
>6Qyvq2rE < 1

Abstract In this paper it is proposed a discrete event control
system representation methodology to design, implement and
operate sequential systems, as an alternative to the sequential
function chart (SFC) description method. Such method uses the
standard language ST (structured text) of the IEC 61131-3
associated to the standard language developed by the Foundation
Fieldbus, by associating ST based descriptions language to some
function blocks on the basis of a continuous function charts (CFC)
or function block diagrams (FBD).

Index Terms—Continuous function chart, discrete event
systems, Foundation Fieldbus, IEC-1131-3, sequential function
chart, structured text.

I. INTRODUCTIÓN

ISCRETE event control systems has been designed using
mainly Petri Nets [1,5] and standardised tools, such as

Grafcet [2] and SFC as formal methods [3]. With the use of
tools to design and implement continuous control such as CFC
[7], there exists a real possibility for implementing discrete
event control systems by associating logic function blocks
programmed under ST language to a control system
description based in CFC.

Proposed idea does not emerge as a solution to substitute
SFC based control systems or Grafcet-based batch controlled
processes but to serve as an alternative to embed short
modules based in sequential control into a general CFC based
control system described by means of FBD.

This method is intended to serve in avoiding the
combination of conventional SFC description with CFC based
control systems in special cases such as the task of diagnosing
a control module [6]. Following sections deals respectively
with the necessary function blocks characteristics, a brief
description of a SFC methodology description, and finally it is
presented the method to implement discrete event control
under FBD’s description t method.

II. FUNCTION BLOCKS TO IMPLEMENT A CFC BASED DISCRETE
EVENT CONTROL SYSTEM

The minimum necessary function block classes to
implement a CFC based sequential discrete event control

system are [7]:
• Calculation/Logic (CALC) function block
• Set/Reset Flip-flop (SR) function block
• Action (ACT) function block
A brief description of mentioned function blocks is presented
bellow
Calculation/Logic Function Block

The Calculation/Logic (CALC) function block allows you to
specify an expression that determines the block's output.
Mathematical functions, logical operators, constants,
parameter references, and I/O reference values can be used in
the expression. Figure 1 shows the symbolic Calculation/Logic
function block representation.

Fig. .1.Calc/Logic function block

IN1 through IN[n] are the inputs to the block (as many as 16
inputs).
OUT1 through OUT[n] are the block outputs (as many as 16
outputs).
Figure 2 shows the schematic diagram of Calculation/Logic
function block.

Fig. 2. Schematic diagram of Calculation/Logic function block

Set/Reset Flip-flop Function Block

Discrete Event Control with CFC

Primer A. Autor*, Segundo B. Autor*, y Tercer C. Autor**, Miembro,IEEE

*El Departamento, La Institución, primero@correo.com, segundo@correo.es
**Otro Departamento, Otra Institución, tercero@correo.net

 (para el proceso de revisión por favor omitir los nombres de los autores)

D CALC1
 IN1 OUT1
 IN2 OUT2
 #1

Expressions
evaluator

IN1
IN2

IN16

OUT1
OUT2

OUT16

mailto:primero@correo.com
mailto:segundo@correo.es
mailto:tercero@correo.net

>6Qyvq2rE < 2

The Set/Reset Flip-flop (SR) function block generates a
discrete output value based on NAND logic of set and reset
inputs:
When the reset input is False (0) and the set input is True (1),
the output is True. The output remains True until the reset
input is True and the set input is False.

When the reset input is True, the output is equal to the set
input. When both inputs are True, the output is True. When
both inputs become False, the output remains at its last state
and can be either True or False. Figure 3 shows the symbolic
representation of Set/Reset function block.

Fig. 3. Set/Reset function block

Set/Reset Flip-flop Function Block has the following
input/output connection pins:
RESET_IN is the reset discrete input value and status.
SET is the set discrete input value and status.
OUT_D is the discrete output signal and status.

Action function block
The Action (ACT) function block evaluates an expression

when the input value is True. Mathematical functions, logical
operators, and constants can be used in the expression. Figure
4 shows the symbolic representation of the Action Function
Block.

Fig. 4. Action Function Block

IN_D is the discrete input value and status that initiates
expression evaluation.

III. SFC
SFCs are types of module algorithms that are useful for

controlling time-event sequences, such as startup or shutdown
of a process [4,6]. SFCs are made up of steps and transitions.
Steps contain a set of actions. A transition allows a sequence
to proceed from one step to the next when the transition
condition is true.

Each time the SFC scans, the system evaluates the active
steps and transitions. When a transition evaluates as True, the

step prior to the transition is made inactive and the step
following the transition becomes active.

As a general rule, in defining a SFC, it can be found helpful
to first define the steps in the process, and then identify the
conditions that must be met before proceeding from step to
step. As have been stated, SFCs are useful for representing and
controlling sequential processing behaviour. They are best at
controlling strategies that require multiple states

A sequence in an SFC is drawn as a series of steps and
transitions. Steps are represented by boxes and transitions by
vertical lines with crosses attached. Each step contains a set of
actions that affect the process. At any given time, one or more
of the steps and transitions can be active. Each time the SFC
scans, the active steps and transitions are evaluated. When a
transition evaluates as TRUE (for example, the transition
condition is met), the steps prior to the transition are made
inactive and the step(s) following the transition become active.

Transitions allow single-stream or parallel execution of
logic within the SFC. In an SFC, it can be used divergent paths
to enter alternative sequences by using a sequence select
divergence, which looks similar to the following shown at
figure 5

Fig. 5. Example of a Sequence Select Divergence

To converge paths again, it can be used a sequence select
convergence, which looks similar to the following at figure 6.

Fig. 6. Example of a Sequence Select Convergence

Fig. 7 Example of a Parallel Divergence

It can also be executed simultaneous, or parallel, sequences by
using a parallel divergence, which looks similar to the one in
figure 7. A parallel convergence brings the parallel sequences
back together. The flow is then controlled from one step to the
next using transitions, where transitions identify conditions

 SR1
 RESET_IN OUT_D
 SET
 #1

 ACT1
 IN_D
 #1

STEP1

TRANSITION1 TRANSITION2

 S2

T1 T2

 S2

 S1

T1

 S3

>6Qyvq2rE < 3

that must be met before a sequence can proceed to the next
step.

IV. USING CFC METHOD TO IMPLEMENT SFC APPLICATIONS

Scheduling a SFC application by means of the proposed
CFC representation requires the set of function blocks
mentioned in section II.

The Calc/Logic function block, have the ability to enable
and disable transitions, to evaluate the logic state of any
transition, and to enable and disable steps. Such abilities are
implemented under the ST language.

Set/Reset function block, activate and deactivate action
steps when a enabled or disabled transition reach the true or
false logic state.

The Action function block describe the action associated to
any step, which can be a physical action and/or any
computation procedure. The actions into steps can be realised
then by means of Calc/Logic function blocs and Action
function blocks simultaneously.

In order to show the procedure we proceed via an example.
Let us consider a SFC application such as the one shown in
figure 8.

Fig. 8. SFC based description of a discrete event system.

A transition allows a sequence to proceed from one step to
the next when the transition condition is true, if and only if the
transition is enabled. The transition is enabled by the
precedent active step. So that, this assertment can be described
under ST language as:

IF S(i-1) AND T(i) THEN
S(i):=TRUE;
S(i-1):=FALSE;

END_IF (1)

Fig. 9. CFC based implementation of the SCF example.

Calc/Logic function block allows us to process past
instructions described by (1). The outputs of the Calc/Logic
function block OUT(i) are activated and deactivated according
expressions (1) to set and reset the corresponding steps, as
shown in figure 9. When a step is set, then the Action function
bloc associated operates accordingly.

In figure 9 only Action function blocks are associated to
step activities but in case of intensive computation procedures,
Cal/Logic function blocks could be applied.

The following text in ST language implements the SFC
based description shown in figure 8. Such text is supported by
the Calc/Logic function bloc shown in figure 9.

IF S(0) AND T(1) THEN
S(1):=TRUE;
S(0):=FALSE;

END_IF;

IF S(0) AND T(3) THEN
S(2):=TRUE;
S(0):=FALSE;

END_IF;

IF S(1) AND T(2) THEN
S(0):=TRUE;
S(1):=FALSE;

END_IF;

IF S(2) AND T(4) THEN
S(3):=TRUE;
S(4):=TRUE;
S(2):=FALSE;

END_IF;

IF (S(3) OR S(4)) AND T(5) THEN
S(0):=TRUE;
S(3):=FALSE;
S(4):=FALSE;

END_IF;

 S1

 S0

T1

 S2

T3

T2 T4

 S3 S4

T5

 CALC1
 IN1 OUT1
 IN2 OUT2
 IN3 OUT3
 IN4 OUT4
 OUT5
 OUT6
 OUT7
 OUT8
 OUT9
 OUT10

 #1

 ACT1
 IN_D
 #1

 SR1
R OUT
S

 SR2
R OUT
S

 SRn
R OUT
S

 ACT2
 IN_D
 #2

 ACTn
 IN_D
 #3

>6Qyvq2rE < 4

Activated steps by the Calc/Logic function bloc outputs, set or
reset the Set/Reset function blocks, which send a logic signal
to each Action function block. The action function bloc is
allowed to operate when its input is true. Alternatively or
simultaneously, Calc/Logic function blocks, used as procedure
computation and action blocks, will be activated by its enabled
inputs as shown at figure 10.

Fig. 10. CFC based implementation of the SCF example with
Calc/Logic function blocks as action blocks.

Actions defined in figure 10 by means of Calc/Logic
function blocks are subjected to the state of precedent block
Sri, depending whether it is enabled or disable. So that, a
enabled SRi function block enables a Calc/Logic function
block to operate according action instructions defined into a IF
THEN instruction which looks like following source listing fro
function block CALC2 of figure 10:

IF IN1 THEN
(* Compute and apply actions in actual
step. For example :*);
OUT1:=TRUE;
OUT2:=Pi*TAN(IN2);
OUT3:=sqrt(IN2);
I:=0;
(*WHILE Loop to generate a ramp *)
WHILE I<50 DO;
OUT3:=OUT3+0.25*I;

I:= I+1;
END_WHILE;

END_IF;

V. CONCLUSIONS

System integrators appreciate the existence of powerful tools
to implement complex discrete event and hybrid control
systems. But at same time, they are interested in control
developing tools easy to understand and operate.

The described alternative is not an attractive solution to
solve efficiently large SFC based batch control processes. This
is rather useful in solving discrete event processes associated
to control modules where short hybrid control tasks are
needed.

Doesn’t require special or complex knowledge and the
clarity of the method contribute to make such method
applicable.

REFERENCIAS

[1] R. David. H. Alla, “Petri Nets and Grafcet: Tools for
Modelling Discrete Event Systems”, Prentice Hall,
London, 1992.

[2] K. E. Arcen, “Sequential Function Charts for Knowledge-
based Real Time Applications”, Proc. of the 3d IFAC
Workshop on AI in Real Time Control, California, 1991.

[3] IEC 61131-3, “Programmable Controllers-Part 3, Their
Programming Languages”, International Electro-technical
Commission, Publication 61131-3, 1993

[4] L. Marce, P. Le Parc, “Defining the Semantics of
languages for Programmable Controllers with
Synchronous Processes, Control Engineering Practice,
Vol 1 (1993) pp. 79-84

[5] A.H. Jones (et al.), “A General Methodology for
Converting Petri Nets into Ladder Logic: The TPL
Methodology”, Journal of Intelligent Manufacturing 5
(1996), pp. 103-120.

[6] “SFC++:a tool for developing distributed real-time control
software”, Ed. Elsevier, Microprocessors and
Mycrosystems, 23 (1999), pp. 75-84

[7] Fisher-Rosemount Systems, Inc. “DeltaV Books on-line”,
Copyright © 1994-2001, Emerson Process Management.

 CALC1
 IN1 OUT1
 IN2 OUT2
 IN3 OUT3
 IN4 OUT4
 OUT5
 OUT6
 OUT7
 OUT8
 OUT9
 OUT10

 #1

 ACT1
 IN_D
 #1

 SR1
R OUT
S

 SR2
R OUT
S

 SRn
R OUT
S

 ACT2
 IN_D
 #2

 ACTn
 IN_D
 #3

 CALC1
 IN1 OUT1
 IN2 OUT2
 #1

 CALC2
 IN1 OUT1
 IN2 OUT2
 OUT3
 #2

