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Abstract
The Kalman filter algorithm estimates variables of linear systems combining information
from real sensors and a mathematical model of the system. It may be applied to observe
nonlinear systems by means of a linearization of the system model. Multibody system dy-
namics constitutes a methodology for the analysis and design of mechanical systems. Dur-
ing the last twenty years, many ways of employing a multibody model as the Kalman filter
model have been explored.

This paper gathers up diverse algorithms, from the first ones based on the continuous
expressions of the filter, to the indirect methods that enable real-time implementations of the
observation of mechanical systems with a large number of variables. A detailed explanation
of the methods and a description of the strengths and weaknesses of each one is presented
along this paper, including a benchmark evaluating the performance of the methods.

An important aspect of the Kalman filter is the characterization of the system uncertainty
by means of white Gaussian noise. Sometimes, the statistical properties of the noise are
unknown. Several methods to determine these properties are described, and a new method-
ology to model systems perturbed by colored noise (time-correlated noise) is presented.

In Kalman filters based on multibody models, the information from a real mechanical
system can be employed to keep the model behaving like the actual system with a great
level of accuracy, linking the simulation to the real behavior of the system.
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List of symbols

The symbols used throughout the whole document are defined here. The symbols em-
ployed only in specific parts of the document are defined locally.

Δt Time step
x State
ẋ Time derivative of the state
x̂ Estimation of the state
ˆ̇x Estimation of the time derivative of the state
z Vector of independent coordinates
ż Vector of independent velocities
z̈ Vector of independent accelerations
ẑ Estimated vector of independent coordinates
ˆ̇z Estimated vector of independent velocities
ˆ̈z Estimated vector of independent accelerations
R Matrix relating the dependent and independent velocities of a multibody system in the

matrix-R formulation
K Stiffness matrix
C Damping matrix
f Transition function
F Discrete system transition matrix
F Continuous system matrix
fx Jacobian of discrete system transition function with respect to states
fx Jacobian of continuous system function with respect to states
h Measurement function
hx Jacobian of measurement function with respect to states
H Discrete system measurement sensitivity matrix
G Discrete system input matrix
B Continuous system input matrix
K Kalman gain
P Covariance matrix of state estimation uncertainty
Σ Discrete system innovation covariance matrix
ΣP Discrete system covariance matrix of plant noise
ΣP

c Power spectral density matrix of continuous plant noise
ΣS Covariance matrix of sensor noise
Σ̂P Discrete system estimation of the covariance matrix of plant noise
Σ̂S Discrete system estimation of the covariance matrix of sensor noise
qc Vector of power spectral density of continuous acceleration noise
u Vector of inputs
y Vector of outputs
ỹ Vector of innovation
o Vector of observations
w Vector of process noise
v Vector of measurement noise
n Size of the vector of dependent coordinates q
l Size of the vector of states x
g Number of degrees of freedom
χ Matrix containing the sigma points of the unscented Kalman filter
ξ Weakening matrix
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1 Introduction

Since Rudolf E. Kálmán wrote his articles in 1960 [23, 24], the Kalman filter (KF) has
been employed in a wide range of applications, such as the acquisition of the position and
attitude in navigation systems. The KF is a statistically optimal estimator of the states of a
linear dynamic system perturbed by white noise. To achieve these estimations, it employs
measurements linearly related to the states but also corrupted by white noise together with
a model of the system. By doing so, it can estimate variables that are difficult to obtain by
means of physical sensors. The extended Kalman filter (EKF) allows a similar approach for
nonlinear systems by substituting the model of the system by a linearization of the system
around a working point. Both KF and EKF take into account the noise of the system and
the sensors. Many applications have been developed and have originated a wide knowledge
about estimation [4, 17, 18, 61].

At the same time, multibody (MB) dynamics modeling arose as a powerful tool for the
analysis and design of mechanical systems [15, 58, 60]. MB dynamics covers all the re-
quired elements for simulating the motion of a mechanical system: modeling, formulations,
numerical integrators, etc. Because of this, it has been strongly influenced by the growth of
computational efficiency. Achieving real time in MB simulations started as a challenge but,
nowadays, complex systems can be simulated in real time on personal computers without
special capabilities [2, 12, 20, 28, 59].

The improvements of these two disciplines, estimators and MB dynamics simulation,
suggested the idea of merging them by including the MB model in the estimation algorithm.
The hypothesis behind this procedure is that a more detailed description of the system may
contribute to a more accurate estimation of the observed variables. Through the KF and a set
of sensors, the possible drift between an MB model of the system can be corrected, and the
MB model can be synchronized with the real system. Therefore, the MB model can be used
as an additional source of measurements or virtual sensors. The abundant information about
the system provided by the observer based on an MB model can be useful for other tasks,
such as control or maintenance. For control purposes, it is of particular interest to obtain this
information in real time. In addition, such a procedure is of great interest for enabling the
development of digital twins of mechanical systems: a simulation running at the same time
as the real system and linked to it by exchanging the information of the real sensors and the
observer. As an example, [27] presents a digital twin of a mobile log crane developed by
using a KF based on MB simulation.

The next sections of this paper, after revisiting the formulation of the observers and the
dynamics of an MB problem, describe different approaches, developed to the date, for the
design of observers based on MB models. This review systematizes the different methods
following their chronology. In addition, many applications for force estimation are presented
simultaneously with the different state estimation methodologies since they do not imply
specific methods. The first approach tried to merge the formulation of filter and MB dy-
namics, combining their continuous equations and solving the resulting system, thus lead-
ing to the continuous-time extended Kalman filter (Sect. 3). Difficulties arisen from this
formulation suggested the idea of solving the model equations and the filter equations sep-
arately. The first implementation of this methodology employed the sigma-point Kalman
filter (Sect. 4), which opened the way to the discrete-time extended Kalman filters (Sect. 5).
After that, it was sought to implement multibody formulations in dependent coordinates
(Sect. 6) and reduce the execution time by means of the indirect filters (Sect. 7), pursuing
formulations that achieved real time for complex dynamical problems on conventional com-
puters. These indirect filters do not use the coordinates or their derivatives of the system
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degrees of freedom in the state vector. Instead, they estimate the errors, at the degrees of
freedom, between model and the real system. As a novelty, the direct estimator derived from
these filters is described in Sect. 7.4. Section 8 addresses a peculiar methodology that em-
ploys kinematic models. Properly, it does not follow the MB dynamics methodology, but
it is close to it. Kalman filters are typically employed for the estimation of states, but it
is also possible to employ them for the estimation of parameters and/or forces. Parameter
estimation is described in Sect. 9. As mentioned above, Kalman filters require knowledge
of the statistical properties of system and measurements. The uncertainties of system and
measurements are modeled by means of white Gaussian noise, but it is common that the
exact properties of these noises are unknown. Section 10 presents an approach to estimate
and model the noise. Section 11 presents a methodology to characterize the noise in the case
of not being white noise. This methodology is a novel contribution of the paper. Finally,
Sect. 12 shows the results of a benchmark evaluating ten of the filters analyzed in this work.
The accuracy of each approach is compared, together with their computational cost, giving
practical information of the performance of each method.

2 Stating the problem

2.1 Multibody formalisms

The dynamics of an MB system are described in its most basic form by a set of n generalized
coordinates q and the m constrained Lagrangian equations [15]:

Mq̈+ �T
qλ =Q (1a)

� (q, t) = 0, (1b)

where M is the n × n mass matrix, q̈ is the acceleration vector, Φ is the constraints vector,
�q = ∂�/∂q is the m × n Jacobian matrix of the constraints, λ is the Lagrange multipliers
vector, and Q is the applied forces vector.

Vector q includes the variables that describe the position of the mechanism. If that set
is minimum, it will only include the independent variables z that measure the evolution of
the degrees of freedom (DOFs) of the mechanism. However, it is very common that more
variables than those representing the DOFs are employed.

The equations of motion showed in Eq. (1a), (1b) are a set of differential algebraic equa-
tions (DAEs) of second order. Many formulations convert these DAEs into a set of ordinary
differential equations (ODEs) [15]. For that purpose, each formulation can follow different
techniques to define the model and its constraints.

However, MB models do not fulfill the requirements for being used as KF models. The
set of Eq. (1a), (1b) is nonlinear, while the KF expects linear systems. Several approaches
have been developed to combine MB models with the KF. Each approach follows different
techniques to adapt the MB equations in the structure of the KF: modeling in dependent or
independent coordinates, using different integrators, defining different force and constraint
models, etc. The next subsection revisits the formulation of the Kalman filter and its related
expressions.

2.2 The Kalman filter

Kalman filters estimate some variables through the propagation of the mean and covariance
of these variables through the time [61]. This propagation is conditioned by the measure-
ments provided by sensors that monitor the system. The KFwas initially developed for linear
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systems and independent state variables. The first formulation of the filter was developed in
discrete-time form, and it is presented here. To derive the equations, a generic linear model
is defined:

xk = Fxk−1 +Guk−1 +wk (2a)

yk = Hxk + vk (2b)

w∼ N(0,ΣP ) (2c)

v ∼ N(0,ΣS), (2d)

where x is the state vector, u is the vector of the inputs to the model, y is the vector con-
taining the outputs of the model (referred to as o hereafter), w is the process noise with
mean zero and covariance ΣP , v is the noise from the measurements with mean zero and
covariance ΣS , F is the transition matrix, G is the input matrix, and H is the measurement
sensitivity matrix. The product of this last matrix by the states Hx produces the calculated
values equivalent to the output of the sensors.

The filter consists of two main steps: prediction and correction. The state and the estima-
tion error covariance are propagated during the prediction according to a linear model

x̂−
k = Fx̂+

k−1 +Guk−1 (3)

P−
k = FP+

k−1F
T + ΣP , (4)

where x̂ is the vector of the estimated states, P is the covariance matrix of the estimation
error, and the superindices ‘−’ and ‘+’ mean apriori (before measurements of the cur-
rent time step are taken into account) and aposteriori (after applying the measurements),
respectively.

After this prediction step, the measurements (if available) are taken into account to obtain
the innovation ỹ (the difference between the measurements of the sensors o and the virtual
sensors Hx̂) and the Kalman gain K as follows:

ỹk = ok −Hx̂−
k (5)

Σk =HP−
k H

T + ΣS (6)

Kk = P−
k H

TΣ−1
k , (7)

where Σk represents the uncertainty in the system state projected through the measurement
sensitivity matrixH with the addition of the covariance ΣS , which is the Gaussian noise due
to the sensors or measurements.

Finally, the correction stage employs the Kalman gain to obtain the final values of the
estimated states and the covariance matrix of the estimation error:

x̂+
k = x̂−

k +Kk ỹk (8)

P+
k = (I−KkH)P−

k . (9)

These equations represent the discrete formulation of the KF presented in the initial
Kalman papers in 1960 [23, 24]. In 1961, Kalman and Bucy presented the continuous-time
formulation, also known as Kalman–Bucy filter [25]. Although this formulation is hardly
employed, several MB-based state observers that will be presented in the following sections
are based on it.
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First, the considered linear system is written in differential form:

ẋ = Fx+Bu+w (10)

y = Hx+ v (11)

w∼ (0,ΣP
c ) (12)

v ∼ (0,�S
c ), (13)

where F represents the continuous system matrix and B the continuous input matrix. The
continuous-time white noises in Eq. (12) and Eq. (13) are characterized by a null mean and
a power spectral density matrix of ΣP

c and �S
c , respectively. Now, the continuous-time KF

equations become

K = PHT[�S
c ]−1 (14)

ˆ̇x= Fx̂+Bu+K(y−Hx̂) (15)

Ṗ= FP+ PFT − PHT[�S
c ]−1HP+ ΣP

c . (16)

As it can be deduced from the previous equations, the KF was developed for linear sys-
tems with independent variables. Therefore, its application to MBmodels is not trivial since,
in this case, the system is highly nonlinear. To overcome this difficulty, several approaches
have been followed that take into account the nonlinearity of the system.

One of the most popular approaches is the extended Kalman filter (EKF), where the
nonlinearities are dealt with by using a Jacobian matrix (fx for the discrete equations and
fx for the continuous formulation) to propagate the mean and the covariance of the state
vector [61] instead of using the transition matrix (F in the discrete formulation or F in the
continuous case). Several methods included in this paper are based on the EKF due to its
efficiency and accuracy.

3 Continuous-time extended Kalman filter: CEKF

The first estimators based on MBmodels merged MB equations, commonly expressed in the
form of continuous-time differential equations [54], and the continuous-time extended KF
formulation. However, simulations are normally performed in discrete time steps. Therefore,
the equations of the continuous-time extended Kalman filter (CEKF) combined with the
equations of the MB must be numerically integrated.

Despite the compatibility of the EKF with nonlinear systems, there are additional issues
when combining it with an MB model. First, the EKF is formulated for first-order systems,
while the equations of motion of an MB model are second order. This issue is overcome by
including both positions and velocities of the MB model in the state vector (xT = {qTvT

}
,

where v = q̇), at the cost of duplicating the problem size. Therefore, Eq. (1a), (1b) becomes

q̇ = v (17a)

v̇= M−1
(
Q− �T

qλ
)
. (17b)

This equation can be considered as ẋ = f (x). However, to match Eq. (17a), (17b) to
Eq. (10), several difficulties arise: the Lagrange multipliers are unknown and the mass matrix
is not always invertible. In addition, the EKF applies to independent states, whereas most
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MB formulations are set in dependent coordinates related by constraint equations. Thus,
tailored MB formulations must be developed so that the dynamic equations can be expressed
in independent coordinates.

In [8], two different approaches are presented. The first one is a state-space reduction
method known as matrix-R method [15], and the second one is the penalty method [15].

The main idea of matrix-R method is to obtain an ODE system with a dimension equal to
the actual number of DOFs by using a set z of independent coordinates. The starting point
is the following relation between velocities (assuming no rheonomic constraints exist):

q̇ =Rż, (18)

where q is the full set of dependent variables and z is the set of independent variables.
Differentiating Eq. (18), the accelerations are

q̈ =Rz̈+ Ṙż. (19)

Substituting Eq. (18) and Eq. (19) into Eq. (17b), the accelerations of the independent
variables can be rewritten as

z̈= (RTMR)−1[RT(Q−MṘż)] = M̄−1Q̄. (20)

And finally, including the velocities in the state vector as xT = [zTwT
]
, where w = ż,

Eq. (17a), (17b) takes the form of

[
ż
ẇ

]
=
[

w
M̄−1Q̄

]
. (21)

These equations match Eq. (17a), (17b) and, after their linearization, they can be included
as the Jacobian matrix in the EKF:

fx = ∂f(x)
∂x

=
[

0 I
∂(M̄−1Q̄)

∂z
∂(M̄−1Q̄)

∂w

]
. (22)

This expression can be approximated by

fx �
[

0 I
F

21
x F

22
x

]
(23a)

F
21
x = −M̄−1RT(KR+ 2MRqRẇ) (23b)

F
22
x = −M̄−1RT(CR+MṘ), (23c)

where K and C are the stiffness and damping matrices of the system, respectively. At this
point, the correction step starts by adding the sensor information into the filter:

ż−w+K1(h(x) − o) = 0 (24a)

M̄z̈− Q̄+ M̄K2(h(x) − o) = 0, (24b)

where h is the measurement function evaluated in the states of the KF.
In these equations, K1 and K2 are the upper and lower parts of the Kalman gain matrix

K, whereK1 corresponds to z andK2 corresponds to ż. Once the integrator (in this case, the
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trapezoidal rule integrator (TR) seeking high efficiency) is introduced in Eq. (24a), (24b),
the nonlinear system of the states becomes

{
g1(xn+1) = 0
g2(xn+1) = 0

=⇒ g(xn+1) = 0. (25)

This system can be iteratively solved by means of the Newton–Raphson method, being
the tangent matrix as follows:

∂g
∂x

=
[

2
Δt
I −I

RTKR RT(CR+MṘ) + 2
Δt
M̄

]

+
[

K1hx1 K1hx2

M̄K2hx1 M̄K2hx2

]
, (26)

where hx1 and hx2 are the upper and lower parts of the measurement Jacobian matrix hx.
The second approach presented in [8] merges the penalty formulation, which is a typical

formulation for MB dynamics, and the continuous EKF. The penalty method hypothesizes
that the constraining forces in Eq. (1a), (1b) are proportional to the violation of the con-
straints and their derivatives. Hence, the Lagrange multipliers can be written as

λ = α(�̈ + 2ζω�̇ + ω2�), (27)

where α is the penalty factor that commonly takes values between 107 and 1010.
As it can be seen, the expression has the form of a second-order oscillating system

with damping coefficient ζ and natural frequency ω (typically, ζ = 1, ω = 10). Introduc-
ing Eq. (27) into Eq. (1a), (1b), the dynamic equations become an ODE:

q̈ = (M+ �T
qα�q)

−1[Q− �T
qα(�̇qq̇+ 2ζω�̇ + ω2�)]. (28)

In this case, the number of variables is greater than in the matrix-R method: dependent
coordinates are employed instead of independent coordinates (equal in number to the num-
ber of DOFs). However, following this approach, Eq. (28) can be directly integrated. The
next step consists in expressing the equation as a first-order equation:

q̇ = v (29a)

v̇= (M+ �T
qα�q)

−1[Q− �T
qα(�̇qq̇+ 2ζω�̇ + ω2�)] = M̄−1Q̄. (29b)

In this case, the Jacobian matrix becomes

fx = ∂f(x)
∂x

=
[

0 I
∂(M̄−1Q̄)

∂q
∂(M̄−1Q̄)

∂v

]

, (30)

and it can be approximated by

fx �
[

0 I
F

21
x F

22
x

]
(31a)

F
21
x = −M̄−1(K+ ω2�T

qα�q + 2�T
q�qqv̇) (31b)

F
22
x = −M̄−1[C+ �T

qα(�̇q + 2ζω�q)]. (31c)

Finally, the correction becomes

q̇− v+K1(h(x) − o) = 0 (32a)



Kalman filters based on multibody models: linking simulation and real. . . 487

Fig. 1 Four-bar mechanism with
spring-damper element employed
in [8]

M̄v̈− Q̄+ M̄K2(h(x) − o) = 0. (32b)

As in the previous method, the trapezoidal rule is the chosen integrator. Once included
in the formulation, the equations can be solved by the Newton–Raphson method, with the
approximated tangent matrix being

∂g
∂x

=
[ 2

Δt
I −I

T21 T22

]
+
[

K1hx1 K1hx2

M̄K2hx1 M̄K2hx2

]
(33a)

T21 =K+ ω2�T
qα�q (33b)

T22 =C+ �T
qα(�̇q + 2ζω�q) + 2

Δt
M̄. (33c)

Both methods were tested and compared in the simple mechanical problem depicted in
Fig. 1. The methodology consists in employing a simulation of the mechanism as ground
truth, obtaining the measurements of sensors from the simulation (in this case, the distance
between point A and point 2). This first simulation is considered the prototype. A second
simulation is the model, which represents the MB model of the prototype. In a real appli-
cation, the model can be affected by several uncertainties. Hence, the authors included a
known error in the force models: the gravity force in the model was 1 m/s2 lower than in the
prototype. Finally, the last simulation is the observer, which corresponds to the model cor-
rected, by means of the EKF, with the sensor information coming from the prototype. With
this strategy, it is easy to evaluate the accuracy of the estimator by comparing the results
of each simulation. This methodology is very commonly employed, so hereafter it will be
referred to as the three-simulation method.

The tests yielded good results. The estimators were robust with respect to sensor noise
and errors in physical parameters, initial position and actuation readings. However, the
matrix-R method exhibited a more efficient behavior. The penalty method had the prob-
lem that the penalty terms were not capable of ensuring the constraint satisfaction under
the large forces introduced by the observer, even though it observed correctly the measured
distance. It can be seen in Eq. (32a), (32b) that the value of the Kalman gain is in conflict
with M̄, and therefore with the value of the penalty factor α. Incrementing the penalty factor
implies an increment of the penalty forces which opposes to constraint violations but, at
the same time, increases the value of the correction terms coming from the EKF. Therefore,
increasing the value of the penalty factor to guarantee constraint satisfaction is worthless.

After the publication of the work presented in [8], it was found in [9] that the observer
becomes less stable, accurate, and efficient as higher derivatives are measured: replacing
position sensors by acceleration sensors, for example, reduced the performance of the filter.
This demands either to reduce the integration time step or to increase the value of the mea-
surement noise covariance to keep an acceptable behavior. Moreover, less accurate results
were obtained when the measured variable is not a generalized coordinate of the problem
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since a simpler expression of Jacobian matrix was used due to the difficulties of obtaining
the exact expression.

In a posterior paper [10], the matrix-R method was applied to develop an observer for
a real car. However, to improve the efficiency, the observer algorithm that combines the
equations of motion and the integrator was reformulated. The duplication of the problem size
was suppressed. A nonlinear algebraic system of equations was obtained with the positions
as primary variables (velocities were eliminated). The problem size was therefore reduced
to the number of coordinates (fourteen in this case): chassis translation and rotation, motion
of the four suspensions, and the rotation of the wheels.

Two maneuvers were executed: an acceleration ramp and a double lane change. The tests
were run for three computational simulations following the three-simulation method: the
prototype, the model (including an error in the vehicle mass of 100 kg more with respect to
the prototype), and the observer. The tests were performed considering two scenarios: clean
sensors and noisy sensors. In both cases, the observer provided an excellent convergence
with the prototype for a time step of integration of 1 ms. Larger time step sizes, such as 5 ms,
produced acceptable convergence of the observer with the prototype, although a constant
discrepancy at several observed magnitudes was obtained (vertical coordinate of the chassis
center of mass and chassis pitch angle). From the efficiency point of view, the observer
was far from achieving real-time performance. This was mainly due to the high number of
Newton–Raphson iterations required to converge at each time step of integration.

4 Sigma-point Kalman filters: SPKFs

Section 3 has shown that obtaining the transition matrix of KFs when using an MB model
is complex. In addition, trying to solve simultaneously the dynamics of the system and the
observer equations is not always a successful solution. These issues could be avoided by
employing another completely different approach: the sigma-point Kalman filter (SPKF).
This is a family of KFs that propagates a set of deterministically chosen weighted sample
points, called sigma points, through the nonlinear function of the system dynamics. The
sample points capture at least the first two moments (the mean and the variance) of the prior
and posterior (after propagation through the nonlinear function) Gaussian random variables
that characterize the states. Through this approach, the propagation of the state variables
must be computed as many times as sigma points are defined. A general introduction to this
family of filters can be found in [33].

This method was first explored in combination with MB formulations in [43]. In this
paper, two sigma-points KFs, i.e., the unscented Kalman filter (UKF) and the spherical sim-
plex unscented Kalman filter (SSUKF), were tested and compared with the CEKF combined
with the matrix-R method. The difference between these two SPKFs is the number of sigma
points to be propagated and the way of obtaining these sigma points.

4.1 Unscented Kalman filter: UKF

The UKF is a filter for nonlinear systems presented by Wan and Van der Merwe in [64].
The first step of the UKF is the calculation of the set of nsp = (2l + 1) sigma points, l being
the dimension of the state vector. The unchanged state constitutes the zeroth sigma point.
The rest of the points can be calculated by means of the square-root decomposition of the
covariance matrix of state estimation uncertainty:

χ k−1(0) = x̂+
k−1 (34)
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χ k−1(i) = x̂+
k−1 + ζ

(√
P+

k−1

)

i

, i = 1, . . . , l, (35)

χ k−1(l + i) = x̂+
k−1 − ζ

(√
P+

k−1

)

i

, i = 1, . . . , l, (36)

where √
. is the matrix square root using the lower triangular matrix of the Cholesky de-

composition, χ k−1(i) stands for its ith sigma point, ζ = √
l + λ, λ = α2 (l + κ), α and κ

are user-defined tuning parameters, with 0 < α ≤ 1, and κ is the scaling factor, usually set
to zero. The parameter α sets the spread of sigma points around the mean of the estimates.
Then, these samples are transformed via the corresponding function (in this case, an inte-
gration step of the MB simulation):

χ k(i) = f(χ k−1(i)). (37)

Next, the mean and covariance of the resulting set of estimations are calculated:

x̂−
k = E

[
f(x̂k−1,wk−1)

]≈
nsp−1∑

i=0

Wm
i χ k(i) (38)

P−
k = E

[
(χ k − x̂−

k )(χ k − x̂−
k )T
]

≈
nsp−1∑

i=0

Wc
i

(
χ k(i) − x̂−

k

) (
χ k(i) − x̂−

k

)T + ΣP ,
(39)

where Wm
0 = λ/ (l + λ), Wc

0 = Wm
0 + (1− α2 + β

)
, Wc

i = Wm
i = 1/ [2 (l + λ)], β being a

secondary scaling factor used to emphasize the weighting on the zeroth sigma point for the
covariance calculation. The selection of the weights Wm

i and Wc
i is done according to the

rules proposed in [33].
In case that new information from the sensors is available, the measurement update is

performed. The Kalman gain matrix is calculated employing the following expressions:

Kk = E
[
(xk − x̂−

k )(yk − ŷ−
k )T
]× E

[
(yk − ŷ−

k )(yk − ŷ−
k )T
]−1

= Pxkyk
Pykyk

=
nsp−1∑

i=0

Wc
i

(
χ−

k (i) − x̂−
k

) (
Y−

k (i) − ŷ−
k

)T

×
nsp−1∑

i=0

Wc
i

(
Y−

k (i) − ŷ−
k

) (
Y−

k (i) − ŷ−
k

)T
,

(40)

Y−
k (i) being the observations of the ith sigma point, which are used to obtain the predicted

measurements ŷ−
k . For this purpose, similarly to the prediction phase, the weighted means

of the estimates are propagated through the measurement sensitivity matrix

Y−
k (i) = hk

(
χ k(i)

)
(41)

ŷ−
k =

nsp−1∑

i=0

Wm
i Y−

k (i). (42)



490 M.Á. Naya et al.

Finally, using the Kalman gain matrix, the state and covariance matrix can be corrected:

x̂+
k = x̂−

k +Kk(ok − ŷ−
k ) (43)

P+
k = P−

k −KkPyk−1yk−1K
T
k . (44)

Once the update is complete, a new set of sigma points can be generated. However, if
there are concerns of computational cost, the current sigma points χ k(i) can be reused to
save computational effort at the cost of sacrificing accuracy [55].

4.2 Spherical simplex unscented Kalman filter: SSUKF

The SSUKF was first presented in [22]. While the structure and the equations are the same
as in the UKF, the difference relies on the number and the way of defining the sigma points.
In this case, the number of sigma points is nsp = (l + 2). This leads to a lower number of
function evaluations, reducing the computational cost.

The new set of sigma points is built using the following algorithm. Without loss of gen-
erality, it is assumed that the state vector is x= 0. In this case, the sigma points are obtained
starting from the first component of the state, as follows: χ1

0 = 0,χ1
1 = − 1√

2w1
,χ1

2 = 1√
2w1

,
where the superindex 1 indicates that these sigma points are only considered up to the first
state.

For the following states j = 2, . . . , l, the sigma points include the ones obtained in the
previous step, but are completed adding one extra component and one additional sigma
point for every state, according to the following equations:

χ
j

i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
χ

j−1
0

0

]

for i = 0,

[
χ

j−1
i
1√

j (j+1)w1

]

for i = 1, . . . , j,

[
0j−1

1√
j (j+1)w1

]

for i = j + 1.

(45)

The sigma points used for the SSUKF are calculated from χ l
i obtained at the end of this

process. Since it was assumed that x = 0, the actual sigma points for a general case would be
χ i = x̂+ χ l

i . In these expressions, the weight of the zeroth sigma point w0 is predefined by
the user in the domain 0 ≤ w0 ≤ 1. The value for the weight of the remaining sigma points is
wi = w1 = (1−w0)/(l +1). All the points lie on a hypersphere whose radius is

√
l/(1−w0),

with the exception of the zeroth point, which is at the center.

4.3 Implementation and performance

These two formulations were implemented to observe the movement of the five bar mecha-
nism depicted in Fig. 2, whose parameters and the characteristics of its sensors were exper-
imentally determined. The three-simulations method was followed. The matrix-R method
was employed for the MB dynamics. The observers compared were the CEKF, the UKF,
and the SSUKF, all with the trapezoidal rule integrator (TR) as integrator for the MB prob-
lem and the SSUKF with a second-order Runge-Kutta integrator (RK2) as integrator. The
aim of the work presented in [43] was to evaluate the performance of the filter in terms of
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Fig. 2 Five-bar mechanism employed in [43]

Table 1 CPU times and RMSE

Filter MB formu. Integ. Δti = 2 ms and Δts = 2 ms Δti = 2 ms and Δts = 6 ms

CPU time RMSE (10−3) CPU time RMSE (10−3)

CEKF matrix–R TR 111% 1.36 114% 9.22

SSUKF matrix–R RK2 128% 2.16 121% 3.17

SSUKF matrix–R TR 196% 2.18 188% 5.35

UKF matrix–R TR 232% 1.98 225% 3.1

accuracy and efficiency when using implicit or explicit integrators. It is commonly accepted
that explicit integrators are less stable than implicit integrators. However, since the system
is being corrected by the observer, this disadvantage can be overcome.

It is worth noting that, in the case of CEKF, the state vector has to be duplicated as
explained in Sect. 3. In the case of sigma-point filters, this duplication is unnecessary.

In the case of SPKFs, the vector of independent accelerations z̈ has been chosen in [43]
as the state vector. The set of sigma point is calculated and propagated through the nonlin-
ear discrete-time system function (the MB model is integrated for each sigma point). Each
sigma point is a vector of independent accelerations ˆ̈z, which is used to build the vectors of
independent positions z and velocities ż by means of the integrator.

The tests performed covered two different situations. The first one corresponds to the
case that the integrator time step Δti and the sampling time of the sensors Δts are the same
and equal to 2 ms. In the second case, the integrator time step and the sampling time are
different, being of 2 ms and 6 ms, respectively.

Table 1 provides the consumed CPU time (having as reference the actual duration of
the maneuver) and the root mean square error (RMSE) obtained by the different observers,
where the error is the difference between the predicted and actual measurements.

As it can be observed, when the integrator time step and the sampling time are the same,
the most accurate filter is the CEKF with an RMSE slightly superior to the noise standard
deviation (10−3 rad). However, if the sample time of the sensors is greater than the inte-
gration time step, the RMSE of the CEKF increases dramatically compared to that of the
other filters. An increase of the sampling time step implies that the filter lacks information
of the real mechanism and cannot accurately follow the real movement. Consequently, the
CEKF is not a competent alternative for multi-rate situations, while SPKFs provide a more
accurate solution in these cases. On the other hand, SPKFs present lower accuracy for the
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case of equal time step of integration and sampling time, mainly due to the fact that they
have correction only in accelerations, while the CEKF has corrections in velocities and ac-
celerations. It should be noted that it is possible to include velocities in the state vector of
SPKFs, thus obtaining corrections in velocities and accelerations at the cost of increasing
the computational time.

4.4 Other implementations

In [63], a new implementation of the UKF was presented. In this case, the state vector was

composed by the independent coordinates and their velocities (x̂T =
[
ẑT, ˆ̇zT

]
), instead of the

accelerations vector, as described in Sect. 4.3. This new approach is slower than the previous
one, but it improves the accuracy with respect to the CEKF.

Recently, [35] presented an implementation for flexible mechanisms with this same com-
position of the state vector. The paper proposed the coupling of a floating frame of reference
formulation with the state vector of the UKF.

5 Discrete-time extended Kalman filter: DEKF

In [63], a discrete version of the EKF and the matrix-R method was presented. The main
difference between the CEKF and the estimators working in discrete time steps, is that the
filter is formulated following two separated stages: state transition (also known as prediction
or time update) and state update (also known as state correction or measurement update).
While the state transition relies on integrating the dynamic equations of the system, the state
update consists in including the information from sensors or observations. It should be noted
that in the CEKF both stages are smoothly fused together.

Starting with the prediction stage, the EKF equations in their most generic form are

x̂−
k = f(x̂+

k−1) (46)

P−
k = fxP+

k−1fx
T + ΣP , (47)

where f(·) stands for the transition model of the system and fx is its Jacobian matrix with
respect to the states x.

Regarding Eq. (46), the transition matrix is expressed by the matrix-R method, as in
the CEKF. Therefore, Eq. (18) to Eq. (21) are used again. If the state vector is defined as

x̂T =
[
ẑT, ˆ̇zT

]
, Eq. (21) becomes

[
ż
z̈

]
=
[

ż
M̄−1Q̄

]
. (48)

The development of the discrete-time extended Kalman filter (DEKF) differs from the
generic EKF equations at this point. If the numerical integration of the MB system is per-
formed by means of the forward Euler method with time step Δt , the integrator can be
expressed in a form that fulfills the requirements of the EKF transition function:

x̂−
k = f(x̂+

k−1) ⇒
[
ẑk

ˆ̇zk

]
=
[
ẑk−1 + Δt ˆ̇zk−1

ˆ̇zk−1 + Δt ˆ̈zk−1

]
. (49)
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Thus, the Jacobian of the transition model fx has a fairly simple structure:

fx ≡ ∂f
∂ x̂

= ∂

∂{ẑ, ˆ̇z}
[
ẑ+ Δt ˆ̇z
ˆ̇z+ Δt ˆ̈z

]
=
[

Ig ΔtIg
0g×g Ig

]
, (50)

where g is the number of DOFs of the system.
Regarding the discrete plant covariance matrix ΣP appearing in Eq. (47), it stands for

the additional uncertainty of the new state x̂k , physically attributable to unmodeled forces
and errors in the parametrization of the mechanism (bars lengths, inertia values, etc.), and
to integration errors.

The second stage of the DEKF method, the update, incorporates the sensor readings
(when available) to improve the estimate according to the following equations:

ỹk = ok − h(x̂−
k ) (51)

Σk = hxkP−
k hx

T
k + ΣS (52)

Kk = P−
k hx

T
k Σ

−1
k (53)

x̂+
k = x̂−

k +Kk ỹk (54)

P+
k = (I2g −Kkhxk)P−

k . (55)

The innovation covariance matrix Σk represents the uncertainty in the system state pro-
jected via the sensor function hxkP−

k hx
T
k , plus an additional Gaussian noise originated at

the sensor itself ΣS . Small values of Σk mean that the observation introduces useful infor-
mation to constrain the estimation of the system state. By evaluating the Kalman gain, the
estimation of the mean and covariance are updated in Eq. (54) and Eq. (55), respectively.

In [63], this method was applied to the observation of a four-bar mechanism equipped
with IMUs and compared with the UKF described in Sect. 4.4. The state vector in both

filters was composed by the independent coordinates and their velocities (x̂T =
[
ẑT, ˆ̇zT

]
).

In the UKF, once the sigma points are obtained, they are transformed with a forward Euler
transition function identical to that of previous filters, and the predicted mean x̂−

k and co-
variance P−

k are estimated from them. A similar process applies to the propagation of the
uncertainty in observations, taking into account both the uncertainty in the system state and
the sensor noise (ΣP and ΣS ). The two filters used provided good results in terms of accu-
racy (the RMSE found when estimating the crank angle of the mechanism was 1.15 deg for
the DEKF and 1.16 deg for the UKF). However, the DEKF proved to be considerably faster
in terms of computational efficiency.

A more developed version of the DEKF, including input force estimation, is presented in
[37]. To estimate the input forces, they are modeled as a random walk and included in the
state vector. This approach is also referred to as augmented DEKF (ADEKF).

In the work presented in [37], the subsystem global modal parametrization methodology
is used to obtain an efficient MB simulation. With this methodology, a complex mecha-
nism is divided into simpler subsystems, and some terms required for the simulation and
estimation are precomputed. An exponential integrator is used for the discretization of the
equations of motion. Therefore, the program execution is faster because some terms are cal-
culated by interpolation of the precomputed coefficients. The expressions of the derivatives
required for the implementation of the method are also provided. The method was tested
with a planar half car model, achieving good results, but only for short duration of the tests
due to the limitations of the sensors considered, which led to a nonobservable system.
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The ADEKF has been also applied in more recent works. Such is the case of [45], where
the ADEKF is employed to estimate the loads in the center of a wheel and the strain field on
a vehicle suspension test rig. The estimation is made based on a flexible MB model of the
suspension system, which relies on the use of a penalty conditioned formulation to achieve
a set of ODEs. This approach is afterwards generalized in [1], so that it can be used with the
Lagrange multipliers formulation. Finally, in [3], the ADEKF is applied to a slider-crank
mechanism. The MB model is reduced from natural coordinates to minimal coordinates
through a deep learning approach. In this way, the equations of the model are transformed
into a set of ODEs so that they can be combined with the ADEKF equations.

6 Estimators in dependent coordinates

Previous estimators employ independent coordinates, which entails the resolution of the MB
position problem at every time step with a high computational cost. For this reason, several
alternatives to employ dependent coordinates by including the constraints into the KF were
explored. These algorithms were presented and implemented in [54].

6.1 Smoothly constrained Kalman filter: SCKF

The Smoothly constrained Kalman filter (SCKF) is the application of the algorithm de-
scribed in [16] to an MB model. In this method, the state x is built with the whole MB
vectors of coordinates and velocities, q and q̇, respectively. The SCKF transition function is
built assuming the forward Euler integrator

x̂−
k = f(x̂+

k−1) ⇒
[
q̂k

ˆ̇qk

]
=
[
q̂k−1 + Δt ˆ̇qk−1ˆ̇qk−1 + Δt ˆ̈qk−1

]
, (56)

where the vector of dependent accelerations q̈k−1 is calculated from the dynamic equations
of the system, (1a), (1b). Thus, the Jacobian matrix of the transition model is

fx ≡ ∂f

∂{q̂, ˆ̇q} =
[

In ΔtIn
0n×n In

]
, (57)

and the covariance matrix is updated as

P−
k = fxP+

k−1fx
T + ΣP . (58)

After the prediction, the measurement update is undertaken, but considering only the
measurements coming from the sensors:

Kk,0 = P−hx
T
k (hxkP−hx

T
k + ΣS)−1 (59)

x̂+
k,0 = x̂−

k +Kk,0(ok − h(x̂−
k )) (60)

P+
k,0 = (I2n −Kk,0hxk)P−

k . (61)

Until this point, the SCKF algorithm is the same as the conventional EKF. The differ-
ence is that the states are not expected to fulfill the constraints. Hence, an iterative process
has to be started to impose the position and velocity constraints as if they were additional
measurements. Although the constraints are perfect measurements (they must be perfectly
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fulfilled to a known value), virtual noise is added to them in order to ease the convergence
of the problem. Without this noise, the perfect fulfillment of a constraint might impede the
modification of the coordinates required to satisfy the remaining constraints. This behav-
ior is a consequence of the nonlinear nature of the constraint equations commonly used in
MB models. The covariance matrix of the virtual noise added to the constraints is known as
weakening matrix, and it is calculated as follows:

ξ 0 = α̃

[
�x

�̇x

]
P+

k,0

[
�x

�̇x

]T
, (62)

where α̃ is a tuning parameter, and �x and �̇x are the Jacobian matrices of the constraints
at position and velocity levels with respect to the current states, respectively. As said before,
this weakening matrix contains virtual noise to be added to the MB constraints to ease the
convergence of the problem. The iterative update is as follows:

Kk,i = P+
k,i−1

[
�x

�̇x

]
+
([

�x

�̇x

]
P+

k,i−1

[
�x

�̇x

]T
+ ξ i−1

)−1

(63)

x̂+
k,i+1 = x̂+

k,i −Kk,i

[
�(x̂+

k,i )

�̇(x̂+
k,i )

]
(64)

P+
k,i+1 =

(
I2n −Kk,i

[
�x

�̇x

])
P+

k,i

(
I2n −Kk,i

[
�x

�̇x

])T

+Kk,iξ iKT
k,i (65)

ξ i+1 = ξ ie
−β̃ , (66)

β̃ being another tuning parameter. This iterative process is performed until the position
constraints � and velocity constraints �̇ fit the desired tolerance.

One of the drawbacks of this method is that the measurement model is applied before the
constraints are imposed. Hence, depending on the expression of the measurement model,
additional errors may arise from its use when the constraint equations are not fulfilled. The
other problem is that part of the corrections provided by the sensors might be undone when
the constraints are applied.

6.2 Discrete-time iterated extended Kalman filter with perfect measurements:
DIEKFpm

The discrete-time iterated extended Kalman filter with perfect measurements (DIEKFpm)
is an expansion of the standard discrete-time iterated extended Kalman filter (DIEKF) [61]
developed to cope with constraints in its state space by employing the so-called perfect
measurements [62]. The key idea consists in augmenting the vector of observations to in-
clude virtual observations that reflect the fulfillment of the kinematic constraints in both
positions and velocities. The difference with the SCKF is that in the DIEKFpm both the ac-
tual measurements and the perfect measurements are applied simultaneously. Moreover, all
the corrections are applied from the a priori estimation. Therefore, although iteratively, the
perfect measurements are only applied once, but improving the linearization error at every
iteration. Although one should aim for a perfect fulfillment of the constraints, a small noise
is considered for the perfect measurements to ease the convergence of the algorithm, for the
same reason that the weakening matrix was used on the SCKF. Apart from these differences,
this method is similar to the SCKF.
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The state vector of this estimator comprises the MB model coordinates and their deriva-
tives (xT = [qT, q̇T

]
). The augmented observation model h′(x̂) is defined as the concatena-

tion of the real sensors h(x) and the kinematic constraints in position and velocity, such as
h′(x)T = [h(x)T �(x)T �̇(x)T]. This affects the calculation of the innovation (or “residual”),
which must compare the actual sensor readings and current constraint errors with their pre-
dictions. For all time steps k and iteration index i, the predicted values of the constraints are
always zero:

ỹk,i =
[

ok

02m×1

]
− h′(x̂k,i ) =

⎡

⎣
ok − h(x̂k,i )

−�(x̂k,i )

−�̇(x̂k,i )

⎤

⎦ , (67)

where m is the length of the constraints vector. The adjective perfect that names this method
comes from the assumption that there is no error source in the virtual observations. However,
in practice, some small noise is added to the extended sensor covariance matrix to improve
the convergence of the filter, and this noise is reduced at every iteration until the desired
constraint fulfillment is achieved.

These methods provided acceptable accuracy with some of the sensors, but they are more
difficult to tune than the methods in independent coordinates because of the additional pa-
rameters that must be adjusted.

7 Error-state estimators

The sigma-point Kalman filters showed a remarkable advantage from the implementation
point of view: they can make use of existing MB implementations without making signifi-
cant changes to the MB algorithm. However, this comes at the cost of a high computational
load. The error-state estimators (also known as indirect estimators) arose as an alternative
to the conventional KFs to enable the use of existing MB simulation algorithms inside a KF
without having to modify the MB equations. Therefore, any MB formulation and integrator
could be used. This algorithm, referred to as error-state extended Kalman filter (errorEKF),
was first presented in [55] for MB models, although this type of algorithm is commonly
used for other applications such as the integration of inertial sensors [49].

7.1 Error-state extended Kalman filter: errorEKF

This approach consists in combining an MB model, which can have any desired formulation
and integrator, with a KF whose states are the position and velocity errors of the coordinates
representing the DOFs of the MB model

xT = [ΔzT,ΔżT
]
. (68)

During the prediction stage, the MB model is integrated. The states of the KF at the
prediction stage are null (it is assumed that the MB model is not having any systematic de-
viation from the reality). The covariance matrix of the estimation error is also updated. The
model for this propagation assumes that the main source of errors comes from the accelera-
tion predicted by the MB model so that the uncertainty of velocity and position estimations
grows with time if corrections are not available. The equations of the propagation phase are
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as follows:

x̂−
k = 0 (69)

P−
k = fxP+

k−1fx
T + ΣP , (70)

where the Jacobian matrix of the transition model fx is the same as that used in the DEKF
method (Eq. (50)).

After that the correction phase is started using the following equations:

ỹk = ok − h(qk, q̇k) (71)

Σk = hxkP−
k hx

T
k + ΣS (72)

Kk = P−
k hx

T
k Σ

−1
k (73)

x̂+
k = 0+Kk ỹk (74)

P+
k = (I2g −Kkhxk)P−

k . (75)

As it can be seen, the equations are very similar to those of the correction phase in the
DEKF method. The differences come when the virtual sensors have to be evaluated. In this
method, the virtual sensors are evaluated using the variables of the MB model instead of the
states of the filter, as shown in Eq. (71). The other difference can be seen in Eq. (74) since
the estimated state after the prediction phase x̂− is always null.

After this stage of the filter, with the MB model already integrated, the position and
velocity errors of the coordinates representing the DOFs of the MB model are estimated.
Therefore, the last task is to use this information to correct the MB model. To do so, it is
required that the corrections fulfill the constraints of the MB model at position and velocity
level. This can be achieved by incrementing the value of the DOF coordinates with the
estimated errors and, later, solving the kinematic position and velocity problems. Although
this process would provide a perfect fulfillment of the constraints, the position problem is not
linear, and therefore it has to be solved iteratively. Since the corrections are made every time
the measurements are available, they are expected to be small. Therefore, as an alternative
for the position correction, a linearization of the position problem can be applied:

�qΔq̂ = 0 ⇒ q̂ = q+ Δq̂. (76)

In this case, the increments applied to the vector of coordinates must fulfill Eq. (76),
which can be solved as a kinematic velocity problem [15], in which the velocities of the
DOF coordinates are replaced with the position errors estimated by the Kalman filter. This
method provides an acceptable level of constraint fulfillment in most cases, especially if the
multibody simulation used jointly with this filter can correct the kinematics at the following
simulation steps.

The advantage of this approach is that, since the position problem is linearized, it can be
solved faster and in a more predictable time span, which is important when considering real-
time implementations of the algorithm. The corrections at velocity level can still be applied
at the DOF coordinates and, after that, the velocity problem can be solved without excessive
time penalty since it is linear.

After applying the estimated errors to correct the MB model, the estimated error of the
MB model is null, and a new time step can be started.

The simplified flow diagram of this algorithm is shown in Fig. 3.
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Fig. 3 Simplified flow diagram
of a time step of the errorEKF

7.2 Using the complete Jacobianmatrix of plant function: errorEKF_EJ

In Sect. 7.1, the Jacobian matrix of the transition model fx ignores the relation between the
errors in the positions, velocities, and acceleration. This is a very simple approach and can
provide accurate results in many cases, but it can also produce a lack of observability. In [56],
it was shown that, under certain sensor configurations, the simplified version of the errorEKF
loses observability. However, its counterpart with the complete Jacobian matrix, referred to
as errorEKF_EJ, provides an observable system in more cases. In the examples presented
in [56], a four-bar and a five-bar linkage were studied. It was shown that, when using only
velocity sensors at their cranks, the systems were observable using the errorEKF_EJ, but
they were not when using the errorEKF. The only difference between the two methods is
that the Jacobian matrix of the transition model in the errorEKF_EJ includes the derivatives
of the acceleration with respect to the position and velocity, as follows:

fx =
⎡

⎢
⎣
I+ 1

2
∂Δ ˆ̈z
∂z Δt2 IΔt + 1

2
∂Δ ˆ̈z
∂ ż Δt2

∂Δ ˆ̈z
∂z Δt I+ ∂Δ ˆ̈z

∂ ż Δt

⎤

⎥
⎦ . (77)

The expressions of ∂Δ ˆ̈z
∂z and ∂Δ ˆ̈z

∂ ż are provided in [13, 56] and are not included here for the
sake on conciseness.

The advantages of including these terms are that the accuracy is increased and the sys-
tem is observable in more complex cases than the simplified errorEKF with only a slightly
increased computational cost. However, the implementation of this algorithm is more com-
plex, and a deep understanding of the MB formulation used is required to derive the required
extra-terms. Therefore, it is less likely that this method can be implemented if there is no ac-
cess to the MB simulation algorithm. Although the required derivatives could be computed
numerically, it is not considered a practical option because it entails a high computational
cost, which increases with the size of the system.

7.3 Force estimation using indirect observers: errorEKF_FE

Both the errorEKF and the errorEKF_EJ assume that the input forces are accurately known.
However, in some applications, the force characterization is not good enough, or the source
of the force might be even unknown. For example, in the case of a vehicle, the tire force
can be unknown due to the variation of the friction coefficient between the road and the
tire. In addition, aerodynamic forces due to the wind can be completely unknown if the only
sensors available are those generally used in commercial vehicles. In these cases, it can be
useful to add the input force estimation to the previous algorithms. In addition to the force
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estimation itself, this would help to improve the position and velocity estimations when the
force models are inaccurate, or when at least part of the forces are unknown.

In [56], another extension of the errorEKF is presented, but adding force estimation. This
method, called errorEKF_FE, adds the acceleration error of the DOF coordinates as part of
the states so that the state of the filter is

xT = [ΔzT,ΔżT,Δz̈T
]
. (78)

If a forward Euler integrator is assumed for the transition model and a random walk
model is supposed for the acceleration error, then the complete Jacobian matrix of the tran-
sition model would result as follows:

fx =

⎡

⎢⎢⎢⎢
⎣

I+ 1
2

∂Δ ˆ̈z
∂z Δt2 IΔt + 1

2
∂Δ ˆ̈z
∂ ż Δt2 1

2 IΔt2

∂Δ ˆ̈z
∂z Δt I+ ∂Δ ˆ̈z

∂ ż Δt IΔt

0 0 I

⎤

⎥⎥⎥⎥
⎦

. (79)

Apart from using a different state vector and, consequently, a different Jacobian matrix of
the transition model, the equations for the prediction and correction phases of the KF are the
same as in the errorEKF and the errorEKF_EJ methods. The correction of the MB model,
however, has some differences which are explained hereafter.

Once the correction process is finished, the positions and velocities are corrected as in
the previous indirect methods. For the acceleration correction, the kinematic acceleration
problem is solved. In addition, to improve the acceleration prediction for the following inte-
gration steps, the forces need to be corrected. If only the accelerations were corrected, then
a mismodeled force would always produce a deviation from the true behavior of the system,
thus leading to a biased estimator. Therefore, the additional forces which would be required
to compensate for the acceleration error are calculated and applied in the following time
steps.

Errors in velocity-dependent accelerations and forces are expected to be fixed when the
velocities are corrected. Consequently, the only remaining forces to be corrected are those
directly related to the acceleration error. They can be calculated as follows:

ΔQi = M̄Δ ˆ̈z, (80)

where ΔQi is the error of the generalized forces vector corresponding to the independent
coordinates.

Since the acceleration errors happen due to unmodeled or mismodeled forces, this force
error should be added to the known forces and to the previously estimated forces. This way,
the errorEKF_FE provides also an estimation of the forces. However, if force sensors are
not used, this force estimation is performed in open loop. Therefore, modeling errors, in
particular bad characterizations of mass or inertia, could lead to biased force estimations.

As a general rule, this method cannot provide more information about the source of
the force errors so that the estimated errors can be simply added to the generalized forces
vector. However, in some particular problems, it is possible to have more information about
the source of force errors. For example, in the case of a road vehicle, it is very likely that
one of the main sources of error comes from the tire forces. In these cases, if this method
is applied, it is advisable to project the force errors over the most likely error sources, as
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in [47], where the errors of the generalized forces are projected and applied as if they were
applied forces at the tires.

These indirect estimators can be tailored to specific problems. For example, in [21] a
hydraulically actuated system is studied. In this work, the hydraulic equations are added to
those of the MB models. The states of the filter are the position and velocity errors of the
MB model and the errors in the pressures of the hydraulic system.

7.4 Reformulation of the indirect methods as direct filters

The indirect observers were formulated as error-state observers because the aim was to use
them with already existing MB models with minimal changes to the MB implementation,
and this strategy seemed a natural choice for this approach. However, the indirect approach
might be more confusing than the direct approach at the first glance because the states of
filter are not variables of the multibody model.

In this section, the same algorithms described in Sect. 7.1 are presented using a direct
formulation, which implies minimal changes. The final implementation shows that the com-
putational cost and the results are the same. The direct approach only differs in the com-
position of the state vector: instead of the tracking errors of the DOF coordinates, the state
vector of the direct version of the filter is composed by the positions and velocities of the
DOFs (and the accelerations, if the method with input force estimation is considered). As
in the errorEKF, the propagation of the states can be performed using any MB formulation.
This means that the system can be modeled in dependent or independent coordinates, and
also that implicit integrators can be used to solve the dynamics of the system.

The first stage of the filter consists in integrating the dynamics of the MB model, ob-
taining the independent coordinates and velocities (and also the independent accelerations
in the methods with force estimation). This phase also constitutes the propagation of the
states, which are now a subset of the variables calculated with the multibody simulation,
xT = [zT, żT] or xT = [zT, żT, z̈T], if the force estimation is pursued. Therefore, Eq. (69) is
not used any more. After that, the covariance matrix of the estimation error is propagated
using the same equations as in the indirect filters (Eq. (70)).

This leads to a simplification of the Jacobian matrix of the transition model because the
integrator used for the MB simulation can be different from the one used for the propa-
gation of the covariance matrix. For example, the MB dynamics can be integrated using
the trapezoidal rule, while the covariance matrix can be propagated using a forward Eu-
ler integrator. As explained in [17], this approximation is acceptable in nonlinear systems,
where the state propagation may be performed by numerical integrators or more complex
algorithms, as in MB dynamics, while the Jacobian matrix of the transition model is only
used for the propagation of the covariance matrix of the estimation error, which has lower
accuracy requirements.

After the propagation phase is finished, if there are measurements available, the correc-
tion phase is undertaken. In this phase, the equations employed are again the same of the
indirect filters (Eq. (71) to Eq. (75)). The only difference is that the states of the filter are
variables of the MB system instead of the tracking errors of those same variables and, hence,
Eq. (74) becomes

x̂+
k = x̂− +Kk ỹk. (81)

At this point, the correction phase of the KF is finished. The estimated values of the
positions and velocities of the DOF coordinates of the MB system after the correction are
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obtained in the state vector. The next stage of the filter consists in applying the new states to
the MB system so that the MB model matches the estimation of the KF. In the case of the
filter with input force estimation, the states would also include the correct accelerations of
the DOF coordinates.

For the filters without force estimation, the kinematic position and velocity problems
can be solved. However, the position problem is iterative, which can be time consuming.
Therefore, the same linearization process applied to the errorEKF methods can be applied
here.

In order to do that, it is needed to obtain the correction, which has to be applied to all the
coordinates of the MB model. As in the indirect formulation of the filter, this can be calcu-
lated from the difference of the values of the DOF coordinates provided by the MB model
at the prediction step and the estimation provided by the filter after the correction phase Δẑ.
This is the magnitude provided at the correction phase when the Kalman gain multiplies the
innovations (the last term of equation Eq. (81)). From this value, the constraints shown in
Eq. (76) are applied to obtain the approximated corrections for all the coordinates at position
level.

As for the correction of the velocities, since this problem is linear, it can be solved ex-
actly just by solving the kinematic velocity problem with the estimated velocity of the DOF
coordinates as the input data.

Regarding the problem with force estimation, the correct accelerations for the whole set
of coordinates can be calculated by solving the kinematic acceleration problem, using again
the estimated accelerations of the DOFs as the problem input.

Finally, to obtain the correction for the generalized forces, it is required to calculate the
increment of the accelerations needed to go from the values predicted by the MB model to
the final estimated values Δ ˆ̈z. As in the position case, these values are the Kalman correc-
tions corresponding to the accelerations. The forces are calculated using Eq. (80), and they
are used later in the same way as in the errorEKF with force estimation method.

As said at the introduction of this section, the direct version of the indirect methods
provides exactly the same results and the same computation cost as the indirect methods.
Hence, both can be used for the same applications, depending on the preferences of the
reader.

8 Kinematic estimators

These methods were introduced in [39] and extended to the estimation of forces by means of
a two-stage estimator in [40]. Afterwards, the estimator was employed for flexible problems
in [41] and validated in a complex real problem, as is the estimation of the digging forces
on an excavator in [42]. Properly, they do not address the MB problem as stated in Eq. (1a),
(1b). The basic idea is to employ kinematic models, based on kinematic constraint equations,
and a proper set of measurable kinematic variables to estimate other unmeasured kinematic
variables.

In this approach, the system is modeled by means of the matrix-R formulation, repeated
here for the sake of clarity. A suitable set of g independent coordinates z (which are the same
in number as the DOFs of the mechanism) is established, as well as a set of n dependent
coordinates q to be measured at some order of derivative. A set of n algebraic constraint
equations relating the dependent and the independent coordinates is defined as

� (q, z) = 0. (82)
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This equation is a set of nonlinear equations in variables z and q and, if the constraints
are scleronomous, it does not depend explicitly on time. Differentiating it with respect to
time leads to the following dependent velocity and acceleration expressions:

q̇ =Rż (83)

q̈ =Rz̈+ Ṙż. (84)

It is interesting to note that these are the matrix-R expressions seen in Eq. (18) and
Eq. (19). In this case, Eq. (82), Eq. (83), and Eq. (84) define the kinematic model of the
system.

The state vector is defined as

xT = [zT żT] . (85)

An input vector u is used including, at least, g independent measured accelerations. Thus,
the continuous expression for the MB system is defined as

ẋ =
[
ż
z̈

]
=
[

ż
(RTR)−1RT[u− Ṙż]

]
, (86)

where the model input u is the n-dimensional vector of the sensed accelerations, u = q̈
(n > g). The accelerations q̈ play, in the kinematic estimation, the same role as the forces
(or torques) in the traditional state observers based on dynamic models, where the input
vector collects the external actuation and disturbance forces. A final remark is that, since
matrix-R depends on the chosen independent coordinates z, this election compromises the
existence of the model through the invertibility of (RTR)−1.

Regarding the output vector y, the number of the independent measured variable should
be at least equal to the number of system DOFs. A set of sensors ensuring adequate ob-
servability should include as many nonredundant position measurements as the number of
DOFs. Such measurements are able to capture the zero-frequency dynamics and, hence, pre-
vent estimation drifts. The work presented in [39] showed that it is possible to employ as
measurements the same input vector u considered at the prediction stage of the filter.

As a discrete expression for the filter, the authors use the following expression:

xk = xk−1 + Δt

ν∑

i=1

βκi, κi = fc

⎛

⎝xk−1 + Δt

ν∑

j=1

λij κj

⎞

⎠ , (87)

where the parameters β , λij , and ν are particular to the specific discretization scheme
adopted.

The aim of the work presented in [39] is to estimate accelerations. For this purpose,
the state vector is augmented with the acceleration, together with some relations involving
variables of a greater derivative order, as the jerk. Three options are proposed:

– Employ a random walk model for the accelerations.
– Embed in the system model a set of first-order difference equations ψ , representing the
numerical differentiation, in the presence of noise.

– Use a numerical derivative with model uncertainty for the acceleration.
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This approach was validated by means of two examples: a slider-crank mechanism and
a two-DOFs planar mechanism, obtaining precise estimations of the kinematic variables,
including the derivatives of the state.

In [40], the authors analyzed also the estimation of forces including a second stage. The
force estimation was performed by means of a disturbance observer [44, 50]. More recently,
an application to the estimation of the digging forces of an excavator was developed in [42].
In this work, the authors employed an EKF for the force estimation stage.

In [11], a purely kinematic EKF was used for human motion reconstruction using opti-
cal capture. The algorithm presented in this work assisted the process of automatic marker
labeling and improved the robustness of the motion capture process, dealing efficiently with
optical marker occlusions and with reflections.

9 Parameter estimation

In most situations, the system under study cannot be characterized with accuracy, leading
to uncertainties in the parameters which define the system. For instance, some parameters
might be prone to change during the operation of the system. Other parameters might differ
from the manufacturer information due to tolerances or wear of the material. These uncer-
tainties can affect the performance of the estimator and, therefore, reduce the accuracy of
the state and input estimations.

Contrary to state estimators, there is less research on parameter estimation. Parameter
estimation is more difficult because the relationships between the measurements commonly
available and the value of the parameters are usually not straightforward. In addition, due to
the high amount of parameters required to define a mechanical system, trying to estimate all
of them is usually expensive or unfeasible from a computational point of view [5]. Hence,
in most applications, only the most relevant parameters are estimated.

Parameter estimation has been addressed in the literature following two different ap-
proaches. On the one hand, parameters can be estimated by augmenting the state vector
with them. On the other hand, parameters can be estimated using an independent KF, which
is executed in parallel with the KF that estimates the states. This approach is also known as
dual Kalman filter.

In the MB field, there are some works addressing parameter estimation. In [52, 53], para-
metric and external uncertainties of MB models were considered through the generalized
polynomial chaos theory. This work was later continued in [5] in combination with an EKF.
In this case, the state of the KF is augmented with the parameters that are estimated. The
polynomial chaos theory is later used for estimating the covariance matrices required by the
EKF.

In [26], an EKF is also augmented with the parameters of the system. The complexity
of the approach relies on the nonlinearities of the parameters since it is difficult to obtain
their derivatives. As a solution, the terms of the Jacobian matrix of the EKF related to the
parameters are derived through a curve-fitting method.

There are other approaches to estimate parameters together with the states. In [38], a
two-state estimator for automobile side-slip angle is developed. The tire forces and side-
slip angle are estimated through an EKF. Since those variables are highly influenced by the
tire characteristics, a nonlinear least-squares estimator is used to determine the tire param-
eters. Both estimators are executed independently, sharing relevant information at a certain
frequency (it might be at every time step or at a lower frequency).
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A similar approach is followed in [47], where a dual KF is employed for estimating
the states, parameters, and inputs of a vehicle. In this case, an MB model of the vehicle is
combined with an errorEKF_FE to estimate the states and tire forces of the vehicle. Due to
the importance of parameters, such as the vehicle mass and the tire-road friction coefficient,
a UKF is used for their estimation. The UKF provides a better accuracy than the EKF when
the relationships between parameters and measurements are highly nonlinear, as in this case.
In addition, the UKF does not require the development of an explicit Jacobian matrix of the
transition model, which would have been complex in this situation. Since there are only two
parameters to be estimated, the computational cost of the UKF is not very significant in this
particular example. In this dual filter approach, the UKF performs the parameter estimation
at every time step, and then the errorEKF_FE estimates the states and forces based on the
newest parameter estimation available.

10 Plant noise andmeasurement noise estimation

One of the requirements for the optimal performance of the KF is the exact knowledge of
the statistical properties of the system and the measurements [31]. Although the EKF is
not optimal, it also benefits from a good characterization of the noise. This information is
gathered in the covariance matrices of the system and measurements, presented in Eq. (3)
and Eq. (6) as ΣP and ΣS . However, in most real applications, it is not possible to accurately
know the values of both matrices. Usually, the covariance matrices are user-defined tunning
parameters. Although the KF may be able to perform satisfactory estimations under these
uncertainties in many applications, its robustness cannot be guaranteed. In addition, large
estimation errors can occur [14]. Adaptive Kalman filtering (AKF) stands out as a solution
for systems with unknown noise properties. The purpose of these methods is to reduce the
errors derived from inaccurate noise statistics by adapting the KF to the real data [31].

One of the first works using a method for estimating the noise covariance matrices is pre-
sented in [31]. This method is based on analyzing the innovation sequence of the KF, which
is Gaussian white noise for an optimal filter. It can be classified as a correlation method: a set
of equations is derived relating the system parameters to the observed autocorrelation func-
tion [32]. The work shows that, following this approach, the estimations of the covariance
matrices are asymptotically normal, unbiased, and consistent.

In [34], the maximum likelihood (ML) principle is used to derive the equations of an
adaptive KF based also in the innovation sequence. This method has been applied in [46],
combining the ML estimation of the covariances matrices with an errorEKF with force esti-
mation based on MB models.

There are other approaches for AKF, such as the variational Bayesian (VB). The VB
has been applied in [57] for estimating the measurement covariance matrix. In this method,
the state vector of the filter is augmented with the covariance of the noise of the measure-
ments. However, the VBmethod cannot be used to estimate the covariance noise of the plant.
The VB defines a dynamic model for the evolution of the noises, which is usually approxi-
mated by an inverse-gamma or inverse-Wishart distribution for the measurement. However,
both distributions fail when representing the plant noise due to its variable behavior [6, 29].
Hence, the uncertainties on the plant noise can reduce the accuracy of the solution. As an
alternative, in [19], the prediction error covariance matrix is estimated instead of the plant
noise covariance. However, it still needs a nominal value of the plant noise covariance matrix
at each time step as the prior information of the inverse-Wishart distribution.
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The method proposed by Sage and Husa [51] follows a similar approach to the ML since
it is also based on the innovation sequence. The main difference is that it estimates the mean
of the system noises together with the covariance noise matrices. However, if both the plant
and measurement noises are unknown, then this algorithm will result in filter divergence
[65]. The method assumes that there are no errors on the estimated noises, which can also
result in filter divergences [14].

Although there is no research on the application of the VB and Sage-Husa methods in
MB systems, it could be interesting to explore both approaches. The VB does not rely on the
innovation sequence and, therefore, it does not need to perform multiple computations over
a sliding window. Hence, it could be more computationally efficient. Regarding Sage-Husa,
estimating the mean of the system noises could also result in a more accurate estimation of
the noise properties.

10.1 Adaptive errorEKF with force estimation: AerrorEKF_FE

The AerrorEKF_FE is presented in [46] and applies theML to estimate the covariance matri-
ces of the KF. Assuming that the innovation sequence is white Gaussian noise, the maximum
likelihood estimates the covariance that best suits the innovation sequence observed. That
is the covariance that maximizes the likelihood of observing the innovation sequence of the
filter. The likelihood function can be expressed as L(σ 2|ỹ), where σ 2 is a vector containing
the covariances (the elements of the covariance matrix) and ỹ the innovation sequence.

The likelihood presented in [34] can be computed as the probability of obtaining a par-
ticular innovation sequence under a white Gaussian distribution with unknown covariance
P (ỹ|σ 2). Thus, the method attempts to obtain the covariance which maximizes P (ỹ|σ 2),
being therefore the most probable value of the covariance matrices of the noise.

The set of innovation data increases with time. However, in terms of computational cost,
it is not possible to use the full innovation sequence. Moreover, the optimum values for the
covariance matrices might change during the operation of the system under study. Hence,
the method proposes to select a moving window of the innovation sequence. Assuming that
the innovation data of N different time steps are independent (white Gaussian noise), the
likelihood can be expressed as

L(σ 2|ỹ) =
N∏

j=1

P (ỹj |σ 2) =
N∏

j=1

1
√

(2π)s |Σ j |
e

− 1
2 ỹ

T
j

Σ−1
j

ỹj (88)

Σ being the covariance matrix (ΣS or ΣP depending on which one is being estimated), s is
the number of measurements per time step, and | · | is the determinant operator.

To maximize Eq. (88), it should be derived with respect to σ 2 and set to zero. However,
differentiating Eq. (88) is complex. Hence, it is simplified by taking its natural logarithm:

L(σ 2|ỹ) = −1

2

k∑

j=j0

[
ln|Σ j | + ỹT

j Σ−1
j ỹj + cj

]
, (89)

where cj is a constant term independent of the covariances σ 2. Maximizing the previous
equation and after manipulating the equation with the expressions of Eq. (47) and Eq. (52)
leads to

k∑
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hxj

]}

= 0, (90)
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where k is the time step in which the covariance matrix is estimated and j is the counter
inside the estimating window.

To obtain independent expressions for ΣP and ΣS , certain assumptions are made. To
derive ΣP , it is considered as a diagonal matrix and ΣS is supposed to be known and
independent of the estimated parameters σ . The same assumptions can be applied to derive
the expression for estimating ΣS . Hence,

Σ̂P
k = 1

N

k∑

j=j0

[
ΔxjΔxT

j + P+
j − fxjP+

j−1fx
T
j

]
(91)

Σ̂S
k = 1

N

k∑

j=j0

[
ỹj ỹT

j − hxjP−
j hx

T
j

]
, (92)

where Δx is the state correction sequence, which can be calculated as

Δxk = x̂+
k − x̂−

k . (93)

Depending on the version of the KF used, more constraints can be added to the final
shape of the plant covariance matrix, improving the convergence of the adaptive counterpart
of the solution. For example, if the errorEKF_FE is used, then the shape of the covariance
matrix of the system is [56]

Σ̂P =
⎡

⎣
0 0 0
0 0 0
0 0 diag

(
σ̂ 2
)

⎤

⎦ , (94)

where diag
(
σ̂ 2
)
is a diagonal matrix containing the estimated variances of the plant noise at

acceleration level.
Finally, this method cannot guarantee that the estimated covariance matrices are semidef-

inite positive, which could lead to errors in the filter. In [36], it is proposed to set the neg-
ative values of the estimated matrix to their absolute value. In addition, as stated earlier,
this method relies on the assumption that the innovation sequence is white Gaussian noise.
However, there are systems which have colored noise where this assumption is no longer
true.

Results presented in [46] show that, through this method, the algorithm converges to a so-
lution which minimizes the error in the estimations independently of the initial estimation of
the covariance noise matrices. However, when estimating both the plant and measurements
covariance matrices, the filter showed divergence issues in some of the use-cases presented
in [46] due to the available sensors. Regarding the efficiency, estimating the noise covari-
ance matrices through the ML leads to an increment on computational cost, which should
be considered when real-time purposes are intended.

11 Colored noise

The KF approaches are developed for dynamic systems corrupted by white noise. However,
there are real systems whose plant and/or measurement noises are autocorrelated, and hence
the KF estimations can be less accurate. The solution to this issue can be accomplished by
applying a shaping filter [4]. This kind of filters were first applied to MB models in [48] and
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is extended in this work. In this case, a Markov model fed by white noise is used. This noise
model uses an internal state, which can be included in the state vector and estimated by the
filter.

11.1 ErrorEKF with force estimation and a shaping filter: errorEKF_FE_SH

The model assumed by an EKF can be expressed as follows:

xk = f(xk−1) + ω, (95)

where ω is the noise of the plant or MB model. The exact value of the noise is unknown, but
it is assumed to be white Gaussian noise with a covariance matrix ΣP .

In practical applications, however, it is common that the noise is not white. For instance,
if the plant of the system is an MB model with some incorrect parameters, it is expected that
many predictions will have a systematic bias, and therefore the noise will be time-correlated.

To add this information to the filter, a shaping filter can be added estimating the noise of
the MB, and the system plant becomes

xMBk
= f(xMBk−1) + ωk−1 (96)

ωk = Wωk−1 + ξ, (97)

whereW is a diagonal matrix with the values of the weighting factors Wi , and ξ is the white
Gaussian noise of the colored noise ω. In this model, the noise applied to the multibody
model is no longer white, but comes from a model corrupted by white Gaussian noise, in
this case, a Gauss–Markov model. The weighting factors Wi can be calculated as

Wi = e− Δt
τ , (98)

where Δt is the time step of the simulation and τ is the correlation time, which is difficult
to know for the MB plant noise. Therefore, Wi is estimated by analyzing the correlation of
the innovation sequence of the filter in an online process. Since the available data increase
with time, it is proposed to define a moving window over the innovation sequence. Hence,
Wi is updated based only on the newest innovation data.

If the systems of equations Eq. (96) and Eq. (97) are combined in one system, the new
augmented state of the filter would be

xaug =
[
xMB

ω

]
. (99)

The propagation of the filter uses Eq. (96) and Eq. (97) for the state and the following
equation for the covariance matrix of the estimation error:

Pk = fxaugPk−1fxTaug + ΣP (100)

with

fxaug =
[
fx I
0 W

]
. (101)

In this work, this method is applied to an errorEKF_FE. As it is shown in Eq. (94), the
covariance matrix of the plant noise for this filter only has noises in the diagonal terms
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corresponding to the accelerations. When the shaping filter is applied, these noises are set to
zero (because they are already included in the plant model), and now the only terms on the
covariance matrix are those corresponding to the Gauss–Markov model, as follows:

ΣP =
[
0 0
0 ΣP

ω

]
. (102)

In this work, the value of ΣP
ω is obtained through a previous offline process. Following

the three-simulation method, the model is integrated at each time step using as previous
values of the coordinates the ones from the prototype. The error signal can be derived by
difference of the coordinates obtained from this integration of the model and the coordinates
obtained from the prototype. This signal is later analyzed to obtain the values of W and ΣP

ω

that fit the noise. In a real scenario, the value of ΣP
ω should be adjusted based on a trial and

error procedure or by using an AKF.
A similar procedure can be followed if the measurement noise is colored. In this case,

the state vector should be augmented with the measurement noise such as

xT =
[
xMB

v

]
, (103)

where the noise would be modeled as

vk = Wvk−1 + ζ, (104)

W being a weighting factor and ζ the white noise of the estimated v.
There could be applications where both the plant and the measurement noises are col-

ored. In these situations, the previous equations can be applied together as in the use-case
presented in [30].

As an example, the solution for plant colored noise is applied on a four-bar linkage
(Fig. 4a) and on a five-bar linkage (Fig. 4b). The MB model is defined in natural coordinates
using the augmented Lagrangian index-3 (ALI3P) formulation [7] to solve the kinematics
and dynamics of the system. The simulations consist in letting the mechanisms move freely
under the effect of gravity.

The tests performed for evaluating the presented solution for systems with plant colored
noise follow the three-simulation method described in Sect. 3. All the simulations are exe-
cuted in MATLAB® environment using the open-source toolbox MBDE.1 Thus, three MB
models of each mechanism are employed to replicate a real scenario through simulation. All
the simulations are executed at a frequency of 200 Hz. In addition to the error of 1 m/s2

in the gravity value, there is an initial offset of π/16 rad in the crank angle position of the
model with respect to the initial position of the prototype.

The tests are also performed for different sensor configurations. They are selected follow-
ing the work presented in [56] to carry out a reliable comparison of the results. Regarding the
estimator, the errorEKF_FE is also employed in [56]. Hence, the equations for colored plant
noise presented in this section can be properly evaluated. The four-bar and five-bar linkages
are instrumented with the same type of sensors. However, since the five-bar linkage has
two DOFs, the number of sensors is duplicated in this mechanism. The sensor models are
provided in [56]. The four considered configurations are listed next:

1See https://github.com/MBDS/mbde-matlab.

https://github.com/MBDS/mbde-matlab
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Fig. 4 Mechanisms employed in
this work

– Encoders in the cranks of each mechanism for measuring the DOF coordinates.
– Gyroscopes in the cranks for measuring the angular rates of the DOF coordinates.
– Gyroscopes in the couplers of the mechanisms to obtain angular rates that are not directly
related with the DOF coordinates.

– Pair of accelerometers at the end of the cranks, in such a manner that there is one sensitive
axis parallel and another perpendicular to each crank.

Figure 5 shows the results obtained for two of the use-cases tested: the four-bar linkage
with accelerometers at the cranks and the five-bar linkage with gyroscopes in the couplers.
The remaining use-cases can be evaluated by the reader by accessing to the open-source
toolbox MBDE. The results shown in Fig. 5 correspond to the estimations made by the
observer with two different filters: the errorEKF_FE and the errorEKF_FE_SH, which is
the errorEKF_FE combined with the shaping filter. Regarding the forces estimated, it can
be seen how the addition of the shaping filter improves the accuracy of the errorEKF_FE.
However, the most interesting result is that the shaping filter improves the whiteness of the
innovation sequence. As it can be seen in Figs. 5b and 5d, the standalone version of the
errorEKF_FE shows an innovation sequence with a lack of low frequencies. Meanwhile,
complementing the errorEKF_FE with the shaping filter leads to an innovation sequence
with similar levels of all frequencies, meaning that it is closer to white noise. It should be
remarked that the proposed approach requires an initial period of time to converge to the
proper values of the noise.

From the results, it can be concluded that including a shaping filter leads to the whiteness
of the innovation sequence, which might result in more accurate estimations. If the observer
already has a white innovation sequence, adding a shaping filter may not have effects on the
estimations.
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Fig. 5 Comparison of results between the errorEKF and the errorEKF combined with the shaping filter pre-
sented in this work

Finally, it should be pointed out that the shaping filter could be also combined with the
adaptive filters presented in Sect. 10. Since the AKF presented in this work relies on the
whiteness of the innovation sequence of the filter, the shaping filter might help to improve
the accuracy and performance of the estimator.

12 Benchmarking and discussion

To provide a broader perspective on the methods described in this paper, ten of the meth-
ods described before are tested, using the three-simulation method applied to the four-bar
mechanism shown in Fig. 4a. Gravity is the single force acting on the mechanism. All the
methods are implemented in MATLAB® using the open-source MBDE library. As in the
previous section, the simulations are executed at a frequency of 200 Hz. The mechanism
playing the role of the model has a gravity value which is 1 m/s2 lower than that of the pro-
totype and, also, the initial position of the crank is deviated by π/16 rad with respect to the
true initial position of the mechanism.
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This initial position error serves as a practical verification of the observability of the
system: if the observer can correct the initial offset, it means that the system is observable
for the conditions tested.

Three different sensors (one at a time) are evaluated for these tests:

– Encoder measuring the angle of the crank.
– Gyroscope measuring the angular rate of the crank.
– Gyroscope measuring the angular rate of the coupler.

The measurements of the sensors are generated from the prototype, and a sequence of
pseudorandom white Gaussian noise is added to mimic the behavior of actual sensors. The
same sequence of pseudorandom noise was used in all of the tests.

The results of the tests can be seen in Fig. 6. Notice that Figs. 6a to 6d use a logarithmic
scale. Figure 6a shows the position error of ẑ in tests of 10 s. Figure 6b and Fig. 6c show
the results at velocity and acceleration level, respectively. Since there is an initial position
error, some configurations of the observer take some time until the initial error is corrected.
Therefore, an additional plot is included in Fig. 6d, showing the position error without taking
into account the first 2 s of the tests, which is the time in which the transient occurs.

Starting with the tests having an encoder on the crank, all the methods achieved reason-
able good results, although the CEKF provided worse accuracy than the other methods at
position level. Since the MB model has one DOF, and there is a sensor at position level, it
is not a surprise that the system is observable. The error of the CEKF was 0.0246 rad, while
all the other methods achieved an accuracy between 0.0050 and 0.0057 rad. If the transient
at the beginning is not taken into account, then the position RMSE for the CEKF is reduced
to 0.0159 rad, while it does not change for the other methods. It is worth noticing that the
RMSE of the sensor used is 0.0176 rad (due to the pseudorandom noise sequence used). All
the methods provide a lower steady-state error than the noise of the sensor used to correct
the model. All the methods showed similar trends in velocity and acceleration, with all the
discrete methods providing more accuracy than the CEKF. Note that many of the methods
compared here do not estimate accelerations directly, but they are taken from the corrected
MB model for this comparison. Only the methods with force estimation (errorEKF_FE,
errorEKF_ FE_SH, and AerrorEKF) have a direct acceleration estimation.

When studying the behavior of the different observers with a gyroscope on the coupler,
some more differences arise. In this case, it is not obvious at first sight that the system will
be observable. Since the only available sensor is at velocity level, it could be reasonable to
think that the position would not be observable. However, the angular rate of the coupler
is not independent of the position of the crank. In fact, for the mechanism considered here,
even if the crank were rotating at constant speed, there would be two positions for which the
angular rate of the crank would be null. This information is provided by the kinematics of
the system. Therefore, all of the methods studied here can correct the initial position error
and provide accurate estimations with only a gyroscope on the crank. The accuracy provided
by this sensor configuration is lower than that provided by the previous one if the complete
maneuver is considered. However, if the initial transient is removed, the accuracy with this
sensor is greater than with the encoder for most of the methods tested, with the exceptions
of the DEKF, the SCKF, and the DIEKFpm. This improvement is particularly remarkable
for the errorEKF and all its derived methods. The reason is that the correction of the initial
position error takes longer with this sensor configuration, but once corrected, the estimation
is better than that achieved with the encoder in most of the cases.

However, it must be kept in mind that this is a particular result for this mechanism and for
the specific motion studied here. For instance, if the mechanism is stopped, all the systems
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Fig. 6 Comparison of results between the estimators analyzed in this work

would become unobservable, since the coupler will have null angular rate at any position
of the crank. Therefore, no position information could be retrieved with a velocity sensor
under this particular situation.

Finally, when considering a gyroscope on the crank, the task is more challenging. In this
case, the kinematics of the mechanism allows any angular rate of the crank at any position
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of the mechanism. Therefore, the kinematic constraints cannot help in achieving the observ-
ability of the system. However, the acceleration of the system is related to the absolute posi-
tion of the mechanism. Hence, the discrete systems with the exact Jacobian (errorEKF_EJ,
errorEKF_FE, errorEKF_FE_SH, and AerrorEKF_FE) and the UKF can still correct the
initial position error and provide useful estimations. Methods with force estimation provide
better results in this test. The discrete methods with simplified Jacobian, both in indepen-
dent coordinates (DEKF and errorEKF) and dependent coordinates (SCKF and DIEKFpm),
cannot correct the initial position error, keeping it approximately constant throughout the
whole simulation. However, the variance of the estimation error grows under this situation,
so it is expected that the system will get unstable at some point in longer simulations. The
continuous-time extended Kalman filter (CEKF) was not able to provide any estimation with
this sensor configuration.

Since some of the possible applications of these types of estimators might require real-
time execution, the computational cost required to run these methods is relevant. Although
this benchmark was run in MATLAB®, which is not suitable for real-time implementations,
the computational cost comparison of the methods provides an idea of their relative effi-
ciency. It can be seen that the slowest methods are the CEKF and the UKF. On the other
hand, the errorEKF and the SCKF are the fastest methods, with all the other discrete-time
extended Kalman filter methods having a slightly higher computational cost. Since these
programs have been run on a computer with a conventional operating system, several runs
of the same algorithm may yield slightly different computational costs. This comparison
shows the mean CPU time values of four simulations, providing an indication of the most
efficient methods.

From other point of view, it should be taken into account that, despite the higher com-
putational cost of the AerrorEKF_FE and the errorEKF_FE_SH with respect to the er-
rorEKF_FE, these two filters provide additional benefits. The AerrorEKF_FE obtains au-
tomatically the value of the plant noise, avoiding the time spent in tuning the filter before
the execution, which is usually a tedious process. The errorEKF_FE_SH allows to charac-
terize the noise in those cases where the plant and/or measurement noises are autocorrelated
(colored noise), reducing the error of the estimation of the filter in those cases. Therefore,
the increase of computational cost with both methods may be a good trade-off in particular
applications due to the additional benefits they provide.

12.1 Filter tuning

All the Kalman filters have several parameters that condition their estimations. At least,
they depend on the covariance matrices of the plant noise ΣP , the sensor noise ΣS , and
the estimation error assumed initially P0. Although all these parameters have a clear phys-
ical meaning when all the assumptions of the Kalman filter are fulfilled, in many practical
Kalman filter implementations, some of them are either unknown or the filter is applied in
conditions that do not fit the assumptions made in the development of the Kalman filter.
Therefore, in practice, one or more of these parameters are treated as tuning parameters,
which are adjusted by a trial-and-error procedure. In addition, some of the methods have
additional parameters to adjust, such as tolerances in methods with iterative parts. In this
section, all the parameters used are discussed.

The initial covariance matrix P0 used in this work is a diagonal matrix with a value
of 0.0076 for all the diagonal elements. This value accommodates the initial estimation
error due to the initial position error assumed in the tests presented here. In the case of
the errorEKF_FE_SH, since the state vector is augmented with the plant noise, the initial
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covariance matrix P0 is augmented with the new terms related to the plant noise estimation.
In this case, a value of 0.001 was used.

The sensors used in this work are ideal sensors modeled in the prototype (referring to
the three-simulation method), but corrupted by a sequence of pseudorandom noise. Since
this sequence has known statistics, the covariance matrices of the sensor noise ΣS can be
determined. These matrices are diagonal for all the methods in independent coordinates
(in this case, since only one sensor is used in the tests, they are 1 by 1 matrices). The
standard deviation of the noise considered in this work is 17.453 · 10−3 rad for the encoder
and 983.943 · 10−6 rad/s for the gyroscope. The values used in the covariance matrix are
these values squared.

The methods in dependent coordinates presented in this work use the constraints as mea-
surements to impose the constraint fulfillment, as shown in Eq. (64) and Eq. (67). The two
methods presented here (SCKF and DIEKFpm) use a weakening scheme to favor the con-
vergence of the constraints. The part of the measurement matrix for the SCKF is explained
in Eq. (62) to Eq. (66), where two tuning parameters α̃ and β̃ are used. The values used
in this work were α̃ = 0.1 and β̃ = 10. Again, these coefficients were adjusted by trial and
error. As for the DIEKFpm, a diagonal covariance matrix is used in this case. The variance
value applied to all the constraints was 0.001. Then, at every iteration, this variance was
divided by the Euler’s number e so that the noise was reduced to impose the constraints to
the desired level. For these two methods, the iterations were performed until the norm of the
constraints vector (including both position and velocity constraints) reached a value under
0.001.

Finally, the main parameter to adjust is the plant noise covariance matrix for the dis-
crete systems, and the power spectral density matrix of the system noise for the continuous
method. This parameter represents the accuracy achieved by the model plant when tracking
the prototype. In this work, it is assumed that the main source of uncertainty comes from
the acceleration because the integration of position and velocity is usually much more accu-
rate than the force models. Therefore, filters with acceleration estimation use a covariance
matrix for the plant noise which has only values on the diagonal terms corresponding to the
accelerations with value σ 2. The resulting matrix has the following structure:

ΣP =
⎡

⎣
0 0 0
0 0 0
0 0 diag

(
σ 2
)

⎤

⎦ . (105)

Since this is a discrete noise, it should be increased if the time step is also increased. The
CEKF also uses the same approach because the noise has the same units that the derivatives
of the states although, in this case, the noise is continuous, and therefore it is characterized
by its power spectral density at acceleration level qc . For this reason, it remains constant
independently of the time step used for the integration of the system. The structure of the
power spectral density matrix of the system noise is as follows:

ΣP
c =

[
0 0
0 diag

(
qc

)
]

. (106)

For the discrete-time methods in independent coordinates and filters without accelera-
tion estimation, the covariance matrix of the plant noise is calculated from their continuous
counterparts using Van Loan’s method [18] so that it can be expressed as a function of the
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power spectral density of continuous acceleration noise, resulting in the following structure:

ΣP =
[

diag
(
qc

)
Δt3

3 diag
(
qc

)
Δt2

2

diag
(
qc

)
Δt2

2 diag
(
qc

)
Δt

]

. (107)

Finally, the discrete methods with dependent coordinates use a more complex approach.
The covariance matrix of the plant noise is built starting from the power spectral density
of the continuous noise of the independent accelerations and applying Van Loan’s method
to get its corresponding discrete noise. After that, a matrix like Eq. (107) is obtained. The
blocks outside the diagonal are neglected and set to zero. The blocks in the diagonal contain
the noise covariances for the DOF coordinates, but the noise covariances of the dependent
coordinates have to be obtained. In this case, the authors sought for a noise matrix which al-
lowed to change the values of the dependent coordinates to fulfill the constraints, but without
affecting too much to the position of the DOF coordinates, to avoid degrading the accuracy
of the estimation. With this in mind, the variance of every DOF coordinate (the diagonal
term of the covariance matrix) is set to the same value that it would have in a method in in-
dependent coordinates. Then, the remaining values of the diagonal of the covariance matrix
are set to values much greater than the ones used for the DOF coordinates. These values can
be denoted as σ 2

b 
 qc . Finally, the terms coupling every DOF coordinate with the depen-
dent coordinates are scaled using matrix-R, which contains the velocity relationship between
independent and dependent coordinates. Therefore, for the position block, the values out of
the diagonal for the covariances corresponding to positions are calculated as

ΣP
qcov = Rdepdiag

(
qc

) Δt3

3
, (108)

where Rdep is the part of matrix R corresponding to the dependent coordinates.
For the velocity block, the values out of the diagonal can be calculated as

ΣP
q̇cov =Rdepdiag

(
qc

)
Δt. (109)

If it is assumed that the DOF coordinates are the last part of the coordinate vector, the
structure of the position block of the plant covariance matrix would become

ΣP
q =

⎡

⎣
diag

(
σ 2

b

)
ΣP

qcov

(
ΣP

qcov

)T
diag

(
qc

)
Δt3

3

⎤

⎦ (110)

ΣP
q̇ =

⎡

⎣
diag

(
σ 2

b

)
ΣP

q̇cov

(
ΣP

q̇cov

)T
diag

(
qc

)
Δt

⎤

⎦ . (111)

Finally, the structure of the complete plant noise covariance matrix is

ΣP =
[

ΣP
q 0

0 ΣP
q̇

]
. (112)

The values of the plant covariance matrices were adjusted by trial an error, using the
innovation spectrum as a guide to increase or decrease the value of the plant noise. When
the spectrum of the innovation sequence has a uniform amplitude for all the frequencies, it
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means that the noises are properly adjusted. The value of qc used for all the discrete methods
without acceleration estimation in this work was 9.162 · 10−2. The methods with dependent
coordinates used σ 2

b = 1. The errorEKF_FE used a value for σ 2 of 2.291 · 10−3. The Aer-
rorEKF used the same value as the methods without acceleration estimation. Even if this
value did not make sense for this observer, its adaptive capability was put to the test by pro-
viding a wrong initial value for its plant covariance matrix. The covariance matrix achieved
by this method varies continuously depending on the system motion. However, this matrix
reaches values of the same order of magnitude as those tuned by trial and error. Regarding
the CEKF, the plant noise value qc used was 0.73303. Finally, for the errorEKF_FE_SH, the
plant noise value was of 2.3428 · 10−3. The plant noise covariance matrix structures defined
in this section assisted in this time-consuming task.

With respect to the window sizes of the AerrorEKF and the errorEKF_FE_SH, both
were adjusted by trial and error. The window sizes do not have to be the same because they
represent different concepts in both filters. As a rule of thumb, large window sizes lead to
smooth estimations. However, they can also limit the capacity of the filter to adapt to sudden
changes. Hence, the window size should be selected attending to the nature of the maneuver.
The main idea is to avoid the effects of past events that do not have relation with the current
state of the mechanism. In this work, the window size for the AerrorEKF was of 50 samples,
while in the errorEKF_FE_SH it was of 500 samples.

There are some other parameters that are particular to each method, and they could po-
tentially affect the final results. These parameters do not exist on all the methods. Even when
they serve a similar purpose, they can have different meanings, and they are not comparable.
In fact, most of the following parameters are particular to one or few methods, and there is
not an equivalent parameter on the other algorithms. In general, the parameters were ad-
justed to provide the best performance possible to every estimation algorithm while making
the methods robust enough to be able to cope with all the different configurations tested here
without changing the parameters from test to test. The CEKF employs the trapezoidal rule
as the integrator, and the tolerance imposed for its convergence is of 10−5 for the equation
Eq. (25). In the case of the UKF, the trapezoidal rule was also used. In this case, a tolerance
of 10−10 in the norm of the position increment between two consecutive iterations is used as
the stopping condition of the integrator. In the methods in which a kinematic position prob-
lem is solved iteratively (UKF, and DEKF), the tolerance used for the norm of the constraints
is 10−13. This was also the value used in all the methods for the initial position problem at the
beginning of the simulations. The methods in dependent coordinates employed a tolerance
of 10−3 for the norm of the kinematic constraints (both position and velocity constraints are
included here). Although a lower tolerance would have been desired, the nonlinear nature
of the multibody constraints impedes a better convergence. Finally, all the methods derived
from the errorEKF used an augmented Lagrangian of index 3 multibody formulation with
projections and trapezoidal rule as the integrator. In this case, the Lagrange multiplier em-
ployed had a value of 109, and the dynamic tolerance for the fulfillment of the equations
of motion was 10−10. All the magnitudes used internally in the code are expressed using SI
units.

It is worth noting that the simpler methods, namely, the DEKF, SCKF, and the DIEKFpm,
in the implementation used here employ the forward Euler integrator both for the propaga-
tion of the multibody equations and for the propagation of the covariance matrix of the
estimation error. In the case of the UKF, since the propagation of the covariance matrix of
the estimation error is done by means of the unscented transform, the system matrix is not
used, and an implicit integrator can be used. In this case, the trapezoidal rule integrator was
used. In the case of the estimators of the errorEKF family, the forward Euler integrator is
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still used for the propagation of the covariance of the estimation error, but a different inte-
grator can be used for the multibody model. In this case, the augmented Lagrangian of index
3 with projections and the trapezoidal rule was used. This formulation is efficient and also
imposes the kinematic constraints, which might not be exactly fulfilled after the estimation
errors are fed back to the multibody model. Finally, the CEKF is also used with a trapezoidal
rule integrator as it was first introduced in the multibody literature.

13 Conclusions

The relevance of Kalman filtering in industry has been increasing during the last decades.
The use of Kalman filters allows to gather more information of a system than that measured
with physical sensors. In addition, multibody dynamics is also a tool widely used to per-
form accurate simulations in industrial applications. Combining both methods can offer an
improved solution for estimating variables of any system with high accuracy, thus reducing
the amount of physical sensors required for monitoring a particular system.

During the last two decades, a huge effort has been made by the multibody community to
combine Kalman filters and multibody models. It is not trivial to combine the equations of
the Kalman filter, which are first-order linear differential equations in independent coordi-
nates, with the multibody formulations, which are second-order highly nonlinear differential
equations in either dependent or independent coordinates. This motivated a great research
effort to achieve reliable, efficient, and accurate formulations combining both techniques.

In this work, a comprehensive review of all the methods combining multibody models
with Kalman filters is presented. The research on this topic started with the continuous-time
extended Kalman filter (CEKF), which derived to the discrete-time extended Kalman filter
(DEKF), looking for a reduced implementation complexity together with higher stability of
the estimator. However, both methods require a modification of the multibody equations to
fit the Kalman filter structure. Focusing on the reduction of the coupling between Kalman
filter and multibody implementations, the sigma-point Kalman filters (SPKFs) were tested.
This approach allows us to use the most suitable multibody formulation with independence
of the Kalman filter equations. However, it entails a high computational cost, making this
approach unsuitable for real-time applications, especially for systems with a high number of
degrees of freedom. Versions of the Kalman filter being used with multibody formulations
in dependent coordinates were also explored, offering a solution with low computational
cost, although less robust and more difficult to tune than the methods in independent coordi-
nates. Indirect versions of the discrete-time extended Kalman filter appeared later, offering a
compromise between low computational cost and easiness of implementation together with
robustness. Finally, some estimators based on the kinematics of the multibody system were
also developed.

Furthermore, to increase the accuracy of the aforementioned solutions, the Kalman filter
was extended with the estimation of parameters which showed a high level of uncertainty.
In addition, Kalman filters require also to accurately know the statistical properties of the
noise of the system under study and of the sensors employed, which are assumed to behave
as white Gaussian noise. Due to the difficulties for setting these statistical characteristics,
adaptive versions of the Kalman filter were developed. For the cases in which the noise of
the system and/or the measurements does not fulfill the requisite of being white Gaussian,
a new filter, the errorEKF_FE_SH, has been presented in this work, showing satisfactory
results.
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Finally, ten of the described approaches have been tested in a simulation environment.
A comparison among the ten algorithms has been made in terms of accuracy and compu-
tational cost. The results can be useful to determine which is the most suitable approach
for a given application. In particular, the UKF is the most versatile and robust solution: the
filter equations are totally independent from the MB formulation. However, its higher com-
putational demand compared to the other methods might hinder real-time implementations
of the UKF. If real-time performance is required, then the filters belonging to the errorEKF
family are the most suitable. They offer a compromise between accuracy and easiness of
implementation while allowing real-time performance.

To conclude, this review summarizes the efforts of the multibody community to combine
Kalman filters with multibody models, aiming to provide an accurate solution for the esti-
mation problem, thus increasing also the field of application of multibody dynamics. This
work can serve as a guide for researchers interested in using observers based on multibody
dynamics. Furthermore, it can be used as a starting point for new developments of Kalman
filters, which may improve the current state of the art of these methods.
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