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Abstract

The prevalence of Internet of Things (IoT) systems deployment is increasing across various domains, from 
residential to industrial settings. These systems are typically characterized by their modest computational 
requirements and use of lightweight communication protocols, such as MQTT. However, the rising adoption 
of IoT technology has also led to the emergence of novel attacks, increasing the susceptibility of these systems 
to compromise. Among the different attacks that can affect the main IoT protocols are Denial of Service 
attacks (DoS). In this scenario, this paper evaluates the performance of six supervised classification techniques 
(Decision Trees, Multi-layer Perceptron, Random Forest, Support Vector Machine, Fisher Linear Discriminant 
and Bernoulli and Gaussian Naive Bayes) combined with the Principal Component Analysis (PCA) feature 
extraction method for detecting DoS attacks in MQTT networks. For this purpose, a real dataset containing 
all the traffic generated in the network and many attacks executed has been used. The results obtained with 
several models have achieved performances above 99% AUC.
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I. Introduction

IoT (Internet of Things) allows daily objects to acquire new 
functionalities, such as gathering information from the environment 

or performing actions in the environment through actuators. Thanks 
to internet connectivity, these devices can collect, analyze, and share 
data between objects, software applications, and cloud platforms. 
Concepts such as smart cities [1] and Industry 4.0 [2] have emerged 
thanks to healthcare devices, industrial sensors, and actuators 
connected to the Internet.

Recent market studies have predicted that the number of connected 
devices will be more than 70% of total internet connections, with the 
number growing by 180% in the next four years [3].

IoT systems present new cybersecurity challenges due to the 
heterogeneous growth in the number of devices and linked services. 
Operating in resource-constrained environments, such as networks 
with low transfer rates due to interference, low power consumption, 
and small embedded processors, requires the use of simple protocols 
and devices, which may limit security aspects [4], [5].

The different protocols can be represented like a layered structure, 
where each of them provides a different functionality [6], being the 
most widely used architecture the three-layer topology. Considering 
the studies on the protocols used in IoT environments [7], [8], they can 
be classified according to Table I.

TABLE I. IoT Protocol Classification in Three Layers

Protocols Layers

XMPP, MQTT, CoAP, Web-Socket, HTTP REST Application

UDP, TCP, 6LoWPAN Network

LoRa, IEE 802.15 (BLE, Bluetooth, ZigBee), IEE 802.11(Wi-Fi) Physical

Malicious actors can exploit a diverse range of attack vectors, based 
on the special behaviours of this kind of environment. As a result, 
there is a growing interest in cybersecurity topics research around 
IoT. In the review addressed by Lu & Xu [9], a clear upward trend in 
research on "IoT cybersecurity" is shown.

Attackers usually exploit vulnerabilities of specific IoT protocols 
embedded in TCP/IP networks [10]. One of the most common attacks 
is a denial of service (DoS) which consists of the attacker saturating the 
network with a large volume of traffic until the system cannot provide 
[11] service. One of the most famous attacks that have been performed 
on the Internet was the "Mirai" botnet, developed on September 2016. 
It performed a DDoS attack, based on a distributed denial of service 
over "DynDNS" servers, being one of the largest DNS service providers 
systems. "Mirai" attack generated 1.2 terabits of malicious traffic, 
forcing to set of "DynDNS" servers, the out of service during several 
hours, which caused the fall of widespread of internet services such as 
Twitter, Netflix, Reddit, and GitHub [12]. A more recent botnet attack 
was "dark_nexus" which dated in 2020 compromised around 1370 
devices. Bitdefender analysis report [13] shows how "dark_nexus" 
works, with a behaviour very similar to Mirai. 
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A. IoT Cybersecurity Solutions
This subsection addresses state of the art to show the most popular 

solutions for protecting IoT environments.

The research work conducted by Idriss et al. [14], delves into 
various options for implementing cybersecurity in IoT systems, being 
the most notable of them, the implementation of a hardware module 
that allows adding randomness to the encryption in a more lightweight 
way than other methods, calling PUF (Physical Unclonable Functions) 
based lightweight authentication. Amanlou et al. [15] proposes a 
lightweight authentication system for IoT systems using the MQTT 
protocol, a temporary key exchange algorithm FCDHE, and the 
shared key authentication (PSK) algorithm. This combination provides 
mutual authentication between IoT network devices thanks to an 
authentication scheme known as ECDHE-PSK. This implementation 
would also improve IoT cybersecurity using this protocol. However, 
the systems deployed previously must be modified.

In the last few years, new IoT cybersecurity approaches have 
been published. Zhu & Deng [16], include IoT security situation 
classification based on support vector machines and security situation 
awareness based on Markov game model. Choudhary & Pahuja [17], 
present a new technique called Steering Convention for Vitality 
Effective Systems (SC-VFS) that improves vitality proficiency and 
ensures the safety of sensitive information in remote sensor networks, 
with a focus on detecting doppelganger attacks in IoT-based intelligent 
health applications. Berjón et al. [18], introduce the SCIFI-II system, 
which simplifies the development of applications in IoT contexts 
by allowing the distribution of events between event brokers and 
designing components that are decoupled from the event brokers.

To address cybersecurity without modifying existing systems, 
implementing Intrusion Detection Systems (IDS) is the main solution 
since they can analyse the traffic generated by the environment, without 
intervening in its configuration. There are several types of intrusion 
detection systems, depending on the paradigm applied in their detection 
module, being theses rule-based IDS or anomaly-based IDS [19]. The 
anomaly-based IDS paradigm observes network traffic features to detect 
attacks by identifying altered behaviour within the network.

Anomaly detection systems (IDS) are an effective solution for 
implementing attack detection in IoT systems. They are highly 
versatile in detecting new types of attacks and can adapt to new 
protocols. Anomaly IDS systems utilize classification models created 
with soft computing techniques, such as machine and deep learning, 
supported by neural networks [20]. The implementation of these 
procedures requires training models using high quality datasets [21].

B. Objectives
Based on the state of the art addressed previously, this paper aims 

to develop a functional IDS with an intelligent model for detecting 
DoS attacks on the MQTT protocol. The model will be constructed 
thanks to applying soft computing techniques based on machine 
learning techniques.

To achieve a functional IDS, several tasks are addressed. These 
tasks are described throughout the paper as follows:

• Study the data sets available to develop the intelligent model that 
applied the soft computing techniques chosen (Section II).

• Collect a new MQTT dataset (How this dataset has been 
constructed will be addressed in Section III) because no MQTT 
datasets exist with normal and DOS traffic for applying machine 
learning methods.

• Chose and test a set of machine learning methods for application 
to the previously defined dataset, to achieve the best model for 
deployment in the IDS (Sections IV and V).

II. Related Works

In order to implement a set of machine learning techniques 
for getting a functional model that will be inserted in an IDS, it is 
necessary to work with a specific dataset. This dataset consists of 
labeled traffic frames, each one tagged as standard/normal network 
traffic or traffic with hostile purposes. Thanks to the models obtained 
after a training process, the IoT MQTT behaviour is modeled as well 
as the recognition of the most important features for understanding 
this behaviour.

Using general purposed datasets collected from TCP/IP networks 
can be a solution for modeling attacks such as botnets, without 
focusing on the special characteristics of IoT systems [22]. To obtain 
anomaly-based IDS capable of detecting DoS attacks, well-known 
datasets are used. Some of them were created like over general 
purposed networks (non IoT networks) such as the NSL-KDD dataset 
[23], which an enhanced version of the KDD99 dataset was developed 
in 1993. Some research works address the use of different artificial 
intelligence techniques for modeling traffic and detecting distributed 
denial of service DDoS attacks, caused by IoT system botnets [24], 
[25]. Liu et al. [26], also use the NSL-KDD dataset for getting the model 
that will be included in the IDS, in this case, Kontiki is the software 
utilized for simulating IoT environments where CoAP (Constrained 
Application Protocol) works.

MQTT is typically utilized to connect small devices with restricted 
bandwidth in IoT [27] and Industry 4.0 environments [28]. MQTT 
is a publish/subscribe protocol designed for lightweight machine-
to-machine (M2M) communications, being ideal for connecting 
small devices to networks with low bandwidth. MQTT architecture 
follows a star topology with a central server node called a Broker. 
The communication is based on topics. Clients can create and publish 
topics, while others that want to receive information from that topic, 
can subscribe to it. The broker side handles all the load of the overall 
system. This operation can be seen in detail in Fig. 1.
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Fig. 1. MQTT environment.

MQTT does not specify any networking or routing techniques; 
it uses TCP as a transport protocol and TLS/SSL for security. IoT 
application protocols, such as MQTT, can be supported by transport 
layer security (TLS), but there are no mechanisms in place to protect 
IoT devices from denial of service (DoS), being this susceptible to this 
kind of attack. Several datasets have recently been created that focus 
on attacks on MQTT systems. For example, "MQTT-iot-ids2020" [29] 
was generated using a simulated MQTT architecture that consists of 
twelve sensors sending random messages, a server that manages the 
connections called "broker", a simulated camera, and an attacker. On 
top of this environment, the attacker performs network scanning and 
brute force attacks to decrypt access credentials.
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The "TON_IoT" dataset [30] focuses on modern IoT systems using 
the MQTT protocol. It was generated in a simulated environment with 
the NSX-VMware platform [31] where network scanning process and 
DoS attacks are performed on the MQTT environment.

III. Case Study

A Denial of Service (DoS) attack involves flooding a network with 
a high traffic volume to the point where the system cannot provide its 
intended services. This attack particularly affects IoT systems, since 
they have limited computational capacity and most protocols they use 
are for processing information in real time [32].

The previously described datasets use simulated environments 
and traffic that is collected by only considering the frames of the 
MQTT protocol. This paper presents the development of a dataset that 
aggregates all traffic from a real-world environment, utilizing an IoT 
system with the MQTT protocol. Notably, any denial of service attacks 
against the broker within this system is labeled. Therefore, an MQTT 
environment is developed to simulate real traffic thanks to a broker 
programmed in "node.js" with the "Aedes" library [33]. It uses an 
actuator with a relay, a distance sensor, and two clients: a smartphone 
and a computer. All the traffic generated in this environment, 
including the interactive Internet traffic, is captured by a router with 
the "OpenWRT OS" installed.

Several DoS attacks are performed on the environment, taking 
into account the vulnerabilities of the protocol. An attacker scans the 
network with a search engine like "Shodan" through the well-known 
port 1883 [23]. Thanks to this, it is possible to find out which servers 
use this protocol as a broker, being this the vulnerable part of the 
MQTT system, due to this centralizes all control of the system.

The attacks are performed with a tool developed for performance 
testing called "Malaria MQTT" [34]. This tool sends many messages to 
the broker, simulating 1000 clients, sending 1000 messages per second 
with a size of 100 characters. Thanks to this, it is not possible for the 
broker to respond to all of these messages, generating a service failure 
in the IoT environment.

To generate the dataset, all the traffic in the test environment 
developed is captured, standard internet browsing traffic and traffic 
generated by the IoT environment. The router registers all the traffic 
for generating a PCAP file. The set of PCAP files contains a lot of 
information and many fields. In this way it is simplified by a dissecting 
procedure. With this purpose, a tool developed for the authors was 
designed [35]. The dissecting tool works as follows:

• The frames in a pcap file must be organized to analyze a DoS 
attack effectively. During an attack, a large number of frames may 
be generated in a short period of time, and the capture tool (such 
as tcpump with OpenWRT) may overlap several frames with the 
same timestamp. To obtain useful information about the attack, it 
is necessary to separate these overlapping frames based on their 
timestamps.

• The frames are dissected by taking some fields common to all the 
frames. These common fields are chosen, taking as an example the 
AWID dataset, which is from 802.11 protocol. All fields that make up 
the MQTT protocol are included, resulting in 65 fields for each frame.

• To properly label each frame as either part of an attack or normal 
traffic, it is necessary to consider the timestamp of when each 
attack begins and ends. Each frame should be tagged based on 
this information, allowing for a clear distinction between attack 
frames and normal traffic.

The resulting dataset contains all traffic generated by the described 
environment, capturing both the normal operation traffic and 
the traffic under a DOS attack on the MQTT protocol. The dataset 

comprises a CSV file in which 65 fields delineate each captured frame. 
It compiles a total of 94,625 frames, 45,513 of which are labeled as 
"under attack" in the "type" field, while 49,112 are labeled as "normal". 
This dataset is currently accessible online [36].

IV. Soft Computing Techniques Used

Two stages are implemented to detect DoS attacks in MQTT 
networks with a functional IDS based on an intelligent model. The 
first one reduces the dataset dimensionality, while in the second one, a 
set of classification methods are implemented, choosing the best one.

Therefore, this section is divided into two subsections. Section IV.A 
will describe the feature extraction method employed, while Section 
IV.B will define the six different classification techniques implemented.

A. Feature Extraction Method
As discussed in Section III, the working dataset contains a total of 65 

variables. This large number of features can lead to a high computational 
cost in the model training process and a certain mathematical 
complexity in the classifiers. Therefore, in these scenarios, it is very 
common to use dimensionality reduction techniques, based on feature 
extraction, to minimize the number of variables in the dataset in order 
to reduce the computational cost and obtain simpler classifiers with 
good performance. Nowadays, there is a wide variety of techniques and 
algorithms for dimensionality reduction, being Principal Component 
Analysis (PCA) one of the most common.

1. Principal Component Analysis
Principal Component Analysis (PCA) is an unsupervised multivariate 

statistical approach developed by Pearson [37] and is generally used 
for dimensional reduction. The variation of a multivariate dataset 
is described by this technique as a set of uncorrelated variables 
corresponding to linear combinations of the original parameters. In 
general, the principal purpose of this strategy is to generate a new set 
of orthogonal axes that maximize data variance, avoiding the loss of 
information. This is accomplished by computing the eigenvalues of 
the correlation matrix. The initial set can then be linearly translated 
into lower dimension space using the eigenvectors [38]. Fig. 2 shows 
an example in ℝ2 of obtaining the principal components.

Original data

x1

x2 x2

x1

Data
Data
Component 1
Component 2

Components

Fig. 2. PCA example.

B. Classification Methods
This subsection describes briefly the six supervised classification 

techniques implemented in this research.

1. Decision Trees
One of the simplest and most widely used supervised machine 

learning techniques are decision trees (DT). This method is based on 
generating a model with a hierarchical tree structure with a root node, 
branches, decision nodes, and response nodes, also known as leaves [39].

The model starts at the root node, where one of the dataset variables 
is evaluated. Then, according to the variable value, one of the output 
branches is selected to re-evaluate the data in a decision node. This 
process is repeated until the data reaches a response node where the 
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sample is classified with the value associated with the leaf node. In 
general, the decision tree divides the data according to the value of 
its variables, so it is essential to find the optimal division boundaries. 
For this purpose, this method calculates each variable’s entropy, or 
Gini index, to know its impurity degree. By estimating this value, the 
information gain value can be determined by comparing the impurity 
of the data set before and after the node splitting. Since the decision 
tree has a hierarchical structure, the tree is built from top to bottom 
using the variables with the highest information gain at the nodes of 
the first stages.

On the other hand, the decision trees algorithm generates models 
that are easy to understand and interpret; however, this technique 
cannot achieve good performance in complex problems since it 
generates large and complex trees that tend to cause overfitting.

2. Multi-Layer Perceptron
Artificial neural networks are one of the most widely used 

techniques in the field of soft computing. This method uses artificial 
neurons linked in layers to generate a structure of interconnected 
neurons that emulates the functioning of a human brain [40]. In this 
way, neural networks consist of an input layer, one or more hidden 
layers, and an output layer. Each of these layers is composed of one or 
more artificial neurons. These neurons sum the input values weighted 
by weights related to each input, and an independent value, also 
known as bias. Then, an activation function is applied to this value to 
obtain the neuron’s output result.

Information flows through the network’s hidden layers from the 
input to the output layer. In contrast, the training process is executed 
from the output layer to the input layer, applying a method known 
as backpropagation. The training process calculates the necessary 
gradients to optimize and adjust each network connection’s weights.

Different network architectures can be developed depending on 
the configuration of the layers and the connections of layers and 
neurons. However, one of the simplest and most commonly used 
structures is the Multilayer Perceptron neural network (MLP), which 
is characterized by each neuron being connected to all the neurons of 
the next layer.

3. Random Forest
Random Forest (RF) is a well-known supervised machine learning 

technique commonly applied in classification and regression tasks 
based on implementing a certain number of decision trees [41].

Its performance is based on hiring a certain number of decision trees 
to generate a more accurate and robust model. Each random forest tree 
is different since it is trained with different random subsets selected 
from the training data. The Bootstrap Aggregation, or Bagging, is used 
to obtain the data subsets. This technique generates as many subsets 
as decision trees used in the model.

Finally, with each tree trained, Random Forest uses each decision 
tree to classify the input data. The classification of all the trees is then 
analyzed, and the most common prediction is taken as the model’s 
output classification.

4. Support Vector Machine
Other well-known supervised techniques are the Support Vector 

Machines (SVM) developed by Cortes and Vapnik [42]. These 
methods are a group of machine learning algorithms often used for 
classification and regression tasks. The main objective of SVMs is to 
achieve a hyperplane that maximizes the minimum distance, known as 
the margin, between the hyperplane and the nearest samples of each 
class. This margin is used to determine a boundary for classifying new 
data samples.

The above SVMs definition assumes that a linear boundary can 
separate the classes. However, most real-world datasets are not linearly 
separable. To solve this problem, SVMs use data transformations,  
〈xi, xj〉 → 〈ϕ(xi), ϕ(xj)〉, for mapping the data into a higher dimensional space, 
where a linear boundary can separate it. The specific transformation 
implemented, ϕ(x), depends on the kernel function selected.

5. Fisher Linear Discriminant
The Linear Discriminant Analysis (LDA), or Fisher Linear 

Discriminant Analysis, is a supervised classification machine learning 
technique developed by R.A. Fisher [43].

The main goal of the Fisher Linear Discriminant is to find the best 
linear combination of features that separates different training data 
classes as much as possible. Therefore, LDA searches out the hyperplane 
where the means of each class are as far apart as possible and the classes 
have the least variance in their data. The objective function, Equation 
(1) defined as J(θ) is maximized in the optimization process.

 (1)

where μ1 and μ2 are the mean value of class 1 and 2 respectively, and 
 and  correspond to the within-class variance 1 and 2.

6. Naive Bayes
Naive Bayes, also known as Naive Bayesian (NB), are straightforward 

machine learning methods, frequently used for classification issues, 
that are based on the Bayes statistical theorem. Additionally, these 
approaches presuppose that given the class, data properties are 
conditionally independent [44]. Although this assumption is generally 
excessively strong, Naive Bayes performance still produces outcomes 
that are very competitive and computationally efficient.

Under this technique, different algorithms can be applied. In the 
current research, Bernoulli and Gaussian methods have been tested.

Bernoulli Naive Bayes: Each feature is thought to correlate to a 
binary value. In this model, the probability is obtained using Equation 
(2).

 (2)

To use this approach, all data features must be binary; if a feature 
contains any other type of data, a binarization process is carried out.

Gaussian Naive Bayes: The numerical attribute values in 
Gaussian NB have a normal distribution and are shown concerning 
the mean and standard deviation. Equation (3) is used in this approach 
to determine the probability of the features.

 (3)

where σ is the standard deviation and µ the mean value.

V. Experiments and Results

The present section describes the setup of the experiments and the 
results obtained.

A. Experiments Setup
This section provides the experiment configurations, including the 

tools and metrics used to measure and compare the performance of each 
classifier. The experiments were implemented using Python and several 
libraries such as Scikit-learn, Pandas, Numpy, TensorFlow and Keras.

To configure the experiments, the fundamental stages of machine 
learning problems summarized in Fig. 3, were followed. Each of these 
stages is described in detail below.
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Fig. 3. Experiment setup scheme.

1. Data Preprocessing
The first step was the preprocessing of the study case dataset. 

Once the data was analyzed, samples with missing data and constant 
variables for all the samples were removed from the dataset. On the 
other hand, the non-numerical variables were codified to numerical 
features, and finally, the data were normalized using the z-score 
method, with a mean value of 0 and a standard deviation of 1.

2. Feature Extraction
After preparing the dataset, the PCA technique was employed 

to reduce the number of features and choose the most important 
dataset variables. The number of principal components to retain was 
determined by analyzing the variance explained by each component, 
focusing on those that explain a significant amount of variance. In 
order to obtain the best classifier, both in terms of performance and 
computational cost efficiency, in this research, the experiments were 
carried out taking into account the different number of components.

3. Classifier Configuration
Each of the supervised classification techniques presented in 

Section IV has been tested for different configurations. Table II shows 
the hyperparameters that have been configured for each algorithm as 
well as the values that have been implemented. Each of the model’s 
hyperparameters is briefly described below.

• Decision Trees (DT): for this technique, decision trees have been 
evaluated for different maximum depth parameters, from 5 to 
50 layers of the tree with intervals of 5. In addition, it has also 
been tested, not indicating a maximum depth value ("None"). This 
way, the nodes are expanded until all leaves contain less than two 
samples.

• Multi-layer Perceptron (MLP): MLP neural networks have been 
analyzed for different network structures, considering the number 
of hidden layers, the number of neurons in the hidden layers, and 
the dropout percentage. The dropout corresponds to the middle 
layers used to control the regularization of the neural network and 
avoid overfitting problems. The following values have been taken 
into account for each parameter:

 - Number of hidden layers: 1, 2, and 3 hidden layers.

 - Number of neurons in hidden layers: 5, 10, 15, and 20 neurons 
per layer.

 - Dropout: 0 and 20%.

It is important to note that the ReLu function was used as activation 
function in the neurons of the hidden layers and Softmax in the 
output layer. This configuration is commonly used in classification 
tasks with neural networks.

• Random Forest (RF): the parameter to be determined in this 
technique is the number of decision trees that conform the model. 
In this case, the algorithm performance was evaluated for models 
of 10 to 100 trees with increments of 10 trees.

• Support Vector Machines (SVM): in this case, different 
configurations of the Support Vector Machine have been 
tested by modifying the algorithm kernel, which indicates the 
transformation function, and the data regularisation factor, C. The 
strength of the regularisation is inversely proportional to C. The 
values used in these hyperparameters are:

 - Kernel: linear, polynomial, rbf (Radial Basis Function) and 
sigmoid.

 - Data regularization C: 0.001, 0.01, 0.1 and 1.

• Fisher Linear Discriminant (LDA): the performance of this 
technique has been tested for three different algorithms solvers 
(least squares, lsqr, singular value decomposition, svd and 
eigenvalue decomposition, eigen).

• Naive Bayes (NB): as already mentioned in IV.B.6 the performance 
of Bernoulli and Gaussian Naive Bayes have been evaluated.

4. Classifier Assessment
For the training process of each model, k-fold cross-validation with 

a k value of 10 has been used. In addition, the Area Under the receiving 
operating Curve (AUC) has been considered as the evaluation metric, 
which is widely used in classification tasks. The relationship between 
true positive and false positive rates is established by this parameter, 

TABLE II.Configurations Tested

Evaluated technique Evaluated configuration Tested values
Decision Trees Maximum depth 5:5:50 and None

Multi-layer Perceptron
Number of hidden layes
Neurons in hidden layers

Dropout (%)

1:1:3
5:5:20
0, 10

Random Forest Number of trees 10:10:100

Support Vector Machine
Data regularization

Kernel
0.001, 0.01, 0.1, 1

linear, poly, rbf, sigmoid

Fisher linear discriminant Solver svd, lsqr, eigen

Naive bayes Algorithm Bernoulli, Gaussian
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which boasts two key benefits. Firstly, it offers a unified evaluation 
of classifier performance, and secondly, it remains unaffected by 
variations in class distribution.

On the other hand, the computational cost of each classifier 
implemented has also been measured. For this purpose, the average 
training time of each configuration of the models has been considered. 
In this sense, it must be taken into account that the experiments have 
been executed on a computer with an Intel(R) Core(TM) i7-7500U CPU 
@ 2.70GHz 2.90 GHz and a RAM memory of 8GB.

B. Results
The results derived from the experimental setup outlined above are 

shown in this section. First, to determine the number of components 
to reduce the initial dataset, an initial Principal Component Analysis 
was executed to identify the components and their respective 
percentage of variance explained. Fig. 4 shows the results obtained 
in bar graph format.
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Fig. 4. PCA initial analysis.

Based on the achieved results, three different component selections 
will be considered for the experiments for evaluating the performance 
of combining dimensional reduction with the above-described 
classification techniques in terms of classification accuracy and 
computational cost. The three component selection criteria are as 
follows:

• Components with a percentage of explained variation greater than 
10%: in this case the first 2 components are selected.

• Components with a percentage of variance explained greater than 
5%: in this case the first 5 components are selected.

• Components with a percentage of explained variation greater than 
0.01%: in this case the first 24 components are selected.

After selecting the different numbers of components to be used 
in each experiment, we trained and evaluated each technique’s 
performance using the proposed configurations.

Before presenting the results, since the models were tuned and 
evaluated using k-fold cross-validation, it is essential to highlight that 
all the tables in this section depict the average AUC and training time 
values.

Table III presents the results obtained using decision trees. As can 
be seen, this technique achieved excellent results, exceeding 99% in 
terms of AUC, with the different configurations tested. Furthermore, 
it is noticeable that using fewer components significantly reduces the 
training time, with a slight loss in classifier performance, lower than 
0.3% in terms of AUC. This technique has very low training times, less 
than 1 second in some of its configurations.

On the other hand, Table IV shows the results obtained with the 
Multi-Layer Perceptron neural networks (MLP). This technique 
exhibits high performance, reaching more than 99.8% of AUC in some 
configurations. In this case, reducing the number of components also 

reduces the classifier’s performance. Comparing the results obtained, 
a reduction of more than 1% in terms of AUC can be produced using 
24 or 2 components. On the other hand, the training time is not 
affected by the number of components, i.e., the number of neurons 
in the network’s input layer. The network dimension, determined by 
the number of hidden layers and neurons per layer, is the main factor 
affecting computational cost. Additionally, it is observed that using 
dropout in the network does not improve classifier performance and 
significantly increases the training time, as it involves adding a new 
layer (the regularisation layer). Generally speaking, this technique 
presents a higher computational cost than decision trees.

Table V presents the performance of the Random Forest method 
for its different configurations. This technique achieves very good 
classifiers, with an AUC of over 99% in all configurations tested. 
Regarding the results, it can be observed that using a greater number 
of trees does not significantly improve the model’s performance. For 
example, comparing the 100-tree model with the 10-tree model showed 
a difference of less than 0.1%. Similarly, the classifier’s performance 
does not deteriorate significantly when using fewer components, 
achieving a reduction of 0.2% AUC when comparing models trained 
with 24 components to models adjusted with 2. However, models with 
fewer trees combined with a reduced number of selected components 
minimize the computational cost measured in training time, reducing 
it by more than 70% in some cases.

On the other hand, Table VI shows the performance of support 
vector machines. With this technique, very different results were 
obtained among the evaluated configurations. In general, it can 
be observed that using a reduced number of components greatly 
affects the classifier’s performance, with a loss of more than 20% of 
AUC in many cases. Moreover, the best results are obtained with 
the highest value of the hyperparameter C, which implies low data 
regularisation. For this technique, the best model obtained was the one 
that uses the polynomial kernel with C = 1, which reaches a 98.32% 
AUC considering 24 components. Finally, highlight that reducing 
the number of components used does not reduce the training time. 
Compared to the other techniques, except for MLP, the computational 
cost of this technique is much higher.

The performance results of Fisher’s Linear Discriminant Analysis 
are presented in Table VII. It can be observed that changing the 
algorithm’s solver does not affect the classifier’s performance, 
and this hyperparameter only influences the training time. In this 
regard, the svd (Singular value decomposition) method is the most 
computationally expensive compared to the other solvers tested. 
Additionally, when analyzing the impact of the number of components 
on the classifier’s performance, it is evident that reducing the number 
of components significantly compromises the classifier’s performance, 
lowering the AUC value and the training time. For this technique, the 
optimal classifier is obtained using the lsqr (Least squares solution) 
algorithm and components, which achieves over 89% AUC with an 
average training time of 0.159 seconds.

Finally, the Gaussian and Bernoulli naive Bayes were tested and the 
results are presented in Table VIII. With this technique, the Gaussian 
model fits better to the problem posed and performs better than 
the Bernoulli algorithm. On the other hand, it can be observed how 
considering a greater number of components improves the AUC result 
of the classifier and increases the training time.

Fig. 5 summarizes the best AUC results obtained for each of the 
techniques and the different number of components. This graph shows 
how using a greater number of components improves the results 
measured by the AUC metric and how the best classifiers are obtained 
with the Decision Trees, Multi-layer Perceptron, and Random Forest.
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TABLE III. Decision Trees Results

PCA
Model setup

2 components 5 components 24 components

Nº of trees
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

5
10
15
20
25
30
35
40
45
50

None

98.27
99.00
99.09
99.09
99.10
99.09
99.10
99.10
99.09
99.09
99.09

0.064
0.098
0.112
0.116
0.116
0.115
0.118
0.117
0.117
0.117
0.117

98.43
99.02
99.19
99.24
99.25
99.28
99.27
99.29
99.27
99.27
99.28

0.135
0.224
0.262
0.273
0.278
0.276
0.276
0.275
0.275
0.275
0.280

98.83
99.24
99.30
99.33
99.35
99.33
99.34
99.35
99.34
99.35
99.33

0.705
1.263
1.679
2.013
2.042
2.038
2.038
2.037
2.038
2.038
2.039

TABLE IV. Multilayer Perceptron Results

PCA
Model setup

2 components 5 components 24 components

Nº of
hidden layers

Nº of
neurons

Dropout
(%)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3

5
5
10
10
15
15
20
20
5
5
10
10
15
15
20
20
5
5
10
10
15
15
20
20

0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10

96.22
96.04
98.20
98.18
98.25
98.22
98.41
98.33
93.35
96.39
98.37
96.50
98.47
98.50
98.62
98.51
98.12
95.40
98.43
98.22
98.65
98.52
98.79
98.52

20.755
21.794
21.259
22.446
21.496
22.680
22.077
24.207
22.652
24.766
22.977
25.435
23.459
25.942
24.099
26.379
24.411
27.229
25.194
28.644
25.787
29.346
26.494
30.360

99.11
97.33
99.27
99.28
99.30
99.29
99.35
99.39
92.48
99.07
99.35
99.37
99.42
99.41
99.47
99.42
93.58
99.13
99.43
99.34
99.53
99.45
99.48
99.47

20.714
21.933
21.116
22.560
21.328
22.810
21.936
23.131
22.663
27.514
23.039
25.471
23.508
26.003
23.861
26.391
24.170
26.911
24.801
27.994
25.205
28.693
25.795
29.480

99.57
99.45
99.68
99.68
99.75
99.70
99.76
99.74
99.58
99.46
99.73
99.68
99.73
99.76
99.79
99.78
99.59
99.49
99.73
99.73
99.79
99.76
99.82
99.80

20.786
22.043
21.405
22.884
21.579
23.044
22.032
23.330
22.250
24.297
22.941
25.243
23.286
25.722
23.591
26.056
23.799
26.760
24.457
27.849
25.111
28.716
25.287
29.156

TABLE V. Random Forest Results

PCA
Model setup

2 components 5 components 24 components

Nº of trees
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

10
20
30
40
50
60
70
80
90
100

99.19
99.20
99.19
99.19
99.18
99.20
99.19
99.19
99.21
99.21

0.594
1.211
1.839
2.435
3.248
3.385
4.021
4.160
3.922
4.393

99.29
99.33
99.31
99.32
99.32
99.32
99.30
99.32
99.31
99.32

0.718
1.539
2.013
2.665
3.278
3.933
4.610
5.281
6.216
6.599

99.36
99.39
99.38
99.42
99.40
99.42
99.41
99.41
99.44
99.41

2.052
4.221
6.209
6.655
8.994
11.621
12.580
12.646
14.138
15.604
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Classification technique

Comparative results obtained (AUC %)
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MLP RF SVM LDA NB

2 components
5 components
24 components

Fig. 5. Comparison of results.

VI. Conclusions and Future Work

This research analyses the performance of six supervised 
classification techniques in combination with the PCA dimensional 
reduction method to detect DoS attacks in data networks working with 
the MQTT protocol. The obtained results have been highly promising, 
reaching AUC values higher than 95% except for the LDA and Naive 

Bayes methods that have achieved, for their best configuration, a 
maximum of 89.27% and 83.55% AUC, respectively.

Considering only the classifier performance, MLP neural networks 
have been shown to detect better DoS attacks reaching 99.82% AUC for 
the network with 3 hidden layers, 20 neurons per layer, and without 
dropout layers. However, the computational cost of this technique, 
with a mean average training time of 25 seconds, is significantly 
higher than other methods that have also demonstrated excellent 
performance, such as, for instance, Decision Trees, with a maximum 
of 99.35% AUC and training times between 0.1 and 2 seconds, or 
Random Forest with more than 99% AUC and training times between 
0.6 and 15 seconds depending on the selected configuration. SVMs also 
performed well in many configurations with values above 98% AUC 
but with training times above 30 seconds. Therefore, considering a 
computational performance-cost relationship, it can be concluded that 
decision trees are the best technique.

On the other hand, comparing the results obtained by using a 
different number of components, it was observed that a significant 
reduction in the number of components can worsen the classifier’s 
performance and reduce the model’s training times. For Decision 
Trees, a maximum loss of 0.3% AUC is quite optimal when compared 
to the substantial reduction in training time, often exceeding 90%in 
some cases. This aspect is also similarly reflected in the Random 

TABLE VI. Support Vector Machine Results

PCA
Model setup

2 components 5 components 24 components

Kernel Reg.
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

linear
linear 
linear 
linear 
poly
poly
poly
poly
rbf
rbf
rbf
rbf

sigmoid 
sigmoid 
sigmoid 
sigmoid

1
0.1
0.01
0.001

1
0.1
0.01
0.001

1
0.1
0.01
0.001

1
0.1
0.01
0.001

73.50
73.50
73.50
73.50
73.69
73.69
73.70
73.71
88.33
73.73
73.50
73.50
71.15
73.03
78.27
73.23

37.442
25.434
20.351
19.763
29.088
49.309
26.095
21.021
26.963
30.471
27.578
30.304
27.657
27.566
40.877
40.016

84.47
79.90
74.66
74.64
90.72
75.52
74.87
74.86
91.04
90.27
74.65
74.65
71.16
73.48
79.53
74.61

52.600
28.180
21.244
21.188
17.263
19.876
25.077
25.688
18.143
25.654
30.738
39.303
26.914
29.337
38.644
49.282

90.00
89.97
90.07
89.20
98.32
91.04
75.56
75.55
98.26
98.27
90.46
73.29
85.77
88.95
82.70
73.49

34.126
23.385
23.605
28.774
16.225
22.407
29.913
37.652
16.359
21.541
43.467
62.536
46.046
49.293
55.067
58.673

TABLE VII. Fisher Linear Discriminant Results

PCA
Model setup

2 components 5 components 24 components

Solver
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

svd
lsqr

eigen

73.51
73.51
73.51

0.041
0.038
0.037

74.52
74.52
74.52

0.049
0.040
0.042

89.27
89.27
89.27

0.236
0.159
0.178

TABLE VIII. Naive Bayes Results

PCA
Model setup

2 components 5 components 24 components

Algorithm
AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

AUC
(%)

T. time
(s)

Bernoulli
Gaussian

73.51
80.37

0.026
0.023

75.11
78.80

0.022
0.021

75.19
83.55

0.047
0.054
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Forest models, in which component reduction greatly reduces the 
computational cost with minimal loss of classifier performance. 
However, in SVMs and MLP neural networks, using a smaller number 
of components does not reduce the training time and worsens the 
performance of these techniques.

Thanks to the high performance of the models achieved, these can 
be deployed in an IDS for detecting anomalous network behaviours, 
preventing attacks.

In future works, we will study the performance of other supervised 
and unsupervised classification techniques and other feature 
extraction methods to compare their performance against the proposal 
shown in this paper. Additionally, it will also be considered to test the 
performance of our proposal for detecting Denial of Service attacks in 
other types of IoT protocols, such as CoAP and LoRa, among others. 
On the other hand, the possibility of detecting other types of attacks 
in this protocol will also be studied. Finally, the development of an 
intelligent hybrid system capable of detecting different attacks in 
different IoT network protocols will be analyzed, making it possible to 
standardize and offer a handy tool for the field of cybersecurity.
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