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ABSTRACT: For many individuals, in particular during
winter, supplementation with the secosteroid vitamin D3 is
essential for the prevention of bone disorders, muscle
weakness, autoimmune diseases, and possibly also different
types of cancer. Vitamin D3 acts via its metabolite 1α,25-
dihydroxyvitamin D3 [1,25(OH)2D3] as potent agonist of the
transcription factor vitamin D receptor (VDR). Thus, vitamin
D directly affects chromatin structure and gene regulation at
thousands of genomic loci, i.e., the epigenome and tran-
scriptome of its target tissues. Modifications of 1,25(OH)2D3
at its side-chain, A-ring, triene system, or C-ring, alone and in
combination, as well as nonsteroidal mimics provided
numerous potent VDR agonists and some antagonists. The nearly 150 crystal structures of VDR’s ligand-binding domain
with various vitamin D compounds allow a detailed molecular understanding of their action. This review discusses the most
important vitamin D analogs presented during the past 10 years and molecular insight derived from new structural information
on the VDR protein.

■ INTRODUCTION

An UV-B (290−315 nm)-dependent, nonenzymatic reaction in
human skin converts the cholesterol precursor 7-dehydrocho-
lesterol into previtamin D3 that further isomerizes into vitamin
D3 (calciferol, 1)

1 (Figure 1). Similarly, UV-B-radiated plants
and mushrooms are able to produce the isomer vitamin D2
(ergocalciferol, 2) based on their membrane sterol ergosterol.2

Both secosteroids are themselves biologically inert and have to
be activated by hydroxylation first at C-25, leading to the
prehormones 25-hydroxyvitamin D3 [25(OH)D3, (calcidiol,
3)] and 25(OH)D2, and then at C-1, creating 1,25(OH)2D3
(calcitriol, 4)3 and 1,25(OH)2D2, respectively.
25(OH)D3 is the metabolically most stable and abundant

vitamin D metabolite, and its serum levels serve as a biomarker
of the vitamin D status of individuals.4 The biologically active
form of vitamin D3, 1,25(OH)2D3, acts via activation of the
transcription factor VDR as a nuclear hormone that directly
affects gene regulation.5 The physiological role of vitamin D is
the regulation of calcium homeostasis for maintaining bone
mineralization6 as well as the modulation of innate and
adaptive immunity7 for improving the response to infections
by microbes, such as Mycobacterium tuberculosis,8 and
preventing autoimmune diseases, such as multiple sclerosis.9

Lifestyle decisions, such as staying predominantly indoors
and covered by textile outdoors, combined with changes in
seasons and climate cause, for many individuals, insufficient
exposure to UV-B and thus low endogenous production of
vitamin D3. Human diet is often rather low in vitamin D

because only fatty fish and UV-B irradiated mushrooms have
reasonable quantities of the vitamin D3 or vitamin D2,
respectively. The fortification of milk, margarine, and juices
with vitamin D3 or vitamin D2 is applied in some countries.
Moreover, in winter months daily supplementation with at
least 25 μg (1000 IU) of vitamin D3 is recommended in order
to prevent vitamin D deficiency.10 The latter not only would
result in rickets in children and in a higher risk of bone
fractures due to osteoporosis or osteomalacia in adults,11 but
also will compromise the function of the immune system and
the claimed preventive actions of vitamin D against
cardiovascular diseases, diabetes, neuropsychiatric disorders,
and cancer.12 Supplementation with vitamin D3 clearly
increased in the general population, e.g., the sales of vitamin
D supplementation products increased within 1 decade nearly
15-fold.13

There is no doubt that a sufficient vitamin D status is
important for bone health,14 but overdosing with vitamin D3,
1,25(OH)2D3, or its synthetic analogs may result in tissue
calcification.15 Symptoms of hypercalcemia are (i) digestive
distress, such as vomiting, nausea, and stomach pain, (ii)
fatigue, dizziness, and confusion, (iii) excessive thirst, and (iv)
frequent urination. However, hypercalcemia occurs rarely and
no other severe side effects or toxicity of vitamin D overdosing
is known. Nevertheless, higher doses of vitamin D3 are not

Received: January 31, 2019
Published: March 27, 2019

Perspective

pubs.acs.org/jmcCite This: J. Med. Chem. 2019, 62, 6854−6875

© 2019 American Chemical Society 6854 DOI: 10.1021/acs.jmedchem.9b00208
J. Med. Chem. 2019, 62, 6854−6875

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 D

A
 C

O
R

U
N

A
 o

n 
Se

pt
em

be
r 5

, 2
02

4 
at

 1
5:

03
:4

7 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/jmc
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jmedchem.9b00208
http://dx.doi.org/10.1021/acs.jmedchem.9b00208
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


recommended as nutritional supplement for reaching non-
skeletal effects of the vitamin. Similarly, the main goal of the
development of vitamin D analogs is to identify compounds
with a low calcemic effect versus a potent antiproliferative,
prodifferentiating, and/or immune-modulatory function.
In total, more than 3000 synthetic vitamin D analogs were

developed by various pharmaceutical companies and academic
research groups in order to advance the biological properties of
the natural compound for a applications in the therapy of (i)
hyperproliferative diseases, such as different types of cancer,
(ii) psoriasis, an autoimmune disease of the skin,16 or (iii)
bone disorders, such as osteoporosis.17 However, so far only a
few vitamin D compounds made it to the market (Table 1). In

addition to vitamin D3 being extensively used as a nutritional
supplement, the commercially most successful vitamin D
analog is calcipotriol (5), which is topical agent in clinical use
for the treatment of psoriasis. Together with the compounds
doxercalciferol (6), alfacalcidol (7), tacalcitol (8), paricalcitol
(9), oxacalcitriol (10), falecalcitriol (11), and eldecalcitol (12)
it had been discussed in previous reviews18,19 (Figure 1). In
contrast, despite promising in vitro results, analogs such as
inecalcitol (13) or seocalcitol (14) were unsuccessful in phase
II clinical trials of acute myeloid leukemia (www.hybrigenics.
com/news/articles/list/type/2) or pancreatic cancer,20 respec-
tively. Interestingly, some immune-system-related vitamin D
target genes, such as cathelicidin antimicrobial peptide

Figure 1. Vitamin D metabolites and analogs available on the market.

Table 1. Vitamin D Compounds on the Marketa

• Vitamin D3 (1, calciferol) is used worldwide in the prevention of vitamin D deficiency and associated diseases, such as rickets [Vigantol (Bayer), Delsterol
(DuPont), Duphafral-D3 (multiple pharma companies), Lutavit D3 (BASF), Vi-D3, Videkhol, Vigosan (multiple pharma companies)].

• Vitamin D2 (2, ergocalciferol) is also used in the prevention of vitamin D deficiency and associated diseases, such as rickets (marketed with different names by
multiple pharma companies).

• Calcidiol (3, 25(OH)D3) is used in the treatment of chronic hypocalcemia, renal osteodystrophy [Calderol (Upjohn), Hidroferol (Faes Farma)], rickets [Dedrogyl
(Roussel), Hidroferol (Faes Farma)].

• Calcitriol [4, 1,25(OH)2D3] is prescribed for renal osteodystrophy [Rocatrol (Roche), Calcijex (Abbott)], osteoporosis [Rocatrol (Roche)] and psoriasis [Silkis
(Galderma)].

• Calcipotriol [5, 22-ene-26,27-dehydro-1,25(OH)2D3] is used for psoriasis [Davionex (Leo Pharmaceuticals), Dovonex (Warner Chilcott)].
• Doxercalciferol [6, 1α(OH)D2, Hectorol (Bone Care International)] is prescribed for secondary hyperparathyrodism.
• Alfacalcidol (7, 1α(OH)D3) is used for renal osteodystrophy [Alfarol (Chugai Pharmaceutical), One-Alpha (Leo Pharmaceuticals)], secondary hyper-
parathyrodism [Alfarol (Chugai Pharmaceutical)], osteoporosis [Alfarol (Chugai Pharmaceutical), Alpha D3 (Teva Pharmaceuticals)] and rickets [Alfarol (Chugai
Pharmaceutical)].

• Tacalcitol (8, 1α,24(OH)2D3) is prescribed for psoriasis [Bonalfa (Teijin), Curatoderm (Merck KGaA)].
• Paricalcitol [9, 19-nor-1,25(OH)2D2, Zemplar, (Abbott Laboratories)] is used for secondary hyperparathyrodism.
• Oxacalcitriol (10, 22-oxa-1,25(OH)2D3) is used for secondary hyperparathyrodism and psoriasis [Oxarol (Chugai Pharmaceuticals)] in Japan.
• Falecalcitriol [11, 1,25(OH)2-26,27-F6-D3] is prescribed for secondary hyper-parathyrodism in Japan [Hornel (Taisho Pharmaceuticals and Sumitomo
Pharmaceuticals), Fulstan (Kissei Pharmaceuticals)].

• Eldecalcitol [12, 2α-(3-hydroxypropoxy)-1,25(OH)2D3] is prescribed for osteoporosis only in Japan [Edirol (Chugai Pharmaceutical)].
aOnly a few vitamin D compounds have reached the market.88,89 Their applications, commercial name, and company are listed. The structures of
the compounds are shown in Figure 1.
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(CAMP) and CD14 (encoding for a Toll-like receptor 4 co-
receptor), are very responsive,21,22 while there are no vitamin
D target genes with comparable inducibility involved in the
management of cellular growth and differentiation. The failure
of anticancer trials and the success in the therapy of an
immune disease as well as prominent gene regulatory effects in
immune cells suggest that VDR ligands, in addition to bone-
related functions, may rather have a therapeutic potential in
immune diseases than in cancer.

The majority of synthetic VDR ligands are direct derivatives
of 1,25(OH)2D3, but within the past years an increasing
number of vitamin D mimics were published. 1,25(OH)2D3

had been modified at its side-chain, A-ring (often together with
side-chain changes), triene system, and C-ring. These
modifications follow the strategy to increase the VDR binding
affinity while in parallel modulating the metabolic stability of
the molecules.18 A reasonable number of new vitamin D
analogs have been published within the past years and will be

Figure 2. 1,25(OH)2D3 complexed to the VDR-LBD. The VDR-LBD has a conserved 3D architecture, which is made of a three-layer α-helical
sandwich. In the lower part of the LBD the LBP is located. All the helices are labeled from N-terminus toward C-terminus and numbered in white
color (A). Details on the LBP with bound 1,25(OH)2D3 and critical amino acids that provide anchoring contacts for the three OH groups (B).
Details on the conformation of the bound 1,25(OH)2D3 molecule with the annotated OH groups and highlights to its contribution of its activity.
The numbering of the carbons atoms is indicated (C). The figure is based on the PDB code 1DB1.

Figure 3. Vitamin D signaling. 25(OH)D3 is converted by the enzyme CYP27B1 to its biologically most active form 1,25(OH)2D3, which binds to
the transcription factor VDR. Upon binding of 1,25(OH)2D3 or synthetic agonists, a conformational change in the LBD is induced leading to
cofactor exchanges shifting the balance toward recruitment of coactivator proteins. Co-repressor proteins dissociate from the VDR-RXR
heterodimer. In parallel, the mediator complex and chromatin modifying enzymes (readers, writers, and erasers) are recruited in order to handle
histone proteins of local nucleosomes around genomic VDR binding sites. In addition, chromatin remodeling complexes are recruited and
rearrange nucleosomes at vitamin D-sensitive chromatin regions. Altogether, these chances lead to looping of the distal regulatory elements toward
the basal transcriptional machinery with RNA polymerase II and other nuclear adaptor proteins initiating the start of 1,25(OH)2D3-dependent
transcription from hundreds to thousands of TSS regions throughout the whole human genome. The ultimate outcome is the increase or decrease
of the of primary vitamin D target gene expression followed by changes of indicated cellular functions.
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discussed in this review. Moreover, the number of solved VDR
crystal structures with synthetic ligands has significantly grown.

■ CENTRAL ROLE OF VDR IN VITAMIN D SIGNALING

VDR is the only protein expressed by the human genome that
is able to bind 1,25(OH)2D3 and its analogs at subnanomolar
concentrations.23 Thus, all physiological functions of vitamin D
compounds are mediated by VDR and its target genes.24 The
VDR gene is expressed most prominently in intestine, kidneys,

and bone, but in most of the other 400 human tissues and cell
types some VDR expression is found.25 This means that not
only tissues that relate to calcium homeostasis and bone
formation but also immune cells respond to vitamin D.26

VDR is an endocrine receptor and member of the
superfamily of nuclear receptors; i.e., the mechanisms of its
action are comparable to the receptors for glucocorticoids and
estrogen.27 VDR’s ligand-binding domain (LBD) is structurally
conserved and comprises 11−15 α-helices, modestly varies

Figure 4. Side-chain-modified vitamin D analogs. The table summarizes the biological properties of the compounds: reference, 1,25(OH)2D3; (=)
similar value; (+) >10× higher; (++) >100× higher; (+++) >1000× higher; (−) >10× lower; VDR aff, VDR affinity; Prolif inh, proliferation
inhibition; Transac act, VDR transactivation activity; calcemia, [Ca2+] level changes in serum.
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between solved crystal complexes, and depends on the folding
of the intrinsically disordered region between helices H1 and
H3 and the presence of a helix HX between helices H11 and
H1228,29 (Figure 2A). The lower part of the LBD contains a
ligand-binding pocket (LBP), which is a cavity with a volume
of ∼700 Å3 (with possible expansion beyond 1000 Å3) being
formed by some 40 mostly nonpolar amino acids.30 Three
pairs of polar amino acids within the LBP fix via hydrogen
bonds each one of the three OH groups (at C-1α, C-3β, and
C-25) of 1,25(OH)2D3. The 1α-OH group interacts with
Y143 (helix H1) and S278 (helix H5), the 3β-OH group
contacts S237 (helix H3) and R274 (helix H5), and the 25-
OH group interferes with H305 (loop between helices H6 and
H7) and H397 (helix H11)28 (Figure 2B).
VDR ligands induce a conformational shift to the LBD,

which replaces co-repressor proteins by coactivator proteins;
i.e., ligand binding induces a different protein−protein
interaction profile of the receptor.31 VDR agonists cause an
efficient dissociation of co-repressors from the LBD and allow
the specific binding of coactivators and the mediator complex
(Figure 3). Coactivators also attract chromatin modifying
enzymes that write, erase, or read post-translational marks of
histones, such as acetyl and methyl groups, to histone proteins
of nucleosomes in the vicinity of genomic VDR binding sites.32

Moreover, also members of chromatin remodeling complexes
interact in a ligand-dependent fashion with VDR and cause a
rearrangement of nucleosomes at vitamin D-sensitive chroma-
tin regions.33 These epigenetic changes allow looping of VDR-
bound enhancers toward accessible transcription start sites
(TSSs) at hundreds to thousands of loci throughout the
human genome.34 These enhancer-TSS assemblies are
triggered by ligand-activated VDR and finally result in an
increase or decrease in the expression of hundreds of primary
vitamin D target genes (Figure 3).
The structure of the human VDR-LBD complexed with

1,25(OH)2D3 was solved in the year 2000.28 Since then
altogether 143 human, rat, and zebrafish VDR-LBDs have been
crystallized with a large number of synthetic analogs35 (Table
S1). In general, the analogs behave like 1,25(OH)2D3 by
stabilizing the LBD in more or less the same conformation,
since the three OH groups of each vitamin D compound take
up a nearly identical position. This suggests that there is only
one agonistic conformation of the LBD for which the
interaction between the ligand’s 25-OH group and the LBP
amino acids H305 and H397 are most important (Figure 2C).
On the basis of the vitamin D analog’s chemical

modification, all solved VDR-ligand-complexes can be divided
to the six groups: (i) A-ring modifications, (ii) side-chain
modifications, (iii) triene system modifications, (iv) combined
A-ring and side-chain modification, (v) modifications in the
CD-ring, and (vi) nonsteroidal analogs. All modifications aim
to either (i) maintain the three anchoring OH groups at the
same position as in 1,25(OH)2D3 and/or (ii) fill the LBP most
efficiently in order to form additional hydrogen network and/
or hydrophobic contacts. More variant modifications of
1,25(OH)2D3 aim to alter the ligand conformation or to
bounce the shape of the LBP by adding an additional side-
chain at positions C-20 or C-22. Moreover, de novo designed
nonsteroidal compounds carry modifications, such as the
exchange the classical secosteroid ring structure by rings with
aromatic character. The aim with these molecules is to
maintain the hydrophobic interactions with amino acid
residues lining the inner surface of the LBP as well as to

increase the stacking interaction with aromatic amino acid
residues.
In this review we discuss different classes of vitamin D

analogs and, where applicable, provide molecular under-
standing from VDR crystal structures.

■ SIDE-CHAIN MODIFICATIONS
The first locked side-chain vitamin D analogs nor-21-
2 0 ( 2 2 ) , 2 3 ( 2 4 ) - d i y n - 1 , 2 5 (OH) 2D 3 (1 5 ) , n o r -
21,23,24,25,26,27-20(22)-yn-22-(3-hydroxyphenyl)-1,25-
(OH)2D3 (16a), nor-21,23,24,25,26,27-20(22)-yn-22-[3-
(hydroxymethyl)phenyl]-1,25(OH)2D3 (16b), and nor-
21,23,24,25,26,27-20(22)-yn-22-[4-(hydroxymethyl)phenyl]-
1,25(OH)2D3 (16c) have been synthesized by convergent
route through a Wittig−Horner approach starting from
Inhoffen−Lythgoe diol36 (Figure 4). These analogs lead to
significant activation of VDR-dependent transcription in
comparison to 1,25(OH)2D3. An unique structural modifica-
tion on the C-22-diyne analog, a C-17-methyl substitution, was
provided through a vinyl(pinacolo)boronate approach and
resulted in the C-17-methyl-substituted vitamin D analogs nor-
21-20(22),23(24)-diyn-17-methyl-1,25(OH)2D3 (17a) and
nor-21-20(22),23(24)-diyn-17-methyl-26,26,26,27,27,27-hexa-
fluoro-1,25(OH)2D3 (17b).37 The C-22-aromatic-substituted
analogs are less potent in activating VDR than the C-22-diyne
isomers. The C-17-methyl analogs bind more efficiently to
VDR than 1,25(OH)2D3.
The two side-chain analog Gemini comprises an unaltered

side-chain of 1,25(OH)2D3 and a second chain at C-20.38,39

Although the volume of Gemini is increased by some 25%, it
still fits into VDR’s LBP.30 One side-chain of Gemini takes the
same place as that of 1,25(OH)2D3, whereas an extra subcavity
opens within the LBP for the second side-chain.40 The increase
in transcriptional activity of Gemini41 motivated the
preparation of Gemini-type analogs with side-chains containing
double or triple bonds and isohexafluoro-2-propanol or
isohexadeutero-2-propanol side-chain ends. Compounds 18−
20 have been synthesized with both configurations at C-20 by
a convergent approach through Wittig−Horner coupling
starting from Inhoffen−Lythgoe diol.42 (R)-Analogs showed
higher antiproliferative potency in MCF10CA1 human breast
cancer cells than their (S)-counterparts, and both were 100−
1000 times more potent than 1,25(OH)2D3. Furthermore,
both configurations of the Gemini derivatives are also more
potent than 1,25(OH)2D3 in inducing the differentiation of
NB4 human leukemia cells. Thus, Gemini compounds have
enhanced potency in inhibiting proliferation and inducing
differentiation with reduced induction of hypercalcemia when
compared to 1,25(OH)2D3. Moreover, C-20 methyl-substi-
tuted Gemini analogs (21−23) are also potent in the
inhibition of HL-60 human leukemia cell proliferation and
the induction of CAMP gene expression.43

1α-Hydroxy-25,26,27-trinor-24-o-carboranyl-vitamin D3
(1,25cD3, 24, Figure 4) is a rather new vitamin D analog, in
which an o-carborane moiety replaces the 25-OH group.44

Despite the lack of this critical group, 1,25cD3 is as effective as
1,25(OH)2D3 in inhibiting the growth of MCF-7 human
breast cancer cells and in inducing the differentiation of
HaCaT human keratinocytes. VDR binds 1,25cD3 2 times
tighter than 1,25(OH)2D3 and is equally potent as the natural
hormone in inducing reporter gene activity while not showing
adverse calcemic effects. Moreover, like most other vitamin D
analogs, the conformation of the complex of 1,25cD3 with
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VDR’s LBD is highly similar to that of 1,25(OH)2D3; i.e. the
protein shows the same topology. Nevertheless, the loop
between helices H6 and H7, which is a critical region for the
activation of the receptor, and the last part of helix H11 show
shifts by 0.6 Å. The carborane side-chain is 2.4 Å longer than
that of 1,25(OH)2D3, but it is hydrophobic and therefore
favors the interaction with hydrophobic amino acid in this part
of the VDR-LBP. This compensates for the loss of the 25-OH
group (Figure 5A). Thus, the collection of small changes
stabilizes helices H3, H11, and H12 and overall causes higher
stability of VDR’s LBD.

■ A-RING MODIFICATION

The biological profiles of the C-2-substituted vitamin D
analogs 2-(3′-hydroxypropyl)-1,25(OH)2D3 (25), 2-butyl-

1,25(OH)2D3 (26), 2-(4′-hydroxybutyl)-1,25(OH)2D3 (27),
2-(2′-hydroxyethoxy)-1,25(OH)2D3 (28), 2-(3′-hydroxypro-
poxy)-1,25(OH)2D3 (29), and 2-(4′-hydroxybutoxy)-1,25-
(OH)2D3 (30) (Figure 6) indicated that C-2β-substituted
analogs have higher affinity for the serum vitamin D binding
protein (DBP) and lower affinity for VDR but are superior to
C-2α analogs in reporter gene assays.45

The analog 2-(3′-hydroxypropyl)-1α-methyl-25(OH)2D3

(32) was synthesized through a Pd-catalyzed ring-closure of
enyne, and coupling with vinyl bromide and showed a 2-fold
higher potency than 1,25(OH)2D3 in reporter gene assays.46

Interestingly, when VDR’s amino acid R274, which contacts
the 1α-OH group of the ligand (Figure 2), is mutated to a
hydrophobic residue (R274L), the compound is even 7 times
more potent than the natural hormone, suggesting that the 1α-

Figure 5. Structure−function relationship of VDR ligands (I). The carborane group of 1,25cD3 creates additional hydrophobic interactions that
compensate for the loss of the 25-OH group. All residues that have conserved interactions are shown in gray (top). Detailed interaction with
residues based on PDB code structures 2HC4 (1,25(OH)2D3) and 5E7V (1,25cD3). The displayed interactions are identified under cutoff 3.5 Å
(A). Destabilization of the VDR-LBD upon binding of 23,36-lactone analogs. Representation of crystal structure b-factors using structures PDB
codes 1RK3 (1,25(OH)2D3, left) and 3A2H (TEI-9647, right). Regions with the highest b-factors are highlighted in red and they are helices H9−
10 that may affect heterodimerization with RXR, helix H11 affecting the position of helix H12, and the coactivator peptide showing very high b-
factors overall. The most stabile part of the VDR is shown in blue through green, yellow and red monitoring the highest b-factor values (B).
Structural implication of 22S-alkyl-2-methylene-19-nor-1,25(OH)2D3 binding. The position of the helix H12 takes the same conformation in both
22S-alkyl-2-methylene-19-nor-1,25(OH)2D3 and 1,25(OH)2D3. Many residues around the two aliphatic chains move or rotate, such as H301
(loop helices H6/7), H393 (helix H11), or F418 (helix H12). Structural elements from 22S-alkyl-2-methylene-19-nor-1,25(OH)2D3 (PDB code
2ZXM) and 1,25(OH)2D3 (PDB code 1RK3) complexes are highlighted in green and white color, respectively (C).
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methyl group is stabilized primarily by hydrophobic
interactions.
The compounds 1α,4α,25(OH)3D3 (33a) and 1α,4β,25-

(OH)3D3 (33b) were created through a Pd-catalyzed ring-
closure and coupling and showed lower affinity for VDR than
1,25(OH)2D3.

47 However, the 4β-analog (33b) displays
higher VDR affinity and potency in reporter gene assays than
the 4α-compound (33a).
The analogs 2-methylene-25-(OH)D3 (34a) and 2-methyl-

en-20-epi-25-(OH)D3 (34b) belong to the family of the potent
lead compound 2-methylene-1,25(OH)2D3 (35, 2MD) and
were synthesized through a Pd-catalyzed coupling between an
enol triflate and an enyne.48 These molecules are defined by
the relocation of the exocyclic methylene group from C-10 to
C-2 and the inversion of the C-20 configuration. Compound
34a shows lower affinity for VDR than 1,25(OH)2D3, lower
potency in inducing HL-60 cell differentiation and in reporter
gene assays, while compound 34b displays the same affinity for
VDR as 1,25(OH)2D3, higher potency in HL-60 cell
differentiation induction, and lower activity in reporter gene
assays.

■ TRIENE SYSTEM MODIFICATIONS

The compounds PRI-1731 (36), PRI-1732 (37), PRI-1733
(38), and PRI-1734 (39) represent a series of vitamin D
analogs with a branched side-chain (E)-stereochemistry at the
C-5/C-6 double bond, both configurations at C-24 and a C-
22/C-23 double bond or an OH group at C-2249,50 (Figure 7).
They have moderate prodifferentiating activities on HL-60
cells and their maximal inhibition of proliferation ranged from

Figure 6. Vitamin D analogs with A-ring modifications. The table summarizes the biological properties of the compounds: reference,
1,25(OH)2D3; (=) similar value; (+) >10× higher; (−) >10× lower; (--), >100× lower; VDR aff, VDR affinity; 24OH trans, CYP24A1
transactivation activity; HL60 diff, HL-60 cell differentiation induction.

Figure 7. Triene system modified vitamin D analogs.
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10% to 15% of that for 1,25(OH)2D3 and 20−30% of that for
1,25(OH)2D2.

■ SIDE-CHAIN AND A-RING MODIFICATIONS

25-Dehydro-1α-hydroxy-vitamin D3-26,23 lactones with dou-
ble modifications of C-24 and C-2α were synthesized via a
convergent approach by Pd-catalyzed ring closure of a enyne
and subsequent coupling with a functionalized vinyl bro-
mide.51,52 Numerous analogs have been synthesized with
variations in their C-23 configuration, C-24 mono- or
disubstitution [H, Me, Et, c-Pr, n-Pr, n-Bu, i-Bu (40, 41, 48,

50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72)] and C-2α
substitution [H, Me, CH2CH2CH2OH, OCH2CH2CH2OH,
(42−47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73)]
(Figure 8). The principal characteristic of these analogs is their
antagonist activity, probably due to locking the VDR-LBD in a
conformation where it does not effectively interact with
coactivator proteins. This can be seen also from the values of
the β-factors found in the crystal structure (PDB code 3A2H)
of the lactone analog TEI-9647, where the coactivator peptide
shows very high values compared to 1,25(OH)2D3. In
addition, helices H9 and 10 as well as H11 and to some

Figure 8. Vitamin D analogs with side-chain and A-ring modifications (I). The table summarizes the biological properties of the compounds:
reference, 1,25(OH)2D3; (=) similar value; (+) >10× higher; (++) >100× higher; (−) >10× lower; (--) >100× lower; VDR aff, VDR affinity;
Antag act, antagonistic activity.
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extent H12 show higher fluctuation leading to overall
destabilization of the LBD (Figure 5B). Structure−activity
relationship studies demonstrated that the exomethylene group
of the lactone is indispensable, the C-23S configuration
provides higher activity, and an appropriate combination of
C-24 and C-2α substitution obtains the highest antagonist
potency.
19-nor (74) and 1α-F (75) Gemini analogs containing triple

bonds and isohexafluoro-2-propanol or isohexadeutero-2-
propanol side-chain end groups42 (Figure 9) were synthesized.
Again (R)-analogs are more potent in inhibiting MCF10CA1
cell proliferation than their (S)-counterparts. Both isomers are
active already at 100−1000 times lower concentrations than
1,25(OH)2D3. In both configurations the Gemini analogs are

equally potent to 1,25(OH)2D3 in inducing NB4 cell
differentiation but are less calcemic than the natural hormone.
A series of 2-methylene-19-nor vitamin D analogs with or

without C-22S alkyl substitution, such as 2-methylene-
19,25,26,27-tetranor-vitamin D3 (76), 2-methylene-19,25-
dinor-vitamin D3 (77), 2-methylene-19,26,27-trinor-vitamin
D3 (78), and 2-methylene-19-nor-vitamin D3 (79) and their C-
22S alkyl derivatives (a, R = H; b, R = Et; c, R = Bu) have been
prepared and biologically tested.53 The side-chain modifica-
tions in 76, 77, and 78 reduce the VDR binding affinity 10-fold
compared to 1,25(OH)2D3. Interestingly, an increasing size of
the C-22 substituent in 2-methylene-19-nor-vitamin D3 (79)
results in a decreased VDR binding affinity compared to
1,25(OH)2D3. Compounds with a normal side-chain (79a,

Figure 9. Vitamin D analogs with side-chain and A-ring modifications (II). The table summarizes the biological properties of the compounds:
reference, 1,25(OH)2D3; (=) similar value; (+) >10× higher; (++) >100× higher; (+++) >1000× higher; (−) >10× lower; (--) >100× lower;
VDR aff, VDR affinity; MCF10 prol, MCF10 cell proliferation inhibition; NB4 diff, NB4 cell differentiation induction; MG63 trans, MG63 cell
transactivation activity; U963 prol, U963 cell proliferation inhibition; HL60 diff, HL-60 cell differentiation induction.
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79b, and 79c) show strong activation in reporter gene assays
and compounds without C-22 substitution (76a, 77a, 78a, and
79a) even full agonist activity. In contrast, C-22S butyl-
substituted molecules (76c, 76c, 78c, and 79c) present little
transactivation potency, while C-22S ethyl-substituted com-
pounds (76b, 77b, 78b, and 79b) display intermediate activity.
Moreover, the analogs 76a, 77a, 78a, and 79a induce the
recruitment of the VDR partner receptor retinoid X receptor
(RXR, Figure 3) and of a coactivator peptide in a
concentration dependent manner, while C-22S-substituted
compounds cause only moderate effects.

VDR-LBD crystal structures complexed with further 22S-
alkyl-2-methylene-19-nor-1,25(OH)2D3 derivatives (80−83)54

confirmed that the compounds trigger the creation of an extra
cavity of the LBP by rotating L305 about 27° outward, in order
to shelter the butyl group (Figure 5C). Ligands act as VDR
antagonists when they do not interact with the C-terminal helix
H12 of the receptor. Interestingly even though the position of
helix H12 is maintained in the agonistic position, most likely
forced by the presence of the coactivator peptide, there is a
shift or rotation of multiple residues away from the 22-butyl
analog. These changes weaken the interaction with H301 (loop
H6/7), H393 (H11), or F418 (H12) and destabilize this

Figure 10. Vitamin D analogs with side-chain and A-ring modifications (III).
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region of the LBD (Figure 5C). Interestingly, in the presence
of a coactivator peptide some of the antagonistic 22-butyl
analogs take the agonistic conformation. Whether this is a
technical artifact of the crystallization or has a physiological
meaning, such as sensing of cofactor balance in the cellular
context, needs to be clarified.
20-epi-Eldecalcitol (84), a 20-epi derivative of the

antiosteoporotic drug eldecalcitol (12) (Table 1 and Figure
1), was synthesized through a convergent approach by Pd-
catalyzed ring-closure of an enyne and coupling with vinyl
bromide.55 Since 20-epi-1,25(OH)2D3, a diasteromer of
1,25(OH)2D3 possessing an inverted C-21 methyl-substituent
at C-20, shows enhanced biological activities compared to
1,25(OH)2D3, compound 84 displays a 50-fold increased
inhibition of U937 human leukemia cell proliferation.56

Since the presence of a 1α-OH group in 1,25(OH)2D3 is
crucial for VDR binding, its replacement with a 1β-OH group
[1β,25(OH)2D3, 86] causes loss of physiological activity57

(Figure 10). Replacing the 1α-OH group with one fluor atom
[1α-F,25(OH)2D3, 87] also markedly diminishes biological
activity,58 while a compound with each a fluorine atom at C-1
and C-25 [1,25(F)2(OH)2D3, 88] is devoid of all activity.59

Interestingly, the 3-OH group is not necessary if the 1α-OH
group is already in position, but the lack of the 3-OH group
[1α,25(OH)2-3-deoxy-D3, 89] reduces the biological activ-
ity.60,61 Additional methyl groups at C-1β [1β-methyl-1,25-
(OH)2D3, 90] and C-3α [3α-methyl-1,25(OH)2D3, 91]
significantly reduce VDR binding affinity. Switching the 3-
OH group from β to α position [3-epi-1,25(OH)2D3, 92]
causes a drastic reduction of physiological activity.62 In fact,

Figure 11. Vitamin D analogs with side-chain and A-ring modifications (IV). The table summarizes the biological properties of the compounds:
reference, 1,25(OH)2D3; (=) similar value; (+) >10× higher; (++) >100× higher; (+++) >1000× higher; (−) >10× lower; (--) >100× lower;
VDR aff, VDR affinity; 24OH trans, CYP24A1 transactivation activity; HL60 diff, HL-60 cell differentiation induction.
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compound 92 is an intermediate of 1,25(OH)2D3 degradation
displaying lower VDR binding affinity and lower calcemic
effects compared to 1,25(OH)2D3. Despite its decreased
potency, the in vivo action of compound 92 is tissue-specific.
Taken together, most modifications of the A-ring result in

decreased biological activity except for those modified at C-2.
Therefore, a large number of C-2-substituted vitamin D
analogs have been synthesized and were studied intensively for
their biological activity. 2α-Substitutions [2α-methyl-1,25-
(OH)2D3 (93)] are more potent than 2β-substitutions [2β-
methyl-1,25(OH)2D3 (92)].63 Elongation of the C-2-alkyl
group [2α-ethyl-1,25(OH)2D3 (94) and 2α-propyl-1,25-
(OH)2D3 (95)] reduces VDR binding affinity and biological
potency, but ω-hydroxylation restores the activity.64 2α-
Methyl-1,25(OH)2D3 (93) is twice as calcemic as 1,25-
(OH)2D3. In combination with 20-epimerization [2α-methyl-
20-epi-1,25(OH)2D3] VDR binding affinity increases even 12-
fold.63 2α-(3′-Hydroxypropyl)-1,25(OH)2D3 (97) has a 3-fold
increased VDR binding affinity than 1,25(OH)2D3, while 2β-
(3′-hydroxypropyl)-1,25(OH)2D3 (98) is 1.4 times more
potent. Terminal hydroxylation of 2α- and 2β-propoxy groups
at C-2, 2α-hydroxypropoxy-1,25(OH)2D3 (99) and 2β-
hydroxypropoxy-1,25(OH)2D3 (100) also increases the VDR
binding potential.
19-nor-Vitamin D analogs are known to be devoid of

hypercalcemic and hyperphosphatemic effects.65,66 For exam-
ple, 19-nor-1,25(OH)2D3 (101) has a 5 times reduced the
VDR binding affinity compared to 1,25(OH)2D3 paired with
low or no bone calcification activity, while 19-nor-1,25-
(OH)2D2 (paricalcitol, 9, Figure 1) has similar affinity as the

natural hormone. Selected modifications at the C-2 position of
19-nor-vitamin D analogs are more potent inducers of gene
activity. 2β-(3′-Hydroxypropoxy)-19-nor-1,25(OH)2D3 (102)
and 2α-(3′-hydroxypropoxy)-19-nor-1,25(OH)2D3 (103) have
reduced potency in bone and intestine.67 2-Methylene-19-nor-
20-epi-1,25(OH)2D3 (2MD, 35) shows VDR binding affinity
comparable to 1,25(OH)2D3 but a 100 times enhanced ability
to mobilize calcium from bone.68 Moreover, 2MD is 10 times
more potent than 1,25(OH)2D3 in activating CYP24A1 gene
activity and inducing HL-60 cell differentiation. Analogs of
2MD with a shortened side-chain, such as 2MP (105) and
2MbisP (106) are able to reduce parathyroid hormone (PTH)
production.69

The compound 19-nor-1α,2β,25(OH)3D3 (107) is as potent
as 1,25(OH)2D3 in intestinal calcium transport, while its
epimer 19-nor-1α,2α,25(OH)3D3 (108) possesses less activ-
ity.70 Importantly, both compounds are not calcemic.
Compound 107 has higher VDR binding affinity than 108
and is more potent in inhibiting MCF-7 cell proliferation.
When the 2-ethylidene group is in E-configuration (109), VDR
binding affinity is 2.4-fold increased. Moreover, a 3′-
hydroxypropylidene group at C-2 in E-configuration resulted
in the potent compounds AGR (110) and 1AGS (111), which
seem to be intestine-selective.60

2α-(3′-Hydroxypropyl)-19-nor-1,25(OH)2D3 (112), which
is modified at both C-2 and C-10, shows a similar VDR
binding affinity as 1,25(OH)2D3, displays a 36-fold higher
potential in inducing HL-60 cell differentiation, and has a 500-
fold higher antiproliferative potency in PZ-HPV-7 prostate
cells. Its epimer 2β-(3′-hydroxypropyl)-19-nor-1,25(OH)2D3

Figure 12. Vitamin D analogs with side-chain and A-ring modifications (V). The table summarizes the biological properties of the compounds:
reference, 1,25(OH)2D3; (=) similar value; (+) >10× higher; (++) >100× higher; (−) >10× lower; (--) >100× lower; VDR aff, VDR affinity;
HL60 diff, HL-60 cell differentiation induction.
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(113) has lower VDR binding and prodifferentiation activity,
but it is as potent as 110 in inhibiting prostate cell
proliferation.70,71

Promising analogs with three different alterations in the
vitamin D skeleton (the A-ring, the side-chain, and the CD-
ring) are 1β-hydroxymethyl-16-ene-24,24-F2-26,27-bishomo-
25(OH)2D3 (QW-1624-F2-2, 114)72 and 1α-fluor-16-ene-20-
epi-23-ene-26,27-bishomo-25(OH)2D3 (Ro-26.9228, 115).73

In a skin cancer model compound 114 inhibits progression and
molecule 115 restores bone loss, while both are not
hypercalcemic.

Six new derivatives of compound 104 have been prepared by
a convergent synthesis using the Wittig−Horner approach74 in
order to evaluate the influence of methyl groups at C-22 on
biological activity (Figure 11). Single methylation of the
(20R)-25-hydroxylated side-chain (117) did not change the
VDR binding affinity in comparison to the parent compound
104. However, the addition of a 22-methyl group to the (20S)-
25-hydroxylated side-chain (118) caused a much stronger
effect. The 22R-compound 118a has a 2.5 times higher VDR
binding affinity than 104 and is 250-fold more potent than its
22-epimer 118b. The prodifferentiation potential of an analog

Figure 13. Structure−function relationship of various VDR ligands (II). The binding of 14-epi-2α-methyl- and 14-epi-2β-methyl-1,25(OH)2-6,7-
dehydro-19-norvitamin D3. The overall spatial conservation of the OH groups is maintained, but the CD-ring structure for the epimers shows
higher flexibility by changing the more planar conformation in 1,25(OH)2D3 to reverse V-letter shape. This is largely due to the bending of the C-
ring downward. The other notable changes involve the proximal location of L227 in 2β-methyl epimer and W286 for 1,25(OH)2D3 under 3.5 Å
cutoff. Structural elements from 14-epi-2α-methyl- (PDB code 3AUQ), 14-epi-2β-methyl-1,25(OH)2-6,7-dehydro-19-norvitamin D3 (PDB code
3AUR), and 1,25(OH)2D3 (PDB code 1DB1) complexes are highlighted in green, blue, and white color, respectively (A). Possible mechanism
governing the potency of fluorinated analogs. The effect of a fluorinated functional group is illustrated on CF3 group in comparison with CH3 group
located at the terminal carbons C-26 and C-27 of the ligand’s aliphatic chain. The high electronegativity of the fluor atom has a pulling effect for the
hydrophobic residues located in the proximity of the functional group (bottom), which cannot be seen for the 1,25(OH)2D3 under the same 3.5 Å
cutoff (top). However, the hydrogen bonds between the conserved histidines and the 25-OH group are maintained in both scenarios. The positions
of the CF3 groups show a moderate opening about 5° with maintained distance between carbon C-26 and C-27. These changes have effect on the
LBP, which is a bit smaller (middle panel) in the presence of CF3 functional groups (B). Structural elements for the CF3 and CH3 groups are
highlighted in orange and white color, respectively.
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with a 22S-methyl group in the “natural” side-chain (20R)
(116a) is 10-fold higher than that of its 22-epimer (116b),
whereas in the case of “unnatural” 20S-compound the 22R-
epimer (117a) is 1000 times more potent than its 22-epimer
(117b) and 4-fold more potent than the parent compound
104. When two methyl groups were introduced at C-22, such
as in the 20R-compound (118a) and the 20S-compound
(118b), VDR binding affinity is increased compared to their
parent molecules.
C-20-isomers of 25(OH)-2-methylene-vitamin D3 and 3-

desoxy-1α,25(OH)2-2-methylene-vitamin D3 (117−120) were
synthesized through a convergent approach using a Sonoroga-
shira coupling75 (Figure 11). The biological activities of
compounds 119−122 are clearly lower than those of the
parent compound 104. With the exception of the 1α-
hydroxylated compounds they were also less active than
1,25(OH)2D3. Analogs without a 1α-OH group show lower
VDR binding affinity, HL-60 cell prodifferentiation activity,
and CYP24A1 activation than those hydroxylated at C-1. The
addition of the 10-exo-methylene group improved the in vitro
activity of the (20S)-1-desoxy compounds. In contrast, in the
(20S)-series only VDR binding affinity augmented. The

presence of the 2-exomethylene group resulted in enhanced
intestinal calcium transport compared to 1,25(OH)2D3, but
bone calcium mobilization was 10-fold decreased in the (20R)-
series.
A large structure−function analysis of 39 Gemini deriva-

tives43 showed five compounds (123−127) with enhanced
antiproliferative activity (Figure 12). Compound 127 was
stronger than 1,25(OH)2D3 in inhibiting cancer cell growth,
while both were equipotent in their calcemic effect.
The Sonogashira approach was used to synthesize novel 14-

epi derivatives of 19-nor-1α,25(OH)2-previtamin D3 (132)
and 19-nor-1α,25(OH)2-tachysterol D3 (135).76 Dienynic
compounds (129−131) showed moderate VDR binding
affinity, where the 2-methylene compound (129) has higher
activity than the 2-methyl-substituted diastereomers 130 and
131. Previtamin D3 compounds (132−134) showed low VDR
binding affinity. 14-epi-19-nor-tachysterol) D3 compounds
displayed higher VDR binding affinity, of which 2-methylene-
14-epi-19-nor-tachysterol D3 (137) is most potent. Crystal
structure analysis indicated unique binding conformations. The
binding of both epimers, 14-epi-2α-methyl- (PDB code
3AUQ) and 14-epi-2β-methyl-1,25(OH)2-6,7-dehydro-19-nor-

Figure 14. A-ring, D-ring, and side-chain modified vitamin D analogs. The table summarizes the biological properties of the compounds: reference,
1,25(OH)2D3; (=) similar value; (+) >10× higher; (+++) >1000× higher; (−) >10× lower; (--) >100× lower; MLR IFN-γ, INFG inhibition; LPS
TNFα, TNF inhibition.
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vitamin D3 (PDB code 3AUR) is very similar in maintaining
the position of the anchoring OH groups seen from the

1,25(OH)2D3 complex (PDB code 1DB1). However, the
modification between C-6 and C-7 provides rigidity for this

Figure 15. Nonsteroidal VDR ligands. The table summarizes the biological properties of the compounds: reference, 1,25(OH)2D3; (=) similar
value; (+) >10× higher; (++) >100× higher; (+++) >1000× higher; (−) >10× lower; (--), >100× lower; (---), >1000× lower; VDR aff, VDR
affinity; calcemia, [Ca2+] level changes in serum; 24OH trans, CYP24A1 transactivation activity; HL60 diff, HL-60 cell differentiation induction;
MCF7 pr, MCF7 proliferation inhibition.
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region introducing an unforeseen compensation in flexibility
for the CD rings. Compared to their more planar conformation
in 1,25(OH)2D3, here they take a reverse V-letter
conformation such as by the bending of the C ring about 9°
downward. For the 2β-methyl isomer the residue L227 is
closer to the ligand under 3.5 Å cutoff but under similar cutoff
W286 seems to be closer to 1,25(OH)2D3, which is due to
more planar conformation of the CD-rings (Figure 13A).

■ SIDE-CHAIN, D-RING, AND A-RING
MODIFICATIONS

The synthesis of 12 analogs (138−149) of 1α,25(OH)2-16-
ene-20-cyclopropylvitamin D3 relied on Wittig−Horner
coupling77 (Figure 14). These compounds have an unsaturated
D-ring between C-16 and C-17 and a cyclopropyl group
located at C-20. The structural diversity on the side-chain
covered triple CC bonds (138−144), double CC bonds
(145−147) and single CC bonds (148 and 149) together with
the A-ring covered 1α,3β-dihydroxy (138, 143, 146, and 149),
19-nor (139, 142, 145, and 148), 3-deoxy-1α-hydroxy (141),
and 1α-fluor-3β-hydroxy (140 and 144). The anti-inflamma-
tory properties of these compounds were studied via analyzing
the inhibition of the secretion of the cytokines interferon-γ
(IFNG) and tumor necrosis factor (TNF). Most of 16-ene-20-
cyclopropyl analogs inhibited IFNG with similar potency to
1,25(OH)2D3, but compound 149 was more potent. The
inhibition of TNF showed wide differences, some analogs
(138, 140, 143−145) failed to induce TNF inhibition,
whereas analog 149 inhibited TNF more efficiently than
1,25(OH)2D3. The metabolism of 149 was studied and the
stable 24-oxo metabolite 150 accumulated during metabolism.
Compound 150 mediates similar induction of primary vitamin
D target genes as analog 149 but has a lower calcemic activity.

■ NONSTEROIDAL VDR LIGANDS

The synthesis of nonsteroidal VDR agonists containing a
hydrophobic 1,12-dicarba-closo-dodecaborane (p-carborane)
unit was achieved through bimolecular nucleophilic substitu-
tion78 (Figure 15). The carborane cage replaced the CD-rings
of the natural hormone exploiting the hydrophobicity of p-
carborane. Despite their simple and flexible structure, the
carborane-based VDR ligands show moderate binding affinity
for VDR compared to 1,25(OH)2D3. The analogs are flexible
acyclic triols; i.e., they lack an A-ring and conjugated triene
structures. Their structures shared a branched side-chain on a
carborane carbon, and in the other carbon three different
chains are bound either to 3-oxaheptan-5,7-diol (151), 3-
oxahexan-5,6-diol (152) or 4-oxaheptan-6,7-diol (153). The
flexibility of the diol is favorable for VDR binding affinity,
which, however, is more then 100 times lower than for
1,25(OH)2D3. Nevertheless, these mimics are rather active in
inducing HL-60 cell differentiation [rac-151, 5%; (S)-151, 8%;
(R)-151, 2%; 152, 0.05%; 153, 0.001%)]. The S-isomers
showed, compared to the R-enantiomer, higher prodifferentia-
tion activity and VDR binding affinity.
LG190178 (154) is the first published nonsteroidal vitamin

D analog.79 In general, VDR ligands based on bisphenyl core
compounds with γ-hydroxycarboxylic acid moiety (155) show
agonist activity. From compounds with a fluorine-containing
bisphenyl core80 the hexafluoro analog (157) is 5 times more
potent in reporter gene assays than the parent compound
(155), shows 2 times higher prodifferentiation activity, and is 7

times more effective in inducing bone γ-carboxyglutamate
protein (BGLAP) expression. Like in secosteroidal vitamin D
analogs, fluorination is an effective modification as shown by
crystal structure analysis of the VDR-LBD complexed with
155. Also in this case helix H12 is stabilized in the agonistic
position allowing interaction with coactivator proteins. From
physicochemical point of view the fluorine atom’s ionic radius
is 100% larger than that of the hydrogen, the van der Waals
radius is only 27% larger. However, the high electronegativity
of fluor has a possible “pulling” effect for residues residing in
the nearest proximity of a fluorinated functional group. This
can be illustrated on the comparison of the aliphatic chain of
the ligands that have CH3 or CF3 functional groups at carbon
C-26 and C-27. The latter shows additional five hydrophobic
residues that cannot be seen for CH3 at the cutoff 3.5 Å
(Figure 13B). The only maintained interactions are with
conserved histidine residues. In addition, the possible reaction
to the strong van der Waals forces from hydrophobic residues
is a moderate opening of the functional groups by 5° with
maintained distance between carbon C-26 and C-27 due to
additional twist in the absolute position of the C-25 carbon.
These net effects show also small variation the LBP size, which
is slightly confined in the presence of CF3 functional groups
resulting in a tighter packing of the cavity (Figure 13B).
Nonsteroidal vitamin D mimics with phenylpyrrolyl pentane

skeletons have been designed (159−165).81,82 Among them,
159 shows clear antiproliferative effects on MCF-7 cells. In
order to improve the biological activity of compound 159,
derivatives were designed comprising side-chains terminated in
a diethylcarbinol, hydrophilic groups or hydrophobic groups
(160−165). The antiproliferative activities of the compounds
were tested in MCF-7 cells, PC3 human prostate cancer cells,
Caco2 human colon cancer cells, and HepG2 human liver
cancer cells. Compound 160b exhibits the best antiproliferative
activity, being more potent than the prototype compound 159
and 1,25(OH)2D3. Also the compounds 160a, 160c, 160d,
160f, 160g, 164b, and 165b show in all four model systems
better antiproliferative activities than 159 and 1,25(OH)2D3.
The R2 substitutions at the pyrrole-ring side-chains are crucial
for the antiproliferative activity of the compounds. Molecules
with hydrophilic groups at the end of the pyrrole-ring side-
chain (160a, 160b, 160d, 160g, and 164b) are more potent
than those bearing hydrophobic groups (161a, 161b, 162a−d,
163a, and 164b). Moreover, compounds 160a, 160c, 160d,
160g, and 164b were less cytotoxic than 159 and 1,25-
(OH)2D3. Compounds 160a−d, 164b, and 165b also display
prodifferentiating activity. In reporter gene assays 164b is the
most potent compound, whereas the transactivation potential
of 160b and 160g is comparable to that of 1,25(OH)2D3.
A novel class of analogs,83 where the C-ring and D-ring were

replaced by an aromatic m-phenylene D-ring and an alkyl
chain, were synthesized based on the formation of the triene
system through a Pd-catalyzed ring-closure of an enol trifate
and a subsequent Suzuki−Miyaura reaction with appropriate
boronate in aqueous medium.84 Compounds 166a−e
efficiently induce the differentiation of human keratinocytes
and show antiproliferative activity in MCF-7, PC-3, SKOV-3
(human ovary cancer), and HaCaT cells comparable to
1,25(OH)2D3. Compound 166a with the shortest chain at
C-8 is most active not only in antiproliferative tests but also in
reporter gene assays. Importantly, none of compounds 166a−e
induce hypercalcemia. In a SCID mice xenograph model of
aggressive MDA-MB-231 human breast cancer cells compound
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166a shows high efficacy for tumor growth inhibition and
overall survival.

■ CONCLUSIONS
This review demonstrated that clever and relevant chemistry
significantly increased the number and variety of synthetic
vitamin D analogs. Analog design had advanced and led to
functional molecules, such as the o-carborane compounds, that
are devoid of a 25-OH group. Moreover, there are now
molecules that completely lack A- and/or CD-rings, such as p-
carborane compounds, but still interact with VDR. Some of
these nonsteroidal vitamin D analogs display high activity in
vitro in combination with low calcemic effects in vivo. Thus,
the area of nonsteroidal analogs and mimics is expected to
further rise in future.
The assessment of the biological profile of VDR ligands is

still primarily reduced to in vitro assays, such as VDR binding
affinity, reporter gene assays, and antiproliferative and
prodifferentiation measurements in different cancer cell lines.
The variety in the assays makes a direct comparison of the
different types of vitamin D analogs difficult. Moreover, a
reliable extrapolation of the in vivo potential of the compounds
is impossible without changing to a different set of assays, such
as gene expression profiles in freshly isolated human peripheral
blood mononuclear cells.85

Nowadays research on vitamin D analogs is nearly
exclusively performed in academia and many interesting
approaches for optimizing the profile of VDR ligands have
not been explored to their limits. Accordingly, a complete
picture is still missing and there is potential for improvements.
The number of nearly 150 solved crystal structures of the
VDR-LBD complexed with synthetic ligands is impressive and
demonstrates the active interest of academia in understanding
the molecular actions of VDR agonists and antagonists.
Unfortunately, failures of clinical trails focused on cancer

have majorly dampened the interest of pharma industry in
further developing vitamin D compounds. Since the natural
hormone 1,25(OH)2D3 primarily prevents bone- and immune-
system-related diseases, the molecule and it synthetic
derivatives may not be perfect drugs for the therapy of cancer.
Nevertheless, calcipotriol-activated VDR in stroma of human
pancreatic tumors had been shown to markedly reduce
markers of inflammation and fibrosis in pancreatitis and
human tumor stroma.86 This suggests that vitamin D
compounds rather affect immune cells of the microenviron-
ment of tumors than directly inhibiting the proliferation of the
cancer cells. In fact, to date, most genome-wide data on the
action of VDR and its ligands are available from cells of the
hematopoietic system.87 This further emphasizes the impact of
vitamin D and VDR for innate and adaptive immunity and
suggests that these areas should be further explored for a
commercial application.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jmed-
chem.9b00208.

Table S1 describing all 143 publically available VDR
ligand crystal structures with individual hyperlinks to the
PDB and PubMed databases and citations of refs
90−144 (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*Phone: +358-40-355-3062. E-mail: carsten.carlberg@uef.fi.
ORCID
Carsten Carlberg: 0000-0003-2633-0684
Notes
The authors declare no competing financial interest.
Biographies
Miguel A. Maestro received his Ph.D. in Chemistry from the
University of Santiago de Compostela (Spain) in 1989. He did his
postdoctoral stay in synthetic organic chemistry at the ETH-Zentrum
(Zürich, Switzerland). In 1991 he joined the Faculty of Sciences at the
University of A Coruña (Spain) studying synthetic methodologies
towards vitamin D metabolites and analogs. Since 2018 he holds a
Professor position at the Department of Chemistry. Prof. Maestro’s
interests are the synthesis of new vitamin D analogs with isotopic
labeling and the atomic disposition of molecular structures through X-
ray crystallography.

Ferdinand Molna r received his Ph.D. in Biochemistry from the
University of Kuopio (Kuopio, Finland) in 2006. He did his
postdoctoral training in Structural Biology at the IGBMC (Illkirch,
France). In 2008 he joined the School of Pharmacy at the University
of Eastern Finland (Kuopio, Finland) studying nuclear receptor−
ligand, −protein, and −DNA interactions. In 2018 he moved to the
Nazarbayev University (Astana, Kazakhstan) where he holds an
Associate Professor position at the Department of Biology. Prof.
Molna  r’s interests are integrative structural biology and bioinfor-
matics, eukaryotic transcriptional regulation in health and disease, and
recombinant protein production.

Carsten Carlberg graduated in 1989 with a Ph.D. in Biochemistry at
the Free University Berlin (Germany). After positions as postdoc at
Roche (Basel, Switzerland), group leader at the University of Geneva
(Switzerland), and docent at the University of Düsseldorf (Germany)
he is since 2000 Full Professor of Biochemistry at the University of
Eastern Finland in Kuopio (Finland). His work focuses on
mechanisms of gene regulation by nuclear hormones, in particular
on vitamin D. At present Prof. Carlberg has projects on epigenome-
wide effects of vitamin D on the human immune system.

■ ACKNOWLEDGMENTS
M.A.M. thanks Xunta de Galicia (Grant ED431B-2018/
GI2105) for financial support. C.C. thanks the Academy of
Finland for support.

■ ABBREVIATIONS USED
1,25(OH)2D3, 1α,25-dihydroxyvitamin D3; 1,25(OH)2D2,
1α,25-dihydroxyvitamin D2; 25(OH)D3, 25-hydroxyvitamin
D3; BGLAP, bone γ-carboxyglutamate protein (previously
called osteocalcin); CAMP, cathelicidin antimicrobial peptide;
CYP24A1, cytochrome P450, family 24, subfamily A,
polypeptide 1; DBP, vitamin D binding protein; IFNG,
interferon-γ; LBD, ligand-binding domain; LBP, ligand-binding
pocket; PDB, Protein Data Base; PTH, parathyroid hormone;
RXR, retinoid X receptor; TNF, tumor necrosis factor; TSS,
transcription start site; VDR, vitamin D receptor

■ REFERENCES
(1) Tremezaygues, L.; Sticherling, M.; Pfohler, C.; Friedrich, M.;
Meineke, V.; Seifert, M.; Tilgen, W.; Reichrath, J. Cutaneous
photosynthesis of vitamin D: an evolutionary highly-conserved
endocrine system that protects against environmental hazards

Journal of Medicinal Chemistry Perspective

DOI: 10.1021/acs.jmedchem.9b00208
J. Med. Chem. 2019, 62, 6854−6875

6870

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00208
http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00208
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00208/suppl_file/jm9b00208_si_001.pdf
mailto:carsten.carlberg@uef.fi
http://orcid.org/0000-0003-2633-0684
http://dx.doi.org/10.1021/acs.jmedchem.9b00208


including UV-radiation and microbial infections. Anticancer Res. 2006,
26 (4A), 2743−2748.
(2) Jasinghe, V. J.; Perera, C. O.; Barlow, P. J. Bioavailability of
vitamin D2 from irradiated mushrooms: an in vivo study. Br. J. Nutr.
2005, 93 (6), 951−955.
(3) Norman, A. W. From vitamin D to hormone D: fundamentals of
the vitamin D endocrine system essential for good health. Am. J. Clin.
Nutr. 2008, 88 (2), 491S−499S.
(4) Hollis, B. W. Circulating 25-hydroxyvitamin D levels indicative
of vitamin D sufficiency: implications for establishing a new effective
dietary intake recommendation for vitamin D. J. Nutr. 2005, 135 (2),
317−322.
(5) Carlberg, C.; Polly, P. Gene regulation by vitamin D3. Crit. Rev.
Eukaryotic Gene Expression 1998, 8 (1), 19−42.
(6) Bouillon, R.; Suda, T. Vitamin D: calcium and bone homeostasis
during evolution. BoneKEy Rep. 2014, 3, 480.
(7) Hewison, M. An update on vitamin D and human immunity.
Clin. Endocrinol. (Oxford, U. K.) 2012, 76 (3), 315−325.
(8) Rook, G. A. The role of vitamin D in tuberculosis. Am. Rev.
Respir. Dis. 1988, 138 (4), 768−770.
(9) Ramagopalan, S. V.; Maugeri, N. J.; Handunnetthi, L.; Lincoln,
M. R.; Orton, S. M.; Dyment, D. A.; Deluca, G. C.; Herrera, B. M.;
Chao, M. J.; Sadovnick, A. D.; Ebers, G. C.; Knight, J. C. Expression
of the multiple sclerosis-associated MHC class II Allele HLA-
DRB1*1501 is regulated by vitamin D. PLoS Genet. 2009, 5 (2),
e1000369.
(10) Holick, M. F.; Binkley, N. C.; Bischoff-Ferrari, H. A.; Gordon,
C. M.; Hanley, D. A.; Heaney, R. P.; Murad, M. H.; Weaver, C. M.
Evaluation, treatment, and prevention of vitamin D deficiency: an
Endocrine Society clinical practice guideline. J. Clin. Endocrinol.
Metab. 2011, 96 (7), 1911−1930.
(11) Carlberg, C. The physiology of vitamin D-far more than
calcium and bone. Front. Physiol. 2014, 5, 335.
(12) Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357,
266−281.
(13) Kupferschmidt, K. Uncertain verdict as vitamin D goes on trial.
Science 2012, 337 (6101), 1476−1478.
(14) Institute of Medicine. Dietary Reference Intakes for Calcium and
Vitamin D; Ross, A. C., Taylor, C. L., Yaktine, A. L., Del Valle, H. B.,
Eds.; National Academies Press: Washington, DC, 2011.
(15) Cheskis, B. J.; Freedman, L. P.; Nagpal, S. Vitamin D receptor
ligands for osteoporosis. Curr. Opin Invest. Drugs 2006, 7 (10), 906−
911.
(16) Fogh, K.; Kragballe, K. New vitamin D analogs in psoriasis.
Curr. Drug Targets: Inflammation Allergy 2004, 3 (2), 199−204.
(17) Bouillon, R.; Okamura, W. H.; Norman, A. W. Structure-
function relationships in the vitamin D endocrine system. Endocr. Rev.
1995, 16, 200−257.
(18) Carlberg, C.; Mouriño, A. New vitamin D receptor ligands.
Expert Opin. Ther. Pat. 2003, 13, 761−772.
(19) Carlberg, C.; Molna  r, F.; Mouriño, A. Vitamin D receptor
ligands: the impact of crystal structures. Expert Opin. Ther. Pat. 2012,
22 (4), 417−435.
(20) Evans, T. R.; Colston, K. W.; Lofts, F. J.; Cunningham, D.;
Anthoney, D. A.; Gogas, H.; de Bono, J. S.; Hamberg, K. J.; Skov, T.;
Mansi, J. L. A phase II trial of the vitamin D analogue Seocalcitol
(EB1089) in patients with inoperable pancreatic cancer. Br. J. Cancer
2002, 86 (5), 680−685.
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