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Abstract. A new theory for the advective–diffusive phenomenon is described in this study
and the causes for the failure of the conventional numerical methods for this problem are
investigated.

It is shown that Fick’s law —the constitutive equation of the transport problem— is
the cause of the appearance of oscillations in the numerical solutions of predominantly
advective problems. Fick’s law leads to the unreasonable result that mass can propagate
at an infinite speed.

We propose a new formulation for the advective–diffusive problem by using a constitu-
tive equation derived by M. Carlo Cattaneo in 1958 for thermodynamic and pure–diffusion
problems. This new approach overcomes the problem of mass propagation at an infinite
speed. It is also shown that the advective–diffusive problem is a wave–like problem. Hence,
a pollutant diffuses like a wave in a fluid.

A detailed analysis of the new equations shows an important conclusion: a critical
fluid velocity exists for each advective–diffusive problem. When fluid velocity is greater
or equal than this critical speed the steady state problem is not anymore a well–posed
problem and the transient problem is as well ill–posed if it is stated as a bounduary value
problem. In this case we should formulate the advective–diffusive problem as an initial
value problem. Furthermore, we propose stability conditions for the steady state advective–
diffusive problem.

Several problems have been solved to check the good behaviour of the numerical solution
of the new equations and the proposed stability conditions.
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1 INTRODUCTION

The numerical resolution of fluid dynamic problems is quite difficult particularly at
large fluid velocities [1]. The Finite Element Method has been successfully used in many
engineering problems, but it has important disadvantages when it is used to solve fluid
dynamic problems with significant convective terms. In these cases the reasons for the
inaccurate solution are the nonlinear oscillatory nature of the Navier–Stokes equations.
The oscillatory nature is inherent to the formulation and it persists if we attempt to solve
a creeping flow problem —in this case we can neglect the nonlinear term— in a simple
domain.

The advection–diffusion transport equation can be considered as the linear and scalar
version of the shallow water equations [2] and it shows the oscillatory nature of the fluid
dynamic problems. The numerical solution of this equation is quite complicated [3]. In
recent years many stabilization techniques have been proposed for convection dominated
transport problems [4, 5, 6], but they are not appropriate to solve three dimensional
transient problems [7, 8, 9, 10].

In this paper we give an explanation to the oscillatory behaviour of the numerical
solution of transport problems. In addition, we propose an stabilization technique. This
stabilization technique is of a different nature as to the nowadays usual methods. We show
that Fick’s law —the constitutive equation of the transport problem— is the cause of the
appearance of oscillations in the numerical solutions of predominantly advective problems.
Fick’s law leads to the unreasonable result that mass propagates at an infinite speed. The
proposed stabilization technique consists in reformulating the transport problem by using
Cattaneo’s equation as the constitutive equation [12, 13]. This constitutive equation
has been derived by M. Carlo Cattaneo in 1958 for thermodynamic and pure–diffusion
problems. This new approach overcomes the problem of mass propagation at an infinite
speed [11].

Taking all of this into account, the objectives of this paper are as follows: first, we
shall prove that Fick’s law leads to oscillations in the numerical solution of the advective-
diffusive problems. And then we present a numerical stabilitation for the new formulation.
In the first part of this study we review the classic transport problem formulation [1] and
we prove that in this theory mass can propagate at an infinite speed. The next step will
be to develop the formulation of the transport problem by using Cattaneo’s equation and
to study the changes in the corresponding solutions. Finally, several problems have been
solved to check the stability of the new proposed equations.

2 FORMULATION OF THE TRANSPORT PROBLEM

2.1 General aspects and notation

We will assume that hydrodynamic equations are not coupled with transport equations.
Hence, we can solve the hydrodynamic equations and subsequently solve the transport
equations by using the density and velocity fields previously calculated. Thus, we will
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assume that velocity and density fields are known.
We use an Eulerian description of the motion. Let the vectorial functions aaaaaaaaaaaaaa, qqqqqqqqqqqqqq, ffffffffffffff be

fluid velocity, contaminant flux and contaminant source, respectively, and let the scalar
functions ρ, u be fluid density and contaminant concentration. Finally, let the tensorial
function K̃KKKKKKKKKKKKK be the diffusivity tensor. We suppose that the above functions are sufficiently
smooth.

2.2 Classic formulation of the transport problem

The basic equations that describe the classic formulation of the transport problem are
the following:

ρ
∂u

∂t
+ ρaaaaaaaaaaaaaa · grad(u) + div(ρqqqqqqqqqqqqqq)− ffffffffffffff = 0 (1)

qqqqqqqqqqqqqq = −ρK̃KKKKKKKKKKKKKgrad(u) (2)

where (1) is the equilibrium equation of the transport problem —mass pollutant conserva-
tion law— and (2) is the Fick’s law —the constitutive equation of the advective–diffusive
problem—. Moreover, aaaaaaaaaaaaaa and ρ satisfy the hydrodynamic equations. We will show that
the above formulation leads to mass propagation at an infinite speed. Consider an incom-
pressible, homogeneous, isotropic and one-dimensional media (hence if IIIIIIIIIIIIII is the identity

tensor, K̃KKKKKKKKKKKKK = k̃IIIIIIIIIIIIII). We don’t consider source terms. We suppose that the domain is long
enough to be approximated as infinitely long, and we assume that the pollutant is added
to the media as a rapid pulse. In this case, if we call k = ρk̃, we should solve the following
problem:

∂u

∂t
= k

∂2u

∂x2
, ∀x ∈ R, t > 0,

u(x, t = 0) = δ(x), ∀x ∈ R,

lim
x→±∞

u(x, t) = 0, t > 0.

(3)

where δ(x) is the Dirac distribution. This problem can be solved by using a Fourier
transform in the spatial coordinate. The solution of (3) is

u(x, t) =
1√

4πkt
e−

x2

4kt , ∀x ∈ R, t > 0. (4)

If we fix a time t = τ0 > 0, we can define

ũ(x) = u(x, τ0) =
1√

4πkτ0

e
− x2

4kτ0 (5)

which is the Gauss distribution function and hence ũ(x) > 0, ∀x ∈ R. The previous
assertion implies that polluted fluid exists in the whole domain ∀t > 0. Moreover, at the
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initial time u(x, 0) = 0 ∀x 6= 0, i.e., there is pollutant only in the origin of coordinates.
Therefore, if we fix a generic point x0, the following equation holds

u(x0, τ0) > 0, ∀τ0 > 0. (6)

Hence, the mean velocity of the particles in (x = x0, t = t0) is v = x0/τ0 and this velocity
is not bounded because the above assertion holds ∀τ0 > 0 and ∀x0 ∈ R. Figure 1 shows
the solution of (3) for t = 4 and k = 1.
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Figure 1: Solution of (3) for t = 4 and k = 1 (classic formulation of the transport problem).

2.3 Formulation of the transport problem by using Cattaneo’s law

We will derive this formulation by substituting equation (2) by Cattaneo’s law. This
constitutive equation involves a tensorial function τ̃τττττττττττττ . This mapping transforms each point
(xxxxxxxxxxxxxx, t) of the fluid path line into that point relaxation tensor. The coordinates of this
relaxation tensor are specific diffusion process times. Up to now, Cattaneo’s equation
has been only used in non–advective thermal problems [12, 13]. Thus, we have to find
Cattaneo’s equation with convective term [11]. This equation has been derived by using
a Lagrangian description and in Eulerian coordinates can be written as

qqqqqqqqqqqqqq + τ̃̃τ̃τ̃τ̃τ̃τ̃τ̃τ̃τ̃τ̃τ̃τ̃τ̃τ

(
∂qqqqqqqqqqqqqq

∂t
+ grad(qqqqqqqqqqqqqq) aaaaaaaaaaaaaa

)
= −ρK̃̃K̃K̃K̃K̃K̃K̃K̃K̃K̃K̃K̃K̃Kgrad(u) (7)

The relations (7) and (1) are the basic equations for the transport problem described
by using Cattaneo’s law. In these equations aaaaaaaaaaaaaa and ρ are solutions of the hydrodynamic
equations. In order to compare the solutions of the classic formulation with the solutions
of this new formulation we now solve a problem similar to (3). In this case we need two
initial conditions because this problem involves second order derivatives with respect to
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the time. Then, we consider an incompressible, homogeneous, isotropic —hence, K̃KKKKKKKKKKKKK = k̃IIIIIIIIIIIIII
and τ̃τττττττττττττ = τ̃IIIIIIIIIIIIII— one–dimensional and non–convective media. We call k = ρk̃ and τ = ρτ̃ .
With the above assumptions we can write this problem as [11]:

τ
∂2u

∂t2
+

∂u

∂t
= k

∂2u

∂x2
, ∀x ∈ R, t > 0,

u(x, t = 0) = δ(x), ∀x ∈ R,

∂u

∂t
(x, t = 0) = 0, ∀x ∈ R,

lim
x→±∞

u(x, t) = 0, t > 0.

(8)

We may solve (8) by using a Laplace and Fourier transform and we obtain:

u(x, t) =


1
2
e−

c2

2k
t

[
δ(|x| − ct) + c

2k
I0

(
c
2k

√
c2t2 − x2

)
+ c2

2k
t

I1( c
2k

√
c2t2−x2)√

c2t2−x2

]
, |x| ≤ ct

0, |x| > ct

where I0 and I1 are the modified Bessel functions of the first kind of order 0 and 1 and c
is the mass wave celerity defined by:

c =

√
k̃/τ̃ =

√
k/τ . (9)

We compare in figure 2 the solutions of (3) and (8). Clearly, if we use Cattaneo’s
equation a wave front exist which advances with a celerity c.
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Figure 2: Comparison at time t = 4 between the solution of (3) —upper line— and the solution of (8)
—lower line—. The parameters k and τ have a value of one.
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3 STUDY OF THE TRANSPORT PROBLEM BY USING CATTANEO’S
LAW

We have analyzed in previous sections the consequences of using Cattaneo’s law in
pure–diffusion problems. In the next sections we will consider the advective–diffusive
problem. Our first step will be to undertake a theorical study of the one–dimensional
problem in an incompressible, homogeneous and isotropic media. With these assumptions
we can examine the physical problem in a bounded subdomain of R by solving the initial
and boundary value problem:

τ
∂2u

∂t2
+ 2τa

∂2u

∂x∂t
− (k − τa2)

∂2u

∂x2
+ a

∂u

∂x
+

∂u

∂t
= 0, ∀x ∈ [0, L], t > 0,

u(x, 0) = f(x), ∀x ∈ [0, L],

∂u

∂t
(x, 0) = g(x), ∀x ∈ [0, L],

u(0, t) = u0(t), t > 0,

u(L, t) = uL(t), t > 0.

(10)

If we use the coordinate transformation given by:

ξ = x− at

η = t,
(11)

we obtain
∂2u

∂η2
− c2∂2u

∂ξ2
= −1

τ

∂u

∂η
, ∀ξ ∈ [−aη, L− aη], η > 0,

u(ξ, 0) = f(ξ), ∀ξ ∈ [−aη, L− aη], η > 0,

∂u

∂η
(ξ, 0) = g(ξ) + a

df

dξ
(ξ), ∀ξ ∈ [−aη, L− aη], η > 0

u(ξ = −aη, η) = u0(η), η > 0

u(ξ = L− aη, η) = uL(η), η > 0.

(12)

The solution of (12) is the concentration distribution as seen by an observer who moves
with the fluid. In this reference system the boundary is defined by two parallel straight
lines in the (ξ, η) plane. Therefore, the boundary has a constant length but it moves with
velocity a. Our next step will be to show that problem (10) is not well–posed if |a| > c,
being c the mass wave celerity defined by (9). We will prove this assertion only if a > 0
—fluid moves in the positive sense of the spatial coordinate—. If a < 0 the proof of the
proposition is similar. With this hyphotesis (a > 0), we have to show that (10) is not
well–posed when a ≥ c. Figure 3 shows a well–posed transport problem with a < c.

In this problem we consider two regions R1 and R2 of the whole domain. These regions
are divided by the characteristic lines ξ − cη = 0 and ξ + cη = L. In region R1 we can
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Figure 3: Example of a transport problem by using Cattaneo’s law. This is a well–posed problem when
it is stated as an initial and boundary value problem because fluid velocity is smaller than mass wave
celerity c.

solve as in an infinite domain and get u(ξ, η) as a function of the initial conditions. In
region R2 the solution is modified by the boundary conditions and, hence, the solution
as in an infinite domain is not valid anymore. But at any point P ∈ R2 we can give the
solution of (10) as a function of the initial conditions and the prescribed values in the
boundary points which intersect with the characteristic lines as shown in figure 3.

On the other hand, we show in figure 4 a problem with a > c. We will prove that this
problem is not well–posed if it is stated as an initial and boundary value problem.

Let the set of points C be a subset of the boundary ξ = L−aη. The solution of (10) at
a point of C —for example Q— is uniquely determined by the initial data. Thus, unless
the prescribed values in the boundary are equal than the values obtained from the initial
data, a global solution does not exist. Consequently, the problem is not a well–posed
one in this case. From a numerical point of view, when a ≈ c, a < c the solution of
(10) is oscillatory. This oscillation takes place between the solution determined by the
initial data and the solution determined by the boundary conditions. Note that we obtain
a double–valued solution in the downstream boundary. This is a logical result because
it is not possible to transmit information towards upstream points from points on the
downstream boundary. Thus the solution in downstream points is uniquely determined
by the upstream flow. Since the solution of the transport problem by using Cattaneo’s
law are two pollution waves that propagate with celerities a + c and a − c, we conclude
that (10) is not well–posed as a boundary value problem when both waves move in the
fluid direction —in this case a > c— and hence, all the pollutant particles move in the
fluid direction. In this case, we should state the transport problem as an initial value
problem.

This problem can easily be found in nature. For instance, a superficial wave problem
in free surface flow or a sound wave problem in a fluid. In the first case the physical
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Figure 4: Example of a transport problem by using Cattaneo’s law. This is an ill–posed problem when
it is stated as an initial and boundary value problem because fluid velocity is greater than mass wave
celerity c.

phenomenon is governed by the Froude number. This dimensionless number is the quotient
between the fluid velocity and the superficial waves celerities, namely,

Fr =
a√
gd

(13)

where d is the free surface depht and g is the acceleration of gravity. In the case of sound
waves propagation, the problem is governed by the Mach number, namely,

M =
a

cs

(14)

where cs is the sound wave celerity.
Our next step will be to define a dimensionless number that determines how we must

state the transport problem. We call T this number and we will define it as

T =
a√
k̃/τ̃

. (15)

By using the above number we can know the nature of a generic transport problem.
Thus, although from a physical point of view the transport problem is always an initial
value problem, if |T | < 1 an equivalent boundary value problem exists. If |T | ≥ 1, the fluid
velocity is greater than c and a condition in the downstream boundary has no physical
sense. We can now define the critical fluid velocity as the maximum velocity at which we
can state the transport problem as a boundary value problem, namely,

ac = c. (16)
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The above statement implies that the problem

a
du

dx
− (k − τa2)

d2u

dx2
= 0; x ∈ (0, L)

u(0) = u0

u(L) = uL

(17)

is not well–posed when |a| > c, because (17) is the steady state of (10).
The final step in this section will be to derive the dimensionless transport equation.

We define the dimensionless variables:

x̂ =
x

x0

, t̂ =
t

t0
, â =

a

a0

. (18)

where x0 and t0 are a characteristic length and a characteristic time and a0 = x0/t0 is
a characteristic velocity. If we substitute (18) into (10) and we make some algebra, the
field equation takes the form:

τ

t0

∂2u

∂t̂2
+ 2

τ

t0

∂2u

∂t̂∂x̂
−

(
1

Pe
− τ

t0
â2

)
∂2u

∂x̂2
+ â

∂u

∂x̂
+

∂u

∂t̂
= 0 (19)

where Pe is the Péclet number
Pe =

a0x0

k
. (20)

As we can see in (19) the transport problem is governed by two dimensionless numbers:
τ/t0 and the coefficient of the diffusive term. The first one is the quotient between the
typical time scales of the transport problem and therefore we attempt not to involve the
parameter t0 in the second dimensionless number. It is easy to prove that

1

Pe
− τ

t0
â2 =

k − τa2

a0x0

. (21)

We call the Héctor number (He) as the inverse of the right side of (21), namely

He =
a0x0

k − τa2
. (22)

The He number is analogous to the Péclet number for the classical transport problem.
However, the He number has an important physical meaning. If we make some algebra in
(21), we can rewrite the He number in terms of characteristic velocities, times or lengths
of the problem. From (22)

He =
a0x0

k − τa2
=

a0x0

τ(c− a)(c + a)
(23)

where c is the mass wave celerity defined by (9). In the above expression c − a is the
celerity of the wave that advances upstream, an c + a is the celerity of the wave that
advances downstream. In the next section we will use the physical meaning of the He
number to stablish a stability condition for (17).

9
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4 NUMERICAL FORMULATION OF THE TRANSPORT PROBLEM

In this section we will study the steady state transport problem in a one–dimensional,
incompressible, homogeneous and isotropic media. If we use Cattaneo’s equation as the
constitutive equation the physical phenomenon is governed by (17). While if we use Fick’s
law as the constitutive equation we obtain

a
du

dx
− k

d2u

dx2
= 0; x ∈ (0, L)

u(0) = u0

u(L) = uL

(24)

The above problem is equivalent to (17) with τ = 0. The instability of (24) has been
widely studied in the bibliography [1, 3, 9] and hence, we will study only equation (17).
We determine an approximation uh(x) of the solution of (17) by using the Galerkin finite
element method. We use linear trial —interpolating— functions. In this case the above
formulation is equivalent to the formulation obtained by using the finite difference method
with a central difference approach. Both techniques lead to the same difference nodal
equation [3]:

(1− γHe)ui+1 − 2ui + (1 + γHe)ui−1 = 0 (25)

In this equation ui = uh(xi) ≈ u(xi), being xi a generic interior node of the uniform
partition P of [0, L] defined by the nodes 0 = x0 < x1 < · · · < xn = L. In addition, we
have called γHe the elemental He number related to the partition P , namely

γHe =
ah

2(k − τa2)
(26)

where h is the distance between two consecutive nodes of P . In the same way, we call γPe

the elemental Péclet number related to P

γPe =
ah

2k
(27)

Note that if τ = 0 in the elemental He number we obtain the elemental Péclet number.

4.1 Stability conditions

In this section we show that when Cattaneo’s law is used, we can stablish a stability
condition for (17) because of the wave nature of the transport problem. First we determine
the exact solution of the difference equation (25). It is possible to show that the nodal
values of uh(x) are [3]:

ui = C1 + C2

(
1 + γHe

1− γHe

)i

(28)
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where C1 y C2 are constants that depend on boundary conditions. Given (28), the nu-
merical solution of (17) will be stable if

|γHe| ≤ 1. (29)

The equation (29) is a stability condition for (17). In the same way, if we take τ = 0 in
(29), we obtain

|γPe| ≤ 1. (30)

and (30) is a stability condition for (24). Relations (29) and (30) seem to be useless
because they can only be applied to (17) and (24). Indeed, the above assertion is true
in the case of (30). However, the asymtotic behaviour of (29) is equivalent —except for
a scale factor— to impose that the grid step size is smaller than typical sizes related to
the waves which give the solution of the transport problem. As we said before, the waves
which determine the solution propagate with a celerity c− a and c + a. Thus, the typical
sizes upstream and downstream are τ(c−a) and τ(c+a), respectively. Hence, it is possible
to show [11] that

h < min (τ(c− a), τ(c + a)) (31)

tends to (29) when a tends to the critical velocity ac, except for a scale factor. We will
call λ this scale factor. The stability condition (31) is very important because it can be
applied to complex problems by using its physical meaning.

4.2 Numerical examples

In this section we will obtain the numerical solution of (17). We use several set of
values for the parameters of the problem. Three groups of numerical examples will be
presented. At each group the relaxation time is a constant. In the same way, the grid
step size, the diffusivity, the domain length and the boundary values are the same for all
the numerical examples. However, at each group we will show three results defined by the
fluid velocity a. For all examples in this study we use a 20 element discretization, L = 1
—thus, h = 0.05— and k = 1.

4.2.1 Group 1: Small relaxation time

The first group of results is defined by τ = 0.01. This is a small value for the relaxation
time τ , and hence this example is near Fick’s law. By using the above values for k and τ
we obtain the critical fluid velocity ac =

√
k/τ = 10. Thus, if a ≥ 10, (17) has no physical

sense. Our next step will be to calculate the maximum a value to obtain a stable solution
of (17) by using the stability condition (31). To obtain the wanted result we should fix
a value for the scale factor λ. The value of this scale factor is of no importance, because
we can rewrite the stability conditions by using λ(τ − c) and λ(τ + c) as typical sizes. In
this case, the new value for λ is one. Anyway, it is possible to prove that taking λ = 4
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the stability conditions (31) tends to the exact stability conditions when a tends to ac.
Taking this into account, the solution of (17) will be unstable if

h > λτ
(√

k/τ − a
)

(32)

because we are using a positive value for a. If we use the above value for λ and we
make some algebra in (32) we obtain a > 8.75. Therefore this numerical scheme will give
unstable solutions when a > 8.75, i.e., a > 0.875ac. So, we can say that the numerical
solution of (17) is stable for a 87.5% of the domain of a, because (17) is not well–posed
if a > ac. In the first example —figure 5— we show the numerical solution and the exact
solution for a = 7. Note that, although γHe is relatively small, we obtain a stable solution
for a large value of a, because the critical velocity is ac = 10.
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Figure 5: Transport problem by using Cattaneo’s law. This problem is defined by k = 1, τ = 0.01,
a = 0.7ac. The numerical solution is obtained by using the Galerkin FEM with linear shape functions.
A 20 element grid has been used.

In the second example —figure 6—, we show the exact solution and the numerical
solution for a = 8.75. As a consequence of (32) this is the greatest value for the velocity
that gives a stable solution. It is shown in figure 7 that the numerical solution of the
transport problem is oscillatory if the advective term is greater than the value obtained
before. In this case, we used a = 9.75

4.2.2 Group 2: Medium relaxation time

This group of problems is defined by τ = 1. Therefore, the critical velocity is ac =√
k/τ = 1. In addition, according to (32) the largest velocity that gives a stable solution
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Figure 6: Transport problem by using Cattaneo’s law. This problem is defined by k = 1, τ = 0.01,
a = 0.875ac. The numerical solution is obtained by using the Galerkin FEM with linear shape functions.
A 20 element grid has been used.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Spatial coordi nate

C
o

n
c
e

n
tr

a
t

io
n

Galerkin-FEM
Exact

Figure 7: Transport problem by using Cattaneo’s law. This problem is defined by k = 1, τ = 0.01,
a = 0.975ac. The numerical solution is obtained by using the Galerkin FEM with linear shape functions.
A 20 element grid has been used.
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is a =
√

k/τ − h/(4τ) = 0.9875. Hence, we will obtain stable solutions if a < 0.9875ac,
i.e., we can solve (17) in a stable way for a 98.75% of the domain of a. We show three
numerical tests for this relaxation time. In Figure 8 we show the solution for a = 0.97.
Figure 9 shows the solution for a = 0.9875. Because of (32), this is the greatest value of a
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Figure 8: Transport problem by using Cattaneo’s law. This problem is defined by k = 1, τ = 1,
a = 0.97ac. The numerical solution is obtained by using the Galerkin FEM with linear shape functions.
A 20 element grid has been used.

that gives a stable solution. Finally figure 10 shows the unstable solution of the problem
defined by a = 0.995

4.2.3 Conclusions from the numerical examples

We conclude first that as τ increases the transport problem stabilizes. We can explain
the above assertion as follows: although as τ increases the diffusive term decreases, the
velocity a has an upper bound that decreases as τ increases. We have also shown that if
we use Cattaneo’s equation we obtain stable solutions in a very significative part of the
domain of a. This is true even if we use the Galerkin method. Hence, from a practical
point of view, we can say that the transport equation by using Cattaneo’s law is a stable
equation, because the values of a who make (17) unstable are negligible even for small
relaxation times. However, the most important consequences about using Cattaneo’s law
are the following: when we use Cattaneo’s law the transport problem has a physical
meaning, because the velocity of diffusion is bounded. In addition, when a numerical
scheme provides an inaccurate solution we know the causes of these results. This is
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Figure 9: Transport problem by using Cattaneo’s law. This problem is defined by k = 1, τ = 1,
a = 0.9875ac. The numerical solution is obtained by using the Galerkin FEM with linear shape functions.
A 20 element grid has been used.
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Figure 10: Transport problem by using Cattaneo’s law. This problem is defined by k = 1, τ = 1,
a = 0.995ac. The numerical solution is obtained by using the Galerkin FEM with linear shape functions.
A 20 element grid has been used.
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related to the wave nature of the transport problem. Rouhgly speaking, we can say that
the numerical scheme should “capture” the diffusive waves.

5 CONCLUSIONS

In this paper we propose a stabilization technique for the advective–diffusive trans-
port problem. This stabilization technique is very different to the nowadays widely–used
stabilization methods. The basic idea is to use Cattaneo’s equation as the constitutive
equation, because Fick’s law leads to the unreasonable result that mass propagates at an
infinite speed. According to Cattaneo’s equation the transport problem is a wave prob-
lem. In this paper we study the consequences of using Cattaneo’s law. First we stablish
that a critical fluid velocity exists for each transport problem. The transport problem
should be stated as a initial value problem when fluid velocity is greater than a critical
speed. This is a good result because it is intuitively clear that the transport problem is
an initial value problem. In addition, there exist in nature several physical phenomena
similar to the above one. For instante, propagation of superficial waves in a free surface
flow or propagation of sound waves in a fluid.

A very important result is the wave nature of the new equation, because a wave problem
has a intuitive physical meaning, while a parabolic problem has not. The above assertion
is the basic idea for the proposed stability conditions.

In the last section we solve several problems in order to check the stability of the trans-
port problem by using Cattaneo’s equation. These examples show the good behaviour of
the proposed stability conditions. In addition, we show that the relaxation time τ is a
stabilizing parameter.

We can say as a summary that when we use Cattaneo’s equation instead of Fick’s law
we obtain a meaningful stable problem. In addition, very easy to implement stability
conditions can be derived.
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