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Abstract: 

Reliability based design optimization (RBDO) for deck shape and thicknesses of the steel plates 

that form a box girder of long-span suspension bridges is performed considering probabilistic 

flutter constraint. The entire process was carried out fully computationally including the 

definition of flutter derivatives. Surrogate models were constructed to estimate the aerodynamic 

response of the bridge for different deck shapes based on the results from a series of CFD 

simulations. Some of the aerodynamic coefficients were validated by wind tunnel tests. Flutter 

derivatives were then estimated using quasi-steady approach for the evaluation of critical flutter 

velocity. Uncertainty in the aerodynamic coefficients from CFD simulations as well as the 

extreme wind speed at the bridge site were considered. The formulated methodology was 

applied to the Great Belt East Bridge. 

Keywords: RBDO; shape optimization; reliability analysis; flutter derivatives; random 

variables; suspension bridge; surrogate model; CFD simulation; force coefficients 

1 Introduction 

Long-span suspension bridges are flexible structures and thus vulnerable to wind-

induced vibrations. Flutter instability is one of the most important among these 

phenomena for the design since it may cause the collapse of structures. According to Ge 

(2016), some of the prominent bridges, such as the Akashi Kaikyo Bridge, the Xihoumen 

Bridge, the Yi Sunsen Bridge, the Jiangsu Runyang Bridge and the Tsing Ma Bridge, had 

flutter as the principal wind-induced vibration problem. Other wind effects such as 

buffeting and vortex-induced vibrations are also relevant since they may cause fatigue 

damage to the structure. The choice of deck shape, therefore, is very important for the 

design of a suspension bridge since it affects the dynamic response of the structure against 
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wind-induced instabilities. Diana et al. (2013) underlined the importance of the deck 

shape on vortex shedding phenomenon while Ge et al. (2008) studied the importance of 

deck section on flutter velocity for cable-supported bridges. Among various types of 

bridge decks, the stream-lined box girder became popular after its successful application 

to the Severn Bridge in Great Britain in 1966, and it has been widely used all over the 

world mainly because of its good performance against vortex shedding and flutter 

instabilities. The box sections provide larger torsional inertia than open sections, the deck 

can be designed shorter in height, which results in more slender and aesthetic appearance. 

The box section is also more economic in construction as well as corrosion maintenance 

(Gimsing and Georgakis, 2012).  

Computation of aeroelastic and aerodynamic responses in cable-supported bridges 

depends on non-deterministic parameters that can be treated by reliability analysis 

methods. There are many researchers who have worked on uncertainty in aerodynamic 

and aeroelastic forces on deck sections of cable supported bridges. Ostenfeld-Rosenthal 

et al. (1992) considered experimentally obtained flutter derivatives as Gaussian random 

variables and performed First Order Reliability Method (FORM) considering four 

random variables. Ge et al. (2000) presented a method to obtain probability of failure 

against flutter using FORM, in which empirical flutter formula was used to define the 

limit state. Sarkar et al. (2009) compared experimentally obtained flutter derivatives 

results from different laboratories and examined the implications of dissimilarities among 

flutter derivative data sets on the aeroelastic instability of long-span bridges. Caracoglia 

et al. (2009) reported the nonlinear propagation of an uncertain turbulence field on the 

aeroelastic stability of long-span bridges. Baldomir et al. (2013) performed reliability 

analysis of long-span bridges considering uncertainty in flutter derivatives, extreme wind 

speed and structural damping. Seo (2013) proposed a statistics-based method for 

buffeting analysis considering uncertainty in flutter derivatives. Argentini et al. (2014) 

studied the effects of mechanical and aerodynamic uncertainty on total damping and 

flutter speed while Thomas et al. (2015) proposed stochastic bridge flutter formulation in 

random eigenvalue analysis.  

In the case of critical flutter velocity computation based on experimentally obtained 

flutter derivatives as in our previous researches (Kusano et al. 2014, 2015), the 

uncertainty may come from laboratory environment or operational conditions as well as 

the techniques used to extract the data. In the case of critical flutter evaluation based on 



 

the data from computational fluid dynamic (CFD) simulations, uncertainty may result 

from the boundary conditions, grid size, choice of turbulence model and so on. In either 

method, the consideration of uncertainty in the estimation of critical flutter velocity is 

important.  

Since one of the major expenses for the construction of long-span bridges is the 

material costs, it is of great importance to reduce material weight in today’s highly 

competitive economic environment. The use of design optimization permits the reduction 

of materials while satisfying required structural constraints (Hernández, 1990; Arora, 

2016). Compared to the traditional deterministic optimization, the reliability based design 

optimization (RBDO) seeks the optimum design considering uncertainties in parameters, 

which makes this method more robust and accurate. The material cost is minimized 

subject to prescribed probabilistic constraints, in which engineers should set a 

predetermined reliability level. This value is known as the target reliability index, βT, 

which is defined as βT =Φ-1(1-Pf) where Pf is the probability of failure that a designer is 

willing to accept. 

There have been many applications of the RBDO to different structures mainly in 

aerospace, defense, automobile and offshore structures. See, for example, Marvis (1999), 

Yao (2011), Karadeniz (2009) or Youn et al. (2004). However, there have been very few 

RBDO application to civil structures, especially to suspension bridges. In our previous 

works, Kusano et al. (2014, 2015) performed the RBDO of the steel plate thicknesses that 

form box girders and the main cable area for suspension bridges under probabilistic flutter 

constraint, in which experimentally obtained flutter derivatives and extreme wind 

velocity were considered as random variables while Kusano et al. (2018) reported the 

importance of correlation among experimentally obtained flutter derivatives on the 

critical flutter velocity. Cid Montoya et al. (2018a, 2018b) carried out deterministic 

optimization of deck shape for cable-stayed bridges considering aeroelastic constraint, in 

which aerodynamic surrogate models were constructed based on CFD simulation models. 

Knowing that the deck shape is very important to control the aeroelastic behavior of 

suspension bridges, we extend our research of the RBDO to perform the shape 

optimization as well as the size optimization of a single box girder for suspension bridges 

under probabilistic flutter constraint. For Runyang Bridge in China (Chen et al., 2002), a 

central stabilizer was installed to control flutter instability; however, this problem may 

have been solved by adapting another deck shape using, for example, the framework 



 

proposed in this study. Other wind-induced phenomena such as buffeting, which is 

associated with deck plate size and  fatigue problem as well as vortex-induced vibrations 

will be included in our forthcoming works since they are relevant to the deck design. 

In order to achieve this objective, a fully numerical approach for the definition of 

flutter derivatives is essential to compute the critical flutter velocity for each modified 

deck section during the optimization process. A series of Computational Fluid Dynamics 

(CFD) simulations were conducted to obtain aerodynamic force coefficients of different 

deck sections. Subsequently, aerodynamic surrogate models were constructed based on 

the CFD results in order to estimate the force coefficients of different deck sections (Cid 

Montoya et al., 2018a). Then quasi-steady formulation was employed to define flutter 

derivatives in terms of these force coefficients. Uncertainty in the force coefficients and 

their slopes as well as the extreme wind velocity at the bridge location was considered in 

the definition of bridge flutter limit state. Finally, the RBDO methodology was applied 

to the Great Belt East Bridge using Reliability Index Approach (RIA) method.   

The main objectives of this research can be summarized as follows. 

 Definition of fully numerical approach of critical flutter velocity 

computation based on a series of CFD simulations and aerodynamic 

surrogate models. 

 Reliability analyses of suspension bridges considering uncertainty in the 

aerodynamic force coefficients and their slopes with respect to the angle 

of attack obtained from CFD as well as the extreme wind speed.  

 RBDO for shape and size of a box girder of suspension bridges under 

probabilistic flutter constraint considering uncertainty in the parameters 

mentioned above. 

2 Computation of flutter velocity using quasi-steady model 
There are currently three major approaches to compute flutter velocity of cable-

supported bridges: fully experimental, fully computational or hybrid method of these two 

approaches. For both fully experimental and hybrid methods, expensive and time-

consuming wind tunnel tests of either entire bridge or sectional models are required. On 

the other hand, the fully-computational approach permits the substitution of sectional 

model tests by equivalent numerical simulations (Larsen and Walther, 1998).  



 

For the execution of shape design optimization of a bridge deck, this fully numerical 

approach is crucial since it is impractical to test every possible deck shapes in the wind 

tunnel during the optimization process. The fully computational method for the estimation 

of critical flutter speed employed in this research is briefly described in this section. 

The wind loads acting on a unit-length of a static bridge deck subject to a constant 

wind, which is commonly known as the steady load model, can be defined as three 

components of lift, drag and moment. They may be expressed as non-dimensional time-

averaged quantities called force coefficients, which are functions of wind attack angle to 

the deck cross-section as: 
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where CL, CD and CM are lift, drag and moment coefficients, L, D and M are the time-

averaged lift and drag forces and moment per unit of length, ρ is the flow density, U is 

the undisturbed wind velocity and B is the width of the deck cross-section. The force 

scheme and the sign convection adopted in the study are shown in Figure 1. 

 
Figure 1. Definition of the steady load model with the three aerodynamic steady force components 

and the sign convection adopted 

When displacements of the deck are considered, a more sophisticated load model is 

required. Scanlan and Tomko (1971) established the semi-empirical approach which 

consists of the definition of frequency dependent unsteady functions known as flutter 

derivatives from aeroelastic wind-tunnel sectional tests to define the three aeroelastic 

force components as: 
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where B is the deck width, U is the acting wind speed, K = Bω/U is the reduced frequency 

with ω as the response frequency, *
iA , *

iH and *
iP (i=1,…,6) are the flutter derivatives 

obtained experimentally.  



 

However, in order to estimate the flutter derivatives numerically to avoid the 

expensive wind tunnel tests, an alternative approach is required. The quasi-steady wind 

load model improves the steady wind load model by considering the displacements of the 

deck and the turbulent nature of the natural wind, giving place to a two-dimensional 

framework that relates the bridge displacements and rotations with the relative wind 

velocity components. The resulting formulation is adequate for high reduced wind 

velocities and streamlined deck cross-sections as discussed in Tubino (2005) and Wu and 

Kareem (2013). Once this model is linearized (Lazzari, 2005), the resulting expressions 

of aeroelastic forces are functions of displacements and their derivatives of the deck as 

well as force coefficients and their slopes. By comparing the wind loads obtained from 

the quasi-steady wind load model and Scanlan’s model, flutter derivatives can be defined 

in terms of force coefficients as follows: 
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where CL,0º, CD,0º, CM,0º, are lift, drag, and moment coefficients at 0º of angle of attack, 

C’L,0º, C’D,0º, C’M,0º, are their derivatives while 𝜇𝜇𝐻𝐻 and 𝜇𝜇𝐴𝐴 can be estimated according to 

Larose and Livesey (1997) as: 
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The system of equations that governs the dynamic behavior of the deck under 

aeroelastic forces is expressed as: 

a aMy + (C - C )y + (K - K )y = 0         (5) 

where M, C, and K are mass, damping, and stiffness matrices, and Ca and Ka are 

aeroelastic damping and stiffness matrices, and y, y and y are the vectors of 

displacements, velocities and accelerations, respectively. Eq. (5) can be solved using 

multi-modal analysis, which solves the flutter eigenvalue problem. The details of the 

method can be found in Katsuchi et al. (1999) or Jurado et al. (2004). FLAS program 

coded in our research group was used to solve this multimodal eigenvalue problem to 

compute critical flutter velocity throughout the study (Jurado, 2011, 2013, Diana et al, 

2019).  



 

3 Uncertainty data in the computation of flutter velocity 
There is a series of uncertainty parameters involved in the estimation of critical flutter 

velocity (see works by Davenport (1983) and Kareem (1988) among others). In the case 

of widely-employed hybrid method, wind tunnel tests of a bridge sectional model are 

necessary to obtain flutter derivatives either by free or forced vibration method. Flutter 

derivatives obtained from such method contains intrinsic uncertainty due to the laboratory 

environment, operational conditions, uncertainty data such as upstream turbulence, 

sampling rate as well as techniques used to extract flutter derivatives as reported by Sarkar 

et al. (2009).  

In our previous studies (Baldomir et al. 2013, Kusano et al., 2014, 2015), we 

considered the points that define flutter derivative functions as normally distributed 

random variables with the experimental data as mean values to account for uncertainty in 

flutter derivatives. Flutter velocity was then computed by solving the Eq. (5) through an 

eigenvalue problem using multi-modal analysis. 

In the case of fully numerical approach described in Section 2, flutter derivatives are 

approximated in terms of force coefficients CL, CM and CD as well as their derivatives C’L 

C’M and C’D using the quasit-steady formulation in Eq (3). Then flutter velocity is 

computed by solving Eq. (5) as in the previous case.  Now the source of uncertainty in 

flutter velocity lies in the settings and parameters used to perform the Computational 

Fluid Dynamics (CFD) simulations. Some of these parameters may be the surface 

roughness, turbulence length scale and turbulence intensity among others that can be 

considered as nondeterministic. (Solari and Piccard, 2001 and Bruno and Fransos, 2011). 

Furthermore, turbulence models based upon the Boussinesq approximation such as the k-

ω SST, adopted in this work are affected by uncertainties related with the model 

assumptions (Gorlé et al. 2015). 

In this research, uncertainty is not considered in the input data of the numerical 

simulations but in the force coefficients obtained through deterministic CFD simulations. 

The obtained values of force coefficient are taken as the mean values of a new set of 

random variables where the dispersion and the type of probabilistic distribution are 

defined. The probabilistic definition of uncertainty in force coefficients has been studied 

in several works in the last three decades. Some authors have provided guidelines from 

the probabilistic definition of the force coefficients and other aerodynamic and aeroelastic 

responses, which are reported in Table 1. Based on these data and bearing in mind that 



 

deck geometry under study is a streamlined cross-section, a normal distribution with a 

Coefficient of Variation (CV) of 0.2 was adopted for the force coefficients in this study. 

Table 1. Uncertainties of aerodynamic and aeroelastic responses of bridge deck cross sections 
reported in literature 

Reference Substructure/geometry Response Distrib. CV Source 
Cheng & Li (2009) arch deck cross-section force coeff. lognormal 0.2 assumed 
Kareem (1988) tall  concrete chimney drag coeff. lognormal 0.14 assumed 
Bruno & Fransos 
(2011) trapezoidal box girder  lift coeff. truncated 

Weibull 0.52519 calculated 

Pagnini (2010) tall building drag coeff. lognormal 0.1 assumed 

Pagnini (2010) tall building lift coeff. 
deriv. normal 0.1 assumed 

Schueller et 
al.(1983) tall building drag coeff. lognormal 0.15 Rojiani & Wen 

(1981) 

Su (2010) Ting Kau Bridge deck 
cross-section force coeff. normal 0.1 Liu et al. (2004), 

Cheng (2005) 

Ostenfeld et al. 
(1992) Geat Belt East Bridge model test 

results normal 0.05 assumed 

Ge et al. (2000) Yangpu Bridge model test 
results normal 0.05 assumed 

Pourzaynail & 
Datta (2002) 

deck cross-section 
suspension bridge 

flutter 
derivatives lognormal 0.2 assumed 

Cheng et al. 
(2005) Jing Yin Bridge flutter 

derivatives lognormal 0.2 Pourzaynail & 
Datta (2002) 

 
As stated in Eq. (3) flutter derivatives can be expressed in terms of force coefficients and 

their slopes. Therefore those slopes are also nondeterministic variables whose mean value 

is the resulting value from the CFD simulation while the standard deviation is computed 

as: 
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where 'icσ is the standard deviation of slope of a force coefficient, o0ic
σ and o2ic

σ are the 

standard deviations of the coefficient at 0 and 2 degrees of angle of attack respectively, ρ 

is the correlation, and α∆ is the change in angle in radians. The α∆ value of 2 degrees is 

considered since it allows an accurate estimation of the slope in the rectilinear part of the 

lift and moment coefficients as a function of the angle of attack for considering 

streamlined geometries.  



 

4 Strategy for the RBDO of shape and size of a box girder 

4.1 Introduction 

For the construction of long-span bridges, huge material cost is required, in which 

steel material used for bridge deck and main cables constitute the largest part. 

Consequently the reduction in material quantity of these elements by carrying out design 

optimization would be of great importance. Traditionally, civil engineering structures 

have been built in overly conservative manner in order to deal with uncertainty factors 

that the structures may suffer during their lifetime using partial safety factors. However, 

designs based on such approach are not competitive since safety factors do not reflect the 

random nature of some parameters. RBDO methods allow to optimize structures taking 

into account uncertainties while satisfying predetermined structural reliability levels 

referred to one or more limit states. As a result, the RBDO method can provide more 

economic and reliable designs. 

As mentioned previously, deck shape is an important factor that affects the 

aerodynamic performance of any suspension bridge. In this study, some parameters that 

define the shape as well as the thicknesses of deck plates were considered as design 

variables for the RBDO problem under probabilistic flutter constraint. Among the 

existing RBDO methods, Reliability Index Approach (RIA) proposed by Nikolaidis and 

Burdisso (1988) was employed in this research, which utilizes the FORM in the reliability 

routine. This is a two-level method where the design optimization is performed in the 

outer loop in the original random space (x-space) while reliability analysis is carried out 

in the inner loop in the independent standard normal random space (u-space). The 

reliability index β is defined as the minimum distance from the mean values of the random 

variables to the failure surface and the reliability analysis using FORM is formulated as: 

minimize: β = u          (7a) 

subject to: ( ) 0iG =u            (7b) 
This optimization problem can be solved using the Hasofer-Lind algorithm (1974). The 

solution of this problem u* is called the Most Probable Point of failure (MPP) which 

represents the most probable values of random variables in case of structural failure. Once 

the MPP is obtained, the reliability index is computed as the distance from the origin in 

the U-space (mean values) to the failure hyperplane. 



 

4.2 Formulation of the RBDO problem 

The box girder typology considered in this research is shown in Figure 2, which is 

based on Scanlan’s G1 section (Scanlan and Tomko, 1971). The original dimension is 

drawn in solid lines while possible shape modifications are shown in broken lines. δH 

and δB are the shape design variables, which define the changes in height and width with 

respect to the original dimensions in percent. The top and bottom plate lengths, a-f and c-

d, are fixed while the points b and e can change their horizontal coordinate to modify the 

deck width and in the same manner, points c and d can move vertically to change the deck 

height. Besides these shape design variables, there are additional design variables of the 

thicknesses of the steel plates that form the box girder (d1, d2, d3, d4).  

 

Figure 2. Design variables of the shape and plate thicknesses 

The objective is to minimize the material volume of the bridge girder defined by the shape 

variables of δH and δB and the plate thicknesses, d1 through d4. Uncertainties in force 

coefficients and their derivatives are taken into account along with the extreme wind 

velocity at the bridge location. The limit state function that defines the structural failure 

due to flutter is defined as: 

( ) ( )f i wG V x x= −x    i=1, 2, …, 6      (8) 

where Vf  is the flutter wind speed of the bridge, xi are 6 random variables of the force 

coefficients and their slopes, and xw is the random variable of the extreme wind speed at 

the bridge location.  

It should be mentioned that all six design variables are involved in the evaluation of 

this limit state function. The shape design variables define flutter derivatives based on the 

force coefficients while the size variable of each plate thickness affects the stiffness of 

the structure, thus influencing the frequencies and mode shape of the structure. 

Consequently, the reliability of the structure against flutter depends on both shape and 

size design variables as well as the random variables.  



 

Then the RBDO problem is formulated as: 

Minimize: Girder volume (δH, δB, d1, d2, d3, d4)    (9a) 

subject to: 1 : ( ) 0f w fg P V x P − ≤ ≤ x      (9b) 

  2 min max:g H H Hδ δ δ≤ ≤      (9c) 

3 min max:g B B Bδ δ δ≤ ≤      (9d) 

  4 min max: t tjg d≤ ≤    j= 1, 2, 3, 4  (9e) 

  5 max: σcg σ =         (9f) 

  6
max

: 1 0dzg
z

− ≤         (9g) 

where x is the vector of the random variables of the force coefficients and their slopes, P, 

the probability operator, Pf, allowable probability of failure, the design variables are 

restricted by the side limits, σc, the maximum tensile stress in the main cable under static 

overload case, zd, the maximum vertical mid-span deck displacement under the static 

overload cases, and zmax, the limiting displacement value. The constraint g1 is probabilistic 

while the rest of the constraints are deterministic. The probability of flutter failure is 

evaluated such that reliability index, β, computed in reliability analysis of each iteration 

is checked against the predetermined target reliability, βT. The g5 assigns an appropriate 

main cable area whenever the deck weight changes so that the maximum cable stress 

under the static overload case is at a reasonable value, which will be explained in detail 

in Section 5.5.1 of the application example.  

4.3 Surrogate modeling of the aerodynamic responses 

Surrogate models allow to reproduce the response of a complex implicit model 

known as truth or real model, which in this case are the CFD simulations by an analytical 

approximation known as meta-model or surrogate model. They permit the reduction in 

computational time of real models for recursive analyses and the obtainment of 

intermediate designs among those used in the sampling process. Further insights about 

these models and their use in optimization-related frameworks can be found in Forrester 

et al. (2008) and Forrester and Keane (2009) while their specific use in reliability analysis 

and RBDO related works can be found in Martins Gomes and Awruch (2004), Martins 

Gomes et al. (2011) and Díaz et al. (2016) among many others. 



 

In the problem formulated in Eq. (9), two shape design variables were defined, which 

require new CFD simulations each time these variables are modified by the optimization 

algorithm. Since the high computational burden of CFD analyses represents a strong 

limitation to its systematic recursive use, a surrogate model is defined to obtain the 

required responses for the reduction in computational effort. The aerodynamic surrogate 

model used in this work consists of a Kriging model (Krige, 1951, Sacks et al., 1989, 

Simpson and Mistree 2001) with two inputs of width and depth parameters δB and δH of 

the section and six outputs of the three force coefficients and theirs slopes. For the 

application example presented in this research we have used the surrogate model 

presented in our previous studies (Cid Montoya et al., 2018a, and 2018b), in which CFD 

results were validated with wind tunnel data and the sensitivity of force coefficients with 

respect to δB and δH are discussed. The implementation of the aerodynamic surrogate 

model within the RBDO framework is developed in the following section. 

4.4 RBDO procedure 

The RBDO problem consists of two main blocks of design optimization and reliability 

analysis. These two phases are nested in RIA method used in this study, whose work flow 

is represented in Figure 3. Whenever the optimization algorithm modifies the design 

variables of the girder shape and plate thicknesses, the MATLAB main code carries out 

the following main tasks in the design optimization phase. The procedure of the RBDO 

process can be summarized in the following steps: 

1. Compute the mechanical properties of the deck section with updated design 

variables and modify the FEM input file (area, inertias etc.) 

2. Compute the main cable area according to the constraint g4 

3. Using the Abaqus cable model, perform an iterative process to determine the 

initial main cable length and initial stress so that the cable is positioned as 

designed. This process is iterative because the mid-span position under the main 

cable self-weight is unknown although the final mid-span position is known. 

This step is necessary since any variation in the girder plate thicknesses affects 

both the initial main cable length and the initial stress, which consequently 

modify the stiffness of the entire structure.   

4. Write Abaqus input files to modify deck properties, initial position and initial 

stresses of the main and hanger cables, etc. 



 

5. Perform Abaqus nonlinear static analysis to compute the initial stress of the 

entire bridge under self-weight, whose stiffness matrix is used for the 

subsequent modal analysis. 

6. Carry out a modal analysis to obtain natural frequencies and mode shapes of the 

bridge and simultaneously run a static analysis to get the maximum vertical 

displacement under the static overload case. These tasks are performed in 

parallel. 

7. Call the surrogate models with the current shape design of δH and δB to obtain 

the force coefficients and their derivatives, which are the mean values of random 

variables in the following reliability analysis.  

8. Use the mean values as the initial values of MPP for the first iteration. Otherwise 

define the random variables xi and xw according to the updated normalized variable 

ui and uw, the mean values and the standard deviations. 

9. Define flutter derivatives according to the updated force coefficients and their 

slopes using quasi-steady formulation. 

10. Compute the limit state function G(u), and its gradients with respect to each 

random variable. After β is calculated, the next MPP point is defined. The step 8-

10 is repeated until the convergence criteria for reliability analysis are satisfied, 

which are the relative error between two consecutive β and the value of the limit 

state function.  

11. The converged β from the reliability analysis is checked against the probability 

constraint, βT, along with other deterministic constraints in the design 

optimization. Finally the optimization algorithm modifies the design and the step 

1-11 is repeated until the convergence criteria are reached, which are set on the 

relative error between two consecutive objective functions and constraint 

functions. 



 

 
Figure 3. Flowchart of the RBDO strategy  



 

5 Application example: Great Belt East Bridge 

5.1 Great Belt East Bridge description 

The methodology of RBDO explained in the previous sections is now applied to the 

Great Belt East Bridge in Denmark. It consists of a main span of 1624 meters and two 

pylons of 254 meter high as shown in Figure 4. The aerodynamic box girder of the G1 

section was employed as a baseline geometry for the deck, which is subject to shape and 

size optimization. A 3D beam finite element model in Abaqus (2015) in Figure 5 was 

used to perform both modal and static analyses of the bridge during the optimization. The 

model consists of 1257 elements and 747 nodes. The bridge deck contains 225 nodes in 

total, approximately 12 meters apart from one another. The boundary conditions were 

imposed at the tower foundations and the anchorages. The deck is continuous throughout 

the three spans without any vertical support while it counts with lateral support at the 

pylons. The main cables have fixed connections to the girder at the mid span, which helps 

to minimize deflections under asymmetric loads as described in Storebælt (1998). The 

initial deck design is shown in Figure 6 while the mechanical properties of the structural 

model are summarized in Table 2. 

 
Figure 4. Side view of the Great Belt East Bridge 

 
Figure 5. Finite element model of the Great Belt Bridge 

 



 

 
Figure 6. Initial design of the box girder 

Table 2. Geometric and mechanical properties of the finite element model of the initial design 

Property Value  Property Value 
Center span length (m) 1624  Deck height (m) 4.447 
Lateral span length (m) 535  Deck moment of inertia, Iy (m4) 3.926 
Main cable sag (m) 180  Deck moment of inertia, Iz (m4) 73.200 
Distance between main cables (m) 27  Deck polar moment of inertia, J (m4) 8.896 
Pylon height (m) 254  Mass per unit length of deck (t/m) 14.750 
Total deck width (m) 31.765  Main cable cross sectional area (m2) 0.449 

5.2 Critical flutter velocity of the initial design 

First of all, the natural frequencies and the mode shapes of the bridge were computed 

using the Abaqus finite element model. Because of the large flexibility of the structure, 

the modal analysis was performed in two steps. In the first step, the initial stresses of the 

main cables and vertical hanger cables were computed under the self-weight, and in the 

subsequent step, modal analysis was performed with the overall stiffness of the structure. 

Table 3 lists the natural frequencies and the vibration modes of the initial design of the 

bridge deck obtained by the authors, which were then compared to the values reported by 

Larsen (1993). 

Table 3. Natural frequencies and vibration modes of the initial design: L (lateral), V (vertical), T 
(torsional), S (symmetric), A (asymmetric) 

Mode  Type 
present 
work Larsen   Mode  Type 

present 
work Larsen 

1 LS 0.050 0.052  15 VS 0.216  
2 VS 0.098 0.100  18 VS 0.249  
3 VA 0.111 0.115  19 LA 0.275  
4 LA 0.113 0.123  20 VS 0.282  
5 VS 0.131 0.135  21 TS/LS 0.285 0.278 
8 VA 0.177   22 VS 0.285  
9 LA 0.184   23 VA 0.286  
10 VA 0.186   24 TS/LS 0.290  
11 LS 0.186 0.187  25 LA 0.295  
12 LS 0.195   28 LA 0.327  
13 LA 0.213   29 LS 0.329  
14 LS 0.213    30 LS 0.335   



 

 

In the next step, several relevant modes were selected for performing flutter analyses. 

After carrying out a series of test runs, we identified several essential modes in the flutter 

analysis such as the first, second, third and fourth vertical symmetric modes as well as 

the first and second torsional symmetric modes. In order to cover the changes in vibration 

modes during the optimization process, we have selected 20 modes, mode 2, 5 and 11 

through 28 to be used for flutter analysis. As commented in Section 2, FLAS program 

coded in our research group was employed for the aeroelastic analysis in this research. 

Figure 7 shows the result of flutter analysis with the initial design of the G1 deck section. 

Flutter is produced at the wind velocity of 78.20 m/s and the reduced frequency of 0.477.  

 

 

Figure 7. Flutter result for the initial deck design 

5.3 Parametric study of flutter velocity for different deck shapes  

A parametric study was carried out to see how flutter velocity changes for different 

values of shape variables. Figure 8 shows the design domain of δH and δB, which can be 

varied from -10% to 10% of their nominal values. The resulting flutter velocities by 

varying the shape variables are plotted in Figure 9. As can be seen, there is a smooth 

shape of steady flutter velocity between δB +10% and δB -4%; however, the flutter 

velocity decreases rapidly from δB -5% to δB -10%. The detail of this trend is depicted 

in Figure 10, in which the flutter velocity is plotted against δB at the nominal value of δH. 

As δB value decreases, the deck shape becomes less and less aerodynamic, and there is a 

point (in this case δB≈ -5%) where aeroelastic behavior of the box girder rapidly 

deteriorates. The aeroelastic mode that causes flutter also changes in this design range. It 



 

can also be observed that the optimum δB value occurs at around +5% for the nominal 

value of δH and the flutter velocity gradually decreases as δB increases.  

 
Figure 8. Design domain of different values of H and B 

 

 
Figure 9. Flutter velocities of different shape variables 

 
 

Figure 10. Flutter velocities of different δB values with δH =0 % 

5.4 Reliability analysis of the Great Belt East Bridge 

The methodology of reliability analysis described in Section 3 was applied to the 

Great Belt East Bridge. The limit state function that defines the structural failure is already 



 

defined in Eq. (8) while the three force coefficients of CL, CD, CM and their slopes are 

considered as random variables as well as the extreme wind velocity at the bridge site. 

The standard deviations of the force coefficients are 20% of their mean values while those 

for the slopes of the force coefficients are defined in Eq. (6). The extreme wind velocity 

is a Gumbel distribution function, which is expressed as: 

1( ) exp( ) exp exp( )i i
G i

x xf x µ µ
λ λ λ

− − = − ⋅ − −  
     (10) 

where µ=41.60 and λ=2.425. The mean value was taken from the Danish Wind code 

DS410 (1998) while the standard deviation referred to Storæbelt publication (1998). 

Since FORM requires that all random variables are normally distributed, the normal-

equivalent mean value and standard deviation were computed using Hasofer Lind (1974) 

– Rackwitz Fiessler method (1976). 

Two main cases of reliability analyses were carried out in order to assess the 

influence of different random variables on overall structural reliability of the suspension 

bridge. In Case A, the extreme wind velocity was considered as a single random variable 

while in Case B, the aerodynamic coefficients and their slopes are added to the random 

variable of Case A.       

Reliability analyses were performed on a Linux-based cluster with 848 cores, 

10214.4 GFLOP’s peak power and total memory of 2624 GB RAM. The termination 

criteria for all the reliability analyses are defined as the difference of any two consecutive 

β values to be smaller than 1E-4 and simultaneously the limit state function evaluated at 

the MPP to be smaller than 1E-4. The results of the reliability analyses are summarized 

in Table 4.  

Table 4. Reliability analysis results 

Case random var. CV β Pf Vf (MPP) V*(MPP) 
A xw 0.07 12.01 1.57E-33 78.20 13.22 
B  xw and xi 0.2 7.42 5.86E-14 61.88 13.09 

 

For Case A, only the extreme wind speed is considered as a random variable. Since the 

limit state function is linear with respect to xw, β can be directly computed as: 
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In Case B, for considering the force coefficients and their slopes as additional random 

variables, the reliability index has been substantially reduced to 7.42, which indicates the 

importance of uncertainty in force coefficients. Likewise, the flutter velocity at MPP has 

been decreased from Vf= 78.2 m/s in Case A to 61.88 m/s in Case B.      

Table 5 shows the initial and MPP values of the random variables for Case B. As can 

be seen, the slopes of lift and moment coefficient CL and CM as well as the extreme wind 

speed have significant influences on overall reliability while the rest of the random 

variables have little impact. This can be explained by the quasi-steady formulations used 

to approximate flutter derivatives in this study. According to the theory, the slopes CL' 

and CM' are used to define H* and A* flutter derivatives, which are both important flutter 

derivatives on the computation of flutter velocity. Figure 11 represents the initial and 

MPP values of the most relevant flutter derivatives for Case B. Because of the variations 

produced mainly in CL' and CM' during the reliability analysis, all flutter derivative points 

have shifted from their initial values. The large shift of A2* flutter derivative should be 

particularly noted because of its significant influence on flutter velocity in general. The 

points of A1* and A3* as well as H2* flutter derivatives have also considerable 

displacements from their initial values.  

Table 5. Initial and MPP values of the random variables for Case B 

  CL CD CM CL' CD' CM' xw 
Initial -0.0310 0.0580 0.0350 5.4523 0.0048 1.3605 42.473 
MPP -0.0310 0.0570 0.0350 7.0219 0.0040 3.1098 62.092 



 

 

Figure 11. Initial flutter derivatives and their MPP values for Case B 

5.4.1 Parametric study of reliability index 

A parametric study of reliability index was performed with different values of shape 

variables and the results are summarized in Table 6 and plotted in Figure 12. The 

reliability index surface has a smooth shape between δB= -2% and δB=+10%; however, 

it suddenly drops as the deck shape becomes more bluff and less aerodynamic with 

decreasing value of δB. While maintaining the width at δB=0, the reliability index is 

largest at the maximum height δH=10% since the stiffness of the girder increases with 

greater height. On the other hand, for a shorter deck width of δB=-4%, reliability index is 

largest with δH=-10% since the deck recovers its aerodynamic shape with reduced height.  



 

 

Figure 12. Reliability index β of different shape variables 

Table 6. Reliability index β for different shape variables 

ΔH(%) ΔB(%) β 
10 10 8.11 
0 10 6.67 

-10 10 7.2 
10 0 8.22 
0 0 7.42 

-10 0 6.91 
10 -4 0.58 
0 -4 0.77 

-10 -4 6.36 
 

5.5 RBDO of the Great Belt East Bridge 

The methodology of RBDO for the shape and the plate thicknesses of box girder of 

suspension bridges explained in Section 4 is applied to the Great Belt East Bridge in this 

section. A total of six design variables (Figure 2) are considered in the study, which are 

two shape variables of δH(%) and δB(%), and the four plate thicknesses that form the 

aerodynamic box girder while the objective function to be minimized is the material 

volume of the box girder. Seven random variables of the three force coefficients CL, CM 

and CD and their slopes as well as the extreme wind speed are taken into account as in the 

case of reliability analysis with the structural limit state function already defined in Eq. 

(8). The mean values of the force coefficients and their slopes are taken from the surrogate 

model based on the shape variables while the standard deviations of the coefficients are 

defined as CV of 0.2 and those for the slopes in Eq. (6). The statistical data of the extreme 



 

wind velocity can be found in Eq. (10). The detail of the RBDO formulation is explained 

next. 

5.5.1 RBDO formulation of the Great Belt East Bridge 

The RBDO problem of the Great Belt East Bridge is formulated as follows: 

Minimize: Girder volume (δH, δB, d1, d2, d3, d4)    (12a) 

subject to: 1 : ( ) 0f w fg P V x P − ≤ ≤ x      (12b) 

  2 : 10% 10%g Hδ− ≤ ≤      (12c) 

3 : 10% 10%g Bδ− ≤ ≤      (12d) 

  4 : 7 mm 25 mmjg d≤ ≤   j= 1, 2, 3, 4  (12e) 

5 : 565 MPacg σ =        (12f) 

  6
max

: 1 0dzg
z

− ≤   where  zmax=L/500; L=1624 m  (12g) 

The shape design variables δH and δB range from -10% to +10% of the original dimension 

aiming to avoid infeasible shapes for the box girder. The g6 limits the maximum vertical 

displacement of the bridge deck under the traffic overload case based on BS 5400 (British 

Standards Institution, 2000), in which a full load of 2.4 kN/m2 was applied to the two of 

the six lanes while 1/3 of the load was applied to the other lanes. The constraint g5 is used 

to assign the main cable area whenever the deck weight changes so that the main cable 

stress is always at 565 MPa. The detail of this constraint is explained next. 

Whenever the design of bridge deck changes, the main cable area needs to be 

modified so that the main cable is always at an acceptable stress value. At first glance, 

the relationship between the main cable area and the deck weight was not obvious. 

Naturally, the cable area should increase with greater deck weight; however, any variation 

in the girder weight alters the initial main cable stress, which modifies the stiffness of the 

structure. A study was carried out in order to establish the relationship between the deck 

weight and the cable area, in which 35 finite element analyses were performed under the 

static overload case by varying the main cable areas and deck weight. The resulting 

maximum main cable stresses were plotted against the cable areas in Figure 13. Since the 

maximum main cable stress for the original design under the static overload case 

described previously was 565 MPa, this stress value was used to determine the main cable 



 

area whenever the deck weight is modified. The relationship between the main cable area 

Ac and the deck weight Wd was found to be linear as:  

Ac = 0.0241· Wd +0.1046         (13) 

 

Figure 13. Main cable stress vs. cable area for different deck weight for the Great Belt East Bridge 

The RBDO method explained above was programmed in MATLAB (Math Works, 

2013), in which the “fmincon” optimizer in MATLAB was employed with active-set 

algorithm to carry out the optimization routine. The termination criteria of the objective 

function and the constraint functions was set to 1E-4 while for the reliability routine,  any 

consecutive β values to be smaller than 1.0E-4 and the limit state function evaluated at 

MPP to be less than 1.0E-4. A high number of FLAS and Abaqus executions are 

inevitable since the gradients of the objective and constraint functions with respect to 

each design variable are computed during the optimization process while the derivatives 

of the limit state function with respect to random variables are calculated during reliability 

analysis. 

The initial design of the deck shape is defined as δH=0%, δB=0% while the plate 

thicknesses are d1=12.0, d2=10.0, d3=10.0, d4=10.0 (in mm). The corresponding material 

volume of the bridge girder is 2779 m3. The reliability level of the initial design is β = 

7.42 (Case B in Section 5.4). Several target reliability of βT=7, 8, 9 and 10 were chosen 

as predetermined probability of failure to see how the girder design is modified to satisfy 

different target reliability levels. As a reference, the reliability requirement in Eurocode, 

EN 1990 (CEN, 2002) for bridges and public buildings is β = 4.3 for 50 year period and 

β = 5.2 for 1 year period. The primary objective of the study is to achieve the minimum 

bridge girder volume while satisfying the predetermined reliability level as well as other 

deterministic structural constraints. 



 

5.5.2 RBDO results 

The evolutions of the design variables of shape and plate thicknesses are shown 

in Figure 14 while the evolution of the objective functions for all cases are represented in 

Figure 15. Table 7 summarizes the optimum values of the design variables and the 

objective functions.  

  For all cases, the shape variable of height δH goes to the maximum value of +10% 

to increase the stiffness of the deck while the aerodynamic performance of the deck is not 

compromised. On the other hand, the shape variable δB varies between -0.32 to 4.51 % 

without presenting any correlation with the target β. Recall from Figure 12, the 3D plot 

of the reliability indices for different shape variable, the β value is rather insensitive in 

this range of δB presenting almost a flat area in the plot. As long as δB does not fall in the 

range below approximately -2% where β drops suddenly for losing the aerodynamic shape, 

δB value in this range has little impact on the constraint function for this particular 

example.  

For a target reliability of βT=6.0, all design variables of the plate thicknesses have 

decreased close to the minimum while as the target reliability value increases, the 

optimum design variable values are more dispersed. For requiring a                                                                                                                                                                                

target reliability of βT=7, slightly reduced from the reference reliability index of β=7.58 

of the initial design, the girder volume was reduced by 16.8% and even for slightly larger 

target reliability of βT=8, the objective function was reduced by 7%. On the other hand, 

for a larger target reliability of βT=9 from the initial design, the girder volume has 

increased by 7.01% while for βT=10, it has augmented by 21.38%. The optimum objective 

function values are in accordance with the required target reliability as expected.  

Table 8 lists the critical flutter velocity and the reduced velocity at which flutter 

occurs as well as the first vertical and torsional frequencies for the optimum design for 

each target β. The critical flutter velocity of the optimum increases with the target beta 

and so does the frequency ratio. This means that the increase in critical flutter velocity 

comes largely from the structural contribution of thicker steel plates as well as the deck 

shape. While the first vertical frequency is almost constant, the first torsional frequency 

steadily increases with larger βT. This is because the optimization algorithm modifies to 

increase the torsional frequency, which is very effective to augment the critical flutter 

velocity.  



 

The computational time to obtain the optimum design for each target reliability is 

summarized in Table 9. The computation was carried out using a series of CPU for the 

design optimization and reliability analysis using Matlab codes while Abaqus static and 

modal analyses were performed in parallel. The high computational time was mainly due 

to the high numbers of FLAS executions to compute critical flutter velocity during the 

reliability analysis.  The high computational time for βT=10 is due to the difficulties of 

convergence in reliability analysis.  



 

 

Figure 14. Evolution of the shape and plate thicknesses for different βT values 

 



 

 
Figure 15. Evolution of objective functions for different βT values 

 

Table 7. RBDO results for different target reliability 

βT  Vf δH δB d1 d2 d3 d4 obj. func. 
% variation 

obj. func. 
6 69.45 10.00 4.51 6.48 6.63 6.24 6.24 2054.93 -26.07 
7 75.09 10.00 4.48 7.81 8.35 7.98 7.26 2313.63 -16.77 
8 82.10 10.00 -0.32 9.51 11.82 8.02 9.58 2647.45 -4.76 
9 86.95 10.00 3.10 12.49 12.00 12.16 9.25 2974.45 7.01 

10 92.70 10.00 1.31 13.17 16.62 11.61 13.06 3373.97 21.38 
 
Table 8. Flutter velocity and ratio of the 1st torsional frequency to the 1st vertical frequency of the 
optimum designs for each βT 

βT  Vf V* 1st vert. freq. 1st tor.freq. ratio 
6 69.45 11.96 0.6199 1.7643 2.846 
7 75.09 13.15 0.6204 1.8132 2.923 
8 82.10 13.47 0.6216 1.8723 3.012 
9 86.95 15.18 0.6209 1.8744 3.019 

10 92.70 16.06 0.6222 1.9126 3.074 
 
Table 9. Computational time and the number of FLAS executions 

βT  No. FLAS 
executions 

compt. time 
(hrs) 

6 50,953 549 
7 63,840 673 
8 55,706 662 
9 64,547 776 

10 70,056 865 
 

6 Conclusions 
The RBDO for shape and size optimization of a single-box girder of suspension 

bridges was performed considering probabilistic flutter constraint, and this methodology 



 

was applied to the Great Belt East Bridge with G1 deck section as a base geometry. The 

entire process of the RBDO was carried out using fully numerical approach including the 

definition of flutter derivatives. A surrogate model was used to estimate the aerodynamic 

force coefficients for different deck shapes based on the CFD simulations.  

Reliability level of the initial design was computed to be β=7.42 by taking into 

account uncertainty in the aerodynamic force coefficients and their slopes as well as the 

extreme wind velocity at the bridge site. The resulting MPP values indicate the 

importance of the slopes of lift and moment coefficients in the bridge flutter, which can 

be verified by the quasi-steady formulation. The parametric study of reliability index with 

respect to the shape variables show that the larger δH produces better reliability index in 

this study whenever the aerodynamic deck shape is maintained.  

As a result of the RBDO of the bridge deck for several target reliabilities, the 

optimum shape design variable δH reached its maximum value of +10% for all cases to 

increase the stiffness of the deck. The optimum width variable δB varies between -0.32 

to 4.51 % with respect to the initial dimension since reliability index in this range is not 

sensitive to this parameter for this particular case. During the optimization process, once 

the deck shape is established, the algorithm either reduces or increases the plate 

thicknesses depending on the required target reliability βT. The optimum plate thicknesses 

for small βT are clustered together near lower design limit while for larger βT, they are 

more scattered. The increasing first vertical to torsional frequency ratio with larger βT 

indicates the importance of structural contribution of thicker steel plates and the deck 

shape to critical flutter velocity and consequently, to the reliability of bridge flutter.  

The high computational cost for all cases in this study should be improved using 

parallel computing and other RBDO methods in the future research. Also design 

constraints of other relevant wind-induced vibrations such as buffeting and vortex-

induced vibration will be included in the forthcoming works of design optimization of 

bridge deck shape for cable-supported bridges. 
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