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Abstract: The high demand for natural gas (NG) worldwide has led to an increase in the size of
the LNG carrier fleet. However, the heat losses from this type of ship’s engines are not properly
managed, nor is the excess boil-off gas (BOG) effectively utilised when generation exceeds the ship’s
power demand, resulting in significant energy losses dissipated into the environment. This article
suggests storing the lost energy into green H2 for subsequent use. This work compares three different
electrolysis technologies: solid oxide (SOEC), proton exchange membrane (PEME), and alkaline (AE).
The energy required by the electrolysis processes is supplied by both the LNG’s excess BOG and
engine waste heat through an organic Rankine cycle (ORC). The results show that the SOEC consumes
(743.53 kW) less energy while producing more gH2 (21.94 kg/h) compared to PEME (796.25 kW,
13.96 kg/h) and AE (797.69 kW, 10.74 kg/h). In addition, both the overall system and SOEC stack
efficiencies are greater than those of PEME and AE, respectively. Although the investment cost
required for AE (with and without H2 compression consideration) is cheaper than SOEC and PEME
in both scenarios, the cost of the H2 produced by the SOEC is cheaper by more than 2 USD/kgH2

compared to both other technologies.

Keywords: SOEC; PEME; AE; gH2; ORC; ICE

1. Introduction

Liquefied natural gas (LNG) is one of the preferred options for ships in replacing
conventional marine fuels, such as marine diesel oil (MDO) and heavy fuel oil (HFO),
thanks to its environmentally friendly aspects [1,2]. Moreover, LNG carriers are a significant
contributor to the maritime industry, transporting natural gas (NG) over the globe [3–7].
The propulsion systems of LNG carriers are classified according boil-off gas (BOG), which
is mainly used for mechanical or electric propulsion [8,9], with two-stroke engines being
the most popular thanks to their high efficiency compared to steam turbines and four stroke
engines [10]. In order to comply with the International Maritime Organization (IMO)’s
regulations and restrictions concerning the decarbonisation of the maritime sector, ship
owners are required to adopt different measures related to the fuel used as well as the
propulsion system, reducing the ships’ emissions while improving their efficiency and
flexibility [5,8,11]. The BOG generated is generally consumed by the ship’s engine; however,
in cases of low power demand and in order to maintain the stable pressure of the cargo
tanks, excess BOG is either sent to a reliquefication plant or burned wastefully in a gas
combustion unit (GCU) [1,3,8,12]. Although reliquefication plants are still adopted onboard
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LNG carriers, they present disadvantages, such as their expensive cost, onboard space
requirements, and the intensive energy demand [1,8,13,14].

Fernández et al. [5] suggest employing excess BOG to produce hydrogen (H2) fuel
through a steam methane reforming plant (SMR), improving the LNG carrier’s efficiency,
abandoning the GCU, and reducing emissions. SMR produces around three-quarters of the
available H2 thanks to both technological maturity and H2 production costs. However, the
drawbacks of this method cannot be overlooked as it relies on fossil fuel (NG), resulting in
emissions, as well as onboard space limitations [1,5,15,16]. An eco-friendly alternative is to
produce H2 via electrolysis processes as oxygen (O2) is the only by product of the water
splitting reaction. Sebbahi et al. [17] presented a comparative analysis of alkaline electrolysis
(AE), proton exchange membrane electrolysis (PEME), and solid oxide electrolysis (SOEC)
for H2 production using renewable sources. They concluded that although AE is the most
mature electrolysis technology, it is still less efficient than PEME and SOEC, respectively.
Nejadian et al. [18] conducted a comparative analysis together with techno-economic
optimisation of AE, PEME, and SOEC integrated in a multi-generation energy system for
power generation, water desalination, and H2 production. They concluded that, thanks
to the cooperation of both thermal and electric energy, SOEC shows a better performance
in terms of H2 production, as well as energy and exergy efficiencies, followed by PEME
and AE, in this order. According to the results of the exergy–economic optimisation
using Pareto frontier, the authors concluded that SOEC registers the highest system cost
rate, while PEM registers the highest H2 cost rate. Zaccara et al. [19] compared the H2
production achieved through different renewable energy processes: PEME, SOEC, and
biomass gasification, coupled with methanol and methane synthesis included in the steel
industry. The results demonstrated that the H2 produced through biomass is less pure
than that produced through both PEME and SOEC, in addition to carbon dioxide (CO2)
production. SOEC consumes less water and energy compared to PEME and is more
attractive if high temperatures and waste heat sources are available. Nasser and Hassan [20]
compared two different systems that included SOEC and PEME powered by waste heat
obtained via steam and organic Rankine cycles. They concluded that the steam Rankine
cycle (SRC) shows a better performance than the organic Rankine cycle (ORC) and the
SOEC is more efficient, operates more effectively, and has a lower H2 production cost than
PEME. Ferrero et al. [21] conducted a comparative analysis between high-temperature
(SOEC) and low-temperature (PEME) electrolysis for H2 production. They concluded that,
at the same H2 production rate and pressure, SOEC is more efficient and shows a better
performance than PEME. Dere et al. [22] studied H2 production onboard ships through
PEME powered by the waste heat of the engine’s excess exhaust gases. The results of
this study show that the fuel consumption is reduced by 0.5% and achieved a USD 42,740
annual saving thanks to waste heat recovery. Wang et al. [23] conducted a comprehensive
thermodynamic analysis of an SOEC powered by a marine engine’s waste heat through an
ORC for H2 production and power load adjustment. The results show that the proposed
system recovers 44.13% of the engine’s waste heat, producing 0.431 kg/s of H2.

According to the aforementioned literature review, there exists no article that thermo-
economically compares the three electrolysis technologies for maritime transport. Hence,
the novelty of this article lies in the comparison of the H2 production onboard LNG carriers
through different electrolysis processes coupled separately with an ORC system recovering
the waste heat (WH) from both the ship’s engine and the BOG excess. The H2 produced is
compressed for use when required.

The article is divided as follows: first, Section 2 compares the main characteristics of
the three studied electrolysis processes, then Section 3 is dedicated to the overall systems
description (ORC, electrolysis processes, H2 compression plant). The electrochemical
modelling of the different electrolysers’ stacks is presented in Section 4, while Section 5
outlines the economic analysis of the overall systems. Finally, the simulations results
are presented in Section 6 for a better understanding and comparison of the overall H2
production systems.
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2. Comparison between the Different Electrolysis Technologies

Table 1 compares the main characteristics of the low- and high-temperature electrolysis
technologies studied in this article, namely AE, PEME, and SOEC electrolysis. AE is a cheap
technology operating at low pressures and temperatures; however, it is hindered using
corrosive liquid electrolytes, has low current densities, and has a low H2 purity requiring an
additional H2 purification stage [24–26]. Unlike AE, PEME is characterised by high current
densities and a non-corrosive solid electrolyte. The main drawback of this technology is
the need for ultra-pure feed water and expensive equipment such as the membrane and
noble metal electrodes [24–26]. SOEC is a high-temperature electrolysis that is still under
investigation; high efficiency and low energy consumption play in favour of this technology.
The high temperature and thermal cycles of SOEC are limiting, respectively, its application
and the materials’ lifetime [24–26].

Table 1. Comparison between the different electrolysis technologies [24–31].

Low-Temperature Electrolysis High-Temperature
Electrolysis

AE PEME SOEC

Semi-reactions
Anode 2OH− → H2O + 1

2 O2 + 2e− H2O → 2H+ + 1
2 O2 + 2e− O2− → 1

2 O2 + 2e−

Cathode 2H2O + 2e− → H2 + 2OH− 4H+ + 4e− → 2H2 H2O → 2H+ + O2−

Overall reaction 2H2O → 2H2 + O2 2H2O → 2H2 + O2 2H2O → 2H2 + O2

Electrolyte

Potassium hydroxide
(KOH): 20–40 wt% [24,30]

Solid polymer
electrolyte (Perfluoro
sulfonic acid (PFSA)),

usually Nafion®

Yttria stabilised zirconia
(YSZ)Sodium hydroxide

(NaOH): 20 wt% [24]

Anode electrode

Nickel coated perforated
Ni-Co alloys

Stainless steel
Metal oxides

Platinum carbon
RuO2, IrO2

Graphite-PTFE +
Ti/RuO2, IrO2

Perovskites (LSCF, LSM)
Ceramics (Mn, La, Cr)

YSZ

Cathode electrode

Nickel coated perforated
Ni-Mo alloys
Ni-Co alloys

Steel + Ni

Iridium oxide
Pt, Pt-Pd

Graphite + Pt/Pt

Ni/YSZ
Zr + Ni/CeOx

Operating temperature (◦C) 20–90 20–100 600–1200

Operating pressure (bar) 1–30

<70 [25,27,29] 1 [25,27–29]

70 [28] <20 [26]

<200 [26,30] 1–5 [24]

1–350 [24] <25 [30]

Voltage range (V) 1.4–3 1.4–2.5 0.7–1.5

Current density (A/m2) 2000–8000 0–20,000 0–20,000

Cell area (m2)

1–3 [25] <0.15 [25] 0.02 [25]

<4 [26,30]
<0.13 [26] <0.06 [26]

<0.3 [30] <0.01 [30]
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Table 1. Cont.

Low-Temperature Electrolysis High-Temperature
Electrolysis

AE PEME SOEC

Stack energy consumption (kWh/Nm3) 4.2–5.9 4.2–5.5 >3.2

System energy consumption (kWh/Nm3)
4.5–6.6 [26,30] 4.2–6.6 [26,30] 3.7–3.9 [26,30]

5.55 [32] 5.4 [32] 3.8 [32]

Stack efficiency (%LHV) 50–78 50–83 80–100

System efficiency (%LHV) 51–60 46–60 76–81

Stack capital cost
(USD/kW)

Minimum 1 MW 270 400 >2000

Minimum 10 MW 500–1000 700–1400 Unknown

Maintenance cost (% of investment
cost/year) 2–3 [33] 3–5 [33] Unknown [33]

Stack lifetime (h) 60,000–120,000 20,000–100,000 8000–20,000

Maturity
(Technology readiness level TRL)

Mature and commercial
TRL 9

Commercial at small
and medium scales

TRL 8 expected to reach
9 by 2050

Development phase
TRL 6 expected to reach 9

by 2050

Advantages

Cheap
No need for noble metal

electrocatalysts
Long-term stability
Reliable functioning

Space saving
configuration

High H2 purity
Fast start-up

Non-corrosive solid
electrolyte

High current densities
High production rate

Cheap
High efficiency

No need for noble metal
electrocatalysts

High working temperature
Low pressure

Low energy consumption
Non-corrosive solid

electrolyte
Low pure water

requirement

Disadvantages

Low H2 purity
Low current densities

Slow start-up
Corrosive

High energy consumption

Expensive membrane
and electrodes

Acidic environment
High pressure

Ultra-pure feed water

Limited stability
Small cell area
Safety issues

Limited application
Under development

3. Systems Description

This section describes the possible H2 production chain (energy recovery, H2 pro-
duction and its compression) onboard LNG carriers. As depicted in Figure 1, an organic
Rankine cycle is used to recover all the available onboard waste heat and deliver it to the
electrolysis stack (AE, PEME, or SOEC) for the H2 production. The H2 produced is then
compressed to be used as a clean fuel when needed.
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3.1. Ship Model and Characteristics

The study adopts an LNG ship model propelled mechanically with two principal
two-stroke engines and four auxiliary four-stroke dual fuel engines. The engines’ data
are extracted from MAN-CEAS [35] and the project guide [36], respectively. The engine
wastes heat through different stream sources, mainly from the jacket water (JW), scavenge
air (SA), and exhaust gases (EG). For simplification and consistency in calculation, the
data collected from the engines are correlated with the Engineering Equation Solver (EES),
generating equations for the WH streams and the specific energy consumption as a function
of the ship’s load (set to a value of 70% for the principal engines and 80% for the auxiliary
engines). The main ship characteristics are summarized in Table 2.

Table 2. Main characteristics of the model LNG carrier.

Ship’s Characteristic Value

Total cargo capacity (Vtank) 1.7 × 105 m3

Propulsion system Mechanical 2-stroke

Principal engine type 2 × MAN–5G70 ME-C10.5

Propulsion power (MCR) 2 × 12,835 kW (70.8 rpm)

Auxiliary engines type
2 × 6H35DF

2 × 7H35DF

Auxiliary power (MCR)
2 × 2880 kW

2 × 3360 kW

Auxiliary power demand 3448 kW

Total steam consumption 1999.2 kg/h

Boil-off rate (BOR) 0.10%

Freshwater generation (
.

mFWG) 20,000 kg/day
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The heat needed (QFWG) to generate a given freshwater flow rate is calculated by
Equation (1) with 15% of tolerance (tFWG) [37]:

QFWG =

.
mFWG

0.03(1 − tFWG)
(1)

The mass flow rate (
.

mBOG) of the BOG extracted from the LNG tanks is calculated by
the following equations:

.
mBOG =

.
mBOGN − ρBOG

ρLNG

( .
mLNG +

.
mBOGN

)
(2)

.
mBOGN = BOR·Vtank·ρLNG (3)

where
.

mLNG and
.

mBOGN are the mass flow rate of the LNG extracted from the tanks and
the natural BOG, respectively; ρBOG and ρLNG are the BOG and LNG densities; Vtank is
the total cargo capacity; and BOR is the boil-off rate [38].

3.2. Waste Heat Recovery System (ORC)

Recovering the waste heat onboard ships is advantageous as it improves the ships’
energy efficiency and reduces the fuel consumption, which is turn results in lower emissions
and reduced operating costs [39–41]. Among the different waste heat recovery (WHR)
cycles, organic Rankine cycles (ORCs) are commonly studied in the literature and widely
used for the WHR onboard marine vessels [39,40]. ORCs are an attractive system to recover
the waste heat and convert it to a useful power [42–44]. They are characterised by their
simplicity and the use of affordable and readily available components (similar to those in a
refrigeration system), as well as their ability and flexibility to recover heat from both low-
and medium-temperature sources, such as the scavenge air and jacket water [39,45,46].
Choosing the right ORC working fluid is tricky, as it involves considering several factors,
including environmental impact, operating conditions (e.g., pressures and temperatures),
and economic considerations [39]. This study adopts R245fa as the ORC’s working fluid
(WF). Abdul Qyyum et al. [47] assessed various WFs and concluded that, among the
95 studied, R245fa is the most commonly used and optimal WF for ORC systems. In
addition, despite the high global warming potential (GWP) of R245fa that reaches a value
of 1030, it is a suitable WF for the WHR from marine engines [42,48,49], and it has many
advantages such as the low pump power consumption, availability, nonflammability, high
net power output, fire hazard reduction, and payback minimisation [42,47,50,51]. Table 3
summarised the key parameters of R245fa.

Table 3. Main characteristics of the working fluid R245fa [47,48,50,52].

Working Fluid Characteristic Value

ASHRAE code R245fa

Chemical name Pentafluoro-propane

Chemical formula CF3CH2CHF2

Type Dry

ASHRAE safety group B1

ODP 0

GWP 1030

Critical temperature (◦C) 154

Critical pressure (bar) 36.5

Normal boiling point (◦C) 15.14
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Figure 2 illustrates the ORC configuration adopted in this article. The organic fluid
R245fa is pressurised (2) by the pump (P1), then preheated and vaporised through the
different WHR streams (JW, SA, and EG) of the multi-streams heat exchanger (MSHEX).
The resulting saturated vapor (3) is expanded in the turbine (T), producing mechanical
power that is converted to electric energy through a generator (G). Hence, supplying the
ship’s utility services with their power needs and providing the remaining energy to the
electrolysis stacks. The remaining fluid (4) leaving the turbine is condensed back to a
liquid state (1) and returned to the pump for a new cycle. The economiser (ECO) is used
to preheat the steam required by the ship services, as well as for an additional water
preheating process in the case of SOEC. Freshwater is secured onboard the ship through a
freshwater generator (FWG) by using the available heat supplied by the JW.
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The ORC energy efficiency (ηORC) as well as the available (ηav, LHV) and recovered
(ηrec, LHV) system efficiencies are determined as follows:

ηORC =
WTurb − WPump

QWHR−in
(4)

ηav, LHV =

.
mH2−prod·LHVH2

Qav
(5)

ηrec, LHV =

.
mH2−prod·LHVH2

Qrec
(6)

where QWHR−in is the heat recovered from the engines WH streams, and Qav refers to all
the available WH, while Qrec is only the WH recovered and used. WTurb and WPump are the
mechanical works of the ORC turbine and pump.

.
mH2−prod is the mass flow rate of the H2

produced, and LHVH2 is its lower heating value.

3.3. Hydrogen Production Systems

Although H2 production through electrolysis contributes only 4% of the total world-
wide production [53], it is considered the cleanest process since O2 is the only by-product of
the H2O splitting reaction. In addition, H2 production onboard ships through electrolysis



J. Mar. Sci. Eng. 2024, 12, 1287 8 of 30

is more advantageous than steam methane reforming (SMR) due to its ease of use and
compactness. This subsection describes the different layouts of electrolysis technologies
adopted in this article, namely AE, PEME, and SOEC.

3.3.1. AE Layout

The configuration of the AE adopted in this article is depicted in Figure 3. A molar
fraction of 80% H2O is mixed with 20% of an alkaline electrolyte (9), KOH in this study.
The H2O needed for the electrolysis process (10) is pumped (11) and mixed (13) with the
O2 derived from the anode electrode (12). The O2 produced (14) and the H2 gas leaving
the cathode electrode (16) are separated from the electrolyte (22, 23) through separators (S1
and S2), respectively, at a pressure drop of 0.3 bar. The H2 gas produced (18) is separated
from the remaining H2O (21) and undergoes further separation through (S4) to ensure its
purity (19). The electrolyte residues (24) are pumped to the initial pressure (7 bar) and
temperature (75 ◦C), then returned back to the stack (25).
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3.3.2. PEME Layout

The PEME configuration, adopted from [19], is illustrated in Figure 4. H2 and O2
migrate the cathode (16) and anode (10) electrodes, respectively. Part of the H2 produced
gas (17) permeates through the membrane to the anode electrode (18), while part of the
O2 gas permeates to the cathode electrode (11). The permeation coefficient is calculated
according to Equations (7) and (8). On one hand, the permeated O2 is mixed (20) with the
H2 (19) derived from the cathode at 15 bar, cooled to 30 ◦C, then separated (22) from any
H2O residues (25). The H2 gas is further purified (23) through S3. On the other hand, the
permeated H2 is mixed with O2 (13) at 10% of the cathode pressure (1.5 bar), and the O2
produced (15) is also separated from H2O residues (27). The pressure of the remaining H2O
from O2 (27) and H2 (25) separation is reduced to atmospheric pressure, mixed with the
recycled H2O (29), and then returned back to the stack (31) at 15 bar and 30 ◦C.

H2 perm =
(

0.0009·e0.025·T
)
·∆P·Acl (7)

O2 perm =
H2 perm

2
(8)
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3.3.3. SOEC Layout

Figure 5 illustrates the SOEC configuration used in this article. A molar fraction of
90% H2O and 10% H2 are mixed (14) in the SOEC stack. H2 and O2 ions migrate to the
cathode (15) and anode (10) electrodes, respectively. In order to simplify the calculations,
the O2 sweep gas flow (9) is neglected in this study. On one hand, H2 leaves the cathode at
800 ◦C and then exchanges heat gradually with H2O through a series of heat exchangers
(HE1, HE2, and HE3), decreasing its temperature to 30 ◦C (18). The H2 is separated (19)
and purified (20) from any residues. The remaining H2O (23, 24) and H2 (22) are recycled
to be used in the H2 cooling process (26, 30), along with the water makeup (25). The H2
produced (21) is compressed for subsequent use as required. On the other hand, O2 leaving
the anode at 800 ◦C is separated (12) from any O2 sweep gas (11), then cooled through
(HE4) and released to the environment (13). The slightly heated H2O (27) is reheated (28)
by the steam coming from the ORC (33) and used for the O2 cooling process in HE4. The
resulting steam (29) is mixed with the recycled H2 (22), reforming the initial composition
(90% H2O + 10% H2), while the temperature is raised to 800 ◦C.
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Among the different possible H2 storage methods, compressed H2 is the most com-
monly used due to its simplicity and technological maturity [54,55]. Figure 6 illustrates
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the H2 compression stages, the H2 produced (37) through the different studied electrolysis
processes (AE, PEME, or SOEC) is separated (38) from any possible remaining H2O (49),
then compressed through the compressors (Ci) at a constant pressure ratio, achieving a
compression pressure of 150 bar. After each compression, the H2 is cooled down to 30 ◦C
through HE6, HE7, and HE8, then separated from H2O residues. The compressed H2 (47)
undergoes another purification process (S9), ensuring the resulting H2 is pure (48).
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4. Electrochemical Modelling of the Electrolysis Stacks

Developing an electrochemical model of the electrolysis stacks is crucial for assessing
the water splitting process. The stacks are modelled using Aspen Custom Modeler V12.1
(ACM), then exported to Aspen Hysys V12.1 for simulation with the rest of the systems’
components. An in-depth and comprehensive study of the electrochemical equations
related to the different water electrolysis (AE, SOEC, and PEME) is already presented in the
open literature. The following subsections will briefly state the necessary equations used in
the electrochemical modelling according to each electrolysis stack type.

4.1. Standard Electrochemical Equations

Both heat and electricity sources are mandatory inputs to drive the splitting reactions
in the different stacks [23,56]. The electric power input (Wel) is calculated as follows [18,57]:

Wel = Vst·Ist (9)

Vst = Vcl ·Ncl (10)

Ist = J·Acl (11)

where Vst and Vcl are, respectively, the stack and cell voltages, Ist is the stack current, J the
current density, Acl the cell area, and Ncl the stack number of cells.

The heat required/generated (Qst) by the electrolysis stack is determined by
Equation (12) [24,58], deciding if the electrolysis process operates in an endothermic
(Qst < 0), exothermic (Qst > 0), or thermoneutral (Qst = 0) mode:

Qst = Ist·Ncl ·(Vcl − Vth) (12)

Vth =
∆H
2F

(13)

where Vth is the thermoneutral voltage, ∆H is the total energy consumption, and F the
Faraday constant.

The heat losses (Qlosses) are calculated in this study as 10% of the electrolysis thermal
heat (Equation (14)), while the heat excess (Qexcess), if any, is determined by applying the
global energy balance (Equation (15)):

Qlosses = 10%·|Qst| (14)

Qexcess = Qst − Qlosses (15)
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The energy (ηen−LHV) and exergy (ηex) efficiencies of the electrolysis stacks are as-
sessed by Equations (16) and (17) as follows:

ηen−LHV = 100·
.

mH2−prod·LHVH2

Wel + Qin−heat
(16)

ηex =

.
nH2−prod·EH2

Eel + Eheat
(17)

Eel = Wel (18)

Eheat = Qin−heat

(
1 − T0

T

)
(19)

where Qin−heat is the sum of all heat inputs required by the electrolysis stack, LHVH2 is the
H2 lower heating value,

.
mH2−prod and

.
nH2−prod are the mass and molar flow rates of the H2

produced, respectively, EH2 is the H2 standard chemical exergy, Eel and Eheat are the rate
of the electric and thermal exergy inputs, T is the stack temperature, and T0 the reference
environment temperature.

4.2. AE Stack Modelling

The electrochemical modelling of the AE stack is based on the equation used by [24,59,60].
In general, the cell voltage required for an electrolysis is the sum of the reversible voltage
and the voltages generated by irreversible losses. Sánchez et al. [59] have developed
comprehensive equations (Equations (20) and (22)) to calculate the cell (Vcl) and reversible
(Vrev) voltages using empirical correlations as functions of the stack temperature (T) and
pressure (P) as follows [60]:

Vcl = Vrev + ((r1 + d1) + r2T + d2P)·J + s·log
[(

t1 +
t2

T
+

t3

T2

)
·J + 1

]
(20)

Vrev = V0
rev +

RT
zF

ln
[H2][O2]

0.5

[H2O]
(21)

Vrev = a1 − a2T + a3Tln(T) + a4T2 + a5Tln(P) + a6P − a7
P
T
− a8

P2

T
+ a9

P2

T3/2 + a10
P2

T2 − a11
P2

T3 (22)

where ri, di, ti, ai, and s are constant parameters obtained by [24] through experiment
(Table 4), and J is the current density traversing the AE stack.

Faraday efficiency (η f araday) is calculated to measure the AE process effectiveness [57].

In general, η f araday is the ratio (Equation (23)) between the actual
( .
m H2−prod

)
and theoreti-

cal
.

(m H2−theor

)
H2 production rate based on the consumed intensity. η f araday is also known

as the “current efficiency” due the effect of the parasitic current losses throughout the gas
conduits [61], these later are affected by the temperature while the pressure has a slight influ-
ence [57]; hence, for a given temperature, η f araday can be expressed by an empirical equation
based on the four related parameters fij presented in Table 5 (Equation (24)) [57,59,61]:

η f araday =

.
mH2−prod
.

mH2−theor
(23)

η f araday = 100·
(

J2

f11 + f12T + J2

)
·( f21 + f22T) (24)
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Table 4. Experimental parameters used for the calculation of the AE cell voltage [24,57,59].

Parameter Value Unit

Cell voltage

r1 4.45153 × 10−5 Ω m2

r2 6.88874 × 10−9 Ω m2/◦C

t1 −0.01539 m2/A

t2 2.00181 m² ◦C/A

t3 15.24178 m² ◦C2/A

d1 −3.12996 × 10−6 Ω m2

d2 4.47137 × 10−7 Ω m2/bar

s 0.33824 V

Reversible voltage

a1 1.5184 V

a2 0.0015421 V/K

a3 0.00009523 V

a4 0.0000000984 V/K2

a5 0.000064629 V/K bar

a6 0.000021946 V/bar

a7 0.0055433 V·K/bar

a8 0.0000095196 V·K/bar2

a9 0.00013914 V·K3/2/bar2

a10 0.0026144 V·K2/bar2

a11 0.4953 V·K3/bar2

The molar flow rates of the H2O consumed (
.
nH2O−cons) during the AE process as well

as the H2 (
.
nH2−prod) and O2 (

.
nO2−prod) produced are calculated by the following equations:

.
nH2−prod = η f araday·

J·Acl ·Ncl
2F

(25)

.
nH2O−cons =

.
nH2−prod (26)

.
nO2−prod =

.
nH2−prod

2
(27)

According to [24,57], during the AE process, part of the H2 flow (
.
nHTO) is diffused

into the O2 channel (from cathode to anode) through AE diaphragms. The amount of
.
nHTO

is expressed by Equation (28) using the hydrogen to oxygen (HTO) diffusion coefficient
Equation (29). The counter-diffusion (oxygen to hydrogen (OTH)) is neglected due to the
small amount (0.1 to 0.5%) of the O2 is diffused to the H2 channel [57]:

.
nHTO =

HTO· .
nO2−prod

1 − HTO
(28)

HTO =
(
C1 + C2T + C3T2)+ (C4 + C5T + C6T2) exp

(
C7+C8T+C9T2

J

)
+
(
E1 + E2P + E3P2)

+
(
E4 + E5P + E6P2) exp

(
E7+E8P+E9P2

J

) (29)
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where Ci and Ei are the gas purity parameters related to the temperature (T) and pressure
(P), respectively, their values are summarised in Table 5.

Table 5. Faraday and HTO diffusion experimental parameters used for AE stack modelling [24,57,59].

Parameter Value Unit

Faraday efficiency

f11 478,645.74 A2/m4

f12 −2953.15 A2/m4 ◦C

f21 1.03960 --

f22 −0.00104 ◦C−1

Hydrogen to oxygen diffusion

C1 0.09901 --

C2 −0.00207 ◦C−1

C3 1.31064 × 10−5 ◦C−2

C4 −0.08483 --

C5 0.00179 ◦C−1

C6 −1.13390 × 10−5 ◦C−2

C7 1481.45 A/m2

C8 −23.60345 A/m2 ◦C1

C9 −0.25774 A/m2 ◦C2

E1 3.71417 --

E2 −0.93063 Bar−1

E3 0.05817 Bar−2

E4 −3.72068 --

E5 0.93219 Bar−1

E6 −0.05826 Bar−2

E7 −18.38215 A/m2

E8 5.87316 A/m2 Bar

E9 −0.46425 A/m2 Bar2

The AE electrodes are submerged in a KOH electrolyte. Hence, the molar flow rates of
H2, O2, H2O, and KOH at the anode and cathode are calculated as follows:

Anode:
.
nH2−an =

.
nHTO (30)

.
nO2−an =

.
nO2−prod (31)

.
nH2O−an =

.
nH2O−in −

.
nH2O−cons

2
(32)

.
nKOH−an =

.
nKOH−in

2
(33)

Cathode:
.
nH2−cat =

.
nH2−prod (34)

.
nO2−cat = 0 (35)

.
nH2O−cat =

.
nH2O−an (36)

.
nKOH−cat =

.
nKOH−an (37)
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.
nKOH−in and

.
nH2O−in are known molar inlet flows of KOH and H2O.

AE Stack Validation

In order to validate the AE stack modelling, the cell voltage–current density curve
is compared with the curve obtained by Sánchez et al. [57] and the Aspentech modified
modelling version [60] under the conditions presented in Table 6. According to Figure 7,
the curve displays a significant concordance with the existing findings.

Table 6. Input data for the AE simulation and validation [57,60].

Variable Value Unit

T 75 ◦C

P 7 Bar

Wel 10 kW

Ncl 12 --

Acl 0.1 m2

ṁin 900 Kg/h

Inlet composition (H2O–KOH) 35–65 % Mass fraction basis
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4.3. PEME Stack Modelling

The PEME stack is modelled according to the equations used in research studies such
as [62–64]. The cell voltage (Vcl) is the sum of the reversible voltage (Vrev) calculated by the
Nernst equation, activation overpotentials (Vact) at both anode and cathode electrodes, and
the ohmic overpotential of the electrolyte (Vohm). The concentration overpotentials (Vconc)
are negligible for high current densities not exceeding 10,000 A/m2 [64].

Vcl = Vrev + Vact + Vohm (38)

Vrev = 1.229 − 8.5 × 10−4(T − 298) (39)

Vact = Vact,a + Vact,c (40)

Vact,i =
RT
F

ln

 J
2J0,i

+

√(
J

2J0,i

)2
+ 1

, (i = a, c) (41)

J0,i = Jexp,iexp
(−Eact,i

RT

)
(42)
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Vohm = JRel (43)

Rel =
∫ L

0

dx
σ[λ(x)]

(44)

σ[λ(x)] = [0.5139λ(x)− 0.326]·exp
[

1268
(

1
303

− 1
T

)]
(45)

λ(x) =
λa − λc

L
x + λc (46)

where T(K) is the stack temperature, J0,i is the exchange current density of anode (a) and
cathode (c), Jexp,i is the pre-exponential factor, Eact,i is the activation energy, Rel is the overall
ohmic resistance, L is the membrane thickness, σ[λ(x)] refers to the local ionic conductivity
of the PEME, λ(x) is the water content at a location x in the membrane, and λa and λc
are the water contents at anode and cathode membrane interfaces, while x is the distance
calculated from the cathode–membrane interface. The parameters used in this study are
summarised in Table 7.

Table 7. Parameters adopted for the PEME stack electrochemical modelling [63].

Parameter Value Unit

J0,a 1 × 10−5 A/m2

J0,c 10 A/m2

Eact,a 76 × 103 J/mol

Eact,c 18 × 103 J/mol

L 50 × 10−6 m

λa 14 --

λc 10 --

The molar flow rates of the H2O reacted in the electrolysis process (
.
nH2O−react), the

H2 produced (
.
nH2−prod), and the remaining H2O (

.
nH2O−out) are calculated by the follow-

ing equations:
.
nH2O−react =

I·Ncl
2F

(47)

.
nH2−prod =

.
nH2O−react (48)

.
nH2O−out =

.
nH2O−in −

.
nH2O−react (49)

The molar flow rates of H2, O2 and H2O at cathode and anode are calculated as
stated below:

Anode:
.
nH2−an = 0 (50)

.
nO2−an =

.
nH2−prod

2
(51)

.
nH2O−an =

.
nH2O−in −

.
nH2O−react (52)

Cathode:
.
nH2−cat =

.
nH2−prod (53)

.
nO2−cat = 0 (54)
.
nH2O−an = 0 (55)
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PEME Stack Validation

The cell voltage–current density curve of the PEME stack modelling is validated with
the finding reported by Mohtaram et al. [65] using the data of Zaccara et al. [19] as outlined
in Table 8. The curve results shown in Figure 8 are in good agreement with the findings
of [65].

Table 8. Input data for the PEME simulation [19].

Variable Value Unit

T 90 ◦C

P Cathode 15-Anode 1.5 (10%) Bar
.
nH2O−in 352,080 kg/h

Acl 1 (*) m2

Ncl 12 (*) --

Wel 1,988,900 kW
(*) Values estimated for modelling purpose.
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4.4. SOEC Stack Modelling

The required equations for the SOEC electrochemical modelling are extracted from
research studies such as [18,23,56,66–72]. The cell voltage (Vcl) of the SOEC stack is cal-
culated as the sum of the reversible voltage (Vrev), ohmic overpotential (Vohm), activation
overpotentials (Vact), and concentration overpotentials (Vconc) presented below:

Vcl = Vrev + Vohm + Vact + Vconc (56)

Vrev = V0 +
RT
2F

·ln
(

P0
H2·
(

P0
O2
)1/2

P0
H2O

)
(57)

V0 = 1.253 − 2.4516·10−4T (58)

P0
H2

= yH2 ·P (59)

P0
O2

= yO2 ·P (60)

P0
H2O = yH2O·P (61)
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Vohm = 2.99·10−5·exp
(

10300
T

)
·J·L (62)

where P0
H2O, P0

H2
, and P0

O2
are the partial pressures of H2O, H2, and O2, respectively, while

yH2O, yH2 , and yO2 are the corresponding input molar fractions, V0 the standard potential, L
the electrolyte layer thickness (Table 9), J the current density, and T(K) the stack temperature.

Table 9. Parameters adopted for the SOEC stack electrochemical modelling [23,73].

Parameter Value Unit

L 12.5 × 10−6 m

da 17.5 × 10−6 m

dc 12.5 × 10−6 m

ε 0.48 --

ξ 5.4 --

rad 1.385 × 10−6 m

εH2O/k 809.1 K

εH2/k 59.7 K

σH2O 2.641 m

σH2 2.827 m

Jexp,a 2.051 × 109 A/m2

Jexp,c 1.344 × 1010 A/m2

Eact,a 1.2 × 105 J/mol

Eact,c 1 × 105 J/mol

Vact is calculated in the same way as in the case of PEME with the parameters sum-
marised in Table 9. (Check Equations (40)–(42))

Vconc = Vconc,a + Vconc,c (63)

Vconc,a =
RT
4F

·ln


√(

P0
O2

)2
+ R·T·J··da

2F·Bg

P0
O2

 (64)

Vconc,c =
RT
2F

·ln

 1 + J·R·T·dc

2F·De f f
H2O ·P0

H2

1 − J·R·T·dc

2F·De f f
H2O ·P0

H2O

 (65)

where da and dc are the anode and cathode thickness, respectively, µ is the dynamic
viscosity (Equation (66)), Bg is the flow permeability (Equation (67)), and De f f

H2O is the
effective diffusion coefficient (Equation (68)). Note that P0

H2O, P0
H2

, and P0
O2

are in Pascal.

µ = −1.692 + 889.75
(

T
1000

)
− 892.79

(
T

1000

)2
+ 905.98

(
T

1000

)3
− 598.36

(
T

1000

)4
+ 221.64

(
T

1000

)5
− 34.75

(
T

1000

)6
(66)

Bg =
ε3

72ξ(1 − ε)2 (2rad)2 (67)

1

De f f
H2O

=
ξ

ε
·
(

1
DH2−H2O

+
1

DH2O−K

)
(68)
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where rad is the average pore radius, while ε and ξ are the electrode porosity and tortuosity,
respectively, and their values are presented in Table 9. The Knudsen (DH2O−K) and the
molecular (DH2−H2O) diffusions are calculated as follows:

DH2O−K =
2
3

rad

√
8R·T

π·MH2O
(69)

DH2−H2O = 0.00133
(

1
MH2

+
1

MH2O

) 1
2 T

3
2

P· (σ H2−H2O

)2
·ΩD

(70)

ΩD =
1.06036
T∗0.1561 +

0.193
exp(0.47635T∗)

+
1.03587

exp(1.52996T ∗) + 1.76474
exp(3.89411T ∗) (71)

T∗ =
T

εH2−H2O
k

(72)

εH2−H2O

k
=

√
εH2

k
εH2O

k
(73)

σH2−H2O =
σH2 + σH2O

2
(74)

Mj is the molecular mass of species j (j = H2, O2, H2O), ΩD is the dimensionless
diffusion collision integral, and σH2O and σH2 the collision diameters of steam and H2, while
εH2O/k and εH2/k are the Lennard-Jones potentials. T* is the dimensionless temperature.

The molar flow rates of the H2O reacted during the electrolysis process and the H2
and O2 produced are calculated by the following equations:

.
nH2O−react =

I·Ncl
2F

(75)

.
nH2−prod =

.
nH2O−react (76)

.
nO2−prod =

.
nH2−prod

2
(77)

On the other hand, the molar flow rates of H2, O2, and H2O at the anode and cathode
electrodes are determined as follows:

Anode:
.
nH2−an = 0 (78)

.
nO2−an =

.
nO2−prod (79)

.
nH2O−an = 0 (80)

Cathode:
.
nH2−cat =

.
nH2−prod (81)

.
nO2−cat = 0 (82)

.
nH2O−an =

.
nH2O−in −

.
nH2O−react (83)

SOEC Stack Validation

The cell voltage–current density curve of the SOEC stack modelling is validated with
the findings of [66] using the input data of [23] (Table 10). The cell voltage–current density
curve depicted in Figure 9 shows a good agreement with the findings of [66].
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Table 10. Input data for the SOEC simulation [23].

Variable Value Unit

T 850 ◦C

P 1.01325 bar

ṁin 36,000 kg/h

J 8000 A/m2

Acl 0.04 m2

Ncl 130,000 --

Inlet composition (H2O–H2) 80–20 % Molar fraction basis
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5. Economic Analysis

The equipment cost of the three H2 production overall systems is determined by the
Aspen Process Economic Analyzer V12.1 (APEA). However, the electrolysers’ cost functions
are calculated separately by using the following equations [18,74]:

ZSOEC = 2285 (USD/kW)·Wel.SOEC (84)

ZPEME = 2068 (USD/kW)·Wel.PEME (85)

ZAE = 1268 (USD/kW)·Wel.AE (86)

Note that the electrolysers’ cost functions are calculated for the year 2020, while the
equipment cost is given for the year 2019. For accurate and significant results, the total
equipment costs as well as the electrolysers’ cost are updated to the same year (2022 in this
study), using the chemical plant cost index (CEPCI) as shown in the following equation:

Z2022 =
CEPCI2022

CEPCIequipment year
·Zequipment year (87)

The cost of the H2 produced by each overall system is determined through the calcula-
tion of the levelised cost of H2 (LCOH) as follows [66]:

LCOH =

.
Zcapital cost +

.
ZO&M +

.
Zelectricity +

.
Z f uel

.
mH2 pr

(88)
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.
Zcapital cost =

Ztotal ·CRF
TW.hr

(89)

CRF =
i·(1 + i)N

(1 + i)N − 1
(90)

.
ZO&M = α·Ztotal (91)

where
.
Zcapital cost is the investment cost rate,

.
ZO&M is the operating and maintenance

annual cost, and
.
Zelectricity and

.
Z f uel are the electricity and fuel costs which are excluded

from consideration in this study since all the energy used is that recovered from the WH
without any additional energy. Ztotal is the total equipment cost, CRF refers to the capital
recovery factor, and TW.hr is the uptime per year, while i, N, and α are the interest rate, the
plant lifetime, and the operating and maintenance factor, respectively. The parameters
adopted in this study are summarised in the following Table 11:

Table 11. Parameters adopted for the economic analysis [75–77].

Parameter Value

TW.hr 8000 h

i 10%

N 20 years

α 3%

CEPCI2019 607.5

CEPCI2020 596.2

CEPCI2022 816

6. Results and Discussion

This section is dedicated to compare the three studied electrolysis in this article (AE,
PEME, and SOEC). First, the electrolysis stacks are compared, separately, between each
other in Section 6.1, then an overall comparison of the onboard H2 production system is
discussed in Section 6.2. Finally, Section 6.3 presents an economic analysis of the over-
all systems.

6.1. Electrolysis Stacks’ Comparison

The AE, PEME, and SOEC stacks are compared in this subsection using the same
possible input data. The results summarised in Table 12 as well as in Figures 10 and 11
demonstrate the following:

• SOEC (3.761 kg/h) and PEME (3.760 kg/h) stacks produce more H2 than the AE
(3.652 kg/h) stack for the same current density J;

• There is a slight difference between PEME and SOEC H2 production; however, PEME
as well as AE consume more than double the energy (Wel) of SOEC;

• The cell voltage required for the SOEC process is lower than for PEME and AE,
• SOEC stack is more efficient than PEME and AE, respectively.
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Table 12. Results comparison between the AE, PEME, and SOEC stacks.

Variable Unit AE PEME SOEC

T ◦C 80 80 800

P bar 1.01325 1.01325 1.01325

ṁin kg/h 36,000 36,000 36,000

Inlet composition
(molar fraction basis) % 90% H2O +

10% KOH 100% H2O 90% H2O +
10% H2

J A/m2 5000 5000 5000

Acl m2 0.04 0.04 0.04

Ncl -- 500 500 500

ṁH2-prod kg/h 3.562 3.760 3.761

ṁO2-prod kg/h 28.273 29.844 29.848

Wel kW 199.97 200.46 98.93

Vcl V 2.000 2.005 0.989

ηEN-LHV % 59.38 62.52 97.44

ηEX % 58.54 61.64 96.76
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6.2. Overall Systems’ Comparison

After comparing the different electrolysis stacks separately, this section compares the
overall H2 production systems from energy harvesting to the H2 compression stage. The
thermodynamic properties of the different systems are presented in the Supplementary
Materials, while Table 13 outlines the input parameters of the WHR sources as a function
of the engine’s load which is set at a fixed value of 70%.

Table 13. WHR parameters at 70% of the engine’s load.

Variable Unit JW SA EG

Temperature ◦C 90.0 153.3 196.1

Pressure bar 1.01325 1.01325 1.01325

Mass flow kg/h 144,842 140,422 142,579

Heat flow kW 1856 4780 3237

The input data together with the simulation results of the different H2 production
chain systems are summarised in Table 14. The results demonstrate that SOEC consumes
less energy (743.53 kW) than both PEME (797.69 kW) and AE (796.25 kW) while producing
more H2 (21.94 kg/h) compared to 13.96 kg/h by PEME and 10.74 kg/h by AE. The
difference in the power output between the ORC coupled with SOEC and the ORC coupled
with PEME or AE is attributed to the slightly elevated temperature of the EG. This increase
in temperature results from the additional heating process of the water needed by SOEC to
reach the high operating temperature (800 ◦C).

Table 14. Comparison results of the overall H2 production system.

Variable Unit AE PEME SOEC

Temperature ◦C 80 80 800

Pressure bar 7 15 1.01325

Inlet
composition

(molar fraction
basis)

% 90% H2O + 10%
KOH 100% H2O 90% H2O + 10%

H2

Acl m2 0.04 0.04 0.04

Ncl -- 500 500 500

PORC kW 921.4 921.4 940

Qav kW 9873 9873 9873

Qrec kW 6882 6882 6910

Wel kW 796.25 797.69 743.53

J A/m2 14,942 18,557.7 29,174.9

Vcl V 2.664 2.149 1.274

ṁin kg/h 143.5 138.6 248.2
.
nH2−prod kg/h 10.74 13.96 21.94
.
nO2−prod kg/h 85.22 110.78 174.161

ηen−LHV % 44.95 58.33 64.34

ηORC-av % 8.80 8.80 8.96

ηORC-rec % 12.62 12.62 12.80

ηav, LHV % 3.63 4.71 7.41

ηrec, LHV % 5.20 6.76 10.59
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Considering only the recovered WH, the overall system efficiency employing SOEC
electrolysis is 10.59% with a stack efficiency of 64.34%LHV and an ORC efficiency of 12.80%,
exceeding those of PEME and AE. The PEME and AE overall system efficiencies are 6.76%
and 5.20%, respectively, while the stacks’ efficiencies register 58.33%LHV and 44.95%LHV.
The ORC efficiency is 12.62% for both PEME and AE. Whether considering all the available
onboard WH or solely the recovered one, the SOEC system outperforms both PEME and
AE in terms of energy efficiencies, particularly the overall system efficiency, which is almost
double, as well as H2 production thanks to the high operating temperatures.

6.3. Economic Analysis of the Overall H2 Production Systems

This subsection economically compares the overall systems using SOEC, PEME, or
AE as the H2 production process in order to decide the most viable technology to be
adopted onboard maritime vessels. Tables 15–17 summarise the equipment’ cost functions
of the three studied systems: SOEC, PEME, and AE, respectively, considering two different
scenarios: (with (SC-1) or without (SC-2) a H2 compression plant. As mentioned before, the
cost function of the electrolysers is calculated separately, the results are shown in Table 18.

Both the total equipment cost and the electrolysers’ costs are updated to the same year
(2022 in this study) by using the aforementioned Equation (87) for an accurate and precise
comparison. As illustrated in Figure 12, excluding the H2 compression plant (SC-2) reduces
the total investment cost by more than half for all of the three overall systems studied.
Including the H2 compression system (SC-1) makes SOEC increase the plant investment
cost by half a million compared to the PEME system, while excluding the compression
plant plays in favour of SOEC by reducing its cost by almost USD 36,000. This is mainly due
to the compressors’ costs affected by the H2 produced and the slight difference between
the SOEC and PEME electrolyser’s costs. AE is the cheapest system.

Table 15. Equipment costs of SOEC with and without compression plant (2022).

Equipment SC-1 SC-2

Compressors

C1 1,329,000

C2 1,375,100

C3 1,434,500

Condenser COND 538,100 538,100

SOEC heat
exchangers

HE1 51,900 51,900

HE2 7800 7800

HE3 15,400 15,400

HE4 18,900 18,900

HE5 11,000 11,000

HE6 17,300 17,300

H2 compression
coolers

HE7 20,700

HE8 17,200

HE9 18,300

Multi-streams heat
exchanger MSHEX 381,900 381,900

ORC pump P1 33,800 33,800

ORC turbine T 487,700 487,700

Ztotal (USD) 5,758,600 1,563,800
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Table 16. Equipment costs of PEME with and without a compression plant (2022).

Equipment SC-1 SC-2

Compressors

C1 1,232,100

C2 1,266,300

C3 1,289,700

Condenser COND 546,900 546,900

PEME heat exchanger HE1 14,300 14,300

H2 compression
coolers

HE7 14,300

HE8 15,000

HE9 16,100

Multi-streams heat
exchanger MSHEX 548,600 548,600

ORC pump P1 33,800 33,800

PEME pump P2 17,000 17,000

Turbine T 479,900 479,900

Ztotal (USD) 5,474,000 1,640,500

Table 17. Equipment costs of AE with and without a compression plant (2022).

Equipment SC-1 SC-2

Compressors

C1 1,232,300

C2 1,258,700

C3 1,289,700

Condenser COND 546,900 546,900

AE heat exchanger HE1 13,300 13,300

H2 compression
coolers

HE7 15,000

HE8 14,700

HE9 15,200

Multi-streams heat
exchanger MSHEX 548,600 548,600

ORC pump P1 33,800 33,800

AE pump P3 4400 4400

P4 4900 4900

Turbine T 479,900 479,900

Ztotal (USD) 5,457,400 1,631,800

Table 18. Electrolysers’ cost (2020).

Electrolyser Type Power (kW) Cost (USD)

SOEC 743.53 1,698,975

PEME 797.69 1,649,620

AE 796.25 100,964
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Figure 12. Investment cost of the H2 production by the different electrolysis overall systems.

According to the results illustrated in Figure 13, the H2 production cost including an
AE electrolysis system is higher than PEME and SOEC, in this order, in both scenarios. In
addition, in the case of SC-1, the H2 production cost by the SOEC system is cheaper than
AE and PEME systems by more than 6 USD/kgH2 and 4 USD/kgH2, respectively. In the
case of SC-2, there is a small difference between the LCOH registered by AE and PEME
systems (0.24 USD/kgH2), while SOEC is cheaper by more than 2 USD/kgH2 compared to
both systems. This is due to the higher H2 production by SOEC.
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7. Conclusions

The article investigates the H2 production on board LNG carriers through three
different electrolysis processes: AE, PEME, and SOEC. A comparison between the three
electrolysers helps in ascertaining the most suitable and efficient technology for the onboard
H2 production. The required energy by the electrolysis stacks to drive the water splitting
reactions is secured by the total WH energy of the LNG carrier’s propulsion system through
an ORC.

The electrolysis stacks are modelled through ACM V12.1 then exported to Aspen
Hysys V12.1 for simulation with the rest of the plant component system. Aspen EDR V12.1
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is used for the heat exchangers’ design, while APEA is used for the economic analysis.
According to the results, the main conclusions are as follows:

• SOEC consumes less energy (743.53 kW) than PEME (796.25 kW) and AE (797.69 kW),
respectively, while producing more H2, 21.94 kg/h compared to 13.96 kg/h by the
PEME and 10.74 kg/h by the AE;

• The SOEC system electrolyser’s efficiency (64.34%LHV), ORC efficiency (12.8%), and
overall system efficiency (10.59%) are all higher than those of PEME registering 58.33%
for the electrolyser, 12.62% for the ORC, and 6.76% for the overall system; while AE
registers 44.95% for the electrolyser, 12.62% for the ORC same as the PEME, and 5.2%
for the overall system;

• Although the total investment cost of the plant including the SOEC system is higher
than both PEME and AE, the LCOH of the overall SOEC system is lower by almost
double in cost compared to PEME and AE.

To conclude, H2 fuel is a promising alternative to fossil fuels in reducing emissions
and aiming towards the decarbonisation of maritime transport. Among the three studied
electrolysis systems, SOEC proves to be more advantageous than both PEME and AE for
the onboard H2 production as it consumes less energy while producing almost double the
mass flow of H2 per hr at a lower cost and being more efficient.
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Nomenclature

Acl Cell area ṁLNG LNG mass flow rate
ACM Aspen custom modeler MSHEX Multi-streams heat exchanger
AE Alkaline electrolysis N Plant lifetime
an Anode Ncl Number of stack cells
APEA Aspen process economic analyser NG Natural gas
Bg Flow permeability NOX Nitrogen oxides
BOG Boil-off gas O2 Oxygen
BOR Design natural boil-off O2perm O2 permeation coefficient
C Compressor OP Ozone depletion potential
Cat Cathode ORC Conventional organic Rankine cycle

https://www.mdpi.com/article/10.3390/jmse12081287/s1
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CEPCI Chemical plant cost index OTH Oxygen to hydrogen diffusion
CO2 Carbon dioxide P Pressure
COND Condenser PEME Proton exchange membrane electrolysis
CRF Capital recovery factor Pj Partial pressure of species j
da Anode thickness Qav Available heat
dc Cathode thickness Qexcess Heat excess
DF Dual fuel Qin-heat Heat input
DH2-H2O Molecular diffusion Qlosses Heat losses
DH2O-K Knudsen diffusion Qrec Recovered heat
Eact,i Activation energy at electrode i Qst Electrolyser’s heat
ECO Economiser R Gas constant
EDR Aspen exchanger design and rating rad Average pore radius
Eel Rate of the electric exergy input Rel Overall ohmic resistance
EES Engineering Equation Solver S Separator
EG Exhaust gas SA Scavenge air
EH2 Standard chemical exergy SMR Steam methane reforming
Eheat Rate of the thermal exergy input SOEC Solid oxide electrolysis cell
ESS Energy storage system T Temperature
F Faraday constant T0 Reference environment temperature
Fr.W Freshwater TW.hr Working hours
FWG Freshwater generator V0 Standard potential
GCU Gas combustion unit Vact Activation overpotential
GEN Generator Vcl Cell voltage
gH2 Green hydrogen Vconc Concentration overpotential
GWP Global warming potential Vohm Ohmic overpotential
H2 Hydrogen Vrev Reversible overpotential
H2perm H2 permeation coefficient Vst Stack voltage
HE Heat exchanger Vtank Total cargo capacity
HFO Heavy fuel oil Vth Thermoneutral voltage
HHV Higher heating value of H2 Wel Electrical energy
HTO Hydrogen to oxygen diffusion WH Waste heat
i Interest rate WHR Waste heat recovery
ICE Internal combustion engine ZAE AE cost function
IMO International maritime organisation ZO&M Operating and maintenance cost
Ist Stack current ZPEME PEME cost function
J Current density ZSOEC SOEC cost function
J0,i Exchange current density at electrode i Ztotal Total investment cost
Jexp,i Pre-exponential factor at electrode i ε Electrode porosity
JW Jacket water εH2/k Lennard-Jones potential of hydrogen
KOH Potassium hydroxide εH2O/k Lennard-Jones potential of steam
L Electrolyte layer thickness η Efficiency
LCOH Levelised cost of hydrogen λi Water content at anode and cathode
LHV Lower heating value o H2 µ Dynamic viscosity
LNG Liquefied natural gas ξ Electrode tortuosity
ṁBOG BOG mass flow rate ρBOG BOG density
ṁBOGN BOGN mass flow rate ρLNG LNG density
MCR Maximum continuous rating power σH2 Collision diameter of hydrogen
MDO Marine diesel oil σH2O Collision diameter of steam
Mj Molecular mass of species j ΩD Dimensionless diffusion
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