
On the anomalous asymptotic performance of
the regular computer methods for grounding
analysis

I. Colominas, F. Navarrina, M. Casteleiro
Group of Numerical Methods in Engineering (http://caminos.udc.es/gmni)
Civil Engineering School, University of La Coruña, SPAIN

Abstract

Grounding systems are designed to guarantee personal security, protection of equip-
ments and continuity of power supply. Hence, engineers must compute the equiv-
alent resistance of the system and the potential distribution on the earth surface
when a fault condition occurs [1, 2, 3]. While very crude approximations were
available until the 70’s, several computer methods have been more recently pro-
posed on the basis of practice, semi-empirical works and intuitive ideas such as su-
perposition of punctual current sources and error averaging [1, 3, 4, 5, 6]. Although
these techniques are widely used, several problems have been reported. Namely:
large computational requirements, unrealistic results when segmentation of con-
ductors is increased, and uncertainty in the margin of error [2, 5].

A Boundary Element formulation for grounding analysis is presented in this
paper. Existing computer methods such as APM are identified as particular cases
within this theoretical framework. While linear and quadratic leakage current ele-
ments allow to increase accuracy, computing time is reduced by means of new
analytical integration techniques. Former intuitive ideas can now be explained as
suitable assumptions introduced in the BEM formulation to reduce computational
cost. Thus, the anomalous asymptotic behaviour of this kind of methods is mathe-
matically explained, and sources of error are rigorously identified.

1 Introduction

Fault currents dissipation into the earth can be modelled by means of Maxwell’s
Electromagnetic Theory [7, 8, 9]. Constraining the analysis to the electrokinetic



Figure 1: Fault current disipation in a single layer soil model.

steady-state response, and neglecting the resistivity of the earthing electrode, the
3D problem associated to an electrical current derivation to earth can be written
in terms of the following equilibrium and constitutive differential equations and
boundary conditions

∇∇∇∇∇∇∇∇∇∇∇∇∇∇ · σσσσσσσσσσσσσσ = 0 in E, σσσσσσσσσσσσσσ = −γγγγγγγγγγγγγγ∇∇∇∇∇∇∇∇∇∇∇∇∇∇V, σσσσσσσσσσσσσσtnnnnnnnnnnnnnnE = 0 in ΓE , V = VΓ in Γ, V → 0 if |xxxxxxxxxxxxxx| → ∞,
(1)

whereE is the earth andγγγγγγγγγγγγγγ its conductivity tensor,ΓE is the earth surface andnnnnnnnnnnnnnnE its
normal exterior unit field, andΓ is the earthing electrode surface [10, 11, 12, 13].
The solution to this problem gives the potentialV (xxxxxxxxxxxxxx) and the current densityσσσσσσσσσσσσσσ(xxxxxxxxxxxxxx)
at an arbitrary pointxxxxxxxxxxxxxx in E when the earthing electrode is energized to the so-called
Ground Potential RiseVΓ relative to remote earth.

In these terms, the leakage current densityσ(ξξξξξξξξξξξξξξ) at an arbitrary pointξξξξξξξξξξξξξξ on the
earthing electrode surface, the ground currentIΓ (total surge current being leaked
into the earth) and the equivalent resistance of the earthing systemReq, can be
written as

σ(ξξξξξξξξξξξξξξ) = σσσσσσσσσσσσσσt(ξξξξξξξξξξξξξξ)nnnnnnnnnnnnnn, IΓ =
∫∫

ξξξξξξξξξξξξξξ∈Γ

σ(ξξξξξξξξξξξξξξ) dΓ, Req =
VΓ

IΓ
, (2)

beingnnnnnnnnnnnnnn the normal exterior unit field toΓ. SinceV andσσσσσσσσσσσσσσ are proportional to the
GPR, the assumptionVΓ = 1 is not restrictive at all and it will be used from now
on.

For most practical purposes, the assumption of homogeneous and isotropic soil
can be considered acceptable [1], and the tensorγγγγγγγγγγγγγγ can be substituted by a meas-
sured apparent scalar conductivityγ (see Figure 1). Otherwise, a multi-layer model
can be accepted without risking a serious calculation error [14, 15]. Since the kind
of techniques described in this paper can be extended to multi-layer soil models
[16], further discussion is restricted to uniform soils. Hence, problem (1) reduces to
the Laplace equation with mixed boundary conditions [7, 8]. If one further assumes
that the earth surface is horizontal, symmetry allows to rewrite (1) in terms of a
Dirichlet Exterior Problem [13, 17].



This kind of problems has been rigorously studied [18], and its solution can be
obtained in many technical applications by means of standard numerical methods,
such as the Finite Diference or the Finite Element methods. However, in most sub-
station grounding systems, the buried earthing electrode (grounding grid) consists
of a number of interconnected bare cylindrical conductors, which ratio diame-
ter/lenght is relatively small (≈ 10−3). Since domainE is half-infinite and the
electrode must be excluded, the adequate discretization ofE requires an extremely
large number of degrees of freedom. Thus, the prohibitive computing requirements
preclude the use of FD or FE methods in practice [19].

On the other hand, since computation of potential is only required on the earth
surfaceΓE for obtaining the main grounding safety parameters, and the equivalent
resistance can be easily obtained in terms of the leakage current (2), a Boundary
Element approach [20] seems to be the right choice [10, 11, 12].

2 Variational Statement of the Problem

The application of Green’s Identity [18] to (1) allows to obtain the following
expression for the potentialV in E, in terms of the unknown leakage currentσ
[10, 11, 12, 13]

V (xxxxxxxxxxxxxx) =
1

4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ, (3)

beingk(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) the weakly singular kernel

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) =
(

1
r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ)

+
1

r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ′)

)
, r(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) =

∣∣xxxxxxxxxxxxxx− ξξξξξξξξξξξξξξ
∣∣, (4)

whereξξξξξξξξξξξξξξ′ is the symmetric ofξξξξξξξξξξξξξξ with respect to the earth surface. Since (3) holds
on the earthing electrode surface [11], the boundary conditionVΓ = 1 leads to the
Fredholm integral equation of the first kind onΓ

1− 1
4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)σ(ξξξξξξξξξξξξξξ) dΓ = 0 ∀χχχχχχχχχχχχχχ ∈ Γ, (5)

which solution is the unknown leakage current densityσ. By application of the
weighted residuals method [20, 21], equation (5) can be written in the weaker
variational form

∫∫

χχχχχχχχχχχχχχ∈Γ

w(χχχχχχχχχχχχχχ)

[
1− 1

4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γ

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ) σ(ξξξξξξξξξξξξξξ)dΓ

]
dΓ = 0, (6)

which must hold for all membersw(χχχχχχχχχχχχχχ) of a suitable class of so-called test (or
weighting) functions defined onΓ [10, 11, 12, 13]. Weak form (6) will be our
starting point to obtain an approximate solution to the original problem (1) by
means of the Boundary Element Method.



3 General Boundary Element Formulation

For a given set{Ni(ξξξξξξξξξξξξξξ)} of N so-called trial (or interpolating) functions [20, 21]
defined onΓ, and for a given set{Γα} of M 2D boundary elements (portions of
the electrode surface), the unknown leakage current densityσ and the electrode
surfaceΓ can be discretized in the form

σ(ξξξξξξξξξξξξξξ) ≈ σh(ξξξξξξξξξξξξξξ) =
N∑

i=1

σi Ni(ξξξξξξξξξξξξξξ), Γ =
M⋃

α=1

Γα. (7)

Then, a discretized form of (3) can be written as

V (xxxxxxxxxxxxxx) ≈ V h(xxxxxxxxxxxxxx) =
N∑

i=1

σi Vi(xxxxxxxxxxxxxx), Vi(xxxxxxxxxxxxxx) =
M∑

α=1

V α
i (xxxxxxxxxxxxxx), (8)

V α
i (xxxxxxxxxxxxxx) =

1
4πγ

∫∫

ξξξξξξξξξξξξξξ∈Γα

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) Ni(ξξξξξξξξξξξξξξ) dΓ. (9)

Finally, for a given set{wj(ξξξξξξξξξξξξξξ)} of N test functions defined onΓ, (6) reduces to
the linear system [10, 11, 12]

N∑

i=1

Rjiσi = νj , j = 1, . . . , N ; (10)

Rji =
M∑

β=1

M∑
α=1

Rβα
ji , νj =

M∑

β=1

νβ
j ; i = 1, . . . , N ; j = 1, . . . , N ; (11)

Rβα
ji =

1
4πγ

∫∫

χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ)

[∫∫

ξξξξξξξξξξξξξξ∈Γα

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ)Ni(ξξξξξξξξξξξξξξ)dΓ

]
dΓ, (12)

νβ
j =

∫∫

χχχχχχχχχχχχχχ∈Γβ

wj(χχχχχχχχχχχχχχ) dΓ. (13)

It can be easily understood that 2D discretizations required to solve the above
stated equations in real cases imply a large number of degrees of freedom. Since
the coefficients matrix in (10) is not sparse, and 2D integration in (12) must be
performed twice over the electrode surface, it is clear that additional assumptions
must be introduced in order to overcome the problem complexity.

4 Approximated Variational Statement

For a given generic pointξξξξξξξξξξξξξξ at the surface of a cylindrical bar, letξ̂ξξξξξξξξξξξξξ be its orthogonal
projection over the bar axis, letφ(ξ̂ξξξξξξξξξξξξξ) be the diameter (assumed much smaller than
the bar length) and letC(ξ̂ξξξξξξξξξξξξξ) be the circumferential perimeter of the cross section
at this point. LetL be the whole set of axial lines of the buried conductors. If the
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Figure 2: Assumption of circumferential uniformity.

leakage current is assumed uniform around the perimeter of every cross section
(see Figure 2), that isσ(ξξξξξξξξξξξξξξ) = σ̂(ξ̂ξξξξξξξξξξξξξ) ∀ξξξξξξξξξξξξξξ ∈ C(ξ̂ξξξξξξξξξξξξξ), expression (3) can be written in
the form [10, 11, 12]

V̂ (xxxxxxxxxxxxxx) =
1

4πγ

∫
bξξξξξξξξξξξξξξ∈L

[∫

ξξξξξξξξξξξξξξ∈C(
bξξξξξξξξξξξξξξ)

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) dC

]
σ̂(ξ̂ξξξξξξξξξξξξξ) dL. (14)

This assumption seems to be quite adequate and not too restrictive, if we take
into account the real geometry of grounding grids [1, 2, 5]. Nevertheless, boundary
conditionV = 1 will not be exactly satisfied yet at every point on the electrode
surface, since the leakage current is not exactly uniform around the cross section.
Therefore, variational equality (6) will not hold anymore (except in particular cases
where the leakage current is really uniform around the perimeter). However, if we
restrict the class of test functions to those with circumferential uniformity, that is
w(χχχχχχχχχχχχχχ) = ŵ(χ̂χχχχχχχχχχχχχ) ∀χχχχχχχχχχχχχχ ∈ C(χ̂χχχχχχχχχχχχχ), (6) results in

∫

bχχχχχχχχχχχχχχ∈L

ŵ(χ̂χχχχχχχχχχχχχ)

[
πφ(χ̂χχχχχχχχχχχχχ)− 1

4πγ

∫
bξξξξξξξξξξξξξξ∈L

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ)σ̂(ξ̂ξξξξξξξξξξξξξ)dL

]
dL = 0 (15)

which must hold for all memberŝw(χ̂χχχχχχχχχχχχχ) of a suitable class of test functions onL,
being the integral kernel

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =
∫

χχχχχχχχχχχχχχ∈C(bχχχχχχχχχχχχχχ)

[∫

ξξξξξξξξξξξξξξ∈C(
bξξξξξξξξξξξξξξ)

k(χχχχχχχχχχχχχχ, ξξξξξξξξξξξξξξ) dC

]
dC. (16)

In this way, boundary conditionV = 1 is forced to be satisfied on the average
at every cross section. In fact, (15) can be considered as a weaker variational (or
weighted residuals) statement of the Fredholm integral equation of the first kind
onL

πφ(χ̂χχχχχχχχχχχχχ) =
1

4πγ

∫
bξξξξξξξξξξξξξξ∈L

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) σ̂(ξ̂ξξξξξξξξξξξξξ) dL ∀χ̂χχχχχχχχχχχχχ ∈ L. (17)

Since ends and junctions of conductors are not taken into account in this formu-
lation, slightly anomalous local effects can be expected at these points.



5 Approximated Boundary Element Formulation

For a given set{N̂i(ξ̂ξξξξξξξξξξξξξ)} of n trial functions defined onL, and for a given set{Lα}
of m 1D boundary elements (segments of the cylindrical conductors), the unknown
leakage current̂σ, and the whole set of axial lines of the buried conductorsL, can
be discretized in the form

σ̂(ξ̂ξξξξξξξξξξξξξ) ≈ σ̂h(ξ̂ξξξξξξξξξξξξξ) =
n∑

i=1

σ̂i N̂i(ξ̂ξξξξξξξξξξξξξ), L =
m⋃

α=1

Lα. (18)

Then, a discretized version of (14) can be written as

V̂ (xxxxxxxxxxxxxx) ≈ V̂ h(xxxxxxxxxxxxxx) =
n∑

i=1

σ̂i V̂i(xxxxxxxxxxxxxx), V̂i(xxxxxxxxxxxxxx) =
m∑

α=1

V̂ α
i (xxxxxxxxxxxxxx), (19)

V̂ α
i (xxxxxxxxxxxxxx) =

1
4πγ

∫
bξξξξξξξξξξξξξξ∈Lα

[∫

ξξξξξξξξξξξξξξ∈C(
bξξξξξξξξξξξξξξ)

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) dC

]
N̂i(ξ̂ξξξξξξξξξξξξξ) dL. (20)

Finally, for a given set{ŵj(χ̂χχχχχχχχχχχχχ)} of n test (weighting) functions defined onL,
(15) reduces to the linear system [10, 11, 12]

n∑

i=1

R̂jiσ̂i = ν̂j , j = 1, . . . , n; (21)

R̂ji =
m∑

β=1

m∑
α=1

R̂βα
ji , ν̂j =

m∑

β=1

ν̂j
β ; i = 1, . . . , n; j = 1, . . . , n; (22)

R̂βα
ji =

1
4πγ

∫

bχχχχχχχχχχχχχχ∈Lβ

ŵj(χ̂χχχχχχχχχχχχχ)

[∫
bξξξξξξξξξξξξξξ∈Lα

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ)N̂i(ξ̂ξξξξξξξξξξξξξ)dL

]
dL, (23)

ν̂β
j =

∫

bχχχχχχχχχχχχχχ∈Lβ

π φ(χ̂χχχχχχχχχχχχχ) ŵj(χ̂χχχχχχχχχχχχχ) dL. (24)

The size of the linear equations system (21) and the number of contributions (23)
that must be calculated are expected to be significantly smaller than those in (10)
and (12). Therefore, the computational work required by this approximated 1D
formulation should be much lower in practice than the corresponding to the gen-
eral formulation given in section 3. However, extensive computing is still required,
mainly because of circumferential integration in (20) and (16), and further simpli-
fications are necessary to reduce computing time under acceptable levels.



Simplified 1D Boundary Element Formulation

The inner integral of kernelk(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) in (20) can be approximated as [10, 11, 12]

∫

ξξξξξξξξξξξξξξ∈C(
bξξξξξξξξξξξξξξ)

k(xxxxxxxxxxxxxx, ξξξξξξξξξξξξξξ) dC ≈ π φ(ξ̂ξξξξξξξξξξξξξ) k̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ), (25)

being

k̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ) =

(
1

r̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ)
+

1

r̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ′)

)
, (26)

and

r̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ) =

√
∣∣xxxxxxxxxxxxxx− ξ̂ξξξξξξξξξξξξξ

∣∣2 +
φ2(ξ̂ξξξξξξξξξξξξξ)

4
, (27)

whereξ̂ξξξξξξξξξξξξξ′ is the symmetric of̂ξξξξξξξξξξξξξξ with respect to the earth surface. This approximation
is quite accurate, unless the distance between pointsxxxxxxxxxxxxxx and ξ̂ξξξξξξξξξξξξξ is in the order of
magnitude of the diameterφ(ξ̂ξξξξξξξξξξξξξ). Then, integral kernel (16) can be approximated as

K(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) ≈ π φ(χ̂χχχχχχχχχχχχχ) π φ(ξ̂ξξξξξξξξξξξξξ) ̂̂
k(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ), (28)

being

̂̂
k(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =

(
1

̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ)
+

1
̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ′)

)
, (29)

and

̂̂r(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) =

√
∣∣χ̂χχχχχχχχχχχχχ− ξ̂ξξξξξξξξξξξξξ

∣∣2 +
φ2(ξ̂ξξξξξξξξξξξξξ) + φ2(χ̂χχχχχχχχχχχχχ)

4
, (30)

where symmetry is preserved in (21) even for different conductor diameters at
pointsχ̂χχχχχχχχχχχχχ andξ̂ξξξξξξξξξξξξξ.

Now, specific selections of the sets of trial and test functions lead to different for-
mulations. Thus, for constant leakage current elements (current density is assumed
constant within each segment), Point Collocation (test functions are Dirac deltas)
leads to the very early methods based on the idea that each segment of conductor
is substituted by an “imaginary sphere”. Similarly, Galerkin type weighting (test
functions are identical to trial functions) leads to a kind of more recent methods
(such as the “Average Potential Method”, APM) based on the idea that each seg-
ment of conductor is substituted by a “line of point sources over the lenght of
the conductor” [5]. Coefficients (23) correspond to “mutual and self resistances”
between “segments of conductor” [5]. For higher order leakage current elements
(current density is assumed linear, quadratic, etc., within each segment), more
advanced formulations can be derived [11, 12].



Analytical Integration Techniques

Further discussion and examples are restricted to Galerkin type formulations, where
the matrix of coefficients in (21) is symmetric and positive definite [20]. Diameter
of conductors is assumed constant within each element. Therefore, (20) and (23)
can be rewritten as

V̂ α
i (xxxxxxxxxxxxxx) =

1
4πγ

π φα

∫
bξξξξξξξξξξξξξξ∈Lα

k̂(xxxxxxxxxxxxxx, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL, (31)

R̂βα
ji =

πφβ πφα

4πγ

∫

bχχχχχχχχχχχχχχ∈Lβ

N̂j(χ̂χχχχχχχχχχχχχ)

[∫
bξξξξξξξξξξξξξξ∈Lα

̂̂
k(χ̂χχχχχχχχχχχχχ, ξ̂ξξξξξξξξξξξξξ) N̂i(ξ̂ξξξξξξξξξξξξξ) dL

]
dL, (32)

beingφα andφβ the conductor diameters within elementsLα andLβ . Obviously,
contributions (32) produce a symmetric matrix in (21).

Computation of remaining integrals in (31) and (32) by means of numerical
quadratures is very costly due to the undesirable behaviour of the integrands [10,
11]. Therefore, we turn our attention to analytical integration techniques. Explicit
formulae were initially derived to compute (31) in the case of constant (1 func-
tional node), linear (2 functional nodes) and quadratic (3 functional nodes) leak-
age current elements [10, 11, 12]. Explicit expressions were subsequently derived
[11, 12] for contributions (32). For the most simple cases, these formulae reduce
to those proposed in the literature (i.e. constant leakage current elements in APM
[4]). A summary of these explicit formulae can be found in [12].

6 Why Do These Methods Fail To Converge?

We expect that the discretized leakage current densityσ̂h(ξ̂ξξξξξξξξξξξξξ) will converge to the
exact solutionσ(ξξξξξξξξξξξξξξ) as the number of degrees of freedomn is increased. We also
expect that the discretized potentialV̂ h(xxxxxxxxxxxxxx) will simultaneously converge to the
exact solutionV (xxxxxxxxxxxxxx). In general, we can try to obtain these effects in (18) either by
increasing the segmentation of the conductors, or by choosing more sophisticated
trial functionsN̂i(ξ̂ξξξξξξξξξξξξξ) (that is, using higher order elements) [20, 21]. In the usual
terminology of Finite Elements, the first option is referred to as theh method,
while the second is known as thep method.

However, these formulations fail to converge to the exact solution, since the dis-
cretized leakage current density becomes polluted by increasing numerical insta-
bilities when discretization is refined beyond a certain point [5, 17]. In fact, numer-
ical instabilities can extend to the whole length of the conductors when segmen-
tation is increased. This produces unrealistic results in subsequent computation of
potentials on the earth surface, although the equivalent resistanceReq seems to
converge [11, 13, 19].

These problems were pointed out by Garret and Pruitt in their remarkable and
indeed classical paper [5] about the accuracy of the Average Potential Method. In
spite of lacking a rigorous derivation for the method, these authors established and



discussed most of the sources of error. However, the origin of the above mentioned
instabilities could not be explained in that incomplete theoretical framework.

Problem (1) is a well-posed problem [18]. One can argue that neglecting the
resistivity of the earthing electrode is not fully realistic, and thusVΓ is not exactly
constant on the electrode surface. Should this line of reasoning be followed, one
would accept the need for more sophisticated models when the resistivity of the
electrode must be taken into account. But this idealization seems to be reason-
able and accurate enough for most practical purposes [11, 19], and one can not
attribute the origin of the observed instabilities to this assumption. On the other
hand, derivations of expression (3) and Fredholm integral equation of the first kind
(5) have been rigorously established [11]. Furthermore, the problem defined by
variational form (6) is well-posed, kernel (4) is weakly singular, and linear system
(10) is quite well-conditioned for realistic discretizations of the electrode surface
[20]. The latter is in contrast to other similar problems having smooth kernels,
which are frequently very ill-conditioned and thus extremely difficult to solve[20].

Therefore, the origin of the convergence failure must be sought for in the assump-
tions introduced to overcome the computational complexity of the 2D BEM gen-
eral formulation [10, 11, 12], that is:A) the leakage current is assumed uniform
around the perimeter of every cylindrical conductor,B) the ends and junctions of
conductors are not taken into account, andC) approximations (25) and (28) are
introduced to avoid circumferential integration and reduce computing time.

Several numerical tests have been performed for the single bar in infinite domain
problem [11, 19]. The results prove that assumptionA) is not the origin of the
problems encountered with this kind of methods. No specific numerical tests have
been performed so far in order to quantify the error due to assumptionB). Any-
how, in the authors’ experience, slightly anomalous local effects can be expected
at the ends and junctions of conductors, but global results should not be notice-
ably affected. We remark that derivations of expression (14) and Fredholm inte-
gral equation of the first kind (17) have been rigorously established [11, 12].
Furthermore, the problem defined by variational form (15) is approximated but
well-posed, kernel (16) is weakly singular, and linear system (21) must be quite
well-conditioned for realistic segmentations of the electrodes [20].

Therefore, the origin of the instabilities must be attributted to the approxima-
tions (25) and (28). The fact is that these approximations are not valid for short
distances. When discretization is refined, the size of the segments become compa-
rable to or smaller than the diameter of the conductors. Then, approximation (28)
introduces significant errors in the coefficients of the linear system (21), includ-
ing the diagonal terms. From another point of view, since the approximation error
increases as discretization becomes thiner, numerical results for dense discretiza-
tions do not trend to the solution of integral equation (17) with kernel (16), but to
the solution of an ill-conditioned integral equation with non singular kernel (28).
It is a known theoretical result for Fredholm equations of the first kind that the
inverse of a completely continuous operator is unbounded [22]. In plain words:
if approximations (25) and (28) are used, the exact solution of the ill-conditioned
simplified problem can not be found numerically, since one can always come upon



very different leakage current distributions that apparently verify the boundary
condition V = VΓ with arbitrarily small errors. This explains why unrealistic
results are obtained when discretization is refined [5], and convergence is pre-
cluded [13, 17].

7 Accuracy and Overall Efficiency

At this point, we endorse the lucid advices stated in [5]. This kind of methods
should be applied in an iterative way, increasing the number of segments of con-
ductors per computer run. A simple strategy could be to start with a low number of
segments of similar size, and to bisect all the segments at each run of the program
until the results converge within acceptable errors. We recall that segmentation can
not be indefinitely increased, for the above stated reasons. As a practical rule, we
can say that approximations (25) and (28) are not valid if the size of segments
becomes comparable to or smaller than the diameter of the electrode.

Results obtained for low and medium levels of discretization can be considered
sufficiently accurate for most of practical purposes [11, 19]. However, it is obvi-
ous that more accurate results could be required in special cases, and it has been
reported that APM failed to determine satisfactory results in specific instances due
to the problems analyzed in this paper. In cases like these, the use of higher order
elements (linear or quadratic) could help, at least up to a certain level of precision.

On the other hand, the proposed approach shows the path to remove the annoy-
ing instabilities of this kind of methods. We remark that the simplified 1D BEM
formulation is ill-conditioned, but the previous approximated 1D BEM formula-
tion is correct. Thus, the obvious solution is to substitute (25) and (28) by better
approximations that were valid for short distances too. This is neither obvious nor
straightforward, since it should be necessary to adapt most of the analytical work
described in section IV. Anyhow, further research in this direction could supply
efficient asymptotically stable methods in a close future.

With regard to the overall computational cost, for a given discretization (m
elements ofp nodes each, and a total number ofn degrees of freedom) a linear
system (21) of ordern must be generated and solved. Since the matrix is sym-
metric, but not sparse, its resolution by means of a direct method should require
O(n3/3) operations. Matrix generation requiresO(m2p2/2) operations, sincep2

contributions of type (32) have to be computed for every pair of elements, and
approximately half of them are discarded because of symmetry. Once the leakage
current has been obtained, the cost of computing the equivalent resistance is neg-
ligible. The additional cost of computing potential at any given point (normally
on the earth surface) by means of (19) requires onlyO(mp) operations, sincep
contributions of type (31) have to be computed for every element. However, if it is
necessary to compute potentials at a large number of points (i.e. to draw contours),
the corresponding computing time could as well be important.

Hence, most of computing effort is devoted to matrix generation in small/medium
problems, while linear system resolution prevails in medium/large ones. In these
cases, the use of direct methods for the linear system resolution is out of range.



Therefore iterative or semiiterative techniques will be preferable. The best results
have been obtained by a diagonal preconditioned conjugate gradient algorithm
with assembly of the global matrix [11, 23]. This technique has turned out to be
highly efficient for solving large scale problems, with a very low computational
cost. Finally, the first critical time-consuming process is matrix generation, fol-
lowed by computation of potential at a large number of points. Both accept massive
parallelization [24].

Selection of the type of leakage current density elements is an important point
in the resolution of a real problem. We recall that obtaining asymptotical solutions
by indefinitely increasing the discretization level is precluded. Thus, for a given
problem it will be essential to consider the relative advantages and disadvantages
of increasing the number of elements (h method) or using higher order elements
(p method) in order to define an adequate discretizacion [11, 12, 13]. In general,
higher order elements are advantageous in comparison with constant elements,
since better results can be obtained with a lower number of degrees of freedom.

8 Application to Real Cases

The techniques derived by the authors have been implemented in a Computer
Aided Design system for earthing grids of electrical substations called TOTBEM
[25]. At present, the single-layer code runs in real-time in personal computers,
and the size of the largest problem that can be solved is limited by the memory
storage required to handle the coefficients matrix. Thus, for a problem with 2000
degrees of freedom, at least 16Mb would be needed, while computing times for
matrix generation and system resolution would be in the same order of magnitude
(around 15 seconds in what is considered a medium performance single processor
personal computer in year 2000). The system has been used by the authors and
by several Spanish power companies to analyze several medium/large installations
during the last 8 years. Some of these results can be found in [10, 11, 12, 13, 25].

All the cases analyzed have been repeatedly solved for an increasing segmenta-
tion of the electrodes. As the theory predicts (and it has been reported) the numer-
ical instabilities pollute the results when the discretization is refined beyond a cer-
tain point.

Anyway, it seems that a reasonable (moderate) level of segmentation is suffi-
cient to obtain quite accurate results in practice. In our experience, increasing the
number of elements was needless in all the studied cases, since the results (at the
scale of the whole grid) were not noticeably improved. It seems that increasing the
segmentation is only justified when high accuracy local results are required for a
limited part of the whole grounding system.

On the other hand, the use of higher order elements (liner or quadratic) seems
to be more advantageous (in general) than increasing intensively the segmentation
of constant elements, since the accuracy is higher for a remarkably smaller total
number of degrees of freedom [11].

The techniques described in this paper can be extended for multi-layer soil mod-
els [26, 27], although computing time becomes not contemptible whatsoever. The



proposed formulation has been implemented in a high-performance parallel com-
puter and the code has been applied to the analysis of several real grounding sys-
tems [24, 26, 27]. The results obtained by the authors with the multi-layer code
have been noticeably different from those obtained by using a single layer soil
model. Thus, it is the authors’ belief that the proposed multi-layer BEM formu-
lation will become a real-time design tool in a close future, as high-performance
parallel computing becomes a widespread available resource in engineering. The
formulation can also be adapted for computing transferred potentials [11, 29].

9 Conclusions

A Boundary Element approach for the analysis of substation earthing systems has
been presented. For 3D problems, some reasonable assumptions allow to reduce
a general 2D BEM formulation to an approximated less expensive 1D version.
Further simplifications reduce computing requirements under acceptable levels.
Several widespread methods are identified as particular cases of this approach.
In this theoretical framework, problems encountered with the application of these
methods have been finally explained from a mathematically rigorous point of view.
On the other hand, more efficient and accurate formulations have been derived.
New analytical integration techniques allow to obtain accurate results in practical
cases with acceptable computing requirements.

The techniques derived by the authors have been implemented in a Computer
Aided Design system called TOTBEM. At present, this system runs in real-time
in personal computers, and it has been used by the authors and by Spanish power
companies to analyze several medium/large installations during the last 8 years.
The techniques described in this paper have also been extended for grounding
in multi-layer soil models and for the analysis of transferred earth potentials in
electrical substations.
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