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Abstract
In multibody system dynamics, the equations of motion are often coupled with systems of
other physical nature, such as hydraulics. To infer the real dynamical state of such a coupled
multibody system at any instant of time, information fusing techniques, such as state esti-
mators, can be followed. In this procedure, data is combined from the coupled multibody
model and the physical sensors installed on the actual machine. This paper proposes a novel
state estimator developed by combining a multibody model with an indirect Kalman filter
in the framework of hydraulically driven systems. An indirect Kalman filter that utilizes the
exact Jacobian matrix of the plant at position and velocity level is extended for hydraulically
actuated systems. The structures of the covariance matrices of the plant and measurement
noise are also studied. The multibody system, described using a semi-recursive formula-
tion, and the hydraulic subsystem, described using lumped fluid theory, are coupled using a
monolithic approach. As a case study, the state estimator is applied to a hydraulically actu-
ated four-bar mechanism. The state estimator considers modeling errors in the force model
because of its uncertainty in modeling. The measurements are obtained from a dynamic
model which is considered as the ground truth, with an addition of white Gaussian noise
to represent the noise properties of the actual sensors. The state estimator uses four sensor
configurations with different sampling rates. For the presented case study, the state estima-
tor can accurately estimate the work cycle and hydraulic pressures of the coupled multibody
system. The results demonstrate the efficacy of the proposed state estimator.

Keywords State estimator · State observer · Indirect Kalman filter · Multibody system
dynamics · Hydraulic actuators · Monolithic simulation

1 Introduction

Computer simulation of mechanical systems can be carried out using multibody system dy-
namics in which the equations of motion describe an equilibrium for the dynamic system
under consideration. In multibody system dynamics, the equations of motion are often cou-
pled with systems of other physical nature, such as hydraulic actuators and electric drives.
If the forces are accurately defined, then such a coupled multibody system can accurately
describe reality. Nevertheless, even such accurate models can deviate from reality over a
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long simulation run because of the accumulation of small modeling errors over time. To
infer the real dynamical state of a multibody system at any instant of time, information
fusing techniques, such as state estimators or observers, can be followed to combine data
from the coupled multibody model and the real sensors installed on the actual machine. A
state estimator, in general, is a recursive Bayesian estimator [33]. It can find its application
to control and monitor the operation of the machine [22] by estimating the state subject of
control instead of measuring it. In many practical cases, measurement can be cumbersome
or expensive to conduct.

In mobile working machinery, the use of the multibody system approach is often com-
bined with a description of the hydraulic actuators. Modeling of hydraulics often leads to
numerically stiff systems [24, 29]. For such systems, the efficiency requirements in real-
time applications are high [15, 16]. The problem of numerical stiffness can be alleviated by
a proper selection of the multibody approach, as shown in [17]. Furthermore, to control and
monitor the operation of a mobile working machine, it may become cumbersome or expen-
sive to obtain the measurements of all the required physical quantities. For example, it may
not be feasible or possible to measure the hydraulic forces acting on the multibody system
in such an application. In this situation, state estimators can provide the possibility of using
virtual sensors to infer measurements from the readings of different sensors, which are more
economical or easy to install and maintain than the replaced one.

In recent years, there have been a number of studies on multibody-based state estimators.
As a consequence, a number of estimation techniques such as Kalman filters [13, 33] and
particle filters [1, 6] have been used in the literature [4, 9]. The application of Kalman filters
to general multibody systems is not a trivial task because of their different mathematical
structures. The Kalman filter was originally formulated for the first order linear and uncon-
strained systems [21]. Multibody dynamic systems are, in general, second order nonlinear
and constrained systems [20]. Therefore, it is an open field for additional studies in general
and more specifically for the study of state estimators for multibody systems, which include
hydraulic actuators [17, 29].

The methods within the family of non-linear Kalman filters can be, in general, catego-
rized into two groups, namely, independent coordinate methods and dependent coordinate
methods [33]. In independent coordinate methods, the state vector of the filter comprises
the independent coordinates only, which is the case for most probabilistic estimators pre-
sented in the estimation and control theory literature [13]. In this approach, the usual way to
combine a multibody system with a Kalman filter is to use the independent coordinates and
velocities of the multibody system as the state vector of the filter [35]. On the other hand,
dependent coordinate methods [12, 34] can handle the case of intra-state vector dependen-
cies, which is exactly the situation found in multibody dynamic systems. This approach can
be applied to a multibody system by incorporating the constraints as perfect measurements
or by projecting the unconstrained estimation over the constraints manifold [33]. For sim-
plicity, only methods based on independent coordinates are covered in this work.

Among the methods in independent coordinates, a continuous extended Kalman filter
(CEKF) was used to demonstrate a real-time state estimator for a four-bar mechanism [9].
In CEKF, the dynamic multibody equations are adapted to the structure of the Kalman filter
in a continuous-time frame so that the state-transition and state-update stages are seamlessly
fused together. In the rest of the estimators that work in discrete time steps, such as the
discrete extended Kalman filter (DEKF) [35], the unscented Kalman filter (UKF) [25], and
indirect Kalman filter [31], the filter formulation considers these stages as two separate steps.
Both stages constitute different equations for updating the state vector and the associated
covariance matrix. In these formulations, the state-transition or prediction stage relies on the
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transition model of the dynamic system, while the state-update stage includes information
from the sensors or observations [35].

In [32], the accuracy and efficiency of CEKF, DEKF, UKF and indirect Kalman filter
applied to four-bar and five-bar mechanisms, were compared. The indirect Kalman filter
outperformed the others and was less affected by the increase in the size of the system. It
even finds its application in automobiles [26] with real-time capability [30]. In an indirect
Kalman filter, the position and velocity errors of the independent coordinates of a dynamic
system are considered as the state vector of the filter. Thus, it is also referred to as the error-
state extended Kalman filter (eEKF). However, this method assumes a simplified form of
the transition model of the dynamic system, that is, the Jacobian matrix of its plant. This
can lead to incorrect estimation in certain examples, as presented in [32]. Nevertheless,
this short-come of eEKF has been addressed in [31] using an exact Jacobian matrix of the
plant, referred to as the eEKF-EJ method. In [31], another variant of eEKF was proposed
that additionally considers the acceleration errors of the independent coordinates in the state
vector. This variant of eEKF can estimate the input force for the system and by its nature
provides better accuracy than the variants without force estimation. Note that the indirect
Kalman filter and its variants are independent of the type of integrator used in the dynamic
system.

Despite the previous research efforts explained above, the limitations in the existing lit-
erature are twofold. First, even though there are various studies on multibody-based state
estimators, their application in the field of hydraulically actuated multibody systems has
been overlooked. Second, even though the literature on hydraulic machinery covers various
aspects of modeling and simulation, their detailed investigation using extended or unscented
Kalman filters has been neglected. Therefore, this study claims to cover this research gap by
introducing a state estimator based on an indirect Kalman filter for hydraulically actuated
multibody systems.

The objective of this paper is to propose a novel state estimator developed by combining
a multibody model with an indirect Kalman filter in the framework of hydraulically driven
systems. The eEKF-EJ method that utilizes the exact Jacobian matrix of the plant at posi-
tion and velocity level, introduced in [31], is extended for hydraulically actuated systems.
To complement the above objective, the structures of the covariance matrices of the plant
and measurement noise are also explained. The multibody system, described using a semi-
recursive formulation [2, 8, 10], and the hydraulic subsystem, described using the lumped
fluid theory [37], are combined using a monolithic approach. As a case study, the state esti-
mator is applied to a hydraulically actuated four-bar mechanism. Although a case study of a
planar mechanism is shown in this study, the method presented is general and applicable to
three-dimensional mechanisms as well. The state estimator considers modeling errors in the
force model because of its uncertainty in modeling [31]. Measurements are obtained from a
dynamic model, which is considered as a ground truth, with an addition of white Gaussian
noise, to represent the noise properties of the actual sensors. The state estimator considers
four sensor configurations at four different sampling rates of the sensors. For the presented
case study, the state estimator is evaluated based on the accuracy of the work cycle and
hydraulic pressures.

2 Multibody formulation

In this study, the dynamics of a constrained mechanical system is described using a semi-
recursive formulation. In this formulation, the motion of a system is described using the
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dynamics of the open-loop system and then incorporating the loop-closure constraints by
means of the penalty-based approach [2, 8, 10]. The dynamics of the hydraulic actuators are
modeled using the lumped fluid theory [37] and coupled with the dynamics of the multibody
system in a monolithic approach. It should be noted that the hydraulic actuators are not
considered as separate bodies, instead, the hydraulic forces are computed and fed into the
multibody system as external forces. In this study, a semi-recursive formulation and lumped
fluid theory are considered because they lead to a computationally efficient method for a
unified simulation of multibody and hydraulic dynamics as presented in [28], [29] and [17].

2.1 Semi-recursive formulation

Consider a system as an open-loop system with Nb bodies, which may require temporary
cutting of certain joints. The Cartesian velocities Zj ∈ R

6×1 and the Cartesian accelera-

tions Żj ∈ R
6×1 of a reference point on body j can be written as Zj = [

ṡTj ,ω
T
j

]T
and

Żj = [
s̈Tj ,ω̇

T
j

]T
. Here, ṡj and s̈j are, respectively, the velocity and the acceleration of the

reference point attached to body j that instantaneously coincides with the origin of the in-
ertial reference frame, and ωj and ω̇j are, respectively, the angular velocity and angular
acceleration of the body j . The Cartesian velocities, Zj , and the Cartesian accelerations, Żj ,
can be recursively expressed in terms of the previous bodies as [19]:

Zj = Zj−1 + bj żj (1)

Żj = Żj−1 + bj z̈j + dj (2)

where the scalars żj and z̈j are, respectively, the time and double time derivatives of the
relative joint coordinate zj , and the vectors bj and dj depend on the type of joint [11] that
connects the bodies j − 1 and j . The vector bj are the Cartesian velocities Zj of body j

when all relative joint velocities are made zero except for żj = 1; and the vector dj is the
difference of the Cartesian accelerations Żj − Żj−1 when all the relative joint accelerations
are made zero [7, 8]. Note that the indexes j − 1 and j may not be successive as the system

may branch. The mapping of the vector of Cartesian velocities, Z =
[
ZT
1 ,Z

T
2 , . . . ,Z

T
Nb

]T
,

into the vector of relative joint velocities, ż = [
ż1, ż2, . . . , żNb

]T
, can be achieved using a

velocity transformation matrix R ∈ R
6Nb×Nb as [11, 19]:

Z =Rż= TRdż (3)

Ż= Rz̈+ Ṙż= TRdz̈+TṘdż (4)

where T ∈R
6Nb×6Nb is the constant path matrix that describes the topology of the open-loop

system, and Rd ∈ R
6Nb×Nb is a diagonal matrix whose elements are the vectors bj arranged

in an ascending order. Note that the term Ṙż in Eq. (4) can be expressed in terms of the
vectors dj using Eq. (2) [11].

Using the principle of virtual work, the equations of motion for the open-loop system can
be written as [19]:

RT
dT

TM̄TRdz̈= RT
dT

T
(
Q̄− M̄TṘdż

)
(5)

where z̈ ∈ R
Nb is the vector of relative joint accelerations, and the matrices M̄ ∈ R

6Nb×6Nb

and Q̄ ∈R
6Nb are, respectively, a diagonal matrix that consists of the mass matrices M̄j and
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Fig. 1 An example of a
closed-loop system

a column vector that consists of the force vectors Q̄j such that:

M̄j =
[

mj I3 −mj g̃j

mj g̃j Jj − mj g̃j g̃j

]
(6)

Q̄j =
[

fj − ω̃j

(
ω̃jmjgj

)

τj − ω̃jJjωj + g̃j

(
fj − ω̃j

(
ω̃jmjgj

))
]

(7)

where mj is the mass of body j , I3 is a (3× 3) identity matrix, gj is the position vector of
the centre of mass of body j , the skew-symmetric matrix of a vector is denoted by a tilde (~),
Jj is the inertia tensor of body j , fj is the vector of external forces applied on body j , and
τj is the vector of external moments with respect to the center of mass of body j .

The equations of motion for the closed-loop system can be written by incorporating a set
of m loop-closure constraint equations, � = 0, in Eq. (5) as [10, 27]:

Mz̈+ �T
zα� + �T

zλ= Q (8)

where �z is the Jacobian matrix of � (z) = 0, α is the penalty factor that can be set the same
for all constraints, λ is the vector of iterated Lagrange multipliers,M = (

RT
dT

TM̄TRd
)
, and

Q = [
RT

dT
T
(
Q̄− M̄TṘdż

)]
. Note that for simplicity, the constraint equations are assumed

to be holonomic and scleronomic. In this formulation, λ are iterated at each time-step k

as [10]:

λ
(h+1)
k = λ

(h)
k + α�

(h+1)
k (9)

where h is the iteration step and λ
(0)
k is the final value of λk−1 from the previous time-step.

Figure 1 shows an example of a closed-loop system.
The system is integrated using the implicit single-step trapezoidal rule [10]. In this for-

mulation, the relative joint velocities, ż, and accelerations, z̈, are corrected using the mass-
damping-stiffness-orthogonal projections as [3, 8]:

[
W+ �t2

4
�T

zα�z

]
ż=Wż′ − �t2

4
�T

zα�t (10)

[
W+ �t2

4
�T

zα�z

]
z̈= Wz̈′ − �t2

4
�T

zα
(
�̇zż+ �̇t

)
(11)
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where ż′ and z̈′ are, respectively, the relative joint velocities and accelerations obtained from
the Newton–Raphson iteration, �t is the time-step,W= M+ �t

2 C+ �t2

4 K, where C and K
represent the damping and stiffness contributions in the system, �t is the partial derivative
of the constraints with respect to time t , and the term

(
�̇zż

)
can be calculated from the chain

rule of differentiation by using as intermediate variables, the coordinates of points and the
components of unit vectors, as those shown in Fig. 1.

2.2 Hydraulic actuators

In this study, hydraulic pressures within a hydraulic circuit are described using the lumped
fluid theory [37]. According to the lumped fluid theory, a hydraulic circuit can be divided
into discrete volumes, where pressures are assumed to be evenly distributed. Thus, the ef-
fects of acoustic waves are ignored. The pressure build-up, ṗs , in a hydraulic section S can
be expressed as:

ṗs = Bes

Vs

nf∑

k=1

Qsk (12)

where Vs is the volume of the section, Bes is its effective bulk modulus, Qsk is the incoming
or outgoing flows of the section, and nf is the total number of volume flows going in or out
of the section. In Eq. (12), Bes can be written as:

Bes =
(

1

Boil

+
nc∑

k=1

Vk

VsBk

)−1

(13)

where Boil is the bulk modulus of oil, Bk is the bulk modulus of volume Vk , and nc is the
total number of sub-volumes Vk , such as pipes and hoses, that form the volume Vs .

2.2.1 Valves

The valves in a hydraulic circuit can be described using a semi-empirical modeling
method [14]. In this method, the volume flow rate, Qt , through a simple throttle valve can
be expressed as:

Qt = Cvt sgn(�p)
√| �p | (14)

where Cvt is the semi-empirical flow rate coefficient of the throttle valve and �p is the
pressure difference over the valve. In Eq. (14), Cvt can be written as:

Cvt = CdAt

√
2

ρ
(15)

where At is the area of the throttle valve, Cd is its flow discharge coefficient and ρ is the
oil density. The value of Cd can range between 0 and 1, signifying how much the actual
flow differs from a reference flow for the same restriction and geometry of the valve. In this
study, the value of Cd is considered to be 0.8, as in [17, 29].

Similarly, the volume flow rate, Qd , through a directional control valve can be expressed
as:

Qd = Cvd
U sgn(�p)

√| �p | (16)
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Fig. 2 Schematic figure of a
hydraulic cylinder

where Cvd
is the semi-empirical flow rate constant of the directional control valve that can

be procured from manufacturers’ catalogues, and U is the relative spool position that can be
computed as:

U̇ = Uref − U

τ
(17)

where Uref is the reference voltage signal for the reference spool position and τ is the time
constant, which can be procured from the Bode-diagram of the valve that describes the valve
spool dynamics. In this study, the value of Cvd

is computed for a nominal flow (flow at full
opening) of 24 l/min over a 35 bar pressure difference. Note that for a pressure difference of
less than 2 bar, the volume flow is assumed laminar, and Eqs. (14) and (16) are modified so
that the volume flow and the pressure difference follow a linear relation.

2.2.2 Hydraulic cylinders

A hydraulic cylinder is shown in Fig. 2, whose motion produces volume flows that can be
written as:

Qin = ẋA1, Qout = ẋA2 (18)

where Qin and Qout are, respectively, the incoming and outgoing volume flow rates of the
hydraulic cylinder, A1 and A2 are, respectively, the piston and piston-rod side areas of the
cylinder, and ẋ is the piston velocity. The force Fc produced by the cylinder can be expressed
as:

Fc = p1A1 − p2A2 − Fμ (19)

where p1 and p2 are, respectively, the pressures on the piston and piston-rod sides, and
Fμ is the total friction force [5] caused by the seal. The friction force from sealing can be
computed using various friction models as presented by the authors in [18]. In this study,
a continuous static friction model, namely, Brown-McPhee friction model [5], is utilized
because it can describe the usual friction characteristics with a computationally efficient
approach, as presented by the authors in [18].

2.3 Coupling of multibody system and hydraulic actuators

The multibody system, described in Sect. 2.1, is extended to incorporate the dynamics of the
hydraulic actuators, described in Sect. 2.2, in a monolithic approach [17, 24, 29]. The force
vector, Q, in Eq. (8) is extended with the pressure variation equations, which can lead to a
combined system of equations as in [29]:

Mz̈+ �T
zα� + �T

zλ= Q (z, ż,p)

ṗ= v (p, z, ż)

}

(20)
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where ṗ is the time derivative of the vector of pressures, p, in the hydraulic subsystem, and
v (p, z, ż) are the pressure variation equations. The dependencies of Q and the function v
with respect to z, ż, and p are assumed to be known.

In this study, the coupled system is integrated using the implicit single-step trape-
zoidal rule [23]. By initially applying the predictors, zk+1 = zk + żk�t + 1

2 z̈k�t2 and
pk+1 = pk + ṗk�t , respectively, to the relative joint coordinates, zk+1, and the pressures,
pk+1, the solution for the relative joint velocities, żk+1, the relative joint accelerations, z̈k+1,
and pressure derivatives, ṗk+1, at time-step (k + 1) can, respectively, be written as:

żk+1 = 2

�t
zk+1 + ˇ̇zk

z̈k+1 = 4

�t2
zk+1 + ˇ̈zk

ṗk+1 = 2

�t
pk+1 + ˇ̇pk

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(21)

where

ˇ̇zk = −
(

2

�t
zk + żk

)

ˇ̈zk = −
(

4

�t2
zk + 4

�t
żk + z̈k

)

ˇ̇pk = −
(

2

�t
pk + ṗk

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (22)

By introducing Eq. (21) into Eq. (20), the dynamic equilibrium for the coupled system, at
time-step (k + 1), can be written as:

Mzk+1 + �t2

4
�T

zk+1
(α�k+1 + λk+1) − �t2

4
Qk+1 + �t2

4
M ˇ̈zk = 0

�t

2
pk+1 − �t2

4
vk+1 + �t2

4
ˇ̇pk = 0

⎫
⎪⎪⎬

⎪⎪⎭
(23)

Equation (23) is a nonlinear system of equations that can be denoted as f́ (x̄k+1) = 0,
where x̄ = [

zT,pT
]T
. Such nonlinear system of equations can be iteratively solved using

the Newton–Raphson method with numerical derivatives. Here, the numerical derivatives
are performed using the forward differentiation rule as in [17]. After every integration step,
ż and z̈ are corrected using the mass-damping-stiffness-orthogonal projections [3, 8], as
shown in Eqs. (10) and (11).

3 Design of state estimator

In this study, the state estimator is obtained by combining a coupled multibody system, de-
scribed in Sect. 2.3, with the indirect Kalman filter [13, 33]. Here, the coupled multibody
system is used without any modifications in its formulation. Thus, any multibody and hy-
draulic formulations or integrators can be used, including implicit integrators, projections
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Fig. 3 Schematic flow diagram
of the indirect Kalman filter in
each time-step

and dependent coordinates, as is the case in this study. The eEKF-EJ method, described
in [31], is extended to incorporate the pressure terms of a hydraulically actuated system.

In this indirect Kalman filter, the filter estimates the error in the coupled multibody sys-
tem, explained in Sect. 2.3, at each time-step of the simulation and the error is corrected
with measurements of the real system. Figure 3 illustrates a simplified scheme of this for-
mulation.

For each time-step of this filter, one step of the coupled multibody system is simulated to
obtain its relative joint coordinates, z, relative joint velocities, ż, and pressures, p. The state

vector for the coupled multibody system can be written as x =
[(

�zi
)T

,
(
�żi

)T
,�pT

]T
.

Here, �zi and �żi are respectively the errors in the relative joint coordinates and velocities
of the degrees of freedom of the multibody system and �p is the error in the pressures of
the hydraulic subsystem. Next, the state vector, x̂, is estimated such that:

ẑi = zi + �zi

ˆ̇zi = żi + �żi

p̂= p+ �p

⎫
⎪⎪⎬

⎪⎪⎭
(24)

where zi and żi are, respectively, the values of the relative joint coordinates and velocities of
the degrees of freedom of the mechanism predicted by the coupled multibody system prior
to the correction phase; ẑi and ˆ̇zi are respectively their estimated values after the correction
phase; and p is the value of the pressures predicted by the coupled multibody system prior
to the correction phase and p̂ is its estimated value after the correction phase. It is assumed
that a linearized estimator can be well suited to a problem of estimating small displacements
in a linearized neighborhood or tangent space of the nonlinear manifold of the state space of
the mechanism.

The propagation phase or the prediction stage can be performed as follows:

x̂−
k = 0 (25)

P−
k = (fx)k−1 P

+
k−1 (fx)Tk−1 +ΣP

k−1 (26)

where x̂−
k is the predicted mean of the state, also knows as ‘a priori’ state estimation, and

P−
k is its associated covariance matrix, P+

k−1 is the covariance matrix associated with the
corrected mean of the state, x̂+

k−1, from the previous time-step, fx is the Jacobian matrix of
the discrete transition model, f (·), of the system with respect to the estimated state x̂, and
ΣP

k−1 is the covariance matrix of the plant noise, which stands for the additional uncertainty
of the new state. The value of ΣP

k−1 is physically attributed to the incorrect forces and errors
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in modeling the mechanism, such as inertia values, initial conditions, and many more. Note
that Eqs. (25) and (26) are the equations obtained when one applies the conventional Kalman
filter to the tracking error of a model [13, 33]. The matrix fx in Eq. (26), which follows a
forward Euler integration, can be written as:

fx ≡ ∂f
∂ x̂

= ∂

∂{ẑi, ˆ̇zi, p̂}

⎡

⎣
ẑi + �t ˆ̇zi + 1

2�t2z̈i

ˆ̇zi + �t z̈i

p̂+ �t ṗ

⎤

⎦

�

⎡

⎢⎢
⎣

(
If + 1

2
∂�z̈i

∂zi
�t2

) (
If �t + 1

2
∂�z̈i

∂ żi
�t2

) (
1
2

∂�z̈i

∂p �t2
)

(
∂�z̈i

∂zi
�t
) (

If + ∂�z̈i

∂ żi
�t
) (

∂�z̈i

∂p �t
)

(
0np×f

) (
0np×f

) (
Inp

)

⎤

⎥⎥
⎦

(27)

where If is a (f × f ) identity matrix in which f is the number of degrees of freedom
of the multibody system, Inp is a

(
np × np

)
identity matrix in which np is the number of

pressures modeled in the hydraulic subsystem, �t is the time-step, and 0np×f is a
(
np × f

)

zero matrix. In Eq. (27), the blocks at positions (3,1) and (3,2) are set to 0 because the
evolution of pressure with respect to position and velocity is unknown. For simplicity, it is
assumed that ∂�ṗ

∂p = 0. In the case of complex force models, the partial derivatives in Eq. (27)
are difficult to calculate [31], and for this reason they are obtained numerically in this study
using the forward differentiation rule [17]. As this method operates in the transformed state-
space of errors, the predicted mean of the state, x̂−

k , is always zero, as shown in Eq. (25).
In other words, the filter initially assumes that the dynamic model made a perfect work in
tracking the real system.

The correction phase or the state-update stage is similar to the ones found in a conven-
tional DEKF and can be written as follows [32]:

yk = ok − h (zk, żk,pk) (28)

Sk = (hx)k P
−
k (hx)

T
k +ΣS

k (29)

Kk = P−
k (hx)

T
k S

−1
k (30)

x̂+
k = 0+Kkyk (31)

P+
k =

[
I(2f +np

) −Kk (hx)k

]
P−

k (32)

where yk is the error or innovation between virtual measurements h (·) and their actual
measurements ok . Note that the virtual measurements h (zk, żk,pk) are built using the co-
ordinates and pressures of the coupled multibody system instead of the states of the filter
because the states of the filter are the errors, and the errors are always set to zero until after
correction [31]. In Eq. (29), Sk is the covariance matrix of the innovation that represents
the uncertainty of the system state projected by the sensor function

[
(hx)k P

−
k (hx)

T
k

]
and an

additional sensor Gaussian noise, ΣS
k , known as the covariance matrix of the measurement

noise. Small values of Sk imply that actual measurements or observations introduce valu-
able information that constrains the estimation of the system state. Here, hx is the Jacobian
matrix of the measurement model, h (·), with respect to the state x. Note that the expression
of hx is obtained similarly to an equivalent conventional Kalman filter because the partial
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derivatives with respect to the errors in the states have the same value as the partial deriva-
tives with respect to the states. In Eq. (30), Kk is the Kalman gain, which is a temporary
term, to update or correct the predicted mean of the state and its covariance. In Eqs. (31)
and (32), x̂+

k is the corrected mean of the state, also known as ‘a posteriori’ state estimation,
and P+

k is its associated covariance matrix. The covariance matrix P+
k is used as input for

the next iteration of this iterative filter at the next time-step.
After the correction phase, the estimated errors, �ẑi, � ˆ̇zi and �p̂ are used in Eq. (24)

to solve for ẑi, ˆ̇zi, and p̂. As the corrections are expected to be small, a linearization of the
position problem can be solved using �z�z = 0. As a consequence, the estimated error of
the dependent relative joint coordinates, �ẑd, of the multibody system can be written in
terms of �ẑi as:

�ẑd = − (
�d

z

)−1
�i

z�ẑi (33)

where �d
z and �i

z are, respectively, the dependent and independent columns of the Jacobian
matrix �z. It is assumed that �d

z is invertible. The complete set of estimated errors of the

relative joint coordinates, �ẑ=
[(

�ẑi
)T

,
(
�ẑd

)T]T
, can be used to estimate the relative joint

coordinates, ẑ, as:

ẑ= z+ �ẑ (34)

where z is the value of the relative joint coordinates predicted by the coupled multibody sys-
tem prior to the correction phase. Note that this approach to solving the position problem is
an approximation to avoid solving it iteratively, thus, a perfect fulfillment of the constraints
at position level is not expected. The estimator corrects the states of the multibody model
whenever measurements are available and this may lead to imperfect fulfillment of the con-
straints. However, the multibody formulation imposes the fulfillment of constraints at every
time-step, and therefore the errors are usually acceptable for most applications [31]. Nev-
ertheless, when the highest possible accuracy is required, then the exact position problem
must be solved. Once the correction of the position estimation is applied, the correction of
the velocity estimation is solved using the coordinate partitioning method as in [20]:

ˆ̇zd = − (
�d

z

)−1
�i

z
ˆ̇zi (35)

where ˆ̇zd are the estimated values of the dependent relative joint velocities such that ˆ̇z =[( ˆ̇zi
)T

,
( ˆ̇zd

)T]T
. Once the dynamic model is corrected using ẑ, ˆ̇z, and p̂, then the expected

error becomes x̂+
k = 0

4 Covariancematrices of plant andmeasurement noises

In the application of the Kalman filter, the tuning of parameters, such as the covariance
matrices of the plant and measurement noise, that is, ΣP and ΣS , is crucial. If ΣP and ΣS

are not properly defined, then a nonlinear system can become unstable even though all other
parameters of the filter are suitably tuned.
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4.1 Structure of plant noise

In case of a multibody model only, the geometrical properties can be precisely modeled,
whereas, the accurate modeling of the forces and the actual distribution of the masses are
complex in practice. As a consequence, the system deviates from the ideal behavior and er-
rors occur at the acceleration level. Furthermore, the integration process and the multibody
formulation may cause additional errors, however, they are negligible compared to the previ-
ous error. Therefore, in this study, only the acceleration terms are included in the covariance
matrix of the plant noise for the multibody system, as in [31, 32]. Furthermore, since the
states considered in the state estimator do not contain acceleration terms, ΣP must be cal-
culated from its continuous-time counterpart. For example, it can be computed using Van
Loan’s method [36] of integration as in [32]. Note that if acceleration errors were considered
in the proposed estimator, then the acceleration noise could be used in its discrete form as
in [31]. The structure of ΣP for the multibody system with position and velocity estimation
can be written as [32]:

ΣP =
[

σ 2
z̈

�t3

3 If σ 2
z̈

�t2

2 If
σ 2
z̈

�t2

2 If σ 2
z̈ �tIf

]

(36)

where σz̈ is the variance of all components of the continuous plant noise at acceleration
level.

In this study, a hydraulic subsystem is coupled with the multibody system, therefore the
pressure level noise coming from the hydraulics can be directly incorporated in ΣP as:

ΣP =
⎡

⎢
⎣

σ 2
z̈

�t3

3 If σ 2
z̈

�t2

2 If 0f ×np

σ 2
z̈

�t2

2 If σ 2
z̈ �tIf 0f ×np

0np×f 0np×f σ 2
p,DInp

⎤

⎥
⎦ (37)

where σp,D is the variance of all components of the discrete plant noise at the pressure
level. Note that both σz̈ and σp,D are tuned by trial and error. However, σz̈ is independent of
the simulation time-step, as it is a continuous variance, whereas, σp,D should be modified
proportionally to the simulation time-step as it is a discrete variance.

4.2 Structure of measurement noise

In this section, the structure of the covariance matrix of the measurement noise is presented.
It should be noted that the structure presented here is equally applicable to most real sensors
currently in use. Nevertheless, the measurements in this study are built from a dynamic
model of the coupled multibody system that has zero modeling error and acts as a real
system, thus providing the ground truth. White Gaussian noise is generated and added to the
measurements to represent the noise properties of real sensors. Therefore, the measurement
noise properties are already known and are used to obtain the covariance matrix of the
measurement noise. For example, the structure of ΣS with position and pressure sensors
takes the form as:

ΣS =
[(

σ ′
z

)2
If 0f ×np

0np×f

(
σ ′
p

)2
Inp

]

(38)

where σ ′
z and σ ′

p are the standard deviations of the measurement noise at the position and
pressure levels, respectively. Note that a similar sequence of pseudo-random noise is used
in different combinations of sensors to ensure a fair comparison.
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Fig. 4 A four-bar mechanism actuated by a double-acting hydraulic cylinder

5 The case study of a hydraulically actuated four-bar mechanism

In this study, a hydraulically actuated four-bar mechanism, as shown in Fig. 4, is used to
demonstrate the state estimator explained in Sect. 3. The four-bar mechanism is modeled
using the semi-recursive formulation, explained in Sect. 2.1. It has three bodies: crank,
coupler and rocker and four revolute joints, where the joint between the rocker and the
ground is a cut-joint for which two loop-closure constraint equations are introduced. Note
that although a planar mechanism is presented in this study, the implementation of the meth-
ods is carried out in the Matlab environment in three-dimensions. The system has one de-
gree of freedom. Note that the crank, coupler, and rocker are assumed to be rectangular
beams, whose lengths are L1 = 2 m, L2 = 8 m, and L3 = 5 m, and masses are m1 = 2 kg,
m2 = 8 kg, and m3 = 5 kg, respectively. The moment of inertia of the beams is considered
as mL2

12 , where m is its mass and L is its length. In the inertial reference frame, the positions
of the bodies are represented by z1, z2 and z3, respectively. The position vector of points

E, F and G are, respectively, rE = [10,0,0]T m, rF = [
L1
2 cos (z1),

L1
2 sin (z1),0

]T
m and

rG = [−L1
2 ,0,0

]T
m, and point F is located at the center of mass of the crank.

The actuation of the four-bar mechanism is carried out using the hydraulic circuit shown
in Fig. 4. The hydraulic circuit consists of a pump with a constant pressure source pP , a
tank with a constant pressure pT , a directional control valve with a control signal U , a
throttle valve, a double-acting hydraulic cylinder and connecting hoses. It is assumed that
the hydraulic circuit is ideal, that is, it has no leakage. According to the lumped fluid theory,
the hydraulic circuit is divided into three control volumes, V1, V2, and V3, whose respective
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pressures, p1, p2, and p3, are computed by using Eq. (12) as:

ṗ1 = Be1

V1
(Qd1 − Qt)

ṗ2 = Be2

V2
(Qt − A2ṡ)

ṗ3 = Be3

V3
(A3ṡ − Q3d)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(39)

where Be1, Be2, and Be3 are the effective bulk modulus of the respective sections calculated
from Eq. (13), Qt is the volume flow rate calculated from Eq. (14), Qd1 and Q3d are the vol-
ume flow rates calculated from Eq. (16), A2 and A3 are, respectively, the areas of the piston
side and the piston-rod side within a cylinder, and ṡ is the actuator velocity. In Eq. (39), V1,
V2, and V3 are calculated as:

V1 = Vh1

V2 = Vh2 + A2l2

V3 = Vh3 + A3l3

⎫
⎪⎪⎬

⎪⎪⎭
(40)

where Vh1 , Vh2 , and Vh3 are the volumes of the respective hoses, and l2 and l3 are, respec-
tively, the length of the piston side and the piston-rod side, that are calculated as:

l2 = l20 + s0 − | s |
l3 = l30 − s0 + | s |

}

(41)

where l20 and l30 are, respectively, the values of l2 and l3 at t = 0, | s | is the actuator length
of the hydraulic cylinder, and s0 is its value at t = 0. Note that the length of the hydraulic
cylinder is l = l2 + l3. The values of ṡ in Eq. (39) and | s | in Eq. (41) are computed by using
z1 and ż1 as:

s= rF − rG

ṡ = d| s |
dt

= ṡ · s
| s | = ṙF · s

| s |

⎫
⎪⎬

⎪⎭
(42)

where ṙF is the velocity vector of point F . For simplicity, the force Fc obtained from

Eq. (19) is expressed in the form of Eq. (7) as: Fc =
[

sX
|s| Fc,

sY
|s| Fc,

sZ
|s|Fc

]T
, where sX, sY

and sZ are the components of vector s along the axes of the inertial reference frame.
The value of Fc at t = 0 can be computed from the static configuration as: Fc0 =(

m1g cos (z10 )

sin
( z10

2

) + (m2g+m3g) cos(z10+z20+z30 ) sin (z20 )

sin
( z10

2

)
sin (2z10+2z20+z30 )

)

, where z10 , z20 , and z30 are the values of

z1, z2, and z3 at t = 0. In the static configuration, p10 = p20 , and from Eq. (19), p20 =(
Fc0 + p30A3

)
/A2, where p10 , p20 , and p30 are the respective values of p1, p2, and p3 at

t = 0. Note that the friction is neglected in static configuration. The four-bar structure is
hydraulically actuated for 6 s, such that:

Uref =

⎧
⎪⎨

⎪⎩

0 t < 1 s, 2.5 s≤ t < 3.5 s, t ≤ 6 s

10 1 s≤ t < 2.5 s

−10 3.5 s≤ t < 5 s

(43)
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Table 1 Parameters of the hydraulic circuit

Parameter Symbol Value

Pressure of the tank (atmospheric pressure) pT 0.1 MPa

Semi-empirical flow rate constant of the directional control valve Cvd
2.138 ×10−8 m3/s

√
Pa

Volume of the hose (section-1) Vh1 4.71 ×10−5 m3

Volume of the hose (section-2) Vh2 3.14 ×10−5 m3

Volume of the hose (section-3) Vh3 7.85 ×10−5 m3

Area of the throttle valve At 2.83 ×10−5 m2

Flow discharge coefficient of the throttle valve Cd 0.8

Density of the oil ρ 850 kg/m3

Bulk modulus of the hoses Bh 550 MPa

Bulk modulus of the oil Boil 1500 MPa

Bulk modulus of the hydraulic cylinder Bc 31500 MPa

Diameter of the piston d2 80 mm

Diameter of the piston-rod d3 35 mm

Length of the cylinder/piston l 0.9 m

Initial actuator length s0 1.73 m

where t is the simulation run time. The set of variables used inside the trapezoidal inte-
gration scheme to solve the coupled multibody system can be written as x̄ = [

zT, pT
]T =

[z1, z2, z3, p1, p2, p3]T. In the trapezoidal integration scheme, the error tolerance for po-
sition is 1 × 10−10 rad and for pressure is 1 × 10−2 Pa. The voltage, which corresponds
to the spool position is integrated using the trapezoidal method and its error tolerance is
1× 10−10 V. The penalty factor, α, used in the study (Eq. (8)) is 1× 109. The parameters of
the hydraulic circuit are shown in Table 1.

In this study, dynamic models are used to provide a fair comparison for the implemented
state estimator. The first reference model represents the actual mechanism that is modeled
without any modeling error and is referred to as the “real system”, as in [31, 32], thus,
providing the ground truth. The “real system” in this study can also be referred to as the
“ground truth” or “reference model”. Measurements are obtained from this model with an
addition of white Gaussian noise to represent the noise properties of the actual sensors.
The second model represents an imperfect representation of the “real system” or “reference
model”, with some parameters modified to simulate modeling errors, and is referred to as
the “simulation model”. The “simulation model” in this study can also be referred to as the
“model”, as in [31, 32], or the “imperfect model”. The modeling errors introduced in the
simulation model can be seen in Table 2. Furthermore, the implementation of the indirect
Kalman filter on the simulation model described above is referred to as the “state estimator”.
The “state estimator” combines the “imperfect model” with noisy measurements obtained
from the “reference model” to achieve the best possible estimations of the true state of
the “reference model”, which is unknown. The “state estimator” in this study can also be
referred to as the “state observer”. In the state estimator, the simulation model is corrected
using the measurements of the real system, described above.

The errors introduced in the simulation model compared to the real system are in the
force model. Note that when modeling a coupled multibody system, the geometry and mass
can be accurately defined. However, the force models might have uncertainties in the mod-
eling [31]. Therefore, incorrect values for gravity, as in [31], and pump pressures, are con-
sidered in the simulation model compared to the real system, as shown in Table 2. This
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Table 2 Parametric difference between the real system and the simulation model

Parameter Symbol Real system Simulation model

Gravity g -9.81 m/s2 -8.81 m/s2

Crank angle at t = 0 z10 60o 71o

Pressure of the pump pP 7.6 MPa 5.6 MPa

Pressure of p3 at t = 0 p30 3.5 MPa 3.0 MPa

introduces an incorrect force model such that the dynamics of the “simulation model” or
“imperfect model” are affected throughout the simulation. Consequently, the “simulation
model” will be out of synchronization compared to the “real system” or “reference model”,
just like any unmodeled force would affect. Furthermore, the ability to correct for the initial
position and pressure errors in the simulation model provides a non-formal demonstration
of the system observability.

For the present case study, the state vector considered for the state estimator is x =[(
�zi

)T
,
(
�żi

)T
,�pT

]T = [�z1, �ż1, �p1, �p2, �p3]T. That is, z1 is selected as the in-

dependent relative joint coordinate and assumed to be valid throughout the simulation, as is
the case with a hydraulically actuated machinery. The initial values of z2 and z3 are derived
from the initial value of z1 shown in Table 2. To maintain the stability of the simulation pro-
cess, the simulations are executed from static equilibrium. Note that gravity acts in the nega-
tive Y-direction. The initial covariance, P0, of the state estimator is a diagonal matrix whose
first two diagonal elements are, respectively, 0.76 × 10−2 rad2 and 0.76 × 10−2 rad2/s4,
and the last three elements are 22.5 × 107 Pa2. In this study, the standard deviation of the
measurement noise at the position, velocity and pressure levels are σ ′

z = 1.745 × 10−2 rad,
σ ′
ż = 9.839 × 10−4 rad/s, and σ ′

p = 0.15 × 105 Pa, respectively. Whereas, the values of the
plant noise are σ 2

z̈ = 11.163 × 10−2 rad2/s4 and σ 2
p,D = 259.81 × 107 Pa2, which are ob-

tained by trial and error [31]. In this study, the simulations are run with a time-step of 1 ms,
providing information about the coupled system at 1000 Hz.

In this study, a combination of position, velocity and pressure sensors is used, as shown
in Fig. 4. The advantage of using a coupled multibody system inside a Kalman filter is
that it provides a mean to obtain the Jacobian matrix of the measurement model, hx, in
a systematic way. All coordinates, velocities and pressures are available from the coupled
multibody system, so that building the model of the sensors and obtaining their Jacobian is
quite straightforward, as shown in the following subsections.

5.1 Position sensor

The devices used to measure the angular position of a body are encoders, which are com-
monly used in all kinds of machines to monitor angular magnitudes. Thus, in this study,
an encoder is used as a position sensor at the location of the crank of the four-bar mech-
anism, as shown in Fig. 4. It measures the angle of the crank, that is, z1, such that the
measurement model is h (x) = [z1]. As the states considered in the state estimator are
x = [�z1, �ż1, �p1, �p2, �p3]T, thus, hx can be written as:

hx = [
1, 0, 0, 0, 0

]
(44)
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Table 3 Sensor combinations
used in this study

Position sensor Velocity sensor Pressure sensors

Sensor set-1 Crank – p1, p2, and p3

Sensor set-2 Crank Crank p1, p2, and p3

Sensor set-3 Crank Crank p1 and p2

Sensor set-4 Crank Crank p1 and p3

5.2 Velocity sensor

The state estimator developed in this study is also tested by incorporating a velocity sensor.
The most common devices used to measure the angular velocity of a body are micro-electro-
mechanical systems (MEMS) gyroscopes. MEMS gyroscopes are used in many applications
such as cell phones, robots and autonomous vehicles. For the presented case study, a gyro-
scope is installed on the crank, as shown in Fig. 4. Thus, it will measure the angular velocity
of the crank, that is, ω1 = ż1, such that the measurement model is h (x) = [ż1] and hx can be
written as:

hx = [
0, 1, 0, 0, 0

]
(45)

5.3 Pressure sensors

The pressures in a hydraulic circuit can be measured using pressure sensors. There are many
pressure sensors that can be used, such as gauge pressure sensors, which measure pressure
relative to atmospheric pressure. In this study, pressure sensors can be installed at three
hydraulic control volumes in the hydraulic circuit, as shown in Fig. 4. When the pressure
sensors are installed at control volumes V1 and V3, for example, then they measure pressures
p1 and p3, such that the measurement model is h (x) = [p1, p3]T, and hx can be written as:

hx =
[
0, 0, 1, 0, 0
0, 0, 0, 0, 1

]
(46)

6 Results and discussion

This section presents the results of the state estimator applied to the hydraulically actuated
four-bar mechanism, presented in Sect. 5. The position of the bodies of the simulation model
at different instants of time is shown in Fig. 5. In this study, a non-formal demonstration of
the system observability is provided by the initial position error of the crank angle and the
initial pressure errors of the hydraulic control volumes. The system is observable only if the
position error (i.e. the initial 11o error of the crank angle) and the pressure errors (i.e. the
initial 0.5 MPa error of pressure p3, and 0.41 MPa error of pressures p1 and p2, each) are
corrected with a set of sensors. Accordingly, four sets of sensor combinations are used, as
shown in Table 3.

In this study, the simulations are run with a time-step of 1 ms, providing information
about the coupled system at 1000 Hz. Furthermore, the sampling rates considered for the
sensors are 1000 Hz (one measurement per simulation time-step); 500 Hz (one measurement
available every two simulation time-steps), 200 Hz (one measurement every five simulation
time-steps), and 100 Hz (one measurement every 10 simulation time-steps). The states of the
estimator are not corrected when no measurements are available. Note that the simulation
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Fig. 5 The position of bodies of
the simulation model at every
second with a time-step of 1 ms

Fig. 6 Root mean square errors of the state estimator, with respect to the absolute maximum value of the real
systems, at different sampling rates of the sensors

model contains high modeling errors, as shown in Table 2. It should be noted that this study
focuses only on the estimation accuracy and not on the computational efficiency of the
estimator. The computational efficiency is ignored in this study because numerical methods
(for Eqs. (23) and (27)) are employed in the Matlab environment and thus computational
efficiency is expected to be low.

6.1 Testing with different sampling rate of sensors

Figure 6a presents the root mean square error (RMSE) of the different tests on the position
level (the crank angle error), the velocity level (the crank angular rate error) and the accel-
eration level (the crank angular acceleration error). The RMSEs of the hydraulic pressures
are provided in Fig. 6b. Note that the RMSEs are measured in % with respect to the absolute
maximum value of the real system. It can be observed that sensor set-2 provides relatively
better estimation accuracy compared to the other sensor sets because it utilizes all sensors at
position, velocity and pressure levels. Furthermore, the accuracy of the estimation degrades
when the sampling rate of the sensors is reduced.
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Fig. 7 Comparison of the crank
angle with sensor set-1 providing
data at 1000 Hz

Note that sensor set-1 is unable to provide a result at a sampling rate of 100 Hz. This is be-
cause the terms of the covariance matrix grow, resulting in higher corrections, which is more
difficult for the multibody model to handle, thus, reaching a maximum number of iterations.
To stabilize the multibody simulation at 100 Hz sampling rate with sensor combination-1,
the values of the covariance matrix of the plant noise can be reduced depending on the ap-
plication. Even though the plant covariance noise may not be optimal, it can help to have
smaller corrections by compromising on accuracy that will not unstabilize the multibody
simulation. However, this was not done in this study so that different sensor combinations
can be tested under the same conditions.

6.2 Accuracy of the work cycle estimation

To better understand the behavior of the state estimator, the crank angle for the entire work
cycle is shown in Fig. 7. Here, the hydraulic cylinder tilts the four-bar structure outwards
between 1–2.5 s; holds it in this position between 2.5–3.5 s; tilts it inwards between 3.5–5 s;
and holds it in this position to complete the work cycle. In all the subsequent figures, the
hydraulic actuation regions are highlighted in purple. In Fig. 7, the RMSE of the crank
angle is 0.23% with respect to the absolute maximum value of the real system, at 1000 Hz
sampling rate of the sensors. Whereas the RMSE of the encoder measurement is 1.67%.
Thus, the state estimator provides a more accurate estimation of the crank angle than the
encoder measurement, which is also evident from Fig. 7.

Furthermore, the difference between the state estimator and the real system is almost
indistinguishable in Fig. 7. Therefore, the actual position and velocity errors, that is, the
crank angle and angular rate errors, with respect to the real system are shown in Fig. 8. Here
the 95% confidence interval is consistent with the actual estimation errors, that is, it shrinks
as the error decreases and grows as the error increases. Plots of this kind provide useful
information about the system observability without the need for more formal observability
analysis. Note that the 95% confidence interval is computed as ±1.96σ , where σ is the
standard deviation calculated from the corresponding value of the covariance matrix, P+,
associated with the state estimation.

In sensor set-1, the RMSE on the position and velocity levels are, respectively, 0.23%
and 12.02% with respect to the absolute maximum value of the real system at 1000 Hz
sampling rate of the sensors. Whereas, they are, respectively, 0.10% and 0.28% in case of
sensor set-2 at 1000 Hz sampling rate. Thus, the overall estimation quality is improved by
adding a velocity sensor, that is, a gyroscope, to a working sensor set, which is also shown
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Fig. 8 Position and velocity estimation errors with respect to the real system using sensors that provide data
at 1000 Hz

in Fig. 8b. Note that the RMSE of the gyroscope measurement is 0.29% in sensor set-2 at
1000 Hz sampling rate.

Furthermore, Fig. 9 shows the position and velocity estimation errors when the sampling
rate of the sensors is 200 Hz in sensor set-1. The saw-tooth shape of the 95% confidence
interval shows the evolution of the covariance matrix, that is, the covariance grows when
there is no measurement and shrinks when a measurement is available. The tracking error
follows a similar trend.

6.3 Accuracy of the hydraulic pressures estimation

The estimations of the hydraulic pressures are shown in Fig. 10, where the pressure estima-
tion is almost indistinguishable from the real system. The RMSEs of the estimated pressures
are, respectively, 0.34%, 0.33%, and 0.28% with respect to the absolute maximum value of
the real system, at 1000 Hz sampling rate of the sensors. Whereas, the RMSEs of the pres-
sure sensors are, respectively, 0.35%, 0.34%, and 0.29%, at 1000 Hz sampling rate. Thus,
the estimation of the hydraulic pressures is slightly improved in comparison with the pres-
sure sensor measurements. Furthermore, for the plots in Fig. 10, the pressure errors are
shown in Fig. 11a.

Note that in sensor set-1 (Fig. 10) the measurements for all pressures, p1, p2, and p3, are
used because they are assumed to be independent inside the filter. However, if an additional
velocity sensor, that is a gyroscope, is used, then it enables one to remove one of the pressure
sensors from either end of the hydraulic cylinder (Eq. (39)), such as for sensor sets 3 and 4.
Otherwise, removing a pressure sensor without adding a velocity sensor would result either
in a maximum number of iterations of the state estimator or a gradually increasing covari-
ance of the pressure estimation. Note that the limit on the maximum number of iterations is
defined within the implicit integrator used in this study. Moreover, the lack of convergence
within the integrator is caused by the growth of the terms of the covariance matrix that leads
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Fig. 9 Position and velocity
estimation errors with respect to
the real system using sensor set-1
providing data at 200 Hz

Fig. 10 Comparison of hydraulic pressures with sensor set-1 providing data at 1000 Hz

to too large corrections, thus demonstrates the lack of observability. The pressure estimation
error using sensor set-4 is shown in Fig. 11b.

At a lower sampling rate, 200 Hz, of the sensors, the pressure errors are shown in Fig. 12.
At this sampling rate of the sensors, the 95% confidence interval of the pressure estimations
follows a similar saw-tooth shape evolution as in the case of the position and velocity esti-
mations.
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Fig. 11 Pressure estimation errors with respect to the real system using sensors that provide data at 1000 Hz

7 Conclusion

This paper introduced a novel state estimator developed by combining a multibody model
and an indirect Kalman filter in the framework of hydraulically driven systems. An indi-
rect Kalman filter that utilizes the exact Jacobian matrix of the state transition matrix at the
position and velocity levels found in the literature has been extended for hydraulically actu-
ated systems. The structures of the covariance matrices of the plant and measurement noise
were also proposed. The multibody system was described using a semi-recursive formula-
tion and the hydraulic subsystem using the lumped fluid theory. These two models were
combined using a monolithic approach. The state estimator considered modeling errors in
the force model, such as incorrect values of gravity and pump pressure, that affected the
plant throughout the simulation. A non-formal demonstration of the system observability
was provided by the introduction of errors in the initial values of position and pressure. The
measurements in this study were obtained from a dynamic model, which was considered
as the ground truth, with an addition of white Gaussian noise that represented the noise
properties of the actual sensors.

The developed state estimator was illustrated on a hydraulically actuated four-bar mech-
anism using four sensor configurations with four different sampling rates. The state estima-
tor provided a more accurate estimation, especially at the position level, compared to the
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Fig. 12 Pressure estimation
errors with respect to the real
system using sensor set-1
providing data at 200 Hz

measurements. Moreover, the confidence interval was consistent with the actual estimation
errors. Furthermore, the overall estimation quality is improved by adding a velocity sensor,
that is, a gyroscope, to a working sensor set. Moreover, the addition of a gyroscope enabled
one to remove one of the pressure sensors from either end of the hydraulic cylinder, which
is otherwise difficult under the given set of conditions. It has been observed that the accu-
racy of the estimation degrades when the sampling rate of the sensors is reduced. At a lower
sampling rate, the evolution of the covariance matrix follows a saw-tooth shape, that is, the
covariance grows when there is no measurement and shrinks when there is measurement
available. The results demonstrated the efficacy of the proposed state estimator.

In future works, the proposed method will be tested on real world systems, such as a
hydraulic crane, where the size of the system and its complexity are higher. The studies may
also be directed towards reducing the number of pressure sensors, as the pressure build-up
in the hydraulic sections is inter-dependent. The idea can be to protect the pressure sensors
from damage caused by impacts from other parts of the working machinery in a limited
working space. The estimation of hydraulic forces acting on a coupled multibody system
will also be considered in future work.
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