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Abstract: The compaction and structuring of system logs facilitate and expedite anomaly and
cyberattack detection processes using machine-learning techniques, while simultaneously reducing
alert fatigue caused by false positives. In this work, we implemented an innovative algorithm that
employs hierarchical codes based on the semantics of natural language, enabling the generation of a
significantly reduced log that preserves the semantics of the original. This method uses codes that
reflect the specificity of the topic and its position within a higher hierarchical structure. By applying
this catalog to the analysis of logs from the Hadoop Distributed File System (HDFS), we achieved a
concise summary with non-repetitive themes, significantly speeding up log analysis and resulting
in a substantial reduction in log size while maintaining high semantic similarity. The resulting log
has been validated for anomaly detection using the “bert-base-uncased” model and compared with
six other methods: PCA, IM, LogCluster, SVM, DeepLog, and LogRobust. The reduced log achieved
very similar values in precision, recall, and F1-score metrics, but drastically reduced processing time.

Keywords: system logs; anomaly detection; BERT model; hierarchical codes; semantic similarity

1. Introduction

The growth of communication networks and computer systems has led to an increase
in cyberattacks and consequently the number of incidents recorded through the information
residing in their logs [1]. Peripheral nodes where events occur send their logs to central
nodes responsible for analyzing them and detecting anomalies that may cause unexpected
system behavior. The exponential increase in log size slows the process, increases the
number of false positives, and consequently generates alert fatigue when cybersecurity
professionals are overwhelmed by a high volume of security alerts, reducing their ability to
react and detect anomalies [2]. Logs generated by a system often have a high number of
repeated or similar messages.

Modern anomaly detection systems based on logs utilize various artificial intelligence
techniques, the most commonly used being those based on machine-learning algorithms [3]
or natural language processing like Large Language Models [4]. These techniques consist
of three phases: log parsing, feature extraction, and anomaly detection using a trained
model. In log parsing, the log is converted from its semi-structured format into a format
that can be analyzed by the machine. With feature extraction, the goal is to extract the most
important information from the data. The third phase, model execution, has resource needs
and performance proportional to the volume or number of tokens processed.

The literature includes various works that have addressed the task of log compaction,
and, as in our case, have encountered various challenges. Logs can have different origins,
which implies a certain diversity of words in the messages, complicating their analysis [5].
There are no dictionaries that associate all the words in a log’s messages with their natural
language meanings so that this log’s semantics can be automatically obtained and used in
its analysis [6]. The hierarchies of themes currently used refer to very restricted thematic
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areas and have few levels in their hierarchical tree [7,8]. Nor is there a numerical encoding
of the themes of the words that simply stores complete semantic information of each word
of the log and its messages [9].

Our work processes a system log and converts it into a much smaller log with the
same semantics but without repeated messages. In this way, we significantly reduce the
log size, automatically decreasing the time and resources needed for its processing with an
AI model, as well as reducing the number of false positives.

To carry out this task, we implemented an algorithm that develops a hierarchical
classification of the themes of the words in a log and assigns each theme a numerical code,
called a hierarchical code. Each of these codes represents the theme of a node in the tree
and the themes of its superior nodes. A hierarchical code is formed by the concatenation
of digits that identify each of the nodes in the branch of the tree that descends from the
root node to the node in question. Thus, the coding performed allows a code to reflect the
specificity of its theme in the hierarchy. The constructed tree has more than 15 levels and
contains all names in English, which facilitates its applicability to various logs. From the
themes of the hierarchical tree and their codes, we generate a catalog of words ordered
alphabetically, each associated with its possible hierarchical codes, also considering the
existence of synonyms. We automatically use the catalog to obtain the themes of all the
messages from a system log and then compare and analyze the themes of different messages
of the log among themselves to obtain a concise summary with non-repeated themes.

The rest of this article is organized as follows. Section 2 introduces previous work
related to our proposal. The algorithm we developed is shown in Section 3, where we
explain the thematic classifier tree, the themes and codes catalog we created, and the
log analysis using hierarchical codes. Next, in Section 4, we present the experimentation
performed, describing the logs used, their evaluation, and the analysis of results. Finally,
Section 5 summarizes the conclusions and possible future work.

2. Related Work

Hierarchical thematic classification in system logs offers a structured and efficient
methodology for reducing data size and improving anomaly detection by considering the
hierarchical structure of themes and the underlying semantic relationships in system logs.
Hierarchical thematic classification in a system log can be an effective strategy for reducing
its size and preparing it for fine-tuning Large Language Models (LLM) in anomaly detection,
which are starting to yield promising results [4]. This technique involves organizing themes
in a hierarchical structure that reflects the relationship between them, which can facilitate
the identification of patterns and more precise anomaly detection [10,11].

LLMs have emerged as powerful tools in the field of cybersecurity, particularly for
anomaly detection. By leveraging extensive training on diverse datasets, LLMs can un-
derstand and generate human-like text, enabling them to identify unusual patterns and
potential threats within network traffic and system logs [12].

By applying hierarchical classification to system logs, thematic trees can be used
to analyze and categorize log messages more efficiently [13]. This methodology can be
especially useful when dealing with large datasets as it allows for a more compact and
structured representation of the information contained in system logs [14].

Moreover, the use of hierarchical classification models can improve the accuracy
of anomaly detection by considering the latent structure of semantic relationships in
the data [15,16]. These approaches allow for a more effective capture of contextual and
thematic information in system logs, which can be crucial for accurately identifying
anomalous behavior [17,18].

Log analysis for anomaly detection has seen significant advances with the integration
of BERT (Bidirectional Encoder Representations from Transformers) models. BERT is a
cutting-edge natural language processing model developed by Google using a bidirec-
tional transformer architecture to understand the context of words from both directions,
enabling deeper language comprehension [19]. Pre-trained on a large corpus, it can be
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fine-tuned for specific tasks. Wang et al. [20] introduced a method that combines BERT
and Variational AutoEncoders (VAE) to extract semantic and statistical features from log
sequences for anomaly detection. Similarly, Almodovar et al. [21] proposed LogFiT, which
fine-tunes a BERT-based language model to recognize linguistic patterns in normal log
data. Guo et al. [22] further improved anomaly detection with LogBERT, a self-supervised
framework based on BERT, addressing the limitations of RNN-based models. Additionally,
recent studies like LogEvent2vec by Wang et al. [23] and LogEncoder by Qi et al. [24] have
explored contrastive representation learning based on logs and vector transformations for
anomaly detection, respectively. These approaches leverage the power of BERT to enhance
the accuracy of anomaly detection. Furthermore, Lv et al. [25] proposed ConAnomaly,
a model that uses log sequence encoders and LSTM networks for anomaly detection,
demonstrating the versatility of log analysis techniques.

Fält et al.’s research [3] emphasizes the importance of learning normal system behavior
for accurate anomaly detection, aligning with the methodology of leveraging BERT models
to better understand log sequences. Moreover, Ott et al. [26] highlighted the robustness
and transferability of anomaly detection models using pre-trained language models, which
is crucial for real-world applications.

Our work can be considered complementary to previous studies, as it can be applied
to any log analysis technique to enhance performance, particularly in terms of the response
time as it will significantly reduce the log size. To validate the semantic similarity of
the log records generated by our algorithm in anomaly detection, we focus on the use of
Large Language Models (LLMs) because the introduction of the Transformers model [27],
which laid the groundwork for LLMs, provides superior performance compared to other
models, such as those based on neural networks like LSTM (Long Short-Term Memory)
or autoencoders.

3. Hierarchical Classification

This work uses a thematic hierarchical classifier tree and a thematic catalog in which
each theme is associated with one or more numeric codes deduced from the hierarchical
tree. The themes in the catalog were represented by words that can exist in the messages;
specifically, in this work, we focused on English nouns appearing in WordNet [28]. For
the system log analysis process, the words of each message were read, searched for in the
catalog, and their thematic codes were extracted. The analysis of these hierarchical codes
allowed obtaining a semantically equivalent but much more compact log.

In the initial phase, a thematic classification tree is constructed, and a catalog of
hierarchical codes is created with the themes and their relationships. Subsequently, an
algorithm is developed that processes the original log to identify similar or duplicated
themes, thereby compacting the input records while maintaining high semantic similarity.

The steps of this algorithm are detailed below, whose novelty lies in the use of a
catalog of hierarchical codes that reflect both their thematic specificity and their position
within the higher hierarchy. Unlike traditional methods that simply reduce redundancy,
our algorithm preserves the semantics of the logs using a hierarchical coding system based
on natural language semantics. This ensures that essential information is not lost during
the compaction process. Structuring and compacting logs more effectively significantly
reduces fatigue from false alerts, enhancing the efficiency of the cyberattack and anomaly
detection process.

3.1. Thematic Classifier Tree

The first step was to build a thematic classifier tree in which each node represents a
specialization of its parent node, forming a structure where descendant nodes encompass
subtopics of their predecessors. Each node is labeled with a code that increases in length as
it advances toward more specific nodes.

To define the themes of the hierarchy, we used the WordNet database, specifically
the index.pos and data.pos files (where “pos” indicates the grammatical category: noun,
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verb, adjective, or adverb). For example, index.noun contains an alphabetical list of nouns,
each followed by offset codes representing different meanings. In data.noun, these codes,
ordered incrementally, identify a set of synonyms for each meaning with a description
at the end. Each entry also indicates the code of its hypernym (@) and hyponyms (~),
facilitating the deduction of the thematic hierarchy. In our prototype, each word or group
of words was treated as a unique theme where the offset code at the beginning of each entry
in data.noun indicates the byte offset from the beginning of the file to the corresponding
set of synonyms.

3.2. Catalog of Words from a Message

The catalog we created is a dictionary of words to which we associated the codes of
the most specific themes they belong to, as shown in Figure 1.

Figure 1. Generation of hierarchical codes.

To generate the hierarchical codes, our algorithm reads the data.noun file starting
from the root node and descending to each child or hyponym successively, creating in
this process the hierarchical codes assigned to each node. For each level descended, more
digits are added to the hierarchical code being created. As a result, a file is obtained that
associates each hierarchical code with an offset code.

Figure 2 shows a fragment of the generated “codes” file where the offset code appears
in the first column and the hierarchical code in the second column.

Figure 2. Fragment of the codes file.

The algorithm creates the hierarchical codes using character strings grouped into
blocks of three digits (from 000 to 999), allowing up to 1000 possibilities per node, reflecting
a theoretical maximum of 1000 children per theme. For example, Node Theme 0.1.2.2 has
the hierarchical code 000001002002, indicating its position within Theme 0.1.2, which in
turn has the code 00000002. The root node is identified with the code 000, simplifying the
representation of the thematic tree in data_noun and facilitating future expansions.

The hierarchical codes we create are not a number of bytes, like the offset codes, but
rather codes that represent the meaning of a word and all its hypernyms in the thematic
hierarchy, which will be useful in thematic analysis. By looking at Figure 2, we can deduce
that the more digits two hierarchical codes have in common starting from the left, the
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more similar the themes they represent are, although the length of both codes must also
be considered.

In the process illustrated in Figure 3, the “generatewords” algorithm transforms the
index.noun file into a new file called namesjer. In this new file, the original offset codes of
index.noun are replaced by hierarchical codes. Thus, each line of the namesjer file begins
with a word followed by hierarchical codes representing the themes associated with that
word, forming a structured catalog of themes and their corresponding hierarchical codes.

Figure 3. Creation of the world catalog and hierarchical codes.

3.3. Log Analysis Using Thematic Hierarchical Codes

The next phase involved analyzing log messages to identify common themes and
eliminate duplicates. The process consisted of searching the words of each message in the
catalog, extracting their hierarchical codes, and comparing them between messages. Codes
that shared a common prefix up to a certain threshold indicated a similar theme. This
threshold was defined as a percentage of matching digits of the shortest code, allowing the
determination of thematic specificity and relationship between messages.

If we consider L as the set of all lines in the log file, each line li is a vector of words or
tokens wi = wi1wi2 . . . win, and wij is the j-th word in the i-th line, and ni is the number of
words in line i. We have a dictionary D that associates words w with codes c represented
as a mapping D : W → C, where W is the set of all possible words and C is the set of
all possible codes. The transformation of each line li is performed using the substitution
function f , which is applied to each word wij in wi.

The function f (w) is defined as:

f (w) =

{
D(w) if w ∈ dom(D)

∅ if w /∈ dom(D)

where dom(D) represents the domain of definition of the dictionary D, i.e., the set of words
or tokens for which D has an associated code.

We apply f to each word in wi to obtain a new vector of codes ci = f (wi1) f (wi2) . . . f (win),
and we apply g to each line li of the original file, consisting of the vector wi, to obtain a new
output file:

g(wi) = wi ci = vi

The transformed log file is represented by a new set of vectors vi, where each line
contains the vector wi from the original file followed by the vector ci resulting from applying
the transformation to each line li of the original file.

We can describe the complete transformation process of the log file as follows:

vi = wi1wi2 . . . win f (wi1) f (wi2) . . . f (win) ∀wi ∈ L
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To compensate for differences between the base dictionary and the words used in the
logs, we adapted the words in the messages to identify themes rather than exact matches.
The adaptations included treating the words separated by dots or that start with uppercase
letters as different, even if they are joined. All uppercase letters were transformed to
lowercase, and substrings such as URLs, domains, and multimedia file extensions were
removed. Digits, control characters, punctuation marks (except the apostrophe that appears
in the base dictionary), and functional words stored in a file called ‘paldescart’ were
also discarded.

Additionally, accents were removed to align with the base dictionary, which lacks
accented words. If the hierarchical codes of a word with “-ing” or “-ed” endings were
not found, they were replaced by “-ion”, and if still not found, alternatives were tried
by removing the last, penultimate, or antepenultimate character. If no matches were
found, it was checked if the word was in plural, consulting the ‘plurirreg’ file for irregular
plurals and adjusting the ending as necessary to search for the singular corresponding
hierarchical code.

Obtaining the Summary Log

The ‘datacod’ file contains rows that include both the original log message and the
hierarchical codes that reflect its meaning. We implemented an algorithm that processes
this file to obtain a much more compact log than the original, representing each template of
the original log with a single message. The process is divided into three main modules:

First, the log entry is stripped of rows with repeated hierarchical codes. Each log row
includes at the end the hierarchical codes of the message that encapsulate the themes of
that message. By removing messages with duplicate themes and keeping only one per
theme, templates and their original semantics are preserved, significantly reducing the log
size and increasing its efficiency.

Let L be the set of all lines in the ‘datacod’ file, where each line li is an element of
L, i.e., li ∈ L. Each line li is a vector vi = (wi ci), where wi = (wi1, wi2, . . . , win) and
ci = (ci1, ci2, . . . , cim), with wix being a token or word and cix a hierarchical code. Let ni be
the number of lines with identical hierarchical codes up to line i, i.e.:

ni =
i

∑
j=1

1 | ci = cj

The transformation of the ‘datacod’ file to one without lines with identical codes is
performed using the function f , which is applied to each vector vi such that:

f (vi) =

{
wi ci if ni = 1
∅ if ni > 1

The resulting log file is reduced to a set of vectors {vi}, where each vi is the result of
applying the function f to each line li of the original file. We can describe the complete
process on the ‘datacod’ file as: {vi|vi = f (vi) ∀ vi ∈ L}.

In the second step, rows with similar meaning codes are removed from the resulting
log. To determine which rows are similar, the themes of all messages are compared using
a specificity threshold, which is a percentage of the shortest code’s length among the
two codes to be compared. Another threshold is set to determine the percentage of codes
of the same theme needed to consider that two messages belong to similar themes.

Finally, the last step starts from the log resulting from the previous module and
removes all hierarchical codes, leaving only the messages. The final log presents one
message per existing template in the original log, simplifying the representation and
improving the system’s efficiency.
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4. Experimental Analysis

In this phase, we evaluated the performance of the original log files and those pro-
cessed with the algorithms described in the previous section. To this end, we used the
BERT model (Bidirectional Encoder Representations from Transformers) [29]. Bidirectional
Encoder Representations from Transformers (BERT) is based on a deep bidirectional archi-
tecture to understand the context of a word based on its surrounding words, leading to
superior performance in various NLP tasks. This model pre-trains on vast amounts of text
data to capture linguistic nuances, which are then fine-tuned for specific applications. BERT,
with its advanced contextual understanding and ability to process large volumes of textual
data, presents a promising solution for enhancing anomaly detection using system logs.

The specific checkpoint called ‘bert-base-uncased’ refers to a model configuration
pre-trained using a vast corpus of English text without distinguishing between uppercase
and lowercase letters.

For the experimental evaluation of our system, we implemented a set of tests using
distributed file system logs (HDFS). For the analysis, we selected two log files: one contain-
ing a smaller set of 2000 messages and the other significantly larger with 149,477 messages
and an approximate size of 20.4 MB. These data volumes were chosen to provide a clear
perspective on the system’s performance under different processing loads.

The format of the HDFS logs we handled follows a standardized schema that facil-
itates automatic analysis. Each log entry includes several comma-delimited fields: the
date and time of the event (including minutes and seconds), a unique identifier for the
process that generated the message, the message’s severity level, the system component
the message refers to, and the textual content of the message itself. This structured format
is essential for the proper functioning of our program, as it allows efficient segmentation
and categorization of information for subsequent processing and analysis.

4.1. Log Evaluation

For the project experimentation, we implemented software that calculated certain
statistical parameters of the original HDFS logs, the 2 K messages one, and the 20 MB one,
as well as the two logs processed with the semantic compaction algorithms developed in
this work.

The results for the 2 K log are shown in Table 1. Analyzing the original 2 K log
(HDFS_2k) and its corresponding processed log (HDFS_2k_HC), we can state that the total
number of lines decreases by 99.20%. Similarly, the total number of tokens in the entire log
decreases by 99.25%. The total number of hierarchical codes representing the themes of
each log also decreases by 99.29%. However, the number of different hierarchical codes in
the log remains the same in both the original and the processed logs (147). This allows us
to conclude that the reduction in the file size and its elements has not affected its semantics
and that the processed log retains the same themes as the original log.

Additionally, we focused on the distribution of rows in the original log that repeat
in themes and correspond to a single row in the processed log. In the original log, there
are repeated rows in 1984 cases, but there are no repeated rows in the processed log. This
demonstrates that the processed log retains all the meaning with the minimum size.

Table 1. Statistics of 2 K Log.

Log Total Lines Total Num
Tokens Total Codes Total Codes

Dif
Total

Repetition

HDFS_2k 2000 14,890 64,065 147 1984
HDFS_2k_HC 16 111 456 147 0

We performed the same statistical tests again for the original 20 MB log (HDFS_20M)
and its processed log (HDFS_20M_HC) in Table 2, and the conclusions were similar. In this
case, the compaction is greater, as both the number of lines of the original log, the tokens,
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and the total number of hierarchical codes are reduced by 99.99%, maintaining the number
of different hierarchical codes. The total number of repeated rows in the processed file is
also zero, as was the case with the original 2 K log.

Table 2. Statistics of 20 MB log.

Log Total Lines Total Num
Tokens Total Codes Total Codes

Dif
Total

Repetition

HDFS_20M 149,477 1,147,745 4,894,020 213 149,455
HDFS_20M_HC 22 188 732 213 0

Figure 4 shows a comparison that considers the number of tokens per line and the
number of hierarchical codes per line for the original 2 K log. It is observed that for each
line, the number of codes is higher than the number of tokens. This happens because each
token can have one or several hierarchical codes since its meaning responds to more than
one theme in the classifier tree due to the possibility of synonyms. It can be seen in the
figure that generally, the more tokens a line has, the more hierarchical codes it will have.

Figure 4. Statistics of original 2 K log.

A similar comparison was made with the original 20 MB log, as shown in Figure 5,
and the results are similar to those of the smaller original log, i.e., the number of codes
per line is higher than the number of tokens, and this is maintained with some uniformity
throughout the log.

Figure 5. Statistics of original 20 MB log.
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It should be noted that some tokens might not have an associated hierarchical code in
the catalog. We say that tokens are categorized if they have associated hierarchical codes.
Therefore, we also counted the number of categorized tokens per line, as shown in Figure 6
for the processed 2 K log and in Figure 7 for the processed 20 MB log. The proportion
of categorized tokens to all tokens is significant, allowing the processed file to retain the
necessary semantics of the log. With fewer rows, the processed logs show less uniformity in
the relationship between tokens per line and codes per line, which would relate to greater
thematic diversity in the lines, as there are no repeated rows in the processed logs.
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For log processing, we used the ‘transformers’ and ‘datasets’ libraries available in
Python, using the PyTorch library for optimization and efficiency, a widely used open-
source machine learning library for deep learning applications.

First, with a batch size of 8, we iterate through the log file lines, obtaining the following
tokenization statistics:

data_metrics = {

’dataset’ : Dataset name
’lineCount’ : Number of lines in the dataset
’batchSize’ : Number of lines in each batch
’tokensCount’ : Total number of tokens in the dataset
’tokensMeanBatch’: Mean number of tokens in each batch
’tokensStdBatch’ : Standard deviation of tokens between batches
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’tokenizedTime’ : Total tokenization time of the dataset
’modelizedTime’ : Total modeling time of the dataset
’meanBatchTime’ : Mean execution time of a batch
’tokensBatchList’: List with the number of tokens in each batch
’timeBatchList’ : List with the processing time per batch

}

For each log line, we store the processed tokens per line and the processing time for
each line.

Table 3 presents a quantitative analysis of four datasets derived from the Hadoop
Distributed File System (HDFS), differentiated by their data volume. The suffix “HC” refers
to the log version processed with the hierarchical classification method described earlier.
The “totalLines” attribute refers to the total number of lines per dataset, with “HDFS_2k”
and “HDFS_2k_HC” containing 2000 and 16 lines, respectively, and “HDFS_20M” and
“HDFS_20M_HC” containing 14,947,770 and 22 lines, respectively. The “tokensCount”
indicates the total number of tokens, being substantially higher in the larger datasets. The
mean (“tokensMeanBatch”) and standard deviation (“tokensStdBatch”) of tokens per batch
provide a measure of centrality and dispersion, respectively, in the distribution of the
number of tokens per batch within each dataset. Notably, the “HC” subsets show a higher
mean of tokens per batch, indicating higher lexical density or information concentration.

Table 3. Tokens per line.

Log Total Lines Tokens Count Tokens Mean
Batch

Tokens Std
Batch

HDFS_2k 2000 152,960 611 234
HDFS_2k_HC 16 1344 672 16

HDFS_20M 149,477 11,043,195 591 54
HDFS_20M_HC 22 1944 648 28

Table 4 compares the performance metrics of two main datasets “HDFS_2k” and
“HDFS_20M” along with their corresponding “HC” subsets. The “lineCount” metric indi-
cates the number of lines in each dataset, providing context for interpreting the subsequent
metrics. “Tokenized Time” indicates the time in seconds required to tokenize the datasets,
with the “HC” subsets requiring less time due to their smaller size. “Modelized Time”
denotes the time needed to process the ‘bert-base-uncased‘ model, with the “HDFS_20M”
set requiring significantly more time, consistent with its larger size. Finally, “Mean Batch
Time” represents the average time taken per batch, which remains relatively constant across
all cases, suggesting that the time per batch is independent of the dataset’s total size and
that the “HC” subsets have characteristics that require more processing time per batch,
such as greater data complexity.

Table 4. Processing times per line.

Log Total Lines Tokenized Time Modelized Time Mean Batch Time

HDFS_2k 2000 0.8816 54.0701 0.2156
HDFS_2k_HC 16 0.2109 0.5704 0.2842

HDFS_20M 149,477 50.0624 4039.0378 0.2155
HDFS_20M_HC 22 0.2086 0.8397 0.2791

4.2. Analysis of Results

As seen in the previous section and as might be evident, reducing the log size signifi-
cantly improves its processing. When evaluating how similar the original and processed
logs are using hierarchical classification, we focus on creating a similarity matrix between
the lines of each analyzed set, both original and processed, and between them.
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Figure 8 shows two heatmaps of similarity matrices for HDFS log records. In the
graph on the left, the matrix for the “HDFS_2k vs. HDFS_2k” dataset shows uniformity in
color, suggesting high similarity between the log lines, implying little variation between
them, as expected in unprocessed log records where repetitive messages are common. On
the other hand, the graph on the right shows the matrix “HDFS_2k_HC vs. HDFS_2k_HC”
corresponding to a processed dataset of high cardinality. The more varied colors in this
matrix indicate more significant differences in similarity between the log lines, suggesting
that processing has highlighted or preserved the most unique lines or anomalies, leading to
greater diversity in the log content. The presence of dark red blocks indicates pairs of lines
with high similarity, while lighter colors represent lower similarity. This reflects the typical
purpose of a high-cardinality process, which is to identify and isolate the less frequent or
more distinct events within a large dataset.

Figure 8. Internal similarity of original and processed log.

Figure 9 presents a heatmap showing a range of similarities between the lines of the
original “HDFS_2k” dataset and its processed version “HDFS_2k_HC”. The dominant red
tones indicate high similarity, while blue represents lower similarity.

Figure 9. Similarity between the original and processed log.

The predominance of red throughout the map suggests that despite the processing,
there is notable consistency or significant similarity between the corresponding lines of
both logs. The lack of distinct blue blocks also indicates that there are no lines between the
datasets that are entirely different. The processing aimed to preserve essential information
while reducing redundancy; this heatmap suggests that a considerable degree of the original
information has been retained in the processed version.
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To further compare the similarity between the original and processed log, we used
the cosine similarity function from the PyTorch deep learning library to calculate the
similarity between two sets of embeddings. The torch.nn.functional .cosine_similarity
function calculates the cosine similarity between two tensors, which in this context are
embeddings corresponding to the two tokenized log files. Cosine similarity measures
the cosine of the angle between two vectors in a multidimensional space, providing an
indicator of their relative orientation but not their magnitude.

Cosine similarity between two vectors is calculated using the following formula:

cosine similarity(A, B) =
A · B

∥A∥∥B∥

In the case of vectors with only positive components, as is common in text representa-
tions and many other applications, the cosine similarity will be between 0 and 1.

Using cosine similarity between the two datasets, we obtain a value of 0.9724, indicat-
ing that the vectors represented in these tensors are very similar in terms of their orientation
in vector space. In other words, the embeddings of both tensors have very similar directions,
even if their magnitudes (i.e., the length of the vectors) might be different.

Since cosine similarity focuses on orientation and not magnitude, this high value
suggests that the data represented by these embeddings share many features or patterns in
the context being modeled by the vector space. Given that these embeddings result from
running the ‘bert-base-uncased’ model on both the original and processed log files, it can
be inferred that they share a similar context or semantic meaning.

In the previous section, we verified the significant reduction in processing time of the
2 K and 20 M logs, achieving reductions of 760.8% and 995.8%, respectively, in tokenization
time, and 989.5% and 999.8%, respectively, in BERT model training time.

Finally, we analyzed the results of applying the BERT model to the processed 20 M log
(HDFS_20M_HC) for anomaly detection, comparing it with other methods present in the
literature. These methods are briefly described below:

• PCA [13]: this work converts logs into vectors and then uses the Principal Component
Analysis (PCA) algorithm to divide them into normal space and anomaly space.

• Invariant Mining [30]: this paper proposes an Invariant Mining (IM) method to extract
invariants from log vectors, which are labeled as anomalous logs.

• LogCluster [31]: LogCluster proposes an approach that clusters logs for easier identifi-
cation of issues based on logs and uses a knowledge base to reduce redundancy by
pre-examining log sequences.

• SVM [32]: this work represents log sequences as vectors and uses a Support Vector
Machine (SVM) as its classification algorithm.

• DeepLog [33]: DeepLog is a deep neural network model that uses LSTM to model a
system log as a natural language sequence.

• LogRobust [34]: LogRobust extracts semantic information from log events and rep-
resents them as semantic vectors. It uses a Bi-LSTM attention-based model to detect
anomalous log sequences.

To carry out this comparison, we used traditional evaluation metrics: precision, recall,
and F1-Score.

As shown in Table 5, our model (BERT_20M) has a precision of 88%, a recall of 86%,
and an F1-Score of 83%. Comparing these results with those obtained by other methods,
we observe that BERT_20M has a precision of 88%, which is lower than the best methods
such as PCA, IM, LogCluster, and DeepLog, which reach 100% precision. However, it
outperforms SVM, which has the worst precision with 62%.
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Table 5. Evaluation of HDFS_20M_HC log.

Model Precision Recall F1-Score

PCA 1.00 0.67 0.70
IM 1.00 0.83 0.80

LogCluster 1.00 0.96 0.96
SVM 0.62 0.73 0.73

DeepLog 1.00 0.78 0.98
LogRobust 0.81 0.91 0.91
BERT_20M 0.88 0.86 0.83

In terms of recall, BERT_20M obtains 86%, which is lower than the recall of LogCluster
(96%) and LogRobust (91%), but significantly better than PCA, which has the worst recall
with 67%. Regarding the F1-Score, BERT_20M achieves a value of 0.83. Although it is
lower than LogCluster (0.96) and DeepLog (0.98), it surpasses PCA (0.70), which has the
lowest F1-Score.

Although the BERT_20M model does not achieve the best metrics compared to Log-
Cluster and DeepLog, it offers considerably better performance than PCA and SVM.

5. Conclusions and Future Research

In this work, we initially transcribed the thematic contents inherent to system logs
using a numerical coding scheme that assigns unique identifiers to each topic, modeling
thematic specificity and its contextual interconnections. Subsequently, we performed an
extraction and analytical synthesis operation on the thematic vectors corresponding to
the entries in an HDFS system log, allowing the obtainment of a much-condensed log,
reducing the number of lines, tokens, and thematic codes by 99%, and maintaining semantic
similarity.

The flexibility of the methodological approach suggests a cross-sectional adaptability
for its application in HDFS log files and other computer system architectures. The expansion
of this prototype to a thematic plurality could be carried out by integrating Wordnet
World instead of WordNet, which would expand the lexical index’s linguistic spectrum to
multiple languages.

A comparative study of the pre- and post-processing datasets was conducted using
hierarchical thematic classification models. The intrinsic similarity preservation of the
generated embeddings was evidenced, demonstrating a high cosine similarity coefficient
(0.9724), thus corroborating the retention of a shared core of meaning and semantic context
between the two data instances.

This methodology was subjected to an empirical analysis of its effectiveness and
efficiency using a ‘bert-base-uncased’ model. The quantitative evaluation focused on
traditional precision, recall, and F1-score metrics, demonstrating that the application of
this compaction technique not only maintains semantic similarity but also allows anomaly
detection similar to other methods used in the literature.

In conclusion, the implementation of hierarchical thematic classification in system
log collection systems is revealed as an efficient vector for data compression without
compromising semantic integrity. This compression proves to be a key component in
monitoring infrastructure, optimizing both alert management in Security Information and
Event Management (SIEM) systems and anomaly detection through deep learning language
models (LLMs), mitigating operational overload and alert fatigue.
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