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Abstract8

The goal of this article is to make automatic data assimilation for a land-
slide tsunami model, given by the coupling between a non-hydrostatic multi-
layer shallow-water and a Savage-Hutter granular landslide model for subma-
rine avalanches. The coupled model is discretized using a positivity preserving
second-order path-conservative finite volume scheme. The data assimilation
problem is posed in a global optimization framework and we develop and com-
pare parallel metaheuristic stochastic global optimization algorithms, more pre-
cisely multi-path versions of the Simulated Annealing algorithm, with hybrid
global optimization algorithms based on hybridizing Simulated Annealing with
gradient local searchers, like L-BFGS-B.
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1. Introduction14

The goal of this work is twofold. On the one hand, assessing the feasibility15

of performing data assimilation for models of tsunamis generated by submarine16

landslides (also known as submarine mass failures, SMF), when only informa-17

tion/data of the fluid free surface is available: that is, checking whether the data18

assimilation problem is well posed, i.e. the identifiability of the model parame-19

ters. On the other hand, if the former is possible, we also aim at developing a20

generic data assimilation framework/machinery based on parallel and efficient21

global optimization algorithms which can deal with landslide tsunami models.22
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The tsunami hazard modeling is of great importance to prevent and forecast23

the consequences of such events, as they can cause a large number of casualties24

and huge financial losses. Tsunamis can be generated mainly by earthquakes,25

storm surges or landslides (subaerial or submarine). The majority of them are26

caused by an offshore earthquake that pushes the ocean up or down. Never-27

theless tsunamis can also be generated in other ways. Underwater landslides,28

which might accompany an earthquake or occur independently, are a classic ex-29

ample. Traditional warning systems completely miss tsunamis from those types30

of sources. Once we have a model for these phenomena, the correct calibra-31

tion of the parameters is of key importance for the accurate simulation of the32

tsunami. This calibration could be even done in real time, feeding the model33

with the measures given by the tide-gauges in the ocean, in the first moments34

of the tsunami. After the calibration, the data can be used to rerun the model35

and predict the trajectory of the tsunami and the impact areas.36

Several types of models can be found in the literature for modeling land-37

slide tsunamis. Their development focuses in three aspects: a physical model38

for landslide material, a hydrodynamic model that simulates the generation39

and propagation of resulting waves, and the coupling between both. The hy-40

drodynamics of landslide-induced tsunamis has been extensively studied using41

numerical models based on different levels of simplification.42

The simplest model contemplates the landslide as a rigid solid with fixed43

landslide shape (see for example [1]). Another approach to simulate landslide-44

induced tsunamis is to consider both the landslide and the water as two different45

fluids (see [2, 3, 4, 5, 6, 7]). This approach allows the landslide to deform, and46

to couple the landslide and the fluid. Although the two-fluid models described47

above can be reasonably successful in predicting tsunami wave generation, they48

may fail to determine the landslide motion from initiation to deposition.49

Initial steps towards development of granular flow-based models for land-50

slide behavior have usually been based on depth-integrated models pioneered51

by Iverson (1997, see [8]), Savage and Hutter (1989, see [9]), and others. These52

models were initially developed for application to shallow subaerial debris flows.53

In [10] a two-layer Savage-Hutter type model was proposed to simulate subma-54

rine landslides, where the hydrostatic pressure assumption is assumed to derive55

the model.56

In [11] a two-phase model for granular landslide motion and tsunami wave57

generation is developed. The granular phase is modeled by a standard Savage-58

Hutter type model governed by Coulomb friction and the tsunami wave genera-59

tion is simulated using a three-dimensional non-hydrostatic wave model, which60

is capable of capturing wave dispersion efficiently using a small number of dis-61

cretized vertical layers.62

Here, we follow a similar approach, that is, we consider a two-phase model,63

however we will replace the three-dimensional non-hydrostatic model by the64

multi-layer non-hydrostatic model recently proposed in [12]. We briefly describe65

this model in Section 2.66

The previous model depends on a set of parameters that need to be cal-67

ibrated in order to match real data. Note that, having a good model and a68

2



strong and reliable numerical method for solving the problem, is as important69

as performing a good parameters adjustment of the model according to phys-70

ical measures. In other words, a good model, together with a good numerical71

method, can lead to totally wrong results with poorly calibrated parameters.72

Data assimilation is the tool for embedding reality in numerical simulation. To-73

gether with mathematical modeling and development of the proper numerical74

methods, it could be considered as the third leg supporting the numerical sim-75

ulation of processes in science and engineering, allowing the model to learn and76

profit from real measured data, see the pioneering work of J. Lions about the77

mathematical basis of data assimilation and control, [13]. Data assimilation is78

of key importance, for example, in atmospheric models for weather forecasting,79

see [14].80

Our work follows the classical approach to calibrate the parameters of a81

model, i.e. the parameters are adjusted in such a way that the behaviour of82

the model approximates, as closely and consistently as possible, the observed83

response of a hydrologic system over some historical period of time. Ultimately,84

the best parameters are those minimizing the simple least square objective func-85

tion of the residuals, which accounts for the differences between the model-86

simulated output and the measured data. This is the right approach as long87

as the mathematical model is correct (realistic enough), and physical data are88

measured without error. The uncertainty in the model prediction will be due89

to the uncertainty in the parameter estimates.90

There is a separate line of research [15] arguing that models have structural91

errors arising from the aggregation of spatially distributed real-world processes92

into mathematical models. Besides, due to this aggregation process, model pa-93

rameters usually do not represent directly measurable entities and must there-94

fore be estimated using measurements of the system inputs and outputs, thus95

adding another source of errors. As a consequence, during the calibration pro-96

cess one should also take also into account input, output and model structural97

errors. Several methods were firstly proposed to deal with model structural and98

data errors, like the Bayesian approach, Recursive Parameter Estimation algo-99

rithms, multiobjective calibration or stochastic input error models. Bayesian100

methods treats model parameters as probabilistic variables, in contrast with101

Frequentists approaches which consider model parameters fixed but unknown.102

Examples of Bayesian methods in hydrology are the Generalized Likelihood103

Uncertainty Estimation framework of Beven and Binley [16] and the Bayesian104

Recursive Estimation approach of Thiemann [17]. Recursive Parameter estima-105

tion algorithms help to identify model structural flaws by reducing the temporal106

aggregation associated with traditional batch processing, like PIMLI and recur-107

sive Shuffled Complex Evolution Metropolis algorithms (SCEM-UA) [18, 19].108

Multiobjective frameworks in order to better understand the limitation of the109

models, use complementary criteria in the optimization procedure and analyze110

the trade off in the fitting of these criteria; MOCOM [20] and MOSCEM-UA111

[15] being examples of these algorithms. Finally, realistic stochastic input error112

models, like the Bayesian Total Error Analysis of Kavetski, only account for113

input errors.114
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These previously discussed methods were not successful to account for all the115

referred sources of uncertainty in hydrologic modelling, i.e. parameter, input,116

output and structural model errors. Later, sequential data assimilation (SDA)117

techniques, represented by Kalman and extended Kalman filters techniques, for118

linear and nonlinear models respectively, continuously update the parameters119

of the model when new measurements are available, in order to improve the120

model forecast and evaluate the forecast accuracy. Recently, Vrugt et al. in [15]121

enrich the classical calibration approach with SDA techniques, thus developing122

the called simultaneous parameter optimization and data assimilation (SODA)123

method, which combines the strengths of the parameter search efficiency and124

explorative capabilities of the Shuffled Complex Evolution Metropolis algorithm125

[21], with the power and computational efficiency of the ensemble Kalman filter,126

thus accounting for the parameter, input, output and model structural uncer-127

tainties in hydrologic modeling.128

Another approach aiming to reduce the uncertainty of models and improve129

their prediction skills consists on identifying the sensitive parameters and then130

focus on reducing the error of these delicate parameters [22]. For example,131

in [23], Yuan Shijin et al. studied the sensitivity of wind stress, the viscosity132

coefficient and the lateral friction for the simulation of the double-gyre variation133

in the Regional Ocean Modeling System [24], a model that can be used to134

simulate global waters of any size from basins to oceans. This sensitivity study135

was carried out not only for single parameters, but also for the combination of136

multiple parameters, by means of solving the Conditional Nonlinear Optimal137

Perturbation related to Parameter (CNOP-P) method [25], with the help of138

a modified Simulated Annealing (SA) algorithm in order to find the optimal139

solution in an efficient way. These works ([23]) exploring optimal parameters140

using sensitivity experiments, not only for individual parameters but also taking141

into account the interdependence between model parameters, are not feasible142

for models with large number of parameters, due to the fact that the number143

of necessary experiments increases exponentially with the involved number of144

model variables. A study of the sensitivities of the parameters for a simplified145

version of the model we are considering in this work was carried out by means of146

Multi-Level Monte Carlo in [26], the fluid model component being hydrostatic147

with just one fluid layer.148

In a general setting, the data assimilation problem, for a given model, can be149

posed as an unconstrained global optimization problem in a bounded domain.150

Stochastic global metaheuristic algorithms are useful to solve these kind of prob-151

lems. They have the advantage of needing little information of the function, and152

also allow to escape from local optima, being their main disadvantage the slow153

rate of convergence, which is typical of Monte Carlo algorithms. Classical well154

known examples of these methods are Simulated Annealing (see [27, 28]), Parti-155

cle Swarm (PS, see [29, 30]) or Differential Evolution (DE, see [31]). Conversely,156

local optimization algorithms are deterministic and use more information of the157

function, thus being faster. Their main disadvantages are that, in general, they158

require some regularity of the cost function, and even more important, they159

do not guarantee reaching the global optimum, as they can get trapped into a160
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local minimum. They can be gradient free, for example Pattern Search (PS, see161

[32]) or Nelder-Mead (NM, see [33]); or gradient based, like steepest descent,162

Newton method, Conjugate Gradient (CG), Nonlinear CG (NCG, see [34]) or163

Quasi-Newton methods, for example, BFGS [35, 36, 37, 38], L-BFGS [39] or L-164

BFGS-B [40]. One idea to profit from the good properties of stochastic (global)165

and deterministic (local) algorithms, is to hybridize them: this can be done, for166

example, by nesting the local search inside the global algorithm. One example167

is the Basin Hopping (BH) algorithm [41, 42, 43]. In this work, in order to168

calibrate the tsunami model, we follow this idea, using a in-house developed169

parallel multi-path version of the BH algorithm.170

Data assimilation for shallow-water models has been addressed in many171

works. In these works usually gradient based local optimization methods, like172

the simplest steepest descent method, have been used to solve the resulting173

optimization problem. Due to the high computational cost, the gradient is174

computed by solving the adjoint problem, either by solving directly the ad-175

joint system or computing the adjoint by automatic differentiation (AD, see176

[44, 45]). For example, in [46] the identification of Manning’s roughness coeffi-177

cients in shallow-water flows is performed, and the authors compare three local178

optimization algorithms, a n-trust region method, L-BFGS and L-BFGS-B min-179

imizers, where the gradients are computed by solving the adjoint equations. In180

[47] the variational data assimilation method (4D-VAR) is presented as a tool181

to forecast floods, in the case of purely hydrological flows: the cost function is182

a modification of the shallow-water equations to include a simplified sediment183

transport model and the steepest descent algorithm is then used to find the min-184

imum. The initial and boundary conditions are calibrated. The gradient of the185

cost function is analytically computed by solving the adjoint equations of the186

model. In [48] the authors developed a 4D-VAR combining remote sensing data187

(spatially distributed water levels extracted from spatial images, SAR) and a188

2D shallow-water model to identify time-independent parameters (e.g. Manning189

coefficients and initial conditions) and time-dependent parameters (e.g. inflow).190

In [49] the authors show the application of the technology developed in [48]191

to derive water levels with precision from satellite images of a real event. In192

[50] the authors presented a method to use Lagrangian data along with classi-193

cal Eulerian observations, in a variational data assimilation process for a river194

hydraulics 2D shallow-water model, using the trajectories of particles advected195

by the flow and extracted from video images. In all the cited works AD is ap-196

plied for computing the gradients, and the data assimilation is performed using197

gradient local optimization algorithms.198

Data assimilation for tsunamis forecasting and early warning is a very chal-199

lenging problem, and on top of that some data are even unknown, for example200

the geometry of the landslide or bottom deformation related to earthquake. Real201

time data is available in the Tsunami Early Warning Systems (TEWS), for ex-202

ample in the tide-gauges network of Deep-Ocean Assessment and Reporting of203

Tsunamis (DART) from National Data Buoy Center of the NOAA, or similar204

systems from other countries, see [51]. Tsunami buoys are not only intended to205

display the occurrence of the tsunami, but also to provide real time data that206
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can be assimilated into the tsunami warning system, to improve the accuracy207

of the tsunami forecasting. Real time data assimilation in tsunamis models208

is mostly done using optimal interpolation (OI) and tsunami Green functions,209

which are calculated in advance with linear tsunami propagation models, see for210

example [52, 53]. Another alternative assimilation method, is to use Kalman211

filter techniques (see [54, 55]) for wave field reconstructions and forecasts, see212

[56, 57]. In [58] data assimilation is done using a OI algorithm to both the213

real observations and virtual stations, in order to construct a complete wave214

front of tsunami propagation. In [59] tsunami data assimilation of high-density215

offshore pressure gauges is performed. In [56] a Kalman filter technique is pro-216

posed and compared with OI. In [60] the assimilation of Lagrangian data into217

a primitive equations circulation model of the ocean at basin scale, using the218

four-dimensional variational technique and the adjoint method, is performed.219

In [61] retrospectively data assimilation is applied to the tsunami generated in220

2011 off the Pacific coast by the Tohoku Earthquake (Mw 9.0). The data assim-221

ilation is done using an algorithm of near-field tsunami forecasting with tsunami222

data recorded at various offshore tsunami stations: these measures were taken223

between 5 and 10 minutes before the tsunami reached the coastal tide-gauge224

stations nearest to its origin.225

Nevertheless data assimilation in landslide generated tsunamis is not so well-226

developed. In this work we propose to use global optimization algorithms, that227

in general produce better results than the local ones. In fact many times the228

calibrated parameters do not correspond to the global minimum of the involved229

cost function because the considered local optimizer got stuck in a local minima230

far from the global solution.231

Our work lies in the same vein of the recent works of Sumata et al. [62] and232

[63]. For example in [63] the authors applied a global minimization algorithm233

in order to calibrate an Arctic Sea Ice-Ocean model. Their approach consists234

on minimizing a cost function corresponding to the model-observation misfit of235

three sea ice quantities (the sea ice concentration, drift and thickness), with236

a genetic algorithm. The similarities between this work and our approach are237

the use of bound constrained global stochastic minimization and the method to238

assess on the optimality of the achieved solution by using a pool of independent239

and randomly initialized minimization experiments. Nevertheless, the approach240

we are proposing differs from their strategy in several features. First of all,241

our goal is to calibrate a tsunami model involving less parameters than the 15242

model variables of the sea ice-ocean model calibrated in their article. Besides,243

the different nature between this model and the tsunami model we are looking244

at, enforces a different optimization window, a large one (two decades) in their245

work versus a small one (a few hours at most) in our sketch. On top of that,246

Sumata et al. performed the optimization of the cost function on a discrete247

search space, while our approach, allowing a continuous parameter domain, is248

richer.249

Based on their previous work [62], Sumata et al. in [63] support, as our250

work does, the statement that gradient descent local minimization algorithms251

are likely to get stuck at local minima for these complicated cost functions.252
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Therefore, the authors impose the need to use stochastic global minimization253

algorithms. In fact, in [62] two types of optimization methods were applied254

to the calibration of a coupled ocean-sea ice model, and a comparison was255

made to assess the applicability and efficiency of both methods. One was a256

gradient descent method based on finite differences for computing the gradient,257

while the other was a genetic algorithm. Also a parallel implementation was258

carried out to speed up the optimization process. In the case of the gradient259

descent method, each component of the gradient was computed in parallel.260

They precisely conclude that the global optimization GA is preferred, because261

it yields a better optimum, since the gradient local optimizers could get trapped262

in local optima, even if several launches of the gradient algorithm are launched,263

in a multistart fashion. This statement exactly coincide with our forthcoming264

conclusions in Section 4.1 and 4.2 (see Figures 4 and 11).265

In our paper, we overcome this disadvantage, by proposing for first time in266

this field, the use of a parallel hybrid local-global minimization algorithm. More267

precisely we develop a BH like algorithm. BH consists on hybridizing SA and268

local gradient searchers, allowing to benefit from both worlds, the global con-269

vergence properties of SA and the speed of local optimizers. We go even further270

by proposing a parallel version of the BH algorithm. For the local searcher in-271

gredient of BH, we use a bounded version of the L-BFGS algorithm used in [62],272

namely the L-BFGS-B algorithm. This version is able to increase the conver-273

gence speed and the success rate of BH. The multistart technique performed in274

[62] can be seen as computing only one temperature stage of our multi-path BH275

algorithm. Another advantage of our algorithm is its embarrassingly parallel276

nature, as we can map each search path to a different parallel thread. In [62]277

each CPU thread computes one component of the gradient, while in our case,278

each thread is responsible of one L-BFGS path. We show using an analytical279

test, that this algorithm improves the multi-start technique, as it is always able280

to find the global optimum. Besides, in our article not only we compare the281

efficiency of this multi-path BH, with the equivalent version of a multipath SA282

(that can be seen as the BH without performing the local searches), but also283

show that by using the gradient searches the convergence speed of even a mul-284

tipath SA increased. As mentioned before, a SA algorithm was also used in [23]285

to effectively solve the CNOP-P of ROMS.286

The organization of this paper is as follows. In Section 2 we pose the data287

assimilation problem. In Section 2.1 we describe the cost function, which is288

given by the measure of the mismatch between the free surface laboratory data289

and the computed one, that depends on the parameters we want to assimilate.290

The optimization of this cost function is a hard problem: on the one hand,291

the evaluation of the cost function is an expensive computational problem, be-292

cause it relies in the solution of a time dependent system of partial differential293

equations. On the other hand, this data assimilation problem gives rise to a294

global optimization problem. In Section 2.2 we briefly describe the two-phase295

tsunami model and give some references about the numerical scheme we use.296

The physical parameters of the system, that need to be calibrated, are the ratio297

of densities between the grain and the fluid, the Coulomb friction angle and298
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the Manning friction coefficient. The evaluation of the cost function requires a299

numerical solution of this two-phase model, computed for a given set of param-300

eters.301

In Section 3, we recall the global optimization algorithms that we will use:302

multi-path Simulated Annealing and multi-path Basin Hopping algorithms.303

Both algorithms were proposed by the authors in [64] and [65] for accelerating304

the convergence of SA and BH respectively, and are based in performing syn-305

chronized parallel Metropolis searches, or parallel gradient based local searches.306

They were assessed against the hard benchmarks in the global optimization307

field, and have been successfully applied to the calibration of models in finance,308

even in the case where the costly Monte Carlo method is the only alternative309

to price the involved financial products (see for example [66]). In this work we310

apply these algorithms for data assimilation in landslide tsunami modeling. One311

of the objectives of this article is to show that this type of algorithms can be312

successfully applied for the parameters calibration on challenging geophysical313

problems.314

In Section 4, we present the numerical experiments that we have carried315

out: Section 4.1 is devoted to validating the methodology using synthetic tests,316

in which the model is run for fixed sets of parameters, and we generate files317

with the free surface information. Then, we consider these data as data coming318

from laboratory, and try to recover the parameters that were used to generate319

those data, by global optimization in a large domain. After validating the320

methodology, in Section 4.2 we apply the technique for performing the data321

assimilation considering real laboratory data.322

2. Data assimilation problem323

In general, the cost function measures the error, computed in some norm,324

between the real data and the solution produced by the numerical model. The325

model will depend on a set of parameters. For example, in the case of a one326

layer shallow-water model, they can be: one Manning coefficient for the whole327

domain, or also several Manning coefficients, one per subdomain; the initial328

conditions; the boundary conditions, etc. These parameters can be even time329

dependant (boundary conditions, for example).330

2.1. Cost function331

In this study, the cost function only depends on the free surface elevation332

because this quantity is easily measurable and perhaps the most important333

magnitude to predict the tsunami inundation. Thus, to carry out the data334

assimilation method we can introduce the following cost function using the335

Hilbert space L2(0, T ; Ω) norm:336

f(ppp) = ‖ηppp − ηobs‖L2(0,T ;Ω) =
(∫ T

0

‖ηppp(·, t)− ηobs(·, t)‖2L2(Ω)dt
)1/2

, (1)
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where Ω ⊂ R is the spatial domain, [0, T ] is the time domain, ηppp(x, t) is the
free surface elevation at the point x and at time t computed with some model
using the set of parameters ppp, and ηobs are the observed values, that can be
obtained from SAR images, sea buoys or laboratory experiments. This leads
to an unconstrained global optimization problem in a bounded domain. More
precisely, we address problems that can be formulated as

min
ppp∈D⊆Rn

f(ppp),

where f is a real valued function, with ppp ∈ Rn the vector of parameters, de-
fined on D =

∏n
i=1 [li, ui], with li and ui being the lower and upper bounds in

direction i, respectively. The solution can be written as:

ppp∗ = arg min
ppp∈D⊆Rn

f(ppp).

In the discrete case, the cost function will have the following expression:

f(ppp) =

√√√√NT∑
k=1

N∑
i=1

(
ηp
pp
i,k − ηobsi,k

)2

,

where ηp
pp
i,k = ηppp(xi, tk) and ηobsi,k = ηobs(xi, tk) being xi the i-th measure point,337

for i = 1, . . . , N and tk the k-th measure time, with k = 1, . . . , NT .338

Free surface
Bottom
Grain

Figure 1: Sketch of the model.

Note that the cost function depends on ηppp, which implicitly depends on the339

parameters to be calibrated. Therefore, a single evaluation of the cost function340

requires a realization of the numerical model for a given set of parameters. In341
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the next section we present the equations of the two-phase model, pointing out342

what are the parameters to be calibrated. Some basic idea about the numerical343

scheme we use is also sketched.344

2.2. Mathematical model345

As discussed in the introduction, we use a two-phase model in order to346

describe the interaction between the submarine landslide and the fluid. In this347

work, a Savage-Hutter model (see [9]) is considered for the kinematics of the348

submarine landslide, and a multi-layer non-hydrostatic shallow-water model is349

used for the evolution of the ambient water (see [12]). Both models are coupled350

through the boundary conditions at the sea-floor.351

At this point, we suppose that the landslide is totally submerged and that352

the ratio of densities between the ambient fluid and the granular material is353

given by the parameter r. Usually354

r =
ρf

(1− ϕ)ρs + ϕρf
,

where ρs is the typical density of the granular material, ρf is the density of355

the fluid (ρs > ρf ), and ϕ is the porosity (0 ≤ ϕ < 1). Here, we suppose that356

ϕ is constant on space and time, and therefore r is also constant. Note that357

0 < r < 1. Finally, let us remark that even on a uniform material, r is difficult358

to estimate as it depends on porosity ϕ. Typical values of r are in the interval359

[0.3, 0.8].360

The 1D Savage-Hutter model that we consider in this article is written as361

follows:362


∂tzs + ∂x(zsus) = 0,

∂t(zsus) + ∂x

(
zsu

2
s +

g(1− r)
2

z2
s

)
= g(1− r)zs∂xH + τC ,

(2)

where g is the gravity acceleration (g = 9.81 m/s2); H(x) is the non-erodible363

bathymetry measured from a given reference level and unchanged during the364

simulation; zs(x, t) is the landslide depth at each point x at time t; and us(x, t)365

the averaged horizontal velocity. τC is the Coulomb friction term given by:366

τC = −g(1− r)µzs
√
u2
s

us
.

Note that this term is multi-valuated when us = 0. The simplest friction law367

corresponds to a constant friction coefficient:368

µ = tan(θ), (3)

where θ is the friction angle, although more complex friction terms could be369

used to simulate natural subaerial or submarine landslides (see [67, 68]). Other370
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definitions, derived from experimental data, have been proposed by Pouliquen371

(see [69]) where the friction coefficient depends on the velocity and thickness372

of the granular layer. This law is widely used in the literature and involves at373

least three parameters to be calibrated (see e.g. [70]).374

The Coulomb friction term τC is quite relevant, as it controls the motion of375

the landslide. In particular, it is defined in terms of the friction angle θ, which376

is a parameter to calibrate in order to fit the simulation with the experimental377

data. Finally, let us mention that in the derivation of the previous model we378

have supposed a rigid-lid assumption with respect to the free surface of the379

ambient fluid: that is, the pressure variations induced by the fluctuation on the380

free surface of the ambient fluid over the landslide are neglected. Nevertheless,381

the buoyancy effects have been taken into account.382

The ambient fluid is supposed to be modeled by a multi-layer non-hydrostatic383

shallow-water system recently proposed in [12]. This system is obtained by a384

process of depth-averaging of the incompressible Euler equations. More pre-385

cisely, it can be seen as a particular semi-discretization with respect to the386

vertical variable of the incompressible Euler equations. Total pressure is de-387

composed into a sum of a hydrostatic and a non-hydrostatic component. In this388

process, vertical velocities are assumed to have a linear vertical profile, whilst389

the horizontal velocities are supposed to have a constant vertical profile. The re-390

sulting multi-layer model admits an exact energy balance, and when the number391

of layers increases, the linear dispersion relation of the linear model converges392

to the same of Airy’s theory. The model proposed in [12] can be written in393

compact form as394



∂th+ ∂x(hū) = 0,

∂t(huα) + ∂x

(
hu2

α +
g

2
h2
)
− gh∂x(H − zs)

+uα+1/2Γα+1/2 − uα−1/2Γα−1/2 = −h(∂xpα + σα∂zpα)− τα,

∂t(hwα) + ∂x(huαwα) + wα+1/2Γα+1/2 − wα−1/2Γα−1/2 = −h∂zpα,

∂xuα−1/2 + σα−1/2∂zuα−1/2 + ∂zwα−1/2 = 0,
(4)

for α ∈ {1, 2, . . . , L}, being L the number of layers. In the previous system, we395

have used the following notation:396
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uα+1/2 =
1

2
(uα+1 + uα), ∂zuα+1/2 =

1

h∆s
(uα+1 − uα),

wα+1/2 =
1

2
(wα+1 + wα), ∂zwα+1/2 =

1

h∆s
(wα+1 − wα),

pα =
1

2
(pα+1/2 + pα−1/2), ∂zpα =

1

h∆s
(pα+1/2 − pα−1/2),

σα = ∂x(H − zs − h∆s(α− 1/2)), σα−1/2 = ∂x(H − zs − h∆s(α− 1)).
(5)

As depicted in Figure 1, the flow depth h is split along the vertical axis into397

L ≥ 1 layers and ∆s = 1/L. uα and wα are the depth averaged velocities in398

the x and z directions respectively, and g is the gravitational acceleration. The399

term pα+1/2 is the non-hydrostatic pressure at the interface zα+1/2. The free400

surface elevation measured from the still-water level is η = h −H + zs, where401

again H(x) is the unchanged non-erodible bathymetry measured from a given402

reference level. τα = 0, α > 1 and τ1 is the Manning friction term that is only403

present at the lowest layer (α = 1) given by404

τ1 = gh
n2

h4/3
u1|u1|.

Finally, for α = 1, . . . , L− 1, Γα+1/2 account for the mass transfer across inter-405

faces and are defined by406

Γα+1/2 =
L∑

β=α+1

∂x(h∆s(uβ − ū)), ū =
L∑
α=1

∆suα.

Here we suppose that Γ1/2 = ΓL+1/2 = 0, that is, there is no mass transfer407

through the bottom nor the free-surface.408

In order to close the system, the following boundary conditions are conside-409

red: pL+1/2 = 0, u0 = 0 and w0 = ∂tzs. Note that the last two conditions enter410

into the incompressibility condition for the lowest layer (α = 1), given by411

∂xu1/2 + σ1/2∂zu1/2 + ∂zw1/2 = 0.

Observe that both models are coupled through the unknown zs, present in the412

equations and in the boundary condition (w0 = ∂tzs).413

Note that the two-phase model depends on three coefficients (that are the414

ones to be calibrated), namely the vector of coefficient is ppp = (r, θ, n), where r is415

the ratio of densities between the fluid and the granular phase, θ the Coulomb416

friction angle, and n the friction (Manning) coefficient. In particular the first417

two are quite relevant for the landslide motion and therefore, for the induced418

tsunami water waves.419

System (2) could be written in the following compact way:420

∂tUs + ∂xFs(Us) = Gs(Us)∂xH − Ss(Us), (6)
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being421

Us =

[
zs

uszs

]
, Fs(Us) =

 zsus

zsu
2
s +

g(1− r)
2

z2
s

 ,
422

Gs(Us) =

[
0

g(1− r)zs

]
, Ss(Us) =

[
0

τC

]
.

The multi-layer non-hydrostatic shallow-water system could also be expressed423

in a similar way:424 {
∂tUf + ∂xFf (Uf ) +Bf (Uf )∂xUf = Gf (U)∂x(H − zs) + TNH − Sf (Uf ),

B(Uf , (Uf )x, H,Hx, zs, (zs)x) = 0,
(7)

where

Uf =



h
hu1

...
huL
hw1

...
hwL


, Ff (Uf ) =



hū

hu2
1 +

1

2
gh2

...

hu2
L +

1

2
gh2

hu1w1

...
huLwL


, Gf (Uf ) =



0
gh
...
gh
0
...
0


.

Bf (Uf )∂x(Uf ) contains the non-conservative products involving the momentum425

transfer across the interfaces426

Bf (Uf )∂x(Uf ) =



0

u3/2Γ3/2

u5/3Γ5/2 − u3/2Γ3/2

...

−uL−1/2ΓL−1/2

w3/2Γ3/2

w5/3Γ5/2 − w3/2Γ3/2

...

−wL−1/2ΓL−1/2



,
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Sf (Uf ) contains the Manning friction term427

Sf (Uf ) =



0

τ1

0

...

0


.

The non-hydrostatic corrections in the momentum equations are given by428

TNH = TNH(h, hx, H,Hx, zs, (zs)x, p, px) = −



0
h(∂xp1 + σ1∂zp1)

...
h(∂xpL + σL∂zpL)

h∂zp1

...
h∂zpL


,

and finally, the operator related with the incompressibility condition at each429

layer is given by:430

B(Uf , (Uf )x, H,Hx, zs, (zs)x) =

 ∂xu1/2 + σ1/2∂zu1/2 + ∂zw1/2

...
∂xuL−1/2 + σL−1/2∂zuL−1/2 + ∂zwL−1/2

 .
The discretization of systems (6) and (7) becomes difficult. In this article, we431

have considered the natural extension of the numerical schemes proposed in [71]432

and [72], where a splitting technique has been described. Firstly, the systems (6)433

and (7) can be expressed as the following non-conservative hyperbolic system:434 {
∂tUs + ∂xFs(Us) = Gs(Us)∂xH,

∂tUf + ∂xFf (Uf ) +Bf (Uf )∂x(Uf ) = Gf (Uf )∂x(H − zs).
(8)

Both equations are solved simultaneously using the same time step, by means of435

a second order HLL, positivity-preserving and well-balanced, path-conservative436

finite volume scheme (see [73]). The synchronization of time steps is done tak-437

ing into account the CFL condition of the complete system (8). A first order438

estimation of the maximum of the wave speed for system (8) is the following:439

λmax = max(|us|+
√

(g(1− r)hs, |ū|+
√
gh).

Next, the non-hydrostatic pressure corrections p1/2, · · · , pL−1/2 at the ver-440

tical interfaces are computed from441 {
∂tUf = TNH(h, hx, H,Hx, zs, (zs)x, p, px),

B(Uf , (Uf )x, H,Hx, zs, (zs)x) = 0.
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This requires the discretization of an elliptic operator by means of standard442

second order central finite differences. The resulting linear system is solved443

using an iterative Scheduled Jacobi method (see [74]). Finally, the horizontal444

and vertical momentum at each layer are updated using the computed non-445

hydrostatic corrections. At this stage, the frictions Ss(Us) and Sf (Uf ) are also446

discretized (see [71, 72]). We refer the reader to [10] for the discretization of the447

Coulomb friction term.448

3. Multi-path BH global optimization449

In this section we describe the optimization algorithms multi-path SA (SAM)450

and multi-path BH (BHM), that can be seen as a modification of the sequential451

BH algorithm, introducing a parallel multi-path searching technique.452

The BH algorithm is a hybrid between the Metropolis algorithm and some453

kind of gradient local optimization method, in order to profit from the speed and454

accuracy of the local optimizer, while retaining the global convergence properties455

of the stochastic one. The seminal idea was presented by Navon and Robertson456

et al. in [41, 42] for finding the global minimum of Potential Energy Surfaces457

(PES) related to structures of mixed Argon-Xenon clusters. The authors devel-458

oped the finite-temperature lattice based Monte Carlo method and compared459

the use of three different limited memory Quasi-Newton-like conjugate gradient460

methods as local minimizers, the L-BFGS against two others, being L-BFGS461

the better performing one. Seven years later, a similar idea was also success-462

fully applied by Wales and Doye (see [43]) in order to minimize the PES, for463

finding Lennard-Jones clusters using a nonlinear conjugate gradient method464

(Polak Ribière [34]) as the local optimizer. In the latter reference the authors465

named the method Basin-Hopping; this name became widely accepted for re-466

ferring to these kind of global optimization methods. Nowadays, the term BH467

encompasses a family of algorithms obtained by combining different local (NCG,468

BFGS, ...) and global stochastic algorithms (Metropolis or SA): quasi-Newton469

methods (BFGS and descendants) are the most common choice for the local470

component. BH methods have been extensively studied by Locatelli et al., see471

[75, 76, 77, 78], and Leary [79]. In the BH method, the local optimizer can be472

seen as an operator that transforms the original function f(xxx), returning a new473

piece-wise constant function, L(xxx) = f(LS(xxx)), being LS(xxx) the point where a474

local minimum of f is obtained from a starting point xxx. The resulting global op-475

timization problem for the function L(xxx), is much more tractable for the global476

optimizer component, as the barriers between local minima have been softened.477

The idea of BH is to use a temperature process like in SA: we denote by T478

and Tmin the current and minimum temperatures, we consider the temperature479

reduction schedule, Tk−1 = ρTk, being ρ the cooling rate, and we perform a480

Metropolis process with N steps at each temperature level. More precisely, at481

temperature level Tk, being xk the starting point, first, we generate a random482

neighbor, yk, inside a ball with radius rk and centered in xk, yk ∈ B(xxxk, rk).483

Next, we perform a gradient local search starting from yk, in order to obtain a484
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local minimum, and we decide whether to accept or discard it, using the Boltz-485

mann law. Finally, we advance to the next temperature level. The algorithm486

stops when the temperature reaches Tmin, or the number of successive rejections487

exceeds J . The radius rk is updated after a certain interval, by using the 50%488

acceptance rule [80]. A nice property is that BH can also be seen as a general-489

ization of SA: SA can be recovered by skipping the local optimization phase in490

BH.491

In [64, 65] the authors proposed a synched multiple Metropolis path approach492

for SA and BH-like algorithms, respectively. The idea is to perform not one,493

but M Metropolis searches at each temperature level Tk, from the same initial494

point xk (see Algorithm 1). In the simplified case with N = 1, the algorithm495

consists of launching M gradient local searchers (see Figure 2), starting from the496

corresponding set of random neighbors yyylk, l = 1, . . . ,M, of the current minimum497

point, and thus the Metropolis searches are entirely replaced by local searches.498

After performing the N steps of Metropolis at each path, and before advancing499

to the next temperature level, we gather the final information, keeping the best500

of the attained minima, so that xbestk+1 = min(xl∗) (see Figure 2 and Algorithm501

1). We will refer to this algorithm as BHM, M being the number of paths502

(number of Metropolis processes with local searchers; or just the number of503

local searches, if N = 1) launched at each temperature optimization step. Note504

that if besides M = 1, then BH1 corresponds with the classical BH (only one505

Metropolis path, or only one local search). Also, if we replace the local search506

operator, LS, with the identity, id, we recover the multi-path SA algorithms,507

SAM [64]; furthermore SA1 corresponds to the classical single path SA. These508

multi-path BHM algorithms have two interesting properties: on the one hand,509

they are highly parallelizable; on the other hand they improve convergence510

properties, both the convergence speed and the success rate of the classical SA511

and BH.512

This approach has the advantage of being easily parallelizable, because the513

multiple search paths can be computed asynchronously at the same time. For514

example, if we have a multi-CPU architecture, each CPU thread can take care515

of computing one local search, and after that the results have to be synchronized516

(see Figure 2). In this paper, we will use this multi-path implementation in a517

multi-CPU setting, each CPU thread will take care of a search path.518

Regarding the convergence properties, in [65] the study of the optimal num-519

ber of multi-searches, both from the convergence rate and the success rate view-520

point, is done empirically. According to the results, increasing the number of521

searchers improves the convergence rate, although this increase in convergence522

rate is not unlimited. For example, if the problem is simple and/or the di-523

mension is low, by increasing the number of searchers one would only obtain a524

marginal increase in convergence speed. Nevertheless, even in those cases, the525

computing time can be lower because the evaluations can be done in parallel,526

and thus this increase in the number of search paths comes almost for free.527

Even if the problem is computationally hard, it always comes a point where528

the optimal convergence rate is achieved and a further increase in the number529

of searchers will not have any advantage. Usually this number of searches for530
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Figure 2: Schematic visualization of the BHM algorithm (with M = 4).

17



Algorithm 1: Synched multi L-BFGS-B BH, pseudocode.

y = random uniform in D;
Set # successive rejections: j = 0;
Iteration number: k = 0;
Initial position: x0 = x∗ = LS(y);
while (j < J) or (T < Tmin) do

for l = 1:M do
for i = 1:N do

yli = random uniform in B(xli, rk);
u = random uniform in [0, 1];

∆ = L(yli)− L(xl∗);
if u < exp(−∆/T ) then

xl∗ = xli+1 = LS(yli);
j = 0;

else
j = j + 1;

end if

end for

end for

Synchronization: xbestk+1 = min(xl∗);

for l = 1:M do
xl∗ = xbestk+1;

end for
k = k + 1;
Update rk;
T = ρ · T ;

end while

obtaining an optimal convergence rate is moderate: the optimization problem531

has to be really tough in order to demand a high number of local searchers. The532

good properties of the proposed algorithm also apply to the success rate and533

the same conclusions can be obtained. Usually, it comes a point when a 100%534

success rate is achieved, more number of searchers will not have any advantage.535

Besides, the number of searches for obtaining this 100% success rate is, once536

more, normally moderate. For tough problems, the advantage of performing a537

large number of local searches becomes more evident.538

In this work, for the local optimizer we will use the very robust L-BFGS-B539

algorithm. This minimizer is intended for problems in which information on540

the Hessian matrix is difficult to obtain. It was presented by Nocedal in [81] as541

an extension of the L-BFGS minimizer, being a limited-memory quasi-Newton542

algorithm (it does not need to store the Hessian matrix) that allows to solve543

nonlinear optimization problems with restrictions given by simple bounds on544

the variables of the function to be optimized.545
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In our work since the parameters are known to vary between given bounds,546

and we need to ensure that the optimizer would never explode by following547

a wrong path outside the physical domain, we used the L-BFGS-B bounded548

gradient method. If one uses a non bounded gradient local optimizer, some549

search paths could reach points outside the physical domain, where the equations550

could stop making sense. In that case the evaluation of the cost function (a finite551

volume solver) may explode, either by crashing or by entering in a very low552

∆t state (imposed by the CFL condition). As a consequence the assimilation553

process will crash or never end. We preferred to stay safe with the bounded554

algorithm, as it has almost the same computational cost as the unbounded L-555

BFGS version.556

In order to compute the partial derivatives with respect to the variables to be557

identified, needed for the gradient of the objective function, we can use either al-558

gorithms based on the so-called adjoint method or the standard finite-difference559

method. Both techniques have their own advantages and disadvantages. In this560

article we opted for the finite difference procedure attending to the reasons that561

will be discussed hereafter.562

There are two different approaches for tackling the adjoint problem. One563

technique is the classical approach developed by Lions (see [13]) and applied564

for the simpler 2D one layer shallow water model by Monnier et al. in [48]. It565

consists in computing the adjoint PDE system, and then solving it by numerical566

methods. This is a very challenging problem even for the simpler shallow water567

model assimilated by Monnier, and even much more for our problem at hand:568

we emphasize that we are dealing with a coupled model involving an arbitrary569

number of fluid layers (denoted by L in the PDE system (4)) of “shallow-water570

type systems”, along with the Savage-Hutter equations, thus resulting in a large571

hyperbolic system of coupled conservation laws. The mentioned system can only572

be numerically approximated by means of very involved finite volume numerical573

discretizations, thus dealing with the corresponding stability issues related to574

high nonlinearities involved in hyperbolic problems along with spatial-temporal575

discretization issues. As a consequence, the adjoint method will lead to a system576

of conservation laws with source terms and non-conservative products, for which577

it would not be clear the hyperpolicity region. Besides, the numeric approxima-578

tion of this adjoint system will be very sophisticated. One wonders if all this579

challenging work, even if feasible, is worth it for calibrating just this particular580

model. On the other hand, a way to circumvent those difficulties and avoid581

computing the adjoint system, is to compute the partial derivatives by means of582

Automatic Differentiation (AD). As in the close future we pretend to tackle real583

two dimensional problems, which involve much higher computational cost, and584

consequently even more for the adjoint AD procedure, speeding up on GPUs the585

cost function evaluation (i.e. the solution of the system) becomes compulsory.586

In this scenario, also the automatic differentiation algorithm should be carried587

out in the GPU side. Therefore, an AD library for GPUs in needed, something588

that can be an obstacle due to the fact that these tools are not always avail-589

able, specially for massively parallel architectures like GPUs. Furthermore, the590

code should be rewritten from the very basics using the overloaded operators591
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provided by the AD library. On top of that, more memory will be needed in592

this adjoint setting, which is again an issue in GPUs.593

Having in mind all the previously discussed issues, in this article we opted594

for the direct numerical approximation of the partial derivatives involved in the595

gradient using finite differences. In our case this has several advantages when596

compared to the adjoint computation. First of all, one of our goals is to develop597

a data assimilation framework/machinery for landslide tsunami models, generic598

enough in the sense that it should be directly applicable if one wants to enrich599

the here considered model with further characteristics or even fully replace it600

with other models. This machinery should endowe us with a tool for comparing601

the accuracy of (possibly quite) different models, and this is a reason for not602

developing an algorithm that is too tailored/tight for a particular model or nu-603

merical scheme. In this sense, by computing the gradient via finite differences604

we gain generality, since the method can be easily applied to models of all kinds605

without changes in the calibration procedure (in the same vein of [62]); one will606

just need to invoke it by plug in the new model solver (no changes are needed607

in the solver, unlike with the adjoint method). Hence we are well positioned in608

order to face the calibration of the previously mentioned oncoming richier two609

dimensional model to real data. Additionally, our technique is able to cope with610

the strongly nonlinear relation between model state and parameters, for which611

other approaches based on Kalman filter have difficulties. Finally, regarding the612

computational efficiency, finite-difference method for computing the derivatives613

of the cost function with respect to the parameters to be calibrated is not much614

more computing time demanding than the adjoint method if the number of op-615

timization variables is short; indeed this is the case we are dealing with, our616

goal is to calibrate three parameters, namely the ratio r of densities between617

the fluid and the granular phase, the Coulomb friction angle θ, and the friction618

Manning coefficient n. Last but not least, nowadays, thanks to the available619

high computational power, the numerical computation of the gradient could be620

directly addressed making use of parallel codes that combine multi-CPU im-621

plementation of the optimizer and multi-GPU implementation of the numerical622

solver used to evaluate the cost function.623

All in all, the gradient of the cost function will be numerically computed,
using first order progressive finite differences

∂f

∂pi
(ppp) =

f(ppp+ εeeei)− f(ppp)

ε
,

with ε = 10−6, and eeei = (0, . . . , 1, . . . , 0) the unitary vector of direction i.624

Regarding the implementation of the algorithms, the whole implementation625

of both the cost function (finite volume solver) and its gradients, and the opti-626

mization algorithms, is custom made. Both algorithms have been integrated in627

an efficient code using C++, and OpenMP is used for the parallel implementa-628

tion of the optimization codes (see Figure 2). Also we want to emphasize that629

the cost function is integrated with the optimization tool, so that it is called on630

the fly for each set of parameters during the optimization process. Therefore631
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no intermediate results need to be discharged from RAM to the hard drive for632

computing the value of the cost function, thus resulting in an efficient code.633

Furthermore, during the whole optimization process the laboratory data is read634

only once at the beginning.635

Free surface
Bottom
Grain

Figure 3: Sketch of the channel, initial condition and position of the tide-gauges.

4. Numerical results636

In this section we present two sets of numerical examples. The first one in637

Section 4.1 is a pool of synthetic tests with known solutions, that are used to638

validate the proposed algorithms and methodology, to discuss about the identi-639

fiability of the problem, and to show the convergence results and computational640

speedup. The second one in Section 4.2 shows an application of the proposed641

methodology to the assimilation of real laboratory data.642

The laboratory experiment that will be calibrated in this article was pre-643

sented in [82], and the data can be accessed at [83]. In that work, the authors644

design different laboratory experiments and perform numerical simulations to645

validate a landslide tsunami model and to asses how tsunami hazard from SMFs646

is affected by slide kinematics and rheology.647

In [84] the Tsunami-HySEA model is used to perform some of the numerical648

benchmark problems proposed in [82]. The obtained results are documented in649

the “Proceedings and results of the 2011 NTHMP Model Benchmarking Work-650

shop”.651

In our article we focus in one of the experiments performed in [83]: the652

benchmark 4 (deformable submarine landslide). For both the analytical and653

the laboratory experiments, the physical conditions of this benchmark are con-654

sidered. The length of the channel is 6 meters, and its sketch can be seen in655

Figure 3. The initial condition is water at rest with η = 0 and a triangular block656

of sediments, whose geometry is depicted in Figure 3. In our numerical results,657

we will have four tide-gauges, N = 4, where laboratory measures have been658

taken each 5 milliseconds, thus generating four tidal series. These buoys are659

located at the positions 1.87, 2.87, 3.87 and 4.87 meters, and they are depicted660

in Figure 3. We take g = 9.81 m/s2 and L = 5 layers of fluid in the model.661
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The calibration tests are run until T = 8 seconds both for the synthetic test662

and the laboratory experiment. For the finite volume method we consider 200663

cells in the analytical test and 800 cells in the laboratory essay with CFL = 0.5.664

We recall that the parameters are three, ppp = (r, θ, n), where r is the ratio of665

densities between the fluid and the sediment, θ the Coulomb angle, and n the666

friction coefficient. The search domain for all the experiments in this section is667

D = [0.3, 0.8]× [5, 45]× [10−5, 10−3], which is quite a broad domain.668

Concerning the hardware configuration, all tests have been performed in669

a server with 16 CPU cores (two Intel Xeon E5-2620 v4 clocked at 2.10GHz,670

accounting 32 logical threads) and 16 GB of RAM.671
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Figure 4: Synthetic generated series vs calibrated ones with the multi-start L-BFGS-B. Target
series in red, simulated series in blue.

r θ n
Target values 0.55 12◦ 0.0002

Obtained values 0.55 12◦ 0.0002

Table 1: Target and obtained values of the parameters.

4.1. Synthetic test672
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Figure 5: Synthetic generated series vs calibrated ones. Target series in red, simulated series
in blue.

The notion of identifiability addresses the question of whether it is at all673

possible to obtain unique solutions of the inverse problem for unknown param-674

eters of interest in a model from data collected in the spatial and temporal675

domains [85, 86]. As we have seen, data assimilation problems deal in the end676

with the search of the global minimum of a cost function. The exploration of677

the global minimum is a nontrivial task as long as the cost function has a com-678

plicated structure, and, on top of that, ensuring that the involved cost function679

has a unique global minimum is a extremely difficult goal, mainly due to the680

fact that sophisticated numerical methods are needed to simulate from landslide681

tsunami models being able to recover realistic physical phenomena, as discussed682

in Section 2.2.683

Analyzing parameter identifiability is precisely one of the aims of this work.684

We seek to check whether the data assimilation problem for landslide tsunami685

models is well posed when using only information of the fluid free surface. In686

fact, our goal in this first set of numerical experiments is precisely to empiri-687

cally discuss the problem of identifiability and uniqueness of the here proposed688

parameters calibration strategy. We will observe that the parameters are iden-689
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tifiable using only data from the free surface, which is something unexpected690

and eye catching from our point of view, because at first sight one could expect691

that information of the lower layers, the sediment layer or the speed of the fluid692

should be required in order to assimilate the data into the model. Nevertheless,693

in practice the information of the free surface proofs to be enough.694

In this work, as in the article [63], the uniqueness of the minimum of the695

cost function will be discussed by invoking results from the following additional696

optimization experiments.697

4.1.1. Synthetic test 1698

First of all, we designed a synthetic experiment, where given the unknown699

set of parameters, we created the observations numerically, which were then700

assimilated into the model to retrieve the original set of parameters. The values701

of the parameters were set at r = 0.55, θ = 12◦ and n = 0.0002. The test was702

run for 8 seconds. With these data we computed the simulation and stored the703

series corresponding with the free surface at each measure point in an interval of704

0.005 seconds. Then, we supposed that the parameters were unknown and tried705

to recover them using our optimization algorithms. There is no doubt about the706

uniqueness of the global minimum: the value of the cost function at this unique707

global minimum is zero, since the observations are perfect because they arise708

from the model. This problem has a very similar level of complexity from the709

optimization point of view to the real one we want to tackle, although it has the710

advantage of being easier to handle, as the exact solution is known. Moreover,711

this benchmark allowed us to test and compare the different algorithms with712

different number of parallel search paths.713

First we show that if a local optimization algorithm, like L-BFGS-B is714

applied, which can be seen as performing only one path and one tempera-715

ture step of the hybrid algorithm, no convergence to global minimum is ob-716

tained. Thus, after executing a local L-BFGS-B searcher, starting from a ran-717

dom point of the search domain, the obtained set of parameters is (r, θ, n) =718

(6.826989×10−01, 10.68841753o, 8.178492×10−4), the value of the cost function719

being 5.273542× 10−02. The simulation obtained with this set of parameters is720

shown and compared with the exact solution at Figure 4. Therefore, a robust721

global optimization algorithm should be used to compute the global minimum722

of this problem.723

Figure 5 shows the results obtained if both hybrid multi-path SA or BH724

algorithm are applied. Now, the parameters are computed exactly (see Table725

1), and a perfect agreement between the signals is observed.726

We can also use this benchmark to assess the convergence and efficiency of727

the two proposed hybrid multi-path global optimization algorithms. In Figures 6728

and 7, we show a comparison of the convergence of SAM and BHM algorithms,729

respectively, using different number of paths ranging from 1 to 16. At each730

temperature, the value of the cost function at the best point visited so far by731

the algorithm is shown. Note that the current state of the minimizer at each732

stage could be different to the referred best visited point owing to the stochastic733

nature of the SA and BH algorithms.734
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im
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te
d

A
n

n
ea

li
n

g

#Threads T #Func Evals Cost Function

1
1 101 3.25× 10−2

0.48 3.61× 103 2.31× 10−2

10−4 3.92× 105 1.11× 10−3

2
1 201 3.51× 10−2

0.48 7.21× 103 2.16× 10−2

10−4 7.83× 105 4.58× 10−4

4
1 401 2.38× 10−2

0.48 1.44× 104 1.82× 10−2

10−4 1.57× 106 9.11× 10−5

8
1 801 1.73× 10−2

0.48 2.88× 104 1.24× 10−2

10−4 3.13× 106 1.33× 10−4

16
1 1601 7.88× 10−3

0.48 5.76× 104 7.20× 10−3

10−4 6.27× 106 3.50× 10−5

B
as

in
H

op
p

in
g

#Threads T #Func Evals Cost Function

1
1 82 2.28× 10−2

0.48 1.72× 103 1.47× 10−2

10−4 1.96× 105 6.33× 10−4

2
1 103 2.29× 10−2

0.48 3.48× 103 1.24× 10−2

10−4 3.15× 105 1.50× 10−3

4
1 285 9.83× 10−3

0.48 6.99× 103 2.71× 10−3

10−4 6.49× 105 1.33× 10−4

8
1 369 2.08× 10−2

0.48 1.30× 104 7.04× 10−4

10−4 1.38× 106 1.04× 10−4

16
1 825 1.17× 10−2

0.48 2.51× 104 3.75× 10−4

10−4 2.67× 106 9.92× 10−6

Table 2: Parallel SA (SAM) vs. parallel BH (BHM). The column labeled as “Cost Function”
shows the value of the cost function at the best point visited so far by the minimization
algorithm.

Number of cores 1 2 4 8 16
Time (seconds) 872.64 1640.57 3035.07 5493.48 9338.92

Speedup 1 1.88 3.47 6.30 10.70

Table 3: Multi-path BH16: speedup using multi-CPU implementation.

In Table 2 we show the convergence of the multi-path algorithms when in-735

creasing the number of paths. The convergence speed is shown in terms of the736
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Figure 6: Convergence of multi-path SA, with 1,2,4,8 and 16 search paths.
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Figure 7: Convergence of multi-path BH, with 1,2,4,8 and 16 search paths.
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Parameters
Gauges r θ n Cost func.

G1-G2-G3-G4 0.55 12o 2× 10−4 9.923× 10−6

G3-G4 5.493439× 10−1 11.8404944o 2.045592× 10−4 6.234× 10−4

G4 5.529343× 10−1 11.2507678o 2.132503× 10−4 1.648× 10−3

Table 4: Obtained values of the parameters and value of cost function.

number of function evaluations performed by the algorithm. This number of737

evaluations is shown at different levels of temperatures in the annealing pro-738

cess, T = 1, 0.48, 10−4, and for different number of search paths, ranging from739

1 to 16. The computing time of each evaluation for this test is 2.8 seconds in740

our hardware configuration. We want to remind that when doing more than741

one search, the searches are distributed among the number of CPU cores, and742

that for BHM this number of evaluations include the three extra evaluations743

performed for computing the gradients. In Table 3 we show the parallel com-744

putational efficiency, in terms of the speedup, when using multiple cores for745

performing 16 search paths, with a number of threads ranging from 1 to 16.746
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Figure 8: Evolution of the cost function for 20 optimization experiments. The gray shade
denotes the spread (the range of maximum-minimum cost) and the squared line the average
of the 20 experiments.

Next, we check the convergence of the algorithm to the global optimum747

when a lower number of measure points is used. We made the experiment of748

considering the time series of the free surface only at tide-gauge G4, or only at749
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r θ n Cost func.

0.35 12 0.0002 1.19× 10−5

0.35 12 0.0004 9.34× 10−5

0.35 25 0.0002 2.90× 10−5

0.35 25 0.0004 6.53× 10−5

0.35 37 0.0002 3.50× 10−5

0.35 37 0.0004 6.41× 10−5

0.55 12 0.0002 1.89× 10−5

0.55 12 0.0004 8.75× 10−5

0.55 25 0.0002 6.89× 10−5

0.55 25 0.0004 2.75× 10−5

0.55 37 0.0002 2.06× 10−5

0.55 37 0.0004 8.33× 10−5

0.75 12 0.0002 5.49× 10−5

0.75 12 0.0004 8.61× 10−5

0.75 25 0.0002 4.81× 10−5

0.75 25 0.0004 8.96× 10−5

0.75 37 0.0002 4.62× 10−5

0.75 37 0.0004 2.21× 10−5

Table 5: Values of the cost function for several data assimilations.

tide-gauges G3-G4. In Table 4 we show the value of the cost function together750

with the obtained set of parameters using only data from G4, and the same751

information when calibrating against tide-gauges G3-G4. As expected, the value752

of the cost function is better when taking the four tide-gauges.753

4.1.2. Synthetic test 2754

Secondly, we ran a pool of 20 independent optimization experiments with755

our set up, each optimization starting from different initial parameter values,756

randomly chosen in the search domain, and each test used a different seed for the757

creation of the random numbers consumed by the algorithm in order to explore758

the search domain, i.e. each experiment performed a seek of the minimum759

from a different starting point along a different search path. Figure 8 shows the760

evolution of the cost function and its spread for the 20 optimization experiments.761

The spread is defined by the range of the maximum value of the cost function762

and its minimum in the set of the 20 optimizations at each temperature step.763

The average of the 20 realizations was also computed. More precisely at each764

temperature, the worse, the best, and the average of the best points visited by765

each one of the twenty minimizers up to the current temperature, are shown.766

All experiments show an asymptotic reduction of the values of the cost function767

toward the same zero value, and none of the optimizations ends up in a local768

minimum. Therefore, this study clearly shows that this stochastic approach769

(hybrid local-global optimization) is suitable to find the global minimum of a770
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structurally complicated cost function.771

4.1.3. Synthetic test 3772

Finally, we sampled the search domain with 18 sets of parameters, for all of773

them, once more we generated the corresponding synthetic tests and performed774

a successful data assimilation, these experiments being summarized on Table 5.775

We note that with this pool of data we swimmingly calibrated the model to all776

types of waves varying from those with very high amplitudes to the flat ones,777

see Figure 9. Notice that this smoothing effect was obtained by increasing more778

and more the ratio of densities r and the Coulomb angle θ. Therefore, the issue779

of identifiability is accomplished for the very different types of possible waves.780
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(a) r = 0.3, θ = 12, n = 0.0002.
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(b) r = 0.5, θ = 22, n = 0.0002.
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(c) r = 0.6, θ = 31, n = 0.0004.
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(d) r = 0.8, θ = 39, n = 0.0004.

Figure 9: Synthetic generated series vs calibrated ones. In red, target series that are a
priori generated with a set of known parameters. In blue, simulated series obtained with the
assimilated parameters achieved with the global optimizer.

4.2. Application to a laboratory test with real data781

In this experiment we performed the data assimilation for a real situation782

where laboratory series of the free surface for four measure points were given.783
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The experiment was performed at École Centrale de Marseille (IRPHE), France,784

[82]. The positions of the measure buoys were once more 1.87, 2.87, 3.87 and785

4.87 meters. The time series for these points are shown in Figure 10. These786

time series, together with the description of the experiment and some videos,787

are available in the web page [83].788
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Figure 10: Series measured in laboratory experiments.

One more time, first we show that the results obtained with a multi-start789

algorithm are worse than those obtained with a hybrid multi-path algorithm.790

For example, if we apply a multi-start L-BFGS-B to this problem, the ob-791

tained solution does not match adequately the laboratory data (see Figure 11).792

This experiment corresponds with launching only one temperature step of BHM793

with 32 paths, and the set of obtained parameters is (r, θ, n) = (4.632742 ×794

10−01, 9.48064720o, 8.176018× 10−1), for which the value of the cost function is795

1.321301× 10−01.796

After global calibration with BHM, the results can be seen in Figures 12 and797

13. The obtained values for the parameters are shown in Table 6 and the value798

of the cost function is 1.224355× 10−1.799

In those figures we can see that with the calibrated set of parameters a good800

agreement in the signals amplitudes and pulses is obtained, between laboratory801

and simulated data. The approximation is even better up to the 4th second (see802

Figure 12). The matching is quite good at initial seconds, and it becomes worse803

as time evolves. Also we see a better agreement for the farthest tide-gauges,804

G3 and G4, and it becomes worse the closer we are to the the initial position805

of the landslide, close to tide-gauge G1. The amplitudes of the signal are very806

well captured by the model. The period (pulses, maximums and minima of the807

signal) is well captured for the last three tide-gauges until the fourth second,808
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Figure 11: Multi start solution with 32 L-BFGS-B local searches: computed signals in blue
and laboratory data in red.

and there is a little gap from that time on. The first tide-gauge is difficult to809

be captured by the model. Further investigation should be done. In fact, at810

this early stage, compaction and dilatancy effects are quite important, and they811

are not taken into account in the here considered landslide model. Therefore, a812

more accurate model for the landslide motion is needed to better simulate this813

early stages of the landslide motion.814

Newly in this laboratory experiment we repeated the practice of using a815

lower number of measure points. We made the test of considering the free816

surface series only at tide-gauge G4, or only at tide-gauges G3-G4, the results817

can be seen in Table 6. The obtained error considering the four series until time818

T = 8 seconds, using the parameters calibrated with only the last tide-gauge819

G4, is 1.31589 × 10−1. Besides, the obtained error considering the four series,820

using the parameters calibrated with only the last two tide-gauges G3-G4 is821

1.24279× 10−1. The result is not too poor when considering only the measures822

of the last tide-gauge, nevertheless it is off course much better when considering823

G3-G4. Using the last two tide-gauges, the free surface series are quite close to824

the best obtained result using the four tide-gauges, and also interesting is the825

fact that the set of parameters gets closer to the ones obtained with the four826

tide-gauges.827
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Figure 12: Laboratory series vs calibrated ones. Lab series in red, simulated series in blue.
From top to bottom, free surface at tide-gauges G1, G2, G3 and G4.

Parameters
Gauges r θ n Cost func.

G1-G2-G3-G4 0.6501164 6.03510265o 4.3690× 10−4 1.224355× 10−1

G3-G4 7.080885× 10−1 5.38770216o 3.144702× 10−4 1.24279× 10−1

G4 7.633579× 10−1 5.16240342o 2.397312× 10−4 1.31589× 10−1

Table 6: Obtained values of the parameters and value of cost function.

5. Conclusions828

We have shown that hybrid multi-path global optimization algorithms can829

be suitable for solving the data assimilation problem for models of submarine830

avalanches.831

Besides, we have assessed the identifiability of the model, if only data of the832

free surface is available, i.e. we have checked that the data assimilation problem833

is well posed when calibrating only against measures of the fluid free surface.834

We have discussed that using a local optimizer or a multi-start technique835

produces poor results, and that the consideration of global optimization algo-836

rithms is more suitable for this kind of problems. We have also exhibited that837
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Figure 13: Laboratory series vs calibrated ones. Lab series in red, simulated series in blue.
From top to bottom, free surface at tide-gauges G1, G2, G3 and G4.

the problem can be solved using gradient numerical optimization algorithms in838

the local part.839

This calibration procedure/technique results also interesting because it al-840

lows to measure the quality of the model: the quality of two different models can841

be quantitative (not only qualitative) compared attending to the result of the842

calibration. It provides us with a machinery for comparing the good properties843

of different models. The one with the lowest minimum, can be quantitative said844

to better approximate the real physical problem.845

The laboratory experiment is quite challenging. The obtained results look846

promising, although a perfect match between laboratory data and the calibrated847

model has not been achieved due to limitations of the underlying model. In848

any case, we have shown that the multi-path BH algorithm could be used to849

calibrate this kind of problems. Moreover, this opens the door to the use of this850

global optimization machinery for real problems, and in particular, for helping851

in developing better models for landslide tsunamis and assessing their precision852

and adjustment to the laboratory data.853
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