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Abstract: In the present work, a numerical model was developed to analyze a commercial diesel
engine. The adequacy of this model was validated using experimental results. This model was
employed to study several pre-injection strategies. Particularly, the pre-injection rate, duration and
starting instant were analyzed in the ranges 5% to 25%, 1◦ to 5◦ and −22◦ to −18◦, respectively.
The effect on consumption and emissions of NOx, CO, and HC wereas evaluated. Since some of these
configurations have opposite effects on consumption and/or emissions, it is necessary to develop a
formal tool to characterize the most appropriate injection pattern. To this end, a multiple-criteria
decision making approach was employed. It was found that the injection duration must remain
as low as possible due to significant reductions in NOx. The most appropriate injection pattern
resulted 1◦ pre-injection duration, 20% pre-injection rate, and −19◦ pre-injection starting instant.
This configuration leads to increments of 6.7% in consumption, 3.47% in CO, and 3.83% in HC but
reduces NOx by 34.67% in comparison with the case without pre-injection.

Keywords: MCDM; CFD; engine; emissions; consumption

1. Introduction

It is well known that diesel engines are efficient thermal machines but emit significant levels of
harmful gases such as CO2, Particulate Matter (PM), NOx, CO, HC and SOx [1]. Between these, PM and
NOx are especially important in diesel engines. Smoke emissions, related to PM, mostly composed of
soot, are related to several diseases but are not globally regulated [2]. On the other hand, ever increasing
NOx emission limits have been imposed by regional and international authorities [3]. According to this,
several procedures have been developed in the recent years to reduce NOx emissions in diesel engines
such as EGR, water injection, modification of the injection parameters and after-treatments [4–7].
Between these measurements, this paper focuses on multiple injection strategies using pilot injections.
This strategy affects mixing and combustion [8]. Several works about the advantages and disadvantages
of pilot injections can be found in literature. One of the main disadvantages is that soot can increase
because pilot injections aggravate spray characteristics and particulates can be formed at the rich
region [9,10]. In order to avoid this problem, some authors recommend combining multiple injections
with other systems such as EGR [11] or high injection pressures [12], while other researchers indicate that
it is possible to obtain both NOx and particulate reduction using only multiple injections. In this regard,
Carlucci et al. [13] analyzed the pilot injection timing and duration and found that NOx emission levels
are mainly influenced by the pilot duration, whereas smoke emission is influenced by both variables.
Tanaka et al. [14] analyzed the time and quantity of the pilot injection. Benajes et al. [15] analyzed
the effect of the dwelling time, i.e., the time between two consecutive injections, obtaining reductions
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in noise, NOx and particulates. Pierpont et al. [16] varied the fuel distribution in each pulse and
the dwelling time between pulses and obtained a reduction in NOx and particulates but also a
3%–4% increase in consumption. Hotta et al. [17] analyzed the number of pre-injections and obtained
reductions in both NOx and HC. Fang et al. [18] analyzed the effect of the injection angle when using
multiple injections. Other works such as those of Ishida et al. [19] and Minani et al. [20] obtained
NOx and consumption reductions but recommended employing a small amount of pilot quantity in
order to maintain soot emissions. In addition to these aforementioned works based on diesel engines,
other similar studies were realized using biodiesel [21], gasoline [22–24], dual fuel [25–28] and other
fuels [29–34].

Numerical simulations also provide interesting information to analyze multiple injections.
Particularly, in the field of Computational Fluid Dynamics (CFD), one can refer to the work of
Lechner et al. [35], who analyzed advanced injection strategies to achieve partially premixed combustion
in a diesel engine; Sun and Reitz [36], who analyzed injection strategies to optimize two-stage
combustion; Verbiezen et al. [37], who analyzed the effect of injection timing; Zehni and Jafarmadar [38],
who analyzed the effect of split injection in a direct-injection diesel engine; Abdullah et al. [39],
who analyzed the effect of injection pressure; Coskun et al. [40], who analyzed second injection
timings; Wang et al. [41], who analyzed several fuel injection strategies on a gasoline engine;
Zhaojie et al. [42], who analyzed two-stage fuel injection with EGR; Lamas et al. [43,44], who analyzed
several configurations of pilot injections; and Sencic [45], who analyzed alternative injection patterns.

Despite this literature about multiple injections, it is important to develop a reliable tool
to characterize the most appropriate injection pattern. In this regard, this work presents a
Multiple-Criteria Decision Making (MCDM) approach to characterize the most appropriate injection
pattern. MCDM methodologies constitute a formal tool to handle complex decision-making situations,
providing coherence in the decision process. Three pre-injection parameters such as pre-injection rate
(R), duration (D) and starting instant (S) were analyzed. The emissions and consumption analyzed in
the present work were obtained through a CFD model previously validated with experimental results.

2. Materials and Methods

The engine analyzed in the present work is the Wärtsilä 6 L 46. This is a four-stroke diesel engine
with six cylinders. Each cylinder presents two intake and two exhaust valves. The fuel injector has
10 holes and is placed at the center of the cylinder head. The fuel is injected directly into the cylinder
since it is a direct injection engine.

The geometry and mesh were realized using SolidEdge and Gambit softwares, respectively. A grid
independence study was carried out to provide its adequacy. The software OpenFOAM was employed
for the CFD simulations. OpenFOAM was chosen because it is an open software which allows a
complete manipulation of the code. The simulation started at 360◦ Crank Angle After Top Dead
Center (CA ATDC) and the whole cycle was analyzed. As boundary conditions, the heat transfer
from the cylinder was modelled as a combined convection–radiation. The RANS (Reynolds-averaged
Navier-Stokes) equations of conservation of mass, momentum and energy were solved. The k-ε was
employed as the turbulence model due to its robustness and reasonably accuracy for a wide range
of turbulent flows. As fuel droplet breakup, the Kelvin–Helmholtz and Rayleigh–Taylor breakup
models [46] were employed, and the Dukowicz model [47] for the heat-up and evaporation. Regarding
the chemical kinetics, a reaction mechanism was programmed by combining the following three
kinetic schemes:

- Ra and Reitz’s [48] kinetic scheme, based on 131 reactions and 41 species, for combustion.
- Yang et al.’s [49] kinetic scheme, based on 20 species and 43 reactions, for NOx formation.
- Miller and Glarborg’s [50] kinetic scheme, based on 24 species and 131 reactions, for NOx reduction.

This numerical model was validated using experimental measurements. For this purpose,
experimental measurements obtained elsewhere [51–55] were employed. The emissions and Specific
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Fuel Consumption (SFC) obtained numerically and experimentally at several loads are indicated
in Figure 1. This figure shows a reasonable correspondence between numerical and experimental
results. The in-cylinder pressure obtained numerically and experimentally at 100% load is shown in
Figure 2. This figure also shows a satisfactory correspondence between experimental and numerical
results. A certain error was inevitable due to both numerical and experimental handicaps. On the one
hand, the instruments employed to characterize experimental measurements have a certain tolerance
and, on the other hand, numerical errors are introduced due to the discretization processes and the
hypothesis assumed to simplify the governing equations.
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Figure 1. SFC and emissions numerically and experimentally obtained at different loads.
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Figure 2. In-cylinder pressure numerically and experimentally obtained, 100% load.

3. Results and Discussion

Once the numerical model was validated with experimental measurements, it was used to analyze
the results of several pre-injection patterns. Five pre-injection rates were employed: 5%, 10%, 15%,
20% and 25%; five pre-injection durations: 1◦ Crank Angle (CA), 2◦ CA, 3◦ CA, 4◦ CA and 5◦ CA;
and five pre-injection starting instants: −22◦ CA ATDC, −21◦ CA ATDC, −20◦ CA ATDC, −19◦ CA
ATDC and −18◦ CA ATDC. These ranges were chosen according to a previous paper [43], in which
it was obtained that wider ranges lead to excessive increments in NOx emissions or consumption.
Taking into account these values of pre-injection rates, durations and starting instants, a total of
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125 cases were analyzed. These are summarized in Figure 3. SFC and emissions of NOx, CO and HC
were characterized for these 125 cases.
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As indicated previously, a MCDM method was employed. The first step in MCDM approaches
consists on defining the decision tree with the relative importance of each parameter, Table 1.
Two requirements (general aspects) were considered: consumption and emissions. The second level
represents the sub-requirements (specific aspects). The relative importance of each requirement and
sub-requirement must be defined too. In the present work, this importance was distributed equally,
i.e., the same importance was given to SFC and emissions: 50% (α = 0.5 in per unit basis) for each one.
Regarding emissions, the same importance was given to NOx, CO and HC: 33.3% (β = 0.333 in per
unit basis) for each one. It is worth mentioning that other scenarios could also be possible in case it is
necessary to provide other levels of importance.

Table 1. Decision tree for the MCDM approach.

Requirement Sub-Requirement

SFC (50%) SFC (100%)

Emissions (50%)
NOx (33.3%)
CO (33.3%)
HC (33.3%)

The next step was to calculate the variation of each sub-requirement respect to the case without
pre-injection, in per unit basis, Equation (1).

Vi =
Xi −Xre f

Xre f
(1)

where Xi is the value of the sub-requirement i and Xref the value corresponding to the case without
pre-injection, i.e., SFC = 172 g/kWh, NOx = 13.3 g/kWh, CO = 4.5 g/kWh and HC = 5.5 g/kWh. Once
each indicator was transformed into its variation in per unit basis, the global adequacy index, AI, was
computed by Equation (2).

AI =
125∑
i=1

αiβiVi (2)

where αi is the weight of each requirement and βi the weight of each sub-requirement in per unit basis.
The minimum value of the AI is the most adequate solution. It was determined using an in-house

code programmed using the open software GNU Octave. For the parameters analyzed in the present
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work, the minimum AI is −0.0122, corresponding to −19◦ CA ATDC pre-injection starting instant,
20% pre-injection rate and 1◦ CA pre-injection duration. The results are detailed in Appendix A. As can
be seen in this appendix, the minimum AI value was obtained in the ninety-first case analyzed. On a
per-unit basis, SFC varies by 0.067; NOx −0.3467, CO 0.0347 and HC 0.0383, corresponding to an
SFC increment of SFC 6.7%; NOx reduction of 34.7%, CO increment of 3.47% and HC increment of
3.83% in comparison with the case without pre-injection. Despite the increments in SFC, CO and HC,
these solution results are the most appropriate because the increments are low and the NOx reduction
is too significant.

The results shown in Appendix A indicate that the influence of CO and HC in the AI is not too
important due to the low variation of these emissions with the pre-injection rate, duration and starting
instant. On the other hand, SFC and NOx emissions are more sensitive. A representative quantity
of pre-injection is necessary, specifically 20%, due to the important reduction on NOx emissions.
Nevertheless, if this pre-injection rate is increased, it leads to important increments in SFC and,
to a lesser extent, CO and HC emissions. Regarding the pre-injection instant, early pre-injections
are appropriate to reduce NOx but the increase increment in SFC is considerable; for this reason,
a -19◦ CA ATDC was obtained. Finally, the injection duration mainly affects to NOx and short
injections lead to considerable NOx reductions. The goal of NOx reduction using pre-injections is to
control the combustion temperature. It is well known that high combustion temperatures promote
NOx formation [56]. In order to control the combustion temperature, it is necessary to rigorously
inject the fuel at the optimum instant. It is worth mentioning that in practical applications it is not
possible to reduce the injection duration at the desirable level. For instance, the present engine is a
four-stroke medium-speed model which runs at 500 rpm, which corresponds to 0.00033 s to reach 1◦

CA. Some current piezo-injectors are able to switch on and off in tens of microseconds but solenoid or
electromagnetic injectors have longer response times. For this reason, pre-injections shorter than 1◦ CA
were not analyzed in the present work. Using 1◦ CA pre-injection duration, the AI is represented in
Figure 4. As can be seen, the minimum value of AI, −0.0122 is reached using 20% pre-injection rate and
−19◦ CA ATDC pre-injection starting instant, as indicated above.
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The consumption against the pre-injection rate and starting instant is shown in Figure 5. This figure
refers to 1◦ CA pre-injection duration. As can be seen, early pre-injections promote considerable
increase increments in SFC, as indicated above. On the other hand, the pre-injection rate also promotes
increase increments in SFC considerably.



Appl. Sci. 2020, 10, 2482 6 of 12
Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13 

. 

Figure 5. SFC against R and S. Pre-injection duration 1° CA. 

NOx emissions against the pre-injection rate and starting instant are indicated in Figure 6. This 
figure refers to 1° CA pre-injection duration. As can be seen, early pre-injections promote reductions 
in NOx, but increment SFC, as indicated above. On the other hand, the pre-injection rate considerably 
reduces NOx but also increments SFC. 

 
Figure 6. NOx against R and S. Pre-injection duration 1° CA. 

Figures 7 and 8 show the CO and HC emissions against the pre-injection rate and starting instant. 
These figures refer to 1° CA pre-injection duration. As can be seen, both CO and HC are sensitive to 
the pre-injection rate and starting instant. Nevertheless, the influence of CO and HC in the results is 
low due to their low variation. 

 
Figure 7. CO against R and S. Pre-injection duration 1° CA. 

Figure 5. SFC against R and S. Pre-injection duration 1◦ CA.

NOx emissions against the pre-injection rate and starting instant are indicated in Figure 6.
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reductions in NOx, but increment SFC, as indicated above. On the other hand, the pre-injection rate
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4. Conclusions

The present work proposes a numerical model to analyze the commercial diesel engine Wärtsilä
6 L 46. Once validated, the numerical model was employed to analyze 125 injection patterns with
different values of pre-injection rate, duration and starting instant in the ranges 5% to 25%, 1◦ CA
to 5◦ CA and −22◦ CA ATDC to −18◦ CA ATDC, respectively. Due to this large number of results
and the fact that these parameters can lead to different and opposite effects, it is difficult to determine
the most adequate injection pattern. According to this, a MCDM approach was employed to select
the most appropriate injection pattern. The effects on consumption and emissions of NOx, CO and
HC were characterized. It was found that the injection duration must remain as lower as possible
due to significant reductions in NOx. The most appropriate injection pattern was shown in the 1◦

CA pre-injection duration, 20% pre-injection rate and −19◦ CA ATDC pre-injection starting instant.
This injection pattern leads to increases in 6.7% in SFC, 3.47% in CO and 3.83% in HC but reduces NOx

by 34.67% in comparison with the case without pre-injection. Future works will focus on analyzing
other parameters such as number of pre-injections, dwelling time and injection angle, as well as
other engines.
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Appendix A

Table A1 lists the results of the 125 cases analyzed by the MCDM approach developed in the
present work. Five pre-injection starting instants are included: −22◦ CA ATDC (Crank Angle After Top
Dead Center), −21◦ CA ATDC, −20◦ CA ATDC, −19◦ CA ATDC, and −18◦ CA ATDC; five pre-injection
rates: 5%, 10%, 15%, 20%, and 25%; and five pre-injection durations: 1◦ CA (Crank Angle), 2◦ CA,
3◦ CA, 4◦ CA, and 5◦ CA. Table A1 also includes the variation of SFC, NOx, CO and HC in per unit
basis, as well as the AI obtained for each case analyzed. The minimum AI, which represents the most
adequate solution, is highlighted. As can be seen, this minimum value was obtained for the 91th
case, corresponding to −19◦ CA ATDC pre-injection starting instant, 20% pre-injection rate, and 1◦ CA
pre-injection duration, leading to variations of 0.067 in SFC, −0.3467 in NOx, 0.0347 in CO and 0.0383
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in HC. In a per cent basis, these values correspond to a SFC increment of 6,7%, NOx reduction of 34.7%,
CO increment of 3.47%, and HC increment of 3.83% in comparison with the case without pre-injection.

Table A1. Results of the 125 cases analyzed.

Case S (◦CA ATDC) R (%) D (◦CA) SFC (−) NOx (−) CO (−) HC (−) AI (−)

1 −22 5 1 0.1099 −0.4455 0.0338 0.0393 −0.0072
2 −22 5 2 0.0987 −0.4111 0.0385 0.0426 −0.0058
3 −22 5 3 0.0902 −0.3846 0.0446 0.0474 −0.0037
4 −22 5 4 0.0846 −0.3659 0.0523 0.0538 −0.0011
5 −22 5 5 0.0818 −0.3551 0.0613 0.0619 0.0022
6 −22 10 1 0.1421 −0.5484 0.0450 0.0514 −0.0045
7 −22 10 2 0.1275 −0.5061 0.0510 0.0555 −0.0030
8 −22 10 3 0.1166 −0.4735 0.0590 0.0618 −0.0006
9 −22 10 4 0.1094 −0.4505 0.0688 0.0701 0.0027
10 −22 10 5 0.1058 −0.4371 0.0806 0.0805 0.0068
11 −22 15 1 0.1650 −0.6194 0.0530 0.0600 −0.0020
12 −22 15 2 0.1481 −0.5716 0.0600 0.0648 −0.0005
13 −22 15 3 0.1355 −0.5347 0.0693 0.0721 0.0020
14 −22 15 4 0.1271 −0.5087 0.0807 0.0817 0.0057
15 −22 15 5 0.1229 −0.4937 0.0943 0.0938 0.0104
16 −22 20 1 0.1836 −0.6752 0.0595 0.0669 0.0001
17 −22 20 2 0.1648 −0.6231 0.0673 0.0723 0.0016
18 −22 20 3 0.1507 −0.5829 0.0775 0.0804 0.0044
19 −22 20 4 0.1413 −0.5546 0.0902 0.0911 0.0083
20 −22 20 5 0.1367 −0.5382 0.1054 0.1045 0.0135
21 −22 25 1 0.1994 −0.7219 0.0650 0.0728 0.0021
22 −22 25 2 0.1790 −0.6662 0.0734 0.0787 0.0036
23 −22 25 3 0.1637 −0.6232 0.0846 0.0874 0.0065
24 −22 25 4 0.1535 −0.5930 0.0984 0.0991 0.0107
25 −22 25 5 0.1485 −0.5755 0.1149 0.1137 0.0163
26 −21 5 1 0.0770 −0.3497 0.0276 0.0326 −0.0098
27 −21 5 2 0.0658 −0.3153 0.0323 0.0358 −0.0084
28 −21 5 3 0.0573 −0.2888 0.0384 0.0407 −0.0064
29 −21 5 4 0.0517 −0.2701 0.0460 0.0471 −0.0037
30 −21 5 5 0.0489 −0.2593 0.0551 0.0551 −0.0004
31 −21 10 1 0.0995 −0.4305 0.0370 0.0427 −0.0088
32 −21 10 2 0.0850 −0.3882 0.0430 0.0469 −0.0073
33 −21 10 3 0.0741 −0.3555 0.0509 0.0531 −0.0050
34 −21 10 4 0.0668 −0.3325 0.0608 0.0614 −0.0017
35 −21 10 5 0.0633 −0.3192 0.0725 0.0718 0.0024
36 −21 15 1 0.1156 −0.4862 0.0437 0.0499 −0.0077
37 −21 15 2 0.0987 −0.4384 0.0507 0.0547 −0.0062
38 −21 15 3 0.0861 −0.4015 0.0599 0.0620 −0.0037
39 −21 15 4 0.0777 −0.3755 0.0713 0.0716 0.0000
40 −21 15 5 0.0735 −0.3605 0.0850 0.0837 0.0047
41 −21 20 1 0.1286 −0.5300 0.0491 0.0557 −0.0067
42 −21 20 2 0.1098 −0.4779 0.0569 0.0611 −0.0052
43 −21 20 3 0.0957 −0.4377 0.0671 0.0691 −0.0025
44 −21 20 4 0.0864 −0.4094 0.0798 0.0799 0.0015
45 −21 20 5 0.0817 −0.3930 0.0950 0.0933 0.0067
46 −21 25 1 0.1397 −0.5667 0.0537 0.0607 −0.0057
47 −21 25 2 0.1193 −0.5110 0.0621 0.0665 −0.0042
48 −21 25 3 0.1040 −0.4680 0.0733 0.0753 −0.0014
49 −21 25 4 0.0938 −0.4377 0.0871 0.0869 0.0029
50 −21 25 5 0.0888 −0.4202 0.1036 0.1015 0.0085
51 −20 5 1 0.0537 −0.2774 0.0227 0.0269 −0.0112
52 −20 5 2 0.0425 −0.2431 0.0273 0.0301 −0.0098
53 −20 5 3 0.0341 −0.2165 0.0335 0.0350 −0.0077
54 −20 5 4 0.0285 −0.1979 0.0411 0.0414 −0.0050
55 −20 5 5 0.0257 −0.1870 0.0502 0.0494 −0.0018
56 −20 10 1 0.0695 −0.3416 0.0306 0.0353 −0.0113
57 −20 10 2 0.0549 −0.2992 0.0366 0.0395 −0.0098
58 −20 10 3 0.0440 −0.2666 0.0445 0.0457 −0.0074
59 −20 10 4 0.0368 −0.2436 0.0544 0.0540 −0.0042
60 −20 10 5 0.0332 −0.2303 0.0661 0.0644 −0.0001
61 −20 15 1 0.0807 −0.3857 0.0362 0.0413 −0.0111
62 −20 15 2 0.0638 −0.3379 0.0432 0.0462 −0.0096
63 −20 15 3 0.0511 −0.3011 0.0525 0.0534 −0.0070
64 −20 15 4 0.0427 −0.2751 0.0639 0.0631 −0.0034
65 −20 15 5 0.0386 −0.2601 0.0775 0.0751 0.0013
66 −20 20 1 0.0898 −0.4205 0.0408 0.0462 −0.0108
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Table A1. Cont.

Case S (◦CA ATDC) R (%) D (◦CA) SFC (−) NOx (−) CO (−) HC (−) AI (−)

67 −20 20 2 0.0710 −0.3684 0.0486 0.0516 −0.0093
68 −20 20 3 0.0569 −0.3282 0.0589 0.0596 −0.0066
69 −20 20 4 0.0475 −0.2999 0.0716 0.0704 −0.0026
70 −20 20 5 0.0429 −0.2835 0.0868 0.0838 0.0026
71 −20 25 1 0.0975 −0.4496 0.0447 0.0503 −0.0105
72 −20 25 2 0.0771 −0.3939 0.0532 0.0561 −0.0090
73 −20 25 3 0.0618 −0.3509 0.0643 0.0649 −0.0061
74 −20 25 4 0.0516 −0.3207 0.0781 0.0766 −0.0019
75 −20 25 5 0.0466 −0.3031 0.0946 0.0911 0.0037
76 −19 5 1 0.0401 −0.2287 0.0190 0.0222 −0.0113
77 −19 5 2 0.0289 −0.1944 0.0237 0.0254 −0.0098
78 −19 5 3 0.0204 −0.1678 0.0298 0.0303 −0.0078
79 −19 5 4 0.0148 −0.1492 0.0374 0.0367 −0.0051
80 −19 5 5 0.0121 −0.1384 0.0465 0.0447 −0.0018
81 −19 10 1 0.0519 −0.2816 0.0258 0.0292 −0.0119
82 −19 10 2 0.0373 −0.2393 0.0319 0.0334 −0.0104
83 −19 10 3 0.0264 −0.2066 0.0398 0.0396 −0.0080
84 −19 10 4 0.0192 −0.1837 0.0497 0.0479 −0.0048
85 −19 10 5 0.0156 −0.1703 0.0614 0.0583 −0.0007
86 −19 15 1 0.0602 −0.3180 0.0308 0.0343 −0.0121
87 −19 15 2 0.0433 −0.2703 0.0378 0.0391 −0.0106
88 −19 15 3 0.0307 −0.2334 0.0470 0.0463 −0.0080
89 −19 15 4 0.0223 −0.2074 0.0584 0.0560 −0.0044
90 −19 15 5 0.0181 −0.1924 0.0721 0.0681 0.0003

91 −19 20 1 0.0670 −0.3467 0.0347 0.0383 −0.0122

92 −19 20 2 0.0482 −0.2946 0.0425 0.0437 −0.0107
93 −19 20 3 0.0341 −0.2544 0.0528 0.0518 −0.0080
94 −19 20 4 0.0248 −0.2261 0.0655 0.0625 −0.0040
95 −19 20 5 0.0201 −0.2097 0.0807 0.0759 0.0012
96 −19 25 1 0.0728 −0.3707 0.0381 0.0418 −0.0122
97 −19 25 2 0.0524 −0.3150 0.0465 0.0476 −0.0107
98 −19 25 3 0.0371 −0.2720 0.0577 0.0564 −0.0079
99 −19 25 4 0.0269 −0.2418 0.0715 0.0680 −0.0036

100 −19 25 5 0.0219 −0.2242 0.0880 0.0826 0.0020
101 −18 5 1 0.0361 −0.2036 0.0166 0.0185 −0.0101
102 −18 5 2 0.0249 −0.1692 0.0213 0.0217 −0.0086
103 −18 5 3 0.0164 −0.1427 0.0274 0.0266 −0.0066
104 −18 5 4 0.0108 −0.1241 0.0351 0.0330 −0.0039
105 −18 5 5 0.0081 −0.1132 0.0441 0.0410 −0.0007
106 −18 10 1 0.0467 −0.2507 0.0228 0.0245 −0.0106
107 −18 10 2 0.0322 −0.2084 0.0288 0.0286 −0.0091
108 −18 10 3 0.0213 −0.1757 0.0368 0.0349 −0.0068
109 −18 10 4 0.0140 −0.1527 0.0466 0.0432 −0.0035
110 −18 10 5 0.0104 −0.1394 0.0583 0.0536 0.0006
111 −18 15 1 0.0543 −0.2831 0.0272 0.0287 −0.0108
112 −18 15 2 0.0374 −0.2353 0.0342 0.0336 −0.0093
113 −18 15 3 0.0247 −0.1984 0.0434 0.0408 −0.0067
114 −18 15 4 0.0163 −0.1725 0.0549 0.0505 −0.0031
115 −18 15 5 0.0121 −0.1574 0.0685 0.0625 0.0016
116 −18 20 1 0.0604 −0.3086 0.0308 0.0322 −0.0109
117 −18 20 2 0.0416 −0.2565 0.0386 0.0375 −0.0094
118 −18 20 3 0.0275 −0.2163 0.0488 0.0456 −0.0066
119 −18 20 4 0.0181 −0.1880 0.0615 0.0563 −0.0027
120 −18 20 5 0.0135 −0.1716 0.0767 0.0697 0.0025
121 −18 25 1 0.0656 −0.3300 0.0338 0.0351 −0.0108
122 −18 25 2 0.0451 −0.2743 0.0423 0.0409 −0.0094
123 −18 25 3 0.0298 −0.2313 0.0534 0.0497 −0.0065
124 −18 25 4 0.0197 −0.2010 0.0672 0.0613 −0.0023
125 −18 25 5 0.0146 −0.1835 0.0837 0.0759 0.0033
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