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A B S T R A C T

Dietary Restriction (DR) is one of the most popular anti-ageing interventions; recently, Machine Learning (ML)
has been explored to identify potential DR-related genes among ageing-related genes, aiming to minimize costly
wet lab experiments needed to expand our knowledge on DR. However, to train a model from positive (DR-
related) and negative (non-DR-related) examples, the existing ML approach naively labels genes without known
DR relation as negative examples, assuming that lack of DR-related annotation for a gene represents evidence of
absence of DR-relatedness, rather than absence of evidence. This hinders the reliability of the negative examples
(non-DR-related genes) and the method’s ability to identify novel DR-related genes. This work introduces a
novel gene prioritization method based on the two-step Positive-Unlabelled (PU) Learning paradigm: using
a similarity-based, KNN-inspired approach, our method first selects reliable negative examples among the
genes without known DR associations. Then, these reliable negatives and all known positives are used to
train a classifier that effectively differentiates DR-related and non-DR-related genes, which is finally employed
to generate a more reliable ranking of promising genes for novel DR-relatedness. Our method significantly
outperforms (𝑝 < 0.05) the existing state-of-the-art approach in three predictive accuracy metrics with up to
∼ 40% lower computational cost in the best case, and we identify 4 new promising DR-related genes (PRKAB1,
PRKAB2, IRS2, PRKAG1), all with evidence from the existing literature supporting their potential DR-related
role.
1. Introduction

Ageing is a biological process characterized by a progressive decline
in physiological function and increased susceptibility to age-related
diseases. As it is a complex phenomenon influenced by both genetic and
environmental factors [1], understanding the genetic basis of ageing
is crucial for deciphering its underlying mechanisms and developing
methods to promote healthy ageing. The scientific community has
invested a great amount of research efforts into understanding the
biological processes involved in ageing; particularly, genetic studies
have identified numerous genes and pathways associated with age-
ing, offering insights into potential targets for anti-ageing therapeutic
interventions [2–4].

One of the most promising and studied approaches to extend lifes-
an and delay the onset of age-related diseases is Dietary Restriction
DR), which involves reducing nutrient intake (and typically, calorie
ntake) without causing malnutrition [5] and has been shown to extend
lifespan and improve long-term health in various model organisms [6].
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By modulating various cellular pathways, such as insulin signalling,
sirtuin activation, or autophagy induction [7–9], DR promotes cel-
lular stress resistance and metabolic efficiency, reducing the risk of
age-related pathologies such as cardiovascular disease, cancer, and
neurodegeneration [10,11].

The research efforts in ageing and other biomedical areas greatly
increased the magnitude and complexity of available biological data;
as a solution, Machine Learning (ML) has emerged as a powerful tool
to facilitate the analysis of large-scale biological datasets and uncover
hidden patterns [12,13]. ML techniques have been widely applied in
ageing-related research, including the prediction of lifespan of model
organisms, the identification of molecular signatures of ageing, and the
association of metabolic pathways with ageing-related diseases [14,15].

In the particular topic of DR, Magdaleno et al. [16] recently em-
ployed ML to classify ageing-related genes into DR-related and non-DR-
related genes, in order to identify candidate DR-related genes among
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ageing-related genes not currently annotated as DR-related. Utiliz-
ing various biological features, such as pathway information from
PathDIP [17], Gene Ontology (GO) terms [18], KEGG pathways [19], or
coexpression data, they trained decision tree-based ensemble classifiers
under a binary classification task to ultimately produce a ranking of
promising DR-related genes for wet-lab verification.

However, the pipeline described in [16] holds a significant limi-
tation: to provide training examples with binary labels to the classi-
fier, Magdaleno et al. assumed that all ageing-related genes without
experimental evidence of DR-relatedness can be considered as non-
DR-related, i.e. labelled as negative training examples. As the authors
acknowledge, an absence of evidence does not equate to evidence of
absence of DR-relatedness, meaning the classifier was trained with an
unknown amount of incorrectly labelled negative examples, hindering
its learning and therefore its ability to correctly identify new DR-related
genes.

This type of data, commonly referred to as Positive-Unlabelled (PU)
data, corresponds to cases where a subset of the examples are labelled
as known positives and, while the rest is unlabelled and comprises both
negative and positive examples [20]. This is common in bioinformatics
due to the cost of obtaining annotations through wet-lab experimen-
tation [21], but ignoring unlabelled data or treating it as negative
(as usual in the literature) leads to biased and suboptimal models in
many ML tasks [22]. As a solution, PU Learning is an ML paradigm
specifically designed for improving the quality and predictive power of
classifiers in settings that involve PU data, acknowledging unlabelled
examples as such throughout the ML pipeline [23].

In this work, we propose a PU Learning method to enhance the
prediction of novel candidate DR-related genes among ageing-related
genes. Our approach addresses the limitations of the Magdaleno et al.’s
[16] existing methodology by properly accounting for the unlabelled
data and exploiting its potential to improve the quality of predic-
tions. Specifically, we propose a similarity-based two-step PU Learning
strategy to improve the training process and the predictive power of
classifiers. The proposed method has surpassed the performance of the
state-of-the-art non-PU Learning method in our target task of predicting
novel DR-related genes among ageing-related genes. In addition, we use
this PU learning methodology to generate a more reliable list of top
candidate genes for novel DR-relatedness supported by evidence in the
literature of the field.

We underline three main contributions of this work:

• Firstly, the design, implementation and experimental validation
of a PU learning method for gene prioritization, and its appli-
cation to improve the identification of DR-related genes among
ageing-related genes. In this task, our method significantly out-
performed the existing state-of-the-art (non-PU) method in all
three used predictive performance metrics, on real-world ageing-
related gene datasets, while reducing the required computational
overhead to train and employ the model for DR-related gene
identification.

• Secondly, the novel use of the proposed PU Learning method to
produce a more reliable list of top candidate DR-related genes,
compared to Magdaleno et al.’s [16] state-of-the-art approach,
owing to our method’s superior performance in computational
experiments.

• Lastly, a curation of the relevant literature, which identified
evidence supporting the potential DR-relatedness of our method’s
top candidate genes, further motivating wet-lab experiments that
could validate the predicted DR-relatedness of the proposed
genes.

The remainder of this paper is structured as follows. In Section 2
we discuss our target task and existing methodology for identifying
new DR-related genes, highlight its limitations, and introduce basic

notions of the PU Learning ML paradigm and the need for it in the r

2 
task. Section 3 presents our proposed PU Learning method, detailing
how it enhances the training process to improve classifiers’ power.
In Section 4, we describe the experimental setup, including features,
classifiers and evaluation metrics. Section 5 presents the results of our
experiments, comparing our PU Learning approach against the state-of-
the-art non-PU approach. Section 6 concludes the paper and discusses
avenues for future research.

2. Background

In this section we formalize the task of interest, cover the existing
ML-based approach used to solve it and its limitations, and introduce
basic concepts of the PU Learning paradigm in ML and its need for
training classifiers in this task.

2.1. Task formulation

The task at hand is to find new candidate genes related to DR among
ageing-related genes. Formally, let AGE be the set of known ageing-
related genes, each associated with a vector of 𝑛 biological features
𝐱𝑔 = (𝑓1, 𝑓2,… , 𝑓𝑛). We assume there exists a subset of genes DR∩AGE+
involved in DR used as anti-ageing intervention. Among these, a smaller
subset of genes DR∩AGE have experimental evidence of DR-relatedness.
Reasonably, not all ageing-related genes have a relation to DR, and not
all DR-related genes have been identified experimentally, and therefore:

DR∩AGE ⊂ DR∩AGE+ ⊂ AGE (1)

The objective is to identify ageing-related genes 𝑔∗ without known
evidence of DR-relatedness but with high probability of actually being
DR-related, such that:

𝑔∗ = argmax𝑔∈AGE⧵DR∩AGE𝑃𝑟(𝑔 ∈ DR∩AGE+ ) (2)

where 𝑔∗ are the genes most likely to be found to be DR-related in
future wet-lab experiments, constituting a task of knowledge discovery,
i.e. finding the subset DR∩AGE+ ⧵ DR∩AGE.

A general solution of this task is to find a model 𝛷 ∶ AGE → [0, 1]
that assigns a score 𝛷(𝑔) to each gene 𝑔 as a measure of its DR-
relatedness. Since the only known information is which genes already
belong to DR∩AGE, where trivially 𝑃𝑟(𝑔 ∈ DR∩AGE+ ) = 1, the task
is surrogated to a binary classification problem: the positive class are
those genes that belong to DR∩AGE+ , and the negative class consists of
the remaining ageing-related genes (AGE ⧵ DR∩AGE+ ).

An important detail of this formulation is that the real positive class
is not composed solely of genes with known association with DR, but
also with undiscovered DR-relatedness, i.e. that belong to the unknown
set DR∩AGE+ ⧵ DR∩AGE. Similarly, the actual negative class is not the
set of genes without known DR-relatedness (AGE ⧵ DR∩AGE), but the
et of genes without real DR-relatedness (AGE ⧵ DR∩AGE+ ).
The model 𝛷 to be designed is then a binary classifier that, given a

ene’s features, outputs the probability of it belonging to the positive
lass, such that:

(𝑔) =

{

𝑥 ∈ [0.5, 1] 𝑔 ∈ DR∩AGE+
𝑥 ∈ [0, 0.5) 𝑔 ∈ AGE ⧵ DR∩AGE+

(3)

Since 𝛷(𝑔) can also be interpreted as a probability of DR-relatedness,
t approximates the original goal, as seen in Eq. (4): the genes without
nown DR-relatedness given highest scores by 𝛷 should be the most
romising candidates for DR-relatedness.

rgmax𝑔∈AGE⧵DR∩AGE𝛷(𝑔) ≈ argmax𝑔∈AGE⧵DR∩AGE𝑃𝑟(𝑔 ∈ DR∩AGE+ )

≈ DR∩AGE+ ⧵ DR∩AGE (4)

Fig. 1 summarizes this discovery task as two steps: (1) surrogating
he task to a binary classification to achieve a model which identi-
ies DR-related genes among a set of ageing-related genes, and (2)
sing the model’s predictions on ageing-related genes without known
R-relatedness to generate a ranking of promising, undiscovered DR-
elated genes.
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Fig. 1. General overview of the two-step modelling to solve the task for proposing potential novel DR-related genes among ageing-related genes.
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.2. Existing methodology for DR-related gene identification

Recently, Magdaleno et al. [16] explored the task of predicting
ovel DR-relatedness among ageing-related genes using ML techniques,
howing promising results. By the time of our research, Magdaleno
t al.’s work is the only work for identifying novel DR-related genes
mong ageing-related genes. In addition they used state-of-the-art clas-
ifiers for tabular data (decision tree ensembles) [24]. Hence, their
pproach is the state-of-the-art for this task.
To characterize each gene, they considered a variety of biolog-

cal features: PathDIP gene-pathway interactions [17], KEGG perti-
ence [19] and influence [25] descriptors, protein-protein interaction
PPI) [26] adjacency and graph metrics, hierarchical Gene Ontology
GO) terms [18], expression information in tissues from GTEx [27],
gene co-expression data [28], and protein descriptors [29]. These fea-
ures were analysed individually and collectively as potential predictors
or DR-relatedness of ageing-related genes.
In terms of classification algorithms, Magdaleno et al. used standard

ecision tree-based ensemble algorithms for their state-of-the-art per-
ormance in tabular data [24], experimenting with Balanced Random
orest (BRF) [30], XGBoost [31], Easy Ensemble Classifier [32], and
atBoost [33], and employing a nested cross-validation to evaluate
ll combinations of features and classifiers. Interestingly, their results
ndicated that combining different types of biological features did not
ecessarily improve performance.
Two best-performing combinations of a feature type and a classifier

ere identified ({PathDIP, CatBoost} and {GO, BRF}), and then used
o predict the DR-relatedness of genes without known DR association
nd propose a ranking of the most promising candidates.
A fundamental element of the methodology used by Magdaleno

t al. [16] lies in the assumption that all genes without known DR
elation can be considered negative examples during training. This is,
he model is taught to predict as

(𝑔) = 0 ∀𝑔 ∈ AGE ⧵ DR∩AGE (5)

ut, by the formulation from Section 2.1, this is equivalent to teaching
he model that
𝑟(𝑔 ∈ DR∩AGE+ ) = 0 ∀𝑔 ∈ AGE ⧵ DR∩AGE (6)
DR∩AGE+ ⧵ DR∩AGE = ∅

3 
which defeats the purpose of the discovery task: retrieving with
he ML algorithm the undiscovered DR-related genes that exist in the
et of genes without known DR-relatedness, i.e. finding DR∩AGE+ ⧵
DR∩AGE. Ultimately, this can lead to a lower performance of the ML
odel and, in consequence, a less reliable set of candidate genes for
R-relatedness.
In this work, we show the design and usage of a more sophisti-

ated labelling algorithm of training examples based on PU Learning,
aking it aware that unlabelled examples are not necessarily negative
i.e. that some genes without known DR-relatedness may actually be
R-related), can overcome the aforementioned limitation of Magdaleno
t al.’s state-of-the-art approach and improve the identification of
ovel DR-related genes without adding computational overhead (by
omparison with Magdaleno et al.’s approach).

.3. Essential notions of PU Learning

In the context of semi-supervised learning, PU Learning is an ML
aradigm designed for scenarios where, rather than the classic positive
nd negative examples, a dataset is composed of a subset of positive
xamples  and a set of unlabelled examples  , which is assumed
o contain both positive and negative examples [20]. This paradigm
uitable when positive instances are a priority but labelling many
nstances is impractical or very expensive, such as in gene prioritization
r other bioinformatics tasks.
In bioinformatics, PU Learning has been explored in varied tasks

21]. Zheng et al. [34] employed PU Learning with drug-drug interac-
tion data to improve the identification of dangerous adverse reactions
in patients with multiple medications. Lan et al. [35] tackled the dis-
covery of drug-target pairs using PU Learning. Kılıç and Mehmet [36]
explored PU Learning to derive knowledge on protein-protein inter-
action networks, and Song et al. [37] used PU Learning to predict
sequence-function relationships in large-scale proteomics data. Most
recently, PU Learning has shown promising results in discovering toxin-
degrading enzymes [38] or predicting the secreted proteins in human
body fluids for biomarker identification of diseases [39].

Learning from PU data is not trivial and PU Learning encompasses
different strategies, such as biased learning [40,41], incorporation of
class prior knowledge [20], or the so-called two-step methods [23]; the

latter are the focus of this work.



J. Paz-Ruza et al.

c
c
b
w

a
u
e
i
p
i

o
R
r
b
e
p

3

t
o
D
t
t
n

l
(
i
t
s
t
f
S
a
i
p

r
D
w
D

Computers in Biology and Medicine 180 (2024) 108999 
Fig. 2. High-level structure of a two-step PU Learning technique.
Two-step methods are based around a core idea: training a binary
lassifier under the assumption that all unlabelled examples can be
onsidered negative introduces label noise, hinders performance and
reaks assumptions of PU tasks; this is a limitation in Magdaleno et al.’s
ork [16], as discussed in Section 2.2. Alternatively, two-step methods

propose training a binary classifier using the positive examples  and
subset  ⊂  of ‘‘reliable negatives’’ extracted from the set of
nlabelled examples. If the reliable negatives are correctly identified,
ven if scarce in number, a binary classifier can be trained with min-
mal label noise and respecting the PU tasks assumptions, increasing
redictive performance. As such, PU learning is of particular interest
n bioinformatics and biomedicine [21].
Fig. 2 depicts the classic template for two-step PU Learning meth-

ds, with the Unlabelled set  being distilled into a smaller set of
eliable Negatives  . Although the number of training examples is
educed in the process, the quality of training data greatly increases
y minimizing label noise; ultimately, this improves the efficacy and
fficiency of training and obtains classifiers with significantly higher
redictive performance in PU data scenarios [20].

. The proposed PU Learning method

This section details the PU Learning method designed to improve
he discovery of DR-related genes among ageing-related genes. Instead
f treating all unlabelled examples (genes without known relation to
R) as negative examples in training, breaking the assumptions of
he knowledge discovery task, we propose a training strategy where
he model learns from a refined training set of positive and reliable
egative examples extracted from the set of unlabelled genes.
Our PU Learning methodology is a similarity-based method with

abelling criteria inspired by a classic nearest neighbour classification
KNN) [42], and can be categorized as a two-step, prior-free method
n Bekker and Davis’ PU Learning taxonomy [23]. As other methods in
his category, we assume ageing-related data respects two assumptions:
moothness of the positive class (DR-related genes exhibit similarities in
heir biological features) and separability (non-DR-related genes differ
rom DR-related ones in their biological features). We also assume
elected Completely at Random (SCAR) as the underlying labelling mech-
nism of the positive class: the set of labelled positive examples DR∩AGE
s an i.i.d. sample of the set of all positive examples DR∩AGE+ ; this is a
opular and reasonable assumption in bioinformatics tasks [43].
Given a dataset  composed of a set  of genes with known DR

elatedness (positive examples) and a set  of genes without known
R relatedness (unlabelled examples), where each gene is represented
ith a set of biological features  , a set  of genes unlikely to be

R-related (reliable negatives) is obtained as follows:

4 
1. For each pair of genes (𝑔𝑖, 𝑔𝑗 ), a similarity metric is computed us-
ing their biological feature vectors 𝑥𝑔 = (𝑓1,… , 𝑓

| |

). Due to the
high degree of feature sparsity of the datasets involved and the
fact that the datasets have only binary features (see Section 4.1),
we choose to use the Jaccard Measure 𝐽 (𝑥𝑔𝑖 , 𝑥𝑔𝑗 ) [44,45] over
other options such as the Euclidean or cosine distances. Specif-
ically, the Jaccard similarity between two ageing-related genes
represented by vectors of binary biological features is computed
as:

𝐽 (𝑥𝑔𝑖 , 𝑥𝑔𝑗 ) =

∑

| |

𝑘=1 𝑥𝑔𝑖 [𝑘] ∗ 𝑥𝑔𝑗 [𝑘]
∑

| |

𝑘=1 𝑥𝑔𝑖 [𝑘] +
∑

| |

𝑘=1 𝑥𝑔𝑗 [𝑘] −
∑

| |

𝑘=1 𝑥𝑔𝑖 [𝑘] ∗ 𝑥𝑔𝑗 [𝑘]
(7)

where the numerator counts features with value 1 in both genes’
feature vectors and the denominator counts features with value
1 in only one of the two genes’ feature vectors.

2. The set of reliable negatives  is initialized with no elements.
3. For each unlabelled gene 𝑔𝑖 in the training set:

(a) Find the 𝑘 training gene closest to 𝑔𝑖 (its 𝑘 nearest neigh-
bours) based on their pairwise Jaccard similarities.

(b) Two conditions are checked:

• Whether the single closest gene to 𝑔𝑖 is unlabelled
(no known DR relation).

• Whether the proportion of genes without known
relation to DR among the top 𝑘 nearest neighbours
of 𝑔𝑖 is higher than a set threshold 𝑡.

(c) If these two conditions are met, the gene 𝑔𝑖 is added to
the set of reliable negatives.

Algorithm 1 contains the logic and Fig. 3 a visual depiction of the
process above, constituting the first step of the two-step PU Learning
method. The result is a set of reliable negatives  with very high
confidence of not being DR-related. Formally,  should verify:

 ⊂ AGE ⧵ DR∩AGE+

 ∩ DR∩AGE+ = ∅
(8)

therefore respecting the assumptions of the discovery task, as laid out in
Fig. 1 and unlike the naive approach of treating all unlabelled examples
as negatives.

At the second and final step,  and  are used to train the final
model 𝛷 with minimal label noise, improving data quality and the
effectiveness and efficiency of the model learning.

This PU Learning method can be easily integrated with any classifier
to predict the DR-relatedness of genes without known DR-relation, as
this method is classifier-agnostic. Algorithm 2 shows the integration
of our PU Learning method inside a standard nested cross-validation
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Fig. 3. Similarity-based reliable negative selection of the proposed PU Learning algorithm. The threshold 𝑡 is the minimum proportion of unlabelled examples among the 𝑘 nearest
neighbours of an unlabelled example required to consider it a reliable negative (𝑘 and 𝑡 are tunable hyperparameters; in this example, 𝑘 = 5 and 𝑡 = 0.8). Two different cases are
shown: in case (a) the two conditions for a reliable negative are met, i.e. the gene’s nearest neighbour and >80% of its 𝑘 nearest neighbours are unlabelled; the gene is confidently
not related to DR and is added to the set of reliable negatives. In case (b), the latter condition is not met; since the gene is not dissimilar enough to known DR-related genes, the
gene is not added as a reliable negative, avoiding potential label noise during the training of the classifier in the second step of the PU Learning.
Algorithm 1 Reliable Negatives selection by Nearest Neighbours
Input:

𝐷: Set of training examples
𝑘: Number of nearest neighbours
𝑡 ∈ [0.5, 1]: Threshold
𝐹 : Features to use

Output:
𝑅𝑁 : Set of reliable negative training examples

function ReliableNegatives(𝑃 ,𝑈, 𝑘, 𝑡, 𝐹 )
𝑃 ,𝑈 ← 𝑃 ,𝑈 considering only features F
𝐷 ← 𝑃 ∪ 𝑈
Initialize similarity matrix 𝑆 ∈ R|𝐷|×|𝐷|

5: for all (𝑥𝑖, 𝑥𝑗); 𝑥𝑖, 𝑥𝑗 ∈ 𝐷 do ⊳ Compute Jaccard distance for all pairs of
examples

𝑆𝑖𝑗 ← J(𝑥𝑖,𝑥𝑗) ⊳ Can cache S to avoid re-calculations of S𝑖𝑗 across
ReliableNegatives calls

𝑅𝑁 ← ∅
for all 𝑥𝑖 ∈ 𝑈 do

𝑇𝑘 ← Top 𝑘 examples 𝑥𝑗 ∈ 𝐷 ⧵ 𝑥𝑖 with highest similarity 𝑆𝑖𝑗 to 𝑥𝑖
0: 𝑥𝑚𝑎𝑥_𝑠𝑖𝑚 ← The example 𝑥𝑗 ≠ 𝑥𝑖 with highest similarity 𝑆𝑖𝑗 to 𝑥𝑖

⊳ If the % of unlabelled examples in the 𝑇 𝑜𝑝𝑘 nearest neighbours of
𝑥𝑖 exceeds a certain proportion and the single nearest neighbour of
𝑥𝑖 is unlabelled, add 𝑥𝑖 to the reliable negatives set ⊲

if
|𝑇𝑘 ∩ 𝑈 |

|𝑇𝑘|
≥ 𝑡 ς 𝑥𝑚𝑎𝑥_𝑠𝑖𝑚 ∈ 𝑈 then

𝑅𝑁 ← 𝑅𝑁 ∪ 𝑥𝑖
return 𝑅𝑁

pipeline. Following the state-of-the-art for this task [16], we perform a
tandard 10 × 5 nested-cross validation, where in each iteration of the
uter loop, an inner loop is applied to the training set to search over
5 
the set of PU Learning hyperparameter combinations (𝑘, 𝑡) detailed in
Appendix A.

To increase the robustness of the method, we include an optional
step in the training pipeline (see lines 14–16, 22–24 of Algorithm 2).
Many of the feature sets of biological entities or genes are highly dimen-
sional, and a similarity-based technique could make the PU Learning
vulnerable to the curse of dimensionality, i.e. the similarity metric would
not be informative due to the low signal-to-noise ratio arising from the
high number of uninformative features [46]. To solve this for high-
dimensional feature sets we add the option of, initially, training a
classifier of choice, and then selecting the feature set  to be used
in the nearest neighbours algorithm as the 𝑛𝑓 most important features
for that classifier, according to a feature importance measure. Using
a model-based filter feature selection for a subsequent algorithm is a
well-studied and efficient method compared to more complex feature
selection methodologies [47,48].

4. Experimental setup

This section covers the experimental setup used to evaluate the
PU Learning methodology, compare it to existing approaches, and
generate the ranking of promising candidate genes for DR-relatedness.
We discuss the feature sets and classifiers used, details of the training
and evaluation pipelines, and other implementation peculiarities.

4.1. Features and classifiers

In Section 2.1 we outlined that each ageing-related gene is repre-
sented as a vector of biological features, as well as a binary class label
that indicating whether it has a known relation with DR (i.e. whether

it belongs to DR∩AGE).
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Algorithm 2 Integration of PU Learning in Cross Validation
Input:

𝐷: Set of examples
𝑘, 𝑡: PU Learning hyperparameters
𝑛𝑓 : No. features to use in KNN

Split 𝐷 into 10 folds 𝐷1, ..., 𝐷10 ⊳ Outer CV
for 𝑖 = 1,… , 10 do

𝐷𝑇 𝑒𝑠𝑡 ← 𝐷𝑖
𝐷𝑇 𝑟𝑎𝑖𝑛 ← 𝐷 ⧵𝐷𝑖

5: 𝐴𝑈𝐶𝑏𝑒𝑠𝑡 ← 0
for all hyperparameters combination 𝑘, 𝑡 do

Split 𝐷𝑇 𝑟𝑎𝑖𝑛 into 5 folds 𝐷𝑇 𝑟𝑎𝑖𝑛1 , ..., 𝐷𝑇 𝑟𝑎𝑖𝑛5
for 𝑖 = 1,… , 5 do

𝐷𝑉 𝑎𝑙 ← 𝐷𝑇 𝑟𝑎𝑖𝑛𝑖
10: 𝐷𝐿𝑒𝑎𝑟𝑛 ← 𝐷𝑇 𝑟𝑎𝑖𝑛 ⧵𝐷𝑇 𝑟𝑎𝑖𝑛𝑖

Train Model with 𝐷𝐿𝑒𝑎𝑟𝑛
𝐹 ← Top 𝑛𝑓 features in with highest Gini Importance in Model
𝑃 ,𝑈 ← Positive and Unlabelled examples of 𝐷𝐿𝑒𝑎𝑟𝑛
𝑅𝑁 ← ReliableNegatives(𝑃 , 𝑈 , 𝑘, 𝑡, 𝐹 )

5: Train Model with 𝑃 and 𝑅𝑁 ⊳ Using all original features
Predict 𝐷𝑉 𝑎𝑙 with Model

if F1𝑀𝑜𝑑𝑒𝑙 > F1𝐵𝑒𝑠𝑡 then ⊳ Based on average AUC of 5 validation sets
𝑘𝑏𝑒𝑠𝑡 ← 𝑘, 𝑡𝑏𝑒𝑠𝑡 ← 𝑡, 𝐹1𝑏𝑒𝑠𝑡 ← 𝐹1𝑀𝑜𝑑𝑒𝑙

Train Model with 𝐷𝑇 𝑟𝑎𝑖𝑛 and hyperparams 𝐻𝑏𝑒𝑠𝑡
0: 𝐹 ← Top 𝑛𝑓 features in with highest Gini Importance in Model

𝑃 ,𝑈 ← Positive and Unlabelled examples of 𝐷𝑇 𝑟𝑎𝑖𝑛
𝑅𝑁 ← ReliableNegatives(𝑃 , 𝑈 , 𝑘𝑏𝑒𝑠𝑡, 𝑡𝑏𝑒𝑠𝑡, 𝐹 )
Train Model with 𝑃 and 𝑅𝑁 ⊳ Using all original features
Predict 𝐷𝑇 𝑒𝑠𝑡 using Model

5: ⊳ Final performance is average F1, AUC and G.Mean of Model in the 10
test sets

Table 1
asic statistics of the two used datasets (feature types), with PathDIP [17] and GO
18] features. Among all ageing-related genes (i.e. |AGE| is the number of instances),
the known DR-related genes (DR∩AGE ⊂ AGE) constitute the subset of known positive
instances or examples.
Feature set Features Ageing-related

genes (|AGE|)
Known DR-related
genes (|DR∩AGE|)

Feature
sparsity (%)

PathDIP 1640 986 110 98.39%
GO 8640 1124 114 98.46%

In this work, we focalize on the two feature sets originally found
o be most relevant for the prediction of DR-relatedness by Magdaleno
t al. [16]: PathDIP and GO features. Table 1 shows statistics of the
wo constructed datasets (one per feature type), namely the number of
eatures, the number of genes (examples) in each class and the feature
parsity (percentage of 0-valued features) for each feature type. These
wo learning scenarios are created as follows:

• Using PathDIP [17], each gene is represented by binary features
indicating whether or not it belongs to an specific PathDIP path-
way; PathDIP, on its own, integrates information from multiple
database sources such as Bio-Carta, REACTOME, UniProt, etc.
For instance, if a gene has value 1 for the feature KEGG.2, then
that gene has experimental evidence of relation to the KEGG.2
pathway, which regulates animal autophagy.

• Using GO [18], each gene is represented by binary features indi-
cating relation to a specific GO term or any of its descendants.
For example, if a gene has value 1 for the feature GO:0055114,
then that gene has experimental evidence of being related to the
Oxidation–reduction process.

We followed Magdaleno et al.’s work to retrieve ageing-related
enes, their features and their known DR-relatedness. To identify

geing-related human genes (AGE), the GenAge database [49] was
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queried for genes that affected ageing phenotype or longevity if modu-
lated in model organisms, and the obtained genes were mapped to their
human orthologs using the OMA Orthology database [50] to obtain
the final set of human ageing-related genes. The GenDR database [51]
was queried to obtain DR-related genes in model organisms as those
that affected the effectiveness of the DR-mediated ageing process in
at least one wet lab experiment. Again, these DR-related genes were
mapped to their human orthologs using the OMA Orthology database.
The ageing-related genes were labelled as DR-related if they belonged
to this set of DR-related genes, and PathDIP and GO features were
retrieved for all ageing-related genes. For example, the ageing-related
gene MDH1 is labelled as positive (DR-related) because there is firm
evidence it activates downstream targets of DR like SIR2 [52], while the
ageing-related gene PRKAB1 is unlabelled because there is an absence
of evidence linking it to DR.

With regard to the classifiers used, our PU Learning method is
classifier-agnostic, but we maintain the use of decision tree-based en-
semble methods as done by Magdaleno et al. [16]; this is both to ensure
fairness in the comparison with [16], and because tree-based ensembles
are the State of the Art for tabular data, over options like Logistic
Regression, Support Vector Machines or Neural Networks [24,53]. In
particular, we employed CAT and BRF, the two classifiers with highest
performance in the state-of-the-art approach for the problem [16]:

• CatBoost (CAT) [33] is a boosting-based ensemble classifier: each
base learner is trained sequentially with instance weights deter-
mined by the errors of previous base learners in the sequence,
progressively reducing the bias in the predictions [54].

• Balanced Random Forest (BRF) [30] is a bagging-based ensemble
classifier: each base learner is trained independently using a
bootstrap sample of the original data, and the high predictive
accuracy is obtained through a reduction in variance of the errors,
improving the unstable and inaccurate estimations of the weak
base learners in isolation [54].

4.2. Evaluation details

In order to evaluate our proposed PU Learning method for the
discovery of new candidate DR-related genes, we performed a dual
evaluation, both on the surrogate binary classification task (predictive
performance and computational cost) and on the proposed candidate
ranking of the most promising novel DR-related genes.

To evaluate predictive performance we measure, for the existing
(non-PU) approach [16] and our proposed PU Learning method, three
relevant ML performance metrics: the F1 Measure of the positive class,
the Geometric Mean (G. Mean), and the AUC-ROC [55], such that:

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝐺.𝑀𝑒𝑎𝑛 =
√

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦

AUC-ROC = Area Under the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑣𝑠. (1 − 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦) Curve
(9)

where Precision is the proportion of instances annotated as positives
(DR-related) in the data among all instances predicted as positives, Re-
call (or Sensitivity) is the proportion of instances predicted as positives
among the set of all instances annotated as positives in the data, and
Specificity is the proportion of instances predicted as negatives (non-
DR-related) among the set of all instances annotated as negatives in the
data.

G. Mean and AUC-ROC are broadly used in PU Learning works for
their global performance overview across both classes [56], and are
used in the only existing work on DR-related genes identification [16].
However, AUC-ROC can be unreliable in PU tasks on datasets with class
imbalance [57], but we keep it for fairness of comparison with [16]. We
avoid the use of accuracy due to its inadequacy in scenarios with class
imbalance [57], and we favour the use of F1 Score over its components
Recall and Precision for this same reason.
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We use the F1 Measure as the main performance indicator, as it
is the most popular metric for PU Learning in the literature [56]. It
is worth noticing that, because we utilized genuine PU data (i.e. we
do not know the real labels of any of the unlabelled examples), all
three metrics are an estimation of their real values: they evaluate
the performance of the classifier predicting whether the example is
a known positive (𝑃𝑟(𝑔𝑖 ∈ DR∩AGE)) rather than whether it is a real
ositive (𝑃𝑟(𝑔𝑖 ∈ DR∩AGE+ )). In this regard, the estimation of the
F1 Measure of the positive class has desirable properties: Elkan and
Noto [20] showed that (1) it will be a strict underestimation of the
real F1 Measure, and (2) it will differ from the real F1 Measure by a
constant factor, making it suitable for confidently comparing classifiers
on discovery tasks.

With respect to the analysis of computational cost, we track the
greenhouse gas emissions (grams of carbon dioxide equivalent or
gCO2e) of the DR-related gene identification pipelines of the existing
(non-PU) method [16] and our PU-based Learning method, across the
nested cross-validation training and inference pipeline, using codecar-
bon [58].

We also performe two qualitative evaluations of our best learned
model: first, we analysed the most important features to predict DR-
relatedness according to the classifier, based on the Mean Decrease in
Impurity [59], and compared those features with the most important
features identified in [16]. Second, we produce a ranking of the most
promising ageing-related genes for novel DR-relatedness as predicted
by our model. As formalized in Eq. (2), these most promising genes
(i.e. those most likely to belong to DR∩AGE+ ⧵ DR∩AGE) are defined
by the model as those unlabelled examples (genes without known DR-
relatedness) that are predicted as belonging to the positive class with
the highest probability (see Eq. (4)). We use online resources (Pubmed,
Google Scholar) to search for research linking a gene or its encoded
protein to biological mechanisms potentially related to DR, for the most
promising genes reported by our PU-based method and the existing
approach by Magdaleno et al. [16].

4.3. Implementation details

This section covers technical details of the experiments performed to
measure the performance of our PU Learning method and the existing
(non-PU) Learning method from [16]:

• We implemented and performed all our experiments, using both
the existing (non-PU) approach and our PU Learning approach,
in a common Python framework. CatBoost and Balanced Random
Forest are integrated through the catboost 1 and imbalanced-learn2
packages, respectively. This framework3 is publicly made avail-
able to the scientific community for transparency and further
experimentation with these methods.

• For result reliability, the evaluation (nested cross-validation and
ranking of candidate genes) of each method is averaged over 10
executions with random state seeds (14, 33, 39, 42, 727, 1312, 1337,
56 709, 177 013, 241 543 903).

• For the existing (non-PU) method, we replicated the original hy-
perparameter space and grid search procedure performed in [16].
For our PU Learning method, we tuned the PU Learning hyperpa-
rameters as described in Section 3. Appendix A details the values
of tunable and non-tunable hyperparameters of all methods used
in our experiments.

• We run all our experiments in a dedicated machine with 32 GB
RAM, i9-10980 Intel©CPU, NVIDIA RTX 3070 GPU, and Windows
10 OS.

1 https://catboost.ai/en/docs/.
2 https://imbalanced-learn.org/stable/.
3
 https://github.com/Kominaru/DR_Gene_Prediction_XofN_PUL.
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Table 2
Predictive performance of the original non-PU Learning method and our proposed PU
Learning method in the identification of DR-related genes among ageing-related genes,
considering two feature sets and two classifiers. Results represent average performance
across 10 executions of the nested cross-validation procedure. For each metric, the best
result is bolded and a dagger (†) represents statistical significance against all other
results (in the other 7 rows) on two-tailed t-tests with 𝛼 = 0.05.
Method Features Classifier Performance (avg of 10 runs)

AUC-ROC G. Mean F1 Score

Original
PathDIP CAT 0.829 0.717 0.522

BRF 0.825 0.752 0.450

GO CAT 0.832 0.654 0.463
BRF 0.827 0.755 0.377

PU learning
PathDIP CAT 0.829 0.750 0.537†

BRF 0.815 0.728 0.381

GO CAT 0.838† 0.726 0.491
BRF 0.829 0.763† 0.380

5. Results

This Section covers the results of our PU Learning approach for de-
tecting novel DR-related genes among ageing-related genes comparing
its resuts with the results of the only existing approach for this task, a
non-PU methodology recently introduced in [16]. We compare the two
approaches’ predictive performance results, computational cost, most
important predictive features, and most promising candidate genes for
novel DR-relatedness.

5.1. Results of computational experiments

Table 2 shows the predictive performance results (for the three
metrics introduced in Section 4) of our PU Learning method and the
existing, non-PU method [16]. For both methods, we consider two
classifiers (CatBoost and Balanced Random Forest) and two biological
feature sets (PathDIP pathways and GO terms).

The best results for each metric (AUC-ROC, G. Mean and F1 Score)
are all obtained with our PU Learning method, showing statistical
difference on two-tailed t-tests with 𝛼 = 0.05 against all other results.
We highlight the relevance of the F1 Score, maximized by the PU
Learning approach using {PathDIP, CAT}, as it is the most informative
performance metric in PU Learning tasks [56]. As such, overall, our PU
Learning method exhibits a stronger predictive performance than the
original non-PU Learning approach by Magdaleno et al. [16].

Comparing the non-PU Learning and PU Learning approaches in
each isolated {Features, Classifier} scenario, in both GO scenarios ({GO,
CAT} and {GO, BRF}) the PU Learning approach outperformed the orig-
inal non-PU method for all three performance metrics. In the {PathDIP,
CAT} scenario, our PU-based model outperformed the non-PU Learning
one in terms of F1 Score and G.Mean, exhibiting equivalent AUC-ROC.
Only in one scenario ({PathDIP, BRF}) the usage of the PU Learning
approach did not benefit the predictive performance; in this scenario,
it seems that the benefits of a more reliable negative example labelling
for training may not have compensated for the performance penalty
that reducing the number of available training examples causes to a
bagging-based method like BRF.

Overall, the best performance among all options in Table 2 was
bserved for the PU Learning approach in the {PathDIP, CatBoost}
cenario, since it shows the statistically best result for F1, the most
mportant metric -further analysed in Appendix B-, and exhibits com-
etitive results in the other two metrics (AUC-ROC and G. Mean). As
uch, owing to an overall higher performance in these experiments in-
olving two classifiers, two feature sets and three performance metrics,
e can conclude that the proposed PU Learning approach is superior
o state-of-the-art non-PU Learning methods in the identification of
R-related genes among ageing-related genes, and therefore should
roduce more reliable rankings of top candidates for DR-relatedness
mong genes without known relationship to DR.

https://catboost.ai/en/docs/
https://imbalanced-learn.org/stable/
https://github.com/Kominaru/DR_Gene_Prediction_XofN_PUL
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Fig. 4. Comparison of the computational cost (measured in grams of carbon dioxide equivalent (gCO2e), lower is better) of Magdaleno et al.’s original non-PU approach and
our proposed PU Learning-based approach for identification of new DR-related genes. Results are averaged over 10 complete executions of the nested cross-validation, involving
training and inference procedures.
Table 3
The 5 most important features used to predict DR-relatedness using Magdaleno et al.’s non-PU Learning method [16] and
our PU Learning algorithm, using PathDIP as feature set and CatBoost as classifier. The feature importance used is the Mean
Decrease in Impurity based on the Gini Index. Each feature importance score was averaged across 10 executions of the
nested 10 × 5 Cross Validation (CV) procedure, and it was normalized to the [0, 100] range. In each 10 × 5 CV, the feature
importance is computed and averaged for each outer fold after the inner Cross Validation optimizes 𝑘 and 𝑡. Features common
to both approaches are shown in italics.
Original non-PU-Learning method KNN-based PU-Learning method

Feature Definition Score Feature Definition Score

KEGG.2
(map04140)

Autophagy - animal 100.00 WikiPathways.37
(WP2884)

NRF2 100.00

KEGG.30
(map04213)

Longevity regulating
pathway - multiple species

45.35 KEGG.2
(map04140)

Autophagy - animal 72.52

NetPath.23
(Pathway_BDNF)

Brain-derived
neurotrophic factor

38.95 KEGG.30
(map04213)

Longevity regulating
pathway - multiple species

56.32

REACTOME.10
(R-HSA-8953897)

Cellular responses
to external stimuli

37.79 WikiPathways.57
(WP534)

Glycolysis and
gluconeogenesis

47.85

WikiPathways.37
(WP2884)

NRF2 34.88 EHMN.11 Fructose and
mannose metabolism

43.97
With respect to the computational cost, Fig. 4 shows the average
O2 emissions of the combined training and inference phases of the
xisting non-PU approach by Magdaleno et al. [16] and our proposed
U-based methodology. It can be observed that, despite the addi-
ional steps required for the PU Learning-based labelling of examples,
his does not worsen the computational overhead of the identification
ipeline. In fact, in the {PathDIP, CAT} scenario, where both the non-
U and our PU-based approach obtain highest predictive performance,
ur PU Learning approach can identify novel DR-related genes re-
uiring ∼40% less greenhouse gas emissions. This is because, even if
dditional computations are required to select the reliable negative ex-
mples for the classifier, the resulting refined training set has fewer but
etter quality negative examples in it, prompting a more cost-effective
earning of the model.

.2. Analysis of most important predictive features

Table 3 shows the 5 most important features in the best models
earnt for predicting DR-relatedness, i.e. the top-5 reported in [16] for
he best model with the existing non-PU-Learning approach (left), and
he top-5 in the best model learned with our PU Learning approach
right). This is a well-controlled comparison, as both sets were obtained
n the {PathDIP, CatBoost} scenario. These feature importance values,
s done in [16], were computed using the Mean Decrease in Impurity,
hich measures to what extent the splits with a given feature decrease
he Gini Index across the trees in the ensemble [59].
In Table 3, three features ranked in the top-5 features for both

pproaches: KEGG pathway map04140 (Autophagy – animal), KEGG

athway map04213 (Longevity regulating pathway – multiple species),
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and WikiPathway WP2884 (NRF2). While ‘‘Longevity regulating path-
way – multiple species’’ is a very broad KEGG pathway without clear
relation to DR, there is good support in the literature for pathways
map04140 and WP2884: autophagy inhibition tends to attenuate the
anti-ageing effects of Calorie Restriction (CR), and a review on CR and
autophagy has concluded that there is strong evidence that fasting and
CR promote autophagy in a wide variety of tissues and organs [60].
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription
factor with activity regulated by DR that affects the expression of
several enzymes with antioxidant and detoxifying functions [61].

Among the top-5 predictive features for the non-PU Learning ap-
proach reported in [16], NetPath Pathway_BDNF (Brain-derived neu-
rotrophic factor) and Reactome R-HSA-8953897 (Cellular responses to
external stimuli) are not among the top-5 features for our PU Learning
method. Interestingly, it was noted in [16] that, among their reported
top-5 features, only Pathway_BDNF and R-HSA-8953897 did not show
significantly different degree of occurrence between genes with and
without known DR relation, so the support for these features is weaker
than for the other top-5 features. This was detected by the proposed
PU Learning approach, which only ranked Pathway_BDNF and R-HSA-
8953897 63rd and 34th, respectively, in terms of feature importance
for predicting DR-relatedness.

Among the top-5 predictive features in our best PU Learning-based
model, two are not among the top-5 features reported for the best
model in [16]: WikiPathways WP534 (Glycolysis and gluconeogenesis)
and EHMN.11 pathway (Fructose and mannose metabolism). Upon
review of the existing scientific literature, there exists support for a
significant role of these pathways in CR. Regarding WP534, in re-
cent experiments quantifying the hepatic proteome of mice exposed

to graded levels of CR (from 0% to 40%) for 3 months, one of the
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Table 4
Top 7 candidate genes for novel DR-relatedness, i.e. genes without known DR
association but with the highest likelihood of being DR related, for both the state-
of-the-art non-PU Learning method and our proposed PU Learning algorithm. The
DR-Probability is the output of the model for each gene, averaged across 10 executions
of the 10 × 5 Cross Validation procedure. In each 10 × 5-CV, the DR-Probability is
computed for the outer fold where the gene is in the test partition, after the inner Cross
Validation optimizes 𝑘 and 𝑡. Genes common to both rankings are shown in italics.
Original non-PU-Learning method KNN-based PU-Learning method

Gene DR-Probability Gene DR-Probability

GOT2 0.86 TSC1 0.97
GOT1 0.85 GCLM 0.94
TSC1 0.85 IRS1 0.93
CTH 0.85 PRKAB1 0.92
GCLM 0.82 PRKAB2 0.90
IRS2 0.80 PRKAG1 0.90
SENS2 0.80 IRS2 0.90

metabolic pathways most significantly stimulated by an increase in the
level of CR was the glycolysis/gluconeogenesis pathway [62]. In addi-
tion, glycolysis and gluconeogenesis were considerably up-regulated in
the kidney tissue of rats undergoing CR for 6 months [63]. Regarding
EHMN.11, in a study to investigate the successful maintenance of
weight loss in people after 8 weeks of low-calorie diet where people
were classified as weight maintainers or weight regainers, an analysis
of subcutaneous adipose tissue gene expression showed that the low-
calorie diet caused a decrease in the fructose and mannose metabolism
pathway in the weight regainer group [64].

When comparing the two sets of top-5 features identified by the
two approaches in Table 3, it is worth recalling that the PU Learning-
ased model obtained better predictive performance than the non-PU
odel, as reported in Section 5.1. Therefore, it is reasonable to consider
hat the top-5 features identified by the PU Learning-based model are
tronger, more reliable predictors of DR-relatedness than the top-5
eatures reported in [16].

.3. Analysis of the most promising candidate DR-related genes

We employed the overall best method in Section 5.1 (the proposed
U learning method using PathDIP as feature set and CatBoost as
lassifier), to obtain the ranking of the most promising candidate
geing-related genes for novel DR-relatedness. For consistency with
he evaluation scheme adopted in [16], which uses non-PU Learning
ethods, we report here the top-7 genes in the obtained ranking for
ach method.
Table 4 shows these top-7 most promising genes as identified in [16]

left) and by our PU-learning method (right); there is an overlap of
genes (TSC1, GCLM, IRS2) and 4 differing genes between the two
pproaches. Among the top-7 genes identified in [16], the 4 genes not
ccurring in the list of top-7 genes identified in this work are GOT2,
OT1, CTH and SESN2, ranked 10th, 11th, 23rd and 115th by our
U learning approach, respectively. Conversely, among the top-7 genes
dentified by the PU learning approach, 4 candidate DR-related genes
o not occur in the list of top-7 genes identified in [16]: IRS1, PRKAB1,
RKAB2 and PRKAG1. In the following paragraphs we discuss how evi-
ence from the relevant literature supports the possible DR-relatedness
f these 4 candidate DR-related genes identified by our PU Learning-
ased method (which should identify more reliable candidate genes
wing to its higher predictive performance, as discussed in Section 5.1).
The PRKAB1 and PRKAB2 genes encode two isoforms of AMPK’s

egulatory 𝛽-subunit (𝛽1 and 𝛽2) [65]; and PRKAG1 encodes an isoform
f AMPK’s regulatory subunit 𝛾1 [66]. In previous research, fasting
or 24 h increased the gene expression of AMPK 𝛽1- and 𝛽2-subunits
n the hypothalamus of chicks [67]. In addition, experiments with a
ouse model of Parkinson’s disease showed that the hormone ghre-
in mediated the neuroprotective effect of CR, and that the selective
9 
eletion of AMPK 𝛽1- and 𝛽2-subunits in dopamine neurons prevented
hrelin-induced AMPKD phosphorylation and neuroprotection [68].
PRKAG1 has shown to have an important role in the fasting-

efeeding cycle associated with DR in killifish [69]: in young killifish,
he fasting-refeeding cycle triggers an oscillatory regulation pattern in
he expression of genes encoding the AMPK regulatory subunits 𝛾1
nd 𝛾2, where fasting induces 𝛾2 and suppresses 𝛾1, whereas refeeding
nduces 𝛾1 and suppresses 𝛾2. This regulation pattern is blunted in old
ge, resulting in reduced PRKAG1 expression, which leads to chronic
etabolic quiescence. Transgenic killifish with sustained AMPK-𝛾1
voided that metabolic quiescence, leading to a more youthful feeding
nd fasting response in older killifish, with improved metabolic health.
ence, Ripa et al. [69] have proposed that the selective stimulation of
MPK-𝛾1 could be a good strategy to reinstate the beneficial response
f a late-life DR through the maintenance of a correct refeeding
esponse.
Regarding IRS1, experiments have shown a 109% in tyrosine-

hosphorylated IRS1 in insulin-treated muscles from rats on CR by
omparison with control (fed ad libitum) rats [70], while experiments
ith mice lacking IRS1 showed that the IRS1-encoded protein is not
equired for the CR-induced increase in insulin-stimulated glucose
ransport in skeletal muscle, and the absence of IRS1 did not modify
ny of the measured characteristic adaptations of CR [71].

. Conclusions

This work tackles the use of ML methods to identify new DR-
elated genes among ageing-related genes. The existing state-of-the-
rt method [16] treats as negative training examples (i.e. as non-
R-related genes) all genes without experimental evidence of DR-
elatedness (unlabelled examples), introducing label noise to the train-
ng data and reducing the reliability of the identified candidate genes.
To address this limitation we propose a two-step, similarity-based

U Learning methodology for gene prioritization that creates a higher
uality training set where all negative examples are reliable (confi-
ently non-DR-related) to train the classifier. We compared our PU-
ased method against the state-of-the-art, non-PU-based methodol-
gy [16] for the task of identifying DR-related genes among ageing-
elated genes.
We show that our PU Learning approach significantly (𝑝 < 0.05)

utperforms the state-of-the-art methodology [16] for our target task,
n terms of F1 Score, G.Mean and AUC-ROC. Moreover, our method
owers the computational cost of the gene identification task by up to
40% in the best-performing scenario, as it generates a set of negative
raining examples that is smaller but has higher quality (it is more
eliable), allowing a more cost-effective learning.
We use our best model (trained in the {PathDIP, CatBoost} scenario)

o generate a ranking of candidate DR-related genes; and compare it
o the ranking reported in [16] obtained without PU Learning. We
dentify several new potentially DR-related genes (e.g. IRS1, PRKAB1,
RKAB2, PRKAG1). Our new list of candidates is, from a ML standpoint,
ore reliable than the one curated by Magdaleno et al. since it was
enerated by a model with significantly higher predictive performance.
oreover, a curation of the scientific literature of these genes supports
he potential relation of the top promising genes with the mechanisms
f DR.
Regarding future research, we identify different avenues: (1) the

alidation of the DR-related role of the identified genes in wet-lab ex-
eriments, (2) the combination of multiple and other biological feature
ets with our PU-based method to improve the quality of predictions,
nd (3) exploration of other types of classifiers to further evaluate our
U Learning method in gene prioritization scenarios.
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Table A.1
Full relation of classifier (non-tunable) and PU Learning (tunable) hyperparameters used in our experiments. For CAT and
BRF, all hyperparameter values are identical to those in [16], and hyperparameters not stated in this table use the default
values in python libraries catboost v1.2.2 and imbalanced-learn v0.12.0.
Hyperparameter group Parameter Value(s)

PU Learning (tunable) No. of neighbours 𝑘 ∈ 3, 5, 8
Selection threshold 𝑘 = 3 ∶ 𝑡 ∈ 2∕3, 1

𝑘 = 5 ∶ 𝑡 ∈ 4∕5, 1
𝑘 = 8 ∶ 𝑡 ∈ 6∕8, 7∕8, 1

BRF
Estimators 𝑛 = 500
Sampling strategy 𝜔𝑢𝑠 = 1
Replacement 𝑟 = 𝑇 𝑟𝑢𝑒

CAT Estimators 𝑛 = 500
Fig. B.1. Details of the F1 Score across 10 executions of the nested cross-validation for the existing method [16] and our PU Learning-based proposal. For the best method,
ighlighted in blue (PU Learning on the {PathDIP, CAT} scenario), the 𝑝-value of the paired t-test against the best-performing scenario of the non-PU method is shown.
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