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Abstract

Sizing and shape structural optimization problems are normally stated in terms of
a minimum weight approach with constraints that limit the maximum allowable
stresses and displacements.
However, topology structural optimization problems have been traditionally stated
in terms of a maximum stiffness (minimum compliance) approach. In this kind of
formulations, the aim is to distribute a given amount of material in a certain do-
main, so that the stiffness of the resulting structure is maximized (the compliance,
or energy of deformation, is minimized) for a given load case. Thus, the material
mass is restricted to a predefined percentage of the maximum possible mass, while
no stress or displacement constraints are taken into account.
In this paper we analyze and compare both approaches, and we present a FEM
minimum weight with stress constraints (MWSC) formulation for topology struc-
tural optimization problems. This approach does not require any stabilization tech-
nique to produce acceptable optimized results, while no truss-like final solutions
are necessarily obtained. Several 2D examples are presented. The optimized solu-
tions seem to be correct from the engineering point of view, and their appearence
could be considered closer to the engineering intuition than the traditional truss-
like results obtained by means of the widespread maximum stiffness (minimum
compliance) approaches.



1 Introduction

Around four decades ago Schmidt [1] proposed a revolutionary idea that gave rise
to a new discipline: engineers, as a general rule, try to design minimum cost ob-
jects or systems that must withstand the maximum unfavorable estimated loads;
therefore, (optimum) design could be systematically stated in terms of constrained
minimization problems; then, these problems could be solved by means of math-
ematical programming techniques implemented in high speed digital computers.
Sizing and shape structural optimization problems have been thereafter mainly
written in terms of minimum weight formulations, with non linear constraints that
limit the maximum allowable stresses and displacements [2, 3, 4].

However, since Bendse and Kikuchi proposed the basic concepts [5] in 1988,
most of topology structural optimization problems have been routinely stated in
terms of minimum compliance (maximum stiffness) approaches. In this kind of
formulations, one tries to distribute a given amount of material within a given do-
main, so that the stiffness of the resulting structure is maximized (the compliance
is minimized) for a given load case [6]. The traditional minimum compliance for-
mulations offer some obvious advantages, since one avoids dealing with a large
number of highly non-linear constraints. This could be considered crucial, if one
takes into account the large number of design variables that is inherent to topology
optimization. However, one can also argue that this gives rise to several important
drawbacks. Thus, multiple load cases can not be considered, different solutions
are obtained for different restrictions on the amount of material, and the final de-
sign could be unfeasible in practice, since no constraints are imposed on stresses
and displacements. Moreover, the minimum compliance problem is said to be ill-
posed, since the solution oscillates as the discretization refinement is increased
[7, 8, 9], although this difficulty can be partially overcome by introducing porous
materials.

The SIMP (solid isotropic material with penalty) formulation [7, 9, 10] is the
most widely used minimum compliance approach, so far. In this formulation, one
introduces a non-dimensional design variable per element (the relative density, that
is the one’s complement of the porosity), which value ranges from0 to 1. The aim
is to compute the design variables (the amount of porous material that must be
distributed within each element) in such a way that a highly non-linear objective
function is minimized (the compliance, or energy of deformation), while a sin-
gle linear constraint is satisfied (the total amount of material is limited, by the so
called filling factor, to occupy a predefined percentage of the domain volume).
The SIMP formulation is easy to implement in a FEM framework. Moreover, sev-
eral explicit procedures have been proposed to iterate the relative density of the
elements [7, 9], what facilitates solving the minimization problem. However, a
spread porous material distribution is frequently considered an unwanted result,
and numerical instabilities do often occur. Therefore, additional penalization and
stabilization techniques must still be employed [7, 9]. On the other hand, an image
filter is generally applied, in order to enable the final interpretation of the results.
These normally resemble truss-like structures [7].



But one could question these results, since the final design depends on so many
arbitrary parameters (filling factor, degree of discretization, applied penalization
and stabilization techniques, image filter, etc.) One could even say that the final
results are somehow impelled to resemble truss-like structures, since this is what
one expects to obtain as a satisfactory final design. On the other hand, the final
design could be unfeasible in practice, since the formulation disregards the stress
and displacement fields. And, obviously, the stiffest design that can be built with a
given amount of material will normally differ from the cheapest (in cost of mate-
rial) design that can support a set of given load cases.

Next, we present a FEM minimum weight with stress constraints (MWSC) ap-
proach for topology structural optimization problems [9, 11, 12].

2 The Structural Analysis Model

2.1 The Structural Analysis Problem

Let Ωo be a domain in the material space originally occupied by a certain deform-
ing body. Due to given external loads the body is deformed onto a different domain
Ω. Thus, every arbitrary pointP o in Ωo is carried into a different positionP in Ω.
Let rrrrrrrrrrrrrro andrrrrrrrrrrrrrr be the material coordinates vectors of pointsP o andP , respectively.
Our aim is to compute the displacements

uuuuuuuuuuuuuu(rrrrrrrrrrrrrro) = rrrrrrrrrrrrrr(rrrrrrrrrrrrrro)− rrrrrrrrrrrrrro, (1)

which are the key to obtain the strainsεεεεεεεεεεεεεε(rrrrrrrrrrrrrro) and the stressesσσσσσσσσσσσσσσ(rrrrrrrrrrrrrro). In linear elastic-
ity with small displacements and small displacement gradients the corresponding
expressions are

εεεεεεεεεεεεεε = LLLLLLLLLLLLLLuuuuuuuuuuuuuu, σσσσσσσσσσσσσσ = DDDDDDDDDDDDDDεεεεεεεεεεεεεε. (2)

Let the external loads be the forcesbbbbbbbbbbbbbb(rrrrrrrrrrrrrro) per unit volume (of the body) in the
domainΩo, andtttttttttttttt(rrrrrrrrrrrrrro) per unit area on the surfaceΓo

σ. In these terms, the structural
analysis problem can be written as [13, 14]

Find uuuuuuuuuuuuuu ∈ Hu

such that a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) = (wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo + (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

∀wwwwwwwwwwwwww ∈ Hw

being a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) =
∫∫∫

Ωo

(LLLLLLLLLLLLLLwwwwwwwwwwwwww)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuu) dΩ,

(wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo =
∫∫∫

Ωo

wwwwwwwwwwwwwwT bbbbbbbbbbbbbb dΩ, (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

=
∫∫

Γo
σ

wwwwwwwwwwwwwwT tttttttttttttt dΓ,

(3)

where the trial functionsuuuuuuuuuuuuuu and the test functionswwwwwwwwwwwwww are required to satisfy the
essential boundary conditions (prescribed displacements) and their corresponding
homogeneous boundary conditions, respectively.



2.2 The Finite Element Numerical Model

As a general rule, it will not be possible to obtain the exact solution of the above
stated problem. Hence, we will try to approximate the exact solution in a finite-
dimensional context. Thus, we replace the function spacesHu andHw by their
respective finite dimension subspacesHh

u and Hh
w. Let uuuuuuuuuuuuuuh andwwwwwwwwwwwwwwh be the dis-

cretized trial and test functions in the above mentioned subespaces. Letuuuuuuuuuuuuuup be a
trial function that satisfies the essential boundary conditions. And let{φi(rrrrrrrrrrrrrro)} and
{wj(rrrrrrrrrrrrrro)} be conveniently selected bases of discretized trial and test functions in
the corresponding subespacesHh

u andHh
w, verifying the homogeneous boundary

conditions of our problem. In this terms we can write [13, 14]

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi, ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro) = φi(rrrrrrrrrrrrrro)IIIIIIIIIIIIII3,

wwwwwwwwwwwwwwh(rrrrrrrrrrrrrro) =
N∑

j=1

WWWWWWWWWWWWWW j(rrrrrrrrrrrrrro)ββββββββββββββj , WWWWWWWWWWWWWW j(rrrrrrrrrrrrrro) = wj(rrrrrrrrrrrrrro)IIIIIIIIIIIIII3.

(4)

In a FEM formulation the unknownααααααααααααααi is the nodal displacements vector of node
numberi. Moreover, the domainΩo is discretized in such a way that

Ω̄o =
nelem⋃
e=1

Ēe, Ee1

⋂
Ee2 = ∅ ∀e1 6= e2, (5)

beingEe the so-called finite elements. On the other hand, in solid mechanics one
normally resorts to a Galerkin type formulation, by taking the same base for both,
the trial and the test functions. Thus,

wj(rrrrrrrrrrrrrro) = φj(rrrrrrrrrrrrrro). (6)

Therefore, the FEM numerical model of structural analysis can be written as

Find αααααααααααααα = {ααααααααααααααi}, i = 1, . . . , N

such that
N∑

i=1

KKKKKKKKKKKKKKjiααααααααααααααi = ffffffffffffff j , j = 1, . . . , N

being KKKKKKKKKKKKKKji = a(ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj ,ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi),

ffffffffffffff j = (ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj , bbbbbbbbbbbbbb)Ωo + (ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj , tttttttttttttt)Γo
σ
− a(ΦΦΦΦΦΦΦΦΦΦΦΦΦΦj , uuuuuuuuuuuuuu

p).

(7)

The required terms can be computed on an element by element sequence. Thus,

KKKKKKKKKKKKKKji =
nelem∑
e=1

KKKKKKKKKKKKKKe
ji,

ffffffffffffff j =
∫∫

Γo
σ

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT
j tttttttttttttt dΓ +

nelem∑
e=1

ffffffffffffffe
j ,

(8)



being the element contributions

KKKKKKKKKKKKKKe
ji =

∫∫∫
Ee

(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦi) dΩ,

ffffffffffffffe
j =

∫∫∫
Ee

(
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT

j bbbbbbbbbbbbbb− (LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuup)
)

dΩ.

(9)

Once the solutionαααααααααααααα to problem (7) is found, we can compute at any pointrrrrrrrrrrrrrro ∈
Ωo the aproximations

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi, (10)

εεεεεεεεεεεεεεh(rrrrrrrrrrrrrro) = LLLLLLLLLLLLLLuuuuuuuuuuuuuuh(rrrrrrrrrrrrrro), σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro) = DDDDDDDDDDDDDDεεεεεεεεεεεεεεh(rrrrrrrrrrrrrro). (11)

3 MWSC Formulation

3.1 The Structural Analysis Problem with Relative Density

Let the domainΩo be occupied by a porous material. Letρ(rrrrrrrrrrrrrro) be the relative
density of the material (one’s complement of the porosity, which adimensional
value must range from0 to 1) at pointPPPPPPPPPPPPPP o of material coordinatesrrrrrrrrrrrrrro. For a given
distribution of (porous) material, defined by the relative density fieldρ(rrrrrrrrrrrrrro), our
aim is to compute the displacements (1) and the associated strains and stresses (2).
We assume again the linear elasticity hypothesis, what implies small displacements
and small displacement gradients.

Let dΩ be the volume of a differential region in the vicinity of pointP o. By def-
inition, the volume occupied by the porous material within the differential region
will be ρ(rrrrrrrrrrrrrro)dΩ. Therefore, the structural analysis problem (3) can be written as
[9]

Given ρ(Ωo)

find uuuuuuuuuuuuuu ∈ Hu

such that a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) = (wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo + (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

∀wwwwwwwwwwwwww ∈ Hw

being a(wwwwwwwwwwwwww,uuuuuuuuuuuuuu) =
∫∫∫

Ωo

(LLLLLLLLLLLLLLwwwwwwwwwwwwww)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuu) ρ dΩ,

(wwwwwwwwwwwwww, bbbbbbbbbbbbbb)Ωo =
∫∫∫

Ωo

wwwwwwwwwwwwwwT bbbbbbbbbbbbbb ρ dΩ, (wwwwwwwwwwwwww, tttttttttttttt)Γo
σ

=
∫∫

Γo
σ

wwwwwwwwwwwwwwT tttttttttttttt dΓ.

(12)

Notice that, in comparison with the original statement (3), the modifications
are reduced to taking into account the porosity effect in the integration. In fact,
once the displacements are known, the strain and stress fields are computed with
the same expressions, independently of the actual material distribution. However,



we must exclude the case in which the relative densitity is locally null, since the
concepts of displacement, strain and stress become meaningless.

It is worthy to reflect on the physical meaning of the stressσσσσσσσσσσσσσσ(rrrrrrrrrrrrrro) computed by
means of expressions (2). It really represents the stress tensor of the deforming
body. However, we recall that in the vicinity of each point there are probably re-
gions occupied by material, as much as empty ones. Therefore, if we try to analyze
the forces equilibrium in a finite subdomain, we should operate with the so-called
effective stress, by multiplying the stressσσσσσσσσσσσσσσ(rrrrrrrrrrrrrro) by the relative densityρ(rrrrrrrrrrrrrro).

3.2 The Finite Element Numerical Model with Relative Density

Letρe be the relative density of element numbere, what is assumed constant within
the element. Letρρρρρρρρρρρρρρ = {ρe} (e = 1, . . . , nelem) be the relative densities vector, that
will constitute the design variables of the topology optimization problem. For a
givenρρρρρρρρρρρρρρ, the structural analysis problem to be solved is:

Find αααααααααααααα(ρρρρρρρρρρρρρρ)

such that
N∑

i=1

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ)ααααααααααααααi(ρρρρρρρρρρρρρρ) = ffffffffffffff j(ρρρρρρρρρρρρρρ), j = 1, . . . , N,
(13)

The required terms can be computed on an element by element sequence. Thus

KKKKKKKKKKKKKKji(ρρρρρρρρρρρρρρ) =
nelem∑
e=1

KKKKKKKKKKKKKKe
ji(ρe),

ffffffffffffff j(ρρρρρρρρρρρρρρ) =
∫∫

Γo
σ

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT
j tttttttttttttt dΓ +

nelem∑
e=1

ffffffffffffffe
j(ρe),

(14)

being the element contributions

KKKKKKKKKKKKKKe
ji(ρe) =

∫∫∫
Ee

(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦi) ρe dΩ,

ffffffffffffffe
j(ρe) =

∫∫∫
Ee

(
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦT

j bbbbbbbbbbbbbb− (LLLLLLLLLLLLLLΦΦΦΦΦΦΦΦΦΦΦΦΦΦj)TDDDDDDDDDDDDDD(LLLLLLLLLLLLLLuuuuuuuuuuuuuup)
)

ρe dΩ.

(15)

Once the solutionαααααααααααααα(ρρρρρρρρρρρρρρ) to problem (13) is found, we can compute at any arbi-
trary pointrrrrrrrrrrrrrro ∈ Ωo the aproximations

uuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = uuuuuuuuuuuuuup(rrrrrrrrrrrrrro) +
N∑

i=1

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦi(rrrrrrrrrrrrrro)ααααααααααααααi(ρρρρρρρρρρρρρρ), (16)

εεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = LLLLLLLLLLLLLLuuuuuuuuuuuuuuh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ), σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) = DDDDDDDDDDDDDDεεεεεεεεεεεεεεh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ). (17)

By comparing (16) and (17) with (10) and (11) we observe that displacements,
strains and stresses are still computed in the usual way. Therefore, if we wish to



adapt an existing FEM numerical model of structural analysis as a component of
a topology optimization system, we only have to modify the element contribu-
tions (9) computation. Moreover, the required adjustment is quite simple, since we
only need to introduce the relative density in the integration of the corresponding
expressions (15). Furthermore, computing contributions (15) is fairly straightfor-
ward, since we assume that the relative density is constant within each element.
Thus, we just have to multiply the original results (9) by the corresponding relative
densities. On the other hand, the original results (9) give the first order derivatives
of contributions (15) with respect to the design variables. Moreover, all the other
first and higher order derivatives are obviously null.

We conclude that we do not have to modify the source at the lower level for
adapting an existing FEM code into a topology optimization system. In practice,
only slight adjustments must be implemented in the data flow between the higher
level routines. In fact, any conventional code should contain all the basic tools to
perform the required new computations and the associated sensitivity analysis.

3.3 Statement of the Stress Constraints

The valuesσσσσσσσσσσσσσσh(rrrrrrrrrrrrrro, ρρρρρρρρρρρρρρ) computed by means of (16) and (17) are numerical approx-
imations to the actual stress tensor components of the material being deformed.
Thus, the allowable values of the reference stressσ̂(σσσσσσσσσσσσσσ) at pointrrrrrrrrrrrrrro

j can be limited
by introducing constraints type

gj(ρρρρρρρρρρρρρρ) = σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max ≤ 0, or

gj(ρρρρρρρρρρρρρρ) = σ̂min − σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
≤ 0,

(18)

where σ̂max and σ̂min are the corresponding upper and lower limits. However,
since we are dealing with a porous material, we could state alternative expressions
in terms of the effective stress. As a general rule, this is as simple as multiplying
the above expressions by the relative densityρ(rrrrrrrrrrrrrro

j), what gives

g(ρρρρρρρρρρρρρρ) =
[
σ̂
(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)
− σ̂max

]
ρ(rrrrrrrrrrrrrro

j) ≤ 0, or

g(ρρρρρρρρρρρρρρ) =
[
σ̂min − σ̂

(
σσσσσσσσσσσσσσh(rrrrrrrrrrrrrro

j , ρρρρρρρρρρρρρρ)
)]

ρ(rrrrrrrrrrrrrro
j) ≤ 0.

(19)

It is obvious that expressions (18) and (19) are equivalent, unless the relative
density is null. This is a singular but conceptually important case, since it happens
when all the material has been removed in the vicinity of the point being consid-
ered. Apparently, the difference between both ways of imposing the constraints
seems to be insignificant. However, this could become a critical point, with un-
foreseeable effects on the performance of the optimization algorithm and the final
result.

To clarify this point we resort to an academic conceptual problem. Figure 1
(left) shows the rectangular solid section of a beam with height2c and widthb.
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Figure 1: Layout (left) of an academic conceptual topology optimization problem,
and comparison (right) of constraint (20) [�] with constraint (21) [•].
(Notes:η=0.1; the constraint is scaled byσe.)

Let σe be the elastic stress limit of the material. The section supports the bending
mommentMf = 2bc2σe/3, that is the maximum that can be applied without
exceeding the elastic stress limit. We add an upper layer and a lower layer of
porous material, both with heightηc (η << 1), and we keep the same value of the
bending momment. In these conditions we state the following (trivial) topology
optimization problem:find the relative densityρ of the material in the upper and
lower layers such that the weight is minimized and the elastic stress limit is not
exceeded. It seems obvious that the exact solution of this problem must beρ = 0.

A quite simple strength of materials analysis [12] shows that the stress constraint
type (18) associated to this problem can be written as

g(ρ) =
[
η − (3η + 3η2 + η3)ρ
1 + (3η + 3η2 + η3)ρ

]
σe ≤ 0. (20)

Figure 1 (right) shows that this constraint is not satisfied for values of the relative
density underρ ≈ 1/3. Moreover, the constratint is more severely violated as we
get closer to the exact solutionρ = 0! It seems clear that we are facing a situation
in which reaching the optimum calls for removing all the material. However, in
the vicinity of the optimum (that is for any value ofρ slightly greater than0) the
constraint is largely violated. Furthermore, its gradient is negative. This is even
worse, since any consistent non linear programming algorithm will try to raise the
value of the relative density, what precludes convergence to the exact solution of
the problem. At the best of times we could only obtain a non global optimum.

If we rewrite constraint (20) in terms of the effective stress (that is, multiply-
ing the above inequality by the relative density) we obtain the alternative stress



constraint type (19)

g(ρ) =
[
η − (3η + 3η2 + η3)ρ
1 + (3η + 3η2 + η3)ρ

]
ρ σe ≤ 0. (21)

Figure 1 (right) shows that this constraint is still not satisfied for values of the
relative density underρ ≈ 1/3. However, the reformulated constraint is strictly
verified at the solutionρ = 0. And, most important, the gradient is now positive in
the vicinity of this point. Therefore, for initial values ofρ not too far from the ex-
act solution (less than 1/6 approximately) any consistent non linear programming
algorithm will try to reduce the value of the relative density, what allows to achieve
convergence.

This is a critical aspect of these formulations. The challenge is to find a conve-
nient way for limiting the stress, without overestimating the strength nor trending
to fill in regions that should actually be hollowed out. The statement type (19) par-
tially fulfills these requirements. However, it seems to slow down the converge.
We have performed a few numerical tests, and this seems to be a quite promising
line, although the results are not yet conclusive. A more detailed discussion on this
topic can be found in [9].

3.4 The Optimization Problem

Let γmat be the density of the material. We define the objective function

F (ρρρρρρρρρρρρρρ) =
∫

Ω

ρ
1
p γmat dΩ =

nelem∑
e=1

(ρe)
1
p

∫
Ee

γmat dΩ, (22)

wherep is a tuning parameter that can be used to favor a mainly compact (p > 1)
or a mainly porous (p < 1) distribution of material. In this terms, the topology
optimization problem can be written as

Find ρρρρρρρρρρρρρρ = {ρρρρρρρρρρρρρρe}, e = 1, . . . , nelem

that minimizes F (ρρρρρρρρρρρρρρ)

verifying gj(ρρρρρρρρρρρρρρ) ≤ 0, j = 1, . . . ,m

0 < ρmin ≤ ρe ≤ 1, e = 1, . . . , nelem

(23)

where the stress constraintsgj (at the corresponding pointsrrrrrrrrrrrrrro
j ) must be stated ac-

cordingly to the previously exposed concepts, and the stress valuesσσσσσσσσσσσσσσh(rrrrrrrrrrrrrro
j , ρρρρρρρρρρρρρρ) are

computed by means of the proposed numerical model. Obviously, we can consider
displacement constraints too. On the other hand, we introduce a lower limit for
the relative density, since the entire hollowing out of some elements could cause
a singular stiffness matrix and stall the optimization process. We emphasize that
this topology optimization aproach is a kind of sizing optimization from the op-
erational point of view, since the design variables do not modify the shape of the



elements. The above stated formulation has been imlemented by following the gen-
eral methodology [3], and applying the sensitivity analysis techniques [4] and the
improved SLP algorithm with quadratic line-search [15] developed by the authors.

4 Application Examples

The examples presented below are bidimensional, the width of the structures is
constant, and we perform a plane stress analysis. However, the results are repre-
sented as 3-D images [9], being the false width proportional to the relative density
of each element.

Figures 2 and 3 show the results for a simply supported structure, with small
and large height/length ratio respectively, both for sliding and fixed supports. The
domain containing the structure is a prism that bears a concentrated 9000 KN
load (vertical, downwards) in the center of the upper side. We analyze half of the
structure, because of symmetry. The supports are not optimized. The domain is
discretized in 24 times 8 elements (8-node quadrilateral). The material density is
γmat=7650 Kg/m3.

Type (18) constraints

σvm − σe ≤ 0, σI2σe ≤ 0 and − 2σe − σIII ≤ 0, (24)

are imposed at the center of all the elements in terms of the elastic stress limitσe,
being

σvm =

√
1
2

[
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

]
(25)

the Von Mises reference stress. The absolute value of the stress is limited to the
double of the elastic stress limit, in accordance with the standard NBE EA-95 [16].

In figure 2 the domain is 32 m long, 1.5 m high and 1 m wide, and the material is
steel with elastic stress limitσe=230000 KN/m2. We notice that the result obtained
in the first case is a clear double T shaped beam with variable section. The width
of the wings increases from the supports to the center of the span, where the load
is applied. The result obtained in the second case is similar. However, the central
section is closer to a T shaped beam. Actually, the lower wing nearly disappears,
since the tension due to the bending is balanced with the compression due to the
fixed supports.

In figure 3 the domain is 32 m long, 12 m high and 1 m wide, and the material
is fictitious with elastic stress limitσe=8000 KN/m2. We notice that the result
obtained in the first case is clearly a cable stayed arch. The result obtained in the
second case is an arch too, but the tie looses itsraison d’treand it disappears, since
the supports are fixed.



Figure 2: MWSC topology optimization of a simply supported structure, with
small height/length ratio, considering sliding (up) and fixed (down) sup-
ports. Concentrated load applied in the center of the upper side. (Note:
only half of the solid is represented in order to show the central section.)



Figure 3: MWSC topology optimization of a simply supported structure, with large
height/length ratio, considering sliding (up) and fixed (down) supports.
Concentrated load applied in the center of the upper side. (Notes: the
supports are not optimized; the entire hollowing out is not allowed.)



5 Conclusions

In this paper we present a minimum weight with stress constraints (MWSC) ap-
proach for topology structural optimization problems.

The formulation is derived by introducing minimal modifications to a FEM
model for linear elasticity problems with small displacements and small displace-
ment gradients.

Although the objective function is simple, as a general rule, this approach leads
to more complicated optimization problems with more computational require-
ments than the maximum stiffness formulations, since a large number of highly
non-linear constraints must be taken into account to limit the maximum allowable
displacement and stress.

In return, the physical meaning of the optimization statement is closer to the en-
gineering point of view, while any kind of constraint can be included and multiple
load cases can be considered.

The formulation has been implemented in a topology optimization system, and
several application examples have been solved. The experience shows that this
approach does not require neither stabilization nor penalty techniques to produce
acceptable results.

The optimized solutions seem to be correct from the engineering point of view
and their appearence could be considered closer to the engineering intuition than
the traditional truss-like results obtained by the maximum stiffness approach.
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