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Abstract
This research establishes a foundational framework for the development of virtual sensors and provides significant
preliminary results. Our study specifically focuses on identifying the key factors essential for accurately predicting total
nitrogen in the eff luent of wastewater treatment plants. This contribution enhances the predictive capabilities and operational
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2 Optimizing Wastewater Treatment Plants

efficiency of these plants, demonstrating the practical benefits of integrating advanced feature selection methods and
innovative sensor technologies. These findings provide crucial insights and pave the way for future advancements in the field.
In this study, four different feature selection methods are employed to comprehensively explore the variables inf luencing
total nitrogen predictions. The effectiveness of these methods is then evaluated by applying three regression techniques. The
findings indicate acceptable levels of accuracy in all applied cases, with one method demonstrating particularly promising
results, applicable to several wastewater treatment plants. This validation of the selected variables not only underlines
their effectiveness, but also lays the foundation for future virtual sensor applications. The integration of such sensors
promises to improve the accuracy and reliability of predictions, marking a significant advance in wastewater treatment plant
instrumentation.

Keywords: Feature selection, wastewater treatment plant, regression techniques, prediction, total nitrogen

1 Introduction

The contemporary reality of water shortage due to factors like climate change is indisputable [43].
Concurrently, the global population continues to grow [9], and with an elevated standard of living,
there is an observable surge in water consumption [7]. Unsurprisingly, heightened water consumption
results in increased wastewater production. An increment of wastewater production means that
treatment plants are often unable to cope with the growth energy and resources required to process
these large quantities of water [42].
In light of these circumstances, optimizing the operation of wastewater treatment plants (WWTPs)

becomes imperative [45]. Numerous efforts have been made to enhance the efficiency of these
facilities through various approaches [16]. Depending on the type of sewer network, these plants may
receive domestic and industrial wastewater in the case of separative sewer networks, or they may also
include rainwater when a single piping system transports all types of water generated in the popu-
lation center (combined sewer networks) [27]. The level of pollution in the wastewater to be treated
by them in the latter scenario is usually lower during rainfall events, although the volume of water
tends to increase significantly, sometimes exceeding the treatment capacity of the facilities [16, 27].
The particular characteristics of each WWTP and its location, as well as the temporal variations

of the quantity and quality of the wastewater to be treated, require a high level of monitoring in
the different treatment processes to optimize their operation and to meet the water purification
requirements established by regulations [6, 25]. Monitoring in them is essential for multiple
reasons: 1) real-time control of different treatment processes through tracking key parameters,
2) optimization of energy consumption by adjusting processes according to treatment demands,
3) early detection of anomalies and implementation of predictive maintenance strategies,
4) optimization of sludge generation and management, 5) adaptation of the plant operation based
on changes in the pollutant load of the incoming raw wastewater due to climatic factors or temporal
patterns in water consumption and 6) control the quality of the treated water discharged to water
bodies. Despite the associated advantages in the efficient management of WWTPs, the initial
economic investment to achieve a high level of monitoring in all treatment processes is usually
significant. Therefore, minimizing the number of sensors to be installed, identifying the most
relevant variables to be measured or implementing virtual sensors plays a crucial role in optimizing
the management and cost savings derived from the operation of WWTPs [19, 24, 26]. For example,
monitoring parameters such as total nitrogen in these plants to quantify the amount of organic
matter, proteins and amino acids present in the water plays an important role in understanding the
overall degree of contamination and serves as an indicator to optimize various treatment processes.
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Optimizing Wastewater Treatment Plants 3

Furthermore, the measurement of this variable involves considerations beyond a simple sensor,
requiring focus, experience and specific measurement methods to obtain reliable results [3, 50].
The integration of new sensor technologies into treatment plants offers significant advancements

in operational efficiency and monitoring capabilities. These technologies, such as advanced optical
sensors, biosensors and IoT-enabled devices, enable real-time tracking and data collection of various
parameters crucial for effective wastewater treatment. For instance, optical sensors can provide
continuous measurements of pollutants like nitrogen and phosphorus, while biosensors can detect
specific biological markers indicative of water quality issues [3, 50].
Implementing these technologies in day-to-day operations facilitates early detection of anomalies,

predictive maintenance and adaptive process control, which collectively enhance the overall
treatment efficiency. Practical application of these sensors requires addressing challenges such
as integration with existing systems, ensuring data accuracy and reliability and managing the
economic investment associated with their deployment. By incorporating new sensor technologies,
WWTPs can achieve better compliance with environmental regulations, optimize energy usage and
improve the quality of treated eff luent, ultimately contributing to sustainable water management
practices [3, 50].
The exploration of strategies to enhance the energy efficiency of treatment plants is a critical

area of research, as demonstrated by a study presented in [8]. This investigation delves into
various options aimed at optimizing the energy consumption of Italy’s largest facility. As energy
consumption is a significant operational cost for such facilities, efficiency improvements can lead to
substantial economic benefits.
In a complementary modeling approach, discussed in [31, 36], the determination of the optimal

solid retention time represents a key aspect of reducing operating expenses effectively. Solid
retention time optimization contributes to the efficient removal of pollutants from wastewater,
thereby streamlining the treatment process and enhancing cost-effectiveness.
Furthermore, the refinement of ozonation processes by eliminating standard substances is

addressed in [12]. This approach is pivotal in improving the overall treatment efficiency of WWTPs,
as it targets the optimization of a specific treatment step, ultimately leading to more effective
pollutant removal and operational cost reduction.
Several studies support the notion that optimizing WWTPs yields tangible benefits. For instance,

research highlighted in [42, 52] emphasizes the efficacy of optimization strategies in reducing
operating costs and enhancing the overall efficiency of wastewater treatment processes. These
findings underscore the importance of continuous efforts to refine and optimize the operation
of them.
Given that many wastewater treatment facilities are publicly owned, the imperative of cost

optimization becomes even more pronounced. Publicly funded facilities must operate efficiently to
ensure responsible resource allocation and effective waste management. Moreover, the significance
of treated water as a valuable resource is underscored, particularly in regions confronting frequent
droughts [45]. This highlights the dual benefit of wastewater treatment optimization, not only in
terms of cost reduction but also in the sustainable production of a valuable water resource, addressing
challenges posed by water scarcity in drought-prone areas.
In [10] a novel technique is proposed to monitor the presence of foam in WWTP tanks in real time

using texture segmentation models trained with centralized and federated approaches. The proposed
methodology is integrated into an image processing chain that consists of capturing images using a
professional camera, ensuring the absence of anomalies in the captured images and implementing a
real-time communication method for event notifications to plant operators.
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4 Optimizing Wastewater Treatment Plants

Although the aforementioned studies [8, 12, 31, 36, 42, 52] have made interesting contributions to
the field by exploring strategies such as improving energy efficiency, determining the optimal solids
retention time and refining the ozonation process, further research is still needed to overcome certain
limitations. For example, the focus of the study on the largest plant in Italy may limit the general-
izability of the results to other geographical and operational contexts. In addition, the optimization
strategies proposed in [31, 36] and [12] may not fully take into account the multiple challenges faced
by these plants, such as the prediction of parameters of great interest like total nitrogen.

In light of these considerations, this work introduces a novel method for identifying representative
variables in WWTPs, which is a critical step towards optimizing the complex and dynamic nature of
wastewater treatment in future studies. Unlike previously mentioned studies, the proposed approach
emphasizes the importance of continuous monitoring across an extensive set of parameters, allowing
robust feature selection to significantly reduce the number of sensors required. This reduction not
only minimizes the economic investment associated with installing a large number of sensors, but
also ensures that only the most relevant variables, crucial for regulatory compliance, are retained.
In addition, our work employs regression techniques to identify relevant variables that inf luence

the output variable, total nitrogen, setting the stage for future predictive modeling. This approach
lays the groundwork for the potential creation of virtual sensors, which could provide a cost-effective
and efficient means of monitoring and controlling the treatment process in the future. By identifying
key variables and establishing validation mechanisms, we aim to add a layer of reliability to the
monitoring system.
This article presents a method for identifying representative variables in a WWTP, as well as the

construction of a prediction model for the selected ones. Numerous parameters are monitored during
plant operation, to apply feature selection to reduce the required number of sensors significantly. The
goal is to retain only the sensors strictly necessary for regulatory compliance. Regression techniques
are used to create adjusted models for the prediction of the output variable, which allows the creation
of virtual sensors, as well as a mechanism to check real measurements coming from the sensor.
The document is structured as follows: after this introduction, the case study is presented.

Subsequently, the methods employed are explained, followed by describing experiments and results.
Finally, conclusions are drawn, and future works are proposed.

2 Case of study

A WWTP is a set of facilities, typically located on the outskirts of or outside population centers,
whose main function is to reduce the pollution of wastewater to acceptable limits for discharge into
the aquatic environment. Depending on their size and the pollutants to be treated, they are comprised
of different treatment processes organized into distinct operational lines. In general terms, two main
operation lines are usually distinguished: the water line, focused on wastewater purification, and the
sludge line, centering on the management of solids (sludges) generated in the treatment processes
[39]. This research has been accomplished over a medium-sized WWTP located in a Mediterranean
climate site that serves an area with a population of around 15000 people. Figure 1 shows an
overview of the processes of the WWTP used in this study, encompassing the main wastewater
treatments from the inf low of raw wastewater into the plant to the discharge of the treated eff luent
to the aquatic environment. The water line consists mainly of pretreatment, secondary treatment
(including anoxic and aerobic phases) and tertiary treatment stages.
Raw wastewater enters the water line to undergo preliminary treatment, aiming to remove coarse

and fine solids in the screening stage, as well as greases and oils in the grit and grease removal
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Optimizing Wastewater Treatment Plants 5

FIGURE 1. Diagram of the WWTP under investigation, illustrating the main treatment processes in
the water operation line (preliminary treatment, secondary treatment and tertiary treatment) and the
sludge operation line, from the raw wastewater inlet to the discharge of the treated eff luent into the
aquatic environment.

system [33]. The resulting wastewater undergoes secondary treatment for the removal of dissolved
and suspended organic matter remaining after preliminary treatment. The treatment plant under
study performs this process by applying activated sludge technology and prolonged aeration [34].
In this stage, the treatment process is carried out combining an anoxic phase without oxygen
supply to the system to favor nitrate removal and an aerobic phase in which oxygen is supplied
to aerobic microorganisms responsible for breaking down organic matter [5]. The wastewater
treatment continues with secondary settling to separate the solid waste or sludge formed during
the previous biological processes [35]. The water line concludes with tertiary treatment to achieve
a higher degree of removal of specific contaminants, such as phosphorus, still present in the water
from secondary settling [51]. In the analysed facility, physicochemical treatments of coagulation–
flocculation, lamellar settling and filtration are carried out [28]. Tertiary treatment concludes with
a disinfection process to eliminate pathogenic microorganisms present in the treated water through
exposure to ultraviolet rays and the addition of sodium hypochlorite. Once the raw water reaches the
plant and has been treated by passing through all the processes of the water line, it is discharged into
a water body. Part of the sludge generated during wastewater treatment is collected from the bottom
of the secondary settling tanks of the WWTP to be recirculated to the biological reactor and become
part of the biological concentrate. At the same time, the excess produced will move to the sludge line
for treatment. This sludge often contains a significant amount of water, so it undergoes a gravity-
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6 Optimizing Wastewater Treatment Plants

TABLE 1. Variables in the dataset.

Input Variable Name

pH at the Entrance PH_E
pH on Exit PH_S
Conductivity at the Entrance Conductivity_E
Conductivity at the Exit Conductivity_S
V60 at the Entrance V60_E
Solids in Suspension at the Entrance SS_E
Solids in Suspension on Exit SS_S
Biological Oxygen Demand on Exit BOD_S
Chemical Oxygen Demand at the Entrance COD_E
Chemical Oxygen Demand on Exit COD_R
Total Nitrogen at the Entrance Nitrogen_T_E
Total Phosphorus at the Entrance Phosphorus_T_E
Total Phosphorus on Exit Phosphorus_T_S
Ammonia at the Entrance NH3_E
Total Kjeldahl Nitrogen at the Entrance NTK_E
Nitrate at the Entrance NO3_E
Nitrogen dioxide at the Entrance NO2_E
Ammonia on Exit NH3_S
Total Kjeldahl Nitrogen on Exit NTK_S
Nitrate on Exit NO3_S
Nitrogen dioxide on Exit N02_S
Thickener input Input_Esp

Output Variable Name

Total Nitrogen on Exit Nitrogen_T_S

thickening process where the solids concentration is increased, facilitating its handling and further
processing [2]. After thickening, the sludge undergoes a centrifugal dewatering to further reduce
the water content. Finally, the sludge is temporarily stored at the WWTP until its final transfer for
various uses, such as agricultural fertilizers [11].
In this research work, a dataset consisting of 23 monitored variables in the plant has been analysed.

The samples composing it have been collected for nine months, with a recording frequency of one
value per day. In Table 1, the variables available in the utilized dataset are displayed.
The variables listed in Table 1 are monitored at both the inlet and outlet of the WWTP. However,

specific details regarding the exact location of each variable within the plant are not available at
this stage of the research. Future studies may provide more detailed information on the specific
monitoring locations for each variable.

3 Applied methods

In this research, feature selection methods are applied in conjunction with regression algorithms
to identify the relationship between variables measured at the inlet and outlet of a WWTP. The
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Optimizing Wastewater Treatment Plants 7

methodology is divided into two stages. The first stage is aimed at assessing the significance of the
input variables with respect to the output variable. Subsequently, in the second stage, the identified
correlations are verified, and a regression model is constructed.

3.1 Feature selection

This document focuses on selecting relevant characteristics by evaluating their relevance and
redundancy. Features are classified as: 1) highly relevant, 2) not very relevant but not redundant,
3) irrelevant and 4) redundant. Highly relevant features are crucial and cannot be removed without
affecting the original distribution. Not very relevant but not redundant are variables that do not
have a high relevance, but cannot be forgotten as they could be necessary. Instead, depending on
specific conditions, irrelevant features may not be necessary, and redundant features can be replaced
without affecting the distribution. The objective is to increase relevance and minimize redundancy
by searching for a subset of only relevant features [18, 23, 41].

There are different methods for feature selection, including filter, wrapper, embedding and hybrid
methods [18, 49]. These methods assume that features are independent or almost independent.
However, other methods exist for datasets that contain structured features with dependencies and
flow features. For this article, the focus will be on discussing the methods included in the common
classification [22, 49].
Filter methods rank features based on statistical measures and are generally faster but may

overlook interactions between features [18, 49]. Wrapper methods use a predictive model to
evaluate feature subsets, potentially offering higher accuracy but at the cost of greater computational
complexity [18, 49]. Embedding methods incorporate feature selection within the training process of
the predictive model, balancing performance and computational efficiency. Hybrid methods combine
aspects of both filter and wrapper approaches, aiming to leverage the strengths of each [18, 49].
For instance, the application of Principal Component Analysis (PCA) can reduce dimensionality

and eliminate redundancies, enhancing computational efficiency, though it might miss some
nonlinear relationships. In contrast, machine learning-based methods like Random Forest can capture
complex interactions between variables but require more computational resources. Understanding
these trade-offs helps in selecting the most appropriate method for specific scenarios, improving the
accuracy and reliability of total nitrogen predictions in WWTPs [22, 49].

3.1.1 Correlation Matrix The correlation matrix, denoted by R, is a fundamental component in
statistical analysis and plays a pivotal role in understanding the relationships between variables. It is
a square and symmetric matrix that provides a comprehensive overview of the pairwise correlations
among variables within a dataset [17, 29].

At its core, the correlation matrix serves as a powerful tool for examining the strength and
direction of linear relationships between variables. Each element in the matrix represents the
correlation coefficient between two variables, indicating the extent to which they are associated.
The values range from -1 to 1, where 1 signifies a perfect positive correlation, -1 denotes a perfect
negative correlation and 0 indicates no linear correlation [17].
The main diagonal of the correlation matrix is always populated with 1s, as it represents

the correlation of a variable with itself, which is perfect. The off-diagonal elements contain the
correlation coefficients between pairs of distinct variables. The symmetry of the matrix arises from
the fact that the correlation between variable A and B is the same as the correlation between
B and A [29].
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8 Optimizing Wastewater Treatment Plants

Including a visual representation of the correlation matrix can further elucidate its structure 1.

R =

⎛
⎜⎜⎝

1 r12 r13 r14 .... r1p
r21 1 r23 r24 .... r2p
r31 r32 1 r34 .... r3p
rp1 rp2 rp3 1 .... 1

⎞
⎟⎟⎠ (1)

3.1.2 LASSO The primary objective is to pinpoint the most inf luential variables and their
associated regression coefficients that contribute to the development of a model characterized by
minimal prediction error. This objective is accomplished through the application of a constraint
on the model parameters, a mechanism designed to encourage regression coefficients to converge
towards zero [13, 32, 37].

In the pursuit of identifying critical variables, the modeling process involves scrutinizing the
impact of each variable on the predictive performance of the model. The emphasis is on discerning
the variables that significantly contribute to minimizing prediction errors, thus enhancing the overall
accuracy and reliability of the predictive model [32].
One widely employed method to achieve this goal is the imposition of a regularization technique,

such as Lasso or Ridge regression. These methods introduce a penalty term to the traditional regres-
sion model, effectively constraining the magnitude of the regression coefficients. By penalizing
large coefficients, the regularization process encourages the model to favor simpler solutions, often
resulting in coefficients approaching or equaling zero [37].
The mathematical representation of this concept involves modifying the standard regression

equation with a regularization term. For instance, in Lasso regression, the modified objective
function is expressed as 2 [13].

Minimize :
n∑

i=1

(Yi −
p∑

j=1

Xijβj)
2 + λ

p∑
j=1

∣∣βj
∣∣ ⇒ Minimize : RSS + λ

p∑
j=1

∣∣βj
∣∣ (2)

3.1.3 Mutual Info Regression Mutual information regression serves as a quantifiable metric for
assessing the relationship between two random variables, offering insights into the degree of
dependence between them. This measure inherently assumes non-negativity, meaning it only yields
values greater than or equal to zero. In the context of mutual information regression, the value
of zero signifies independence between the two variables, with higher values indicative of a more
pronounced and stronger dependency [40].
To elaborate further, mutual information (MI) quantifies the amount of information shared

between two variables. If the two variables under consideration are independent, meaning changes
in one variable do not provide any information about the other, the mutual information will be zero.
This scenario ref lects the absence of shared information, signifying independence in the observed
data. Conversely, as the MI value increases, it denotes an elevated level of dependency between
the variables. Higher values suggest that changes in one variable are associated with corresponding
changes in the other, indicating a stronger relationship. This dependency could manifest as a linear
correlation, non-linear association or some other form of statistical dependence, depending on the
nature of the variables and their relationship [20].

3.1.4 Random Forest The Random Forest algorithm represents a sophisticated ensemble approach
in machine learning, adept at generating decision trees through a technique known as bootstrap
aggregation. The culmination of this process is a collective prediction derived from the amalga-
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Optimizing Wastewater Treatment Plants 9

mation of predictions made by the individual trees. A distinctive characteristic of the Random
Forest methodology is its deliberate consideration of all possible features during the tree-building
process, coupled with a mechanism to mitigate the issue of high correlation among the constituent
trees [4, 18].
The key innovation in Random Forest lies in the concept of bootstrap aggregation, commonly

referred to as bagging. This involves creating multiple decision trees by drawing random samples,
with replacements, from the original dataset. Each tree is constructed independently, introducing
diversity into the ensemble. Subsequently, the predictions from all trees are combined to form a
more robust and accurate overall prediction [21].
Noteworthy is the algorithm’s meticulous consideration of all available features when growing

individual trees. During the construction of each decision tree, Random Forest assesses potential
splits at each node using a random subset of features. This randomness ensures that each tree in the
ensemble explores different aspects of the dataset, contributing to a diverse set of predictions [21].
Furthermore, to prevent the trees within the Random Forest ensemble from becoming highly

correlated, an additional layer of randomness is introduced. At each node of the decision tree, a
random subset of features is considered for split candidates, contributing to decorrelating the trees
and enhancing the overall predictive power of the ensemble [4].

3.2 Regression techniques

Regression analysis refers to a collection of statistical techniques used to measure associations
between a dependent variable and one or more independent variables. Its main goal is to evaluate
the strength of the connections between these variables and create models that can predict future
relationships between them [1, 14].
In selecting regression methods for our study, it is carefully considered various factors, including

the nature of the data and the suitability of each method for our research objectives. The chosen
methods, including K-Nearest Neighbors (KNN), Linear Regression (LR) and Decision Trees (DT),
were selected for their unique strengths and applicability to our specific context. Each method offers
distinct advantages, such as capturing nonlinear relationships (KNN), simplicity and interpretability
(LR) and handling nonlinear relationships and interactions (DT). Together, these methods provide a
comprehensive framework for analysing the relationships between variables.

3.2.1 Linear Regression (LR) Linear Regression (LR) stands as a foundational statistical technique
widely employed for predictive modeling, specifically designed to estimate the value of a variable
based on the information provided by one or more independent variables. This method is particularly
adept at establishing a linear relationship between the dependent variable and the chosen independent
variables, allowing for the formulation of a predictive model in the form of a linear equation [38].

The central objective of LR is to determine the coefficients of the linear equation, thereby
establishing the relationship between the independent and dependent variables. The linear equation
takes the form in 3 where Y is the independent variable, X1,X2,Xn are the dependent variables, β0
is the intercept, β1,β2,βn are the coefficients representing the impact of each independent variable
and ε is the error term accounting for unexplained variability [46].

Y = β0 + β1X1 + β2X2 + ...... + βnXn + ε (3)

The versatility of LR extends across diverse fields of study, including but not limited to,
economics, finance, biology and, as mentioned in the provided reference [38, 46], even in the context
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10 Optimizing Wastewater Treatment Plants

of WWTP. In the realm of wastewater treatment, LR models can be employed to predict key variables
such as pollutant concentrations or treatment efficiency based on various input parameters. This
predictive capability aids in optimizing operational processes and ensuring the effective management
of wastewater treatment facilities.

3.2.2 K-Nearest Neighbors (KNN) KNNs emerge as a non-parametric regression method, offering
a f lexible approach to predicting continuous outcomes based on the relationships among independent
variables. Unlike parametric models such as linear regression, KNN does not assume a specific
functional form for the underlying relationship, making it well-suited for scenarios with complex
or non-linear patterns. The core principle of KNN involves estimating the correlation between
independent variables and the continuous target by computing the average of observations within the
same neighborhood. The prediction formula for KNN can be represented as 4, where ŷ represents
the predicted value, yi represents the value of the target variable for the i − th nearest neighbor and
k represents the number of neighbors [53].

ŷ = 1

k

k∑
i=1

yi (4)

In the KNN framework, each data point in the dataset becomes a potential predictor, and
predictions for a new data point are determined by examining its proximity to the neighboring points
in the feature space. The ‘k’ in KNN signifies the number of nearest neighbors considered when
making predictions. The average or weighted average of the target variable in these KNNs serves as
the predicted value for the new data point [30].
The versatility of KNN renders it applicable across diverse domains, ranging from healthcare

and finance to environmental science. It is particularly advantageous when dealing with datasets
exhibiting intricate patterns or irregularities that may not be well-captured by traditional parametric
models [30, 53].

3.2.3 Decision Trees (DT) DTs stand as a robust and versatile algorithm within the realm of
machine learning, renowned for its capacity to effectively partition data into groups based on their
categories or output values. This algorithm embodies a recursive process of data division, enabling it
to hierarchically organize and classify information, ultimately facilitating accurate predictions [48].
The fundamental learning mechanism of DT involves a two-step process: data partitioning and

prediction. Initially, the algorithm strategically divides the training data into subsets at each node of
the tree. The objective of this partitioning is to minimize the sum of squared residuals, emphasizing
the reduction of variability within each subgroup. This process continues iteratively, with each
subsequent split aiming to enhance the homogeneity of data within the resulting nodes [47].
Upon completion of the partitioning phase, DT harness the acquired knowledge to make

predictions. For a given input, the algorithm traverses the tree structure, following the decision
rules established during training. The prediction is then made based on the majority class or the
average response of the instances falling into the corresponding leaf node. The prediction formula
for a Decision Tree involves traversing the tree structure to reach a leaf node corresponding to
the predicted value. While the exact mathematical formulation varies depending on the specific
implementation, the decision-making process involves evaluating feature splits at each node to
determine the path through the tree [47, 48].
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Optimizing Wastewater Treatment Plants 11

4 Experiments and results

This paper evaluates the performance of combining four feature selection methods (Matrix Cor-
relation, Random Forest, Mutual Info Regression and LASSO) with three regression techniques
(Linear Regression, KNN and DT) to evaluate the correlation between a set of input variables with
an output variable, the total nitrogen at the outlet of a WWTP. For this purpose, a labeled real data
set containing data from different variables measured at that WWTP is provided.

4.1 Experiment’s setup

This section provides the experiment setups, including the tools and metrics used to measure and
compare the performance of the regression methods. To set up the experiments, the fundamental
stages of machine learning problems are summarized in data preprocessing, feature selection and
application of regression.

4.1.1 Data preprocessing This process encompassed several operations aimed at ensuring the
quality and utility of the data before conducting any analysis or modeling. Here is a more detailed
explanation of the actions taken during this initial step:

• Identification of Missing Data: an analysis of the dataset was conducted to identify samples
containing missing data. Missing data can arise from various reasons, such as collection errors,
measurement failures or simply a lack of information. Identifying and addressing these cases is
crucial to avoid biases or inaccuracies in the final results.

• Removal of Constant Variables: variables with the same value across all samples were identi-
fied, indicating that they did not contribute discriminative information to the analysis. These
variables were removed from the dataset as they would not add variability and would not be
useful for subsequent analysis.

• Imputation of Missing Data: for variables with missing values, an imputation method was
used to estimate and fill in the missing values. In this case, the missing values were
replaced with the mean value of the corresponding variable across the entire dataset. In
addition, several common imputation methods, such as median-based imputation, nearest
neighbor imputation and multiple imputation by regression, were considered and evaluated
for suitability. Each imputation method has its advantages and limitations, and the selection
of the most appropriate method was based on the characteristics of the dataset and the
specific requirements of the analysis. Data imputation plays a critical role in maintaining
the integrity of the dataset and ensuring that essential information is not lost during the
analysis.

In summary, the first preprocessing step focused on ensuring the quality and completeness of the
dataset by addressing issues such as missing data, removal of constant variables and imputation of
missing values. These actions are essential to establish a solid foundation before undertaking more
advanced analyses and statistical modeling.

4.1.2 Feature selection After preparing the dataset, feature selection methods were employed to
examine potential correlations between the input variables and the output variable. For each method
applied, a correlation value was derived for every input variable concerning total nitrogen (output
variable).

Among the four feature selection methods utilized, two involve specific parameters for adjusting
the degree of feature penalty (Random Forest and LASSO). These parameters inf luence the
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12 Optimizing Wastewater Treatment Plants

TABLE 2. Tested parameters.

Reg. Tech. Parameter Possible settings Description

Fit Intercept (FI) True/False It activates or not the intercept for
the model.LR

Positive (P) True/False It forces or not the coefficients to
be positive.

N_Neighbors (NN) [2 to 20], step of 2 Number of neighbors to use.
KNN Weights (W) Distance Uniform Weight function used in prediction.

Weights can be uniform, i.e. all
points in each neighborhood are
weighted equally. Or points can be
weighted by the inverse of their
distance.

Criterion (C) Squared_Error
Absolute_Error

Function to measure the quality of
a split. On the one hand the
‘squared_error’ criterion for the
mean squared error. On the other
hand, the ‘absolute_error’ criterion
for the mean absolute error.

DT

Max Depth (MD) [10 to 100], step of 10 The maximum depth of the tree.

dependence between variables. It is imperative to fine-tune the number of estimators, i.e. the
maximum number of trees to be constructed, which, in this instance, was set at 100. Regarding
LASSO, an alpha value must be adjusted, and its restrictiveness increases with higher values. In
this study, an alpha value of 0.2 was chosen. These parameter settings were determined through
experimental adjustments.

4.1.3 Regression After obtaining the characteristics most correlated with performance through
each of the four selection methods, the next crucial step involves testing these relationships using
regression techniques.
The first step in this phase is to adjust the parameters of each regression method to achieve robust

and reliable results in the subsequent analysis. Parameters play a crucial role in inf luencing the
performance and generalization capabilities of regression models. Through a process of repeated
experimental fitting and cross-validation with a k-fold of 10, the parameters of each model are
refined. In this process, the data set is divided into 10 equal parts: in each iteration, nine of these parts
are used as the training set and the tenth part is used as the validation set. This procedure is repeated
ten times, each time changing the validation subset, ensuring that every part of the data set is used for
both training and validation. This not only allows for a thorough evaluation of model performance,
but also ensures that the results are generalizable and do not depend on a single specific partition of
the data.
In each repetition of the process, a model with different parameters is tested. For each of the

techniques used a sweep is made with different values for the parameters to be adjusted. Table 2
shows all the possibilities for each parameter, as well as a brief explanation of their role.
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Optimizing Wastewater Treatment Plants 13

4.1.4 Verification of results Once the models have been built, their accuracy and predictive power
must be verified, for which different performance indicators are used:

• Mean Absolute Error (MAE): The average of the absolute differences between the predicted
values and the actual values.

• Mean Square Error (MSE): The average of the squared differences between the predicted values
and the actual values.

• Root Mean Square Error (RMSE): The square root of the average of the squared differences
between the predicted values and the actual values, providing a measure of the standard
deviation of the prediction errors.

• Symmetric Mean Absolute Percentage Error (SMAPE): A measure of the relative accuracy of
the predictions, calculated as the average of the absolute differences between the predicted and
actual values divided by the sum of the predicted and actual values, multiplied by 100.

• Coefficient of Determination (R2): A measure of how well the regression model fits the
observed data, indicating the proportion of the variance in the dependent variable that is
predictable from the independent variables.

For all indicators, mean values are obtained to summarize the overall performance of the models.

4.2 Results

4.2.1 Data preprocessing After having processed the data, it is obtained a data set with 21
variables in total, since two of them (NO2_E, NO2_S) have been eliminated for having constant
values that do not contribute to the richness of the model. The percentage of imputed data in the
whole dataset is 10% of 21 variables monitored in the case study plant.

4.2.2 Feature selection To determine the correlation between the initial set of variables and the
chosen output, the four characteristic selection methods discussed above are run.

LASSO The first method yields the results shown in Figure 2.
For the formation of the cluster derived from applying the LASSO method, the two variables with

the highest values of relative importance were chosen, taking into account that in this methodology
values close to zero are assigned to the variables that can be disregarded. It should be noted that
the most inf luential variable, with 83% of relative importance concerning total nitrogen, presents a
direct correlation. The cluster of input variables is composed of: 1) Total Kjeldahl Nitrogen at the
output, and 2) Nitrate at the output.
Matrix Correlation Second method yields the results shown in Figure 3.
A threshold of 57% relative importance with total nitrogen is established, thereby configuring

a cluster comprising three variables, all characterized by a direct correlation with the output. The
cluster of input variables that is formed is composed of: 1) Total Kjeldahl Nitrogen at the output, 2)
Nitrate at the output and 3) Total Phosphoro at the output.
Mutual Info Regression Third yields the results shown in Figure 4.
A relative importance threshold of 38% with total nitrogen is established, resulting in the

formulation of a two-variable cluster, all featuring a direct correlation with the output. The cluster of
input variables that is formed is composed of: 1) Total Kjeldahl Nitrogen at the output, and 2) Total
Phosphoro at the output.
Random Forest Fourth method yields the results shown in Figure 5.
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14 Optimizing Wastewater Treatment Plants

FIGURE 2. Results of feature selection methods for LASSO.

A relative importance threshold of 25% with total nitrogen is instituted, giving rise to a two-
variable cluster, both exhibiting a direct correlation with the output. The cluster of input variables
that is formed is composed of: 1) Total Kjeldahl Nitrogen at the output, and 2) Nitrate at the output.

4.2.3 Regression Utilizing the identified subgroups of correlated variables, the selected regres-
sion techniques are individually applied to each of the four subgroups. The iterative approach
used ensures that the parameters chosen are not arbitrary, but are optimized for the specific
characteristics of the data set and the objectives of the analysis. The adjusted parameters for
each model, distinguished by the four variable selection methods, are compiled and presented in
Table 3.
This approach ensures that each subgroup is subjected to an optimized regression analysis tailored

to its specific characteristics. A summary of the calculated metrics is presented in Table 4. This table
contains the chosen performance metrics: MSE, MAE, RMSE, SMAPE and R2. These metrics serve
as quantitative measures to assess the accuracy and predictive power of the regression models for
each subgroup.
Following the analysis of the metrics in Table 4, the most appropriate model is selected for

each of the variable clusters. The LR model emerges as the optimal choice for the clusters
generated through the LASSO, Correlation Matrix and Random Forest methods. Conversely, the
KNN model demonstrates superior efficacy for the cluster arising from the Mutual Info Regressions
method.
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Optimizing Wastewater Treatment Plants 15

FIGURE 3. Results of feature selection methods for Correlation Matrix.

With the best model selected, the merit of these is evaluated by predicting the total nitrogen for the
test data set (16% of the total dataset). The results derived from the predictions of the four models,
each corresponding to a different set of variables, are plotted in Figure 6.
Overall, each of the four models demonstrates a commendable ability to accurately and acceptably

predict the output. Some instances reveal the identification of outliers, typically manifesting
as minimum values. Notably, the LR model emerges as the most adept in terms of fitting
and prediction, underscoring its superior performance in three of the four clusters of variables
selected.
For a numerical justification of the graphical results obtained in Figure 6, we provide a detailed

comparison of the predictions generated by the different chosen models. Table 5 presents the best
overall results, not only for feature selection, but also for each of the models used in the analysis.
These graphical results illustrate the accuracy and predictive power of each model, allowing a visual
assessment of its performance. The combination of the numerical and graphical results provides a
complete understanding of the performance of the models and supports the conclusions derived from
the analysis.
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16 Optimizing Wastewater Treatment Plants

FIGURE 4. Results of feature selection methods for Mutual Info Regression.

TABLE 3. Parameter setting for regression techniques.

Regression
Model

LASSO Correlation
Matrix

Mutual Info
Reg.

Random
Forest

FI = True FI = True FI = True FI = True
LR

P = True P = True P = True P = True

NN = 10 NN = 2 NN = 10 NN = 2
KNN W = distance W = distance W = distance W = distance

C = squared C = squared C = squared C = squared
DT

MD = 100 MD = 10 MD = 100 MD = 10

5 Conclusions and future work

This research delves into the analysis of feature selection methods aimed at identifying the input
variables most strongly correlated with the output variable. Subsequently, these selected variables
are tested using regression techniques to obtain a model capable of predicting the chosen output
variable with a cluster of a few inputs.
The conclusions obtained from this study highlight the potential for generalizing the model using

the LRmethod. Specifically, when predicting total nitrogen, it is noteworthy that the feature selection
across four different techniques is very similar. This consistency, focusing on two to three variables,
implies substantial savings in terms of input sensors.
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Optimizing Wastewater Treatment Plants 17

FIGURE 5. Results of feature selection methods for Random Forest.

TABLE 4. Metrics of regression models as a function of feature selection methods.

Feat. Select. Method Reg. Tech. MAE MSE RMSE SMAPE R2

LASSO
LR 0.01366 0.00035 0.01835 0.17083 0.99972
KNN 0.14526 0.45423 0.42266 1.24452 0.90989
DT 0.18383 0.45132 0.49635 15.99336 0.83981

Correlation Matrix
LR 0.01378 0.00034 0.01816 0.17062 0.99978
KNN 0.18445 0.32657 0.41938 1.87122 0.91477
DT 0.20673 0.43478 0.50821 16.28372 0.86444

Mutual Info Reg.
LR 0.43304 0.54852 0.66104 5.08703 0.77209
KNN 0.36317 0.80643 0.68150 3.93581 0.77714
DT 0.40308 0.69996 0.71729 16.01914 0.72456

Random Forest
LR 0.01366 0.00035 0.01835 0.17083 0.99972
KNN 0.14526 0.45423 0.42266 1.24455 0.90989
DT 0.18383 0.45132 0.49635 15.9933 0.83981

It has been determined that, of the 23 variables monitored at the plant, only two to three
are necessary to achieve optimal total nitrogen prediction. This simplification not only enhances
computational efficiency but also has practical implications, allowing the extrapolation of a simple
and generalizable prediction model for total nitrogen, applicable to a wide variety of WWTP. The
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18 Optimizing Wastewater Treatment Plants

FIGURE 6. Prediction of total nitrogen for the four clusters.

TABLE 5. Metrics of test phase.

Feat. Select. Method Reg. Tech. MAE MSE RMSE SMAPE R2

LASSO LR 0.016068 0.000435 0.020862 0.215718 0.999475
Correlation Matrix LR 0.013382 0.000204 0.014296 0.199258 0.999566
Mutual Info Reg. KNN 0.285958 0.116877 0.341873 3.697416 0.856151
Random Forest LR 0.016068 0.000435 0.020862 0.215718 0.999475

primary objective of this approach is to reduce the costs associated with computation and detection.
Additionally, implementing this model offers two main advantages: first, the elimination of a sensor,
thereby reducing related costs such as maintenance; and second, the use of predicted measurements
to verify the accuracy of actual measurements, thus allowing for validation of the sensor’s proper
operation. Overall, these conclusions highlight the feasibility and effectiveness of the proposal,
contributing to the optimization of resources and processes in the monitoring and control of water
quality in treatment plants.
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Optimizing Wastewater Treatment Plants 19

Future research presents an intriguing opportunity to generalize one of the established linear
models, whereby the current model could be tested with different datasets. Moreover, a specific
subset of variables correlated with the parameter under investigation or any other parameter of
interest measured at the WWTP could be considered, and a robust selection methodology could
be created. This strategic approach aims to pave the way for the implementation of virtual sensors,
ensuring predictably robust performance. As an alternative application, the model could function as
a systematic tool to validate the measurements obtained from a sensor responsible for measuring the
selected output variable, thereby increasing the reliability of the prediction process and facilitating
the operation for plant workers [15, 44].
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