pressure distribution is therefore eliminated.
2.4.2. The segregated approach to the Navier-Stokes equations

In the segregated formulation the calculations are split into two main systems;
the dynamic, that gives the values of the velocity unknown, and the continuity system
that gives the pressure. The momentum equations are treated by using the weighted

residuals Finite Element Method, but now the pressure term Lwi p,; d€ is not
considered as an unknown, being included in the right hand side of the system. For the
first iteration the pressures are taken as zero as a first guess, and for the following, this
zero value will be properly corrected. With this, we do not only get rid of the, by now,

unwanted pressure unknown, but also accomplish a system that is of N dimension, due
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to the independence of the x-component dynamic equation with respect to v, and that of
the y-component equation with respect to u.

If we recover the weighted steady dynamic equation derived in section 2.1.1:

Jw,- uju,.,j+lp# -wu, ;~f, Q=0
a p

and do not apply the Gauss theorem upon the pressure term, we obtain a weak form that
differs slightly from the dynamic equation in (2.1.2.8). The difference is that now, we
find pressure gradients in the pressure term, instead of gradients of the weighting
functions. Once the interpolation in terms of a Q11 basic element is carried out, our

problem will be now to find » belonging to the subspace V."& H'(Q), for a known
p", such that:

wh ), - £ HQ+v whut g0+ L wiptdQ— | iwhdl, =0 (2.4.1)
2 Q p Q v n

Jj LiTLG

for all w' belonging to V., where the pressure is considered as a given value

throughout the dornain. After the assembling of the elementary matrices has been done,

equation (2.4.1,) can be expressed in matrix form as:

Clu,vu+vAz=Gu =f, —Igwl. %VL p A
x
aN,
Clu,v)v+vAv=Gv=f — J.nw[. ayj p; dQ (24.2)

where C(u,v) is the convective matrix, A is the viscous matrix, G is the overall
coefficient matrix, f; and f, are the extemal forces vectors in the x and y direction, u
and v are the velocity vectors in the x and y directions, w are the weighting functions, N
are the shape functions and p is the pressure, all of them to be defined in detail in
section 2.7.4. The pressure gradient term has been brought to the right hand side of the

system, as a conseguence of being a known vector that takes a value of zero for the first
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iteration and is progressively corrected. The pressure results to be re-fed in equation
(2.4.2) for the iterations to follow will be obtained from the continuity system, to be
defined further on.

So as to link the velocity values obtained from the dynamic system with the
continuity system, the so-called pseudo-velocities are to be defined. Let us first write
the system (2.4.2) as:

£ult; +Eg‘.juj =fu —jﬂw,- %{“P:‘ dQ

j#i

aN,
&8sV +zngvj =fy£ - nwf P; dQ (2.4.3)
JEi ay

In (2.4.3) we have split the coefficient matrices into a diagonal matrix and a full
matrix with zeros in the diagonal positions. This breaking down of the coefficient
matrix of the dynamic system will be used in the definition of the psendo-velocities. We

can re-arrange the terms in equation (2.4.3.) to yield:

_1 oN;
u; —E[“Zgu"j +fa- nwi'“"a‘;'Pj dQJ

J=i

: d!! 2.4.33
a p}

v, :i(_z g:v;+f, —Jﬂ w,

&ii i

If the pseudo-velocities &, and ¥, are defined as:

A il =;

i =_1‘—(_Zgl}'uj + xi] v =—1—[‘28an +fyf] 2.4.4)

we can express the velocities in terms of the so-defined pseudo-velocities plus a

function that depends on the gradient of pressures:

aN, oN,;
uizu}_KipEij vsz:.—ngJpj (245)
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where the pressure-velocity coupling coefficients K/, are equal to:
Kl =— | wdQ {2.4.6)

The relationship between the nodal velocities and the pressure gradients given
by (24.4.) to (2.4.6) is not exact but only an approximation, being one of the
fundamental basis of the segregated method. This approximation has been used with
great success by many authors such as [Rice 86], [Zijl 91] and [Hill 95], having proved
to be able to achieve the right resolution of the incompressible viscous flow problems.

Note that once we have solved (2.4.2) for the velocities, we can calculate the
value of the pseudo-velocities from (2.4.4), and consequently we have a relationship
(2.4.5), that gives the velocity field as a function of both the so-defined pseudo-
velocities and the pressure gradients. The approximation (2.4.4) will be the required
relationship between velocity and pressures. If we replace the velocities in the
continuity equation by their value in terms of both the pseudo velocities and the
gradients of pressure, a system which can be solved for pressure is yielded. Since an
equal order bilinear approximation is also used for pressure, the continuity residual is
obtained by using the same weighting functions as those used in the dynamic equation.

The weighted continuity equation is consequently:

[wa, ,d0=0 (2.4.7)
a

If the divergence theorem in used in the same way as in section (2.1.2) for the
dynamic equation and the approximation of the unknowns in terms of the trial

functions is introduced, the following weak expression is obtained

[whuldQ— [wlu}n}dl, =0 (2.4.8)
0 r,
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where n; is the normal unitary outward vector with respect to the boundary T,.

Dropping the # for simplicity and expanding the terms, (2.4.8) can be re-written as:

I___u+%;_vd£2j un, +vn,) o, (24.9)

Substituting now (2.4.5) into (2.4.8), we obtain the continuity system, that can be
expressed as:

Krp=f* (2.4.10)

where the matrices K” and f? are defined as:

aN N,
kf =1 (ﬂ I +§aw7NKp ay)dg
7= a;'” +%Nv)d9 fow W n, 4N v ;n, ),

The f f vector in (2.4.10) is a known vector that depends on the pseudo
velocities, which have been previously determined making use of (2.4.4). The
continuity system is solved for pressure, and the so-obtained values are re-fed in the
dynamic system posed in (2.4.2). The resulting coefficient matrix of the continuity or
pressure system is analogous to the diffusive matrix in the dynamic equation for any of
the formulation considered, and no stability problems are found in the obtaining of the
pressure field in this way.

To solve this pressure equation we should take into account not only the
prescribed nodal pressure values, which are usually given at the outlets and are
certainly given at some point, but also the implicitly prescribed pressures on the nodes
where the velocity is given. For this type of implicitly imposed pressure, the pseudo-

velocities are set equal to the prescribed nodal velocities, and therefore the value of K/

is taken as zero. Once we have solved the pressure system, velocities are updated using:
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1 oV, 1 N,
u,-—ﬂi—b—ﬁ QW,-—a;-pj dg}. VI-—V{—B;- QW‘-'?}""pj dQ (2411)

to ensure continuity.

The iterative process is based upon assuming a zero pressure field for a first
guess in the resolution of the dynamic equation, providing the velocity field as the
output. Once the pseudo-velocities and the pressure-velocity coupling coefficients have
been calculated, the continuity system is assembled and solved, and thus the values for
the pressure field are obtained. Finally, the velocities are updated, making use of the
newly determined pressure field, and with both the new velocities and pressures the
dynamic equations are reassembled, solved and the same procedure is repeated until
convergence is achieved.

When using a segregated algorithm, the use of uncoupled velocity and pressure
fields may lead to the divergence of the whole process. To avoid this problem, an
under-relaxation of the unknowns can be introduced so as to guarantee the convergence

of the process. The linear relaxation formulae to be used for this purpose is:
¢n =¢rr—1 +a(¢n _¢n—l) (2412)

where ¢ and ¢ are the values of the unknowns (either velocity or pressure) at the

present and former iterations. This kind of under-relaxation is often introduced in the
segregated formulations by other authors as can be seen in [Benim 86] and {Shaw 91].
The momentumn equations are also under-relaxed making use of an inertial relaxation

factor r; defined as:

r=[wdQ (2.4.13)
f+)

with r; being added to the terms in the diagonal of the dynamic coefficient matrix as

follows:

| N,
(gii+r£}1i,‘ +ngju; = fa _ania_‘x}p_f dQ +ru™

j=i
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oN,
(gu+r ki +2 g7 =fu—| m —ayi p; dQ+ry (2.4.14)
ji

with 47" and v/ being the values of the velocities obtained in the previous iteration.
Analogous definitions of the relaxation factor r; can be found in [Choi 97} and [du Toit
98).

The use of this formulation based upon the one developed by [Zijl 91], [Choi
97] and [du Toit 98], leads to a N-dimensioned narrow band coefficient matrix, and
consequently to further memory savings in the resolution of the Navier-Stokes

equations.

2.5. Shallow water formulation
2.5.1. The equations to be solved

In section 1.5.2 the Shallow Water equations were derived and the assumptions
under which the algorithm was potentially useful were exposed. The equations we are
going to work with can be expressed as: '

u,tuu =—gh +vu, +2(S,; —Sf)

)

By +hu; +uh, =0 (2.5.1)
with boundary and initial conditions:

u"(xf’o)=uio(xj) with n,, =0

10,

) =b, on ) =t (25.2)

In order to solve these equations by the Finite Element Method, the usual
procedure that begins with the application of the weighted residuals method is going to
be used on equations (2.5.1). The mixed approach will be used for the Shallow Water
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eguations and therefore, both the momentum and the continuity equations will be
multiplied by the weighting functions and integrated over the domain, in a similar way
as that used for the mixed formulation of the 2D Navier-Stokes equations. Chapter
three has been devoted to the comparison of the results obtained for the mixed, penalty
and segregated algorithms among themselves, and compared with those of other
authors, broadly used as reference results. As this chapter will explain, the results
obtained for the three of them will be totally analogous and there is no peint in
programrning the Shallow Water equations with those three different formulations.
Multiplying the two eguations by a set of weighting functions and integrating

them over the domain Q we have:
jwi (u.‘,r tugu;+gh —vu, _g(Sﬂi =S )}19 =0
o

J’qh +hu; +uh, Q=0 (2.5.3)

Applying the Gauss theorem in the same way as we did in section 2.1.2, the following
weak form would be obtained for the momentum equation:

Iw,.(ut.‘£+uju,..j ( }LQ+VJ- w, i, dQ— gj w,  hdQ — I twdl, =0
4]

(2.54)
After the approximation of the velocity and the depth unknowns has been

carried out in terms of the trial functions, the problem is now to find u and A",

belonging to some subspaces V' € H'(Q) and S} € I2(Q), such that:

jw uh it - g(St- S )m+vj Wl dQ - g [ whhdQ- jr" thwidT, =0

[q" 0} +hhul, +utnt @ =0 VW' eVt  Vg'es! (2.5.5)
2,

with the boundary and initial conditions:
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wl =0 uth=b W 0)=ullx,) (2.5.6)

This mixed Shallow Water formulation has the same advantages and
shortcomings as those found in the mixed 2D Navier-Stokes algorithm, with respect to
the other formulations considered in the former sections. As a consequence, the
divergence-stability condition may be failed for a certain selection in the basic element,
in terms of which the domain is split. An interpolation of different order for the velocity
and depth unknowns has to be consequently employed, and the Q1P0 element will be

the one used for the same reasons as those expressed in section 2.1.3.
2.5.2. Numerical procedure: the star depths and star gradients of depth

Now we have a new difficulty that did not appear in the numerical approach to
the 2D Navier-Stokes equations presented previously: we have the depth itself and the
gradient of depth being included as part of the continuity equation. In fact, the
inclusion of the depth and the gradient of depth in the continuity equation, allows for
the verification of the conservation of mass in a pseudo-3D basis and not on a 2D
laminar sense, as a consequence of having carried out an integration in depth of the
Navier-Stokes equations. As a consequence, some pseudo-non-linearities show up in
the continuity equation, that should be considered in addition to the non-linearity
resulting from the convective quadratic term. The Shallow Water equations will be
integrated in order to cope with this problem.

Let us introduce the following approach; we are going to assume that the depth
values in the continuity equation are going to be constant all over the domain for the
first iteration, and equal to the outflow given depth. In the following iterations carried
out in order to solve the convection, the depths and gradients of depth in the continuity
equation will be evaluated from the results of the former iteration, and this evaluation
will be carried out in terms of a finite difference approach. Since a non-equal order
interpolation of the unknowns must be used in order for the mixed algorithm to

converge, the velocities and the depths are calculated on a different mesh. The depths to

&1
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be re-fed in the continuity equation for the second and the following iterations, are
going to be evaluated on the velocity mesh points. Recall that the basic element used in
this formulation is the QI1P0O basic element, or in other words, the velocity is
interpolated in terms of bilinear continuous functions with respect to a four-nodded
basic element, and the depth is interpolated in terms of constant discontinuous

functions within the basic element. The depth at a velocity node A will be taken as the

mean value of the depths for the former iteration in the surrounding basic elements, i.e.:
R hit B

h =12h;' (2.5.7)
n

=1

Figure 2.5.1. Evaluation of depth on the velocity mesh nodes (h: )

where n takes a value of 1, 2, 3 or 4 depending on the velocity node being a convex

corner, a side, a concave comer or an inside node, and #/ is the constant depth in the

surrounding elements. The gradients of depth on the velocity mesh {aai,aa’; ], will be
x

evaluated from the star depths 4 on a finite difference basis:

L] P
c 1 bk N
h‘- =— = hi =— L N
g HE ;xk;j_xi o ﬂé ;‘yﬁj-yi ° h‘m
(2.5.8)

Figure 2.5.2. Evaluation of the gradient of depth on the velocity mesh nodes

where ky; are the star depths on the velocity nodes in the basic element k, that shares a

common node (i) with 4, x,, and y,; are the x and y co-ordinates of the nodes in the
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basic element %, that shares a common node (i) with &, x, and y, are the co-ordinates

of the node where the gradient of depth is being evaluated and # is defined in the same
way as for the star depths. The contribution to the derivative with respect to x by nodes
with the same abscise is ignored, and so is the contribution to the derivative with
respect to y by nodes with the same ordinate, in order t0 avoid a division by zero.

After each iteration for convection has been solved, the star depths and star
gradients of the depth are calculated and re-fed into the continuity equation. The
iterative algorithm to be used will be more clearly explained in section 2.7.5, once the
general treatment of the convective term has been explained. This numerical procedure
has been developed by the author, and has shown to be able to yield very good results
in the resolution of the Shallow Water equations as will be shown in the numerical
examples in chapter six. In fact, this is a finite difference numerical approach to the
debth field within the finite element frame. The use of a finite difference evaluation of
the derivatives is a common practice in the mixed finite element field, which is broadly
used in the resolution of the unsteadiness of the Navier-Stokes equations, and in
particular will also be used in this thesis, as section 2.7.2 will show.

The use of this algorithm in the resolution of the Shallow Water equations
achieves very good numerical results as will be seen in chapter six. These results are
substantially better compared to those of other authors taking the depth in the
continuity equation as a constant or solving the quasi-non-linearities using the a single
mesh for all the unknowns present in the equations, and consequently leading to some
div-stability problems [Weiyan 92].

The general procedure for the obtaining of the steady system of differential

equations could be written in its matrix form as:

C,(n,vlu+vA v-Bh=f
Db’ p+ER L =0 (25.9)

where C(u, v) is the convective matrix, A, is the viscous matrix, B is the depth matrix,

f is external forces vector, D(h) is the star depth matrix, E(l'l') is the star gradient of
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depth matrix, f is the external forces vector, h is the depth vector and v is the velocity
vector. All of them will be defined in detail in section 2.7. In expanded matrix form this

system of equations can be written as:

Cuv) © QJu vA Q -B_[u] [f,
Q  Cluv) Qfvi+ Q VA -B, | v|=[t,
Q o ojn |0k’ )+E &) D&’ HE,®K)  [b] |@

(2.5.10)

The Shallow Water formulation will allow for the verification of the continuity
condition on a 3D basis and not only on a laminar sense, and therefore constitutes a
better approach for solving real flow problems, as will be regarded in chapter six. It is
also a formulation that allows for the consideration of the turbulent effects as it has
been explained in section 1.6.3. The results obtained for this formulation are very good

as chapters three and subsequent chapters will show.

2.6. SUPG formulation
2.6.1. Introduction

Up to this point we have obtained a set of partial differential equations that rule
our physical problem, we have applied onto them a finite element numerical approach,
and as a result, a system of differential non-linear equations has been obtained. The
finite clement approach has been applied in several manners, depending on the way
both the continuity and the dynamic equations on one side, and the velocity and
pressure unknowns on the other, have been handled. For all the algorithms considered,
a Galerkin formulation has been used, and therefore the weighting functions were
chosen to be equal to the trial functions. Nonetheless the use of a Galerkin (or also
known as Bubnov-Galerkin formulation), may lead to some problems in the obtaining
of the solution by the Finite Element Method. This section will be devoted to the
development of an alternative approach in order to overcome this drawback.

The Finite Element Method was applied when first released to structural

problems. The finite element solution obtained in conventional structural analysis had
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the ‘best approximation’ property, that is, the difference between the numerical and the
exact solutions was reduced with respect to a certain norm [Brooks 82]. The so-
obtained stiffness matrix resulting from the conventional structural prdblems solved by
the FEM is symmetric. Instead, the ‘stiffness’ matrix obtained for fluids is only
symmetric if we consider the Stokes simplification, i.e. if we neglect the non-linear

convective term u;u, ;. This simplification can only be made for the so-called creeping

flow, or in other words sufficiently slow flows with scant depth. In any other case the
coefficient matrix of the resulting system of equations is going to be non-symmetric
and as a result, the ‘best approximation’ property is lost. The faster the flow tums, the
more non-symmetric the coefficient matrix becomes. This can be easily observed if we
regard the terms in the constitutive equation: the faster the flow, the bigger the
Reynolds number and alongside it the magnitude of the non-symmetric convective term
in comparison with the symmetric viscous term. In practice, this kind of instability is
featured by the appearance of some spurious node-to-node oscillations, also known as
‘wiggles’, when a downstream boundary condition forces a sudden change in the
velocity field solution [Roache 76}. One way of avoiding these oscillations is to carry
out a refinement of the mesh, such that convection no longer dominates on an element
level, this is however the cause of very high computational expenses.

Many different formulations aiming to avoid this instability have been
developed, such as the Petrov-Galerkin [Sampaio 91], SUPG, Galerkin Least Squares
[Hughes 89], and Characteristic Galerkin [Lee 87]. The SUPG stabilization technique
will be used in this work so as to avoid the use of very refined meshes, having proved to
be a powerful tool for that purpose.

The SUPG (Streamline Upwinding Petrov-Galerkin) Method succeeds in
eliminating the spurious velocity field, without carrying out an excessive refinement of
the mesh, by making a different selection in the weighting functions so as to fit the
special requirements found in fluids. In the sections that follow we are going to justify
and characterize the use of this newly defined stabilization method, still we should not
forget hOWBVCI;‘, that this modification does not affect the physical formulation of the
problem, but only its numerical approach. This method was first released to solve the

advection-diffusion equation [Brooks 80], and afterward was successfully transferred to
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the problem of the viscous incompressible flow [Brooks 82]. Let us first regard how

this method works in transport problems.

2.6.2. The upwind finite difference stabilization technique for the

advection-diffusion equation

The oscillations reported for the finite element solution of the Navier-Stokes
equations are also présent in the resolution of the advection-diffusion problems
[Roache 76]. The SUPG method was first developed as a natural way of avoiding these
oscillations for the transport equation. The advection-diffusion equation govems for
example, the concentration of a substance in a viscous incompressibie flow and can be

written as:
0, +bo-ko,) =f .6.2.1)
with boundary and initial conditions:
ok =b ~o,) =t olx,0)=9,(x) (2.6.22)

where ¢ is the concentration, u; is a given velocity field, f is the source term, k; is the
diffusion that depends of the fluid nature, # and 7 are given functions of x;and ¢, and @,

1s a given function of x;, When regarding a homogeneous and isotropic one-

dimensional, steady problem, in absence of the source term, the formula ug, =k¢,,,

could be used as a particular case of the general law. The finite difference solutions of
the transport problems are also affected by these oscillations reported for the finite
element resolution of the transport equation. In the finite difference approaches, the use
of an upwind differencing technique was discovered to be useful in the obtaining of
stable solutions [Christie 76]. Let us regard first the finite difference approach to the
one-dimensional advection-diffusion problem, to be later extended to the finite element

resolution of the Navier-Stokes equations.
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In the finite difference method, the differential operators are approximated by

difference operators. The central and lateral finite difference approximation of a

derivative d);ix) may be expressed as:
Central:
tgp =)= LEHILmh)_ g
2h
Lateral:

tgf= f’(1)5w=tg7; for u>0

tgﬁ=f'(x)51—(-x:—£l—f—(x)=tg9; for u<Q

h
{(2.6.2.3)
0
A
o
Rx+h) 4 fﬁ
fix} |
Kx-h} =
Y
x-h x x+h -

Figure 2.6.2.1. Finite difference approximation

The left and right hand-side lateral approximations will be upwind approaches
for positive and negative velocities respectively, in the 1D finite difference solution of
the transport equation. We can now transform a central approximation of the
derivatives into a lateral one, by adding a central second order approximation. The
Taylor series expansion of a function f(x) around the abscise x to the right and left

hand sides may be written as:

87



Chapter 2. Finite element resolution of the viscous incompressible flow
2

Fleth)= F()}+hf(x +% £+

fle=h)= £ ()= hf () % £ ()

for a positive distance . Therefore, the first order central approximation of the second

derivative can be written as:

flx+h)+ f}(; —h)-2f(x) (2.6.2.4)

fx)

Nt

If we add to the central approximation of the first derivatives, a central second
derivative affected by a coefficient k =uh/2, we obtain an upwind approximation of
the first derivative. Consequently, by using this form of artificial diffusion k , we can
solve the problem on an upwind differences approach. The upwind approximation of
the derivatives avoids the oscillations showing up for the central differences approach.
Nevertheless the upwind solution of the transport problem is proved to be overdiffusive
and meanwhile the central difference approach is known to be underdiffusive [Hughes
79]. Consequently, the upwinding methods are based upon adding the proper amount of
artificial diffusion to the central difference method. The problem is therefore solved, by
considering an artificial diffusion coefficient k , that depends on a factor & , being a

function of the Peclet number ¢, that affects the amount of oscillations:
£= ”—;E(a) o =uh! 2% (26.2.5)

The most commonly used analytic expressions for the function & are:

§={al3, -3<as3

i
=cotha —— 2626
sgna, >3 o § =cotha a ( )
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Figure 2.6.2.2. The E function

This method was first used in [Hughes 79], as a non-expensive way of avoiding
the oscillations in the obtaining of the solution of the one dimensional transport

equation, with very good results,

2.6.3. The finite element SUPG stabilization technique for the advection-

diffusion equation

Following the success cbtained in the upwinded Finite Difference Method, this
procedure was applied to the Finite Element Method [Heinrich and Huyakom 77],
[Heinrich and Zienkiewicz 77]. The Galerkin formulation is known to lead to a central
difference approximation. The upwinding method was extended to the FEM by using
non-symmetric Petrov-Galerkin weighting functions, to make the element upwind of a
node heavier than the one downwind (see figure 2.6.3.1). This method is known as the

Petrov-Galerkin formulation.
. —_ u u —

Figure 2.6.3.1. Galerkin and Petrov-Galerkin weighting functions depending on the flow direction

The upwinding effect could be also obtained by adding an artificial diffusion to
the physical one, in the same way as we did for finite differences. By doing so, an
additional problem is found in the multi-dimensional generalisation of the upwind
treatment of the advection-diffusion equation. This problem is the appearance of an

excessive diffusion in the crosswind direction. The so-called Streamline Upwind
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Method eliminates this spurious crosswind diffusion by considering and artificial
diffusion &, that acts only in the direction of the flow, defined as:

k;,=kag, (2.63.1)

where 8 =:t, o’ =uw, and E is the one-dimensional ‘artificial’ diffusion

]’

coefficient [Kelly 80]. By using this Streamline Upwind Finite Element Method, the
spurious crosswind diffusion is consequently eliminated in a simple way, but still there
were some problems. These drawbacks were the obtaining of an excessive diffusion,
caused by the fact that the upwinded convective term was not consistent with the
source and transient terms, that were discretized on an symmetrical weighting basis.

The so-called Streamline Upwind Petrov-Galerkin Method was successfully
extended to the finite elernent resolution of the advection-diffusion equation [Raymond
76], [Brooks 80]. In this method, the streamline upwind effect is produced by using
non-symmetric weighting functions, which affect all the terms in the equations to be

solved. The new weighting functions will now contain an additional term:

w=w+p

If we apply the weighting residuals method to the all-term-including transport
equation, the following integral expression is obtained:

IW(Q’; +(ui¢'_kijq),j )J -f}iQ =0 (2.6.3.2)

[+]

applying the Gauss theorem to the diffusive term, we have:

[wlp, + (o), 0+ [wiko, d0=[wf da+ [w T, 2.633)
4] Q T,

[

In order to turn our symmetric weighting functions into upwinding weighting
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functions, we are going to add a p-dependent term to this weighted formulation, where

p is a function to be defined later in the text. Therefore we have:

JW((P,; +(ui¢’)g )+w,£kjj(p,j dQ+ Z Jp(¢,z +(ui¢_k:}'¢,j )'i _f)=JWf dQ"'jMdrz
o NS o A

As we have already explained, the natural way of introducing the streamline
upwind contribution, would be to add an artificial diffusion term (as the one defined in
2.6.3.1), to the natural diffusion coefficient, to yield:

[w e, +E o 0= [w, (&, + o, Jp 2 (2.6.3.4)
Q Q

We could obtain the same artificial diffusive term from the advective part of the

constitutive equation, if we consider the p contribution to the weighting function:

4]

[wu,d0=[(v+ plig,d0 (2.6.3.5)
Q

Following {Brooks 80], the p function is defined as:

Sbl

w

/) . (2.6.3.6)

7™ h

By using this modified weighting function, we have defined an artificial
diffusive coefficient, equivalent to the one used in the streamline upwind method, but
this time we have kept consistency in the equation due to the use of the same weighting
function for all the terms in the constitutive equation. By doing so, we benefit from the
advantages of the streamline upwinding approach, without producing excessively
diffusive solutions. This method, known as the Streamline Upwinding Petrov-Galerkin
formulation, has proved not only to be a powerful tool for the resolution of the transport

equation at a low computational cost, but has also been extended to the Navier-Stokes

9
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equations with optimum results.

2.6.4. The finite element SUPG stabilization technique for the mixed

Navier-Stokes formulation

In the resolution of the Navier-Stokes equations we have the same oscillations
found in the obtaining of the solution of the advection-diffusion equation, but this time
these oscillations are materialised as oscillations in the velocity streamlines. These so-
called ‘wiggles’ are specially important for high Reynolds numbers or in other words
for systems including large convective matrices. The extension of the SUPG technique
to the Navier-Stokes equation, manages to overcome these oscillations without refining
the mesh, simply by using these newly defined weighting functions. Let us extend the
SUPG approach to the mixed Navier-Stokes formulation as a start. The streamline

upwind Petrov-Galerkin weighting functions to be considered now are of the form:

W, =w+F (2.6.4.1)
and therefore an extra term should be considered in equation (2.2.1) to yield:

d[w‘" {ul, +uful - fl )2’Q+VLJ| wf".uf‘.dQ—Ilj-JQh wj'f,.pntz'ﬂ—:[l_2 thwidl, +

LITLT

+Y jﬁ,"(u?; +ujul —vug +—:;p.'.5 -f }d9=0 ;
<4,

[q"u},dQ=0 (2.6.4.2)
N

where p; is the discretized streamline upwind contribution to the weighting

function and can be defined [see Brooks 82) in analogous way to (2.6.3.6) as:

pr = FA (2.6.4.3)
S
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where the multi-dimensional definition of & is given by:

hh + I}
k= w (2.6.4.8)
with
& =(cotha§ _OCLJ M= [«:otho:,J —-—-]
% n
_uch _ph,
§ o, =

2v 2v

uy = egul, Uy =€l (2.6.4.5)

where h., h, and e, e, are the characteristic basic-element lengths and unit

vectors in the direction of the local axes & and 7 (see figure 2.6.4.1). The

parameters &, and o, are the directional Reynolds numbers of the basic element,

ul; is the velocity in the interior of the element and v is the kinematic viscosity of

the fluid. Different versions of the streamline upwind formulation have been used by
other authors and can be found in [Franca 91], [Sampaio 91}, [Hill 95], [Hannani
951, [Cruchaga 96], and (Choi 97]. For the present work, the stabilization technique
will be based upon the streamline upwind Petrov-Galerkin weighting functions as
defined in (2.6.4.1) to (2.6.4.5). These weighting functions will be applied on the
formuiation as specified in sections 2.6.4 to 2.6.7, with very good results as will be
seen in the numerical examples shown in the following sections. Other alternative
SUPG formulations, as those found in [Franca 92] and [Hannani 95]., were also
attempted, with worse results compared to the stabilization provided by the so-
defined SUPG formulation.

93



Chapter 2. Finite element resolution of the viscous incompressible flow

1 \ he

Figure 2.6.4.1. Characteristic basic-element lengths and unit vectors

—

2.6.5. The finite element SUPG stabilization technique for the penalty

Navier-Stokes formulation

The SUPG penalty formulation can be expressed now as:

L h [F AN

JW:‘(“:',: +uul, —ﬁ}!ﬂ+vjﬂ wiu! dQ+ J’%u.".w.".dﬂ—i_ tfwhdD, +
& ’ 2 o

+2 P?(u!; rully vty — L), - 1, ]dﬂ=0 (2.65.1)

QQ'

with the pressure being post-processed from the formula:
Pl = -%u!; (2.6.5.2)

where the definition of P! is the same as that in (2.6.4.3). The SUPG stabilization

technique gives the same good results as those obtained for the mixed formulation as
is clear from the numerical examples shown in chapter number three and in

following chapters.
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2.6.6. The finite element SUPG stabilization technique for the segregated

Navier-Stokes formulation

The segregated finite element formulations adopted in [Scheneider 78] and
[Benim 86], give a successful equal order approach to the viscous flow problems,
which do not suffer from the spurious pressure modes found in the equal order mixed
formulation. Moreover it accomplishes a great reduction in the memory requirements.
However, it still suffers from the same shortcomings found in the mixed and penalty
formulations, used in connection with the Bubnov-Galerkin weighting functions. In
(Benim 86] a segregated formulation with SUPG stabilization that affects only the
convective terms in the formulation is used. As shown by [Hughes 79], the use of the
SUPG weighting functions on not every single term of the discretized equations, may
lead to some inconsistency problems between the so-weighted terms, and those being
centrally weighted by the conventional Galerkin functions. In [du Toit 98], it can be
found a segregated finite element formulation that applies the SUPG weighting
functions to all the terms in the dynamic equation. In that formulation the resulting
continuity terms in the momentum equations are retained in the formulation, as they are
thought to be able to contribute to the stabilization or smoothing of the convergence
process. The segregated formulation proposed by the author of this thesis, uses the
SUPG technique on every term in the dynamic equation, using the conventional
Galerkin weighting functions for the continuity equation. The continuity terms included
in the dynamic equation are dropped as in other formulation considered within this text.
The results to be obtained are optimum, and can be seen in the numerical examples in
chapter three.

For the segregated algorithm, the SUPG formulation to be adopted is:

jwf(uj?u,.’:j —-ﬁ"}iﬂ+va,f:jui':de+Lw:'pfdQ-—Ir thwpdl, +
a 3

+Y [ prllut, —vuly + pt ~ £, )dr=0 (2.6.6.1)
en,
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where the gradients of pressure term is considered as an unknown. The system (2.6.6.1)

15 re-written as:

8il; =—285j iYra ), ! p; dQ
ri-3
WV = Zg‘l J i~ d~Q- (2662)

J#i

The pseudo-velocities are defined in the same way as in (2.4.4) to (2.4.6) except for the

pressure-velocity coupling coefficient X7, that is equal to:

—j w.dQ (2.6.6.3)
gli

The SUPG formulation will not affect the continuity equations at all. These will remain

as:

o, oN,; ow, oN,
N T
M g - w (N N v.n, )dT, 2.6.6.4
_J.Q -"a-;Na +-a7NV -L Mt Ny, (2.6.6.4)

Once we have solved the pressure system, the velocities are updated using:

aN oN
u, = ——-_[ dQ v, =V, 1 W, ’pj dsd 2.6.6.5)
gu I gii 2 ay

S0 as to ensure continuity. The SUPG segregated formmlation will use the same
assumptions and implicitly imposed boundary conditions as those shown in section

242,
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2.6.7. The finite element SUPG stabilization technique for the mixed

Shallow Water formulation

Proceeding in an analogous way to that carried out in 2.6.4., we obtain

the equations:
Iw u, +usul - S;j +VL wl ul.dQ - gjﬂ "dQ—Lt{'wf‘dI‘z+

+y jp{‘ (uf‘; +ulul =il + gh! - f*lda=0
¢ Q,

fa" (e +h'ul +uim; i =0 (2.67.1)
Q,

where 7, takes the value showed in 2.6.4.3.

The implementation of a SUPG-type stabilisation algorithm allows for good
results on not very refined meshes and flows featured by a high Reynolds number in
the three types of formulations considered, as will be shown in the numerical
examples. The use of a very dense mesh involves high computational costs and
consequently large amounts of memory requirements and long CPU times. The
SUPG formulation yields, as a result a better computational efficiency [Franca 92],
[Hannani 95], [Chot 97}, [du Toit 98).

2.7. Resolution of the system of equations

As a consequence of the use of a finite element numerical procedure, we have
reduced the physical problem of the fluid flow, with analytical solution for a limited set
of particular cases, to a system of equations that gives an approximate solution on a
certain set of finite points. We do not have now any spatial derivatives in our resulting

system of equations, but we do still have derivatives with Iéspect to time for the
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unsteady formulation, and besides we have some non-linearities in the convective term.
Let us regard now how the partial differential, non-linear system of equations is

transformed into an algebraic one and how the former is solved.

2.7.1. Transforming the non-linear system into a linear system of equations

The convective term C{u, v)u that appears in all the formulations considered, is

not the product of a coefficient matrix times a vector of unknowns, but a non-linear
velocity-dependent function. This term should be eliminated in order to transform the
resulting system into a linear system of equations. The numerical scheme to be used for
this transformation could be, in principle, any of the procedures used in numerical
analysis for this purpose, such as the wellknown Newton-Raphson numerical
technique or the simpler Picard approximation method.

The Picard method is simply based upon treating the convective term as a
known vector, brought to the right hand side of the equation by using the velocity field
values of the previous iteration. This simple method results in divergent solutions for
Reynolds numbers larger than 10” in most of the practical problems, and particularly in
the Cavity Flow problems to be shown later [Carey 84]. Even for the convergent cases
this procedure is often very slow.

The well known Newton-Raphson method converges quadratically in the
vicinity of the soletion, but the necessity of an appropriate initial guess may prevent the
solutions from converging [Jamet 73]. A continuation technique, or in other words the
obtaining of a solution for a lower Reynolds number (which is employed as a first
guess), is often used in connection with the Newton method. Moreover the fast rate of
convergence of this methods is scarcely useful due to the usually small range of
convergence in most of the practical examples.

The method used for the linearization of the system of equations in this work
will be the so-called successive approximation method, because of its simplicity and
the good results achieved for problems with Reynolds numbers of moderate order (up to
10%), [Gartling 74]. The method converges linearly but in most of the practical

problems it reaches the solution in less than 10 iterations. In this method the convective
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coefficient matrix is iteratively obtained as a function of the previously determined
values of the velocity field. The non-linear velocity-dependant convective term
Clu,v)u, is taken for the n-th iteration as the product of the coefficient matrix
Cfu™, v 1", assumed as a function of the velocity field obtained in the previous

iteration.
C(u",v"h" =C(u"“,v""}g" 27.1.1)

For the SUPG convective integral term being defined in all formulations
({2.6.4.2),(2.6.5.1), (2.6.6.1), and (2.6.7.1)) as:

% uu,,d0 (2.7.1.2)
2y

the linearization by the successive approximation method would lead to the

approximate convective term defined as;

[w a0 27.13)
2y

The matrix C is not anymore a function of the present unknowns but depends on
the previous values of the vector field, and is taken as zero as a first guess. The solution
is usually achieved within some tens of iterations and depends on the Reynolds number
of the flow, or in other words on the amount of convection we have to deal with. The

iterative process will be repeated until convergence is achieved.
2.7.2. Transforming the differential system into an algebraic one

For the derivatives with respect to time, a finite difference approach will be used

in order to transform our partial differential system into an algebraic one. Once the
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unsteady term J w,u, dC is discretized and the elementary matrices are assembled, the

[ 4
Q,

differential matrix term can be obtained on a backward differencing scheme as:

1

1_)11 _n—l
M, gsz[————) 2.7.2.1)

1

where 1" is the unknowns vector at the present iteration and " is the unknowns

vector obtained in the former iteration. Therefore, the second term in expression
(2.7.2.1) can be brought to the nght hand side of the equality. The matrix equation for
the mixed and penalty formulation is consequently:

1 n n n n n n 1 n=|
EMUQ +C, (", v" " +vA, 0" -Bp =f+-A—rMuy '

B u" =0 27.2.2)
and equivalently for the penalized expression:

LMo+, f0m, v b +vA, 0" + 1By =f + M, p™ (2.7.2.3)
At £ At

In both cases we are going to solve the non-linearities of the convective term for
each time step. Once the convection is solved for that time-step with the convergence
criterion selected, the calculations for the next time step are carried out, up to the point
in which the required elapsed time is reached.

In the following sections we are going to detail the basic integral terms
appearing in the mixed and penalty (section 2.7.3), segregated (section 2.7.4) and
Shallow Water mixed formulations (section 2.7.5), with all the numerical assumptions

and stabilizing techniques to be used on each one.
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2.7.3. Detailed matrix expression of the mixed and penalty formulation

For the velocity-pressure integrated method, the expanded matrix equation that

gives solution to the viscous flow problem, can be expressed as:

M o Qfu] [ch"v) a afu
Lo M af|v|+] o  cpv) afv |+
Q o afp Q a o]y
vA. Q@  -B,Ju] [t M Q Qfu™
o v -B|vi-lt|+le M elv @3
®.)Y B, a |v] | o o fp™

where u™, v"! and p ™ are the unknowns at the previous step time. The matrices

involved in the system of algebraic equations (2.7.3.1) result from the assembling of the
elementary matrices:

M= [wN, dQ C;=[w Nty D, Wi Vo
i a itYj [} 3 i F 3l ax k' k ay
ow N, ow oN,
= = — L AG
R e TS
o, o,
B_u.j =J.n¢¥xjdﬂ B.w'.f = L’ijdg
f.xi:."ﬂ W,.fﬁdQ'*L.th:idQ fyi:jn W‘_f‘.dQ+LWj.t;-dQ

27.3.2)
where N, and ¥, are the velocity and pressure Q1P0 shape functions, as defined in the

appendix. When the penalty finite element formulation is used, the following single

mairix equation is obtained:
u” vA Qllu"
+ +
vn ) vﬂ Q VA vﬂ

o A
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LB Doen) 0 LM 2w (2.73.3)
elDT B Hv|T|f,| alQ M|

where the elementary matrices are:

M..=jw.N.dQ c:jwzvu a—N-i+Nv§1f—"-dQ
if i (LA i : H AL ax 134 ay
e N,
4.:]9‘22; ‘zaydg —jaWaN’dQ
N, aw, oN,
an=‘[n‘7y‘—jd9 D..=_|'n‘~§r— 5
fxizL'vvifxiqu'Lmtmm fi=_[Q Wﬁfyidg'*'L-W;ty:dQ

(2.7.3.4)
2.7.4. Detailed matrix expression of the segregated formulation

The detailed matrix expression of the dynamic system in the segregated

formulation, can be written as:

[Cle. v)Iu]+ PATu]=[.]-[B. Ip]
[ v)Ivl+palv]=lt, |- 1B, Ip]

(2.74.1)
with

c—jw NuaNf+N N, 40
l'j‘_nr i k% k ax k k ay
o, N, L/ N,

= —1dO
L ox ax ay ay
N, N,
“hrgre f
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fu= ], WfadQ+ | widQ fu=|, wf.a0+ [ wedQ

(2.7.4.2)

and the detailed matrix expression of the continuity equation can be written as

K’ Jpl=l? ] (274.3)
where:
W, om N,
kP = —-—N K” LN K —LdQ
J e dy
jﬂ ZLNg, +§ﬁN ,dQ (2.7.4.4)

%

where &, and ¥, are the pseudo-velocities and K is the velocity-pressure coupling

coefficient as defined in section 2.4. The iterative process can be resumed in the

following flow diagram;

Taitial guess for velocity and presame.

[ ]

Calaulate the coefficicats far the dynamic
equation

Apphy velocity boundary conditions.

Solve the dynamic equation for velodty,
with guessed pressure.

¥

Caleuk i for the
aquation
¥
v

Solve the contiauity cquation for pressure.

Update comvective effects on the dynamic
equation.
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The convergence process will be stopped once the convergence criterion is held.
2.7.5. Detailed matrix expression of the mixed Shallow Water formulation

The system to be solved for the Shallow Water equations will be:

Cwv) Q@ Qu vA Q -B, [u] [f,
Q Cluv) Qfv|+ Q VA ~-B, [ vi=|f,
Q e afr| |p,b)+EH) D&)+E,H) o b] [@

(2.7.5.1)

where h” and h° are the depth star and the gradient of depth star as defined in 2.5.2.,
which constitute an original contribution by this thesis.
The matrices involved in this system of differential equations result from the

assembling of the elementary matrices, which can be written as:

(. N, N,
C,-j=jwi Nkuka_x-’-Nkvk ay dQ

Q,

» ..gL——ZdQ Byg=gjﬂ'ig"—xjdﬂ
dN, . ON;
D, =], 2. —ldQ D,; = |, Kx: 5@
E, =jﬂ. B} 2N ,dQ E, =L! B, XN ,d0
fu= | mifud+ [ wiia0 fu= |, WFdQ+ [ wiadQ
(2.7.5.2)
where 4, and & » b, are the star depth and star gradient of depth as defined in
section 2.5.2.
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The iterative process to be carried out in order to achieve the convective effect
for all the algorithms considered will be stopped when we have reached convergence.
Once we have obtained the algebraic system for all the formulations considered, a
solver sub-programme will be devoted to its resolution. The solver chosen for each of
the formulations considered will not be same one and this point will be discussed in the

following section.
2.7.6. The direct solver with skyline storing

As has already been said, the mixed formulation results in a system of 2M+N
algebraic equations in which only the equations corresponding to the boundary
conditions can be eliminated from the global resolution of the flow problem. Anyway,
these additional conditions do not usually imply a drastic decrease in the number of
unknowns. The storage of such a big amount. of information requires a clever data-
keeping strategy. If we are trying to store a system of equations that gives solution to a
flow problem calculated on a QIP0O mesh of some few elements, say a side of a ten, we
will find out that we are dealing with an associated coefficient matrix of about 10°
elements. For apparently coarse grids, the memory requirements involved become

amazingly large and prevent us from using a whole matrix storage procedure.
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When using a direct numerical method for the resolution of the system of
equations, an alternative way of data storing is the so-called ‘Skyline’ or column profile
storage. The matrices we are dealing with are sparse, or in other words are matrices that
contain a small number of non-zero elements. Instead of storing every single matrix-
element, we could think of storing only the first non-zero element of each column and
the following elements in that column up to the diagonal. By doing so, we would avoid
the storage of many zero elements. This method will be especially efficient if we have
previously re-numerated the mesh so as to reduce the band width to a minimum, and
together with it, the height of the ‘buildings’ to be stored. All the non-zero upper-
triangular-matrix elements together with some zeros, will be therefore stored, in a
vector-valued variable. Due to the fact that we are dealing with a convective-term
including formulation, the coefficient matrix associated to the system is going to be
non-symmetric, and another vector-valued varable is required for the storing of the
lower triangular matrix.

Together with the definition of the vector-valued variable v, an additional
pointer vector p has to be defined, so as to indicate the position of the elements. In this
integer vector p of dimension n (the dimension of the matrix to be stored) will be stored

for each column, the position occupied in v by the diagonal element of that column.

114

O Non-stored zero element.

B Stored non-zero element.

B Stored zero element.

Figure 2.7.6.1. ‘Skylipe’ storing
For instance, the pointer vector for the upper triangular matrix shown in figure 2.7.6.1

would be:
p=(1,2,3,7,10,11,12,...)
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and the corresponding v vector would contain the elements:

v=(a11, axn, 033, 14, A3, A4, G4, A3s, gs, Ass, gy 477, ---)

Therefore, the generic diagonal element a; will be stored in v(p(j)) and element a; will
be stored in v{ p(j)-(j-i) ).
Special attention should be paid to the fact that neither the basement nor the

penthouse neighbours are allowed in this town, and therefore the inequality:

0< j-i<p(j)-p(i-1) (2.7.6.1)

should be always verified throughout the program calculations.

When programming these aspects and after the conectivity data of the problem
have been read, a program module should be devoted to construct the pointer vector, or
in other words the ‘shape of the stiffness matrix’, that will be the same for both the
upper and lower triangular matrices. Once the pointer has been defined, it will be used
for every single reference to the elements in each of the e]efnentary matrices that make
up the coefficient matrix.

It can be proved that, when using a direct resolution of the system and due to the
matrix operations involved in it, no element is going to be thrown out of the ‘buildings’
when a skyline storage procedure is employed, and therefore no data is going to be
‘lost’ in this way. The implementation of a direct solver as a result, allows for the use of
this kind of storage.

The method used for the direct resolution of the system, should work on non-
symmetric matrices, and as long as the non-symmetric coefficient matrix remains as
positive definite, a Crout factorization can be used. The Crout method factorises the
coefficient matrix A into the product of a lower and an upper triangular matrices,
A=L-U. Then, in order to solve the system of equations A-x=b, it is enough to solve the

problem within the two following stages:

L:z=b solve for z
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U-x=z solve for x (2.7.6.2)

where the matrices L, U can be expanded as:

—In 0 0 = O] ruu W Wy ™ Uy,

L, L, 0 =~ 0 0wy uy o,
L=, L, &, = O U=10 0 uy ™ u,

_lnl Irl! ln3 " Inn J L O 0 0 e unn i

(2.7.6.3)

The lower matrix system can be easily solved by obtaining sequentially the values of z;

from i=1, by making use of the simple algorithm:
1 i-1
7, = T b, _Zi‘.j z (2.76.4)
i =l

and in an analogous way for the resolution of the upper system U-x=b.
The LU decomposition of the coefficient matrix is not still uniquely determined.
One way of avoiding this point is to set the diagonal values of the mamrix L as 1, as a

consequence, the factorization can be calculated by using the formulae:

k-1
w, =a, iy =ay— Y lou, j2k (2.7.6.5)
p=l
a, . I N .
L, =—L j>1 l,=—/]a, —Zl‘,.‘r,up,t i>k (2.7.6.6)
;1 Uy =l

For details you can refer to {Kincaid 96] for instance. This direct solver of the
Crout type, together with the column profile storing will be used in some of the

formulations as explained later in the text.
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2.7.7. The iterative solvers used in connection with sparse storing

The direct schemes for the resolution of systems of equations are one-step
methods that give an exact solution to the algebraic systems. Nevertheless, when either
the mesh is progressively refined or very large domains are going to be considered, the
memory requirements involved became extraordinarily high and unapproachable for
many of the available computers, even if some kind of clever storage procedure is used,
such as the band or the ‘Skyline’ storing. In order to avoid this problem an altemative
and more efficient storing scheduie should be used.

The ‘cheapest’ storing mechanism is to keep in memory exclusively those
elements different from zero. This is a more efficient procedure- compared to the
‘Skyline’ storing, that avoids wasting memory resources in storing mid-height zeros,
which can be more numerous than the number of non-zero elements, even when the
mesh is re-numbered so as to reduce the band width to a minimum. This effect can be
easily observed in the coefficient matrices obtained for the mixed and penalty
resolution of the fluid flow (see figure 2.7.7.1). The nature of the formulation implies
that the employment of a skyline storing is going to involve the use of a fairly large

amount of memory requirements, regardless of the renumbering of the mesh.

Figure 2.7.7.1. ‘Skyline’ storage of the mixed, penalty and segregated ‘stiffness’ mairices

Provided that the sparse storage cannot be used in ¢ombination with a Crout
solver, due to the fact that some elements could be ‘thrown out’ of the sparse stencil,
when this type of storage is used, some other algorithm should be employed in order to

solve the system of algebraic equations.
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O Non-stored zero element.

B Stored non-zero element.

Figure 2.7.7.2. Sparse storing

There is not a standard scheme for the so-called indexed storage of sparse
matrices, on the contrary,‘it can be carmried out in many different ways. One of the most
commonly used is the row-indexed sparse storage mode, that requires a memory space
of only twice the number of the non-zero matrix elements. Two vector-valued functions
are required: an integer pointer vector (p) and a real vector (v), where the sparse
elements themselves are loaded.

The general rules are: the first 2 locations of v, store the diagonal elements in
order. Each of the first # locations of p stores the index of the component of the vector v
that contains the first off-diagonal element of the comesponding row of the matrix. If
there are not off-diagonal elements for that row, it is one unit greater than the index of
the component of v, of the most recently stored element of a previous row.

The first component in p is p(1)=n+2. The value of p(n+1) is one unit greater
than the index of the v-component of the last off-diagonal element of the last row. The
value of v(n+1) is not specified. Entries in v at locations greater or equal than n+2
contain the off-diagonal values, ordered by rows from left two right. Entries in p at
locations greater or equal than n+2 contain the column number of the corresponding
element in v.

The storing of a viscosity matrix A, corresponding to a domain with two QP

basic elements is shown as an example.
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1 [27] 3
I i i
4 5 6
L

Figure 2.7.7.3. Two Q:P; basic element domain.

The elementary diffusive matrix for a square element of side two would be:

4 -1 -2 -]
PO R BRI -

6|-2 -1 4 -1
-1 -2 -1 4

*

assernbling the two elementary matrices, the following diffusive matrix is obtained:

7 2 3 4 5 6

1 4 -1 -2
R 8 2 |2
A=-— 3 .1 4 -2 -1

6

4 |1 ERN IR 1

5 |-2 -2 -2 -1 8
6 R -1 B! 4

Proceeding as explained in the fundamental rules, the row-indexed storage of the

former matrix would be:

1 z 3 7 3 6 7 8 9 10 |1 12 3 |14
7 1 16 19 122 |21 [30 [z a 5 1 3 4 5
4 ) 4 4 ] 1 ] 1 2 1 1 2 2

15 16 17 18 19 20 21 22 23 24 25 26 27 28 9

-2 -1 -2 -1 -1 -2 -1 -2 -2 -2 -1 -1 -2 -1 -1
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Chapter 2. Finite element resolution of the viscous incompressible flow

A program module is to be devoted to the conversion of the geometric data of
the problem into a sparse matrix stencil, or in other words a pointer vector has to be
defined to address the data vector.

The benefits achieved by the use of this compact storing scheme would be
useless if a Crout solver were to be employed. As it has already been said, these two
techniques are not compatible. On the contrary, the so-called Krylov iterative
techniques provide an efficient iterative method to solve a system of equations,
when the indexed sparse matrix storage is chosen for the handling of the problem
data.

2.7.8. The iterative solver. The Biconjugate Gradient Method

The main drawbacks of the direct methods are the high computational costs
involved in their resolution (O(n3)), and the restrictions derived from the storing of
the coefficient matrix. On the other hand, they give as a result the exact solution of
the equations and they can be solved for a different election of the right hand side
vector b. For large dimensioned systerns, the iterative solvers are preferred as a
general rle. In these methods the solution of the system of equations is obtained
from a succession of vectors x**'= xk”(xk), the last of which will be the required
approximation to the exact solution. These iterative solvers can be of the stationary
type such as the Jacobi, Gauss-Seidel, or the SOR (Successive Overrelaxation)
methods. In these stationary iterative methods the transition from x* to ¥*! does not
depend on the previous iterations.

In the so-called Krylov methods, the solution of the linear system of
equations is obtained by minimizing a quadratic functional. This minimization takes
place over certain vector spaces, the Krylov spaces, from which this family of
iterative methods takes its name. The Conjugate Gradient, Lanczos, Arnoldi and
GMRES methads are some of these techniques. These methods not only allow for
the use of a sparse matrix storage scheme, but also permits to reference the
coefficient matrix only throngh its multiplication by a vector. Moreover these
methods can give the exact solution to the problem in, at most, # iterations with

exact arithmetic. The accurateness of the solution will depend upon the round-off
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error of the computer used in the calculations. Compared to other iterative methods,
such as the Gauss-Seidel or the SOR methods, the Krylov methods converge with a
faster rate [Axelson 96). Although the number of iterations depends heavily on the
numerical parameters chosen in its resolution, these methods are broadly employed
when a large system of equations has to be solved.

The Krylov methods, sometimes also referred as Conjugate Gradient Methods
as a whole, were first presented by Lanczos in the early fifties [Lanczos 50], and
since then many different approaches within this frame have been developed. The
formal Conjugate Gradient Method was first developed by Hestenes and Stiefel in
1952 [Hestenes 52). The Conjugate Gradient Method is based upon obtaining a

successive approximation of the solution by adding to the k-tA iteration x,, a term

that depends on a set of orthogonal directions p, .
X, =X, +A,p, (2.7.8.1)

This set of vectors p; is chosen to be a conjugate or orthogonal set with
respect to the coefficient matrix A, and therefore p; A p; = 0, for every i # j. The
problem of solving the system Ax=b can be also regarded as finding the vector x

that minimizes the function:

f(x)=%x-A—x—b-x (2.7.8.2)

This function is minimized when its gradient f, =A.x-b equals zero, which is
equivalent to solving the initial system Ax=b.

A succession of search orthogonal directions p; and improved minimizers x;
is generated in order to carry out the minimization of the function (2.7.8.2). At each
stage, a guantity &, is found that minimizes f (x,: +a,,p,‘), and x;., is set equal to
the new point. The plain Conjugate Gradient method can only be used in connection
with symmetric and positive definite coefficient matrices. As we already know, the

coefficient matrices resulting from the use of the Navier-Stokes equations is non-
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symmetric as a consequence of the presence of the convective term, and the plain
Conjugate Gradient method cannot be used.

During the seventies, several algorithms of the Krylov type were extended to
the resolution of not necessarily symmetric and positive definite matrices such as the
methods developed in 1976 by Vinsome and Golub [Golub 76]. The formal
Conjugate Gradient Method can be regarded as a particular case of the more general
Biconjugate Gradient method, that can be used on not necessarily symmetric and
positive definite coefficient matrices. The BCG method was presented by [Fletcher
76], having proved to be a robust and effective method [Golub 89]. An algorithm of
the BCG type will be used in this doctoral thesis for the resolution of the linear
systems of equations, as one of the most commonly used schemes for solving not
necessarily symmetric and positive definite coefficient matrices. The BCG method

constructs four sequences of vectors, r.,E,p..P., with k=1,2,... For the first
iteration, the values of r,¥ are given as a first guess and the others are taken as

p, =1, P, =T . The series of vectors are taken as (see [Press 92]):

L

a, =m L,=L-QAp, %, =% -aqA" P,
& &
rlf:+i Tin
B = ¢ o Pea =1+ Bips By =E + 5B,
r
(2.7.8.3)

The Conjugate Gradient Method is a particularization of the BCG method in
which ¥ =r, and P, =p, for all k., and can be used only when the coefficient
matrix is known to be symmetric and positive definite.

The iterative process to be carried out is the following:

-For the first iteration r,,¥,p,,and P, are taken as the residual b—A-x,, where x, is
the initial guess for the solution of the system.
-Then the series terms in equations (2.7.8.3) are calculated.

-The next improved minimizer x..; is taken as Xx,, =X, +ca,p,. This equation

guarantees that r,,, from the recurrence, is in fact the residual b-A-x, ;.
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Chapter 2. Finite element resolution of the viseous incompressible flow

-The iterative process will be halted once the solution is considered to be accurate

enough. For the calculations included in this work, the process will be stopped when

the quantity |A-x—b|/b| is less than 2 minimum tolerance error, the ‘tol’ parameter,

to be specified for each particular case.

This method should arrive at the exact soluticn of a system of not necessarily
positive definite or symmetric equations in less than n iterations; if more, we would
run out of linearly independent orthogonal directions. But this exactitude may not
take place in practice in less than r iterations, due to the round-off error. In that
case, the subroutine can be called again up to the point in which the tolerance
criterion is verified.

The number of iterations in which the system is considered to be solved, can
be reduced by using a variant of this method, known as the Preconditioned
BiConjugate Gradient Method (PBCG). This method is based on the idea of pre-
multiplying our system of equations by the inverse of a matrix A, loosely speaking

as similar to A as possible, and known as the preconditioning matrix.
(K+*-A)x=K"b (2.7.8.4)
In the best possible election A is equal to A, and the solution is reached
straightforwardly. There is a vast literature about the question, still not solved, of
‘what preconditioning matrix could achieve a better convergence [Pini 90}. For our
purposes the A matrix will be taken as the diagonal of A, for any non-zero diagonal

element, case in which it will substituted by one. For an efficient implementation of

the PBCG method, two additional sets of vectors, 2z, and 2, are introduced:
Xz,=r, ad X .2, =% (2.7.8.5)

where the newly defined variables in (2.7.8.3) are:
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o, = Rz B, L
B.-A-p, Tz,
Piv =% + BiP, Bew =2 + BB, (2.7.8.6)

The PBCG subroutine used in this thesis has been adapted from the one in
[Press 92].

These direct and iterative ways of solving the resulting system of algebraic
equations have been implemented, and the so-obtained procedures have been used to
solve the viscous incompressible flow.

The storing of the data on a full matrix basis simplifies considerably the
writing of the code, but it is only affordable for very small meshes, of say 10° nodes
when run in a conventional personal computer, and beyond this level results in a
memeory overdraft. The FEM is usually used on a more refined mesh than that, even
for small domains, and therefore this storing procedure is not very useful at all,
except for verifying purposes.

The column profile storage procedure achieves a considerable reduction in
the memory requirements, compared to the full matrix storing, and allows for a
direct resolution of the system. Thus, an exact solution of the problem is obtained,
with a fairly high computational cost. A considerable amount of memory is wasted
in the storage of some mid-height zeros, and this loss cannot be avoided with an
adequate renumbering of the nodes when using the mixed and penalty algorithms,
due to the own nature of these so-defined formulaticns. As a consequence, in the
examples showed in this thesis, this kind of solver will be only uwsed for the
segregated formulation. For this formulation, the size of the system to be solved is
only of n, dimension, with n being the number of nodes in which the domain is split
on an equal-order basis for both velocity and pressure. Moreover, a properly carried
out renumbering of the mesh, considerably reduces the memory requirements in the
segregated formulation.

The sparse matrix storage, and specially the row-indexed sparse storage mode,
used in connection with an iterative Preconditioned Biconjugate Gradient Method,

allows for great memory savings with low computational cost. Only twice the
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Chapter 2. Finite element resolution of the viscous incompressible flow

number of non-zero elements are needed to be stored, and much more refined
meshes can consequently be used. The method has for this reason been used in the
calculations of the mixed and penalty formulations, which present very high
computational costs when used in connection with a direct solver. The shortcomings
in the iterative solver are derived from the fact that the solutions so-obtained are not
exact (due to the use of a no.n—exact arithmetic), and the need for a proper selection
of the preconditioning matrix and the tolerance parameter, so as to allow for an
efficient convergence. Nonetheless the PBCG method reduces considerably the
memory requirements for the mixed and penalty formulation and provides a very
accurate solution.

In chapter two, the methodology to be used in the resolution of the
incompressible flow has been presented. In the following chapters several examples

of the good behaviour of the algorithms will be presented and commented upon.
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CHAPTER 3

VALIDATION OF THE MIXED, PENALTY AND
SEGREGATED ALGORITHMS MAKING USE OF THE
CAVITY FLOW BENCHMARK PROBLEM

Las estatuas sufren con los ojos
por la oscuridad de los ataiides,
pero sufren mucho mds

por el agua que no desemboca.

...que no desemboca.

Federico Garcfa Lorca, 1899-1936
Poeta en Nueva York, Nifia ahogada en el pequefio pozo
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CHAPTER 3. VALIDATION OF THE MIXED, PENALTY AND SEGREGATED
ALGORITHMS MAKING USE OF THE CAVITY FLOW BENCHMARK PROBLEM

This chapter has been devoted to the validation of the algorithms implemented in this
thesis by comparing the results obtained with the 2D Navier-Stokes formulations explained in
the previous sections, with reference results obtained by other authors. These compén'sons will
be made upon the weli-known Driven Cavity Flow benchmark problem, often used in the related
literature for this purpose.

As has already been said, many authors agree to split the finite element formulations for
solving the Navier-Stokes equations into three main different groups, depending on how the
primitive variables velocity and pressure are treated. These categories are the mixed, penalty and
segregated formulations. One of each of these algerithms has been implemented making use of a
stabilization technique of the SUPG type, as explained in section 2.6. The Cavity Flow benchmark
problem has been numerically solved by using these formulations. The results for this academic
problem will be the same for the three of them as expected, due to the fact that the numerical
devices used in their resolution have no influence on the results to be obtained. These results will

also be in good agreement with those of other authors, as will become clear in later sections.
3.1. The Driven Cavity Flow benchmark problem

The driven cavity flow is a classical test used by many authors to check the quality of the
methodology employed in the resolution of the 2D Navier-Stokes equations, This benchmark
problem is based upon the flow in a square cavity with prescribed horizontal velocity in the upper
side and solid boundaries in the lateral and bottom sides, This is a challenging problem due to the
presence of several re-circulating regions in which the solution changes rapidly, and because of
the pressure singularities that show up in the upper comers. This benchmark test will be used,
therefore, to validate the algorithms developed in this thesis by its comparison with the results

obtained by other authors. The results to compare with, will be those of:
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- The benchmark solution of Ghia et al. [Ghia 82] obtained by employing a second order
accurate finite difference multigrid method, with a mesh of 126x129 nodes.

- The results obtained by Hannani et al. in [Hannani 95] with a finite element SUPG
algorithm. The results from Hannani were obtained on non-uniform meshes of 32x32, 45x45
and 80x80 Q1PQ, basic elements.

- The results by Kondo et al. in [Kondo 91], making use of a so-called third order
upwind finite element scheme developed by themselves, based upon a Petrov-Galerkin
formulation in which a modified weighting function is expressed by the sum of a standard weighting
function and its second and third spatial derivatives. The examples by this author to be considered
in this work are calculated on a 40x40 element mesh of four-node, non regular basic elements.

All of them can be considered as reference results, specially those of Ghia, that are
commonly employed to check the validity of the algorithms by most of the authors in the related
bibliography. Experimental results are not available for the Cavity Flow problem, but Ghia’s
results are broadly used, nevertheless, as reference values. The results by Hannani and Kondo
have been selected as well-known accurate results, obtained on a mesh of a similar refinement
compared to the one used in this doctoral thesis,

The most commonly used comparison results for this benchmark problem, are the
horizontal velocities along a vertical central lirre. These velocities will be plotted for all the cases
considered and compared with the graphs obtained by the other authors.

The boundary conditions used for this problem have been of the Dirichlet type in all the
boundaries. A unitary horizontal velocity heading towards the right hand side has been prescribed
for the top side (including the upper corners), and the no-slip condition has been considered for
the rest of the boundary. The Reynolds numbers used have been 100, 1000, 5000 and 10000,
with the Reynolds number been defined as Re = U-L /v, where U is the velocity in the upper
side, L is the length of the side of the square domain, and v is the kinematic viscosity, The value
of Reynolds = 10000 is considered as a limit for the steady Cavity Flow calculations, since
[Shen 76] has shown through detailed numerical experiments that above this bound, the stationary

solution ceases to be stable.
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The discretized domain used in the calculations has been a 1681-node non-regular mesh
with 1600 Q1P0 elements. A bias parameter of 0.1 has been used for the dimensioning of the
basic square elements. The dimensions of the square domain are 400x400, nonetheless the
results for the horizontal velocity along a central vertical line have been scaled within the interval
[0, 1].
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Figure 3.1.1. Cavity Flow 41x41 non-regular mesh
This benchmark problem has been solved making used of the mixed, penalty and

segregated algorithms shown in sections 2.2, 2.3, and 2.4, and the results obtained for each of

the Reynolds numbers considered have been compared and commented upon.

120



Chapter 3. Validation of the mixed, penalty and segregated algorithms

3.2. Resolution of the Cavity Flow by the mixed approach

To begin with, a formulation in which both velocity and pressure have been considered
as unknowns of the resulting system of equations is used together with a SUPG stabilization
technique as explained in 2.2. The PBCG solver has been employed in its resolution so as to
allow for the sparse matrix storing, that results in large memory savings. For the firstiteration, a
velocity equal to zero has been assumed in every single point of the domain and in the successive
iterations that follow it has been corrected in the non-linear term, using the previous iteration
values in a successive approximation scheme as explained in section 2.7. A pressure reference
value of zero, has been imposed in the middle of the lower side of the cavity. A fol parameter of
10+ as defined in 2.7 has been used for the resolution of the system of equations by the PBCG
method. The results obtained can be seenin figures 3.2.1 to 3.2.20. The use of an iterative solver
for the mixed algorithm has been imposed because of the nature of the coefficient matrix, that not
only is of dimension twice the number of velocity nodes plus the number of pressure nodes, but
also differs ostentatiously in shape from that of a narrow band matrix, that would be the optimum
for adirect solving with ‘skyline’ storing.

The calculations have been carried out making use of the Digital Alpha Server 4000 with
1Gb of memory. The number of iterations required for the imposed rate of accuracy have been
10, 15, 150 and 321 iterations for Reynolds numbers of 100, 1000, 5000 and 10000, with CPU
times involved of 59", 156", 2012" and 6156" respectively.

The figures corresponding to the results obtained for velocity and pressure follow. The
plots for the streamlines, vector field, contour pressure field and surface pressure field corresponding
to a Reynolds number of 100 have been plotted in figures 3.2.1 to 3.2.4. In figures 3.2.5 to
3.2.8,figures 3.2.9 to 3.2.12 and figures 3.2.13 t0 3.2.16, the corresponding graphs for Reynolds
numbers of 1000, 5000 and 10000 have been plotted.

Finally, the horizontal velocities along a central vertical line for Reynolds numbers of 100,
1000, 5000 and 10000, obtained for the mixed formulation, are graphed and compared to those

of other authors, as shown in ﬁgures 3.2.17t03.2.20.
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Figure 3.2.1. Cavity flow. Streamlines for Re = 100, mixed algorithm
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Figure 3.2.2. Cavity flow. Velocity field for Re = 100, mixed algorithm
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Figure 3.2.4. Cavity flow. Surface pressure field for Re = 100, mixed algorithm
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Figure 3.2.6. Cavity flow. Velocity field for Re = 1000, mixed algorithm
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Figure 3.2.8, Cavity flow. Surface pressure field for Re = 1000, mixed algorithm
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Figure 3.2.10. Cavity flow. Velocity field for Re = 5000, mixed algorithm

126




Chapter 3. Validation of the mixed, penalty and segregated algorithms

400 & 5 =

Ey TR

K 4 L

o5 s o2 4 ' ) Level h
350 |- " i v % L 19 0.0471324

B R 18 0.0434329

B z # . 17 0.0397333
300 - = 2 3 16  0.0360337

" i N s . 15 0.0323342

- = B ‘4 14 0.0286346
PI:0) . o N 13 0.0249351

2 12 0.0212355

u 11 00175359

- 1 + 10 0.0138364

> 200F 9 00101368

5 ~ N 8  0.00843725

- 7 0.00273769
150 ° A " 6  -511650E-05

KM 3 5  -0.000961875

C s = * 4 -0.00289043
100 = » o 3 -0.00466144

[ - a J 2 -0.00625469

B s 5 1 -0.0074848
50 = £ 5

= 5

L o &

0 & 4 L 5 ml L | ) 1 L l L 1 l L |
0 100 200 300 400 500

Figure 3.2.12. Cavity flow. Surface pressure field for Re = 5000, mixed algorithm
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Figure 3.2.13. Cavity flow. Streamlines for Re = 10000, mixed algorithm
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Figure 3.2.14. Cavity flow. Velocity field for Re = 10000, mixed algorithm




Chapter 3. Validation of the mixed, penalty and segregated algorithms

400 T
E Level h
350 |- 19 0.0380309
& 18 00350167
- 17 0.0320026
300 16 0.0289885
B 15 0.0259744
[« 14 0.0229602
250 13 0.0199461
| 12 0016932
5 11 00139179
E 10 00109037
- e 9 000788962
Py 8  0.0048755
B 7 000186137
150 = 6  -0.000170322
s 5  -0.00115275
B 4 -0.00286752
100 | 3 -0.00416688
C 2 -0.00550366
E 1 -0.0062906
50
-
E 1 1 1 1 I
00 500

Figure 3.2.15. Cavity flow. Contour pressure field for Re = 10000, mixed algorithm

Figure 3.2.16. Cavity flow. Surface pressure field for Re = 10000, mixed algorithm
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Figure 3.2.18. Horizontal velocities along a central vertical line for a Reynolds number of 1000.
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Figure 3.2.19. Horizontal velocities along a central vertical line for a Reynolds number of 5000
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Figure 3.2.20. Horizontal velocities along a central vertical line for a Reynolds number of 10000
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3.3. Resolution of the Cavity Flow by the penalty approach

‘The penalty formulation as explained in section 2.3 has been used to calculate the Cavity
Flow benchmark problem. The penalty parameter used in the calculations has been € = 10+, The
velocity field for the first iteration has been taken as zero on every node of the domain and has
been progressively corrected, Once the convergence is achieved, the pressure unknown is post-
processed and its results are shown in graphs 3.3.1. to 3.3.8, together with those of the velocity
field. When making use of the penalized formulation, the dimension of the system of equations to
be solved is not so large as it used to be in the mixed formulation, nonetheless the iterative PBCG
algorithm with tof = 10+ has been used to solve the resulting system of linearized equations. In
the penalty formulation, the coefficients matrices are of dimension twice the number of velocity
nodes, and they are again far from being of the narrow-band type. Sparse storing has therefore
been considered to be more convenient.

The calculations have been carried out in the Digital Alpha Server 4000. The number of
iterations involved in the convergence process for the four Reynolds numbers considered have
been 7, 14, 40 and 271. The CPU times involved in the calculations have been 927, 696,
3941” and 15230”, for each of the Reynolds numbers considered.

The figures corresponding to the results obtained for velocity and pressure are shown in
the following pages . The plots for the streamlines, vector field, contour pressure field and surface
pressure field corresponding to a Reynolds number of 100 can be seen in figure 3.3.1. In figures
3.3.2,3.3.3 and 3.3.4 the corresponding graphs for Reynolds numbers of 1000, 5000 and
10000 have been plotted.

The horizontal velocities along a central vertical line for Reynolds numbers 100, 1000,
5000 and 10000, obtained for the penalty formulation, are graphed and compared to those of
other authors in figures 3.3.5103.3.8.
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Figure 3.3.2. Cavity flow. Velocity and pressure fields for Re = 1000, penalty algorithm
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Figure 3.3.4. Cavity flow. Velocity and pressure fields for Re = 10000, penalty algorithm
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3.4. Resolution of the Cavity Flow by the segregated approach

The segregated formulation as explained in 2.4 has been used to solve the Cavity Flow
benchmark problem. Boundary conditions of the Dirichlet type have been imposed on the four
sides of the cavity, therefore X, (as defined in 2.4.) has been set equal to zero in the domain
boundaﬁes. The pressure has been imposed as being equal to zero in the middle point of the
lower side, as a reference value. The relaxation parameters chosen for this problem have been
o, =0.7and o, =0.2 respectively for velocity and pressure, and they have been determined by
trial and error. For the firstiteration an initial guess of velocity and pressure equal to zero has
been used in the resolution for Reynolds 100. Then, the converged solution has been used as an
initial guess for Re = 1000 and so forth. The resulting system of linear equations has been solved
using a direct Crout solver with a column profile storing.

The number of iterations involved in the calculations have been 237,322, 413, and 615
with CPU times involved of 3651", 11807, 28266”, and 72297,

The figures corresponding to theresults obtained for velocity and pressure are the following;
the plots for the streamlines, vector field, contour pressure field and surface pressure field
corresponding to aReynolds number of 100 can be seen in figure 3.4.1. In figures 3.4.2,3.4.3
and 3.4.4 the corresponding graphs for Reynolds numbers 1000, 5000 and 10000 have been
plotted. The horizontal velocities along a central vertical line for Reynolds numbers 100, 1000,
5000 and 10000, obtained for the segregated formulation, are graphed and compared to those
of other authors in figures 3.4.5t0 3.4.8.
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Figure 3.4.1. Cavity flow. Velocity and pressure fields for Re = 100, segregated algorithm
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Figure 3.4.2. Cavity flow. Velocity and pressure fields for Re = 1000, segregated algorithm
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Figure 3.4.4. Cavity flow. Velocity and pressure fields for Re = 10000, segregated algorithm
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Figure 3.4.7. Horizontal velocities along a central vertical line for a Reynolds number of 5000.
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3.5. Conclusions

As can be seen from the plots, the results for the three formulations considered are totally
analogous and are in good agreement with the results from the other authors. If we regard the
streamlines, the lower secondary vortices show up for the smallest Reynolds number considered
and are developed as the Reynolds number is increased. The upper secondary vortex does not
appear up to a Reynolds number of 5000, as expected. The horizontal velocity profiles along a
central vertical line adjust to the reference values of [Ghia 82], with a much finer mesh and are
also substantially better than those of [Hannani 95) and [Kondo ¢1], for a mesh with a similar
refinement and even a finer one. No substantial differences are observed among the results of the
three formulations used for the velocity results nor for the pressure field results, which are also in
good agreement with the benchmark solutions of the problem obtained by those authors.

The good results obtained in the velocity profiles have made useless the employment of
afiner mesh, that would necesitate a much longer CPU time. As has already been pointed out,
the calculation times are shorter for the mixed algorithm and of increasing magnitude for the
penalty and segregated method. For the penalty solution, the introduction of the penalty parameter
makes the linear system of equations more difficult to sclve, since the penalty parameter tends to
zero, This computational time can be reduced, anyhow, by the use of a properly weighted penalty
parameter. For the segregated resolution of the flow, a direct solver has been used in the calculations,
with adefinitively greater computational cost, and the convergence process is consequently slowed

down. If an iterative solver was used, a considerable improvement in the CPU times involved
would be achieved.

The algorithms implemented have proved to give very accurate results even for a less
refined mesh, showing that the upwind weighting implemented in the numerical scheme is a powerful
toel to solve some flow problems without using very refined meshes, and with no wiggles in the
so-obtained solution. The good results obtained for this benchmark problem entitle us to use the

checked algorithms in some other theoretical and practical problems; these follow.
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CHECKING THE ALGORITHM WITH EXPERIMENTAL
RESULTS. THE FLOW OVER A BACKWARD FACING STEP

Sine experientia nikil sufficienter scire potest,
Nothing is certain without experience.

Roger Bacon, 1214-1294
Opus majus, VI, 1
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CHAPTER 4. FLOW OVER A BACKWARD FACING STEP. CHECKING THE
ALGORITHM WITH EXPERIMENTAL RESULTS

4.1. Introduction

The purpose of this chapter is to check the numerical algorithms considered in this work
with available experimental results. The laminar Backward Facing Step benchmark problem is
presented next, as one of the most commonly used benchmark problems in the literature, in
order to validate the algorithms that give solution to the Navier-Stokes equations. The backward
step is based upon a simple geometry where flow separation and reattachment occur. Experimental
data for this problem can be found in Armaly [83], who also solved this problem numerically by
using a control-volume-based Finite Difference Method. The problem of the backward step
flow will be solved in this section by using the penalty algorithm, and its results will be compared
with those of Armaly, which are generally used as verification data. As has already been shown
inchapter three, the formulations considered for the laminar Navier-Stokes equations provide
identical results in the resolution of the flow problems. For the solvers considered, both the
mixed and penalty algorithms resultin less computational time. The penalty algorithm will be used
in the resolution of this benchmark problem with optimum results, as will be shown later in this

chapter.
4.2. The flow over the Backward Facing Step benchmark problem

The geometry and boundary conditions considered for this benchmark problem, have
been those used in [Armaly 83]. An expansion ratio of 1:1.94 has been considered for the
widening of the channel, which has a total length of 50 so as to allow for the vortices to take
place. The inlet boundary has been located at 3.5 step heights upstream of the expansion corner.
The domain has been split into 2850 Q1PO basic non-regular elements with 3021 nodes. The
mesh is coarser at the outlet and more refined at the lefi-hand side of the channel, so as to allow
for a better accuracy in the regions where the primary vortices occur. A bias parameter of 0.5

has been used for this purpose along the x-axis, therefore the width of the basic elements at the inlet
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is one half of that of the elements at the outlet, and the height of the basic elements is uniform
within the whole domain. The mesh can be seen in figure 4.1, where a magnifying factor of two
has been used for the y-axis. A parabolic horizontal velocity profile has been imposed at the inlet
with amaximum velocity of 1, and the velocity is equal to zero at the boundaries. The lateral sides
have been considered as solid boundaries and the no-slip condition has been imposed on them.
Finally, a zero traction condition has been imposed at the outlet.

Figure 4.1. Backward Facing Step. Mesh

4.3. Results

The flow has been obtained for a Reynolds number between 100 and 1200. The Reynolds
number has been defined as Re =u-D/ v, where u is the average inlet velocity, D is the hydraulic
diameter and the kinematic viscosity v has been altered so as to make the Reynolds number vary.

The flow has been solved making use of the penalty formulation with a PBCG solver, and
numerical parameters: € = 104 and tol= 10‘4, as defined in chapter two. The flow has been
calculated for several Reynolds numbers, and the streamlines, vector field and pressure contour
graphs for Reynolds numbers 200, 400, 500, 600, 800 and 1200 have been depicted in figures
4.3 to 4.8, respectively. In the streamline plots, the appearance of the re-circulation vortices can
be easily detected as expected, something which is also clear from the coloured velocity field,
where the colour in which the vector is depicted depends on the magnitude of the velocity modulus.
In this velocity field plot, the parabolic distribution of the velocity in every cross section along the
channel may also be clearly observed. The third graph in each figure shows the pressure field in
the domain by plotting the isobars. The pressure surface graphs for the Reynolds numbers 200,
400, 600, 800, 1000 and 1200 can also be seen in figures 4.9 to 4. 14 as a surface plot.
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The convergence record with the number of iterations and CPU time employed in the
resolution of the flow in the Digital Alpha Server 4000 with 1Gb of memory, can be seen in table
4.1, depending on the different Reynolds numbers used in their calculation,

Reynolds number Iterations CPUtime
100 8 1333~
200 12 © 34417
300 17 ‘ 5405”
400 23 9297”
500 28 11601~
600 34 162277
700 38 18549"
800 43 213017
1000 47 26683”
1200 53 32219~

Table 4.1, Flow ina Backward Facing Step.
Iterations and CPU time for Reynolds numbers from 100 to 1200

As foretold by the experimental results in [ Armaly 83], there exists a single re-circulation
zone at the expansion cotner up to a Reynolds number of about 450, beyond which a second
vortex shows up at the top boundary, and gets bigger as the Reynolds number is increased. As
can be seen in figure 4.3, the primary vortex at the expansion comer shows up for a Reynolds
number of 200, the smallest shown in the figures, and increases its length as the kinematic viscosity

is decreased. The secondary vortex does not take place up to the point in which Re = 500.

Figure 4.2. Flow over a Backward Facing Step. Sketch of the vortices and recirculation lengths
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The size of the reattachment zones s, versus the Reynolds number are compared with the
experimental results, as well as those of a control-volume-based finite difference method by
Armaly; these results can be seen in figures 4.15 to 4.17 and table 4.2. The reattachment locations
of the vortices are defined as follows; s, is the reattachment location of the primary vortex, s, is
the separation location of the secondary top boundary vortex and s, is the reattachment location

of the secondary vortex. All of them have been measured from the expansion corner, as depicted

in figure 4.2,

| s1 $2 s3
Reynolds
100 3
200 49
300 6.6
400 8
500 89 B4 12.2
600 97 88 14.8
700 10.5 9 17
800 10.9 9.3 19.2
1000 1.9 98 22.8
1200 13 10.7 26.3

Table 4.2. Flow over a backward-facing step. Reattachment lengths

146



\ x
h 4o
i i
t :
t
[ o
Al
Ada| i
A4
WAL
A4
4
H
i
B e o T ST B B

Chapter 4. Flow over a backward facing step. Checking the algorithm with experimental results

147

LEEEET PO

. . O
\s\.i
——
.
——t—
R 7
&
—ri
g —
B ———— S B

=200

Figure 4.3. Flow ina Backward Facing Step. Streamlines, velocity field and pressure contour map for Reynolds



Chapter 4. Flow over a backward facing step. Checking the algorithm with experimental results

00t = sploukay] 10] dew 1ojuod 21nssaid pue prary L1104 ‘sourjureans ‘dolg Suroe,] premyOB BUI MO, "' 2m3L]

LT ]
T T T T
/ ! 1Tl 4 ¢
& R { | | w
s & i i1 +
$ - = \ - | = =1y = 1
R . e % s 1
F v W N Sy i
L = @ 5 = 4 \, T | ®
s | & H N v i s _ Il _ _ | % 4
x
5 o s o
: |
1 |
x
5 g 5 g
T T T T

148



Chapter 4. Flow over a backward facing step. Checking the algorithm with experimental results

00§ = sploukay Joy dew mojuoo danssaid pue ppaty L112072A ‘sautjureans ‘dalg Sure,| premyorg v Ul mof ‘¢ 2Ly

#3005 Canrsnsnn-

+
=

—u
19-91

k3

149



Chapter 4. Flow over a backward facing step. Checking the algorithm with experimental results

009 = SpIoUAdY 10y dew 1noyuod amssaid pue piat A10oA ‘sourjuedng ‘dog Fudr,| pIemYORE B Ul MO[] ‘9t 2InFL]

150



Chapter 4. Flow over a backward facing step. Checking the algorithm with experimental results

- ]
B
o s &
& &
15~ 45
R
il T —i-
- <
= = E e
!
b (f1a
.L
i “
2
i
i =i
I /
i =4
|
M
I
-
i =~
P
S
< 4= -—
=
il [T T TR T SRS ST DPPIC TCTT TR OO
A A X

800

Figure 4.7. Flow ina Backward Facing Step. Streamlines, velocity field and pressure contour map for Reynolds



Chapter 4. Flow over a backward facing step. Checking the algorithm with experimental results

00T 1 = sproukay 105 dew nojuod anssaxd pue proty £1120704 ‘saurjureans 'doig SuIde.| PIEMYORE B UL MO[,[ 'R’ 2IN3L|

|
x i
o8 5 , st o b o s |
T 7 T — e — 3 — T |
E 5 ¥ RO L . % 855 |
| ; Cg |
‘ |
; |
3 |
H |
x
o 2 X 2
L ? y - 1 r {
i e E |
|
E |
|
E —
P > @ . o

152



Chapter 4. Flow over a backward facing step. Checking the algorithm with experimental results

Figure 4.11. Backward Facing Step pressure field. Surface plot for Re =600
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Figure 4.14. Backward Facing Step pressure field. Surface plot for Re = 1200
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4.4, Conclusions

As seen in figures 4.15 to 4.17, the computed results obtained in the present work
compare more favourably withexperimental data than the numerical results from Armaly. Although
the present results are totally analogous to the experimental data in [Armaly 83] for s, and for all
the Reynolds numbers considered, when taking about 5, and specially s, the experimental data
differ from the calculated results beyond a Reynolds number of about 400, This difference between
measured and calculated values is not only shown in the numerical results by Armaly, but also in
the results by [Kim 88] and [Kwack 85] among many others. The differences in these values are
due to the fact that the 3D effect becomes very important as the Reynolds number is increased.
As pointed out by Armaly, these effects became predominant beyond a Reynolds number of
1300. Beyond this point the 2D laminar results became less meaningful to evaluate the real case,
and as a consequence a 3D model is required.

As a consequence of the numerical devices introduced into the formulation, the results

obtained in the present study are more accurate than the reference numerical values from Armaly.
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CHAPTER 5

CONSIDERATION OF THE FRICTION SLOPE AND THE
UNSTEADY DEVELOPMENT OF THE FLOW. FLOW IN A
WATER DISTRIBUTION CHAMBER
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Jorge Manrique, 1440-1478
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CHAPTER 5. CONSIDERATION OF THE FRICTION SLOPE AND THE
UNSTEADY DEVELOPMENT OF THE FLOW. FLOW IN A WATER
DISTRIBUTION CHAMBER

5.1. Introduction

In this chapter, the flow that takes place in a chamber that splits the incoming flow of
water into three different outlets is observed. This type of water distribution basin can commonly
be found in many hydraulic plants used for a number of purposes. This flow problem will also be
used for the evaluation of the effects caused by the frictional forces with the boundaries and for
the verification of the unsteady algorithm.

Let us regard the problem of a cavity in which we split a normal lateral inflow into three
outflows, one of them on the opposite side (exit number three in figure 5.1) and the other two on
the adjacent sides (exits one and two). A wall is placed between outlets one and two so asto
observe the influence of this structure in the distribution of the water inflow. A typology similar to

this one can be found in many tanks in wastewater treatment plants [AWWA 88].

=

P
dv 1o

Figure 5.1. Flow in a water distribution chamber. Sketch of the chamber

The geometry used for this simulation has been a rectangular domain 400 cm high and
300 cm wide, split into a regular 1200-node mesh with 1131 basic Q1/P0 elements. The inflow

channel and outlet number 3 have a width of 100 cm, whereas outlets 1 and 2 spread over the
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whole bottom side. The distribution wall is placed on abscise 145 cm and has a height of 100
cm. These geometrical proportions are similar to those found in a conventional chamber for
distributing a single wastewater flow among three different outlets, such as those used in the As
Pontes treatment plant (ENDESA), which is considered in the project [FD1997-0053/HID1
funded by the FEDER, one of the sponsors of this thesis . A unitary, normal and constant inflow
is considered at the inlet. The no-slip condition has been imposed on the solid boundaries and the
velocity at the outlets has been considered as an unknown and a zero-traction condition has been
imposed on it. The problem has been solved by making use of the penalized laminar Navier-
Stokes algorithm with a penalty parameter of € =10-¢, and a tolerance of 10-¢ in the PBCG
solver. The flow has been solved for a Reynolds number that varies between 30 and 300. The
Reynolds number has been taken as the quotient of the inflow velocity times the width of the

rectangle over the kinematic viscosity of the fluid.

Figure 5.2. Flow in a water distribution chamber. Mesh

5.2. Resolution of the flow for several Reynolds numbers

The velocity and pressure fields have been obtained for a so-defined Reynolds number
of 30, 60, 100 and 300. The convergence is achieved for 8,9, 10 and 18 iterations for each of
the ditferent cases considered and the CPU time employed to carry out the calculations in the
Alpha Server 4000 (1GB and 433 MHz) computer was 437, 64", 88" and 282" respectively.
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The velocity field and streamlines for the four cases considered can be seen in figures 5.3 to 5.6,

whereas the pressure plots with a reference value of p/p = 1000 cm’s- are shown in figure 5.7.
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Figure 5.3, Flow in a water distribution chamber. Streamlines and velocity field (Re=30)
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The primary vortex (see figure 5.8), shows up for the flow featured by a Reynolds number
of 30.In this case, the secondary vortex is not yet well formed. With the increasing value of the
Reynolds number, vortices one and two are progressively developed and vortex one happens to
‘obstruct’ outlet number one. For the largest Reynolds number considered, the flow turns to
head inwards in gate number one.

The results obtained for the flow cases considered are in good agreement with the hydraulic
behaviour of the chamber as can be seen in the experimental results obtained for a similar scale
model of a distribution basin, carried out in the Escuela Técnica Superior de Ingenieros de

Caminos, Canales y Puertos de La Corufia [Bonillo 00].

=) Cl
0
N\

d 0

Figure 5.8. Flow in a water distribution chamber. Streamlines sketch

In figures 5.9 and 5.10, the velocity modulus along the outlets number one, two and three
has been plotted. Graphs comresponding to outlets one and two expand from left to right and the
third plot expands from top to bottom. The resulting curves are parabolic profiles as expected.
For outlet number one the velocity distribution is symmetric with respect to a vertical central
axis. Note that the velocity profile for a Reynolds number of 300 is only positive as a result of
plotting the velocity modulus, but the flow is heading inwards for that particular case. This symmetry
is lost in outlets number two and three, as a consequence of the reorientation of the flow towards
the right hand side for gate two, and towards the bottom for outlet number three. For gate
number three the increment in the tangent flow with respect to the lower side of the outlet, results
inavelocity peak as shown in the figure 5.10.
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Figure 5.9. Flow in a water distribution chamber. Velocity profiles along outlets 1 and 2
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Figure 5.10. Flow in a water distribution chamber. Velocity profiles along outlet 3

Figures 5.11 and 5.12 show the vertical component of the velocity for outlets one and
two and the horizontal component for outlet three. In the first plot we see how the vertical
component of the flow coming out of gate one, gets smaller as the Reynolds number is increased,
up to a point at which the direction of the flow is inverted, when the primary vortex happens to
reach the splitting wall. Meanwhile, the flow going out through outlet number two is progressively
increased as the Reynolds gets bigger, and in outlet number three the flow is sent towards the
lower side of the gate. This point can also be observed in the velocity field graphs, where the
main flow is progressively reoriented towards the right hand side. Figure 5.12 depicts how a
third vortex is formed in outlet number three and how the flow turns inwards through the topside
of the outlet for Reynolds 100 and 300, this being the cause of the appearance of a third and

smaller vortex.
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Figure 5.11. Flow in a water distribution chamber. Vertical velocity profiles along outlets 1 and 2
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Figure 5.12. Flow in a water distribution chamber. Horizontal velocity profiles along outlet 3

Figure 5.13 shows the x and y components of the velocity along a central horizontal line.
In the second plot in 5.13, it can be seen how the vertical velocity graph deflects towards the
right for increasing Reynolds numbers, as the primary vortex increases its dimensions, while the
flow is headed towards the right hand side. The plot also showes how the centre of the primary

vortex (v =0) moves towards the right hand side as the Reynolds number is increased
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Figure 5.13 Flow in a water distribution chamber.
Horizontal and vertical velocity profiles along a central horizontal line

5.3. Consideration of the friction slope

Inall the calculations carried out up to this point, no contributions have been added to the
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source term in order to account for the energy losses caused by the friction with the boundary.
We could take into account these contributions by including within the source term an additive
function depending on the Manning coefficient, that could be evaluated as:

2 ’2
_nu,. MI-

S, = hT
in a similar way as we proceeded in section 1.6, where # is the Manning coefficient, g is the
gravity acceleration, § ) is the friction slope and A is the depth.

For the following calculations a Manning coefficient equal to 2.5-10%, 5.0-107, and
7.5-107 cov¥3s has been used, where the first of these corresponds to a smooth concrete bed
and the largest is a typical one for rivers with a fine gravel bed. As this is not a Shallow Water
analysis and the continuity is only verified on a 2D basis, we will assume a constant depth of 5 cm
all over the domain. All the computations have been carried out for a Reynolds number of 100.
For this Reynolds number the primary vortex is well formed and therefore, the decrease in its
size can be moze easily observed as the Manning coefficient is increased.

The results for this analysis are shown in figure 5.14. As already explained in section 1.6,
the Manning formula is an empirical-based expression that accounts not only for the energy
losses caused by the friction with the bed, but also for the overall energy losses taking place in the
flow, and in most of the cases the energy loses included in the viscosity term are negligible
compared to them. As it can be seen from the plots, the effects of considering the friction with the
bed are similar to the energy losses caused by the consideration of a bigger viscosity, and
consequently the imposition of a greater friction among particles. As a result, the streamline map
of the flow for the harder roughness conditions is similar to the one obtained for Reynolds = 30
instead of 100. The depth used in the calculations is deliberately very small, so as to achieve a
greater amount of energy loss, caused by the roughness with the boundary. To conclude, the
consideration of the Manning term, gives a more practical evaluation of the energy losses taking
ptace in areal flow, which as explained in chapter two allows for the consideration of the turbulent

effects as awhole.
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Figure 5.14. Flow in a water distribution chamber. Streamlines, velocity field and pressures for
n=0,2.510%5010% and 7.5-10*cm™”?s (Re =100 )
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5.4. Unsteady development of the flow

Finally, the unsteady algorithm as explained in section 2.7.2 has been used to solve the
flow in the chamber. For this problem, the fully developed flow can be obtained directly from the
steady formulation, as we have no turbulent eddies taking place for the Reynolds numbers
considered and no changing boundary conditions. Nonetheless the use of the unsteady algorithm
gives the evolution in the velocity and pressure fields at increments of time from insrtam t=0,up
to the steady state conditions. For this unsteady evolution of the flow, we have used the same
assumptions made for the steady problem. The time integration has been done in terms of a
backward differencing scheme, with time increments of I, 10 and 100 seconds.

Inplots 5.15 to 5.18 the evolution in the velocity and pressure fields for the instants 1, 3,
10, 50, 100, 300 and 500 seconds have been represented , and finally the steady state conditions,
all of them for a Reynols number of 30. As seen in the plots, the steady state conditions have
been reached for a time increment of about 500 seconds, the time employed by the last particle
in travelling the whole length of the chamber.

The analysis of the flow distribution in the chamber provides a valuable tool for the
desig of the basin. The so-defined geometry results in the appearance of two energy dissipating
vortices, which get bigger as the Reynolds number is increased. The appearance of these
recirculation zones can be a desirable feature in order 1o dissipate some energy, and allow for
particle settlement in these zones. On the contrary, for some other purposes it can be an unwanted
effect that happens to obstruct the left hand side outlet, resulting in an unequal distribution among
the three outlets. Anyway the numerical evaluation of the flow in the chamber, forecasting the

behavicur of the water, is without any doubt a powerful tool for its desig.
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Figure 5.15. Flow in a water distribution chamber. Velocity fields fort=1, 3, 10 and 50 s ( Re=30)
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Figure 5.17. Flow in a water distribution chamber.
Pressure fields forinstants r= 1, 3, 10, and 50 s (Re=30)
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Figure 5.18. Flow in a water distribution chamber. Pressure field for instants t = 100, 300, 500 s and the
steady state (Re=30)
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CHAPTER 6

THE 2D LAMINAR NAVIER-STOKES vs
THE SHALLOW WATER FORMULATIONS

Water is at the origin of everything,

Thales of Milet
In AristSteles’ Metaphysics, 1,3,983b 6
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CHAPTER 6. THE 2D LAMINAR NAVIER-STOKES vs THE SHALLOW WATER
FORMULATIONS

6.1.- Introduction

Asithas already been said, the laminar Navier-Stokes equations ignore the third dimension
in space and carry.out the mass balance in a 2D basis, and therefore pay no attention to the
influence that the depth may have on the verification of the continuity equation. When the geometric
and friction slopes are not denied, and the downstream depth boundary conditions are taken into
account, the variations in depth may become very important, and making the divergence of the
two dimensional velocity equal to zero no longer ensures the mass balance. The Shallow Water
algorithm explained in section 1.6 solves this problem by integrating the 3D Navier-Stokes
equations in depth. As has been said in section 1.6, a friction slope of the Manning type has been
included in the Shallow Water formulation so as to account not only for the frictional forces
caused by the roughness of the bed, but also for all the energy losses taking place within the flow.
The Shallow Water equations are therefore a useful tool in order to evaluate the flow for ‘hydranlic
conditions’. The differences in the solution obtained for both the 2D laminar Navier-Stokes and
the Shallow Water formulations are shown by making use of the numerical example of a channel
in which the width is sharply doubled in the flow direction. By using this example with a well
defined main direction, we can observe some important features of the flow, to conclude on the
convenience of the use of the Shallow Water formulation as will be later shown in this chapter.

The flow of a shallow water sheet in a channel that widens to twice its width has been
solved making use of the Shallow Water algorithm described in section 1.6. The shallow flow in
the widening channel has been obtained by using the mixed Shallow Water equations with a
tolerance parameter tol=10, The kinematic viscosity has been taken as 10-°m?%s. The channel
has a length of 100 m, and spreads from 10 meters of width at the inlet, up to 20 m at a distance
of 13 m from the inlet. A hydrostatic pressure of 1 m has been imposed at the outlet, and a
roughness Manning coefficient of 0.01 m-*s has been considered throughout the channel length
for all the examples in this chapter.
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Figure 6.1. Widening canal. Finite Elements Mesh

The domain has been split into a 117 1-node, non-regular mesh with 1090 Q1P0 basic
elements. The height of the basic elements is a constant all over the domain, whereas the width
has been chosen using a bias parameter of two. Several flow conditions, to be regarded in the

sections to follow, have been considered for this example.

6.2. Flow for natural and adverse slope conditions

An inflow normal uniform velocity of 3 cm/s has been imposed along the inlet and to
begin with, a natural slope in the direction of the flow of 10 has been considered all over the
domain, for these flow conditions, a parallel flow is achieved in the expansion corner. Figures 6.2
to 6.4 show the velocity and depth fields for this numerical example. By the observation of the
velocity and the depth plots it can be seen how the continuity equation is verified on a 3D basis,
but this point will be shown more clearly in section 6.3.

The case in which the flow has to overcome an adverse slope against the main flow
direction of magnitude 107, is also implemented (see figures 6.5 to 6.7). The velocity plots are
similar to those obtained for the natural slope, nonetheless the depth plots show great differences

compared to those of the natural slope.
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The depth plot is of increasing magnitude for the natural slope (figure 6.4) and decreasing
magnitude for the adverse slope case (figure 6.7), as expected from the well known analytical
one-dimensional resolution of the flow. To clarify this point let us consider the analytical one-
dimensional analysis of a gradually varied flow, that for this particular example in which we have
a main flow direction, may be of great help.

As we are moving within a Froude number much smaller than the unity in all these
examples, the flow may be described as subcritical with Fr<<]1, where the Froude number is
defined as:

Fr =

v
gk
where v stands for the one dimensional velocity, g is the gravity acceleration and 4 is the depth.

The general equation of the gradually varied flow in one dimension (see for instance [Chadwick

86]) can be written as:
dh _So=S;
dx ~ 1—Fr?

where di/dx is the variation in depth along the length of the channel, and §_and § . are the
geometric and friction slopes respectively. In its increment version this formula can be expressed
as:

A 1_Fr?

AhS,-S,

Due to the small value of the friction slope (§, ), compared to the absolute value of the geometric
slope (5,), and the already commented small value of Fr<<1, the variation in depth could be

assumed as:

Ar 1

Ah S,

As can be seen in plots 6.4 and 6.7, the depth distribution behaves according to this law.
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Figure 6.3. Flow ina widening canal (vel =3 cm/s, §, = 10°%). Velocity module

Figure 6.4. Flow in a widening canal (vel =3 cm/s, §, = 10). Depth
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Figure 6.7. Flow in a widening canal (vel =3 ¢cm/s, S, =-107). Depth
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6.3. Flow for an adverse steep slope. The Navier-Stokes vs Shallow Water equations

A final case has been considered in which an adverse steeper slope of 102 has been
imposed in the widening channel. In this example the inflow velocity equals 3 cm/s along the inlet,
being parallel to the longer sides of the domain. By setting this steep slope some important
features of the algerithm are demostrated.

The streamlines remain parallel in the expansion comner. As a consequence of the steeper
slope, the variation in the depth along the channel is more evident and the verification of the
continuity condition can be easily observed. The x-component of the velocity is plotted along
the domain for both the two dimensional Navier-Stokes and the Shatlow-Water algorithms, so
as to compare them. As can be seen in plots 6.9 and 6.10, the continuity equation is not verified
for the Navier-Stokes formulation and for the conditions considered. For the Navier-Stokes
formulation the discharge at the inflow is 0.03 m/s-10 m-1.468 m, this is 0.440 m?s, and at the
outlet the discharge is 0.0145 m/s-20 m-0.992 m, this is equal to 0.286 m?/s. The continuity
equation is not veritied as this algorithm can only be applied to the simplification of a 2D flow.

On the contrary, when the Shallow-Water equation is used both discharges at the inlet
and at the outlet are equal to 0.587 m?/s (.03 m/s-1.922 m-10 m =0.0296 m/s-0.992 m-20 m).
The mass is therefore conserved along the channel, as a result of having considered the integration
along the z-axis for the continuity equation and the numerical particulars regarded in section 1.6,
The variation in the pressure plots is the expected for |5,{ > S, and Fr <</, as follows from the
formulae in section 6.2.

In all the cases considered for the Shallow Water flow in the widening channel, the
number of iterations required is smaller than 6 and the CPU time employed in their resolution has

been less than 10 seconds.
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As can be seen from the examples considered in this chapter, the 2D laminar Navier-
Stokes equations can provide a good evaluation of the shallow flow in which no major changes
in the depth are taking place, but when an important variation in the depth occurs, the Shallow
Water formulation is a more appropriate formulation that allows for the conservation of mass
throughout the domain. The Shallow Water algorithm developed in section 2.5 proves to be a
reliable, mass conserving approach, by its comparison with the one-dimensional analytical results

for the widening channel.
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Figure 6.8. Flow ina widening canal (vel =3 cm/s, S, =-10?). Velocity field
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Figure 6.10. Flow in a widening canal (vel =3 cm/s, §, =-107). Depth
Laminar Navier-Stokes-Shallow Water
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CHAPTER 7

APPLICATION TO SOME WASTEWATER
TREATMENT PROBLEMS

Entre les savants proprement dits et les directeurs effectives des travaux productifs,
il commence & se former de nos jours une classe imermddiaire, celles des ingénieurs,
dont la destination spéciale est d'organiser les relationsde la théorie et de la pracrique.

Between pure researchers and the actual directors of productive work,
an intermediate class is rising, and it is that of the engineers,
whose special destiny is to organise the relationships between theory and practise.

Auguste Come, 1798-1857
Cours de philosophie positive, [
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CHAPTER 7. APPLICATION TO SOME WASTEWATER TREATMENT
PROBLEMS

Once the code has been checked on some well-known benchmark problems with
optimum results, it has been used to solve some real flow problems related with the civil
engineering technelogy and in particular with the wastewater treatment industry.

The Navier-Stokes formulation considered in chapter two provides an adequate frame:
to solve the problem of the viscous incompressible flow, but it does not include a turbulence
meodel, that should be taken into account in order to solve many of the practical problems related
to the water engineering technology. When considering the flow of water in channels, rivers and
estuaries, the Reynolds number exceeds, in most cases, those in which the turbulence effects
can be ignored, and a turbulence model should be used in order to capture the eddy flows taking
place on them. However, the plain Navier-Stokes formulation achieves optimum results in the
resolution of several problems found in the engineering practice.

The first main group of these practical problems consists of those involving the flow of
fluids featured by a high viscosity. We could quote here all the problems related with polymer
processing and hot forming engineering. In these flows, the viscous forces are very significant
compared to those derived from the convective acceleration, the Reynolds number is not very
high (<2500 in pipes) and the turbulent effects are never reached.

The second main group of these engineering problems, are those involving slow
water flows. In this case the viscosity of the water is small (0.8-10-* m¥s), but the Reynolds
number is kept far from those being the cause of the appearance of the turbulent effects,
thanks to the slow velocity that features these flows. When this velocity is specially small,
a further simplifying hypothesis could be made, this is the Stokes hypothesis, or in other
words the ignorance of the convective term. The Potential Flow equations are also used by
some authors [Espert 96] to evaluate these flows. When we use these simplifications, we
can obtain an approximation of the flow for slow creeping conditions, but only the resolution of
the all-term-including Navier-Stokes equations will allow us to detect the real streamlines and

the vortices that show up even for very slow water flows.
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Finally, the plain Navier-Stokes equations achieve very good results in the large-
scale evaluation of flows featured by any Reynolds number, when a Manning-type frictional
slope ts included in the source term (see section 1.6), without the need of a specific turbulence
model.

Some flow problems related to sewage disposal will be solved by making use of our
code, and their results will be commented upon. The flow of waste-water in a treatment plant
behaves in most cases as a slow laminar flow, therefore the algorithms presented in this thesis
provide an ideal frame for its resolution. We will focus on the obtaining of the flow in some of the
most commonly used clarification and flocculation basins, considering also the research that has
been carried out in the sanitary engineering laboratory of the Escuela Técnica Superior de
Ingenieros de Caminos, Canales y Puertos de La Coruiia, on the topic of the design of clarification

basins with biological treatment.

7.1. Flow in a clarification basin

The flow of water in several clarification tanks has been considered. Clarification
has two main applications in the water treatment processes. Its most usual aim is to reduce
the solids load after coagulation and flocculation have taken place. Its second application is the
removal of heavy settleable solids from a turbid source to lessen the solids load in water.

The simplest type of clarification pool is the so-called horizontal-flow sedimentation basin,
in either its rectangular, square or circular design. The aim of a good clarification basin design is
the obtaining of a sufficiently stable flow, so as to achieve a better sedimentation, There is a large
number of non-conventional devices for high rate clarification, such as tube or plate settlers,
dissolved air flotation clarifiers, sludge blanket or slurry recirculation clarifiers. The choice of one
of those depends on the features of the inflow water, the outflow water requirements, and on the
time, space and budget availability to carry out the purification of the water, and should be
determined for each particular case. The description of the flow may be a powerful tool to attain
an optimum shape in the designing of these structures, in order to make the most of the plant

resources.
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The clarification basins calculated as an example have been a rectangular and a
circular conventional clarifiers, and also a plate settler. To do so, the laminar Navier-Stokes
equations have been used in their penalty version, together with the usual computational and
physical parameters.

The rectangular and circular basins are the most commonly used clarification devices,
in spite of their simplicity, they have achieved exceilent results with scant maintenance costs.
These basins were originally designed with the capacity to store sludge for several months and
were periodically taken ocut of service for manual cleaning, Today, most of the clarification basins
include a continuous cleaning mechanical equipment, such as dragging chains that plow the sludge
along the basin floor to hoppers. Nevertheless, these mobile devices for cleaning and other
purposes do not have an important influence in the streamline distribution, and can be ignored

when the flow is calculated (for further details on clarification basins you can refer to [Metcalf

95].

7.1.1. Rectangular clarifier

As a first example, the flow in a conventional horizontal-flow rectangular basin is

observed, The tank dimensions are:

- Width:9m
- Length:24m
- Depth:33m

A slope of 1.25% has been given to the floor in order to allow for sludge concentration
and withdrawal. The design parameters for a good response of the so dimensioned clarifier

could be:

-Detention time: 3 h
-Surface Loading Rate: 1 m/h
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When working with clarifying basins, one of the criteria to be used in their definition
is that of achieving a maximum head loss at the inlet, so as not to disturb the slow flow of
the water mass being treated. Therefore, we should avoid turbulence by placing some kind
of energy dissipating structure in the faster zone, that is the inlet (see figure 7.1). One of
these maze-looking dissipating structures has been considered for the inlet of our rectangular
clarifier, being placed in the left-hand side. For the outlet, a conventional overflow launder
has been disposed in the right-hand side, and the main streamlines are therefore travelling from
left to right. For the outlet, a baffle plate has been placed at a distance of §.5m from the spillway

$0 as to avoid floating stuff getting into the effluent nozzle.

Overflow

Foam sweeper lannder

Foam lannder

Influent intake

Shadge Hopper T

Studge Scraper

‘ Sludge Withdrawal

Figure 7.1. Rectangular clarifier with bottom sludge scraper
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Figure 7.4. Flow in a rectangular clarifying basin. Velocity field
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‘The domain in which the flow takes place has been split into 949 Q1P0 basic elements

with 1052 nodes. For the working parameters chosen and an inflow section of 0.6 m, a

velocity of 1 cm/s has been imposed at the inlet. The no-slip condition has been imposed at

the bottom and lateral sides, and the spillway has been left free with a zero traction boundary

condition. For the topside, the vertical velocity has been fixed as zero and the horizontal

velocity has been left free,

The results for this example, cbtained by making use of the penalty formulation, have

, 433 MHz) and can be seen in

taken 5 iterations, and 263" in the Alpha Server 4000 {1Gb

figures 7.3,7.4 and 7.5.

593:33%288

200,00+,

Figure 7.5. Flow in a rectangular clarifying basin.

Contour and Surface pressure plots (pressure in cm)
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As can be seen in the streamline plot, a re-circulation zone happens to occur at the
inlet, and a bigger one shows up besides the inflow baffle plate. The first one is a consequence
of the leftward direction of the inflow. This is a wanted effect so as not to disturb the flow
in the chamber by the entrance of the water. The second and bigger one takes different sizes for
varying inflow velocity values, and would vanish for a Stokes anatysis that ignores the convective
effects [see Espert 96]. Its mere existence provokes the increasing of the settling rate on the floor -
below the vortex, that should be cleaned in a more exhaustive way compared to that of rest of
the bottom, although anyway its proximity to the sludge hopper makes its removal easier and
faster. Figure 7.5 represents the isobars graph and surface plot for the pressure field withina
vertical section of the rectangular clarifier, in both of them the pressure is expressed in cm. The

so-obtained pressure field is similar to that of the hydrostatic problem as expected.
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7.1.2. Circular Clarifier

The other horizontal-flow sedimentation basin considered has been a circular basin
with central feeding. The dimensions of the basin are:

- Depth: 3.65 m

- Diameter: 17.5 m

A slope of 8% has been considered for the bed. The design parameters used in its
definition are:

-Detention time: 3 h

-Surface Loading Rate: 1 m/h

To avoid turbulence at the inlet, a | m high baffle plate with a diameter of 1.7 m has
been placed around the inflow central cylinder, where the horizontal inflow velocity is
imposed from height 265cm up to height 365 cm. The outlets are situated at the circumference
perimeter, where an overflow launder endowed with a baffle plate, has been disposed.

The flow is obtained by considering a laminar slice that is solved in one half, and
then mirrored by the vertical axis so as to obtain the whole flow diagram. Hence, the flow

is calculated in a faster way for the same rate of accuracy by using its symmetry property.
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Figure 7.6. Circular clarifier. Vertical cross section
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This half-domain has been divided into 756 Q1P0 basic elements with 817 nodes. A
Dirichlet boundary condition of velocity equal to 1 cm/s has been imposed along the 1 m height
of the inlet so as to fit the designed parameters. The no-slip condition is again imposed at the
botton and the lateral sides, and the spillway is left free with a zero traction boundary condition.
For the topside, the vertical velocity has been fixed as being equal to zero and the horizontal
velocity has been left free.

The results for this example have taken 5 iterations and 233" and can be seen in

plots 7.8 to 7.10.
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Figure 7.7. Flow in a circular clarifying basin. Mesh
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Figure 7.8. Flow in a circular clarifying basin. Streamlines

189




Chapter 7. Application to some wastewater treatment problems

T’rirnc 001 [ 29 Jun 2000 [ ITERAC

800
600
400

200

-200

-400

600

o
ﬂlllIIIIIIIIIlIllllllllllllrlilllIlllllrIlll

800

Figure 7.9, Flow in a circular clarifying basin. Velocity field
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Figure 7.10. Flow in a circular clarifying basin.
Contour and Surface pressure plots of the half domain (pressures in cm).

The streamline plot shows a primary vortex that takes up most of the room, and two
secondary vortices, one of them at the inside bottomn zone and a smaller one showing up at
the lower external side of the domain. The appearance of these new vortices and the bigger
dimensions of the primary one, compared to the rectangular basin, are a consequence of the
lesser shallowness of the flow, where the dimension of the vortices depend on the inflow velocity.
The pressure values are again similar to those of the hydrostatic problem, and can be seen in

figure 7.10 in both its isobars and surface plot versions, with pressure units given in cm.
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7.2. Flow in a lamellar ‘LUPA’ clarifier

To end up with the calculation of the flow in some clarifiers, the behaviour of the
water flow in alamellar settler is also evaluated. Following the research being carried out in
the environmental and sanitary engineering area of the Escuela Técnica Superior de
Ingenieros de Caminos, Canales y Puertos de La Coruiia, the flow in a so-called ‘LUPA’
prototype is solved.

When taking about generalities on clarification, we had already pointed out the
existence of some clarifying devices different from the -up to this point regarded- horizontal
flow basins. One of these devices was the plate settler, in which the settling area is increased
by the disposal of several lamella plates, placed at a 60 degree angle along the basin. By doing
s0, the settled solids in the plates are dropped and removed, and therefore the settling rate is

improved. Figure 7.11 shows the plan and cross-section of a standard plate settler.
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Figure 7.11. Conventional plate settler. Plan and cross section
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The environmental and sanitary engineering area of the ETSICCPC is developing
the design of a lamellar settler equipped with a permeable bio-film that carries out a biological
treatment of the water. As part of this researching work, a prototype of the ‘LUPA’ clarifier

has been constructed and the flow along the model has been evaluated (see Picture 1).

Picture 1. The ‘LUPA’ prototype

The code is used to evaluate the behaviour of the water between two of the lamellas
of this plate settler. The box, with dimensions 80x30x10 cm® has a water inflow at the
bottom through four inlets, and a free overflow at the top. The box is placed ata 50.1 degree
angle with respect to the horizontal.

The flow has been calculated with the same assumptions to those considered for the
horizontal flow clarifiers. That is, with no-slip condition on solid boundaries and vertical velocity
equal to zero on the free surface. The definition of the boundary conditions is completed with a
Dirichlet relationship at the inlet and a Newman equality with zero traction at the outlet. The
longitudinal section of the clarifier has been divided into 1760 Q1P0 basic elements and 1916
nodes. The velocity at the inflow is set parallel to the walls. The flow has been calculated fora
discharge of 151/day, 150 I/day and 1500 l/day corresponding with inflow velocities of 5-107,
5-107 and 5-10°* cm/sg. The results have taken 6, 6 and 7 iterations and a CPU time of 317,

50" and 935" respectively, and can be seen in figures 7.12t0 7.18.
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Figure 7.12. Flow in the LLUPA prototype (Q = 15 l/day). Velocity field
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Figure 7.13. Flow in the LUPA prototype (Q = 15 I/day). Streamlines
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Figure 7.14. Flow in the LUPA prototype (Q = 150 I/day). Velocity field
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Figure 7.16. Flow in the LUPA prototype (Q = 1500 I/day). Velocity field
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Figure 7.17. Flow in the LUPA prototype (Q = 1500 I/day). Streamlines
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Figure 7.18. Flow in the LUPA prototype.

Contour and surface pressure plots {pressure in ¢m)

From the plots, we can observe how two primary vortices show up at both sides of
the inlet for very slow flows (15 1/day). The bigger one is generated at the right-hand side,
which is the lower and larger side, and a smaller one can be seen in the left-hand side. As the
discharge is increased, not only the size of the primary vortices is increased, in particular for the
right-hand side one, but how a secondary vortex shows up, can also be seen. This secondary
vortex not only alters the courée of the flow, but also allows for an increase in the contact time of
the water with the upper lamella, and consequently with the bio-film on it. The pressure graphs
pay no notice to the variation in the discharge, in figure 7.18 we can see the isobars and surface

pressure plots for the vertical cross section of the ‘LUPA’ ¢larifier, with the pressure given in cm.
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7.3. Flow in a maze flocculator

The flow along a maze chamber, often used in the flocculation processes, has been
calculated. Flocculation is defined as the agglomeration of small particles and colloids to
form settleable or filterable parﬁcles. A separate flocculation process, where chemical aids
are added to water, is very often included in the treatment train to enhance contact of
destabilized particles and to build dense floc particles of optimum size. The hydraulic
flocculators, in opposition to the mechanical ones, allow for the formation of the flocs
without the help of any mechanical device. This type of flocculation is simple and effective,
especially for relatively constant flows.

This sort of chambers is also used in chlorination processes. Chlorination forms part of
the chemical disinfection treatments that are carried out on supply water in order to achieve its
purification and transformation into drinkable water.

The aim of this winding design is to achieve a slow and steady flow over along distance
to allow for the flocs to form. In chlorine disinfection processes, this slowness enables water to
maintain contact with the chemical reagent over along period of time (see [Metcalf 95] for
further details on maze flocculators). The velocities involved are quite slow, and a laminar flow is
expected, however, small vortices can show up and the Stokes evaluation of the flow could not
detect them. For this reason, a convective-term-including formulation is required.

A rectangular chamber, in which water is re-circulated along a winding path, often
constitutes this kind of basins, and for this particular case will be modelled as a prismatic tank
with dimensions 8m wide and 10 m long, in which a twisting channel is inscribed, split into 10

straight segments. The design parameters chosen for the chlorination tank are the following:

- Tank dimensions: 8x10x2 m?
- Channel width: Im

- Channel length: 80 m

- Horizontal velocity: 6.6 cm/s

- Contact time: 20.2 minutes
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A 2091-node regular mesh with 2000 Q1PO basic elements has been chosen to
model the tank. The mixed Shallow Water algorithm has been used with a Manning coefficient
of 0.012 m /s,

A Dirichlet boundary condition has been prescribed at the inlet, where a parabolic
velocity of 6.6 cm/s has been settled at the six lower left-hand-side nodes. At the outlet, the
velocity on the six lower right-hand-side nodes has been considered as an unknown, and a
hydrostatic pressure boundary condition of 2 m depth has been prescribed. A slope of 10~ has
been considered falling rightward all over the domain. A viscosity of 1.0- 10 m¥s has been used

tor the wastewater, and a parameter of tol = 10 has been used in the code as usual.
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Figure 7.19. Flow in a maze flocculator. Mesh
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As afirst guess, the programme is used on a Stokes assumption, and the re-circulation
obtained is null as expected. The flow is driven ‘peacefully’ towards the outlet and the

parabolic profile is conserved all over the channel length. The results are obtained within 23" in

asingle iteration. The results can be seen in figures 7.20 and 7.21.
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Figure 7.20. Stokes flow in the maze flocculator. Velocity field

Y

Figure 7.21. Stokes flow in the maze flocculator. Streamlines
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When the convective term is included, small re-circulation zones show up besides
the corners. The results are obtained after 8 iterations and an elapsed CPU time of 2294

These results are plotted in figures 7.22 and 7.23.
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Figure 7.22. Convective flow in the maze flocculator. Velocity field

[5ad (=] ~ @ 8
o o o o
o o o o o

Y

8

=]
c\lll TrrorgerTT LELELEL LR L ILBAS REmn LR
1 1 I I I !

200

100

o

Figure 7.23. Convective flow in the maze flocculator. Streamlines
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Figure 7.24. Maze flocculator. Pressure plot (pressure in m)

By comparing the results for the Stokes flow and for the full convective-term-
including formulation, we can observe some differences in the velocity and streamlines
plots. For the first approach the streamlines are kept in an equidistant position with respect
to the sides of the winding channel all along the path length, and the parabolic profile of the
velocities is also maintained in all the cross sections. Meanwhile, the streamlines in the full
convective formulation are sent towards the right hand side of the channel once they have taken
over the corner. The appearance of a small re-circulation area at these twisting zones can also be
observed for the convective formulation. This re-circulation is the responsible for both the
appearance of sediments besides the corners and also is the cause of a certain energy loss, as
can be seen in the pressure plot (figure 7.24). These eftects, if unwanted, could be removed by

either decreasing the velocity of the flow or the re-shaping of the channel.

7.4. Conclusions

The numerical code elaborated in this thesis has been used in the resolution of some
flows related with the wastewater treatment industry. The algorithms regarded in this work
provide a perfect frame for the resolution of this kind of problem, since the turbulent effects do
not play a very significant role on them. Nonetheless, the algorithms used provide an accurate

model that takes into account the convective effects and the overall energy
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losses considered within the Manning term. This evaluation of the flow in wastewater
treatment plants basins is consequently a very accurate approximation, that overcomes
those found in other related literature as explained before.

The evaluation of the pressure and velocity of the flow in these basins provides very
useful information about the flow properties. The data about the streamlines and velocity field
distribution allows us to know where the main recirculation regions are taking place. This
information will be priceless for the purpose of obtaining the geometrical parameters of the
basins in order to achieve a better performance for the treatment plant. The obtaining of this
optimum geometry will allow for a further recirculation, if the energy losses are required; or will
enable its avoidance if unwanted, modifying in this way the detention times within the basin. The
velocity and pressure fields also provide invaluable information about the distribution of the
discharge among the outlets, which again can be redefined in order to improve the behaviour of
the plant. Thanks to the information obtained by this numerical evaluation of the flow, the water
treatment basins and channels can consequently be designed to fit the requirements of the

processes being carried out.
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CONCLUSIONS AND FURTHER
DEVELOPMENTS

Es wird nie ein Denker aus thm:
er wiederholt sich zu selten.

He will never become a thinker,
be does not repeat himself enough.

Elias Capetti, Bulgarian writter, 1905-1954
The torment of the flies
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CHAPTER 8. CONCLUSIONS AND FURTHER DEVELOPMENTS

8.1. Conclusions

In this work, an exhaustive analysis of the incompressible flow has been carried
out, from the very definition of the governing equations, up to the resolution of some
practical problems, passing through the comprehensive study of the numerical
techniques used in their resolution. As a direct consequence of this study, a code has
been written based upon this analysis, which allows for a modelling of the
incompressible flow based epon a realistic interpretation of the forces taking place
within the flow, and gives optimum results.

When using a Finite Element Method for solving the laminar Navier-Stokes
equations, three main different approaches are employed in the related literature. These
approaches are the mixed (or velocity-pressure integrated), the penalty and the
segregated algorithms. The complexity of the fluid flow creates the need for the use of
some numerical devices, so as to avoid the mumerical problems that appear in the
resolution of the Navier-Stokes equations by the Finite Element Method. One of the
sources of instability is that produced by an inappropriate combination of these
interpolation functions for the velocity and pressure unknowns. This fact means that the
.election of the basic elements, in terms of which the domain is going to be discretized,
is not at all a trivial task. Some sections have been devoted to the justification of the
election of the basic elements. As a consequence some spurious solutions, such as the
checkerboard pressure modes, have been eliminated and do not appear at all in the
present formulation.

The other main source of instability in the obtaining of the flow solutions is due
to the presence of the convective term; the symmetric treatment of this term by a
standard Galerkin Finite Element formulation is the source of this kind of instability,
being the cause of the oscillations that show up in the solution as the Reynolds number
is increased. In all the algorithms implemented in the code, a stabilization technique of
the SUPG type has been used so as to avoid the instability that shows up in the
resolution of the pressure and the velocity field when a moderate Reynolds number is

used in the calculations. The employment of such a stabilization technique allows us to
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avoid an excessive refinement of the mesh, in order to prevent the obtaining of the
unwanted ‘wiggles’ in the solution. A SUPG-type stabilization technique has been used
with optimum results providing very accurate and computationally effective results as
has been demonstrated in the numerical examples provided.

All three different approaches: mixed, penalty and segregated, have been
implemented and their results have been checked and verified by their comparison of
the three of them among themselves and also against some reference results, As a
consequence, several conclusions have been reached. The first is that, as expected, the
results obtained by the three of them in the resolution of some benchmark problems
have been identical, in a comparison study that had not been carried out prior to this
work. The different approaches result in a different computer efficiency that depends
not only on the algorithm employed, but also on the numerical solver used to obtain the
sclution to the resulting system of equations. Nonetheless the algorithm used does not
affect the accuracy of the solutions when an adequate selection of the numerical
parameters has been carried out. The second conclusion is that all the results compare
very favourably with the reference numerical and empirical results by other authors. As
a consequence, the code not only enables a comparison study of the available Finite
Element numerical techniques for the resolution of the Navier-Stokes equations, but
also, as proved by the examples provided, contributes to a better and faster approach to
these problems.

The laminar Navier-Stokes equations solve the problem of the fluid flow but
only on a two dimensional basis. The consideration of the third dimension in space
requires a high-rate computational-resources consuming three dimensional algorithm,
that often results in very high computational times involved. An alternative approach to
handle the three dimensional problems, would be the use of the so-called Shallow Water
equations, which can be used when the vertical dimension of the flow is small compared
to the horizontal one. The obtaining of the Shallow Water equations is carried out
thanks to an integration in depth of the three dimensional Navier-Stokes equations. A
newly developed algorithm for the resolution of the Shallow Water equation, making
use of the finite difference tools within the finite elemnent frame, has been implemented

with optimum results.
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As a consequence of the integration in depth of the three dimensional equations,
a friction term shows up in the formulation that can be evaluated in several ways. In the
present calculations the evaluation of this friction term is based upon on a Manning type
formula, that makes use of the empirically determined Manning roughness coefficient.
This term accounts not only for the energy losses that take place because of the friction
with the wetted perimeter, but also for the overall turbulent losses that take place over
the whole domain of integration. Many of the real flows found in engineering practice
are beyond the laminar state and into the turbulent one, and a turbulence model is
required. The consideration of the Manning term accounts for the turbulent energy
losses as a whole, providing a meaningful solution for turbulent flows. The mrbulent
eddies taking place within the flow are not detected, but the turbulent energy losses are
taken into account thanks to this empirically determined formula, which provides a
meaningful solution for practical flows.

Some of the most commonly used hydrodynamic models used for the flow
calculations (such as the RMA2 model developed by the Brigham University, which is
broadly used world-wide), incorporate a turbulence model featured by a constant eddy
viscosity which is not hydraulically speaking well justified. In contrast, the Shallow
Water algorithm developed by the author includes an empirically determined turbulent
losses term but also keeps the Navier-Stokes formulation of the problem, being ready to
incorporate a k-£ turbulent model that has been developed within the research group and
provides an eddy viscosity that varies in time and space.

The accuracy of the numerical solutions so-obtained has been checked by using
some reference benchmark numerical and empirical solutions with great success, and
once the program has been validated, it has been used in the resolution of some
wastewater treatment flow problems. The so-defined creates an optimum frame for the
evaluation of the flow in some wastewater treatment basins, which is an essential tool in
the designing of the wastewater treatment plants for the optimisation of their behaviour.
Making use of the code, the flow has been evaluated in some conventional wastewater
tanks in common use, and also has also been employed in the designing of some newly
developed basins for wastewater biological treatment as part of the research being

carried out in the School of Civil Engineering of La Corufia.
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8.2, Further developments

The so-defined code will be connected with some other modules that have been
developed in the research group and which are concemed with the tansport of
pollutants and sediments. The k-£ turbulence model developed within the group will
also be incorporated, so as to provide a hydrodynamic code able to evaluate the
turbulent eddies taking place within the flow for large enough Reynolds numbers.

Another line for further research will be the consideration of large scale flows,
such as those taking place not only in estuaries but also in the open sea, where the
Coriolis effects and the tidal movements cannot be ignored, and must to be considered
in order to provide an adequate solution to the flow problems.

In addition, the effects of the changes in temperature will be considered so that
theoretical problems, such as natural convection in a square cavity, and large scale real
flow problems, in which the thermal currents may play a significant role, may both
solved.

The Iaboratory facilities provided by the CITEEC (Centre for Technological
Innovation in Building and Civil Engineering) within the University of La Corufia, will
be used to carry out experiments which may cast some light on the adjustment of some
hydraulic parameters related to the flow of a fluid and be used in the numerical
calculations.

The incorporation of the modules regarding the transport of pollutants and
sedirments together with the thermal and tidal effects may provide a very significant tool
in the resolution of some environmental problems that show up on the Galician coast
which is notable for the presence of countless estuaries. These environmental
considerations are a topic of definitely growing interest, and are of special importance in
a region to which the School of Civil Engineering of La Coruiia is s0 closely linked.

The vocation of this work is not only to be used in the scope of this research
group and in connection with the maritime and sanitary engineering groups within the
School of Civil Engineering of La Coruiia, but also to be released on an user-friendly
frame to the general public. This hydrodynamic code is intended to be released to give
solution to the major problems related to the flows found in engineering practice, and

would incorporate all the modules previously referred to.
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O God, I could be bounded in a
nushell and count myself a King

of infinite space.

William Shakespeare, 1564-1616
Hamier, I1, 2
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APPENDIX
Al. The finite element local reference system

The Finite Element Method is a numerical procedure for solving differential
equations, based upon the obtaining of an approximate value of the unknowns at a
certain set of finite points within the domain of definition. In the text, the approximation
of the unknowns has been made with respect to a set of so-called trial functions, which
for a start are referred to a global axis system. The Finite Element Method, in opposition
to some other numerical procedures such us the Ritz method, gives the approximate
value of the unknowns with respect to a local system of reference, defined on each of
the basic elements in which the domain is split. The unknowns will now depend upon

the local variables £ and 7, for the two-dimensional case considered.

Velocity and pressure can thus be expressed in terms of this discretizaton as:

FEM=TWNEN)  SEM=IVNEN P Em)=3rr En)

j=t = j=t
(A.1)
where N and ¥ are known as the shape functions. Let us now regard this change in the
reference system works with the Q;P; basic element.
So as to interpolate the velocity field, a set of shape functions N,{£,n), with
i=1,..,4 , is going to be used. N, is a set of bilinear functions that takes a unitary value
on the node i and O on any other node. The shape function for pressure ( ¥ } is a constant

function of unitary value.

T'l/\

N, =i(§+1)(n+1);

N2=_Tl(§+lxn~1)

N3=i(§_1)(n-1) | -,‘:;:;;_;:;;;:;;Tf;;

-1
N, =—(-1fn+1) (A2)
Fig A.1. 3, P, basic element
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Proceeding in the same way for the serendipity quadrilateral Taylor Hood basic
element, the shape functions N,.(é,n) with i=1, 2,.., 8 and x.:(&,n) with i=1, 3, 5, 7,
would be defined as follows:

N, =%(—1+J’;n+2§2 +n* +En+&n)

N, =%(—1—§n +&7+n’ —En+En?)

N, =%(—1+§n+§2+n2 -&n-&n?)

N, =%(—1+§n+62 +1n* +&n -En*)

Fig A.2. Serendipity quadrilateral

Taylor Hood basic element.
Ny =2 (+E-m*~En?) N, =2(4m-E )
N, =§(1—§-n2+§n2) N, =%(1+n~1,=2 -n&?)
X, =i(~§+1)(n+1) X =_Tl(§+1)(n—1)
s =%(é-1)(n-1) X =—_;§(&5—1)(n+1)

(A3}

Each of the elementary matrices taking part in the coefficient matrix of the

systemns of equations shown in the text, was obtained by integrating the corresponding

differential term within the domain Q. For every single basic element, we have to

wansform each of its surface integral term, depending on the x and y global variables,
into an integral that depends on the local variables £ and 1, i.e.:

[rGya=[{rtnyhnay= [ ] ale.nhican (A4)
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Hence, we have to camry out a change in the integrating variables in order to
allow for a local surface integration. Let us integrate as a first step the x and y dependent
function f with respect to y:

[ £l yha =[] £(x v (AS)
[*3
The differentials dx, dy can be expressed in terms of d&,dn as:

ox ox dy ay
drx=—dé+—d dy=—-d + d A6
3 3 " =3 ¢ n (A-6)

If we let 17 take the place of y in this first integration, where x behaves as a constant, the

relationship (A.6) is transformed into:

__gdg +—dn dy= a2:1.’;+ % —dn (AT

Removing d£ from the system of equations (A.7), the following is obtained:

Jid
dy=|ax| iy (A8)
%z
where |J| =g—z—%—g—;gyg— is the jacobian determinant of the transformation. If we

substitute now (A.8) in (A.5) we have:

j (xyye=[( f(x,y)

dn)dx
/

and now we can reverse the order of integration to write:
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I (xy)Q= I(Jf(x,y)de)dn (A9

Vot

Regarding now the integration with respect to x, 7 would behave as a constant. and dn

would equal zero, and from the first equation in (A.6) we would have:

=5Ed§ (A10)

substituting the equality (A.10) into (A.9) we arrive at:

[] e yhixdy = [ [ £ (s, y)Jadn (A.11)

expression that gives the change of the integrating variables in the surface integral.
Once we know how to carry out a change in the integrating variable:, let us
transform our global co-ordinates-depending function f, into a function that Jepends
exclusively on the local co-ordinates. The function here referred as f(x,y), takes
different values for each of the constitutive terms of the Navier-Stokes equaticns, and

can be expressed in all the cases as a combination of both the shape functions N; and

the derivatives of the shape functions with respect to the global spatial variables (%gl '

Fl
where N,{£,n) is a set of functions that depend upen the new local spatial variables.
Consequently, we are going to expand the derivatves N;j so as to transfcrm the
derivatives with respect to the global-basis variables x and y, into derivativis with

respect to the local-basis variables& and 7

9N, _ON, 3E N, 9m
ax, o ox, o7 ox,

I

211



Appendix

If we now express equation (A.6) in a matrix notation and we write down the

analogous matrix relationship that gives d€ and dnas a function of dx and dy, we

have:
o & & X
d'x—aéaﬂdé d?,:_ax ay[d-x]
[dy]_ &y & I:dn} and [dn]_ n s (A.12)

Calculating now the inverse matrix of the first system of equations in (A.12), we can
make it equal to the second system to obtain:

& % %€ £
dgl_1|an o] _|ax o [ex
an| [l_& & || o
% ox oy
and consequently:
9 _13y 9% __1ox
ox |J‘ on dy |J|on
an 1 dy an 1 ox
S _ 2% L= A.13
PRV FT: 2y ] A1
Using these equalities, the derivatives N; can then be expressed as:
oN; _1(dN, dy N, oy
ENICE R
2]&=i oN, ox BN & (A-14)
» [\ ®om omaE
or equivalently
av; _ 1 N, § BN _ N, Z
* Ve % & 2 a5
aN; _ _dN; 2“: aN aN aN, '
oy | (5’77] o & 3?1 377 k=1 & aé

where the jacobian determinant can be written in terms of the variables (£,n), as
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7 (Z (3 aN] (Z 3, 35] (A.16)

=l i=1 =1 =l

The elementary matrices in sections 2.7.3 to 2.7.5, can now be expressed as the

integral of a term constituted by the combination of some derivatives with respect 10
(€,m), of functions that depend on {£,n). If we regard, for instance, the viscous term in

the dynamic Navier Stokes equation, it can be written as:

ON, ON; oN, oN, N, oN, LN, oN;
A—(A’j)_[vj;z ox ax+c?y @dxd] (j[ax ax | E3 ayjjldgd]
(A.17)
or in its matrix form as:
Mg A ey aay aal aras afag afay
& & F F & &k ¥ P & & & F & & & &
Al Ed 0 d EaA s aa v s & a5 B,
el e R e T T e e W e W o W
AR E A R A A
& & F P & & P Y & &x FI & & P
(A.18)

Writing now the viscous elementary matrix A; as a function that depends exclusively on
(&,n), we have:

aN KA aN, YoV, dN, ON, aN,
A‘ I[{ ag k—] 2 ]

" an 3nx=1 EB -] c?nmkaé

& JN, oN, N, IN; & N, aN
( RS RS e anxi,*aéﬂdg"

(A.19)

Our next task, will be to carry out a numerical integration of the elementary
matrices, so as to obtain a finite set of matrices constituted by real numbers. This puint

will be discussed in the next section.
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These calculations would be equivalently carried out for the rest of the terms

inciuded in all of the formulations considered within the text, and for every single basic

¢lement. Once all the elementary matrices have been evaluated, they have to be
assembled to make up the system of equations that will give solution to the physical

problem of the incompressible flow.

Let us regard as an example how the values of the elements in the elementary

viscous matrix A are obtained for the simple case of a basic square Q;P) element of
sides 2 length units. The derivatives of the shape functions with respect to the local

spatial variables are:
oN, 1 aN, -1 aN, 1 oN,
—Ll="(n+1 —{n-1 —2=-{n-1 =—(+1
o) eFe-) Seie-) T
oN, 1 -1 1 -1
R LY N 2" =={£-1 AP R
=€) ZheTleen  Shotee) Ze-tleon
and the relative lengths are:
2
Y (xaye) (x1.y:) X =%, =3, =2
2 2 X=X, =y, =y, =2
(x3y3) 2 (x2,¥1) X=X, =X —X, =0
Y=Ya=Ys=¥, =0

) J

The summations to be included in the elementary matrices are in this particular case:

i+ 1) - x, )+ (1 -1)0x, — 3, )] =1

=—[E+1)y, -y, )+ € -1, -y, )]=1

4=.|--

—[(§+1XJ’1 yz)"'(é 1)(}’3 J’4)] 0

[(n+1)(y, Y )+ @ -1 -y, =0
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and matrix A, may consequently be written as;

G+ +E+1) - -1f -E+1? BP0+ -1) -y -2 -)

Ak -1F+ €+ -@-17-€"-1) b2 -1}+E 1) L,
el MR B ]
SIM. m+1Y +E-10

Solving the surface integrals we have:

L1 1 :!4

e ripam=[[ors1fazin=2  [[-1faean={ [r-17azan="%

-1=1 -1 -1-1 -1-1

j.j'(éz - 1}iédn = “(n2 hgan=-Z

-1 -1-1 3

Now we can substitute these integrals into the elementary viscous matrix and the

elementary pressure matrix for the mixed formulation, to yield:

4 -1 -2 -1 1 1

- 4 -1 - -
Ay 1 1 -2 B! - 1 _ B < 1
6|-2 -1 4 -1 -1 S

-1 =2 -1 4 -1 1

These analytical results can be used for verification purposes, but obvioisly
cannot be carried out for every single basic element in the domain of definition. In order
to evaluate the elementary matrices, a numerical integration should be carried out.

These aspects will be regarded in the next section.

A2, Numerical integration

The most obvious procedure to carry out a numerical integration of a given
function, is to use the Newton-Cotes integrating law, which gives the value of a definite
integral between the points —1 and 1, as the summation of the function to be integraed,
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evaluated on some equidistant values of the variable of integration &, altered by a

certain set of coefficients H; that is:

1 =£lf(§}i€ =2H1‘f(§i) (A.20)

=]

The values of H; depend upon the number of interpolating points (n) and result into the

well-known trapezoid rule for n=2:
I=f(-1)+701) (A.21)

and the ‘third’ Simpson rule for n=3:
1
1=3lrC0+470)+ £G) (A22)

and so on, for increasing values of n. The trapezoid mule is exact to integrate
polynomials of grade one and the Simpson rule is able to integrate exactly cubic
polynomials.

When a Gauss integrating rule is wsed, instead of fixing the abscises of the
interpolating points, these abscises are considered as unknowns in order to obtain the
most accurate numerical solution of the integral. The abscises of these evaluating points
and its coefficients can be obtained by making use of the Legendre polynomials. These
coefficients can be consulted in any numerical methods handbook. The Gauss
quadrature rule results in an approximation with a degree of precision of 2r-1, this
means that with 7 integrating points we can exactly evaluate polynomials of grade up to
2n-1.

The integrals we have to evaluate in order to calculate the elementary matrices
of our flow problems are surface integrals. Let us now regard the expression that gives
the approximate solution of a definite surface integral of an & and 7 depending
function, between —1 and 1 in both directions of the space. This integral could be

expressed as:
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1= [, remugan (+.23)

Integrating I with respect to £ and therefore keeping 1 as a constant, eqution

A.23 results into:

1=[ (] rEnperdn=| (ZH gmhn={ glakin (h24)

where g is a function that depends exclusively on 7. Carrying out the second

integration, this ime with respect to 17, we have:

[ sin=Y H.sln)= ZHZHf en)=3 S Ha fEn)  12s)

=l J=1 i=1 j=1

We conclude that the numerical integration for both Newton-Cotes and (jauss

quadrature rules can be made in terms of the doubie summation:

1=[ [ fEnpean=3Y HH,7Em) (A.26)

=l j=1

where the values of the evaluating points and their coefficients, are tabulated below for
n=1,273

n & =M Hi-H;
01 1.0 2.0
o2 +10 1.0
< 3 +1.0 033333

0.0 1.33333

Figure A.3. Newton—Cotes quadrature rule coefficients and evaluating points
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n g =M H-H;
1 0 20
o 2 +0.57735 1.0
o 3 0.0 0.88888
+0.77459 0.55555

Figure A.4. Gauss quadrature rule coefficients and evaluating points

A 2x2 point Gauss quadrature rule has been used throughout this work.
Apparently the Gauss integration is the most efficient of the two methods to carry out
the numerical integration of polynomials, and the greater the number of evaluating
points, the more accurate the solution for a high enough grade of the polynomials to be
integrated. Nonetheless, as was shown in section 2.3, the use of a non-exact evaluation
of the integrals can be required for certain calculations. In particular the so-called
selective reduced integration will be employed when using the penalised algorithm (see
section 2.3), so as to allow for a good convergence of the solution. In this case, a
Newton-Cotes rule of 1x1 point will be used to integrate in a non-exact way the bilinear
polynomials of the Q,Pybasic elements.
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ON THE RESOLUTION OF THE NAVIER-STOKES
EQUATIONS BY THE FINITE ELEMENT METHOD
USING A SUPG STABILIZATION TECHNIQUE
Application to some wastewater treatment probléms

by
Pablo Rodriguez-Vellando Fernandez-Carvajal

In this work an exhaustive analysis of the incompressible flow =

has been carried out, from the very definition of the governing
equations, up to the resolution of some practical problems, passing
through the comprehensive study of the stabilized finite element

techniques used in their resolution. As a consequence of this analysis,a -

code based upon a realistic interpretation of the forces has been written,
which allows for the modelling of the open channel flow, with optimum
results in the resolution of some benchmark and real ﬂow problems
related with the wastewater industry.
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