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Abstract. In this paper we present a Galerkin based SPH formulation with moving least
squares meshless approximation, applied to free surface flows. The Galerkin scheme pro-
vides a clear framework to analyze several procedures widely used in the classical SPH
literature, suggesting that some of them should be reformulated in order to develop consis-
tent algorithms. The performance of the methodology proposed is tested through various
dynamic simulations, demonstrating the attractive ability of particle methods to handle
severe distortions and complex phenomena.
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1 INTRODUCTION

The endeavour to solve the continuum equations in a particle (as opposed to cell or
element) framework, i.e. simply using the information stored at certain nodes or particles
without reference to any underlying mesh, has given rise to a very active area of research:
the class of so-called meshless, meshfree or particle methods.

If this particle approach is to be used in combination with classical discretization pro-
cedures (e.g. the weighted residuals method), then a spatial approximation is required
(some kind of “shape functions”, as in the finite element method). Such an interpolation
scheme should accurately reproduce or reconstruct a certain function and its succesive
derivatives using the nodal values . Furthermore, and in order to achieve computation-
ally efficient algorithms, the interpolation should have a local character, i.e. only a few
“neighbour” nodes are considered in the reconstruction process.

The origin of modern meshless methods could be dated back to the 70’s with the pio-
neering works in generalized finite differences and vortex particle methods [1],[2]. However,
the highest influence upon the present trends is commonly attributed to early Smoothed
Particle Hydrodynamics (SPH) formulations [3],[4],[5], where a lagrangian particle track-
ing is used to describe the motion of a fluid. Although this general feature is shared with
vortex particle methods, SPH includes a spatial approximation framework (some kind of
“meshfree shape functions”), developed using the concept of kernel estimate.

The Smoothed Particle Hydrodynamics (SPH) method was developed to simulate fluid
dynamics in astrophysics [3],[4]. The extension to solid mechanics was introduced by
Libersky, Petschek et al. [6] and Randles [7]. Johnson and Beissel proposed a Normalized
Smoothing Function (NSF) algorithm [8] and other corrected SPH methods have been
developed by Bonet et al. [9],[10] and Chen et al. [11]. More recently, Dilts has introduced
Moving Least Squares (MLS) shape functions into SPH computations [12].

Early SPH formulations included both a new approximation scheme and certain charac-
teristic discrete equations (the so-called SPH equations), which may look quite “esoteric”
for those researchers with some experience in methods with a higher degree of formal-
ism such as finite elements. The formulation described in this paper follows a different
approach, and the discrete equations are obtained using a Galerkin weighted residuals
scheme. This derivation may result somewhat disconcerting for those accustomed to the
classical SPH equations. However, we believe that Galerkin formulations provide a strong
framework to develop consistent algorithms.

The outline of the paper is as follows. We begin with a brief review of standard SPH
and moving least squares approximations. After introducing the model equations, their
discrete counterpart is obtained using a Galerkin formulation. Finally, the methodology
is applied to the simulation of fluid dynamics and free surface flows.
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2 MOVING LEAST-SQUARES APPROXIMATION

Let us consider a function u(xxxxxxxxxxxxxx) defined in a bounded, or unbounded, domain Ω. The
basic idea of the MLS approach is to approximate u(xxxxxxxxxxxxxx), at a given point xxxxxxxxxxxxxx, through a
polynomial least-squares fitting of u(xxxxxxxxxxxxxx) in a neighbourhood of xxxxxxxxxxxxxx as:

u(xxxxxxxxxxxxxx) ≈ û(xxxxxxxxxxxxxx) =
m∑

i=1

pi(xxxxxxxxxxxxxx)αi(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

= ppppppppppppppT (xxxxxxxxxxxxxx)αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

(1)

where ppppppppppppppT (xxxxxxxxxxxxxx) is an m-dimensional polynomial basis and αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

is a set of parameters to

be determined, such that they minimize the following error functional:

J(αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

) =
∫

yyyyyyyyyyyyyy∈Ωxxxxxxxxxxxxxx
W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)

∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

[
u(yyyyyyyyyyyyyy)− ppppppppppppppT (yyyyyyyyyyyyyy)αααααααααααααα(zzzzzzzzzzzzzz)

∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

]2
dΩxxxxxxxxxxxxxx (2)

being W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

a symmetric kernel with compact support (denoted by Ωxxxxxxxxxxxxxx), fre-

quently chosen among the kernels used in standard SPH. The parameter h is called smooth-
ing length, and measures the size of Ωxxxxxxxxxxxxxx. The stationary conditions of J with respect to
αααααααααααααα lead to

∫

yyyyyyyyyyyyyy∈Ωxxxxxxxxxxxxxx
pppppppppppppp(yyyyyyyyyyyyyy)W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)

∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

u(yyyyyyyyyyyyyy)dΩxxxxxxxxxxxxxx = MMMMMMMMMMMMMM(xxxxxxxxxxxxxx)αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

(3)

where the moment matrix MMMMMMMMMMMMMM(xxxxxxxxxxxxxx) is

MMMMMMMMMMMMMM(xxxxxxxxxxxxxx) =
∫

yyyyyyyyyyyyyy∈Ωxxxxxxxxxxxxxx
pppppppppppppp(yyyyyyyyyyyyyy)W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)

∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

ppppppppppppppT (yyyyyyyyyyyyyy)dΩxxxxxxxxxxxxxx (4)

In numerical computations, the global domain Ω is discretized by a set of n particles.
We can then evaluate the integrals in (3) and (4) using those particles inside Ωxxxxxxxxxxxxxx as
quadrature points (nodal integration) to obtain, after rearranging,

αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

= MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW V (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx (5)

where the vector uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx contains certain nodal parameters of those particles in Ωxxxxxxxxxxxxxx, the
discrete version of M is M(xxxxxxxxxxxxxx) = PΩxxxxxxxxxxxxxxWV(xxxxxxxxxxxxxx)PT

Ωxxxxxxxxxxxxxx , and matrices PΩxxxxxxxxxxxxxx and WV(xxxxxxxxxxxxxx) can be
obtained as:

PΩxxxxxxxxxxxxxx =
(
pppppppppppppp(xxxxxxxxxxxxxx1) pppppppppppppp(xxxxxxxxxxxxxx2) · · · pppppppppppppp(xxxxxxxxxxxxxxnxxxxxxxxxxxxxx)

)
(6)

WV(xxxxxxxxxxxxxx) = diag {Wi(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxi)Vi} , i = 1, . . . , nxxxxxxxxxxxxxx (7)

Complete details can be found in [13]. In the above equations, nxxxxxxxxxxxxxx denotes the total
number of particles within the neighbourhood of point xxxxxxxxxxxxxx and Vi and xxxxxxxxxxxxxxi are, respectively,
the tributary volume (used as quadrature weight) and coordinates associated to particle
i. Note that the tributary volumes of neighbouring particles are included in matrix
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WV, obtaining an MLS version of the Reproducing Kernel Particle Method (the so-called
MLSRKPM) [14]. Otherwise, we can use W instead of WV,

W(xxxxxxxxxxxxxx) = diag {Wi(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxi)} , i = 1, . . . , nxxxxxxxxxxxxxx (8)

which corresponds to the classical MLS approximation (in the nodal integration of the
functional (2), the same quadrature weight is associated to all particles). Introducing (5)
in (1) the interpolation structure can be identified as:

û(xxxxxxxxxxxxxx) = ppppppppppppppT (xxxxxxxxxxxxxx)M−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW V (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx = NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx (9)

And, therefore, the MLS shape functions can be written as:

NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx) = ppppppppppppppT (xxxxxxxxxxxxxx)M−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW V (xxxxxxxxxxxxxx) (10)

3 A LAGRANGIAN PARTICLE SCHEME FOR FREE SURFACE FLOWS

3.1 Continuum equations

Let us assume a compressible, newtonian fluid, thus behaving as if it was governed by
the following set of equations:

(a) Continuity equation:

dρ

dt
= −ρ div(vvvvvvvvvvvvvv) (11)

where d·
dt denotes the material time derivative and div(vvvvvvvvvvvvvv) is computed in the current

configuration in terms of the velocity gradient tensor llllllllllllll

div(vvvvvvvvvvvvvv) = tr(llllllllllllll), llllllllllllll =
∂vvvvvvvvvvvvvv(xxxxxxxxxxxxxx, t)

∂xxxxxxxxxxxxxx
= ∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxvvvvvvvvvvvvvv (12)

(b) Momentum equation:

ρ
dvvvvvvvvvvvvvv

dt
= ∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxx · σσσσσσσσσσσσσσ + bbbbbbbbbbbbbb (13)

where ρ is the density and the stresses are related to the Cauchy stress tensor σσσσσσσσσσσσσσ

σσσσσσσσσσσσσσ = −pIIIIIIIIIIIIII + 2µdddddddddddddd′ (14)

in terms of the pressure p, the viscosity µ and the deviatoric part (dddddddddddddd′) of the rate of
deformation tensor dddddddddddddd, given by
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dddddddddddddd′ = dddddddddddddd− 1

3
tr(dddddddddddddd)IIIIIIIIIIIIII, dddddddddddddd =

1

2
(∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxvvvvvvvvvvvvvv +∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxvvvvvvvvvvvvvvT ) (15)

We use an equation of state of the form [16]:

p = κ
[(

ρ

ρ0

)γ

−1
]

(16)

where typically γ = 7 and κ is chosen such that the fluid is nearly incompress-
ible. In gravity flows the initial particle densities are adjusted to obtain the correct
hydrostatic pressure computed as (16) [16]:

ρ = ρ0

(
1 +

ρ0g(H − z)

κ

)1/γ

(17)

where H is the total depth and g = 9.81 m/s2.

(c) Angular Momentum Conservation: We consider neither mass distributions of polar
momenta nor magnetizable media.

(d) Energy equation: Conservation of energy may also be considered in processes in-
volving heat transfer or other related phenomena:

ρ
dU

dt
= σσσσσσσσσσσσσσ : dddddddddddddd− div(qqqqqqqqqqqqqq) + ρQ (18)

where U is the internal energy per unit mass, qqqqqqqqqqqqqq is the energy flux, Q a thermal
source (energy per unit time and mass) and dddddddddddddd is the rate of deformation tensor

3.2 Discrete equations

The meshless discrete equations can be derived using a weighted residuals formulation.
The discrete counterpart of the Galerkin weak form is almost equivalent to that obtained
from kernel estimates [17] such as classical SPH formulations. Furthermore, such an
equivalence indicates that SPH can be studied in the context of Galerkin methods. The
global weak (integral) form of the spatial momentum equation can be written as:

∫

Ω
ρ
dvvvvvvvvvvvvvv

dt
· δvvvvvvvvvvvvvv dΩ = −

∫

Ω
σσσσσσσσσσσσσσ : δllllllllllllll dΩ +

∫

Ω
bbbbbbbbbbbbbb · δvvvvvvvvvvvvvv dΩ +

∫

Γ
σσσσσσσσσσσσσσnnnnnnnnnnnnnn · δvvvvvvvvvvvvvv dΓ (19)

being Ω the problem domain, Γ its boundary and nnnnnnnnnnnnnn the outward pointing unit normal to
the boundary. If δvvvvvvvvvvvvvv and vvvvvvvvvvvvvv are approximated by certain test and trial functions δv̂vvvvvvvvvvvvv and v̂vvvvvvvvvvvvv,

∫

Ω
ρ
dv̂vvvvvvvvvvvvv

dt
· δv̂vvvvvvvvvvvvv dΩ = −

∫

Ω
σ̂σσσσσσσσσσσσσ : δl̂lllllllllllll dΩ +

∫

Ω
bbbbbbbbbbbbbb · δv̂vvvvvvvvvvvvv dΩ +

∫

Γ
σ̂σσσσσσσσσσσσσnnnnnnnnnnnnnn · δv̂vvvvvvvvvvvvv dΓ (20)
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The spatially discretized equations are obtained after introducing meshless test and trial
functions and their gradients in (20) as

δv̂vvvvvvvvvvvvv(xxxxxxxxxxxxxx) =
n∑

i=1

δvvvvvvvvvvvvvviN
∗
i (xxxxxxxxxxxxxx), ∇∇∇∇∇∇∇∇∇∇∇∇∇∇δv̂vvvvvvvvvvvvv(xxxxxxxxxxxxxx) =

n∑

i=1

δvvvvvvvvvvvvvvi ⊗∇xxxxxxxxxxxxxxN∗
i (xxxxxxxxxxxxxx) (21)

v̂vvvvvvvvvvvvv(xxxxxxxxxxxxxx) =
n∑

j=1

vvvvvvvvvvvvvvjNj(xxxxxxxxxxxxxx), ∇∇∇∇∇∇∇∇∇∇∇∇∇∇v̂vvvvvvvvvvvvv(xxxxxxxxxxxxxx) =
n∑

j=1

vvvvvvvvvvvvvvj ⊗∇xxxxxxxxxxxxxxNj(xxxxxxxxxxxxxx) (22)

to yield,

n∑

i=1

δvvvvvvvvvvvvvvi·
{ n∑

j=1

∫

Ω
ρN∗

i (xxxxxxxxxxxxxx)Nj(xxxxxxxxxxxxxx)
dvvvvvvvvvvvvvvj

dt
dΩ +

∫

Ω
σ̂σσσσσσσσσσσσσ∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxN∗

i (xxxxxxxxxxxxxx)dΩ−

−
∫

Ω
N∗

i (xxxxxxxxxxxxxx)bbbbbbbbbbbbbb dΩ−
∫

Γ
N∗

i (xxxxxxxxxxxxxx)σ̂σσσσσσσσσσσσσnnnnnnnnnnnnnn dΓ
}
= 0 (23)

Thus, for each particle i the following identity must hold:

n∑

j=1

∫

Ω
ρN∗

i (xxxxxxxxxxxxxx)Nj(xxxxxxxxxxxxxx)
dvvvvvvvvvvvvvvj

dt
dΩ = −

∫

Ω
σ̂σσσσσσσσσσσσσ∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxN∗

i (xxxxxxxxxxxxxx)dΩ +
∫

Ω
N∗

i (xxxxxxxxxxxxxx)bbbbbbbbbbbbbb dΩ +
∫

Γ
N∗

i (xxxxxxxxxxxxxx)σ̂σσσσσσσσσσσσσnnnnnnnnnnnnnn dΓ (24)

In this paper we follow a Bubnov Galerkin approach and, therefore, N∗
j = Nj. For

convenience, we can write (24) in a compact form:

MMMMMMMMMMMMMMaaaaaaaaaaaaaa = FFFFFFFFFFFFFF int + FFFFFFFFFFFFFF ext (25)

where the mass matrix MMMMMMMMMMMMMM = {mij}, internal forces FFFFFFFFFFFFFF int = {ffffffffffffff int
i } and external forces

FFFFFFFFFFFFFF ext = {ffffffffffffff ext
i } are respectively defined by:

mij =
∫

Ω
ρN∗

i (xxxxxxxxxxxxxx)Nj(xxxxxxxxxxxxxx)dΩ (26)

ffffffffffffff int
i = −

∫

Ω
σ̂σσσσσσσσσσσσσ∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxN∗

i (xxxxxxxxxxxxxx)dΩ (27)

ffffffffffffff ext
i =

∫

Ω
N∗

i (xxxxxxxxxxxxxx)bbbbbbbbbbbbbb dΩ +
∫

Γ
N∗

i (xxxxxxxxxxxxxx)σ̂σσσσσσσσσσσσσnnnnnnnnnnnnnn dΓ (28)

If expression (11) is used for mass conservation, its Galerkin weak form is equivalent
to a point collocation scheme and, thus, the continuity equation must be enforced at each
particle i,

dρi

dt
= −ρidiv(vvvvvvvvvvvvvv)i = −ρi

n∑

j=1

vvvvvvvvvvvvvvj · ∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxNj(xxxxxxxxxxxxxxi) (29)
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where expression (22) for ∇∇∇∇∇∇∇∇∇∇∇∇∇∇v̂vvvvvvvvvvvvvi has been used.
Nodal integration has been used, at least implicitly, in most SPH formulations, and lies,

indeed, in the basis of its early formulation. Obviously, this is the cheapest option and
the resulting scheme is truly meshless (no background mesh is needed). The particles are
used as quadrature points and the corresponding integration weights are their tributary
volumes. Recalling the weak form derived in the previous section, the discrete eulerian
momentum equation can be written as:

MMMMMMMMMMMMMMaaaaaaaaaaaaaa = FFFFFFFFFFFFFF int + FFFFFFFFFFFFFF ext (30)

where

mij =
n∑

k=1

ρkN
∗
i (xxxxxxxxxxxxxxk)Nj(xxxxxxxxxxxxxxk)Vk (31)

ffffffffffffff int
i = −

n∑

k=1

σ̂σσσσσσσσσσσσσk∇∇∇∇∇∇∇∇∇∇∇∇∇∇xxxxxxxxxxxxxxN∗
i (xxxxxxxxxxxxxxk)Vk (32)

ffffffffffffff ext
i =

n∑

k=1

N∗
i (xxxxxxxxxxxxxxk)bbbbbbbbbbbbbbkVk +

n∑

k=1

N∗
i (xxxxxxxxxxxxxxk)σ̂σσσσσσσσσσσσσknnnnnnnnnnnnnnAk (33)

In the above, Vk represents the tributary volume associated to particle k. Usual techniques
to determine such volumes vary from simple domain partitions to Voronoi diagrams. In
the most frequent approach in SPH simulations, the particles are set up with certain initial
densities, volumes and, therefore, masses. These physical masses {Mk} remain constant
during the simulation and densities are field variables updated using the continuity equa-
tion. Thus, particle volumes are obtained for each time step as Vk = Mk

ρk
. Note that, in

our formulation, the real or physical particle masses Mk are different, in general, from the
numerical masses mij given by (31), and derived in the Galerkin scheme. In practice, it
is more efficient to use a lumped mass matrix with the real particle masses as numerical
masses.

We use explicit time integration to update the field variables. One of the most widely
used algorithms is the leap-frog scheme, involving the following sequence of updates:
• Compute velocities at step k + 1

2
:

vvvvvvvvvvvvvv
k+ 1

2
i = vvvvvvvvvvvvvv

k− 1
2

i + 0.5(∆tk + ∆tk+1)aaaaaaaaaaaaaak
i (34)

• Update densities and positions:

ρk+1
i = ρk

i + ∆tk+1Di(vvvvvvvvvvvvvv
k+ 1

2 ) (35)

xxxxxxxxxxxxxxk+1
i = xxxxxxxxxxxxxxk

i + ∆tk+1v̂vvvvvvvvvvvvv
k+ 1

2
i (36)
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In the above expressions, aaaaaaaaaaaaaak
i =

dvvvvvvvvvvvvvvk
i

dt
is the acceleration nodal parameter of particle i

(computed by using the momentum equation with variables at step k) and Di(vvvvvvvvvvvvvv
k+ 1

2 ) is

the density rate dρi

dt
, computed with positions at step k and intermediate velocities vvvvvvvvvvvvvv

k+ 1
2

i .
With v̂vvvvvvvvvvvvvi we denote the interpolated nodal velocities. The time step is limited by the
Courant-Friedrichs-Lewy (CFL) stability condition:

∆t = CFL
hmin

max(ci + ‖vvvvvvvvvvvvvvi‖) (37)

where CFL is the Courant number (0 ≤ CFL ≤ 1) and ci is the wave celerity at point i,

ci =
√

γκ/ρi (38)

being γ and κ the same material properties as in (16). More detailed information about
the formulation proposed can be found in [18].

4 NUMERICAL EXAMPLES

In the first example a circular drop of water falls vertically at 2 m/s on a mass of water
initially at rest (Figures 1 and 2). This example demonstrates the good performance of
the method in the absence of boundary distortions (Figure 3). The fluid density and
viscosity are ρ0 = 1000 kg/m3 and µ = 0.5 kg m−1s−1, respectively. The total number of
particles is 5539.

Figure 1: Fluid-Fluid Impact: Scheme of the initial configuration.

The second simulation corresponds to the filling of a circular mould with core (Figure
4). The velocity of the jet at the gate is 18 m/s and the viscosity is µ = 0.01 kg m−1s−1.
The bulk modulus κ was chosen such that the wave celerity is 1000 m/s and the total
number of particles is 14314. Several instants of the simulation are shown in Figure 5,
with times referred to the impact between the jet and the core. The overall shape of
the two jets passing the core looks quite satisfactory and agree with previous results [19].
In spite of using a consistent formulation of boundary forces , we have found excessive
distortion near the boundaries, compared with the flow away from their influence (see
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time=0.0018 s time=0.0099 s

time=0.0297 s time=0.0477 s

time=0.0657 s time=0.0837 s

time=0.1017 s time=0.1197 s

time=0.1377 s time=0.1557 s

Figure 2: Fluid-Fluid Impact: Simulation at various stages.

Figure 6). This effect could be caused by the “particle based” boundary approach. We
expect to develop better algorithms in the future. Figure 7 shows a comparison between
the solution computed and the experiments carried out by Schmid and Klein [20].

9
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Figure 3: Fluid-Fluid Impact: Simulation at t = 0.0396 s (detail).

Figure 4: Mould filling: Dimensions of the mould.

5 CONCLUSIONS

In this study we explored the application to free surface flows of a Galerkin based SPH
formulation with moving least squares meshless approximation. The Galerkin scheme
provides a clear framework to analyze several procedures widely used in the classical
SPH literature, suggesting that some of them should be reformulated in order to develop
consistent algorithms. The performance of the methodology proposed was tested through
various dynamic simulations, demonstrating the attractive ability of particle methods to
handle severe distortions and complex phenomena.
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time=5.76 ms time=8.64 ms

time=12.24 ms time=15.60 ms

Figure 5: Mould filling: Simulation at various stages.

Figure 6: Mould filling: Simulation at t = 5.76 ms.
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Figure 7: Mould filling: Experimental (left) and numerical (right) results.
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