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1. Abstract
Since Bendsøe and Kikuchi proposed the basic concepts in 1988, most of topology structural optimization
results have been obtained so far by means of a maximum stiffness (minimum strain energy, minimum
compliance) approach. In this kind of approaches, the mass is normally restricted to a given percent-
age of the total maximum possible mass, while no stress constraints are taken into account. On the
other hand, size and shape structural optimization problems are normally stated in terms of a minimum
weight with stress constraint approach. These traditional minimum compliance statements for topology
optimization problems offer some obvious advantages, since one avoids dealing with a large number of
highly non-linear stress constraints.
However, one can argue that this kind of statements has several important drawbacks. Thus, different
solutions are obtained for different restrictions on the mass, and the final design could be unfeasible
in practice since no constraints are imposed on the maximum allowed stress. On the other hand, the
minimum compliance problem is said to be ill-posed, since the solution oscillates as the discretization
refinement is increased. This difficulty can be easily overcome by introducing porous materials. However,
an optimized material distribution with a large amount of porous material is frequently considered an
unwanted result. And, on the other hand, numerical instabilities occur unless additional stabilization
techniques (such as the perimeter method, or the filter method) are employed. Thus, the final optimized
results normally resemble truss-like structures.
A new FEM formulation for topological optimization of structures is presented in this paper. This
new model minimizes the weight of the structure in order to get a more realistic solution, taking into
consideration that the materials stresses can not exceed a predetermined maximum value. One gets,
therefore, a large number of nonlinear stress constraints which make more difficult the problem from a
mathematical point of view but, on the other hand, this technique does not require stabilization schemes
because the restrictions are stated in all elements. As an example, several structures optimized with this
technique are presented.

2. Keywords: Topological optimization, minimum weight, finite element method, stress constraints.

3. Introduction
Topological optimization problems are solved, generally, by means of a maximum stiffness (minimum
compliance) approach. With this formulation the objective function is very complicated, however, there
is only one constraint which is, in addition, linear. Consequently, minimum compliance approach has
several important advantages. On the other hand, these formulations present several dificulties because
they requiere some artificial parameters that do not have an easy physical interpretation. Following the
same idea, the objective function does not represent an important physic parameter from an engineering
point of view. Mass constraints are not usually employed on structural design. Most common parameters
on structural design are displacements and stresses as constraints and the cost as objective.
The most employed formulation applied to solve minimum compliance statements is the so called SIMP
(Solid Isotropic Material with Penalty). With this formulation we define a constant relative density of
the porous material for each element of the mesh. This relative density oscillates from 0 to 1 (porous-
solid). The relative densities are the design variables of the optimization problem. Total amount of
material is the linear constraint.
SIMP formulation has several important advantages because the resulting problem is, generally, easy to
solve. However, minimum compliance presents numerical instabilities that it is necesary to avoid. Some
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techniques, like the perimeter method or the filter method, are usually employed [1]. In addition, a
penalization parameter is employed to avoid intermediate densities. Then, the solutions obtained seems
to be truss-like structures.
In this paper, we present a minimum weight formulation for structural topological optimization with
local stress constraints (MWSC).

4. MWSC Formulation
4.1. The structural problem analysis with relative density
Let the domain Ωo be occupied by a porous material. Let ρ(rrrrrrrrrrrrrro) be the relative density of the material
(complement of the porosity, which adimensional value must range from 0 to 1) at point PPPPPPPPPPPPPP o of material
coordinates rrrrrrrrrrrrrro. Thus, every arbitrary point P o in Ωo is mapped into a different position P in Ω. Let rrrrrrrrrrrrrro

and rrrrrrrrrrrrrr be the material coordinates vectors of points P o and P , respectively. Our aim is to compute the
displacements

uuuuuuuuuuuuuu(rrrrrrrrrrrrrro) = rrrrrrrrrrrrrr(rrrrrrrrrrrrrro)− rrrrrrrrrrrrrro, (1)

which are the key to obtain the strains εεεεεεεεεεεεεε(rrrrrrrrrrrrrro) and the stresses σσσσσσσσσσσσσσ(rrrrrrrrrrrrrro). In linear elasticity with small
displacements and small displacement gradients the corresponding expressions are

εεεεεεεεεεεεεε = LLLLLLLLLLLLLLuuuuuuuuuuuuuu, σσσσσσσσσσσσσσ = DDDDDDDDDDDDDDεεεεεεεεεεεεεε. (2)

For a given distribution of (porous) material, defined by the relative density field ρ(rrrrrrrrrrrrrro), our aim is to
compute the displacements Eq.(1) and the associated strains and stresses Eq.(2).
We assume again the linear elasticity hypothesis, implying small displacements and small displacement
gradients.
Let dΩ be the volume of a differential region in the vicinity of point P o. By definition, the volume
occupied by the porous material within the differential region will be ρ(rrrrrrrrrrrrrro)dΩ. Therefore, the structural
analysis problem can be written as [2]

Given ρ(Ωo)
find uuuuuuuuuuuuuu ∈ Hu

such that a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) = (wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo + (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

∀wwwwwwwwwwwwww ∈ Hw

being a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) =
∫∫∫

Ωo

(LLLLLLLLLLLLLLwwwwwwwwwwwwww)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuu) ρ dΩ,

(wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo =
∫∫∫

Ωo

wwwwwwwwwwwwwwT bbbbbbbbbbbbbb ρ dΩ, (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

=
∫∫

Γo
σ

wwwwwwwwwwwwwwT tttttttttttttt dΓ.

(3)

Notice that, in comparison with the original statement of a conventional FEM formulation, the mod-
ifications are reduced to take into account the porosity effect in the integration. In fact, once the
displacements are known, the strains and stresses fields are computed with the same expressions, inde-
pendently of the actual material distribution. However, we must exclude the case in which the relative
density is locally null, since the concepts of displacement, strain and stress become meaningless. This
problem is solved imposing a minimum value of the relative density slightly greater than zero (usually
ρmin=0.001) to all the elements of the mesh.

4.2. The Finite Element numerical model with relative density
Let ρe be the relative density of element number e, which is assumed constant within the element. Let
ρρρρρρρρρρρρρρ = {ρe} (e = 1, . . . , nelem) be the relative densities vector, which will constitute the design variables
of the topology optimization problem. For a given ρρρρρρρρρρρρρρ, the structural analysis problem to be solved is:

Find αααααααααααααα(ρρρρρρρρρρρρρρ)

such that
N∑

i=1

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)ααααααααααααααi(ρρρρρρρρρρρρρρ) = ffffffffffffff j(ρρρρρρρρρρρρρρ), j = 1, . . . , N.
(4)

The required terms can be computed on an element by element basis. Thus,
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KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ) =
nelem∑
e=1

KKKKKKKKKKKKKKe
ji(ρe),

ffffffffffffff j(ρρρρρρρρρρρρρρ) =
∫∫

Γo
σ

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT
j tttttttttttttt dΓ +

nelem∑
e=1

ffffffffffffffe
j(ρe),

(5)

being the element contributions

KKKKKKKKKKKKKKe
ji(ρe) =

∫∫∫

Ee

(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦi) ρe dΩ,

ffffffffffffffe
j(ρe) =

∫∫∫

Ee

(
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT

j bbbbbbbbbbbbbb− (LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuup)
)

ρe dΩ.

(6)

Once the solution αααααααααααααα(ρρρρρρρρρρρρρρ) to problem Eq.(4) is found, we can compute at any arbitrary point rrrrrrrrrrrrrro ∈ Ωo the
approximations

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi(ρρρρρρρρρρρρρρ), (7)

εεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = LLLLLLLLLLLLLLuuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ), σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = DDDDDDDDDDDDDDεεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ). (8)

Notice that acording to Eq.(7) and Eq.(8) displacements, strains and stresses are still computed in the
usual way.
Therefore, if we wish to adapt an existing FEM numerical model of structural analysis as a component of
a topology optimization system, we only have to modify the element contributions computation. More-
over, the required adjustment is quite simple, since we only need to introduce the relative density in the
integration of the corresponding expressions Eq.(6).
Furthermore, computing contributions Eq.(6) is fairly straightforward, since we assume that the relative
density is constant within each element. Thus, we just have to multiply the original FEM formulation
results by the corresponding relative densities. On the other hand, the original results give the first
order derivatives of contributions Eq.(6) with respect to the design variables. Moreover, all the other
first and higher order derivatives are obviously null.
We conclude that we do not have to modify the source at the lower level for adapting an existing FEM
code into a topology optimization system. In practice, only slight adjustments must be implemented in
the data flow between the higher level routines. In fact, any conventional code should contain all the
basic tools to perform the required new computations and the associated sensitivity analysis.

4.3. Statement of the Stress Constraints
The values σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) computed by means of Eq.(7) and Eq.(8) are numerical approximations to the actual
stress tensor components of the material being deformed. Thus, the allowable values of the reference
stress σ̂(σσσσσσσσσσσσσσ) at point rrrrrrrrrrrrrro

` can be limited by introducing constraints as

G`,1(ρρρρρρρρρρρρρρ) = σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

` , ρρρρρρρρρρρρρρ)
)
− σ̂max ≤ 0,

G`,2(ρρρρρρρρρρρρρρ) = σ̂min − σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

` , ρρρρρρρρρρρρρρ)
)
≤ 0,

(9)

where σ̂ is the stress criterion of comparison employed and σ̂max and σ̂min are the corresponding upper
and lower limits.

5. Numerical Application
As we have mentioned before, it is very easy to adapt a conventional FEM formulation for structural
topological optimization and only minor changes need to be performed in the integral calculations. More-
over, ρe is constant for each element.
Once these changes are made, the problem can be solved in the usual way independently of the value of
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the relative densities.

5.1. Sensitivity analysis
Sensitivity analysis is developed by a direct differentiation method over the fundamental equations of
the FEM formulation. Sensitivity analysis is developed to calculate the derivatives of the constraints
and the objective function over the relative densities. To obtain these derivatives we need to calculate
the derivatives of the nodal displacements over the relative densities.
Next, we calculate the derivatives of KKKKKKKKKKKKKK(ρρρρρρρρρρρρρρ) over each relative density as

N∑

i=1

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂ααααααααααααααi(ρρρρρρρρρρρρρρ)
∂ρe

=
∂ffffffffffffff j(ρρρρρρρρρρρρρρ)

∂ρe
−

N∑

i=1

∂KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂ρe

ααααααααααααααi(ρρρρρρρρρρρρρρ), (10)

being

∂KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂ρe

= KKKKKKKKKKKKKKe
ji(ρρρρρρρρρρρρρρ)

∣∣∣∣
ρe=1

and
∂ffffffffffffff j(ρρρρρρρρρρρρρρ)

∂ρe
= ffffffffffffffe

j(ρρρρρρρρρρρρρρ)
∣∣∣∣
ρe=1

. (11)

The problem above is similar to obtain the nodal displacements of the original FEM problem because
the matrix KKKKKKKKKKKKKK(ρρρρρρρρρρρρρρ) is the same. The resulting linear equation system can be solved in a similar way too.
We employ a factorization technique because it is possible to store the factorized matrix and use it to
solve several equation systems with the same rigidity matrix and different loads. In addition, second
derivatives will be obtained by a similar procedure and it will be necessary to solve more linear equation
systems.
Now, the derivatives of the stresses over the relative densities can be easily obtained as

∂uuuuuuuuuuuuuuh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)
∂ρe

=
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrr0)
∂ααααααααααααααi(ρρρρρρρρρρρρρρ)
∂ρe

,

∂εεεεεεεεεεεεεεh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)
∂ρe

= LLLLLLLLLLLLLL
∂uuuuuuuuuuuuuuh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)

∂ρe

∂σσσσσσσσσσσσσσh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)
∂ρe

= DDDDDDDDDDDDDD
∂εεεεεεεεεεεεεεh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)

∂ρe
.

(12)

The derivatives of the nodal displacements over the relative densities are obtained from Eq.(10).
Once we have calculated the first order derivatives, we calculate the second order derivatives. We should
obtain them by a directional search diferentiation because the full second order derivatives would require
a large amount of data storage. Thus,

N∑

i=1

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂2ααααααααααααααi(ρρρρρρρρρρρρρρ)

∂s2
=

∂2ffffffffffffff j(ρρρρρρρρρρρρρρ)
∂s2

− 2
N∑

i=1

∂KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂s

∂ααααααααααααααi(ρρρρρρρρρρρρρρ)
∂s

−
N∑

i=1

∂2KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂s2

ααααααααααααααi (13)

where s is the search direction.
Furthermore, we could simplify this expression because several terms are null

N∑

i=1

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂2ααααααααααααααi(ρρρρρρρρρρρρρρ)

∂s2
= −2

N∑

i=1

∂KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)
∂s

∂ααααααααααααααi(ρρρρρρρρρρρρρρ)
∂s

. (14)

The second order directional derivatives can now be obtained from Eq.(12) and Eq.(14) as

∂2uuuuuuuuuuuuuuh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)
∂s2

=
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi
∂2ααααααααααααααi(ρρρρρρρρρρρρρρ)

∂s2
,

∂2εεεεεεεεεεεεεεh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)
∂s2

= LLLLLLLLLLLLLL
∂2uuuuuuuuuuuuuuh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)

∂s2
,

∂2σσσσσσσσσσσσσσh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)
∂s2

= DDDDDDDDDDDDDD
∂2εεεεεεεεεεεεεεh(rrrrrrrrrrrrrr0, ρρρρρρρρρρρρρρ)

∂s2
.

(15)
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Moreover, the derivatives of the objective function can be obtained directly because the weight of each
element is linearly dependent of its relative density. Then, these derivatives can be obtained by calcu-
lating the weight of each element without multiplying it by the relative density.

5.2. Optimization problem
The optimization problem can be formulated from a generic point of view as

Minimize F (ρρρρρρρρρρρρρρ) = Cost(ρρρρρρρρρρρρρρ)
subject to: G`(σσσσσσσσσσσσσσi) ≤ 0 ` = 1, . . . , Nconst

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , Nelem

ρmin = 0.001 (usually)

(16)

The objective function can be defined as

F (ρρρρρρρρρρρρρρ) =
Nelem∑

i=1

∫

Ωe

(ρe)
1/q

dΩ (17)

where the parameter q is a penalty parameter to avoid intermediate densities in the optimized solution
[2]. If no penalization is used (q = 1) the objective function to minimize is the total weight of the
structure.
However, constraints can be formulated in many different ways. We propose to set a stress constraint in
the central point of each element. We have used Von Mises criterion for material failure because we solve
steel structures. If one wants to use another material it is necesary to change failure criterion according
to material properties and their derivatives. In our case,

σ̂vm =

√
1
2

[
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

]
. (18)

6. Optimization algorithm
The optimization algorithm is developed in [3]. We use a Sequential Linear Programming (SLP) al-
gorithm to obtain a feasible search direction with linear approximation. If the problem is linear the
solution is obtained in only one iteration, but stress constraints are highly non linear and it is necesary
to solve a sequence of linearized problems to obtain the optimum. Once we have obtained a valid search
direction it is necesary to calculate an advance factor which minimizes the objective function and does
not violate any contraints in this direction. We use a second order line search to obtain the advance
factor. This new solution can be used as a valid basic value of the vector of design variables to repeat
the optimization algorithm. Thus, the iterative problem can be formulated as

given ρρρρρρρρρρρρρρk

obtain ρρρρρρρρρρρρρρk+1 = ρρρρρρρρρρρρρρk + ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρk.
(19)

The objective function and the contraints can be linearized as:

F (ρρρρρρρρρρρρρρk + ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρk) ≈ F (ρρρρρρρρρρρρρρk) +∇∇∇∇∇∇∇∇∇∇∇∇∇∇F (ρρρρρρρρρρρρρρk) ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρk

G`(ρρρρρρρρρρρρρρk + ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρk) ≈ G`(ρρρρρρρρρρρρρρk) +∇∇∇∇∇∇∇∇∇∇∇∇∇∇G`(ρρρρρρρρρρρρρρk) ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρ∆ρk j = 1, . . . , Nconst

(20)

The feasible search direction can be obtained with three diferent methods. If there are no violated con-
straints we use a search direction wich reduces the objective function. This situation is quite infrecuent
and then we use as the search direction the negative of the gradient of the objective function.
If there is any violated constraint we use a linear programming method based on the Simplex algorithm
to obtain the search direction whitout violating the constraints and reducing the objective function. This
direction is usually found but if there is a very high number of constraints or if there are strongly violated
constraints the procedure could fail. If this happens we use another algorithm to obtain a direction that
forces the design to proceed to the feasible region, although the objective function could be increased.
Moreover, it is necesary to consider lateral constraints because the design variables can only take a value
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between ρmin and 1.00. Then, it is necessary to modify the search direction when lateral constraints
become active. Thus,

if

{
ρe = ρmin and ssssssssssssssk

e < 0, or

ρe = 1 and ssssssssssssssk
e > 0

}
then ssssssssssssssk

e = 0. (21)

Finally, the search direction is normalized to avoid possible scale effects between the different methods
employed to obtain the search direction. In addition, if ssssssssssssss is normalized the value of θk is the magnitude
of the design modification.
Now, the advance factor (θk) can be obtained by second order approximations of the objective function
and the stress constraints. The required second order derivatives can be calculated according to the
sensitivity analysis expressions in Eq.(14) and Eq.(15). Then, the objective function and the constraints
can be quadratically approximated as

F (ρρρρρρρρρρρρρρk+1) ≈ F (ρρρρρρρρρρρρρρk) +
∂F (ρρρρρρρρρρρρρρk)

∂sk
θk +

1
2

∂2F (ρρρρρρρρρρρρρρk)
∂sk

2 θk
2

G`(ρρρρρρρρρρρρρρk+1) ≈ G`(ρρρρρρρρρρρρρρk) +
∂G`(ρρρρρρρρρρρρρρk)

∂sk
θk +

1
2

∂2G`(ρρρρρρρρρρρρρρk)
∂sk

2 θk
2 ` = 1, . . . , Nconst.

(22)

Once we have calculated the advance factor and the search direction we can obtain a new solution to
the problem. Iterations will stop if none initial solution is found, if convergence is achieved or if the
maximum number of allowed iterations is exceeded.

7. Application examples
We present two structures calculated in plane stress. For this kind of examples the design variables
are easy to represent graphycally because we can assume that the relative density can be shown as the
thickness of each element of the structure. Then, the structure can be shown as a 3D volume although
the solution is calculated as a 2D structure.
For simplicity we use a predefined rectangular mesh with homogeneously distributed rectangular ele-
ments. The length and the height are previously defined.
The first example is a beam 40 m long and 15 m high. It has vertical and horizontal supports on the
left extreme and on the right extreme as it is shown in figure 1. The external load is a punctual load
of 6 105 kN applied at a distance of 1/3 of the total length from the left support. In addition, self
weight is considered. We use steel with an elastic limit of σe = 230 MPa and a Young Module of
Ee = 2.1 105 MPa. According to [4], the Poisson value is (ν = 0.3) and the mass density of steel
is γmat = 76.5 kN/m3. We have used a mesh with 36 × 16 = 576 rectangular elements. Notice that
elements where punctual loads (forces or reactions) are applied are not optimized to avoid the effect of
stress accumulation.
As it can be seen, the solution seems to be good from an engineering point of view because it is very
similar to an arch (figure 4-right). In this example, the thickness of the elements has ben multiplied
by a constant to give a better graphic comprehension of the solution. The final weight of the structure
corresponds to 17.16 % of the initial one.
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Figure 1: Initial scheme

Figure 2: Example 1: Initial solution (left) and iteration 10 (right)

Figure 3: Example 1: iteration 20 (left) and iteration 35 (right)

Figure 4: Example 1: iteration 50 (left) and optimized solution (right)
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The second example (figure 5) is a beam 40 m long and 1 m high. It is supported on the left edge, on
the center and on the right edge. The horizontal deformation is not restricted. Furthermore, a vertical
punctual load of 104 kN is applied in the middle of the left span. The steel has the same properties as
in example 1 but now the mesh is made up of 60×12 = 720 elements. The total weight of the optimized
structure is about 24.49 % of the initial one.

Figure 5: Example 2: initial scheme

Figure 6: Example 2: initial solution (left) and iteration 5 (right)

Figure 7: Example 2: iteration 10 (left) and iteration 20 (right)

Figure 8: Example 2: iteration 30 (left) and optimized solution (right)
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8. Conclusions
We present a minimum weight formulation for structural topological optimization with local stress con-
straints.
The formulation is based on an optimization method wich includes a conventional FEM approach with
simple modifications.
The presented optimization approach does not require neither artificial parameters nor stabilization
techniques. Intermediate densities are not penalized neither.
The objective function and the constraints have a clear physical interpretation from an engineering point
of view. In addition, another kind of constraints could be used (displacementes, vibration frequencies)
and several load cases could be analysed simultaneously.
From a mathematical point of view the formulation is very robust. However, this approach implies a
high number of non linear constraints wich implies a large amount of data storage.
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