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AMFR-W NUMERICAL METHODS FOR SOLVING HIGH1

DIMENSIONAL SABR/LIBOR PDE MODELS∗2

J.G. LÓPEZ-SALAS† , S. PÉREZ-RODRÍGUEZ‡ , AND C. VÁZQUEZ§3

Abstract. In this work we mainly develop a new numerical methodology to solve a PDE model4
recently proposed in the literature for pricing interest rate derivatives. More precisely, we use high5
order in time AMFR-W methods, which belong to a class of W-methods based on Approximate6
Matrix Factorization (AMF) and are specially suitable in the presence of mixed spatial derivatives.7
High order convergence in time allows larger time steps which combined with the splitting of the8
involved operators, highly reduces the computational time for a given accuracy. Moreover, the con-9
sideration of a large number of underlying forward rates makes the PDE problem high dimensional in10
space, so the use of AMFR-W methods with a sparse grids combination technique represents another11
innovative aspect, making AMFR-W more efficient than with full grids and opening the possibility of12
parallelization. Also the consideration of new homogeneous Neumann boundary conditions provides13
another original feature to avoid the difficulties associated to the presence of boundary layers when14
using Dirichlet ones, specially in advection dominated regimes. These Neumann boundary condi-15
tions motivate the introduction of a modified combination technique to overcome a decrease in the16
accuracy of the standard combination technique.17

Key words. SABR-LIBOR market models, high dimensional PDEs, AMFR-W methods, finite18
differences, sparse grids combination technique19

AMS subject classifications. 65M06, 65M20, 65M50, 65W10, 91G30, 91G8020

1. Introduction. High dimensional parabolic Partial Differential Equations21

(PDEs) arise in many fields of science and engineering problems, as for example in22

computational biology for stochastic gene networks [2] or in computational finance for23

pricing financial derivatives [33], when a large number of underlying stochastic fac-24

tors are involved in their equivalent stochastic formulations. In fact, each stochastic25

factor gives rise to one spatial-like variable in the corresponding PDE. In this high26

dimensional setting, when using finite differences for the spatial discretization, the27

complexity of standard grid based approaches grows exponentially with the dimen-28

sions of the problem as well as the computational times, thus giving rise to the so29

called curse of dimensionality. Thus, alternative techniques to the standard full grid30

are required. Also, the use of high order time integration schemes turns out to be very31

convenient to allow larger time steps and therefore reduce the computational time to32

get a prescribed accuracy.33

In the present work we mainly propose a new numerical technique for solving34

the high dimensional PDE problem governing the Stochastic Alpha Beta Rho-LIBOR35

Market Model (SABR-LMM) PDE model introduced in [33]. The more classical LMM36

has been introduced for pricing interest rate derivatives which depend on the evolution37
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of a certain number of forward LIBOR rates, when their volatility was assumed to38

be constant (see [5], for example). More recently, the consideration of stochastic39

volatility has been incorporated for a better fit to market data by combining the40

classical LMM and the SABR model for stochastic volatility in [21, 36, 38], with41

different modelling approaches. In these works, the number of stochastic factors42

depends on the number of forward rates and volatilities that are considered. Their43

formulations are posed in terms of expectations to be solved by means of Monte Carlo44

techniques. Although we are aware of the evolution of LMM as a consequence of the45

financial crisis in 2007 to incorporate the practical presence of a multicurve setting46

(see [35], for example) and the recent ongoing studies related to LIBOR transitions47

not consolidated in market practice yet [34], we have chosen to start from the classical48

version of LMM as described in [5].49

More recently, in [33] a PDE formulation is obtained for the Mercurio and Morini50

model presented in [36] and a set of numerical methods are proposed to solve it. More51

precisely, the combination of standard finite differences in space and a θ−method in52

time are proposed on uniform full grids. Moreover, by arguing that these standard53

finite difference methods based on traditional full grids are not able to price interest54

rate derivatives with more than three or four stochastic forward rates, a sparse grid55

combination technique is applied. A rigorous analysis of finite differences schemes56

in the sparse grid combination technique in arbitrary dimensions is carried out in57

[39]. In order to overcome the curse of dimensionality one can try to use high order58

discretizations in time and space, mainly to reduce the required discretization points59

to achieve certain accuracy. Although for sparse grids in space there are lots of works60

(see [26] and the references therein), for time discretization only schemes up to order61

two have been applied. Following this objective, unlike in [33], in the present article62

we propose higher order discretization techniques in time based on a special class of63

W-methods [41], the AMFR-W methods introduced in [12].64

These AMFR-W-methods are specially suitable for parabolic problems involving65

mixed spatial derivatives as it is the case in the SABR-LMM model proposed in66

[33]. In [12] it is shown that they are unconditionally stable regardless the spatial67

dimension on linear constant coefficients PDEs with mixed derivative terms with68

both periodic boundary conditions and homogeneous Dirichlet boundary conditions.69

Moreover, as the ADI methods [26, 28], the AMFR-W scheme takes advantage of the70

structure of the linear system obtained from the spatial discretization, so it can be71

decomposed into tridiagonal systems which can be solved in linear run-time. Thus, the72

computational effort is significantly reduced. However, while classical ADI schemes73

are of order two in time, the proposed AMFR-W scheme exhibits order three in time74

when standard full grids are used. An additional innovative aspect of the present work75

is the application of the AMFR-W methods in the context of sparse grids combination76

technique, which turns out to be an efficient tool for solving the SABR-LMM model77

in the required high dimensional setting. Furthermore, the introduction of more78

appropriate Neumann boundary conditions motivates the consideration of a modified79

combination technique to improve the convergence.80

LMMs are usually simulated by means of Monte Carlo method, in contrast with81

the here proposed PDE methodology. We aim to avoid the slow Monte Carlo rate of82

convergence, O(1/
√
M) for all dimensions, M being the number of simulations.83

The plan of the article is the following. In Section 2 we present the PDE model84

and justify the introduction of new homogeneous Neumann boundary conditions at85

the so called outflow boundaries. In Section 3, we introduce the space discretization of86

the PDE problem with finite differences to obtain an ODE system in suitable form for87
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the application of the AMFR-W method. In Section 4 we describe the application of88

AMFR-W method to the ODE system to get the fully discretized problem. Section 589

is devoted to the methodology of sparse grids, including the standard and the modified90

combination techniques. In Section 6 we present and discuss the numerical results91

obtained for full and sparse grids. Finally, Section 7 contains some conclusions.92

2. PDE formulation of the SABR-LMM model. As indicated in the pre-93

vious section, we mainly address a new and more efficient numerical solution of the94

PDE formulation introduced in [33] for the SABR-LMM proposed by Mercurio and95

Morini in [36] to price a financial derivative which depends on a certain number of96

forward LIBOR rates, i.e a swaption. In this section we introduce the PDE model97

and we incorporate some new boundary conditions. Although we refer the reader to98

[33] for the statement of the model and further details, we need to introduce some99

financial concepts and their notations related to interest rates derivatives to be used100

along this article. In this respect, we also refer the reader to the textbook [5].101

A zero coupon bond with maturity at time T pays its holder one unit of currency102

at time T . The zero coupon value at time t < T will be denoted by P (t, T ), and103

is also referred as the discount factor from time T to time t. A tenor structure is104

defined as a set of ordered payment dates T0 < T1 < . . . < TN−1 < TN . The time gap105

between two consecutive tenor dates is denoted by τi = Ti+1−Ti. In view of previous106

definitions, a payment of x units at time Ti is worth xP (t, Ti) at time t < Ti.107

Next, we introduce the forward rates that enter in the LMM. We consider the
forward interest rate Fi(t) as an interest rate we can contract to borrow or lend money
during the future time period [Ti, Ti+1], which is fixed at time Ti. Moreover, the value
of Fi(t) can be expressed in terms of discount factors in the form:

Fi(t) = F (t;Ti, Ti+1) =
1

τi

(
P (t, Ti)

P (t, Ti+1)
− 1

)
where t ≤ Ti.

Conversely, the price of a zero coupon bond at time Ti that matures at Tj ,
P (Ti, Tj), can be expressed in terms of forward LIBOR rates as

P (Ti, Tj) =

j−1∏
k=i

1

1 + τkFk(Ti)
.

Among all interest rate derivatives, the simplest one is the caplet. A caplet is a108

European call option on a forward rate. Thus, if the maturity of a caplet is Ti+1, at109

that time the holder of the caplet receives the payoff τi(Fi(Ti)−K)+, so its discounted110

payoff at time t < Ti+1 is given by P (t, Ti+1)τi(Fi(Ti)−K)+, where (·)+ denotes the111

function max(·, 0) and K is the strike (a fixed interest rate) of the caplet. If constant112

volatilities are assumed as it is the case in the classical LMM, the caplet price can be113

analytically computed with a Black’s formula (see [5], for details).114

An interest rate swap (IRS) is a contract to exchange interest payments at future115

fixed dates. At every time instant in the prescribed set of dates Ta+1, . . . , Tb the116

contract holder pays a fixed interest rate K and receives a floating forward LIBOR117

rate Fi(Ti), which is fixed at time Ti. At time Ta the value of the IRS is given by118

(2.1) IRS(Ta;Ta, . . . , Tb) =
b−1∑
i=a

P (Ta, Ti+1)τi(Fi(Ta)−K).119

A European Ta × (Tb − Ta) swaption is an option that gives the right to enter a120

swap at the future time Ta (swaption maturity). The underlying swap length Tb−Ta121
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is referred as the tenor of the swaption. Therefore, the discounted swaption payoff to122

time t is equal to P (t, Ta)
(
IRS(Ta;Ta, . . . , Tb)

)+
.123

In the forthcoming section devoted to numerical results, several examples address124

the pricing of caplets and swaptions. Note that the payoff of a caplet just involves125

one forward rate, therefore its price at any time before maturity only depends on this126

particular forward rate. In the case of IRS or swaptions, their payoffs at expiration127

date depend on a certain number of forward rates, so their price at any time before128

expiration will also depend on them.129

In the Mercurio and Morini model it is assumed that a generic European interest130

rate derivative depends on the evolution of N − 1 forward rates, F1, F2, . . . , FN−1131

associated to bonds with maturity related to the tenor structure, and a common132

stochastic volatility, V . Let u = u(t, F1, F2, . . . , FN−1, V ) denote the value at time t ∈133

[0, T ] of this European interest rate derivative, with forward rates Fi ∈ [0, Fmaxi ], i =134

1, 2, . . . , N − 1, and volatility V ∈ [0, V max]. Note that the previously described135

caplets, IRS and swaptions are particular cases. As stated in [33], the function u136

satisfies the following PDE137

(2.2)

∂u

∂t
+

1

2
σ2V 2 ∂

2u

∂V 2
+

1

2
V 2

N−1∑
i,j=1

αiαjρijF
β
i F

β
j

∂2u

∂Fi∂Fj

+σV 2

N−1∑
i=1

αiϕiF
β
i

∂2u

∂Fi∂V
+
N−1∑
i=1

µiF
β
i

∂u

∂Fi
= 0,

138

where σ is the volatility of the stochastic volatility V , αi is a deterministic (constant)139

instantaneous volatility coefficient of the forward rate Fi, ρij is the correlation between140

the forward rates Fi and Fj , ϕi is the correlation between Fi and the stochastic141

volatility V and µi is the drift of the i-th forward rate. Moreover, when the bond142

P (t, T1) is chosen as the numeraire, the drifts µi depend on the forward rates as143

µ1 = 0, µi = αiV
2
∑i
j=2

τjF
β
j

1+τjFj
ρijαj , i ≥ 2. The parameter β ∈ [0, 1] is the elasticity144

of variance, which usually is 0, 0.5 or 1, that corresponds to stochastic volatilities145

with normal, CIR or log-normal dynamics. For the correlation structure, as in [33] we146

consider the expression ρij = e−λ|Ti−Tj |, which depends on the constant parameter λ.147

In view of the form of the differential operator governing the PDE, (2.2) must be148

completed with a final condition u(T, F1, F2, . . . , FN−1, V ) = g(T, F1, F2, . . . , FN−1),149

where g represents the derivative payoff, the expression of which depends on the150

interest rate derivative we are dealing with.151

In order to apply the method of lines (MoL) to discretize the previous model152

it is more convenient to write (2.2) in terms of the time to maturity T − t instead153

of the physical time t, so that the final condition turns into an initial condition.154

In an abuse of notation we keep the notation t for the new formulation after this155

change in the time variable. More precisely, we rewrite the model by denoting u =156

u(t, F1, F2, . . . , FN−1, FN ) the value of the interest rate derivative at time T − t, t ∈157

[0, T ], with forward rates Fi ∈ [0, Fmaxi ], i = 1, 2, . . . , N − 1, and volatility V ∈158

[0, V max]. After some easy calculus, we obtain the equation159

(2.3)
∂u

∂t
=

N∑
i=1

di
∂2u

∂F 2
i

+
N−1∑
i=1

N∑
k=i+1

mik
∂2u

∂Fi∂Fk
+
N−1∑
i=2

ai
∂u

∂Fi
,160

with the initial condition161

(2.4) u(0, F1, F2, . . . , FN−1, FN ) = g(T, F1, F2, . . . , FN−1),162
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where163

(2.5) di = di(Fi, FN ) =


1

2
α2
i ρiiF

2β
i F 2

N , if 1 ≤ i ≤ N − 1,

1

2
σ2F 2

N , if i = N.
164

Moreover, for i = 1, . . . , N − 1, k = i+ 1, . . . , N , we define165

(2.6) mik = mik(Fi, Fk, FN ) =

{
αiαkρikF

β
i F

β
k F

2
N , if i+ 1 ≤ k ≤ N − 1,

αiσϕiF
β
i F

2
N , if k = N.

166

Note that the last term in (2.3) is only defined for N ≥ 3. In this case, for each167

i = 2, . . . , N − 1 we define:168

(2.7) ai = ai(F2, . . . , Fi, FN ) =

 i∑
j=2

αiαjρijΦβ(Fj , τj)

F βi F
2
N ,169

where Φβ is the scalar function Φβ(x, τ) :=
τxβ

1 + τx
, τ > 0, x ≥ 0.170

In next paragraphs we will discuss about the appropriate boundary conditions to171

add to (2.3)-(2.4) to define the initial-boundary value problem. First, note that in172

[33] the following time-independent boundary conditions were considered to complete173

the formulation (2.3)-(2.4):174

(2.8)

if Fj = 0 orFj = Fmaxj , 1 ≤ j ≤ N − 1,

u(t, F1, . . . , FN−1, FN ) = g(T, F1, . . . , FN−1),

u(t, F1, . . . , FN−1, 0) = u(0, F1, . . . , FN−1, 0) = g(T, F1, . . . , FN−1),

∂u

∂V
(t, F1, . . . , FN−1, V

max) = 0.

175

These boundary conditions are appropriate when β = 0 since the PDE coefficients176

are independent of the forward rates (Fj , j ≤ N − 1) and the advection terms are177

moderate. When β > 0, they also can be appropriate when we have a small number178

of forward rates and a derivative with short maturity. Nevertheless, as soon as this179

number increases then the dimension of the PDE grows, and the advection-dominance180

of the PDE (2.3) becomes more relevant. It is well-known that imposing a Dirichlet181

boundary condition at the outflow boundaries Fi = Fmaxi , i = 1, . . . , N − 1, in an182

advection-dominated setting could give rise to boundary layers (see, for instance, [27,183

Sect. I.5]), and some previous numerical results with this model corroborate that.184

When β ∈ (0, 1], in order to show that the larger the dimension N the more185

advection-dominant the PDE (2.3) becomes, it is better to write the PDE (2.3) in the186

following conservative form187

(2.9) ut +∇ · (cu) = ∇ · (D∇u) + s(x, t, u), x ∈ Ω ⊂ RN , t > 0 ,188

where x = (F1, . . . , FN ), c = (c1, . . . , cN )T , D = (Dik)
N
i,k=1, ci = ci(x, t), Dik =189

Dik(x, t).190

Note that in multi-dimensional advection-diffusion-reaction PDEs with variable191

coefficients, some additional advection terms arise in the conservative form coming192

from the partial derivatives of the coefficients of the second order diffusion terms.193
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After some manipulations it can be proved that PDE (2.3) admits an expression194

of type (2.9) with Dii = di, Dik = mik/2, ∀i ̸= k, and195

(2.10)
ci =

(
P+
i − P−

i

)
αiF

β
i F

2
N + αiϕiF

β
i σFN , 1 ≤ i ≤ N − 1,

cN = P+
NσF

2
N + σ2FN ,

196

where

P+
i = αi

β

F 1−β
i

+

N−1∑
j = 1
j ̸= i

1

2
αjρij

β

F 1−β
j

, 1 ≤ i ≤ N − 1,

P+
N =

N−1∑
j=1

1

2
αjϕj

β

F 1−β
j

, P−
1 = 0, P−

2 = α2 Φβ(F2, τ2),

P−
i = αiΦβ(Fi, τi) +

i−1∑
j=2

αjρijΦβ(Fj , τj), 3 ≤ i ≤ N − 1.

Moreover, the reaction term takes the form s(x, t, u) = δu, δ = P F 2
N +QσFN + σ2,197

where P and Q depend on the forward rates F1, . . . , FN−1.198

Obviously, when 0 < β < 1 the PDE (2.3) is equivalent to (2.9) whenever Fj >199

0, ∀j = 1, . . . , N − 1, due to the lack of differentiability of c when Fj = 0. Since200

we intend to use this expression (2.9) to study the behaviour of the PDE at the201

boundaries Fj = Fmaxj , we will assume for now that Fj > 0, 1 ≤ j ≤ N − 1. On the202

other hand, when β = 1 this additional assumption is not needed.203

In most of practical cases we have that204

(2.11) τiF
max
i ≤ β

2− β
, 2 ≤ i ≤ N − 2, τN−1F

max
N−1 ≤ β

1− β
,205

what implies that, for 2 ≤ i ≤ N − 11,206

(2.12)

P+
i − P−

i = αi

(
β

F 1−β
i

− Φβ(Fi, τi)

)
+

i−1∑
j=2

1

2
αjρij

(
β

F 1−β
j

− 2Φβ(Fi, τi)

)

+
1

2
α1ρi1

β

F 1−β
1

+

N−1∑
j=i+1

1

2
αjρij

β

F 1−β
j

≥ 0.

207

We must observe that in the case β = 1,

β

F 1−β
i

− Φβ(Fi, τi) = 1− τiFi
1 + τiFi

=
1

1 + τiFi
≥ 0,

β

F 1−β
j

− 2Φβ(Fj , τj) = 1− 2
τiFi

1 + τiFi
=

1− τFj
1 + τiFj

≥ 0 if τjFj ≤ 1,

and the second requirement in (2.11) is superfluous.208

Therefore, ci ≥ 0, i = 1, . . . , N , so it is clear that all the boundaries Fi = Fmaxi209

1 ≤ i ≤ N are outflow boundaries since the outward normal vector on each one of these210

borders is the N−dimensional canonical vector ei = (eik)
N
k=1, eii = 1, eik ̸= 0, ∀k ̸= i.211

1In the sequel,
∑k

i=j(·) = 0 when j > k.
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On the other hand, we need to take into account that these advection coefficients212

depend on N , ci = c
(N)
i , and FN = V so if we increase the number of forward rates213

from {F1, . . . , FN−2} to {F1, . . . , FN−2, FN−1}, we have that214

(2.13) c
(N)
i = c

(N−1)
i +

1

2
αiαN−1ρi,N−1

β

F 1−β
N−1

F βi V
2, i = 1, . . . , N − 2.215

Since usually Fmaxi = Fmax, i = 1, . . . , N − 1 and V max >> Fmax, we can see that216

the advection increases with N whereas the diffusion coefficients do not.217

A way to avoid the boundary layers that this advection-dominance can produce218

with conditions (2.8) when 0 < β ≤ 1, is to consider homogeneous Neumann boundary219

conditions instead [27], i.e.,220

(2.14)
u(t, F1, . . . , FN−1, FN ) = g(T, F1, . . . , FN−1), if Fj = 0, 1 ≤ j ≤ N,

∂u

∂Fj
(t, F1, . . . , FN−1, FN ) = 0, if Fj = Fmaxj , 1 ≤ j ≤ N − 1, or FN = V max.

221

On the one hand, these homogeneous Neumann boundary conditions are appro-
priate from the financial point of view. Actually, if we analyse the behaviour of the
payoff of the swaption T1 × (TN − T1), which is given by

g(T, F1, F2, . . . , FN−1) = max

{
N−1∑
i=1

τi(Fi −K)

(1 + τ1F1) · · · (1 + τiFi)
, 0

}
,

when some forward rate Fj → ∞, we can consider the approximation

g(T, F1, . . . , FN−1, V ) ≈ f(F1, . . . , FN−1) :=
N−1∑
i=1

τi(Fi −K)

Pi
,

where Pi :=
∏i
l=1(1 + τlFl), 1 ≤ i ≤ N − 1, and prove that222

(2.15)
∂f

∂Fj
(T, F1, . . . , FN−1, V ) −→ 0 when Fj → ∞, j = 1, . . . , N − 1.223

In order to prove this, it is enough to write the partial derivatives of f as224

∂f

∂Fj
(F1, . . . , FN−1) =225

τj
(1 + τ1F1) · · · (1 + τj−1Fj−1)(1 + τjFj)2

(1 + τjK)−
N−1∑
i=j+1

τi(Fi −K)

P̃ij

 ,226

227

where P̃ij = Pi/Pj = (1+τj+1Fj+1) · · · (1+τiFi), i ≥ j+1. As in [33], an homogeneous228

Neumann boundary condition is imposed at FN = V max because the price of the229

derivative becomes independent of V when V approaches to infinity.230

On the other hand, the choice (2.14) becomes better when some discretization231

of the “spatial” variables Fj is used to approximate the solution of PDE (2.9) on a232

uniform spatial grid, as will be illustrated later on.233
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3. Space discretization with finite differences. Following the ideas given234

in [33], firstly a space discretization is performed on a uniform spatial grid on Ω =235

[0, Fmax1 ]×[0, Fmax2 ]×· · ·×[0, FmaxN−1]×[0, V max]. However, we propose here a different236

time discretization by using the AMFR-W-methods introduced in [12].237

For the space discretization we consider N integers (M1, . . . ,MN−1,MN ) to define238

on Ω the spatial grid with Mi + 1 equally spaced points (denoting FmaxN = V max) at239

the Fi−direction Fi,ji = jihi, 0 ≤ ji ≤Mi, hi =
Fmaxi

Mi
, 1 ≤ i ≤ N , and discretize the240

derivatives in (2.3) with second order central finite differences at each spatial node241

(F1,j1 , . . . , FN−1,jN−1
, FN,jN ). More precisely, the MoL approximates the solution242

at each spatial point u(t, F1,j1 , . . . , FN−1,jN−1 , FN,jN ) ≈ Uj1,...,jN−1,jN (t), where the243

values Uj1,...,jN−1,jN (t) need to satisfy the semi-discretized ODE system244

(3.1)

d

dt
Uj1,...,jN−1,jN (t) =

N∑
i=1

di(Fi,ji , FN,jN )∆
(i)
j1,...,jN−1,jN

+
N−1∑
i=1

N∑
k=i+1

mik(Fi,ji , Fk,jk , FN,jN )∆
(ik)
j1,...,jN−1,jN

+

N−1∑
i=2

ai(F2,j2 , . . . , Fi,ji , FN,jN )∇(i)
j1,...,jN−1,jN

,

245

with ∆(i), ∆(ik),∇(i) representing the approximations with central differences of the246

derivatives (∂2u/∂F 2
i ), (∂

2u/∂Fi∂Fk), (∂u/∂Fi), respectively.247

One important drawback of finite differences comes from the complexity of deal-248

ing with all these approximations when the dimension N is large. For the efficient249

manipulation of these differences, we propose to use N−dimensional multi-indices250

j = (j1, . . . , jN ), and the following Lemma 3.1 that is proved in the Appendix.251

Lemma 3.1. Given N pairs of integers mi ≤ Mi for i = 1, . . . , N , let us define252

the set IN = {j = (j1, . . . , jN ) | mi ≤ ji ≤ Mi, ∀i = 1, . . . , N}. Moreover, for253

MT =
∏N
k=1(Mk−mk+1), define the map ϑ : IN −→ {m1,m1+1, . . . ,MT +m1−1},254

(3.2) ϑ(j) = J = j1 +
N∑
l=2

(
(jl −ml)

l−1∏
r=1

(Mr −mr + 1)

)
.255

Then, the map ϑ is bijective.256

Besides the proof of Lemma 3.1, in the Appendix it is also included a practical way257

for computing the inverse map ϑ−1(J) = j (see (A.3) in Lemma A.1).258

Note that due to the Dirichlet boundary conditions in (2.14), the values for ji = 0
for 1 ≤ i ≤ N are given by the derivative payoff. As a consequence, the ODE
system (3.1) is applied only when ji = 1, . . . ,Mi, 1 ≤ i ≤ N , so it has dimension
L = M1 · · ·MN−1MN . Then, we separate the multi-indices that correspond with
finite differences nodes on the lower boundaries from the rest of them, so that two
different bijections of type (3.2) are considered:

ϑ0 : I(0)
N = {j = (j1, . . . , jN ) | 0 ≤ ji ≤Mi, ∀i = 1, . . . , N} −→ {0, 1, . . . ,M − 1},

ϑ1 : I(1)
N = {k = (k1, . . . , kN ) | 1 ≤ ki ≤Mi, ∀i = 1, . . . , N} −→ {1, 2, . . . , L},
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where M =
∏N
k=1(Mk + 1), I(1)

N ⊂ I(0)
N , and

ϑ0(j) = J = j1 +
N∑
l=2

(
jl

l−1∏
r=1

(Mr + 1)

)
, j ∈ I(0)

N ,

ϑ1(k) = K = k1 +
N∑
l=2

(
(kl − 1)

l−1∏
r=1

Mr

)
, k ∈ I(1)

N .

The set of integers {0, 1, . . . ,M − 1} can be obtained as the union of the two disjoint259

sets Inner = ϑ0

(
I(1)
N

)
= ϑ0

(
ϑ−1
1 ({1, . . . , L})

)
, Outer = {0, 1, . . . ,M − 1} − Inner,260

and we consider the vector Y (t) = (YJ (t))
M−1
J=0 , where for each J = 0, . . . ,M − 1,261

(j1, . . . , jN−1, jN ) = ϑ−1
0 (J),262

(3.3) YJ(t) =

{
Uj1,...,jN−1,jN (t), if J ∈ Inner,

g(T, F1,j1 , . . . , FN−1,jN−1
), if J ∈ Outer.

263

Note that ϑ0(j − ei) ∈ {0, 1, . . . ,M − 1}, for all J ∈ Inner with j = ϑ−1
0 (J) ∈ I(1)

N .264

Moreover, ϑ0(j− ei) = J −Ei, for E1 = 1, Ei =
∏i−1
r=1(Mr + 1), i ≥ 2. On the other265

hand, taking into account boundary conditions (2.14), for all J ∈ Inner we have that266

j = ϑ−1
0 (J) ∈ I(1)

N and ϑ0(j + ei) ∈ {0, 1, . . . ,M − 1} except when ji = Mi, since267

j + ei = (. . . ,Mi + 1, . . . ) /∈ I(0)
N . So, if J ∈ Inner, then J + Ei = ϑ0(j + ei), for all268

i = 1, . . . , N . However, for the case ji =Mi we take the virtual value YJ+Ei = YJ−Ei269

due to the homogeneous Neumann conditions (2.14) at these boundaries. Therefore,270

taking into account (3.3), the ODE system (3.1) is shown in Sketch 1.271

Sketch 1. ODE system (3.1)272

for J ∈ Outer do273

Y ′
J(t) = 0274

end for275

for J ∈ Inner do276

j = ϑ−1
0 (J) = (j1, . . . , jN )277

for i = 1, . . . , N do278

(di)J = di(Fi,ji , FN,jN ); (ai)J = ai(F2,j2 , . . . , Fi,ji , FN,jN )279

∆
(i)
J =


YJ+Ei − 2YJ + YJ−Ei

h2i
, if ji ̸=Mi

2YJ−Ei − 2YJ
h2i

, if ji =Mi

280

∇(i)
J =


YJ+Ei − YJ−Ei

2hi
, if ji ̸=Mi

0, otherwise
281

end for282

for 1 ≤ i ≤ N − 1, i+ 1 ≤ k ≤ N do283

(mik)J = mik(Fi,ji , Fk,jk , FN,jN )284

∆
(ik)
J =


YJ+Ei+Ek

+ YJ−Ei−Ek
− YJ+Ei−Ek

− YJ−Ei+Ek

4hihk
, if ji ̸=Mi

and jk ̸=Mk

0, otherwise

285

end for286
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Y ′
J(t) =

N∑
i=1

(di)J ∆
(i)
J +

N−1∑
i=1

N∑
k=i+1

(mik)J ∆
(ik)
J +

N−1∑
i=2

(ai)J ∇(i)
J287

end for288

Thus, we obtain the semi-discretized autonomous initial value problem (IVP)289

(3.4) Y ′ = F(Y ), Y (0) = Y0, t ∈ [0, T ], F(Y ) = F0(Y ) +
N∑
i=1

Fi(Y ).290

In the splitting of the derivative F , for each i = 1, . . . , N , the term Fi(Y ) contains291

the second order differences in the Fi−direction. That is, for all J = 0, 1, . . . ,M − 1,292

(3.5) (Fi(Y ))J =

 (di)J ∆
(i)
J , if J ∈ Inner, (j1, . . . , jN ) = ϑ−1

0 (J),

0, if J ∈ Outer,

293

while the term F0(Y ) gathers the discretization corresponding to the remaining terms.294

Clearly, ∀i = 0, 1, . . . , N , Fi(Y ) = AiY , where for all J ∈ Outer, the J-th row of295

the constant matrix Ai is null. Besides, when i ≥ 1 and J ∈ Inner, the J-th row of Ai296

has at most three non-zero elements, located at the columns J − Ei, J and J + Ei.297

Therefore, the differential system Y ′ = F(Y ) in (3.4) involves actually L unknowns298

since the corresponding equation for each J ∈ Outer is null. Once the semi-discretized299

linear IVP (3.4) has been posed, the AMFR-W-methods given in [12] can be applied300

for its time integration.301

4. Time discretization.302

4.1. AMFR-W-methods. AMFR-W-methods belong to the class of W-meth-303

ods [41] for the time integration of IVPs of type (3.4). Thus, from an approximation304

Yn of the solution Y (t) at t = tn and a step size ∆t > 0, an s−stage W-method gives305

the approximation Yn+1 at tn+1 = tn +∆t by306

(4.1)

(I − θ∆tW )Kr = ∆tF
(
Yn +

r−1∑
j=1

arjKj

)
+
r−1∑
j=1

qrjKj , r = 1, 2, . . . , s,

Yn+1 = Yn +
s∑
r=1

brKr.

307

Each W-method is characterized by its coefficients (A,Q, b, θ), where A = (arj)j<r,308

Q = (qrj)j<r and b = (br), and by the arbitrary matrix W . These kind of methods309

can also be understood as a generalization of Rosenbrock methods, which are obtained310

when W = F ′(Yn). In order to get W-methods of high order, W must be some rough311

approximation of F ′(Yn), and methods of order 3 and higher can be found in the312

literature under the assumption (see, for instance, [11, 37, 29, 15])313

(4.2) W −F ′(Yn) = O(∆t), ∆t→ 0.314

When F ′(Y ) admits a directional splitting of type (3.4), i.e. F ′(Yn) = F ′
0(Yn) +315 ∑N

i=1 Ai, where the matrices Ai have simple structures, in [12] the authors propose316

(4.3)(
I − θ∆tW

)−1

=

1∏
i=N

(
I − ν∆tAi

)−1(
2I −

(
I − θ∆tF ′(Yn)

) 1∏
i=N

(
I − ν∆tAi

)−1)
,317
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thus combining the Approximate Matrix Factorization (AMF) technique from [42, 27]318

for the matrix I − θ∆tW with a refinement to the solution of the linear systems [14,319

Section 3]. With this selection of the matrix W , the condition (4.2) is fulfilled and320

the introduction of a new parameter ν allows to improve the stability of the method.321

Expanding these formulas on the semi-discretized IVP (3.4), each stage of the322

resulting AMFR-W-method (4.1)-(4.3) is computed as323

(4.4)

K
(0)
r = ∆tF(Yn +

∑r−1
j=1 arjKj) +

∑r−1
j=1 qrjKj ,

(I − ν∆tAi)K
(i)
r = K

(i−1)
r , i = 1, . . . , N,

K̂
(0)
r = 2K

(0)
r − (I − θ∆tF ′(Yn))K

(N)
r ,

(I − ν∆tAi)K̂
(i)
r = K̂

(i−1)
r , i = 1, . . . , N,

Kr = K̂
(N)
r .

324

In [12], different choices for the coefficients of these methods are tested. In this325

article we have used the proposed AMFR-W2, that is a 2-stage AMFR-W-method,326

with coefficients [27, p. 400]327

(4.5) a21 = 2/3, q21 = −4/3, b1 = 5/4, b2 = 3/4.328

Since (4.2) is fulfilled, this method is of order 3 for θ = (3+
√
3)/6 (in ODE sense). In329

[12], the authors also proved that the choice of the parameter ν depends on the number330

N of terms in the splitting in (3.4) to get unconditional stability. More precisely, they331

apply this method on the parabolic test problem given in [13] and guarantee that332

this method is unconditionally stable on linear constant coefficients PDEs with mixed333

derivatives of dimension N if ν ≥ NκN θ with the values of κN given in [12, Table334

2], when both periodic and homogeneous Dirichlet boundary conditions. In [16], the335

authors solve the two-dimensional PDE for the well-known Heston model in options336

pricing. For this purpose, a hyperbolic change of variables is previously applied to337

the PDE, thus allowing the use of full non-uniform spatial meshes. However, we do338

not apply this change of variables since we use sparse grids to approximate efficiently339

the solution of (2.2) for higher spatial dimensions.340

Obviously, if the solution of linear systems in (4.4) turns out too expensive from341

the computational point of view, the applicability of these schemes remains very342

limited. However, in the case of the PDE problem here addressed or similar multi-343

dimensional linear problems, due to the simple structure of the matrices Ai, each344

linear system of type (I − ν∆tAi)K = G can be solved by using L̃i =
∏N
k ̸=iMk345

tridiagonal linear systems of dimension Mi. In order to make easier the reading of346

this article, the details of this computation are included in Algorithm A.1 in the347

Appendix.348

Moreover, another interesting advantage of the AMFR-W-methods (4.4) when349

applied to the autonomous linear problem (3.4) with F(Y ) = AY , A = A0+
∑N
i=1 Ai,350

comes from the fact that the matrix-vector product F ′(Yn)K
(N)
r is simply an extra351

evaluation of the derivative function F(K
(N)
r ) and the explicit computation of the352

matrix A0 is not actually necessary.353

4.2. θ−method + Gauss-Seidel as W -method. In [33], the authors applied354

a direct (backwards in time) time-space discretization with finite differences, that355

can be also interpreted as a W-method (4.1) with fixed time step-size, when a fixed356
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number of iterations of the Gauss-Seidel iterative scheme is used to solve the involved357

linear systems.358

More precisely, for a fixed time step-size ∆t > 0, the well-known θ−method359

applied to (3.4), with θ ∈ [0, 1], gives the approximations Wn ≈ Y (tn), tn = n∆t,360

n = 0, 1, . . . ,M , by using the formula361

(4.6) Wn+1 =Wn + (1− θ)∆tF(Wn) + θ∆tF(Wn+1).362

Therefore, when θ ̸= 0 and linear problems F(Y ) = AY as (3.4) are considered, it is363

necessary to solve the linear system (I − θ∆tA)Wn+1 = βn, at each time step, with364

βn = (I − θ∆tA)Wn + ∆tF(Wn). In [33], the Gauss-Seidel iterative linear systems365

solver is performed until getting an error below a prescribed tolerance. Note that366

Gauss-Seidel method splits the coefficient matrix A = P+R, where P is the triangular367

matrix whose entries are the lower-triangular part of A and its diagonal elements,368

while R stores its strictly upper-triangular part. By using this splitting, from a369

starting valueW
(0)
n+1, this method computes iteratively approximationsW

(r)
n+1 ≈Wn+1370

by solving only triangular systems371

(4.7) (I − θ∆tP )W
(r)
n+1 = θ∆tRW

(r−1)
n+1 + βn, r = 1, 2, . . .372

After some algebraic manipulations and taking as a natural choice for the starting

value W
(0)
n+1 = Wn, these iterations can be written as W

(r)
n+1 = Wn +

r∑
j=1

K̂j , r =

1, 2, . . . , where the vectors K̂j are sequentially computed by

(I − θ∆tP )K̂r = ∆tA

Wn +
r−1∑
j=1

θK̂j

+
r−1∑
j=1

(−1)K̂j r = 1, 2, . . .

If we compare this last formula with (4.1), clearly if this combination of θ-method +373

Gauss-Seidel iteration (4.6)-(4.7) is performed with a fixed number s of iterations, then374

the method can be included in the class of W-methods (4.1) with coefficients W = P ,375

arj = θ, ∀j < r, qrj = −1, ∀j < r, br = 1, r = 1, . . . , s. Therefore, if we include the376

discretization proposed in [33] in the W-methods framework, we can apply the order377

conditions given in [22, p.115] or [17, Sec.2.1] (in a similar notation as here), and we378

obtain that it achieves order 2 (for s ≥ 2) in time only when θ = 1/2 (Crank-Nicolson379

scheme), what is in agreement with the results obtained in the aforementioned article380

[33].381

An advantage of expressing the scheme in [33] as a W-method is that it makes382

easier to compare its computational cost per time step with that of the here proposed383

AMFR-W2 method (4.4)-(4.5). The scheme (4.6)-(4.7) with θ = 1/2 and s Gauss-384

Seidel iterations needs to compute one evaluation of the derivative function F and s385

triangular linear systems of dimension L =M1 · · ·MN . On the other hand, AMFR-386

W2 needs to evaluate four times the derivative function (as F ′(Yn)K
(N)
r = F(K

(N)
r ))387

and to solve (2 L̂i) tridiagonal linear systems of dimension Mi, per each i = 1, . . . , N .388

Since the triangular systems of dimension L need approximately O(L2) operations,389

the tridiagonal ones of dimension Mi cost O(Mi) operations and each evaluation of390

derivative function involves O(L2) operations, we have O((s + 1)L2) operations for391

(4.6)-(4.7) and O(4L2 + 2NL) operations for AMFR-W2 (4.4)-(4.5).392
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5. Sparse grids in space. Solving PDE problems as (2.2) on a full tensor prod-393

uct based grid with pN grid points, with p being the number of grid points in each394

coordinate direction, can become a highly involved computational task, even prohib-395

itive. As the number of underlying forward rates increases, clearly the dimension of396

the multi-dimensional pricing PDE (2.2) increases as well, so the computational cost397

of solving the fully discretized problem grows exponentially. Thus, the discretiza-398

tion using this so-called full grid also consumes too much memory. This drawback399

is referred as the curse of dimensionality. For example, pricing a swaption over five400

forward rates ruled by the same stochastic volatility, by means of a full grid with 128401

points per coordinate gives rise to more than one four billion points. The storage402

of such a grid using double precision floating point format will need more than 32403

thousand gigabytes of memory.404

Because of the curse of dimensionality, traditional full grid methods, like finite405

differences, finite elements or finite volumes, are not able to price derivatives with406

high dimensional underlying processes, even in the most powerful supercomputers407

available nowadays. This limitation can be partially overcome by using a family of408

techniques known as sparse grid methods (see [6], for example). Sparse grids are useful409

numerical methods for solving high-dimensional PDEs because they are based on a410

relatively small number of grid points but also maintain a satisfactory accuracy. More411

precisely, let d denote the underlying problem’s dimensionality and p the number of412

grid points in one coordinate direction at the boundary. On the one hand, regarding413

the considered number of degrees of freedom, full grid methods use O(pd) grid points,414

while sparse grid discretizations only employ O
(
p(log2 p)

d−1
)
grid points. On the415

other hand, concerning accuracy, conventional methods converge at a rate of O(p−2)416

when making use of second order schemes, whereas sparse grid methods converge at417

the only slightly deteriorated rate of O(p−2 (log2 p)
d−1

). In [6], Bungartz and Griebel418

present an excellent survey of the fundamentals and the applications of sparse grids,419

with a focus on the solution of PDEs. Sparse grid were introduced in the early 1990s420

for the solution of PDEs by Zenger [44] and Griebel [18].421

5.1. Standard sparse grid combination technique. Discretizations on spar-422

se grids require hierarchical data structures. Therefore, specially designed PDE solvers423

are required, and their implementations become more and more complicated as the424

dimension of the problem increases [1, 43]. An efficient way to avoid intricate sparse425

grid implementations is given by the sparse grid combination technique, originally426

proposed by Griebel, Schneider and Zenger [20]. Basically, the combination technique427

solves the PDE on several independent and conventional Cartesian smaller-sized grids.428

Then, the solution in the sparse grid space is approximated by a suitable linear com-429

bination of these partial solutions on the coarser grid. This solution retains the430

advertised convergence rate of sparse grid methods if certain error expansions for the431

component approximations exist [7, 8, 3]. Note the rigorous analysis of finite differ-432

ences schemes for the sparse grid combination technique in [39]. Further advantages433

of the technique are the possibility to solve the problem on each of the constituent434

grids using standard full grid solvers and the inherent parallelism of the method [19].435

Let us introduce formally the sparse grid combination technique. We fix a multi-436

index lll = (l1, l2, . . . , ld) ∈ Nd0 and define its L1-norm as |lll|1 =
∑d
i=1 li. In the d-437

dimensional orthohedron [0, c1]× [0, c2]× . . . × [0, cd] (ci ∈ R>0), we denote by Ωlll =438

Ω(l1,...,ld) an anisotropic2 although full grid having uniform mesh spacing hi = 2−lici439

2Mesh spacing differs in each coordinate direction.
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in each coordinate direction i ∈ {1, . . . , d}. Let ulll be the conventional finite difference440

solution to the PDE on grid Ωlll, extended to [0, c1]×[0, c2]×. . .×[0, cd] by interpolation.441

Then, the sparse grid combination solution usn over the sparse grid Ωsn with refinement442

level n is given by the following linear combination443

(5.1) usn =
d−1∑
q=0

(−1)q ·
(
d− 1

q

)
·
∑

|lll|1=n−q

ulll.444

Increasing the level n should give a more accurate solution to the problem. The445

grid solutions ul involved in the inner sum of (5.1) all have l = (l1, . . . , ld) such that446

l1 + · · · + ld = n − q. The number of elements in each of these grids is O(2n−q),447

regardless of the dimension, and the number of grid solutions in this inner sum is448 (
n−q+d−1

d−1

)
and grows like O((n − q)d−1). Besides,

( ∪
0≤|l|1<n

Ωl

)
⊂ Ωsn. Therefore,449

the dimension of the sparse grid space on level n is O(2nnd−1) = O(h−1(log2 h)
d−1)450

where h = 2−n is the finest grid size. This value can be compared with the full grid451

space dimension which is O(2nd) = O(h−d).452

The combination technique works due to the cancellation mechanism of the error453

terms in the involved grids. This cancellation principle is well known in extrapolation454

techniques. Indeed, all lower order error terms cancel out in the the combination455

formula (5.1), see [25] for deep details in dimension two. Thus, the combination tech-456

nique is able to produce accurate results in reasonable time. Several generalizations457

of the standard combination technique formula (5.1) have been developed [23].458

The combination technique algorithm is embarrassingly parallel since all compo-459

nent grid solutions can be computed in parallel. In general, for refinement level n460

in d dimensions there are
∑d−1
q=0

(
n−q+d−1

d−1

)
component grids, which can be solved in461

parallel. In order to achieve optimal speed-ups one has to carefully deal with load462

imbalances, even in all those grids at the same refinement level, due to the anisotropic463

structure of the component grids.464

The sparse grid combination technique was initially formulated for elliptic PDEs465

such as Laplace’s and Poisson’s equation. Later, it has also been applied to parabolic466

PDEs, specially for option pricing problems in finance [3, 30, 40, 31, 39, 9, 4, 32, 33,467

26, 10, 24, 25]. Here we focus on the implementation of the sparse grid combination468

technique for parabolic equations. More precisely, we just consider the case where the469

solution is only needed at the final time, which is frequently the case in finance and470

particularly in the problem we address.471

In this setting, the natural approach is the following. First, solve the parabolic472

equation on each of the full grids involved in the sparse grid combination technique473

formula (5.1) with a full grid method. Finally, combine these solutions only at the end.474

This method only requires interpolation from grid values at the final time, but not at475

intermediate time steps. If the numerical error due to the time discretization does not476

dominate the spatial error, we expect a pointwise rate of convergence proportional to477

O(p−2 (log2 p)
d−1

) for our AMFR-W scheme applied to problems with smooth enough478

initial and boundary data. It is important to notice that interpolation techniques are479

required in order to approximate the solution at points not belonging to the sparse480

grid. The most straightforward approach is to interpolate at those points over all full481

grids handled by the combination technique, and then add up these results with the482

appropriate combination technique weights. Note also that the interpolation technique483

has to preserve the order of the used discretization scheme, so that the convergence484
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result remain valid for the entire domain. Otherwise, the convergence order only holds485

for grid nodes belonging to all sub-grids and therefore not affected by interpolation. A486

tensor based linear interpolation preserves the required order 2 of accuracy for second487

order finite difference discretizations.488

5.2. Modified sparse grid combination technique. By means of the pre-489

viously described standard sparse grid combination technique it is impossible to ap-490

proximate accurately a Neumann boundary condition for degenerated Cartesian grids491

having very few points in the corresponding coordinate direction. The approximations492

of the solution in these grids becomes very poor, thus decreasing the accuracy of the493

combination technique approximation.494

In order to overcome this drawback, a mild modification of the standard sparse495

grid combination technique (5.1) can be developed, just by forcing a minimum num-496

ber of discretization steps in all grids involved in the combination procedure. More497

precisely, all levels in all dimensions start from a small but non zero value ψ, so that498

the modified combination technique formula reads499

(5.2) usn =
d−1∑
q=0

(−1)q ·
(
d− 1

q

)
·
∑

|lll|1=n−q

uψ1+lll,500

where ψ1+ lll = (ψ+ l1, . . . , ψ+ ld). This modified sparse grid combination technique501

working over a modified sparse grid Ωs,ψn produces more accurate approximations502

[4] at the cost of increasing the consumed time and memory. Although the number503

of subproblems to be solved is exactly the same as before, the number of degrees504

of freedom associated to each subproblem increases. In fact, the number of grid505

points in the combined sparse grid increases from O(2nnd−1) in the standard one506

to O(2n+dψnd−1) in the modified one. In this new setting ψ should be kept small507

(specifically ψ = 1 or 2 in the present work), otherwise the new modified combination508

technique will suffer soon the curse of dimensionality.509

6. Numerical results. In this Section we present the obtained numerical results510

when the previously described methodologies are applied. More precisely, we show511

and discuss the results obtained by using the AMFR-W method with full grid, stan-512

dard and modified sparse grids combination techniques to conveniently cope with the513

proposed homogeneous Neumann boundary conditions in the particular case β = 1.514

For all products we will use the data presented in Table 1 where we consider the515

tenor structure 0 = T0 < 0.5 < 1.0 < · · · < 2.5 < 3 = T10 in years, with constant516

periods τ = Ti+1 − Ti = 0.5.517

i Ti Fi(0) αi i Ti Fi(0) αi

0 0 0.0112 0 3 1.5 0.0126 0.2221
1 0.5 0.0118 0.2366 4 2 0.0130 0.2068
2 1 0.0122 0.2145 5 2.5 0.0135 0.1932

Table 1
Hypothetical market data (LIBOR rates and volatilities) used in pricing. Strike rate K = 0.011.

The spatial domain is defined by Fmax = 0.04 and V max = 3.5, thus upper518

boundaries were settled between 3 and 4 times the point of interest at which we519

evaluate the pricing of the interest rate derivative. In the cases where the analytical520

solution is not available, we first compute reference solutions using the proposed521

space and time discretizations over classical full grids. These solutions will serve to522
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assess on the accuracy of the proposed sparse grids methods in space. The designed523

algorithms were implemented using C++ (GNU C++ compiler 8.3.1) and double524

precision. Besides, all numerical experiments have been performed in a machine525

with 16GBytes of RAM and four multicore Intel Xeon CPUs E5-2620 v4 clocked526

at 2.10GHz, each one with eight cores.527

6.1. Numerical results with full grids. The first test to validate the proposed528

numerical methodologies consists of pricing a caplet without considering stochastic529

volatility, that is to say, under the classical LMM. This test is a sanity check, since530

the analytical pricing formula is known for caplets, the so-called Black-Scholes’s for-531

mula for caplets ([5, equation 1.26]). More precisely, we start pricing the caplet with532

maturity T1 and payoff τ1(F1(T1) − K)+ paid at time T2, under the data of Table533

1, with strike rate K = 0.011. The present intrinsic value of the caplet is given by534

P (0, T2)τ1(F1(T1) − K)+. The exact price of this product given by Black-Scholes’535

formula is 6.058877 basis points (bps, 1 bp = 10−4).536

In order to price this caplet using the PDE approach presented here it is con-537

venient to consider the terminal probability measure associated with choosing the538

bond P (0, T2) as numeraire. Thus, the price of this product is given by the solu-539

tion of the PDE (2.2) (with σ = 0) multiplied by P (0, T2) = 1
1+τF0(0)

1
1+τF1(0)

, i.e.540

P (0, T2)u(0, F1, V ). Once obtained the PDE solution on the last time slice, the price541

of the caplet is obtained through interpolation in space, by means of multilinear in-542

terpolation, thus maintaining order two in space. In Table 2 full grid solutions are543

presented for levels from 6 to 13 in space and considering 4, 8, 16 and 256 time steps.544

The interpolation in space for the last time slice was done in F1 = 0.0118 and V = 1.545

The column labelled as Solution shows the PDE solution in bps, and the column for546

the error measures the absolute distance of the numerical solution to the exact one, in547

bps as well. The execution time was measured in seconds in all the experiments in this548

work. The “grid points” column displays the number of grid points employed in the549

full space meshes at each time discretization. Since the method is order three in time,550

few time steps could be considered in real pricing applications. For the space level 13551

(for the forward and the volatility) and when using 256 time steps, the method was552

able to recover the exact solution up to the 8-th decimal digit. Nevertheless, in this553

case the full grid method required almost three hours, all space meshes in all time554

slices with more than 67 million points.555

Once we have checked the correct behaviour of the full grid method, which will be556

used in the sparse grid combination technique, we compute full grid reference solutions557

for financial products without exact prices. They will be used in order to assess558

the correctness of the upcoming sparse grid combination technique implementation.559

Therefore, in order to minimize errors due to the time discretization, 256 time steps560

will be chosen for the rest of the full grid tests in this section. In Table 3 the computed561

prices of the previous caplet under the stochastic volatility framework are shown.562

Next, we deal with the pricing of Ta × (Tb − Ta) European swaptions. In Table563

4, first the results for the 0.5 × 1 swaption are given. Note that under this full grid564

framework it is not possible to price this product in reasonable computational times565

past refinement level 9, due to the high number of involved spatial grid points. Then,566

the results for the 0.5 × 1.5 swaption are also shown. Once more, full grid pricing is567

only achievable on the lower grid levels.568

6.2. Numerical results with the standard sparse grid combination tech-569

nique. In this section, by means of the standard sparse grid combination technique,570

we price not only the previous caplets and swaptions, but also swaptions involving571
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4 time steps 8 time steps
Level Solution Error Time Solution Error Time Grid points

6 6.084214 2.533666 × 10−2 0.01 6.082708 2.383026 × 10−2 0.02 4225

7 6.065957 7.079711 × 10−3 0.05 6.064274 5.396418 × 10−3 0.09 16641

8 6.063526 4.648521 × 10−3 0.15 6.061980 3.102002 × 10−3 0.27 66049

9 6.060148 1.270262 × 10−3 0.55 6.058939 6.133732 × 10−5 0.96 263169

10 6.060300 1.422802 × 10−3 2.14 6.059077 1.992885 × 10−4 4.23 1050625

11 6.060237 1.359825 × 10−3 9.39 6.059021 1.431228 × 10−4 18.69 4198401

12 6.060236 1.358165 × 10−3 40.47 6.059019 1.416918 × 10−4 80.45 16785409

13 6.060226 1.348640 × 10−3 165.64 6.059011 1.331767 × 10−4 328.15 67125249

16 time steps 256 time steps
Level Solution Error Time Solution Error Time Grid points

6 6.082540 2.366282 × 10−2 0.04 6.082513 2.363549 × 10−2 0.47 4225

7 6.064109 5.231082 × 10−3 0.16 6.064079 5.201370 × 10−3 1.89 16641

8 6.061870 2.992441 × 10−3 0.49 6.061840 2.962119 × 10−3 7.28 66049

9 6.058832 4.556637 × 10−5 1.97 6.058802 7.582048 × 10−5 30.77 263169

10 6.058975 9.701419 × 10−5 8.33 6.058944 6.680796 × 10−5 131.75 1050625

11 6.058919 4.157937 × 10−5 37.19 6.058889 1.139059 × 10−5 593.13 4198401

12 6.058918 4.041366 × 10−5 163.01 6.058888 1.022896 × 10−5 2558.92 16785409

13 6.058910 3.191855 × 10−5 655.84 6.058879 1.735259 × 10−6 10415.57 67125249

Table 2
Full grid method, caplet with expiry T1, σ = 0. Prices and errors are shown in bps.

Level Solution Time Grid points Level Solution Time Grid points

6 6.050103 0.48 4225 10 6.023799 135.29 1050625
7 6.029510 1.93 16641 11 6.023737 597.82 4198401
8 6.026929 7.51 66049 12 6.023734 2557.62 16785409
9 6.023665 31.06 263169 13 6.023725 10505.02 67125249

Table 3
Full grid method, caplet with expiry T1, σ = 0.3, ϕ1 = 0.4, 256 time steps.

0
.5

×
1 Level Solution Time Grid points Level Solution Time Grid points

6 13.002003 71.33 274625 8 12.981320 5111.14 16974593
7 12.984709 590.97 2146689 9 12.980459 43325.53 135005697

0
.5

×
1
.5 Level Solution Time Grid points Level Solution Time Grid points

3 23.952705 1.70 6561 5 21.577149 474.93 1185921
4 21.765442 28.45 83521 6 21.486079 8122.91 17850625

Table 4
Full grid method, 0.5× 1 and 0.5× 1.5 swaptions, σ = 0.3, ϕi = 0.4, i = 1, 2, 3, 256 time steps.

more underlying forward interest rates, thus dealing with a high dimensional setting.572

As usual, we are also interested in the values of these derivatives at the last time cut573

for the values of the forward rates depicted in Table 1 and V = 1, which define the574

spatial point where the value of the solution of the PDE is computed. In order to575

obtain the solution given by the sparse grid combination technique at this point, the576

numerical solution on each grid involved in the combination technique is interpolated577

at this point with multilinear interpolation. Next, all these values are introduced in578

the combination technique formula (5.1), thus obtaining the price provided by the579

standard sparse grid combination technique.580

Moreover, sparse grid combination techniques have been implemented to take581

advantage of shared memory parallel computers. The code was optimized and paral-582

lelized using OpenMP framework [45], version 4.5. In order to deal with the previously583

mentioned load imbalances it is crucial to use a dynamic schedule to assign the in-584

volved full grids to threads. In this way, OpenMP assigns one grid to each thread.585

When the thread finishes, it will be assigned the next mesh that has not been as-586

signed yet. The speedup of the parallelized version is almost equal to the number of587

available computing cores, in our case 32. This optimal speedup is due to the fact588
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that communication between processors only takes place at the final step in order to589

concentrate the solutions over all grids to a single scalar value.590

In Table 5 we price the caplet with maturity T1 under the framework without591

stochastic volatility, whose exact price was 6.058877 basis points. The results in this592

Table are to be compared with those of Table 2. The accuracy of each solution is593

only slightly worse in this case, although the computing time is much lower due the594

much less number of involved grid points. For example, with the full grid approach,595

the solution using 256 time steps and refinement level in space 13 employed 10415.57596

seconds to achieve an error 1.735259×10−6 in basis points, while the standard sparse597

grid combination technique just needed 569.26 seconds to attain almost the same598

accuracy, an error of 1.047159× 10−5. The reduction in the number of employed grid599

points is also shown in Table 2.600

4 time steps 8 time steps
Level Solution Error Time Solution Error Time Grid points

6 6.063081 4.202988 × 10−3 0.02 6.053883 4.994378 × 10−3 0.02 385

7 6.120850 6.197245 × 10−2 0.02 6.110998 5.212012 × 10−2 0.02 833

8 6.067165 8.287799 × 10−3 0.02 6.059333 4.557323 × 10−4 0.03 1793

9 6.061071 2.192917 × 10−3 0.03 6.056314 2.563871 × 10−3 0.05 3841

10 6.061681 2.803747 × 10−3 0.07 6.059090 2.119811 × 10−4 0.12 8193

11 6.059735 8.569127 × 10−4 0.20 6.058133 7.450762 × 10−4 0.35 17409

12 6.060156 1.278608 × 10−3 0.58 6.058787 9.054229 × 10−5 1.21 36865

13 6.060211 1.333075 × 10−3 2.43 6.058951 7.311969 × 10−5 4.53 77825

14 6.060223 1.345681 × 10−3 9.00 6.058998 1.206373 × 10−4 17.90 163841

16 time steps 256 time steps
Level Solution Error Time Solution Error Time Grid points

6 6.052778 6.099826 × 10−3 0.02 6.052738 6.139440 × 10−3 0.05 385

7 6.110144 5.126590 × 10−2 0.03 6.110118 5.124050 × 10−2 0.09 833

8 6.059007 1.291280 × 10−4 0.04 6.058984 1.066738 × 10−4 0.22 1793

9 6.056190 2.687266 × 10−3 0.07 6.056164 2.713620 × 10−3 0.71 3841

10 6.059029 1.514420 × 10−4 0.20 6.058998 1.205596 × 10−4 2.31 8193

11 6.058034 8.433494 × 10−4 0.64 6.058003 8.741697 × 10−4 8.47 17409

12 6.058698 1.800588 × 10−4 2.33 6.058667 2.108407 × 10−4 34.02 36865

13 6.058852 2.520960 × 10−5 8.99 6.058822 5.565743 × 10−5 141.73 77825

14 6.058897 1.981956 × 10−5 35.69 6.058867 1.047159 × 10−5 569.26 163841

Table 5
Sparse grid combination technique, caplet with expiry T1, σ = 0.

Next, in Table 6 the results for the previous caplet under the stochastic volatility601

framework are shown. These results are to be compared with those of Table 3. Then,602

Tables 7 and 8 show the prices given by the standard sparse grid combination tech-603

nique for 0.5× 1 and 0.5× 1.5 swaptions under stochastic volatility. These results are604

to be compared with those of Table 4. Clearly, the standard sparse grid combination605

technique outperforms the full grid approach. Besides, the sparse method is able to606

cope with higher resolution levels, thus allowing to price successfully the 0.5 × 1.5607

swaption. Note that this was not possible with the full grid approach, see Table 4.608

Level Solution Time Level Solution Time

6 6.057668 0.06 11 6.022082 8.40
7 6.095685 0.10 12 6.023257 33.96
8 6.025848 0.25 13 6.023595 141.41
9 6.018222 0.70 14 6.023693 569.07

10 6.021834 2.32
Table 6

Sparse grid combination technique, caplet with expiry T1, σ = 0.3, ϕ1 = 0.4, 256 time steps.
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Level Solution Time Grid points Level Solution Time Grid points

8 12.311172 0.67 8705 12 13.205324 89.80 219137
9 13.024747 2.00 19713 13 12.993536 360.72 483329

10 13.616333 6.77 44289 14 12.971783 1399.46 1060865
11 13.525821 24.42 98817 15 12.973900 5755.68 2318337

Table 7
Sparse grid combination technique, 0.5× 1 swaption, σ = 0.3, ϕ1 = ϕ2 = 0.4, 256 time steps.

8 time steps 256 time steps
Level Solution Time Solution Time Grid points

12 21.935448 8.50 21.936574 271.54 1064961
13 21.842901 31.75 21.844522 998.51 2439169
14 21.609183 119.97 21.610055 3809.31 5550081
15 21.707363 461.28 21.708001 14866.96 12554241
16 21.519917 1838.36 21.516402 59010.15 28246017
17 21.483062 7315.95 21.478930 235912.03 63242241

Table 8
Sparse grid combination technique, 0.5× 1.5 swaption σ = 0.3, ϕ1 = ϕ2 = ϕ3 = 0.4.

Finally, in Tables 9 and 10, 0.5 × 2 and 0.5 × 2.5 swaptions are priced under609

stochastic volatility. The curse of dimensionality makes impossible to price these610

products with full grid approaches. In order to speedup the convergence of the sparse611

grid method, a useful technique is to consider a computational domain such that the612

point of interest is in the neighbourhood of the center of the domain. This strategy613

easily improves sparse grid results. In fact, in that region is where the sparse grid614

contains more points. Indeed, the central point belongs to all non degenerated grids615

involved in the standard sparse grid combination technique. The improvement in616

accuracy can be observed in Table 10, where the upper boundaries of the forward617

rates, Fmax, were shrunk from 0.04 to 0.02.618

4 time steps 8 time steps
Level Solution Time Solution Time

14 35.341806 180.34 35.346408 360.57
15 34.388334 669.85 34.425087 1335.40
16 32.115380 2561.87 32.122101 5133.81
17 30.639336 10058.18 30.641664 20076.39
18 30.881086 40097.11 30.918448 80268.57
19 30.822037 239746.17 30.797087 479681.87

Table 9
Sparse grid combination technique, 0.5× 2 swaption, σ = 0.3, ϕ1 = . . . = ϕ4 = 0.4.

In order to price interest rate derivatives involving more underlying forward rates619

using this approach, the proposed algorithm should be implemented to run on a cluster620

of processors (distributed memory machines). Since the communications between621

processors is minimal, the technique scales optimally. This extra layer of parallelism622

would bring also a further reduction on the previous execution times, thus allowing623

to stress the method with higher resolution levels.624

6.3. Numerical results with the modified sparse grid combination tech-625

nique. Our last set of numerical experiments aims at showing that the modified626

sparse grid technique defined by (5.2) is able to improve the performance (accuracy627

and computing time) of the standard sparse grid combination technique given by628

expression (5.1), specially in moderately high dimensions.629
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Fmax = 0.04
2 time steps 4 time steps 8 time steps

Level Solution Time Solution Time Solution Time
16 54.923235 3812.17 53.634032 7565.44 53.512820 15084.20
17 39.023559 14245.68 41.296346 28565.06 41.328455 56819.84
18 39.780626 55108.12 38.377139 109843.14 38.823376 220825.17
19 41.230567 285159.96 41.970631 570320.92 41.599974 1140639.84

Fmax = 0.02
2 time steps 4 time steps 8 time steps

Level Solution Time Solution Time Solution Time
16 42.250960 3812.17 43.016757 7565.44 42.777426 15084.20
17 42.116312 14245.68 41.406882 28565.06 41.842625 56819.84
18 42.991274 55108.12 42.746717 109843.14 42.737987 220825.17
19 42.446354 285159.96 42.892002 570320.92 42.838119 1140639.84

Table 10
Sparse grid combination technique, 0.5× 2.5 swaption, σ = 0.3, ϕ1 = . . . = ϕ5 = 0.4.

As in the previous cases, we start with the sanity test of the pricing of the caplet630

with expiry T1 under the classical LMM. Table 11 gathers the behaviour of the mod-631

ified technique when pricing this caplet. Firstly, we compare Table 11 with Table632

5 originated with the standard combination technique. With ψ = 1, the modified633

technique is able to obtain an accuracy of 1.047853× 10−5 with level equal 12 in less634

than a hundred seconds. In contrast, the standard sparse grid technique required a635

higher refinement level of 14 and employed more than five hundred seconds to obtain636

a similar accuracy. Also note that with ψ = 2 and the refinement level 10, the mod-637

ified combination technique is able to get better results, an error of 7.625043× 10−6638

in just over 25 seconds. Moreover, while the obtained order of convergence in space639

for the standard combination technique is slightly worse than two, with this modified640

method is almost two when = 2. The comparison with full grid method results641

shown in Table 2 could be summarized by noting that with ψ = 2 the modified sparse642

grid technique is able to obtain an error less than 1.735259 × 10−6 in less than five643

hundred seconds, while the full grid approach needed almost 2.9 hours.644

ψ = 1 ψ = 2
n Solution Error Time #points Solution Error Time #points

7 6.056324 2.55 × 10−3 0.20 2817 6.057952 9.25 × 10−4 0.70 10241

8 6.058978 1.00 × 10−4 0.44 6145 6.058684 1.93 × 10−4 2.04 22529

9 6.058005 8.72 × 10−4 1.61 13313 6.058822 5.51 × 10−5 7.08 49153

10 6.058666 2.11 × 10−4 6.35 28673 6.058870 7.62 × 10−6 26.06 106497

11 6.058822 5.52 × 10−5 24.62 61441 6.058874 4.08 × 10−6 105.78 229377

12 6.058867 1.04 × 10−5 96.95 131073 6.058877 9.15 × 10−7 478.10 491521

13 6.058873 4.45 × 10−6 473.16 278529 6.058877 3.17 × 10−7 1991.75 1048577

14 6.058877 1.07 × 10−6 1968.99 589825 6.058878 9.91 × 10−8 7868.34 2228225

Table 11
Modified sparse grid combination technique, caplet with maturity T1, σ = 0, 256 time steps, Fmax = 0.04.

Finally, Tables 12 and 13 show the results for 4 and 6 dimensional PDEs in645

space, respectively. These Tables are to be compared with the corresponding Tables646

8 and 10 generated with the standard combination technique. We observe that the647

higher the dimensionality of the problem the lower ψ should be, otherwise the curse of648

dimensionality will appear soon again. Table 12 shows that with ψ = 1 the modified649

method is able to obtain in just 15 minutes a similar accuracy to the one obtained650

with the standard approach in more than 246 minutes. With ψ = 2 we observe that 5651
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decimal digits are stabilized in the modified combination technique. Regarding Table652

13, with ψ = 1 three decimal digits are stabilized already in level 13. Also note that653

for the 6 dimensional PDEs in space reported in Table 13, in our machine the modified654

method is not able to go further level 12 with ψ = 2 in a reasonable computational655

time due to the curse of dimensionality. Nevertheless, the accuracy recovered for level656

12 is remarkable. Finally, notice that adding points entails better performance than657

increasing the level of the sparse grid.658

ψ = 1 ψ = 2
Level Solution Time Grid points Solution Time Grid points

9 21.511031 6.11 114689 21.519347 107.59 763905
10 21.297979 19.02 262145 21.491243 328.03 1765377
11 21.600032 60.94 593921 21.485699 1051.35 4038657
12 21.595254 209.27 1335297 21.466814 3807.11 9158657
13 21.472738 806.72 2981889 21.464192 13921.97 20611073

Table 12
Modified sparse grids combination technique, swaption 0.5× 1.5, σ = 0.3, ϕi = ϕ2 = ϕ3 = 0.4,

16 time steps, Fmax = 0.04.

ψ = 1 ψ = 2
Level Solution Time Solution Time

12 42.624837 3255.48 42.723635 420696.70
13 42.828046 10476.64 − −
14 42.686665 34859.98 − −
15 42.702808 121471.65 − −

Table 13
Modified sparse grid combination technique, swaption 0.5× 2.5, σ = 0.3, ϕ1 = . . . = ϕ5 = 0.4,

4 time steps, Fmax = 0.02.

7. Conclusions. In this work we have mainly developed a new numerical659

methodology which combines high order time discretization algorithms with a sparse660

grids modified combination technique to solve high dimensional PDE problems aris-661

ing in finance. More precisely, we have focused on the numerical solution of the PDE662

formulation proposed in [33] for pricing a large variety of interest rate derivatives,663

when the underlying forward rates follow a SABR-LMM model. For this purpose,664

we have proposed the use of high order in time AMFR-W methods, thus allowing665

the use of larger time steps. Moreover, a suitable splitting of the involved operators666

additionally contributes to the computational time reduction for a given accuracy.667

As the PDE problem becomes high dimensional in space when the particular interest668

rate derivative requires the consideration of a large number of forward rates (each669

one giving rise to one spatial dimension), the application of AMFR-W methods on670

sparse grids with combination technique turns out to be very efficient to obtain the671

pricing in reasonable computational times. As illustrated in the section of numeri-672

cal results, parallel implementations of the algorithms based on OpenMP framework673

lead to a significant speed up of the computations. As indicated, an appropriate load674

imbalances management provides an optimal speed up, which is almost equal to the675

number of available computer cores. All computer implementations have been carried676

out from scratch. Another relevant innovative aspect comes from the suitable con-677

sideration of new homogeneous Neumann boundary conditions, instead of Dirichlet678

ones in [33]. This consideration avoids the numerical difficulties associated to the679

presence of boundary layers in the outflow boundaries when the parameter β is not680

This manuscript is for review purposes only.
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zero, specially in the advection dominated regime. Moreover, they motivate the in-681

troduction of a modified combination technique to cope with a certain decrease in682

the accuracy of the standard combination technique, which mainly comes from the683

inaccuracy of approximations obtained with some degenerated grids included in the684

sparse grids combination expression. Numerical results also illustrate the advantages685

of the proposed modified combination technique with respect to the standard version.686

Although this article focuses on the PDE formulation of the very relevant financial687

problem of pricing interest rate derivatives, the proposed methodology can be applied688

to a large variety of models involving high dimension PDE formulations which arise689

not only in finance but also in other disciplines in sciences and engineering. For690

example, in finance high dimension PDE problems related to the pricing of basket691

options or the computation of the XVA associated to portfolios could be considered.692

In computational biology, the same happens with problems related to gene networks693

or synthetic biology.694

Appendix A. Appendix.695

Proof of Lemma 3.1: Since Mi − mi ≥ 0, ji − mi ≥ 0, for all i, it is clear that696

ϑ(m1,m2, . . . ,mN ) ≤ ϑ(j) ≤ ϑ(M1,M2, . . . ,MN ), for all j ∈ IN . It is easy to see that697

ϑ(m1,m2, . . . ,mN ) = m1 and ϑ(M1,M2, . . . ,MN ) =MT +m1 − 1.698

On the other hand, calling Ql :=Ml −ml ≥ 0, if ϑ(j) = ϑ(k) for j,k ∈ IN ,699

(A.1) q1 = −
N∑
l=2

(
ql

l−1∏
r=1

(Qr + 1)

)
, ql := jl − kl, ∀1 ≤ l ≤ N,700

where the differences ql are integers that satisfy |ql| ≤ Ql, 1 ≤ l ≤ N . Let us suppose701

that N > 2 (when N = 2 is much simpler). From (A.1), we obtain that702

(A.2) q1 = −

(
q2 +

N∑
l=3

(
ql

l−1∏
r=2

(Qr + 1)

))
(Q1 + 1).703

Therefore, q1 is a multiple of the positive integer (Q1 +1). Moreover, as −Q1 ≤ q1 ≤
Q1, so necessarily q1 must be zero. Therefore, because of (A.2), we obtain

q2 = −
N∑
l=3

(
ql

l−1∏
r=2

(Qr + 1)

)
,

which is the same formula as in (A.1), although starting from r = 2 instead of r = 1.704

Applying a similar procedure as for q1, we get that necessarily q2 = 0. Inductively, we705

obtain that ql = 0, i = 1, 2, . . . , N , so j = k and the map ϑ is injective. Since clearly706

the two sets IN and {m1,m1 + 1, . . . ,MT +m1 − 1} have the same number MT of707

elements, ϑ is a bijection. �708

As a consequence of Lemma 3.1, for all J ∈ {m1,m1 + 1, . . . ,MT + m1 − 1},709

there exists a unique multi-index j ∈ IN given by j = ϑ−1(J). In practice, it is710

necessary to compute this inverse when we manipulate finite differences. An efficient711

way to calculate it is to use the modulo operation, i.e., (a modn) is the remainder of712

the Euclidean division of a by n.713

Lemma A.1. For every integer J ∈ {m1,m1+1, . . . ,MT+m1−1}, the components714

of the unique multi-index j = (j1, . . . , jN ) = ϑ−1(J) ∈ IN can be written as ji =715
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mi + bi, i = 1, . . . , N where the integers bi satisfy716

(A.3)

c1 = J −m1, b1 = c1 mod (M1 −m1 + 1),

ci =
ci−1 − bi−1

Mi−1 −mi−1 + 1
, bi = ci mod (Mi −mi + 1), i = 2, . . . , N.

717

Algorithm A.1 Procedure to solve linear systems of type (I − ν∆tAi)K = G

Define a matrix Q of dimension Mi; K = G
if i = 1 then
L̂r =Mr, r = 2, . . . , N

else if i ≥ 2 then
L̂r =Mr−1, r = 2, . . . , i, L̂r =Mr, r = i+ 1, . . . , N

end if
L̂ =

∏N
r=2 L̂r =

∏
r ̸=iMr

for I = 1, . . . , L̂ do
Q = 0
(k2, . . . , kN ) = ϑ−1

N−1(I); jr = kr+1, r = 1, . . . , i− 1; jr = kr, r = i+ 1, . . . , N
for ji = 1, . . . ,Mi do
j = (j1, . . . , ji, . . . , jN ); J = ϑ0(j); R(ji) = G(J)

P =


(di)J
h2i

=
α2
i

2
j2i F

2
N,jN , if 1 ≤ i ≤ N − 1

(dN )J
h2N

=
σ2

2
j2N if i = N

Q(ji, ji) = −2P
if ji ≥ 2 then

Q(ji, ji − 1) =

{
P if ji ≤Mi − 1
2P if ji =Mi

end if
if ji ≤Mi − 1 then
Q(ji, ji + 1) = P

end if
end for
Solve (ILi − ν∆tQ)X = R
for ji = 1, . . . ,Mi do
j = (j1, . . . , ji, . . . , jN ), J = ϑ0(j); K(J) = X(ji)

end for
end for

Proof of Lemma A.1: With the same notation as in the proof of Lemma 3.1,
bl = jl −ml ∈ {0, 1, . . . , Ql} for all l = 1, . . . , N , equation (3.2) turns into

c1 := J −m1 = b1 +
N∑
l=2

bl

l−1∏
r=1

(Qr + 1) = b1 + (Q1 + 1)

(
b2 +

N∑
l=3

bl

l−1∏
r=2

(Qr + 1)

)
,

then b1 = c1 mod (Q1 + 1) ∈ {0, 1, . . . , Q1}, j1 = b1 +m1, and

c2 :=
c1 − b1
Q1 + 1

= b2 +

N∑
l=3

bl

l−1∏
r=2

(Qr + 1).
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Clearly, we can apply again the mod operation to c2, obtaining b2 = c2 mod (Q2 +1) ∈718

{0, 1, . . . , Q2} and j2 = b2 +m2. The proof is completed by iteration. �719

In order to help the reader interested in computing every directional linear system720

of type (I−ν∆tAi)K = G of dimensionM , i = 1, . . . , N , the procedure to solve them721

is presented in Algorithm A.1, when the i−direction and the right-hand side vector722

G are given. We must observe that a new bijection ϑN−1 of type (3.2) is used there723

for multi-indices of dimension N − 1 with mi = 1, Mi = L̂i+1, i = 1, . . . , N − 1.724
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