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Abstract We introduce a new model involving TU-games and exogenous structures. Specif-

ically, we consider that each player in a population can choose an element in a strategy set

and that, for every possible strategy profile, a TU-game is associated with the population.

This is what we call a TU-game with strategies. We propose and characterize the maxmin
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procedure to map every game with strategies to a TU-game. We also study whether or not

the relevant properties of TU-games are transmitted by applying the maxmin procedure.

Finally, we examine two relevant classes of TU-games with strategies: airport and simple

games with strategies.

Keywords game theory · cooperative games · maxmin procedure · strategies · airport

games · simple games

1 Introduction

After its introduction in von Neumann and Morgenstern (1944), the model of TU-games

has been widely used to analyze cooperation in multi-agent decision problems. Just to give

few examples, Çetiner and Kimms (2013) applied TU-games in revenue sharing for airline

alliances, Fiestras-Janeiro et al. (2015) in inventory control, Lozano et al. (2015) in pro-

duction processes, Naber et al. (2015) in allocating CO2 emission, Kimms and Kozeletskyi

(2016) in logistics, Li et al. (2016) in efficiency evaluation, Goyal and Kaushal (2017) in

traffic management, and Balog et al. (2017) in finance. In the seventies, several authors dealt

with cooperative situations in which the cooperation was somewhat restricted by exogenous

structures. For instance, Aumann and Dreze (1974) treated TU-games with a coalition struc-

ture, Myerson (1977) studied TU-games with graph-restricted communication, and Owen

(1977) considered TU-games with a priori unions. Since then, a number of models and so-

lutions for TU-games with structures have been studied in the literature. A couple of recent

papers on this topic are Alonso-Meijide et al. (2015) and Fernández et al. (2016). Bilbao

(2000) is a book devoted to this topic.

In this paper, we introduce a novel model involving TU-games and exogenous structures.

Specifically, we consider that each player in a population chooses one of the strategies in a
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strategy set. Next, a TU-game that depends on the selected strategy profile is associated with

the population. This is what we call a TU-game with strategies. This model can be useful in

a number of practical situations. For instance, consider a set of agents that have to divide an

amount of money; they can negotiate directly or, on the contrary, they can previously take

some (costly) actions that will modify their negotiation power. Any situation of this type

can be modeled as a TU-game with strategies. A reasonable recommendation for the players

involved in one such process is that they negotiate directly, avoiding the costly actions, but

taking into account their capacities for changing the negotiation power. This is the main idea

of our approach to TU-games with strategies: to associate each TU-game with strategies to

a new TU-game that appropriately reflects the bargaining coalitional power of the involved

players.

As far as we know, this approach is not used in the literature to analyze situations involv-

ing strategic and cooperative environments. Instead, the existing literature tried to reduce the

initial model to a strategic game in order to study its values and solutions. For instance, Ui

(2000) introduced the model of TU-games with action choices. This mathematical model

is similar to our model but the value of a coalition in any TU-game is not affected by the

strategies of players outside that coalition. Moreover, its analysis focused on reducing a TU-

game with action choices to a strategic game where the payoff of each strategy profile is

determined by the Shapley value of the corresponding TU-game. In the same line, Bran-

denburger and Stuart (2007) introduced the class of biform games where the value of each

coalition depends on the strategies of all players, like in our model. Nevertheless, their anal-

ysis is similar to that in Ui (2000), in the sense that they reduce a biform game to a strategic

game, where the payoff of each strategy profile is determined by a particular element in the

core of the corresponding TU-game. Platkowski (2016) introduced the class of evolutionary

coalitional games. Again, the initial situation is transformed into a strategic game where
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NR NL L

NL u u

L u v

R NL L

NL u u

L u w

Fig. 1 The TU-game with strategies in the three heirs willing to divide the inheritance.

the payoffs are obtaining by redistributing the sum of the initial individual payoffs using a

well-known solution concept for TU-games. On the other hand, some literature is devoted to

the study of uncertainty in TU-games. Habis and Herings (2011) considered a model where

agents are involved in a particular TU-game depending on the state of nature chosen from a

finite set. In this model, Habis and Herings (2011) are interested in finding stable allocations

in each state. Ertemel and Kumar (2018) studied rationing problems where the claims are

state dependent. They proposed an extension of the proportional rule as an allocation rule.

Let us see now a few examples that fit our model and can be used to motivate our

approach. Consider a situation in which three heirs, at first symmetrical, share an inheritance

of three million euros and want to divide it. The heirs 1 and 2 can take legal actions that cost

0.25 million euros for each of the three. If heirs 1 and 2 take these actions, they will keep the

entire inheritance. However, heir 3 can respond with new legal actions; if heir 3 responds,

all heirs will have an additional cost of 0.25 million euros each and the final result will be

that heirs 1 and 2 keep two millions and the remaining million is divided among the three.

This situation can be modeled as the TU-game with strategies given in Figure 1. In this game

heir 1 chooses row, heir 2 chooses column, and heir 3 chooses box. NL and L stand for "no

legal actions" and "legal actions", respectively; NR and R stand for "no react" and "react",

respectively. Finally, N = {1,2,3} and u,v,w are TU-games with set of players N given by:

– u(S) = 0 for all S ( N, u(N) = 3.

– v(1) = v(2) = v(3) =−0.25, v(12) = 2.5, v(13) = v(23) =−0.5, v(N) = 2.25.
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– w(1) = w(2) = w(3) =−0.5, w(12) = 1, w(13) = w(23) =−1, w(N) = 1.5.

A sensible advise for the heirs can be the following: do not litigate, negotiate, but take into

account in your negotiation the litigation options that you have. This advise is incorporated

in our approach to TU-games with strategies because we build a new TU-game that takes

into account the litigation power of the involved players and, then, we suggest that they use

such a new game to allocate the inheritance. Since the main feature here is that heirs 1 and

2 can guarantee one million, the TU-game that seems to reflect the real power of the heirs

is ū given by ū(12) = 1, ū(S) = u(S) for all other S ⊂ N. Using the Shapley value,1 Φ , to

allocate the inheritance, the results is Φ(ū) = (7/6,7/6,4/6) which takes into account the

negotiation power of heirs 1 and 2.

Consider now a cost allocation situation with three companies, N = {1,2,3}, involved

in the realization of three projects. Each of these projects is an extension of the previous

and has a cost of 100, 200, or 300 millions of euros. This means, for example, that project

2, which costs 200 millions, is an extension of project 1, with a cost of 100 millions. There

is a first stage in which company 1 can choose between applying for a subsidy (a), or not

applying for a subsidy (b), for the realization of all the projects. If such a subsidy is granted,

the cost of each project is reduced by 10 millions of euros. Depending on the choice of

company 1, the resulting cost allocation problems (in millions of euros) are respectively

described by the following airport games (Littlechild and Owen 1973):

– ca(1) = 90, ca(2) = 190, ca(3) = 290, ca(12) = 190, ca(13) = ca(23) = ca(N) = 290,

– cb(1) = 100, cb(2) = 200, cb(3) = 300, cb(12) = 200, cb(13) = cb(23) = cb(N) = 300.

Assume that, the three companies decide to cooperate and to allocate the costs using the

Shapley value, Φ . It seems reasonable to conclude that company 1 will choose to apply

1 For an introduction to cooperative games and to the Shapley value, González-Díaz et al. (2010) can be

consulted.
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for the subsidy (a) and the cost allocation problem will be ca. However, the Shapley value

of ca is Φ(ca) = (30,80,180) and it does not take into account the special contribution of

company 1. Notice that in this example we are dealing with cost games. We propose the

following alternative approach. A new cost game c̄ is built; it associates with every coalition

S the minimum cost that S can guarantee making the right choices under its control. So,

c̄(S) =


ca(S) if 1 ∈ S

cb(S) if 1 6∈ S,

i.e., c̄(1) = 90, c̄(2) = 200, c̄(3) = 300, c̄(12) = 190, c̄(23) = 300, c̄(13) = c̄(N) = 290.

Observe that Φ(c̄) = (23.33,83.33,183.33) seems to be a more reasonable allocation of the

total cost in this situation, due to the special contribution of company 1. Indeed, the Shapley

value for this alternative situation divides equally the subsidy of 10 millions, i.e. 10/3, and

adds this amount to the previous costs of companies 2 and 3, while reducing in 20/3 the cost

of company 1.

Finally we present a political example. The composition of the Spanish Congress of

Deputies (the highest legislative body in Spain) arising from the general elections held on

28 April 2019 is as shown in Table 1 below.2 The Spanish Congress of Deputies consists

of 350 seats, so the simple majority is reached with 176 votes. We denote by N the set of

parties represented in the Congress of Deputies and by v0 the simple TU-game resulting

from it.3 Taking into account the current situation of Spanish politics, most analysts agree

that there are two possible coalitions on which the governance of Spain can be based. One is

the coalition of the socialists (PSOE) and the centre-right liberal party (Cs). If this coalition

is formed, the resulting voting problem is described by the simple game v1 in which the

2 In order not to lengthen with unnecessary details, we will only give a brief description of the political

parties corresponding with the acronyms when relevant to the present example.
3 It is the weighted majority game given by the players in N, the quota 176 and the weights

(123,66,57,42,24,15,7,6,4,2,2,1,1).
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Scenario {PSOE, Cs}

A A N

A v1 v1

N v1 v1

N A N

A v0 v0

N v0 v0

Scenario {PSOE, UP, ERC}

A A N

A v2 v0

N v0 v0

N A N

A v2 v0

N v0 v0

Fig. 2 The TU-game with strategies in the Congress of Deputies.

set of players is N and the unique minimal winning coalition is {PSOE,Cs}. The other is

formed by the socialists (PSOE), the left-wing party (UP) and the Catalonian left-wing,

republican and pro-independence party ERC. If this coalition is formed, the resulting voting

problem is described by the simple game v2 in which the set of players is N and the unique

minimal winning coalition is {PSOE,UP,ERC}. As the King of Spain usually entrusts the

formation of government to the most voted party, the PSOE can turn to Cs or UP-ERC to

form a coalition government; note that later, Cs, UP and ERC may or may not accept the

PSOE proposal. This situation can be modeled as the TU-game with strategies in Figure 2 in

which PSOE chooses scenario, Cs chooses box, UP chooses row, and ERC chooses column;

A and N stand for "accept the PSOE proposal" and "do not accept the PSOE proposal",

respectively.

In this scenario, if we want to measure the power of each party, we propose the follow-

ing approach. Like in the examples above, a new game v̄ is built; it associates with every

coalition S the power that S can guarantee making the right choices under its control. Ob-

serve that this example is more complex than the two others and, in this case, it is not clear

how to build v̄. We do it later, in Example 3.
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These three examples illustrate situations that can be modeled as TU-games with strate-

gies. In each of these games, there is a set of players, a set of strategies for every player, and

a map that associates a TU-game with every possible strategy profile. In order to allocate the

benefits arising from cooperation to the players, we build a new TU-game that maps every

possible coalition to the optimal value that it can guarantee based on the strategies selected

by its members. The reader may notice that the game under study is a TU-game with strate-

gies and we then apply a procedure to transform it into a TU-game that appropriately reflects

the bargaining coalitional power of the involved players. This procedure to build a TU-game

is also used in other environments like strategic games. For instance, Carpente et al. (2005)

analyzed strategic games where players can cooperate and used this procedure to build a

TU-game from the strategic game in order to define a value for it. Differently, Kalai and

Kalai (2013) used cooperation to define values for strategic games by decomposing each

strategic game to cooperative and competitive components.

In the next section, we formally introduce and analyze the procedure used to map a

TU-game with strategies to a TU-game. We also provide an axiomatic characterization of

this procedure. In Section 3, we determine which properties of the TU-games defining a

TU-game with strategies are transmitted through the procedure. In Section 4, we analyze

the applications of TU-games with strategies for airport games and simple games. Finally,

Section 5 presents our conclusions.

2 TU-games with strategies

Let N be any finite set of players. A transferable utility game (in short a TU-game) is a

function v : 2N −→ R such that v( /0) = 0. We denote by G(N) the set of TU-games with

player set N and by G the set of all TU-games with a finite set of players.
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Definition 1 A TU-game with strategies with player set N is a pair (X ,V ) such that:

– X = ∏i∈N Xi is a finite set of strategy profiles, being Xi the player’s i strategy set for

every i ∈ N, and

– V : X → G(N) is a map that associates a TU-game V (x) with every x ∈ X .

We denote by SG(N) the set of TU-games with strategies and player set N and by SG the set

of all TU-games with strategies with a finite set of players.

Notice that a TU-game with strategies is the same mathematical model as a biform game,

introduced in Brandenburger and Stuart (2007). However, the interpretation of the model is

completely different in this paper. Here, we assume that players can coordinate their strate-

gies and cooperate, and that the grand coalition aims to allocate among its members the

benefits of the cooperation by considering their strategic power. So, we focus on a proce-

dure to transform a TU-game with strategies into a TU-game. We do it using an axiomatic

approach, i.e. we first identify some properties that are appropriate for such a procedure and

then we prove that there exists only one procedure satisfying those properties. The properties

are inspired by analogous ones introduced in Carpente et al. (2005).

Definition 2 A procedure to transform a TU-game with strategies into a TU-game (in brief

a procedure) is a map φ : SG→ G that associates a TU-game φ(X ,V ) ∈ G(N) with every

TU-game with strategies (X ,V ) ∈ SG(N).

Let us state some properties that are appropriate for a procedure φ .

Individual objectivity. For every (X ,V ) ∈ SG(N), if a player i ∈ N is such that V (x)(i) = c,

for all x ∈ X , then φ(X ,V )(i) = c.

Individual objectivity states that if the coalition consisting of player i receives the same util-

ity c for every possible strategy profile, the TU-game resulting from the procedure associates

c to coalition {i}.
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Take (X ,V )∈ SG(N), i∈N, and S⊂N with i∈ S. A strategy xi ∈ Xi of player i is weakly

dominated in S if there exists a strategy x′i ∈Xi, x′i 6= xi, such that V (x̄−i,x′i)(S)≥V (x̄−i,xi)(S)

for all x̄−i ∈ ∏ j∈N\{i}X j. Moreover, (X−xi ,V ) denotes the TU-game with strategies that is

obtained from (X ,V ) by deleting strategy xi.

Irrelevance of weakly dominated strategies. For any (X ,V )∈ SG(N), i∈N, and S⊂N with

i ∈ S, if strategy xi ∈ Xi is weakly dominated in S, then φ(X ,V )(S) = φ(X−xi ,V )(S).

Irrelevance of weakly dominated strategies states that if a player loses the ability to use a

weakly dominated strategy (for a coalition S) in the original game with strategies, this should

not affect the final result for S.

Take (X ,V ) ∈ SG(N), j ∈ N, and S⊂ N \{ j}. A strategy x j ∈ X j of player j is a weakly

dominated threat to coalition S if for every x̄− j ∈∏k∈N\{ j}Xk there exists a strategy x′j ∈ X j,

x′j 6= x j, such that V (x̄− j,x′j)(S)≤V (x̄− j,x j)(S). In words, a strategy of player j is a weakly

dominated threat to coalition S if there exists a different strategy of player j that can further

harm coalition S.

Irrelevance of weakly dominated threats. For any (X ,V ) ∈ SG(N), player j ∈ N, and S ⊂

N \{ j}, if strategy x j ∈X j is a weakly dominated threat to coalition S, then φ(X ,V )(S)=

φ(X−x j ,V )(S).

Irrelevance of weakly dominated threats states that if a player j loses the ability to use a

weakly dominated threat to a coalition S in the original game with strategies, this should not

affect the final result for S.

Take (X ,V ) ∈ SG(N) and /0 6= S ⊂ N. Denote by NS the set {[S]}∪N \S, i.e. the set of

|N|−|S|+1 players in which the coalition S is considered as a single player, and by (XS,V S)
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the TU-game with strategies that is obtained from (X ,V ) by considering the coalition S as a

single player.4

Merge invariance. Take (X ,V )∈ SG(N) and /0 6= S⊂N, then, for all T ⊂N\S, φ(X ,V )(T )=

φ(XS,V S)(T ) and φ(X ,V )(T ∪S) = φ(XS,V S)(T ∪{[S]}).

Merge invariance states that a coalition of players cannot influence its worth by merging and

acting as one player.

Now we propose a specific procedure that, as we see later, is characterized by the prop-

erties introduced in this section.

Definition 3 The maxmin procedure is the map ψ : SG→ G given, for all N and (X ,V ) ∈

SG(N), by:

ψ(X ,V )(S) = max
xS∈∏i∈S Xi

min
xN\S∈∏i∈N\S Xi

V (xS,xN\S)(S)

for all S⊂ N.

The next result provides an axiomatic characterization of ψ . It is an extension and an

improvement of Theorem 7 in Carpente et al. (2005). It is an extension because every finite

strategic game ({Xi}i∈N ,{Hi}i∈N) can be seen as the game with strategies (X ,V ) with X =

∏i∈N Xi and V (x)(S) = ∑i∈S Hi(x), for all x ∈ X and all S⊂ N. It is an improvement because

it does not use a monotonicity property.

Theorem 1 The maxmin procedure is the unique procedure to transform a TU-game with

strategies into a TU-game that satisfies individual objectivity, irrelevance of weakly domi-

nated strategies, irrelevance of weakly dominated threats and merge invariance.

4 (XS,V S) is given by XS = X[S]× (∏i∈N\S Xi) with X[S] = ∏i∈S Xi, and for every xS ∈ XS and every T ⊂

N \S, V S(xS)(T ) =V (x)(T ), and V S(xS)(T ∪ [S]) =V (x)(T ∪S).
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Proof First, we show that ψ satisfies the four properties. Let (X ,V ) ∈ SG(N) and i ∈ N be

such that V (x)(i) = c, for all x ∈ X . Then it is clear that ψ(X ,V )(i) = c, which shows that ψ

satisfies individual objectivity.

To see that ψ satisfies irrelevance of weakly dominated strategies notice that, if strategy

xi for player i is weakly dominated in S (S⊂ N with i ∈ S) for (X ,V ) ∈ SG(N), then

ψ(X ,V )(S) = max
xS∈∏ j∈S X j

min
xN\S∈∏ j∈N\S X j

V (xS,xN\S)(S)

= max
xS∈∏ j∈S\{i}X j×Xi\{xi}

min
xN\S∈∏ j∈N\S X j

V (xS,xN\S)(S)

= ψ(X−xi ,V )(S)

To check that ψ satisfies irrelevance of weakly dominated threats, notice that if strategy

x j ∈ X j of a player j is a weakly dominated threat to coalition S ⊂ N \ { j} for (X ,V ) ∈

SG(N), then

ψ(X ,V )(S) = max
xS∈∏k∈S Xk

min
xN\S∈∏k∈N\S Xk

V (xS,xN\S)(S)

= max
xS∈∏k∈S Xk

min
xN\S∈∏k∈N\(S∪{ j}) Xk×X j\{x j}

V (xS,xN\S)(S)

= ψ(X−x j ,V )(S)

Finally, it is clear that ψ satisfies merge invariance.

We now proceed to show that any procedure satisfying the four properties must coin-

cide with ψ . Let φ : SG→ G be a procedure satisfying individual objectivity, irrelevance

of weakly dominated strategies, irrelevance of weakly dominated threats, and merge invari-

ance. Take (X ,V ) ∈ SG(N), we have to prove that φ(X ,V )(S) = ψ(X ,V )(S) for all S ⊂ N.

We do it by induction in |N|, the number of elements of N.
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Assume first that |N| = 1, i.e., that N = {i}. Since φ satisfies irrelevance of weakly

dominated strategies and individual objectivity, and by definition of ψ , we have that

φ(X ,V )({i}) = φ({xV},V )({i}) = max
x∈X

V (x)({i}) = ψ(X ,V )({i}) (1)

where xV is a strategy profile such that V (xV )({i}) = maxx∈X V (x)({i}).

Second, we prove the result when |N| = 2 and consider N = {1,2} without loss of

generality. Take (X{1,2},V {1,2}) ∈ SG(N{1,2}). Notice that |N{1,2}|= 1 and then, by (1)

φ(X{1,2},V {1,2})(N{1,2}) = ψ(X{1,2},V {1,2})(N{1,2}). (2)

Since φ and ψ satisfy merge invariance, it is clear that (2) implies

φ(X ,V )(N) = ψ(X ,V )(N).

Now we prove the result for individual coalitions {1} and {2}. We do it for {1}; it can

be done analogously for {2}.

Take a new strategy y2 for player 2 and define (X ′,V ′) ∈ SG(N) given by:

– X ′ = X1× (X2∪{y2})

– V ′(x) =V (x) for all x ∈ X .

– V ′(x1,y2)(S) = minx2∈X2 V (x1,x2)(S) for all x1 ∈ X1 and for all S⊂ N.

Notice that y2 is a weakly dominated threat to {1} in (X ′,V ′) and that, at the same time, every

x2 ∈ X2 is a weakly dominated threat to {1} in (X ′,V ′). Hence, since φ satisfies irrelevance

of weakly dominated threats,

φ(X ′,V ′)({1}) = φ(X ,V )({1})

and, at the same time,

φ(X ′,V ′)({1}) = φ(X1×{y2},V ′)({1}).
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Thus, φ(X ,V )({1}) = φ(X1×{y2},V ′)({1}). Now, taking into account that φ satisfies ir-

relevance of weakly dominated strategies and individual objectivity, and by definition of ψ ,

it is clear that

φ(X1×{y2},V ′)({1}) = max
x1∈X1

V ′(x1,y2)({1}) = max
x1∈X1

min
x2∈X2

V (x1,x2)({1}) = ψ(X ,V )({1}).

Therefore, φ(X ,V )({1}) = ψ(X ,V )({1}).

Assume now that the result is true when |N| < n. Take N with |N| = n ≥ 3 and i, j ∈ N

(i 6= j). Take also (X{i, j},V {i, j}) ∈ SG(N{i, j}). Notice that |N{i, j}| = n− 1 and then, by

induction hypothesis

φ(X{i, j},V {i, j})(T ) = ψ(X{i, j},V {i, j})(T ) (3)

for all T ⊂ N{i, j}. Since φ and ψ satisfy merge invariance, it is clear that (3) implies

φ(X ,V )(S) = ψ(X ,V )(S)

for all S ⊂ N \{i, j} and for all S ⊂ N with {i, j} ⊂ S. So, the equality has been proved for

all the coalitions in the family F{i, j} given by

F{i, j} = {S ∈ 2N : S∩{i, j}= /0 or S∩{i, j}= {i, j}}.

Notice that
⋃

i∈N
⋃

j∈N\{i}F{i, j} = 2N for all N with |N| ≥ 3. Hence, the proof is concluded.

ut

Remark 1 The axiomatic characterization in Theorem 1 is tight in the sense that all the

properties in the theorem are independent. We provide the proof in the Appendix.

Notice that this procedure is the one that we used in the introduction of this paper to

tackle the three examples presented there. In order to verify the procedure, we will now

revisit the same three examples.
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Example 1 We consider the case of the three heirs willing to divide the inheritance. That

situation can be modeled as a TU-game with strategies (X ,V ) such that:

– X = X1×X2×X3, where X1 = X2 = {NL,L}, X3 = {NR,R}.

– V is given by V (L,L,NR) = v, V (L,L,R) = w and V (x) = u for all other x ∈ X .

It is easy to check that ψ(X ,V )(S) = ū(S) for all S⊂ N.

Example 2 We now consider the case of the three companies involved in the realization of

three projects whose costs depend on the company 1’s choice between applying for a subsidy

(a) or not applying for a subsidy (b). Recall that the cost functions are given by

– ca(1) = 90, ca(2) = 190, ca(3) = 290, ca(12) = 190, ca(13) = ca(23) = ca(N) = 290,

– cb(1) = 100, cb(2) = 200, cb(3) = 300, cb(12) = 200, cb(13) = cb(23) = cb(N) = 300.

This situation can be modeled as the TU-game with strategies (X ,C) such that:

– X = X1×X2×X3, where X1 = {a,b}, X2 = {α}, X3 = {β}.

– C is given by C(a,α,β ) = ca and C(b,α,β ) = cb.

Notice that ca and cb are cost TU-games. Then, for preserving the philosophy of the maxmin

procedure we have to interchange maximum and minimum in its definition; with this in

mind, it is easy to check that ψ(X ,C)(S) = c̄(S), for all S⊂ N.

Example 3 Finally we consider the Spanish Congress of Deputies described in the Intro-

duction. This situation can be modeled as the TU-game with strategies (X ,V ) such that:

– X = ∏i∈N Xi, where N is the set of parties, and

– XPSOE = {Cs,UP-ERC},

– XCs = {Yes,No},

– XUP = {Yes,No},

– XERC = {Yes,No},
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– Xi = {αi}, for all other i in N.

– V is given by:

V (x) =


v1 if xPSOE = Cs and xCs = Yes,

v2 if xPSOE = UP-ERC, xUP = Yes and xURC = Yes,

v0 in any other case.

Notice that in the informal description of the TU-game with strategies in the Introduction,

we only took into account the players with more than one strategy (i.e., PSOE, Cs, UP

and ERC). However, rigorously, the TU-game with strategies according to Definition 1 that

models the situation described in this example is the one we have just indicated. Now, we can

define v̄(S) = ψ(X ,V )(S) for all S⊂ N. Then we use the Shapley value Φ as a power index.

Table 1 displays Φ(v0) and Φ(v̄). We propose to use Φ(v̄) as a measure of the power of each

party in this scenario. Note that Cs, UP and ERC have more power (measured by Φ(v̄))

than they would if we only took into account the number of seats (measured by Φ(v0)),

PSOE and PP (the conservative party) have less power, and all the other parties do not

change their power. It may seem a little surprising that the PSOE loses power because it is

responsible for taking the initiative to form a government; however, the fact that its possible

government partners may turn their backs on it seems to provoke a certain weakness in the

PSOE and a certain strength in such potential partners. The PP’s loss of power is due to its

lack of strategic capacity despite its high number of seats; this lack of strategic capacity has

imperceptible effects on parties with few seats whose marginal power remains unchanged.

3 Inheritance of properties

In this section we analyze which properties are transmitted by the maxmin procedure. We

want to know if for every TU-game with strategies (X ,V ) such that the TU-game V (x)
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Parties PSOE PP Cs UP VOX ERC JxC

Seats 123 66 57 42 24 15 7

Φ(v0) 0.462 0.167 0.167 0.1 0.029 0.029 0.016

Φ(v̄) 0.412 0.117 0.2 0.133 0.029 0.062 0.016

Parties PNV EH Bildu CCa NA+ Comp PRC

Seats 6 4 2 2 1 1

Φ(v0) 0.012 0.009 0.003 0.003 0.002 0.002

Φ(v̄) 0.012 0.009 0.003 0.003 0.002 0.002

Table 1 The power in the Spanish Congress of Deputies.

satisfies some property for every strategy profile x, it is true that the TU-game ψ(X ,V ) also

satisfies this property. In particular, we study the properties of superadditivity, monotonicity,

and balancedness. We recall the definition of these properties in the context of TU-games.

Let v ∈ G(N). We say that v is superadditive if v(S∪T ) ≥ v(S)+ v(T ) for every S,T ⊂ N

with S∩T = /0. We say that v is monotone if v(S)≤ v(T ) whenever S ⊂ T . We say that v is

balanced if Core(v) 6= /0 being

Core(v) = {x ∈ RN : ∑
i∈S

xi = v(N) and ∑
i∈S

xi ≥ v(S) for every S⊂ N}.

Next theorem shows that the maxmin procedure transmits the superadditivity property.

Theorem 2 Let (X ,V ) ∈ SG(N). If V (x) is superadditive for all x ∈ X, then ψ(X ,V ) is also

superadditive.

Proof Assume that V (x) is superadditive for all x ∈ X . Consider the TU-game obtained by

the maxmin procedure:

ψ(X ,V )(S) = max
xS∈∏i∈S Xi

min
xN\S∈∏i∈N\S Xi

V (xS,xN\S)(S),

for every S⊂ N.
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Assume that ψ(X ,V ) is not superadditive. Then, there exist two non-empty coalitions

S,T ⊂ N with S∩T = /0 such that

ψ(X ,V )(S∪T )< ψ(X ,V )(S)+ψ(X ,V )(T ).

For each S⊂N, let xS ∈X be such that ψ(X ,V )(S)=V (xS)(S). Take x̄N\(S∪T ) ∈XN\(S∪T )

such that

V (xS
S,x

T
T , x̄N\(S∪T ))(S∪T ) = min

xN\(S∪T )∈Πi∈N\(S∪T )Xi
V (xS

S,x
T
T ,xN\(S∪T ))(S∪T ).

Then,

ψ(X ,V )(S∪T ) < ψ(X ,V )(S)+ψ(X ,V )(T )

≤ V (xS
S,x

T
T , x̄N\(S∪T ))(S)+V (xS

S,x
T
T , x̄N\(S∪T ))(T )

≤ V (xS
S,x

T
T , x̄N\(S∪T ))(S∪T )

= min
xN\(S∪T )∈XN\(S∪T )

V (xS
S,x

T
T ,xN\(S∪T ))(S∪T )

where the first inequality follows by assumption, the second one follows by definition of

ψ(X ,V ) and the choice of xS and xT , the third one follows by the superadditivity of each

V (x), and the last one follows by definition of x̄N\(S∪T ).

But, this is a contradiction since

ψ(X ,V )(S∪T ) = max
xS∪T∈XS∪T

min
xN\(S∪T )∈XN\(S∪T )

V (xS∪T ,xN\(S∪T ))(S).

ut

Next result shows that the maxmin procedure transmits the monotonicity property.

Theorem 3 Let (X ,V ) ∈ SG(N). If V (x) is monotone for all x ∈ X, then ψ(X ,V ) is also

monotone.
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S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

V(U,L,F) 1 3 1 7 6 1 9

V(U,R,F) 1 1 1 2 7 9 10

Table 2 The TU-games associated with each strategy profile in Example 4.

Proof Assume that V (x) is monotone for all x ∈ X . Consider the TU-game obtained by the

maxmin procedure:

ψ(X ,V )(S) = max
xS∈∏i∈S Xi

min
xN\S∈∏i∈N\S Xi

V (xS,xN\S)(S),

for every S⊂ N. Let S⊂ T ⊂ N. Then,

ψ(X ,V )(S) = max
xS∈∏i∈S Xi

min
xN\S∈∏i∈N\S Xi

V (xS,xN\S)(S),

= max
xS∈∏i∈S Xi

min
xT\S∈∏i∈T\S Xi

min
xN\T∈∏i∈N\T Xi

V (xS,xT\S,xN\T )(S)

≤ max
xS∈∏i∈S Xi

max
xT\S∈∏i∈T\S Xi

min
xN\T∈∏i∈N\T Xi

V (xS,xT\S,xN\T )(T )

= ψ(X ,V )(T ).

ut

In general, the maxmin procedure does not transmit the balanced property as we see

next.

Example 4 Let us take N = {1,2,3}, X1 = {U} X2 = {L,R} X3 = {F}. The TU-games

associated with each strategy profile are given in Table 2. It is easy to check that both games

have non-empty cores. Nevertheless, the maxmin procedure provides the TU-game given

in Table 3. Let us check now that ψ(X ,V ) is not balanced. If the allocation (x1,x2,x3)

belongs to the core of ψ(X ,V ) we have x1 = 10− x2− x3, x1 ≥ 1, and x2 + x3 ≥ 9. Then,

1 ≤ x1 ≤ 1. Since x1 = 1, x1 + x2 ≥ 7, and x1 + x3 ≥ 6, we obtain x2 ≥ 6 and x3 ≥ 5. Thus,

x1 + x2 + x3 > 10 and we get a contradiction. Then, the core of the game ψ(X ,V ) is empty.
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S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

ψ(X ,V ) 1 3 1 7 6 9 10

Table 3 The TU-game provided by the maxmin procedure for Example 4.

The fact that the balanced property is not transmitted by the maxmin procedure can be a

drawback in some cases. Therefore, below we give a result that may be helpful to study the

core of ψ(X ,V ) using information from the original TU-games with strategies.

Theorem 4 Let (X ,V ) ∈ SG(N). Then, Core(ψ(X ,V )) = ∩x∈XCore(V x) where for every

x∈X, V x is the TU-game given by V x(N)=ψ(X ,V )(N) and V x(S)=minx̄N\S V (xS, x̄N\S)(S),

for every /0 6= S ( N.

Proof First, we check that Core(ψ(X ,V )) ⊂ ∩x∈XCore(V x). Let a ∈ Core(ψ(X ,V )). By

definition,

∑
i∈S

ai ≥ ψ(X ,V )(S), for every /0 6= S ( N,

n

∑
i=1

ai = ψ(X ,V )(N).

Moreover, since ψ(X ,V )(N)=V x(N) for all x∈X and ψ(X ,V )(S)=maxxS∈∏i∈S Xi minx̄N\S∈∏i∈N\S Xi V (xS, x̄N\S)(S)

for every /0 6= S ( N, it is hold, for every x ∈ X ,

∑
i∈S

ai ≥ min
x̄N\S∈∏i∈N\S Xi

V (xS, x̄N\S)(S) =V x(S), for every /0 6= S ( N,

n

∑
i=1

ai =V x(N)

Then, we obtain that a ∈Core(V x) for every x ∈ X . Therefore, a ∈ ∩x∈XCore(V x).
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S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

V (U,L,F) 1 3 1 7 6 1 10

V (U,R,F) 1 1 1 2 6 9 10

Table 4 The TU-games V x in Example 5.

Second, we prove that ∩x∈XCore(V x)⊂Core(ψ(X ,V )). Let a∈∩x∈XCore(V x). By def-

inition, for every x ∈ X ,

∑
i∈S

ai ≥V x(S) = min
x̄N\S∈∏i∈N\S Xi

V (xS, x̄N\S)(S), for every /0 6= S ( N,

n

∑
i=1

ai =V x(N).

Then,

∑
i∈S

ai ≥max
x∈X

V x(S) = ψ(X ,V )(S), for every /0 6= S ( N,

n

∑
i=1

ai = ψ(X ,V )(N)

since V x(N) = ψ(X ,V )(N) for every x ∈ X . Therefore, we obtain that a ∈Core(ψ(X ,V )).

ut

We revisit Example 4 to illustrate this result.

Example 5 We have seen that the core of ψ(X ,V ) is empty in Example 4. Here we analyze

the core of each TU-game V x for every x ∈ X to illustrate Theorem 4. Notice that the TU-

games V x are given in Table 4. In Figure 3 we depict5 the core of V (U,L,F) and V (U,R,F)

described as

Core(V (U,L,F)) = conv{(4,3,3),(5,4,1),(3,4,3),(6,3,1)},

Core(V (U,R,F)) = conv{(1,1,8),(1,4,5)}.

It is clear that Core(V (U,L,F))∩Core(V (U,R,F)) = /0.

5 This figure has been built with the toolbox TUGlab of MATLABr (Mirás-Calvo and Sánchez-Rodríguez

2008). The web page of TUGlab can be found in http://eio.usc.es/pub/io/xogos/index.php.

http://eio.usc.es/pub/io/xogos/index.php
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Fig. 3 Core(V (U,L,F)) and Core(V (U,R,F)) in Example 5.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

V(U,L,F) 2 1 3 4 7 4 9

V(D,L,F) 1 4 2 5 3 6 9

Table 5 The TU-games associated with each strategy profile in Example 6.

A property related to balancedness of a TU-game is convexity since any convex game

is balanced. Recall that a TU-game v ∈ G(N) is convex if and only if we have v(T ∪ i)−

v(T )≥ v(S∪ i)− v(S), for every i ∈ N and every S, T ⊂ N \{i} with S ⊂ T . The following

counterexample shows that the maxmin procedure does not preserve the convexity property,

in general.

Example 6 Consider N = {1,2,3}, X1 = {U,D} X2 = {L} X3 = {F}. The TU-games

associated with each strategy profile are given in Table 5. It is easy to check that both TU-

games are convex and then they have non-empty cores. The maxmin procedure provides the

TU-game given in Table 6. This game is not convex because
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S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

ψ(X ,V ) 2 1 2 5 7 4 9

Table 6 The TU-game provided by the maxmin procedure for Example 6.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

V (U,L,F) 2 1 2 4 7 4 9

V (D,L,F) 1 1 2 5 3 4 9

Table 7 The TU-games V x in Example 6.

ψ(X ,V )(13)−ψ(X ,V )(1) = 5 > ψ(X ,V )(123)−ψ(X ,V )(12) = 4

but, it has a non-empty core. For every x ∈ X , the TU-game V x is given in Table 7. Notice

that (3,2,4)∈Core(V (U,L,F))∩Core(V (D,L,F)) and, thus (3,2,4)∈Core(ψ(X ,V )). Figure 4

shows the relationship among Core(V (U,L,F)), Core(V (D,L,F)), and Core(ψ(X ,V )).

Fig. 4 Core(V (U,L,F)), Core(V (D,L,F)), and Core(ψ(X ,V )) in Example 6.
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4 Two particular cases

In this section we study two specific cases of TU-games with strategies inspired by the

examples described in the Introduction. In Example 2, each TU-game associated to any

strategy profile is an airport game. In Example 3, each TU-game associated to any strategy

profile belongs to the class of simple games. Airport games and simple games are well-

known classes of TU-games which have many applications and have been widely studied in

the literature.

4.1 Airport games with strategies

An airport problem (Littlechild and Owen 1973) is described as follows. Suppose that T is

the set of types of planes operating in an airport in a particular period. Denote by Nτ the set

of movements that are made by planes of type τ ∈ T and by N the set of all movements,

i.e. N = ∪τ∈T Nτ . Let dτ be the cost of a runway that is suitable for planes of type τ in the

considered period. Without loss of generality, we assume that

0≤ d1 ≤ d2 ≤ . . .≤ d|T |.

We can associate a cost game to this situation as follows. For every /0 6= S ⊂ N, c(S) is

defined as the cost of a runway that can be used by all the movements in S, i.e.

c(S) := max{dτ : S∩Nτ 6= /0}

and c( /0) = 0. The TU-cost game c is known as an airport game.

An airport game with strategies is a pair (X ,C) ∈ SG(N), where C(x) is an airport game

for all x ∈ X . It means that for all x ∈ X and /0 6= S⊂ N,

C(x)(S) = max{C(x)( j) : j ∈ S}
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given C(x)( j)≥ 0, for every j ∈ N.

Notice that we are dealing with cost TU-games for each strategy profile. Then, some

definitions and properties established for TU-games has to change adequately. Namely, the

core of a cost TU-game c is the core of the TU-game −c and we say that a cost TU-game

c is concave if the TU-game −c is convex. Notice also that the maxmin procedure defined

for TU-games with strategies becomes the minmax procedure. Then, during this section ψ

denotes the minmax procedure.

The second example described in the Introduction corresponds to the model of airport

games with strategies and illustrates the fact that ψ(X ,C) is not an airport game in general.

Next, we provide a sufficient condition for the transmission of the non-emptiness of the

core in airport games with strategies. This condition is easier to check than the one given in

Theorem 4 because we do not need to compute any core.

Theorem 5 Let (X ,C) ∈ SG(N) be an airport game with strategies. If there is some iN ∈ N

such that ψ(X ,C)(S)≥ ψ(X ,C)(N), for every S⊂ N with iN ∈ S, then ψ(X ,C) is balanced.

Proof Recall that the minmax procedure defines the following TU-game:

ψ(X ,C)(S) = min
xS∈∏i∈S Xi

max
xN\S∈∏i∈N\S Xi

C(x)(S), for every S⊆ N.

Let iN ∈ N be such that ψ(X ,C)(S) ≥ ψ(X ,C)(N), for every S ⊂ N with iN ∈ S. Take di =

min{ψ(X ,C)(S) : i ∈ S}, for every i ∈ N. Notice that di ≥ 0, for every i ∈ N and we have

diN = ψ(X ,C)(N) due to the choice of iN . Moreover, di ≤ diN , for every i ∈ N.

Now, we consider the airport game defined by the ordered collection (d1, . . . ,diN ). Tak-

ing into account that di ≤ ψ(X ,C)(S) for every i ∈ S, then d(S) = max{di : i ∈ S} ≤

ψ(X ,C)(S). Besides, d(N) = ψ(X ,C)(N) and d has a non-empty core because it is an air-

port game. Then, Core(d) ⊆ Core(ψ(X ,C)) and we obtain that ψ(X ,C) has a non-empty

core. ut
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The condition in Theorem 5 holds, for instance, if there is some player iN with C(x)(iN)=

max{C(x)( j) : j ∈ N}, for every x ∈ X (i. e. if iN is a player with the most costly type of

planes for all strategy profiles). Next result proves it.

Corollary 1 Let (X ,C) ∈ SG(N) be an airport game with strategies such that there is some

player iN with C(x)(iN) = max{C(x)( j) : j ∈ N}, for every x ∈ X. Then, ψ(X ,C) is bal-

anced.

Proof Let iN be such that C(x)(iN) = max{C(x)( j) : j ∈ N}, for every x ∈ X . We prove

that iN satisfies the condition of Theorem 5. Notice that there is some x̃ such that

ψ(X ,C)(N) = min
x∈X

C(x)(N) =C(x̃)(N) = max
j∈N

C(x̃)( j) =C(x̃)(iN).

We prove that ψ(X ,C)(S)≥ψ(X ,C)(N) for every S⊂N with iN ∈ S. Let S⊂N with iN ∈ S.

Then, there is some x̄ ∈ X such that

ψ(X ,C)(S) = minxS∈∏i∈S Xi maxxN\S∈∏i∈N\S Xi C(x)(S) =C(x̄)(S)

= C(x̄)(iN)≥minx∈X C(x)(N) =C(x̃)(iN) = ψ(X ,C)(N).

Then, applying Theorem 5 we get the result. ut

The condition in Theorem 5 is sufficient, but not necessary as Example 7 illustrates.

Example 7 Let us consider N = {1,2,3}, X1 = {U,D}, X2 = {L,R}, and X3 = {F}. The

airport (cost) games associated with each strategy profile are given in Table 8. The minmax

procedure provides the TU-game given in Table 9. ψ(X ,C) is balanced since, for instance,

the allocation (0,3,5) belongs to the core of ψ(X ,C). Nevertheless, there is no player satis-

fying the condition of Theorem 5.

We have concave games for every strategy profile in an airport game with strategies,

(X ,C). Despite this fact, the resulting TU-game ψ(X ,C) is not concave in general, as we

can see in Example 7 by taking coalitions {1,2,3}, {1,2}, {2,3} and {2}.
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S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

C(U,L,F) 1 8 2 8 2 8 8

C(U,R,F) 2 9 5 9 5 9 9

C(D,L,F) 5 10 7 10 7 10 10

C(D,R,F) 6 7 9 7 9 9 9

Table 8 The airport games associated with each strategy profile in Example 7.

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

ψ(X ,C) 2 9 9 7 5 9 8

Table 9 The TU-game provided by the minmax procedure for Example 7.

4.2 Simple games with strategies

A simple game with strategies is a pair (X ,V ) ∈ SG(N) where V (x) is a simple game for all

x ∈ X . It means that for all x ∈ X and S⊂ N,

i) V (x)(S) ∈ {0,1}, for every S⊂ N,

ii) V (x)(N) = 1, and

iii) V (x)(S)≤V (x)(T ), for every S⊂ T ⊂ N.

Condition iii) indicates that for every x ∈ X , V (x) is a monotone game. As a consequence of

Theorem 3, the TU-game built using the maxmin procedure, ψ(X ,V ), is monotone. Besides,

it is clear that ψ(X ,V )(N) = 1. Then, the maxmin procedure provides a simple game too.

The third situation described in the Introduction is a particular case of a simple game with

strategies.

In general, the core of a simple game w is empty unless there is some veto player (i.e., a

player i ∈ N with w(N \{i}) = 0); besides, any allocation in the core of a simple game splits

w(N) among veto players. We characterize the balancedness of the simple game resulting
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from the maxmin procedure applied to a simple game with strategies in the following result.

Theorem 6 Let (X ,V )∈ SG(N) be a simple game with strategies. Then, the core of ψ(X ,V )

is non-empty if and only if there is some i ∈ N such that, for every xN\{i}, player i is a veto

player in V (xN\{i}, x̄i) for some x̄i ∈ Xi.

Proof First we assume that Core(ψ(X ,V )) is non-empty. Then, there is a veto player i in

ψ(X ,V ) because this TU-game is a simple game. Using Theorem 4, we have Core(ψ(X ,V ))=

∩x∈XCore(V x) with

V x(S) = min
x̃N\S∈∏ j∈N\S X j

V (xS, x̃N\S)(S),

for every S (N and V x(N) = 1, for every x∈ X . Since /0 6=Core(ψ(X ,V )) =∩x∈XCore(V x),

we have Core(V x) 6= /0, for every x∈ X . Besides, V x is a simple game, for every x∈ X . Then,

due to the choice of i, we have that i is a veto player in V x, for every x ∈ X . This means that

for every xN\{i} there is some x̄i ∈ Xi such that V (xN\{i}, x̄i)(N \ {i}) = 0. This proves the

condition.

Now we assume that there is some i ∈ N such that, for every xN\{i}, player i is a veto

player in V (xN\{i}, x̄i) for some x̄i ∈ Xi. Then, Core(V x) 6= /0, for every x ∈ X . Moreover, the

allocation a∈Rn with ai = 1 and a j = 0 for every j ∈N \{i} belongs to Core(V x), for every

x ∈ X . Then, ∩x∈XCore(V x) 6= /0 and using Theorem 4, we obtain that Core(ψ(X ,V )) 6= /0.

ut

5 Concluding remarks

In this paper we study situations where the players cooperate and, previously, can choose

some strategy that changes the values of cooperation. In order to allocate the benefits of

cooperation using this strategic power, we apply the maxmin procedure to obtain a new
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S {1} {2} {1,2}

V(A,E) 4 3 10

V(B,E) 2 5 9

V(C,E) 2 4 7

V(D,E) 6 1 7

Table 10 The TU-games associated with each strategy profile in Concluding remarks section.

TU-game. This analysis generalizes the models that appear in Carpente et al. (2005) in the

sense that we consider a non-additive characteristic function for each strategy profile. We

characterize the procedure using adaptations of some well-known and intuitive properties.

Actually, we present an axiomatic characterization that is an extension (goes beyond the

additive characteristic functions) and an improvement (without a monotonicity property)

of the one given by Carpente et al. (2005). Additionally, we study under which conditions

some properties of the initial TU-games are transmitted to the TU-game obtained as a re-

sult of applying the maxmin procedure. Finally, we provide some sufficient conditions to

obtain a balanced TU-game in case of airport games with strategies and characterize the

non-emptiness of the core in case of simple games with strategies.

Other procedures to transform a TU-game with strategies into a TU-game could be intro-

duced and compared with the maxmin procedure. One possibility is to consider the following

optimistic version of the maxmin procedure. The maxmax procedure is the map ψ̄ : SG→G

given by ψ̄(X ,V )(S) = maxx∈X V (x)(S) for all (X ,V ) ∈ SG(N) and all S ⊂ N. Neither the

superaditivity nor the balancedness property are transmitted by the maxmax procedure as we

see in the following example. Let us take N = {1,2}, X1 = {A,B,C,D} and X2 = {E}. The

TU-games associated with each strategy profile are given in Table 10. It is easy to check that

V (x) is superadditive and balanced for every x ∈ X . Nevertheless, the maxmax procedure
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provides the TU-game: v(1) = 6, v(2) = 5, and v(12) = 10, which is neither superadditive

nor balanced.

Our model of TU-games with strategies is related with the joint games introduced in

Assa et al. (2016). Given a family of K TU-games in G(N) v1, . . . ,vK the corresponding

joint game v1 • · · · • vK is defined by:

v1 • · · · • vK(S) = max{
K

∑
k=1

vk(Sk) : Si∩S j = /0, i 6= j,S =
K⋃

k=1

Sk},

for every S⊂N. Notice that we can associate a TU-game with strategies (X ,V ) to v1•· · ·•vK

as follows. We take Xi = {v1, . . . ,vK} for every i∈N, X = ∏i∈N Xi, and V : X→G(N) given

by V (x)(S) = ∑
K
k=1 vk(Sk), where Sk = {i ∈ S : xi = vk} for every k = 1, . . . ,K, S ⊂ N,

and x ∈ X . In order to obtain the TU-game v1 • · · · • vK we only need to apply the maxmax

procedure to (X ,V ).
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Appendix

Independence of the properties of Theorem 1.

Next we define some procedures in order to show the independence of the properties of

Theorem 1.
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Individual objectivity. Take the map ψ0 : SG→ G given, for all N and (X ,V ) ∈ SG(N), by:

ψ0(X ,V )(S) = 0

for all S⊂ N.

The procedure ψ0 satisfies all the properties but individual objectivity. Namely, it is

clear that it does not satisfy individual objectivity. Now we will show that it satisfies the

other properties:

– Irrelevance of weakly dominated strategies: Let (X ,V ) ∈ SG(N), i ∈ N, and S⊂ N with

i ∈ S. If strategy xi ∈ Xi is weakly dominated in S, then

ψ0(X ,V )(S) = 0 = ψ0(X−xi ,V )(S).

– Irrelevance of weakly dominated threats: Let (X ,V ) ∈ SG(N), j ∈ N, and S ⊂ N \ { j}.

If strategy x j ∈ X j is a weakly dominated threat to coalition S, then

ψ0(X ,V )(S) = 0 = ψ0(X−x j ,V )(S).

– Merge invariance: Let (X ,V ) ∈ SG(N) and /0 6= S⊂ N, then, for all T ⊂ N \S,

ψ0(X ,V )(T ) = 0 = ψ0(XS,V S)(T )

and

ψ0(X ,V )(T ∪S) = 0 = ψ0(XS,V S)(T ∪{[S]}).

Irrelevance of weakly dominated strategies. Take the minmin procedure ψ : SG→G given,

for all N and (X ,V ) ∈ SG(N), by:

ψ(X ,V )(S) = min
x∈X

V (x)(S)

for all S⊂ N.
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The minmin procedure satisfies all the properties but irrelevance of weakly dominated

strategies. It is clear that it does not satisfy irrelevance of weakly dominated strategies.

Namely, take (X ,V )∈ SG(N), i∈N, S⊂N with i∈ S, and let xi ∈Xi be such that V (x̄−i,x′i)(S)>

V (x̄−i,xi)(S) for all x̄−i ∈∏ j∈N\{i}X j and x′i ∈ Xi with xi 6= x′i. Then, xi is weakly dominated

in S but

ψ(X ,V )(S) = min
x∈X

V (x)(S)< min
x∈X−xi

V (x)(S) = ψ(X−xi ,V )(S).

Now we will show that it satisfies the other properties:

– Individual objectivity: Let (X ,V ) ∈ SG(N) and a player i ∈ N be such that V (x)(i) = c,

for all x ∈ X , then

ψ(X ,V )(i) = min
x∈X

c = c

– Irrelevance of weakly dominated threats: Let (X ,V ) ∈ SG(N), j ∈ N, and S ⊂ N \ { j}.

If strategy x j ∈ X j is a weakly dominated threat to coalition S, then

ψ(X ,V )(S) = min
x∈X

V (x)(S) = min
x∈X−x j

V (x)(S) = ψ(X−x j ,V )(S).

– Merge invariance: Let (X ,V ) ∈ SG(N) and /0 6= S⊂ N, then, for all T ⊂ N \S,

ψ(X ,V )(T ) = min
x∈X

V (x)(T ) = min
xS∈XS

V S(xS)(T ) = ψ(XS,V S)(T )

and

ψ(X ,V )(T ∪S) = min
x∈X

V (x)(T ∪S) = min
xS∈XS

V S(xS)(T ∪{[S]}) = ψ(XS,V S)(T ∪{[S]}).

Irrelevance of weakly dominated threats. Take the maxmax procedure ψ : SG→ G given,

for all N and (X ,V ) ∈ SG(N), by:

ψ(X ,V )(S) = max
x∈X

V (x)(S)

for all S⊂ N.
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The maxmax procedure satisfies all the properties but irrelevance of weakly dominated

threats. It is clear that it does not satisfy irrelevance of weakly dominated threats. Namely,

take (X ,V ) ∈ SG(N), j ∈ N, S ⊂ N \ { j}, and let x j ∈ X j be such that V (x̄− j,x′j)(S) <

V (x̄− j,x j)(S) for all x̄− j ∈ ∏k∈N\{ j}Xk and x′j ∈ X j with x j 6= x′j. Then, x j is a weakly

dominated threat to coalition S but

ψ(X ,V )(S) = max
x∈X

V (x)(S)> max
x∈X−x j

V (x)(S) = ψ(X−x j ,V )(S).

Now we will show that it satisfies the other properties:

– Individual objectivity: Let (X ,V ) ∈ SG(N) and a player i ∈ N be such that V (x)(i) = c,

for all x ∈ X , then

ψ(X ,V )(i) = max
x∈X

c = c

– Irrelevance of weakly dominated strategies: Let (X ,V ) ∈ SG(N), i ∈ N, and S⊂ N with

i ∈ S. If strategy xi ∈ Xi is weakly dominated in S, then

ψ(X ,V )(S) = max
x∈X

V (x)(S) = max
x∈X−x j

V (x)(S) = ψ(X−x j ,V )(S).

– Merge invariance: Let (X ,V ) ∈ SG(N) and /0 6= S⊂ N, then, for all T ⊂ N \S,

ψ(X ,V )(T ) = max
x∈X

V (x)(T ) = max
xS∈XS

V S(xS)(T ) = ψ(XS,V S)(T )

and

ψ(X ,V )(T ∪S) = max
x∈X

V (x)(T ∪S) = max
xS∈XS

V S(xS)(T ∪{[S]}) = ψ(XS,V S)(T ∪{[S]}).

Merge invariance. Take the map ψ1 : SG→ G given, for all N and (X ,V ) ∈ SG(N), by:

ψ1(X ,V )(S) = ψ(X ,V )(S)+(|S|−1)

for all /0 6= S⊂ N.
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The procedure ψ1 satisfies all the properties but merge invariance. Namely, it is clear

that it does not satisfy merge invariance since if we take (X ,V ) ∈ SG(N) and /0 6= S ⊂ N

with |S|> 1, then for all T ⊂ N \S,

ψ1(X ,V )(T ∪S) = ψ(X ,V )(T ∪S)+(|T |+ |S|−1) = ψ(XS,V S)(T ∪{[S]})+(|T |+ |S|−1)

> ψ(XS,V S)(T ∪{[S]})+(|T |+ |{[S]}|−1) = ψ1(XS,V S)(T ∪{[S]})

where the inequality follows from |S|> 1 = |{[S]}|.

Now we will show that it satisfies the other properties:

– Individual objectivity: Let (X ,V ) ∈ SG(N) and a player i ∈ N be such that V (x)(i) = c,

for all x ∈ X , then

ψ1(X ,V )(i) = ψ(X ,V )(i) = c

since ψ satisfies individual objectivity.

– Irrelevance of weakly dominated strategies: Let (X ,V ) ∈ SG(N), i ∈ N, and S⊂ N with

i ∈ S. If strategy xi ∈ Xi is weakly dominated in S, then

ψ1(X ,V )(S) = ψ(X ,V )(S)+(|S|−1) = ψ(X−xi ,V )(S)+(|S|−1) = ψ1(X−xi ,V )(S)

since ψ satisfies irrelevance of weakly dominated strategies.

– Irrelevance of weakly dominated threats: Let (X ,V ) ∈ SG(N), j ∈ N, and S ⊂ N \ { j}.

If strategy x j ∈ X j is a weakly dominated threat to coalition S, then

ψ1(X ,V )(S) = ψ(X ,V )(S)+(|S|−1) = ψ(X−x j ,V )(S)+(|S|−1) = ψ1(X−x j ,V )(S)

since ψ satisfies irrelevance of weakly dominated threats.

Next table shows a summary of the procedures and properties.
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ψ ψ0 ψ ψ ψ1

Individual objectivity Yes No Yes Yes Yes

Irrelevance of weakly dominated strategies Yes Yes No Yes Yes

Irrelevance of weakly dominated threats Yes Yes Yes No Yes

Merge invariance Yes Yes Yes Yes No
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