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2,5-Dideoxy-2,5-imino-D-glucitol has been synthesized via tin(II)-

mediated anti-selective aldol reaction of bislactim ether 5 and 2,4-

ethylidene-D-erythrose derivative 6. Computed boat-like 

transition structures with a stabilizing hydrogen bond can 

account for the unexpected stereoselection. 10 

Given the potent and specific inhibitory activity toward 

carbohydrate processing enzymes, polyhydroxylated 

piperidines and pyrrolidines have emerged in recent years as 

highly promising candidates for the development of new drugs 

against diabetes, cancer metastasis and viral infections.1 In 15 

particular, pyrrolidine imino sugar 2,5-dideoxy-2,5-

iminogalactitol (DGADP) and its C-4 epimer, 2,5-dideoxy-

2,5-iminoglucitol (DGDP), recently isolated from Thai 

medicinal plants, are potent inhibitors of several 

galactosidases and glucosidases.2 In addition, N-adamantanyl 20 

alkyl amide derivatives of DGDP have been found to act as 

pharmacological chaperones for Gaucher disease,3a while N-

acetyl analogues of DGDP 1 are hexosaminidase inhibitors 

which may offer new therapeutic options in the treatment of 

osteoarthritis.3b 25 

 Consequently with the huge pharmacological potential of 

polyhydroxylated pyrrolidines,4 significant efforts have been 

devoted to their synthesis. To date, DGDP have been mostly 

synthesized through stereoselective transformations of readily 30 

available carbohydrate precursors.5 Alternative approaches 

have relied on annulation of −amino acid derivatives,6a 

chemoenzymatic processes,2a,6b or asymmetric 

aminohydroxylations6c. We have recently described a general 

strategy for the synthesis of piperidine imino sugars, by using 35 

an aldol reaction between metalated bislactim ethers and 

threose or erythrose acetonides in the key-step.7 In this 

communication, we introduce an extension of this 

methodology to the synthesis of pyrrolidine imino sugars. In 

adaptating the synthetic plan we recognized that amino esters 40 

2 might be valuable intermediates since the targeted 

pyrrolidines would originate by cyclization via nucleophilic 

substitution of an activated hydroxyl group, followed by 

reduction of the carboxylic acid group (see Scheme 1).  

45 

Scheme 1 

 We envisaged preparing key intermediates 2 by 

stereocontrolled aldol additions between four-carbon building 

blocks and a chiral glycine equivalent. Alkylidene-tetroses 

like 4 were sought as appropriate precursors, delivering 50 

various configurations and being suitable functionalized at 

positions 2 and 4. Although commonly used in stereoselective 

synthesis,8 to the best of our knowledgement, 2,4-alkylidene-

threoses or erythroses had not been previously employed as 

aldol acceptors.9 In addition, aldol reactions of metalated 55 

bislactim ethers 3 with matched −alkoxyaldehydes have been 

reported to proceed with high levels of syn,anti-selectivity, 

which has been rationalized by invoking chair-like pericyclic 

transition structures with a Felkin-Anh or a Cornforth-like 10 

conformation for the aldehyde moiety.7,11 Thus, double 60 

asymmetric induction of the 3,1´-syn-1´,2´-anti configuration 

was expected in the reaction of D-valine and D-erythrose 

derivatives 5 and 6 (see Scheme 2), which could enable the 

selective access to a convenient precursor of pyrrolidine imino 

sugar DGADP. 65 

Scheme 2 
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 To this end, n-BuLi was added to a solution of bislactim 

ether 5 in THF at −78 ºC, and the corresponding lithium 

azaenolate was allowed to react with Cl2Sn for 1 h to produce 

the transmetalated azaenolate SnCl+5−. Upon addition of 

freshly distilled aldehyde 6,12 reaction took place within 4 h at 5 

−78 ºC and, after quenching and aqueous workup, a crude

mixture containing adducts 7a/8 in 12:1 ratio 13 was isolated

in 80% combined yield. The separation of the components of

this mixture could be achieved by flash chromatography to

provide 7a with high purity (d.e. higher than 98%) and 74% 10 

yield. Surprisingly, the configuration of the major adduct 7a 

was determined as 3,1´-anti-1´,2´-syn instead of the expected 

3,1´-syn-1´,2´-anti one.14 

 To gain more insight into the origins of the unexpected 

anti,syn-selectivity in the reaction between SnCl+5− and 6, we 15 

have computed the competing diastereomeric transition 

structures (TSs) for the aldol process.15 In agreement with the 

experimental outcome, most favorable TS was located in the 

trans,anti,syn-diastereomeric pathway. This TS, designated as 

tas-BN in Figure 1, was characterized by a boat-like 20 

conformation for the pericyclic ring and a non-Anh 

conformation 16 for the erythrose moiety. In the trans,syn,anti-

diastereomeric pathway, most stable TS was tsa-CM, which 

showed chair-like and Cornforth-like conformations for the 

pericyclic and the erythrose moieties and was calculated 1.2 25 

kcal/mol higher in energy than tas-BN. Other competitive TSs 

in the cis-pathways were also computed higher in energy. It 

should be noted that in tas-BN the distance between the 

oxygen atom at −position of the erythrose moiety and one of 

the methoxy hydrogens of the bislactim ether was reduced to 30 

2.22 Å, which indicated a hydrogen bond interaction 

(represented as a blue doted line in Figure 1). This interaction 

was not present in the competing TSs and therefore could 

contribute to the unexpected kinetic preference for the 

trans,anti,syn-pathway.17 35 

 Conversion of adduct 7a to the targeted imino sugar was 

straightforward. After deprotection of silyl ether, mesylation 

of diol 7b (by treatment with MsCl, Et3N and a catalytic 

amount of dimethylaminopyridine in CH2Cl2 at 0 ºC) was 

completely regioselective at equatorial hydroxyl group (see 40 

Scheme 2).18 Protection of mesylate 7c was found necessary 

to achieve acceptable yields in the hydrolysis of the pyrazino 

moiety, as was previously reported for other bislactim ethers 

with free hydroxyl groups.19 After benzylation, the selective 

cleavage of the bislactim ether in the presence of the 45 

ethylidene acetal took place with concomitant cyclization (see 

Scheme 3). In this manner, hydrolysis of 9 in acidic media 

gave rise to glucuronate 10 in 82% yield after removing the 

auxiliary D-valine by flash chromatography. Reduction of the 

ester group of 10 with LiBEt3H proceeded cleanly, as 50 

previously described for other pyrrolidine derivatives.5e Final 

deprotection of pyrrolidine 11, by catalytic hydrogenation and 

hydrolysis of the acetal in hot HCl, followed by purification 

of the crude mixture by ion-exchange chromatography 

(Dowex, H+ form) and reversed-phase chromatography led to 55 

DGDP in excellent yield.20 

Figure 1. Chem3D representations of the most favored TSs located in 

the gas phase (at B3LYP/cc-pVDZ-PP level) for the reaction between 

SnCl+5− and 6. Relative energies in THF (at B3LYP(SCRF)/cc-60 

pVTZ-PP level using the PCM method) are shown in parenthesis in 

kcal/mol. Distances are in angstromgs. The hydrogen atoms are 

omitted for clarity except at chiral and reaction centers. Legend: 

carbon = gray, nitrogen = blue, oxygen = red, hydrogen = turquoise, 

tin = yellow, chlorine = green, silicon = mauve. 65 

Scheme 3 Reagents and conditions: i. NaH, BnBr, Bu4NI, THF 

(70%). ii. 0.25M HCl:MeOH 1:3 (82%). iii. LiEt3BH, THF, 0 ºC 

(90%). iv. (a) 0.25M HCl:THF 1:1, H2, Pd/C; (b) 1M HCl,  (96%). 

 In summary, with the efficient preparation of DGDP we 70 

have traced the utility of tin(II)-mediated aldol reactions 

between bislactim ethers and 2,4-ethylidene-tetroses for the 

synthesis of pyrrolidine imino sugars. Additional studies to 

extend this aldol-based strategy to the synthesis of other 

biologically active 2,5-iminohexitols are currently under 75 

progress and will be reported in due course. 
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