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In this article we derive partial differential equations (PDEs) for pricing interest rate derivatives under the 
generalized Forward Market Model (FMM) recently presented by A. Lyashenko and F. Mercurio in [1] to model 
the dynamics of the Risk Free Rates (RFRs) that are replacing the traditional IBOR rates in the financial industry. 
Moreover, for the numerical solution of the proposed PDEs formulation, we develop some adaptations of the finite 
differences methods developed in [2] that are very suitable to treat the presence of spatial mixed derivatives. 
This work is the first article in the literature where PDE methods are used to value RFR derivatives. Additionally, 
Monte Carlo-based methods will be designed and the results are compared with those obtained by the numerical 
solution of PDEs.
1. Introduction

For decades, financial institutions have been using InterBank Of-

fered Rates (IBORs) as reference rates to determine interest or as un-

derlyings of derivatives in several currencies, perhaps the more popular 
example being the London InterBank Offered Rate (LIBOR). More than 
350 trillion dollars in derivatives and other financial products are tied 
to these rates.

IBORs reflect the average unsecured short-term interest rate at 
which large global banks can borrow from each other. They are based 
on surveys to banks and not on real transactions.

At the beginning of the 21st century, several big banks manipulated 
the interest rate they reported that they could borrow at. Firstly, to al-

low their traders, who were taking derivative bets on where this IBOR 
would be, to make more money because the rate was artificially dis-

torted. Later, in the depth of the 2008 financial crisis, banks again 
manipulated IBORs, this time not to make profits from derivatives trad-

ing, but to make themselves look financially stronger than they were 
[3–6].

In view of previous IBORs scandals, a few years ago financial author-

ities worldwide initiated the replacement of IBORs with alternative Risk 
Free Rates (RFRs). RFRs are reported to be robust because they rely on 
real transactions. The whole banking industry is adapting its products 
by offering them based on RFR for new trades (see [7,8], for exam-
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ple). This transition, known as IBOR transition, is complex for clients, 
dealers, and financial authorities.

In fact, on December 31st, 2021, some IBORs ceased to be published 
and became non-representative. This concerned all tenors of IBOR 
Japanese Yen, British Pounds, Swiss Francs, Euros, and two tenors of 
IBOR USD dollars. Recently, on June 30th, 2023, the remaining tenors 
of IBOR USD dollars also stopped being reported and became irrelevant. 
For the time being, all major economies have selected RFRs to replace 
their corresponding IBORs. For example, the United States of America 
adopted SOFR (Secured Overnight Financing Rate), the European Union 
selected ESTER (Euro Short-TErm Rate), the United Kingdom designed 
SONIA (Sterling OverNight Index Average), Switzerland took SARON 
(Swiss Average Rate OverNight), and Japan selected TONAR or TONA 
(Tokyo OverNight Average Rate).

The main general features of RFRs are the following. Firstly, RFRs 
are overnight rates and not term rates like IBORs (i.e. one week, one 
month, three months, ...). Secondly, by definition, RFRs are backward-

looking, which means that the rate to be paid for the application period 
is calculated by reference to historical transaction data and set at the 
end of that time interval. Unlike RFRs, IBORs are forward-looking rates, 
meaning that the rate to be paid for the application period is set at the 
beginning of that time interval. Additionally, RFRs are risk-free since 
one-day credit risk can be neglected. On top of that, RFRs not only rep-

resent the interbank market; in fact they are rates for the entire market.
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The LIBOR Market Model (LMM) was widely used by financial insti-

tutions for the valuation of interest rate derivatives based on IBORs (see 
the seminal works [9,10] and the book [11], for example). The main 
reason behind its great success comes from the fact that LMM considers 
rate dynamics consistent with the well-established Black-Scholes mar-

ket formulas for pricing caplets and swaptions. Since then, a lot of work 
has been devoted to the pricing of interest rate derivatives by using dif-

ferent methods, such as Monte Carlo or PDEs. Particularly, concerning 
PDEs formulations, the pricing of some complex derivatives with clas-

sical LMM has been addressed in [12–15], among others. Extensions of 
the LMM framework to incorporate stochastic volatility have been dis-

cussed in [16–19] and references therein, with a first formulation in 
terms of PDEs developed in [20]. Thus, in the setting of LMM, the for-

mulation in terms of PDEs for pricing different interest rate derivatives 
has been widely studied. It is important to notice that the LMM con-

templates only forward-looking rates. Therefore, it is no longer valid 
to price financial products based on the new RFRs, that are backward-

looking.

Nowadays, the community working on quantitative finance is very 
active in proposing new mathematical models able to price the new 
derivatives based on RFRs. Having in mind that RFRs can be converted 
into compounded setting-in-arrears term rates, mathematical models 
for pricing RFR-based derivatives can mainly follow two different ap-

proaches. The first strategy is to directly simulate daily the underlying 
RFRs in their corresponding application periods. The second approach 
models term rates based on RFRs. The most promising interest rate 
model following the second strategy is the one proposed by Lyashenko 
and Mercurio in [1]. This model, referred to as the generalized Forward 
Market Model (FMM), is the main starting point in this work.

The FMM is a modeling framework that allows for the joint mod-

eling of forward-looking and backward-looking rates inside the same 
parsimonious setup. Actually, FMM is an extension of the successful 
LMM. More precisely, in the post-LIBOR world, IBORs have to be re-

placed with some more general forward rates, and that is exactly what 
explains the term generalized forward market model that has been coined 
for this new setting.

FMM accommodates both forward-looking and backward-looking 
rates inside the same framework in a very natural way. Indeed, the 
FMM incorporates additional advantages over the LMM. One of them 
comes from the possibility of modeling rates directly under the classic 
risk-neutral money-market measure, something that was not possible 
with the LMM. In [21], Lyashenko and Mercurio explain how to com-

plete the FMM in order to generate rates that are outside the given 
time grids that are initially assigned to the model. The authors build a 
general Heath–Jarrow–Morton (HJM) model that originates the FMM. 
Once this HJM model is constructed, since it is very general, one can 
create general rates and discount factors. This approach was not possi-

ble in the classical LMM. In fact, under LMM the approach is usually 
to complete the model by adding some interpolation method, which is 
typically called rate interpolation.

In order to price RFR-based derivatives under the FMM when the 
payoff depends on the joint distribution of several interest rates, numer-

ical methods must be considered. For this purpose, expectation-based 
formulations or PDE-based formulations of the pricing problem can be 
mainly used. Although the standard approach uses Monte Carlo simula-

tions for expectation-based formulations, it exhibits several drawbacks 
when pricing interest rate derivatives, as it has been pointed out in [20], 
for example. Although some disadvantages could be smoothed or even 
removed by enhanced Monte Carlo techniques applied to specific inter-

est rate derivatives, the pricing of early exercise derivatives based on 
RFRs, like Bermudan swaptions, would require a highly computational 
demanding suitable adaption of Monte Carlo methodology. In the PDEs 
formulation setting, pricing these interest rate derivatives does not in-

volve a huge increase of computational time with respect to analogous 
derivatives without early exercise opportunity.
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These previous arguments motivate the interest in developing suit-

able PDE formulations for solving the pricing problem in the new re-

cently established FMM model. In this work, we formulate the pricing 
of RFRs derivatives under the FMM in terms of PDEs. To the best of our 
knowledge, our presentation is the first in the literature.

Moreover, we present an efficient and recent numerical algorithm 
to approximate the solution of the proposed PDEs formulation by using 
finite differences and the AMFR-W1 method for the time integration, 
as already used in [2]. This method belongs to the class of AMFR-W-

methods [22,23], which are very efficient when dealing with parabolic 
problems involving mixed derivatives, as they avoid computing explic-

itly the part of the Jacobian that includes the discretization of such 
mixed derivatives. In [2], a numerical strategy that combines appro-

priate finite differences schemes to deal with terms containing mixed 
derivatives with sparse grids technique has been successfully used for 
pricing interest rate derivatives when classical LMM for forward rates 
including stochastic volatility is considered.

However, in the present work, our aim will be different. More pre-

cisely, as the payoff function of the derivative that determines the 
dynamics of the PDE has differentiability issues near the strike values, 
we have explored the integration on non-uniform meshes, which con-

tain many more points near the payoff non-differentiability area than 
in the rest of the domain. As we will see, the consideration of appro-

priate non-uniform meshes improves the accuracy and reliability of the 
approximation and we will obtain an approximation of higher quality 
than that provided by the Monte Carlo method, at least when the “spa-

tial”1 dimension of the PDE is less than or equal to 4. The application of 
sparse grids to solve the so-called curse of dimensionality in these PDEs 
will be left for future work.

The article is organized as follows. In Section 2 we review the ex-

tended zero-coupon bonds, which are the cornerstone of the recent 
FMM. A detailed description of how this concept of extended bonds 
allows to define not only the classical forward-looking forward rates 
but also the novel backward-looking forward rates, is also carried out. 
Besides, a thorough illustration of how to compute the extended dis-

count factors from forward rates values is presented. In Section 3 the 
system of stochastic differential equations (SDEs) of the FMM is intro-

duced, considering joint dynamics for the interest rates. In Section 4, we 
derive the PDEs for the FMM. Next, numerical methods to price deriva-

tives under the FMM are designed in Section 5. In Section 6, numerical 
experiments are carried out to assess the behavior of the developed nu-

merical methods. Finally, conclusions and future work are discussed in 
Section 7.

2. Main assumptions, definitions and notations

In this section, we present the basic notations and definitions that 
will be used throughout the article. A continuous-time financial market 
is considered. It has an instantaneous RFR whose value at time 𝑡 is 
denoted by 𝑟(𝑡).

Definition 2.1 (Bank account). Let 𝐵(𝑡) be the value of the bank account 
at time 𝑡 ≥ 0. 𝐵 is the classic process that satisfies the ordinary differen-

tial equation d𝐵(𝑡) = 𝑟(𝑡)𝐵(𝑡) d𝑡 with 𝐵(0) = 1, so that 𝐵(𝑡) = 𝑒∫ 𝑡
0 𝑟(𝑢)d𝑢.

Moreover, we assume the existence of a risk-neutral measure , 
whose associated numeraire is the bank account 𝐵 we have just defined. 
Besides, 𝔼 will denote the expectation with respect to the risk-neutral 

1 When working with time-dependent PDEs such as the ones we consider in 
this work, it is common to use physics-like terminology where the word “spa-

tial” refers to variables other than time. In our case, the “spatial” variables are 
the forward rates, so that the number of these rates is the “spatial dimension” 
of the PDE. In what follows, we will use this terminology.
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measure, and 𝑡 will be the 𝜎-algebra generated by risk factors up to 
the evaluation time.

Definition 2.2 (Zero-coupon bond price). A zero-coupon bond with ma-

turity 𝑇 is a very simple contract that pays its holder one unit of cur-

rency at time 𝑇 , with no intermediate payments. For 𝑡 < 𝑇 , let 𝑃 (𝑡, 𝑇 )
be the value at time 𝑡 of this product. We have the following valuation 
formula, which is given by risk-neutral pricing:

𝑃 (𝑡, 𝑇 ) = 𝔼
[
𝑒− ∫ 𝑇

𝑡 𝑟(𝑢)d𝑢|||𝑡

]
. (1)

Note that 𝑃 (𝑇 , 𝑇 ) = 1 for all 𝑇 .

The formula (1) is clearly defined for valuation times 𝑡 before the 
maturity 𝑇 (𝑡 ≤ 𝑇 ) since one wants to calculate the bond price before it 
expires. In the new FMM framework, the advantage is that it is math-

ematically possible to define 𝑃 (𝑡, 𝑇 ) even for those times 𝑡 after the 
maturity 𝑇 (𝑡 > 𝑇 ).

Definition 2.3 (Extended zero-coupon bond price). For 𝑡 > 𝑇 , Equation 
(1) reduces to

𝑃 (𝑡, 𝑇 ) = 𝔼
[
𝑒∫ 𝑡

𝑇 𝑟(𝑢)d𝑢|||𝑡

]
= 𝑒∫ 𝑡

𝑇 𝑟(𝑢)d𝑢 = 𝐵(𝑡)
𝐵(𝑇 )

. (2)

Note that 𝑃 (𝑡, 0) = 𝐵(𝑡).

One must observe that the integral in equation (1) can be also de-

fined for 𝑡 > 𝑇 , and it is equal to 𝑒∫ 𝑡
𝑇 𝑟(𝑢)d𝑢, which is measurable with 

respect to 𝑡. Then, using properties of conditional expectations, the 
conditioned expected value is equal to the term inside (see [24], for ex-

ample). Finally, one just uses the definition of 𝐵(𝑡) to obtain that the 
price of the bond after its maturity is equal to the bank account at the 
valuation time 𝑡 divided by the bank account at the maturity 𝑇 .

This concept of extended zero coupon bonds is taken from [1]. Al-

though it was already considered in [25] and [26] to define hybrid 
numeraires and measures, in [1] it is used for the first time to extend 
the definition from forward-looking to backward-looking rates, so that 
also forward rates can be appropriately extended after their maturity 
dates.

Definition 2.4 (Extended 𝑇 -forward measure). The extended 𝑇 -forward 
measure, denoted by 𝑇 , is the martingale measure associated with 
the extended bond price 𝑃 (𝑡, 𝑇 ). Note that the risk-neutral measure is 
a particular case of the extended 𝑇 -forward measure where 𝑇 = 0, i.e.

 =0.

2.1. The compounded setting-in-arrears term rate

Financial derivatives written on RFRs consider as underlyings daily 
compounded setting-in-arrears term rates, which by definition are 
backward-looking in nature. Hereafter, 𝑁 ≥ 1 denotes the number of 
rates to be modeled. Let us define them in the next paragraphs.

We start with the tenor structure 0 = 𝑇0 < 𝑇1 < … < 𝑇𝑁 . Let 𝜏𝑘 be 
the year fraction of the 𝑘-th time interval [𝑇𝑘−1, 𝑇𝑘). Next, we define 
the backward-looking spot rate.

Definition 2.5 (Backward looking spot rate). The simple backward-

looking spot rate is defined as

𝑅(𝑇𝑘−1, 𝑇𝑘) =
1
𝜏𝑘

[
𝑒
∫ 𝑇𝑘
𝑇𝑘−1

𝑟(𝑢)d𝑢
− 1

]
= 1

𝜏𝑘

[
𝐵(𝑇𝑘)

𝐵(𝑇𝑘−1)
− 1

]
= 1

𝜏𝑘

[
𝑃 (𝑇𝑘, 𝑇𝑘−1) − 1

]
.

𝑅(𝑇𝑘−1, 𝑇𝑘) is the simple interest rate such that the investment of one 
unit of currency at time 𝑇𝑘−1 yields 𝑃 (𝑇𝑘, 𝑇𝑘−1) units of currency at 
time 𝑇𝑘.
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𝑡 𝑇𝑘−1 𝑇𝑘

↑

𝜏𝑘(𝑅(𝑇𝑘−1, 𝑇𝑘) −𝐾𝑅)

Fig. 1. Swaplet based on the backward-looking rate.

𝑡 𝑇𝑘−1 𝑇𝑘

↑

𝜏𝑘(𝐹 (𝑇𝑘−1, 𝑇𝑘) −𝐾𝐹 )

Fig. 2. Swaplet based on the forward-looking rate.

Additionally, we also need to consider forward-looking rates, which 
are the same as in the LMM (see [11]).

Definition 2.6 (Forward-looking spot rate). The simple forward-looking 
spot rate is defined as

𝐹 (𝑇𝑘−1, 𝑇𝑘) =
1
𝜏𝑘

[
1

𝑃 (𝑇𝑘−1, 𝑇𝑘)
− 1

]
.

𝐹 (𝑇𝑘−1, 𝑇𝑘) is the simple interest rate such that the investment of 
𝑃 (𝑇𝑘−1, 𝑇𝑘) units of currency at time 𝑇𝑘−1 yields one unit of currency at 
time 𝑇𝑘.

2.2. Forward rates

Once we have defined spot rates, we move to the definition of for-

ward rates.

Definition 2.7 (Backward-looking forward rate). The simple com-

pounded backward-looking forward rate prevailing at time 𝑡 for the 
time interval [𝑇𝑘−1, 𝑇𝑘) is denoted by 𝑅𝑘(𝑡) and defined by

𝑅𝑘(𝑡) =
1
𝜏𝑘

(
𝑃 (𝑡, 𝑇𝑘−1)
𝑃 (𝑡, 𝑇𝑘)

− 1
)

. (3)

It is the value of the fixed rate 𝐾𝑅 in the swaplet paying 𝜏𝑘(𝑅(𝑇𝑘−1, 𝑇𝑘) −
𝐾𝑅) at time 𝑇𝑘, such that this product has zero value at time 𝑡 (see 
Fig. 1). Note that the definition (3) is valid for all times 𝑡, even those 
times 𝑡 > 𝑇𝑘. The rate 𝑅𝑘(𝑡) satisfies the following properties:

• 𝑅𝑘(𝑇𝑘−1) = 𝐹 (𝑇𝑘−1, 𝑇𝑘), i.e., at time 𝑇𝑘−1 it is equal to the forward-

looking spot rate.

• 𝑅𝑘(𝑇𝑘) = 𝑅(𝑇𝑘−1, 𝑇𝑘), i.e., at time 𝑇𝑘 it is equal to the backward-

looking spot rate.

• For 𝑡 > 𝑇𝑘, 𝑅𝑘(𝑡) = 𝑅(𝑇𝑘−1, 𝑇𝑘), i.e., after time 𝑇𝑘 it stops evolving.

Definition 2.8 (Forward-looking forward rate). The simple compounded 
forward-looking forward rate prevailing at time 𝑡 for the time interval 
[𝑇𝑘−1, 𝑇𝑘) is denoted by 𝐹𝑘(𝑡) and defined by

𝐹𝑘(𝑡) =
{

𝑅𝑘(𝑡) if 𝑡 ≤ 𝑇𝑘−1
𝐹 (𝑇𝑘−1, 𝑇𝑘) if 𝑡 > 𝑇𝑘−1.

(4)

It is the value of the fixed rate 𝐾𝐹 in the swaplet paying 𝜏𝑘(𝑅(𝑇𝑘−1, 𝑇𝑘) −
𝐾𝐹 ) at time 𝑇𝑘 such that this product has zero value at time 𝑡, see Fig. 2.

So we have defined two types of forwards: the forward of the 
backward-looking rate and the forward of the forward-looking rate. 
Nevertheless, for each 𝑘 = 1, … , 𝑁 , the backward-looking forward rate 
𝑅𝑘 and the forward-looking forward rate 𝐹𝑘 can be modeled by a sin-

gle rate, the forward of the backward-looking rate 𝑅𝑘 . In fact, before 
the beginning of the application interval [𝑇𝑘−1, 𝑇𝑘), the two forwards 
are the same and given by the process 𝑅𝑘. At time 𝑇𝑘−1, 𝑅𝑘 sets at the 
forward-looking spot rate. Note that in the old LMM, 𝑅𝑘 will end at time 
𝑇𝑘−1. Instead, in the FMM the rate still exists and continues to evolve. In 
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fact, it evolves until the time 𝑇𝑘, where it fixes to the backward-looking 
spot rate. After time 𝑇𝑘, it continues to exist, and it is a constant.

2.3. Computation of extended discount factors from forward rates values

In this subsection we summarize how to compute 𝑃 (𝑇𝑖, 𝑇𝑗 ):

𝑃 (𝑇𝑖, 𝑇𝑗 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑗∏
𝑘=𝑖+1

1
1 + 𝜏𝑘𝑅𝑘(𝑇𝑖)

if 𝑇𝑖 < 𝑇𝑗 ,

1 if 𝑇𝑖 = 𝑇𝑗 ,
𝑖∏

𝑘=𝑗+1

(
1 + 𝜏𝑘𝑅𝑘(𝑇𝑘)

)
if 𝑇𝑖 > 𝑇𝑗 .

(5)

We can abridge these three cases in the following formula

𝑃 (𝑇𝑖, 𝑇𝑗 ) = 𝑃 (𝑇𝑖, 𝑇0)
𝑗∏

𝑘=1

1
1 + 𝜏𝑘𝑅𝑘(𝑇𝑖)

,

with the equality holding for 𝑇𝑖 = 𝑇𝑗 , 𝑇𝑖 < 𝑇𝑗 or 𝑇𝑖 > 𝑇𝑗 , and being valid 
for 𝑗 > 0. The case 𝑗 = 0 is just the bank account, i.e.,

𝐵(𝑇𝑖) = 𝑃 (𝑇𝑖, 𝑇0) =
𝑖∏

𝑘=1

(
1 + 𝜏𝑘𝑅𝑘(𝑇𝑘)

)
.

3. The generalized FMM

In order to create a proper market model, it is not enough to model 
just the evolution of a single rate. Indeed, we need to model the evolu-

tion of the forward rates jointly. This is the objective of this section: we 
model the evolution of the forward rates under a common probability 
measure.

Also in the FMM, we can specify the forward rate dynamics under 
the classic spot-LIBOR measure 𝑑 and the general 𝑇𝑘-forward measure 
𝑇𝑘 . In fact, the FMM dynamics under 𝑑 and 𝑇𝑘 are the same as those 
of the corresponding LMM (see [11], for example).

Thanks to the Definition 2.3 of extended bond prices, the new FMM 
allows also for forward-rates dynamics under the risk-neutral measure 
. This is a great advantage, which was not possible in the old LMM 
world. In fact, as previously stated, the bank account is a zero maturity 
zero coupon bond, i.e. a bond that instantaneously matures and directly 
transforms into the bank account, 𝑃 (𝑡, 0) = 𝐵(𝑡). So, the risk-neutral 
measure , associated with the bank account as numeraire, can be seen 
as a forward measure, i.e. the forward measure associated with the zero 
maturity bond. Therefore, one can derive  dynamics for the forward 
rates.

From now on in this article, we will restrict ourselves to the risk-

neutral measure . Each forward rate 𝑅𝑘, 𝑘 = 1, … , 𝑁 , is modeled

as a continuous time stochastic process 𝑅𝑘(𝑡). The dynamics of the 
forward processes are driven by a 𝑁 -dimensional correlated Wiener 
processes 𝑊 

1 (𝑡), … , 𝑊 
𝑁
(𝑡) under measure . In order to streamline 

the notation along the article, we let 𝑊𝑘(𝑡) = 𝑊 
𝑘
(𝑡), for 𝑘 = 1, … , 𝑁 . 

Let 𝜌𝑖𝑗 denote the correlation coefficient between 𝑊𝑖(𝑡) and 𝑊𝑗 (𝑡), i.e.

𝔼[d𝑊𝑖(𝑡)d𝑊𝑗 (𝑡)] = 𝜌𝑖𝑗d𝑡, where d𝑊𝑘(𝑡) denotes the increment of the 
Wiener process 𝑊𝑘(𝑡) under the measure . The system of SDEs of the 
FMM takes the form

d𝑅𝑘(𝑡) = 𝜇𝑘(𝑡)d𝑡+ 𝜈𝑘(𝑡)d𝑊𝑘(𝑡), 𝑘 = 1,… ,𝑁, (6)

where 𝜇𝑘(𝑡) and 𝜈𝑘(𝑡) are the drift and diffusion terms of the forward 
rate 𝑅𝑘(𝑡), respectively. The drift terms are determined by requiring a 
lack of arbitrage. The diffusion terms have to capture the fact that the 
process 𝑅𝑘(𝑡) will not be killed at 𝑡 = 𝑇𝑘−1 as it happened in the classic 
LMM. In the FMM we need to define dynamics of the forward rates 
𝑅𝑘(𝑡) inside their application periods [𝑇𝑘−1, 𝑇𝑘). Besides, the volatility 
of 𝑅𝑘(𝑡) inside [𝑇𝑘−1, 𝑇𝑘) goes down progressively to zero: it becomes 
91
smaller and smaller until reaching the value zero at 𝑇𝑘. In order to 
model this behavior, the system (6) is modified in the following way

d𝑅𝑘(𝑡) = 𝜇𝑘(𝑡)d𝑡+ 𝜈𝑘(𝑡)𝛾𝑘(𝑡)d𝑊𝑘(𝑡), 𝑘 = 1,… ,𝑁, (7)

where the new parameter 𝛾𝑘(𝑡) incorporates the volatility decay in the 
model. Therefore, the volatility is decomposed in two components, one 
is the classic LMM volatility 𝜈𝑘(𝑡), while 𝛾𝑘(𝑡) is a deterministic function 
to control the volatility decay. This function 𝛾𝑘 is equal to one up to the 
beginning of the interval [𝑇𝑘−1, 𝑇𝑘) and is equal to zero at 𝑇𝑘 to model 
the fact that the rate has expired. Moreover, 𝛾𝑘 should be differentiable 
and decrease down to zero (going from one to zero) inside the interval 
[𝑇𝑘−1, 𝑇𝑘). For example, in the Ho-Lee model, the volatility decay is 
linear inside the application period, thus 𝛾𝑘 is defined as:

𝛾𝑘(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑡 ≤ 𝑇𝑘−1,

𝑇𝑘 − 𝑡

𝑇𝑘 − 𝑇𝑘−1
if 𝑡 ∈ (𝑇𝑘−1, 𝑇𝑘),

0 if 𝑡 ≥ 𝑇𝑘.

(8)

Let 𝜎𝑘(⋅) be a deterministic function of time 𝑡. Some standard volatil-

ity specifications are the following. In the so-called normal model, 
𝜈𝑘(𝑡) = 𝜎𝑘(𝑡). For the lognormal model, 𝜈𝑘(𝑡) = 𝜎𝑘(𝑡)𝑅𝑘(𝑡), while for 
the shifted-lognormal model, which allows for negative rates, 𝜈𝑘(𝑡) =
𝜎𝑘(𝑡)(𝑅𝑘(𝑡) + 𝜗𝑘), where 𝜗𝑘 is a positive constant. For the CEV model 
𝜈𝑘(𝑡) = 𝜎𝑘(𝑡)𝑅𝑘(𝑡)𝛽𝑘 , where 0 ≤ 𝛽𝑘 ≤ 1. In the following, except where 
otherwise indicated, we will assume a general model specification, i.e. 
we let 𝜈𝑘 a general adapted process.

Under the measure 𝑘 associated with the numeraire 𝑃 (𝑡, 𝑇𝑘), 𝑅𝑘 is 
a martingale, i.e. 𝑅𝑘 is the driftless process d𝑅𝑘(𝑡) = 𝜈𝑘(𝑡)𝛾𝑘(𝑡)d𝑊

𝑘

𝑘
(𝑡), 

where 𝑊 𝑘

𝑘
denotes a Wiener process under measure 𝑘. In order to 

model all forward rates 𝑅𝑘, 𝑘 = 1, … , 𝑁 jointly, the computation of the 
dynamics of each forward rate under a common probability measure is 
needed. In this work, we will consider as numeraire the bank account 
𝐵(𝑡) = 𝑃 (𝑡, 0). As previously stated, the probability measure associated 
with this numeraire is the risk-neutral measure .

Under the probability measure  the price of the bonds 𝑃 (𝑡, 𝑇𝑘)
divided by the numeraire 𝐵(𝑡) = 𝑃 (𝑡, 𝑇0) must be martingales. By using 
this condition, the drifts 𝜇𝑘(𝑡) for the forward rates can be computed 
starting from 𝑅1 until 𝑅𝑁 , thus obtaining (see [1] for details)

𝜇𝑘(𝑡) = 𝜈𝑘(𝑡)𝛾𝑘(𝑡)
𝑘∑

𝑖=1
𝜌𝑖𝑘

𝜏𝑖𝜈𝑖(𝑡)𝛾𝑖(𝑡)
1 + 𝜏𝑖𝑅𝑖(𝑡)

. (9)

Since 𝛾𝑘(𝑡) = 0 for 𝑡 ≥ 𝑇𝑘, 𝜇𝑘 can be better expressed in terms of the 
index function

𝜂(𝑡) = min{𝑗, 𝑇𝑗 ≥ 𝑡}, (10)

which provides the index of the element in the tenor structure being 
not smaller than 𝑡 that is the nearest to time 𝑡. Therefore, we have

𝜇𝑘(𝑡) = 𝜈𝑘(𝑡)𝛾𝑘(𝑡)
𝑘∑

𝑖=𝜂(𝑡)
𝜌𝑖𝑘

𝜏𝑖𝜈𝑖(𝑡)𝛾𝑖(𝑡)
1 + 𝜏𝑖𝑅𝑖(𝑡)

. (11)

All in all, the dynamics of 𝑅𝑘 under the measure  satisfy the fol-

lowing system of SDEs:

d𝑅𝑘(𝑡) = 𝜈𝑘(𝑡)𝛾𝑘(𝑡)
𝑘∑

𝑖=𝜂(𝑡)
𝜌𝑖𝑘

𝜏𝑖𝜈𝑖(𝑡)𝛾𝑖(𝑡)
1 + 𝜏𝑖𝑅𝑖(𝑡)

d𝑡+ 𝜈𝑘(𝑡)𝛾𝑘(𝑡)d𝑊𝑘(𝑡), 𝑘 = 1,… ,𝑁.

(12)

4. PDE for the generalized FMM under the risk neutral measure

After the introduction of the generalized FMM in the previous sec-

tion, where the dynamics of the forward rates 𝑅𝑘 satisfy the system (12)



J.G. López-Salas, S. Pérez-Rodríguez and C. Vázquez Computers and Mathematics with Applications 169 (2024) 88–98
under the risk-neutral measure , in this section we derive the corre-

sponding PDE formulation for the pricing of interest rate derivatives 
without early exercise opportunity (also referred to as European inter-

est rate derivatives). As in the case of more classical models for interest 
rate derivatives, such as LMM, or any other derivatives, the statement 
of the PDEs formulation is based on the appropriate Feynman-Kàc the-

orem (see [11], for example). This theorem relates the formulation in 
terms of expectations with the one in terms of PDEs, so that the solution 
of the PDE represents the expectation of an appropriate process under 
a certain probability measure, in this case, we consider the risk-neutral 
one.

Proposition 4.1 (FMM PDE). Let 𝜂 be the index function defined in (10). 
Let 𝑅𝑚𝑖𝑛 ∈ℝ be a potentially negative lower bound for the rates (to include 
the relevant cases of shifted-lognormal models). Let 𝜈𝑘(𝑡) = 𝜈𝑘(𝑡, 𝑅𝑘(𝑡)) be a 
general instantaneous volatility for the forward rate 𝑅𝑘(𝑡). Under the risk-

neutral measure , the price of an interest rate derivative with maturity 
𝑇= 𝑇𝑘 > 𝑇0 = 0 (for some 𝑘 = 1, … , 𝑁), that depends on the fixing of the 
rates 𝑅1, … , 𝑅𝑁 , with payoff function 𝜑 ∶ [𝑅𝑚𝑖𝑛, ∞)𝑁 →ℝ, is given by

𝑉 (𝑡,𝑅1,… ,𝑅𝑁 ) = 𝑃 (𝑡, 𝑇0)Π(𝑡,𝑅1,… ,𝑅𝑁 ), 𝑡 ∈ [𝑇0, 𝑇 ],

where the relative price Π ∶ [𝑇0, 𝑇 ] × [𝑅𝑚𝑖𝑛, ∞)𝑁 →ℝ satisfies the PDE

𝜕Π
𝜕𝑡

+
𝑁∑

𝑘=1
𝜇𝑘(𝑡)

𝜕Π
𝜕𝑅𝑘

+ 1
2

𝑁∑
𝑘,𝑙=𝜂(𝑡)

𝜌𝑘𝑙𝜈𝑘(𝑡)𝛾𝑘(𝑡)𝜈𝑙(𝑡)𝛾𝑙(𝑡)
𝜕2Π

𝜕𝑅𝑘𝜕𝑅𝑙

= 0,

𝑡 ∈ [𝑇0, 𝑇 ),

(13)

along with the terminal condition

Π(𝑇 ,𝑅1,… ,𝑅𝑁 ) =
𝜑(𝑅1,… ,𝑅𝑁 )

𝑃 (𝑇 ,𝑇0)
, 𝑅1,… ,𝑅𝑁 ≥ 𝑅𝑚𝑖𝑛.

Proof. The derivative pays out 𝜑(𝑅1(𝑇 ), … , 𝑅𝑁 (𝑇 )) at the maturity 
date 𝑇 . Note that receiving an amount 𝑋 of money at time 𝑇 is equiv-

alent to receiving an amount 𝑋

𝐵(𝑇 )
= 𝑋

𝑃 (𝑇 ,𝑇0)
of 𝑇0-bonds. Therefore, 

the payoff can be interpreted as a relative payoff, in the sense that it is 
a payoff in terms of an amount of extended zero-coupon bonds matur-

ing at 𝑇0. If Π(𝑡, 𝑅1, … , 𝑅𝑁 ) denotes the time 𝑡 relative price of such a 
derivative, standard pricing theory states that

Π(𝑡,𝑅1,… ,𝑅𝑁 ) =
𝑉 (𝑡,𝑅1,… ,𝑅𝑁 )

𝑃 (𝑡, 𝑇0)
(14)

=𝔼
[

𝜑(𝑅1(𝑇 ),… ,𝑅𝑁 (𝑇 ))
𝑃 (𝑇 ,𝑇0)

|||||𝑡

]
,

which allows to write the relative price of the interest rate derivative in 
terms of an expectation under the risk-neutral probability measure.

We refer the reader to Section 2.3 to check how to compute 𝑃 (𝑇 , 𝑇0)
in terms of 𝑅1(𝑇 ), … , 𝑅𝑁 (𝑇 ). Having in mind that (12) describes the 
system of SDEs under the risk neutral measure , the corresponding 
infinitesimal generator 𝑅1 ,…,𝑅𝑁

of 𝑅1, … , 𝑅𝑁 is thus given by (see 
[27], for example):

𝑅1 ,…,𝑅𝑁
= 𝜕

𝜕𝑡
+

𝑁∑
𝑘=1

𝜇𝑘(𝑡)
𝜕

𝜕𝑅𝑘

+ 1
2

𝑁∑
𝑘,𝑙=1

𝜌𝑘𝑙𝜈𝑘(𝑡)𝛾𝑘(𝑡)𝜈𝑙(𝑡)𝛾𝑙(𝑡)
𝜕2

𝜕𝑅𝑘𝜕𝑅𝑙

.

Since 𝛾𝑘(𝑡) and 𝛾𝑙(𝑡) are zero for 𝑘, 𝑙 < 𝜂(𝑡) the infinitesimal generator 
can be written as

𝑅1 ,…,𝑅𝑁
= 𝜕

𝜕𝑡
+

𝑁∑
𝑘=1

𝜇𝑘(𝑡)
𝜕

𝜕𝑅𝑘

+ 1
2

𝑁∑
𝑘,𝑙=𝜂(𝑡)

𝜌𝑘𝑙𝜈𝑘(𝑡)𝛾𝑘(𝑡)𝜈𝑙(𝑡)𝛾𝑙(𝑡)
𝜕2

𝜕𝑅𝑘𝜕𝑅𝑙

.

Applying Feynman-Kac theorem, if Π satisfies the PDE

𝑅1 ,…,𝑅𝑁
Π= 0, (15)

Π(𝑇 , ⋅) = 𝜑(⋅)
, (16)

the
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n Π satisfies equation (14). □

PDE (13) diffuses a relative price, i.e., a price in terms of a bond. 
ter having numerically solved the PDE and thereby having obtained 
 time 𝑡 relative value function, the latter has to be multiplied by the 
e 𝑡 bond price 𝑃 (𝑡, 𝑇0) to obtain the absolute value price (the price 
the derivative itself). Note that if 𝑡 = 𝑇0, since 𝑃 (𝑇0, 𝑇0) = 1, then 
𝑇0, 𝑅1, … , 𝑅𝑁 ) =Π(𝑇0, 𝑅1, … , 𝑅𝑁 ).

Numerical methods

In this section, we design both stochastic and deterministic numeri-

 methods to price interest rate derivatives in the recently introduced 
M setting. Although there is a huge variety of products which could 

 priced, in this work we will consider swaptions. The main reason is 
t swaptions markets are one of the two main markets in the world of 

tions on interest rates (along with caps and floors). However, the pro-

sed methodology can be extended to a large variety of interest rate 
rivatives.

In this section and the forthcoming one about numerical results, for 
plicity we will consider the lognormal model for volatilities, i.e., we 
ume that 𝜈𝑘(𝑡) = 𝜎𝑘(𝑡)𝑅𝑘(𝑡) (therefore 𝑅𝑚𝑖𝑛 = 0). This model is one of 
 most popular, and it allows for a more straightforward presentation 
the proposed numerical methodologies.

. RFR swaptions

Let us start defining interest rate swaps (IRS). An IRS is a contract 
th a counterparty to exchange payments indexed to interest rates 
future fixed dates. At each time 𝑇𝑖, 𝑖 = 𝑎 + 1, … , 𝑏, the contract 
lder pays a fixed interest rate 𝐾 and receives the floating interest 
e 𝑅(𝑇𝑖−1, 𝑇𝑖) = 𝑅𝑖(𝑇𝑖). Therefore, at time 𝑇𝑎 the value of the swap is 
en by

(𝑇𝑎;𝑇𝑎,… , 𝑇𝑏) =
𝑏∑

𝑖=𝑎+1
𝑃 (𝑇𝑎, 𝑇𝑖)𝜏𝑖(𝑅𝑖(𝑇𝑎) −𝐾). (17)

 the underlying rates are RFRs, we can refer to it more precisely as 
 RFR swap.

Let us now define an option over an IRS with maturity at 𝑇𝑎 and 
ere the length of the underlying IRS is (𝑇𝑏 − 𝑇𝑎). We denote such a 

rivate as a swaption 𝑇𝑎 × (𝑇𝑏 −𝑇𝑎). A swaption is an option giving the 
ht to enter a swap at the swaption’s maturity date 𝑇𝑎. More precisely, 
 RFR swaption payoff at time 𝑇𝑎 is given by

x(IRS(𝑇𝑎;𝑇𝑎,… , 𝑇𝑏),0).

Since backward-looking and forward-looking forward rates with the 
e application period are equal at every time before the start of 

 period, backward-looking and forward-looking swaptions have the 
e value.

. Monte Carlo pricing of swaptions with the FMM

In the next paragraphs, we describe how to price RFR swaptions 
der the FMM using Monte Carlo simulation. The results obtained by 
s method will serve as benchmark prices for the forthcoming PDE 
merical solutions.

In terms of expectations, according to expression (14), the relative 
ce of the swaption 𝑇𝑎 × (𝑇𝑏 − 𝑇𝑎) at time 𝑇0 is given by[
max(IRS(𝑇𝑎;𝑇𝑎,… , 𝑇𝑏),0)

𝑃 (𝑇𝑎, 𝑇0)

]
. (18)

xt, taking into account (17) and the computation of the discount 
tors in Section 2.3, the expectation (18) depends on the joint dis-

bution of the forward rates 𝑅𝑗 , with 1 ≤ 𝑗 ≤ 𝑏, at time 𝑇𝑎, i.e. 
(𝑇𝑎), … , 𝑅𝑎(𝑇𝑎), 𝑅𝑎+1(𝑇𝑎), … , 𝑅𝑏(𝑇𝑎). According to the dynamics (7), 
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we need to generate several simulations of such rates at time 𝑇𝑎 . Finally, 
we evaluate the relative payoff in each simulation and average.

Since the dynamics (7) does not lead to a process with a known 
distribution, we perform a time discretization with the small time step 
Δ𝑡. Moreover, we introduce logarithmic interest rates in the FMM set-

ting defined by (7), so that by using Ito’s formula we get the following 
equivalent formulation of the FMM:

d ln𝑅𝑘(𝑡) =
(

𝜇𝑘(𝑡)
1

𝑅𝑘(𝑡)
− 1

2
𝛾2
𝑘
(𝑡)𝜎2

𝑘
(𝑡)
)
d𝑡+ 𝜎𝑘(𝑡)𝛾𝑘(𝑡)d𝑊𝑘(𝑡).

This formulation has the advantage that the diffusion coefficient 𝜎𝑘𝛾𝑘(𝑡)
is deterministic. Therefore, Euler and Milstein schemes coincide. Con-

sequently, the time discretization

𝑅𝑘(𝑡+Δ𝑡) =𝑅𝑘(𝑡) exp
(

𝜇𝑘(𝑡)
1

𝑅𝑘(𝑡)
Δ𝑡− 1

2
𝛾2
𝑘
(𝑡)𝜎2

𝑘
(𝑡)Δ𝑡+

𝜎𝑘(𝑡)𝛾𝑘(𝑡)(𝑊𝑘(𝑡+Δ𝑡) −𝑊𝑘(𝑡))
)

,

leads to an approximation of the exact process. Note that the Brownian 
motion increments are normally distributed with mean 0 and standard 
deviation 

√
Δ𝑡, and correlated with correlation matrix 𝜌= (𝜌𝑘𝑙)𝑘,𝑙=1,…,𝑁 .

5.3. Numerical integration of the multi-dimensional PDE

In this section we design an appropriate and efficient numerical 
scheme for solving the PDE stated in Section 4, when considering the 
lognormal model for volatilities.

Taking into account the notation of the tenor structure for the swap, 
let us focus on the pricing of the swaption 𝑇1 × (𝑇𝑁 − 𝑇1), with payoff 
function

𝜑(𝑅1,… ,𝑅𝑁 ) = max

{
𝑁∑

𝑘=2
𝑃 (𝑇1, 𝑇𝑘)𝜏𝑘(𝑅𝑘(𝑇1) −𝐾), 0

}
,

so the relative price Π(𝑡, 𝑅1, … , 𝑅𝑁 ) satisfies the PDE (13) for 𝑡 ∈
[𝑇0, 𝑇1] and the final condition

Π(𝑇1,𝑅1,… ,𝑅𝑁 ) = 1
𝑃 (𝑇1, 𝑇0)

max

{
𝑁∑

𝑘=2
𝑃 (𝑇1, 𝑇𝑘)𝜏𝑘(𝑅𝑘 −𝐾), 0

}
.

In order to solve numerically this PDE problem, for simplicity we con-

sider the following change of time variable and notations:

𝑢(𝑡, 𝑥1,… , 𝑥𝑁 ) = Π(𝑇1 − 𝑡,𝑅1,… ,𝑅𝑁 ),

𝑡 ∈ [0, 𝑇1 − 𝑇0] = [0, 𝜏1], 𝑥𝑘 = 𝑅𝑘 ≥ 0.
(19)

Note that we are allowing a certain abuse of notation: we maintain 
the notation 𝑡, which initially represented physical time and hereafter 
represents the remaining time up to 𝑇1. In this way the final condition at 
physical time 𝑇1 becomes an initial condition in the PDE formulation in 
the new time variable. Numerical results in the next section will always 
refer to the physical time.

After the previously indicated change of time variable and notations, 
the PDE problem can be expressed as follows, find the function 𝑢, such 
that:

𝜕𝑢

𝜕𝑡
=

𝑁∑
𝑘=1

𝜇𝑘(𝑡, 𝑥1,… , 𝑥𝑘)
𝜕𝑢

𝜕𝑥𝑘

+
𝑁∑

𝑘=1
𝛿𝑘(𝑡, 𝑥𝑘)

𝜕2𝑢

𝜕𝑥2
𝑘

+
𝑁−1∑
𝑘=1

𝑁∑
𝑙=𝑘+1

𝜚𝑘𝑙(𝑡, 𝑥𝑘, 𝑥𝑙)
𝜕2𝑢

𝜕𝑥𝑘 𝜕𝑥𝑙

,

(20)

for all 𝑥𝑘 > 0, where

𝜇

𝛿

𝜚

𝜆

w

𝑢

𝑔

do

m

(0
bo

th

𝜕

𝜕𝑥

w

co

lu

of

a 
di

𝑔̃(

so

a 
m

w

fo

w

cl

pa

ad

ca

pu

𝑥̃2
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𝑘(𝑡, 𝑥1,… , 𝑥𝑘) = 𝜆𝑘(𝑡)𝑥𝑘

𝑘∑
𝑗=1

𝜌𝑘𝑗𝜆𝑗 (𝑡)
𝜏𝑗

1 + 𝜏𝑗𝑥𝑗

𝑥𝑗 ,

𝑘(𝑡, 𝑥𝑘) =
1
2𝜆2

𝑘
(𝑡)𝑥2

𝑘
,

𝑘𝑙(𝑡, 𝑥𝑘, 𝑥𝑙) = 𝜌𝑘𝑙𝜆𝑘(𝑡)𝜆𝑙(𝑡)𝑥𝑘𝑥𝑙,

𝑘(𝑡) = 𝜎𝑘(𝑇1 − 𝑡)𝛾𝑘(𝑇1 − 𝑡) =
⎧⎪⎨⎪⎩

𝜎1(𝑇1 − 𝑡) 𝑡

𝜏1
, if 𝑘 = 1

𝜎𝑘(𝑇1 − 𝑡), if 𝑘 ≥ 2,
𝑡 ∈ [0, 𝜏1],

(21)

ith initial condition

(0, 𝑥1,… , 𝑥𝑁 ) = 𝑢0(𝑥1,… , 𝑥𝑁 ) ∶= max{𝑔(𝑥1,… , 𝑥𝑁 ),0},

(𝑥1,… , 𝑥𝑁 ) =
𝑁∑

𝑘=2

(
𝑘∏

𝑙=1

1
1 + 𝜏𝑙𝑥𝑙

)
𝜏𝑘(𝑥𝑘 −𝐾).

(22)

Note that the expression of 𝜆𝑘 in (21) is valid for 𝑡 ∈ [0, 𝜏1].
As usual, in financial problems initially posed in unbounded spatial 

mains, for the numerical integration of this PDE, the spatial domain 
ust be restricted to a rectangle (𝑥1, … , 𝑥𝑁 ) ∈ Ω = (0, 𝑅𝑚𝑎𝑥

1 ) × ⋯ ×
, 𝑅𝑚𝑎𝑥

𝑁
), by selecting the values {𝑅𝑚𝑎𝑥

𝑘
}𝑁

𝑘=1 large enough. On the upper 
undaries, a linear behavior of the solution is assumed by considering 
e conditions

2𝑢
2
𝑘

(𝑡, 𝑥1,… , 𝑥𝑁 ) = 0 if 𝑥𝑘 = 𝑅𝑚𝑎𝑥
𝑘

, 𝑘 = 1,… ,𝑁, (23)

hile, due to the degeneracy of the PDE at the boundaries 𝑥𝑘 = 0, no 
nditions are required at these boundaries.

Next, we propose a finite difference method to approximate the so-

tion of the PDE problem (20)-(21)-(22)-(23). Firstly, a discretization 
 the spatial derivatives 𝑢𝑥𝑘

, 𝑢𝑥𝑘𝑥𝑘
, 𝑢𝑥𝑘𝑥𝑗

must be done. In order to build 
spatial mesh, it must be taken into account that the payoff (22) lacks 
fferentiability at the points of Ω such that

𝑥2,… , 𝑥𝑁 ) ∶=
𝑁∑

𝑘=2

(
𝑘∏

𝑙=2

1
1 + 𝜏𝑙𝑥𝑙

)
𝜏𝑘(𝑥𝑘 −𝐾) = 0, (24)

, as it is recommended in [28, Chap. 4] and the references therein, 
non-uniform spatial mesh on each 𝑥𝑘-direction, for 𝑘 ≥ 2, results 
ore convenient. Therefore, given 𝑁 positive integers {𝑀1, … , 𝑀𝑁}
e consider the spatial grid

for 𝑥1 ∶ 𝑥1,𝑗1 = 𝑗1ℎ1, 0 ≤ 𝑗1 ≤ 𝑀1, ℎ1 =
𝑅𝑚𝑎𝑥
1

𝑀1
,

r 𝑥𝑘, 𝑘 ≥ 2 ∶ 𝑥𝑘,𝑗𝑘
= 𝐾 +𝐿𝑘 sinh 𝜉𝑘,𝑗𝑘

, 0 ≤ 𝑗𝑘 ≤ 𝑀𝑘,

ℎ𝑘,𝑗𝑘
= 𝑥𝑘,𝑗𝑘

− 𝑥𝑘,𝑗𝑘−1,

𝜉𝑘,𝑗𝑘
= 𝜉𝑚𝑖𝑛

𝑘
+ 𝑗𝑘Δ𝜉𝑘, Δ𝜉𝑘 =

𝜉𝑚𝑎𝑥
𝑘

− 𝜉𝑚𝑖𝑛
𝑘

𝑀𝑘

,

𝜉𝑚𝑖𝑛
𝑘

= sinh−1(−𝐾∕𝐿𝑘),

𝜉𝑚𝑎𝑥
𝑘

= sinh−1
(
(𝑅𝑚𝑎𝑥

𝑘
−𝐾)∕𝐿𝑘

)
,

(25)

here the parameters 𝐿𝑘 measure the fraction of grid points that are 
oser to 𝐾 . In this case, we will consider 𝐿𝑘 = 𝐾∕10, ∀𝑘 ≥ 2.

In addition, a cell averaging technique is applied to smooth the 
yoff at the grid points close to the hyperplane defined by (24), by 
apting the technique proposed in [28, Chap. 4] for 1D-PDEs. In this 
se, for each subset of indices (𝑗3, … , 𝑗𝑁 ), 0 ≤ 𝑗𝑘 ≤ 𝑀𝑘, 𝑘 ≥ 3, we com-

te the value

∶= 𝐾 − 1
𝜏2

𝑁∑(
𝑘∏ 1

1 + 𝜏𝑙𝑥𝑙,𝑗

)
𝜏𝑘(𝑥𝑘,𝑗𝑘

−𝐾),

𝑘=3 𝑙=3 𝑙
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(𝑥̃2 = 𝐾 for 𝑁 = 2) and look for the index 𝑗𝑖𝑛𝑑 , with 0 ≤ 𝑗𝑖𝑛𝑑 ≤ 𝑀2, 
such that |𝑥2,𝑗𝑖𝑛𝑑

− 𝑥̃2| =min0≤𝑗2≤𝑀2
|𝑥2,𝑗2 − 𝑥̃2|. Then, the cell [𝑥−

2 , 𝑥+
2 ]

is considered, where

𝑥−
2 =

𝑥2,𝑗𝑖𝑛𝑑−1 + 𝑥2,𝑗𝑖𝑛𝑑

2
, 𝑥+

2 =
𝑥2,𝑗𝑖𝑛𝑑

+ 𝑥2,𝑗𝑖𝑛𝑑+1

2
, ℎ̃2 = 𝑥+

2 − 𝑥−
2 ,

and the initial condition at the points (𝑥1,𝑗1 , 𝑥2,𝑗𝑖𝑛𝑑
, 𝑥3,𝑗3 , … , 𝑥𝑁,𝑗𝑁

), for 
all 𝑗1 = 0, … , 𝑀1, is taken as the average over this cell [𝑥−

2 , 𝑥+
2 ], that is,

𝑢(0, 𝑥1,𝑗1 , 𝑥2,𝑗𝑖𝑛𝑑
, 𝑥3,𝑗3 ,… , 𝑥𝑁,𝑗𝑁

)

= 1
ℎ̃2

𝑥+2

∫
𝑥−2

𝑢0(𝑥1,𝑗1 , 𝑥2, 𝑥3,𝑗3 ,… , 𝑥𝑁,𝑗𝑁
)𝑑𝑥2

= 1
ℎ̃2(1 + 𝜏1𝑥1,𝑗1 )

(
𝑥+
2 − 𝑥̃2 −

(
𝐾 +

1 −𝐻3
𝜏2

)
log

(
1 + 𝜏2𝑥

+
2

1 + 𝜏2𝑥̃2

))
,

with

𝐻3 =
⎧⎪⎨⎪⎩
0, if 𝑁 = 2,
𝑁∑

𝑘=3

(
𝑘∏

𝑙=3

1
1 + 𝜏𝑙𝑥𝑙,𝑗𝑙

)
𝜏𝑘(𝑥𝑘,𝑗𝑘

−𝐾) if 𝑁 ≥ 3.

On the other mesh points, the payoff function given in (22) is applied.

Following the notation given in [2, Sec. 3], the grid points are rear-

ranged as

Ωℎ = {𝑥⃗𝐽 = (𝑥1,𝑗1 ,… , 𝑥𝑁,𝑗𝑁
) ∶ 𝐽 = 𝜗0(𝑗1,… , 𝑗𝑁 ),

0 ≤ 𝑗𝑘 ≤ 𝑀𝑘, 1 ≤ 𝑘 ≤ 𝑁},

where the bijection 𝜗0 ∶ (0)
𝑁

→ {0, 1, … , 𝑀 −1}, with 𝑀 =
𝑁∏

𝑘=1
(𝑀𝑘+1)

is defined as

𝜗0(𝑥1,𝑗1 ,… , 𝑥𝑁,𝑗𝑁
) =

𝑁∑
𝑘=1

𝑗𝑘𝐸𝑘, with 𝐸1 = 1, 𝐸𝑘 =
𝑘−1∏
𝑙=1

(𝑀𝑙 + 1), 𝑘 ≥ 2.

Because of the boundary conditions, the solution of the PDE on all the 
nodes (including the boundary points) of the spatial grid is unknown. 
Then, by approximating the spatial derivatives in the PDE by second-

order central finite differences schemes on all the nodes of the spatial 
grid, for each 𝐽 = 0, 1, … , 𝑀 − 1, (𝑗1, … , 𝑗𝑁 ) = 𝜗−1

0 (𝐽 ), we get

𝑌 ′
𝐽
=

𝑁∑
𝑘=1

𝜇𝑘(𝑡, 𝑥1,𝑗1 ,… , 𝑥𝑘,𝑗𝑘
)∇(𝑘)

𝐽
+

𝑁∑
𝑘=1

𝛿𝑘(𝑡, 𝑥𝑘,𝑗𝑘
)Δ(𝑘)

𝐽

+
𝑁−1∑
𝑘=1

𝑁∑
𝑙=𝑘+1

𝜚𝑘𝑙(𝑡, 𝑥𝑘,𝑗𝑘
, 𝑥𝑙,𝑗𝑙

)Δ(𝑘𝑙)
𝐽

,

(26)

where the involved discrete operators are

∇(1)
𝐽

=
𝑌𝐽+𝐸1

− 𝑌𝐽−𝐸1

2ℎ1
,

∇(𝑘)
𝐽

= 𝛽
(𝑘)
𝑗𝑘,−1𝑌𝐽−𝐸𝑘

+ 𝛽
(𝑘)
𝑗𝑘,0𝑌𝐽 + 𝛽

(𝑘)
𝑗𝑘,1𝑌𝐽+𝐸𝑘

, 𝑘 ≥ 2,

Δ(1)
𝐽

=
𝑌𝐽+𝐸1

− 2𝑌𝐽 + 𝑌𝐽−𝐸1

ℎ2
1

,

Δ(𝑘)
𝐽

= 𝜂
(𝑘)
𝑗𝑘,−1𝑌𝐽−𝐸𝑘

+ 𝜂
(𝑘)
𝑗𝑘,0𝑌𝐽 + 𝜂

(𝑘)
𝑗𝑘,1𝑌𝐽+𝐸𝑘

, 𝑘 ≥ 2,

Δ(𝑘𝑙)
𝐽

= 𝛽
(𝑙)
𝑗𝑙 ,−1

∇(𝑘)
𝐽−𝐸𝑙

+ 𝛽
(𝑙)
𝑗𝑙 ,0

∇(𝑘)
𝐽

+ 𝛽
(𝑙)
𝑗𝑙 ,1

∇(𝑘)
𝐽+𝐸𝑙

, 𝑙 ≥ 𝑘+ 1,

(27)

with
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𝛽
(𝑘)
𝑗𝑘,−1 =

−ℎ𝑘,𝑗𝑘+1

ℎ𝑘,𝑗𝑘
(ℎ𝑘,𝑗𝑘

+ ℎ𝑘,𝑗𝑘+1)
, 𝜂

(𝑘)
𝑗𝑘,−1 =

2
ℎ𝑘,𝑗𝑘

(ℎ𝑘,𝑗𝑘
+ ℎ𝑘,𝑗𝑘+1)

,

𝛽
(𝑘)
𝑗𝑘,0 =

ℎ𝑘,𝑗𝑘+1 − ℎ𝑘,𝑗𝑘

ℎ𝑘,𝑗𝑘
ℎ𝑘,𝑗𝑘+1

, 𝜂
(𝑘)
𝑗𝑘,0 =

−2
ℎ𝑘,𝑗𝑘

ℎ𝑘,𝑗𝑘+1
,

𝛽
(𝑘)
𝑗𝑘,1 =

ℎ𝑘,𝑗𝑘

ℎ𝑘,𝑗𝑘+1(ℎ𝑘,𝑗𝑘
+ ℎ𝑘,𝑗𝑘+1)

, 𝜂
(𝑘)
𝑗𝑘,1 =

2
ℎ𝑘,𝑗𝑘+1(ℎ𝑘,𝑗𝑘

+ ℎ𝑘,𝑗𝑘+1)
.

(28)

It must be observed that, with this procedure, the spatial discretization 
is expanded to the borders. On the one hand, at the points of the “right” 
borders the conditions (23) have to be involved, so when 𝑗𝑘 = 𝑀𝑘, 
Δ(𝑘)

𝐽
= 0 is imposed. Therefore, virtual points 𝑌𝐽+𝐸𝑘

must be defined 
when 𝑗𝑘 = 𝑀𝑘,

𝑌𝐽+𝐸1
= 2𝑌𝐽 − 𝑌𝐽−𝐸1

, 𝑌𝐽+𝐸𝑘
= −

𝜂
(𝑘)
𝑗𝑘,−1

𝜂
(𝑘)
𝑗𝑘,1

𝑌𝐽−𝐸𝑘
−

𝜂
(𝑘)
𝑗𝑘,0

𝜂
(𝑘)
𝑗𝑘,1

𝑌𝐽 , 𝑘 ≥ 2.

On the other hand, for each 𝑘 = 1, … , 𝑁 , on the boundary 𝑥𝑘 = 0, we 
get 𝜇𝑘 = 𝛿𝑘 = 0, ∀𝑘, 𝜚𝑘𝑙 = 0, ∀𝑙 ≥ 𝑘 + 1. As a consequence, ∇(𝑘)

𝐽
=Δ(𝑘)

𝐽
=

0, ∀𝑘, Δ(𝑘𝑙)
𝐽

= 0, 𝑙 ≥ 𝑘 + 1, when 𝑗𝑘 = 0.

By grouping all the approximations in a vector 𝑌 = (𝑌𝐽 )𝑀−1
𝐽=0 , these 

equations can be written as the initial value problem with a directional 
splitting

𝑌 ′ =  (𝑡, 𝑌 ) =
𝑁∑

𝑘=0
𝑘(𝑡, 𝑌 ), 𝑌 (0) = 𝑌0,

𝑘(𝑡, 𝑌 ) =𝑘(𝑡)𝑌 , 𝑘 = 0,1,… ,𝑁,

1(𝑡) = 𝜆21(𝑡)̃1, 𝑘(𝑡) = 𝜆2
𝑘
(𝑡)̃(1)

𝑘
+ 𝜆𝑘(𝑡)𝑘(𝑡)̃(2)

𝑘
, 𝑘 = 2,… ,𝑁,

(29)

where each 𝑘(𝑡, 𝑌 ) stores the components of the discretization of the 
advection and diffusion terms in the 𝑥𝑘-direction, for 𝑘 = 1, … , 𝑁 , and 
0(𝑡, 𝑌 ) stores those of the discretization of the mixed derivatives. In 
this case, ̃1, {̃(1)

𝑘
, ̃(2)

𝑘
}𝑁

𝑘=2 are block tridiagonal constant matrices 
and 𝑘(𝑡) is diagonal. For the sake of simplicity, the coefficients of 
these matrices are given in Appendix A.

Due to the increasing stiffness of (29) as the resolution of the spatial 
grid increases, explicit methods are not suitable for its time integration. 
On the other hand, fully implicit methods requiring the computation of 
the exact Jacobian of the derivative function are also unsuitable because 
of the complicated structure of the matrix 0(𝑡). Therefore, for the time 
integration of (29) a method from the class of AMFR-W-methods ([22, 
Sec. 4], [23]) is applied. In particular, we have selected the one-stage 
AMFR-W1 method. More precisely, given an approximation 𝑌𝑛 to the 
solution of (29) at the time 𝑡 = 𝑡𝑛, this method approximates the solu-

tion at 𝑡 = 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 (with Δ𝑡 being the constant step of the time 
discretization) by

𝐾 (0) = Δ𝑡 (𝑡𝑛, 𝑌𝑛),
(𝐼 − 𝜈Δ𝑡𝑘(𝑡𝑛))𝐾 (𝑘) = 𝐾 (𝑘−1) + 𝜈(Δ𝑡)2𝛼𝑘,𝑛, 𝑘 = 1,… ,𝑁,

𝐾̃ (0) = 2𝐾 (0) + 𝜃(Δ𝑡)2𝐺𝑛 − (𝐼 − 𝜃Δ𝑡(𝑡𝑛))𝐾 (𝑁),

(𝐼 − 𝜈Δ𝑡𝑘(𝑡𝑛))𝐾̃ (𝑘) = 𝐾̃ (𝑘−1) + 𝜈(Δ𝑡)2𝛼𝑘,𝑛, 𝑘 = 1,… ,𝑁,

𝑌𝑛+1 = 𝑌𝑛 + 𝐾̃ (𝑁),

(30)

where

(𝑡𝑛) =
𝜕
𝜕𝑌

(𝑡𝑛, 𝑌𝑛) =
𝑁∑

𝑘=0
𝑘(𝑡𝑛),

𝛼𝑘,𝑛 =
𝜕𝑘

𝜕𝑡
(𝑡𝑛, 𝑌𝑛), 𝑘 = 1,… ,𝑁, 𝐺𝑛 =

𝜕
𝜕𝑡

(𝑡𝑛, 𝑌𝑛),

with parameters 𝜃 = 1∕2 and 𝜈 = 𝜃 for 𝑁 = 2, 3 and 𝜈 = 𝜅𝑁𝑁 𝜃 for 𝑁 ≥
4, where the values of 𝜅𝑁 are given in [22, Table 2] and guarantee that 
the AMFR-W1 method is unconditionally stable on multi-dimensional 
linear constant coefficient PDEs with mixed derivatives.
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Table 1

Hypothetical market data of RFRs 
for the numerical examples.

𝑘 𝑇𝑘 𝑅𝑘(0) 𝜎𝑘(𝑡)

1 0.25 0.01 0.2
2 0.5 0.013 0.15
3 0.75 0.014 0.25
4 1.0 0.015 0.26
5 1.25 0.016 0.27

It must be observed that, due to the block tridiagonal structure of the 
matrices 𝑘(𝑡), 𝑘 = 1, … , 𝑁 , the linear systems with coefficient matrix 
(𝐼 − 𝜈Δ𝑡 𝑘(𝑡𝑛)) of dimension 𝑀 in the method are decoupled in tridi-

agonal systems of dimension 𝑀𝑘 + 1, which drastically reduces their 
computational cost (see details in Appendix A). In addition, it is not 
necessary to compute the full Jacobian (𝑡𝑛) in (30), which does not 
have a block structure that can reduce its computational cost, due to 
the presence of the discretization of the mixed derivatives. The prod-

uct (𝑡𝑛)𝐾 (𝑁) in the right-hand side in the definition of 𝐾̃ (0) in (30) is 
obtained by an additional evaluation of the derivative function, since

(𝑡𝑛)𝐾 (𝑁) =

(
𝑁∑

𝑘=0
𝑘(𝑡𝑛)

)
𝐾 (𝑁) =  (𝑡𝑛,𝐾 (𝑁)).

6. Numerical experiments

In this section, we present some numerical results that correspond to 
several RFR swaptions to assess the correctness of the proposed numeri-

cal methods and the performance of the models. The selected swaptions 
aim to illustrate the behavior of the methodology when increasing the 
number of involved RFRs.

Some of the employed market data are shown in Table 1, where 
constant volatilities are taken into account. Also, we will consider that 
𝑇0 = 0 and that the pricing date is the physical time 𝑡 = 𝑇0 = 0 (which 
will correspond to the solution of the PDE at time 𝑡 = 𝑇1 in the new time 
variable with the previously mentioned abuse of notation, although we 
will always refer to the physical time 𝑡 = 0).

Moreover, the constant correlation coefficients 𝜌𝑘𝑙 = 0.5 have been 
chosen, for all 𝑘, 𝑙 = 1, … , 𝑁 , with 𝑘 ≠ 𝑙.

In all forthcoming examples, we will start computing prices using 
Monte Carlo simulation, which will serve as benchmark RFR swaption 
prices for the corresponding PDE numerical solutions.

The numerical experiments have been performed with the following 
hardware and software configurations: an AMD Ryzen 9 5950X 16-Core 
Processor with 128 GBytes of RAM, CentOS Linux, and GNU C++ com-

piler. We have not used a numerical linear algebra software package, 
because the resulting linear systems of equations are tridiagonal, as pre-

viously stated. Thus, the codes developing the numerical methods have 
been implemented from scratch. Besides, parallel computing was not 
considered, since the AMFR-W1 time integrator is highly sequential.

6.1. 2-dimensional case (𝑁 = 2)

In this first example, we price, at time 𝑡 = 𝑇0 = 0, several RFR Euro-

pean swaptions 𝑇1 × (𝑇2 − 𝑇1) for the values of the spot forward rates 
𝑅1(0) and 𝑅2(0) given on Table 1. More precisely, we value the swap-

tion at-the-money (ATM) (𝐾 = 𝐾𝐴𝑇 𝑀 ), a couple of swaptions out-of-

the-money (OTM) (𝐾 = 1.1𝐾𝐴𝑇 𝑀 , 𝐾 = 1.2𝐾𝐴𝑇 𝑀 ), and two swaptions 
in-the-money (ITM) (𝐾 = 0.8𝐾𝐴𝑇 𝑀 , 𝐾 = 0.9𝐾𝐴𝑇 𝑀 ).

Monte Carlo and PDE results are shown in Table 2. Monte Carlo con-

fidence intervals have been obtained with 107 simulations and 100 time 
steps for the Milstein discretization scheme. In order to check the perfor-

mance of the PDE AMFR-W1 numerical method, firstly we have tested 
it on a spatial grid with 𝑀1 = 𝑀2 = 1024 and a small constant time step 
size Δ𝑡 = 𝜏1∕211, so that the error associated to the time integration is 
95
Table 2

95% Monte Carlo confidence intervals for swaption prices, 107 simulations with 
a 100 time steps. PDE prices, computed on the non-uniform grids, and corre-

sponding implied volatilities.

Swaption 𝑇1 × (𝑇2 − 𝑇1)

𝐾 Monte Carlo Confidence Interval PDE Impl vol

1.2𝐾𝐴𝑇 𝑀 [6.569174 × 10−7,6.705475 × 10−7] 6.610817 × 10−7 0.150103
1.1𝐾𝐴𝑇 𝑀 [1.229203 × 10−5,1.235655 × 10−5] 1.230812 × 10−5 0.150014
𝐾𝐴𝑇 𝑀 [9.663654 × 10−5,9.681989 × 10−5] 9.666517 × 10−5 0.150003
0.9𝐾𝐴𝑇 𝑀 [3.313149 × 10−4,3.315975 × 10−4] 3.314849 × 10−4 0.150035
0.8𝐾𝐴𝑇 𝑀 [6.460959 × 10−4,6.463961 × 10−4] 6.463699 × 10−4 0.150143
Time 73.32 𝑠 603.82 𝑠, 𝑀1 = 𝑀2 = 1024

Table 3

ATM Swaption 𝑇1 × (𝑇2 − 𝑇1): spatial errors and estimated orders on the non-

uniform grids (25) with 𝐿 = 𝑀1 = 𝑀2.

𝐿 𝑙2-error 𝑙∞-error 𝑙2-order 𝑙∞-order Time (𝑠)

4 4.53 × 10−05 1.02 × 10−04 - - 1.19 × 10−02
8 3.76 × 10−06 1.04 × 10−06 3.59 3.29 3.53 × 10−02
16 4.00 × 10−07 1.07 × 10−06 3.23 3.28 0.12
32 1.07 × 10−07 2.71 × 10−07 1.91 1.98 0.45
64 2.59 × 10−08 6.45 × 10−08 2.04 2.07 1.73
128 6.72 × 10−09 1.68 × 10−08 1.95 1.94 7.62
256 1.67 × 10−09 4.15 × 10−09 2.01 2.02 31.86
512 3.97 × 10−10 9.87 × 10−10 2.07 2.07 138.07
1024 7.93 × 10−11 1.97 × 10−10 2.32 2.32 603.82

negligible when compared to the one due to the spatial discretization. 
PDE prices for the values of Table 1 are obtained by using multi-linear 
interpolation since those points could not belong to the spatial mesh 
(25). Note that both Monte Carlo and PDE prices are consistent, thus 
validating both numerical techniques and also the well-posedness of 
the PDEs formulation and the associated boundary conditions. Besides, 
the implied volatilities corresponding to the PDE prices are also shown. 
Since the chosen dynamics are lognormal, implied volatilities are flat 
(not perfectly flat since the swap rate is not exactly lognormal).

For the sole purpose of illustrating the behavior of the PDE solu-

tion, in Fig. 3 the approximated values of 𝑢 at 𝑡 = 𝑇1 are reported in the 
same case with 𝑀1 = 𝑀2 = 1024 mesh points. It must be emphasized 
again that, due to the time reversal (19), the values of 𝑢 when 𝑡 = 𝑇1
are equivalent to that of Π when 𝑡 = 𝑇0 = 0. The solution on the com-

putational domain and a zoom in the area of financial interest near the 
strike rate are shown.

In order to illustrate the convergence of the finite difference method 
with AMFR-W1 (30), we have applied it for several spatial meshes (25), 
with 𝑀1 = 𝑀2 = 𝐿 = 2𝑟, 𝑟 = 2, 3, … , 10, and the same constant time 
step size Δ𝑡 = 𝜏1∕211 as above. In Table 3 the errors obtained for all 
cases are displayed, in both 𝑙2− and 𝑙∞-norms. There, the errors (𝑙2-

error and 𝑙∞-error) have been computed with respect to the numerical 
solution given by the same method with 𝑀1 = 𝑀2 = 211, and the es-

timated spatial orders (𝑙2-order and 𝑙∞-order) gathered in the last two 
columns are calculated by the well-known formula

𝑙𝑝 − order =
log(∥ 𝑙𝑝 − error(2𝑚) ∥ ∕ ∥ 𝑙𝑝 − error(𝑚) ∥)

log(2)
,

for 𝑚 = 2𝑟, 𝑟 = 2, 3, … , 9, with 𝑝 = 2 and 𝑝 = ∞. The second order of 
convergence is reflected in Table 3.

In addition, in Table 4 the results obtained using a uniform spatial 
mesh 𝑥𝑘,𝑗𝑘

= 𝑗𝑘ℎ𝑘, 0 ≤ 𝑗𝑘 ≤ 𝐿, with ℎ𝑘 = 𝑅𝑚𝑎𝑥
𝑘

∕𝐿, are shown. Although 
also achieving second-order convergence with uniform grids, the advan-

tage of using non-uniform meshes is clearly illustrated when comparing 
Table 3 and Table 4, as it improves the accuracy achieved by the method 
by two orders of magnitude.
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Fig. 3. PDE prices for the 𝑇1 × (𝑇2 − 𝑇1) swaption, with 1024 × 1024 grid. Left: full co
Table 4

ATM Swaption 𝑇1 × (𝑇2 − 𝑇1): spatial errors and estimated orders on uniform 
grids with 𝐿 = 𝑀1 = 𝑀2.

𝐿 𝑙2-error 𝑙∞-error 𝑙2-order 𝑙∞-order Time (𝑠)

4 4.30 × 10−6 8.33 × 10−6 - - 1.21 × 10−02
8 5.53 × 10−6 1.57 × 10−5 −0.36 −0.91 3.59 × 10−02
16 3.87 × 10−6 1.23 × 10−5 0.52 0.35 0.12
32 1.13 × 10−6 5.00 × 10−6 1.77 1.30 0.45
64 3.21 × 10−7 1.95 × 10−6 1.82 1.36 1.72
128 6.91 × 10−8 3.03 × 10−7 2.22 2.68 7.61
256 1.98 × 10−8 1.13 × 10−7 1.80 1.42 31.73
512 4.13 × 10−9 1.88 × 10−8 2.26 2.59 138.48
1024 1.15 × 10−9 6.79 × 10−9 1.85 1.47 605.42

6.2. Higher-dimensional cases (𝑁 = 3, 4, 5)

Next, we focus on the pricing of higher dimensional RFR swaptions. 
More precisely, we consider the swaptions 𝑇1 × (𝑇3 − 𝑇1), 𝑇1 × (𝑇4 − 𝑇1)
and 𝑇1 × (𝑇5 − 𝑇1) under the market data shown in Table 1. Given the 
conclusions from the previous example about the numerical solution of 
the PDE, we just present the results for non-uniform grids.

PDE prices and the corresponding reference Monte Carlo confidence 
intervals are shown in Table 5. For each swaption, the number of 
mesh points in all directions is the same and denoted by 𝐿. As in 
the 2-dimensional case, to keep temporal errors negligible compared 
to spatial errors, for the time integration, the method AMFR-W1 (30)

has been applied with constant step size Δ𝑡 = 𝜏1∕(2𝐿). As expected, all 
PDE prices lie inside the Monte Carlo confidence intervals. Note that 
as before, the 95% Monte Carlo confidence intervals were computed 
by using 107 simulations with 100 time steps in the Milstein time step-

ping.

Next, the numerical orders of convergence of the PDE method for the 
three and four-dimensional spatial examples are shown in Tables 6 and 
7, respectively. In such cases, the time integration has been performed 
with constant time step size Δ𝑡 = 𝜏1∕2𝑟 with 𝑟 = 9 for 𝑁 = 3 and 𝑟 = 7
for 𝑁 = 4. For the five-dimensional case, we did not measure the order 
of convergence since this test would require a huge amount of RAM, 
which is not available in our machine.

Then, in Fig. 4, we present a graph of some of the previously shown 
execution times per problem size for both Monte Carlo and PDEs. As 
expected, Monte Carlo method does not suffer from the curse of dimen-

sionality.

Finally, we show some numerical results for pricing Bermudan swap-

tions. We consider the case of two callability dates, known as Canary 
option. More precisely, we focus on the Canary swaption 𝑇3 × (𝑇4 −𝑇3), 
where the two early exercises opportunities are 𝑇2 and 𝑇1, allowing to 
enter in the swaps 𝑇2 × (𝑇4 − 𝑇2) and 𝑇1 × (𝑇4 − 𝑇1), respectively. The 
results are shown in Table 8, along with the corresponding European 
swaption prices, which are lower as expected.
96
mputational domain. Right: zoom in the area of interest [0.5𝐾𝐴𝑇 𝑀, 1.5𝐾𝐴𝑇 𝑀 ]2.

Table 5

95% Monte Carlo confidence intervals for swaption prices, 107 simulations with 
a 100 time steps. PDE prices and corresponding implied volatilities.

Swaption 𝑇1 × (𝑇3 − 𝑇1)

𝐾 Monte Carlo Confidence Interval PDE Impl vol

1.2𝐾𝐴𝑇 𝑀 [5.007571 × 10−6,5.070211 × 10−6] 5.020028 × 10−6 0.178879
1.1𝐾𝐴𝑇 𝑀 [4.532638 × 10−5,4.552660 × 10−5] 4.538339 × 10−5 0.177969
𝐾𝐴𝑇 𝑀 [2.361209 × 10−4,2.365753 × 10−4] 2.364758 × 10−4 0.177020
0.9𝐾𝐴𝑇 𝑀 [7.014066 × 10−4,7.020817 × 10−4] 7.014788 × 10−4 0.176040
0.8𝐾𝐴𝑇 𝑀 [1.340121 × 10−3,1.340854 × 10−3] 1.340742 × 10−3 0.175032
Time 112.94 𝑠 4316.30 𝑠, 𝐿 = 256

Swaption 𝑇1 × (𝑇4 − 𝑇1)

𝐾 Monte Carlo Confidence Interval PDE Impl vol

1.2𝐾𝐴𝑇 𝑀 [9.480228 × 10−6,9.589930 × 10−6] 9.523646 × 10−6 0.184582
1.1𝐾𝐴𝑇 𝑀 [7.775208 × 10−5,7.808471 × 10−5] 7.788910 × 10−5 0.183922
𝐾𝐴𝑇 𝑀 [3.794420 × 10−4,3.801720 × 10−4] 3.800981 × 10−4 0.183272
0.9𝐾𝐴𝑇 𝑀 [1.094727 × 10−3,1.095804 × 10−3] 1.095566 × 10−3 0.182621
0.8𝐾𝐴𝑇 𝑀 [2.081112 × 10−3,2.082289 × 10−3] 2.082134 × 10−3 0.181977
Time 150.69 𝑠 23410.36 𝑠, 𝐿 = 128

Swaption 𝑇1 × (𝑇5 − 𝑇1)

𝐾 Monte Carlo Confidence Interval PDE Impl vol

1.2𝐾𝐴𝑇 𝑀 [1.485427 × 10−5,1.501782 × 10−5] 1.500055 × 10−5 0.188628
1.1𝐾𝐴𝑇 𝑀 [1.139641 × 10−4,1.144421 × 10−4] 1.143997 × 10−4 0.187909
𝐾𝐴𝑇 𝑀 [5.350862 × 10−4,5.361152 × 10−4] 5.357548 × 10−4 0.187452
0.9𝐾𝐴𝑇 𝑀 [1.515406 × 10−3,1.516917 × 10−3] 1.516010 × 10−3 0.187002
0.8𝐾𝐴𝑇 𝑀 [2.869551 × 10−3,2.871208 × 10−3] 2.870076 × 10−3 0.186816
Time 196.45 𝑠 77738.56 𝑠, 𝐿 = 64

Table 6

ATM Swaption 𝑇1 × (𝑇3 − 𝑇1): spatial error and estimated orders on the non-

uniform grids (25) with 𝐿 = 𝑀1 = 𝑀2 = 𝑀3.

𝐿 𝑙2-error 𝑙∞-error 𝑙2-order 𝑙∞-order Time (𝑠)

8 1.30 × 10−5 9.00 × 10−5 - - 0.19
16 3.97 × 10−6 3.76 × 10−5 1.72 1.26 1.05
32 1.62 × 10−6 1.88 × 10−5 1.29 1.00 7.26
64 3.15 × 10−7 4.25 × 10−6 2.37 2.15 58.23
128 6.31 × 10−8 7.62 × 10−7 2.32 2.48 482.55
256 1.24 × 10−8 1.46 × 10−7 2.34 2.39 4316.30

Table 7

ATM Swaption 𝑇1 × (𝑇4 − 𝑇1): spatial error and estimated orders on the non-

uniform grids (25) with 𝐿 = 𝑀1 = 𝑀2 = 𝑀3 = 𝑀4.

𝐿 𝑙2-error 𝑙∞-error 𝑙2-order 𝑙∞-order Time (𝑠)

8 6.96 × 10−4 1.83 × 10−2 - - 0.59
16 1.45 × 10−5 3.33 × 10−4 5.58 5.78 6.62
32 2.35 × 10−6 6.27 × 10−5 2.63 2.41 97.18
64 3.91 × 10−7 1.53 × 10−5 2.59 2.03 1473.89
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Fig. 4. Plot of execution times per problem size (log10 scale in the 𝑦 axis). For 
the PDEs, the cases with 𝐿 = 16, 32, 64 are shown. For Monte Carlo method, 107
paths were considered.

Table 8

PDE prices for the Swaption 𝑇3 × (𝑇4 −𝑇1) considering 
𝐿 = 128. Execution time is 73522.17 seconds.

𝐾 European Canary

1.2𝐾𝐴𝑇 𝑀 1.075029 × 10−4 1.205543 × 10−4
1.1𝐾𝐴𝑇 𝑀 1.938612 × 10−4 2.355759 × 10−4
𝐾𝐴𝑇 𝑀 3.317602 × 10−4 4.483170 × 10−4
0.9𝐾𝐴𝑇 𝑀 5.339683 × 10−4 8.331122 × 10−4
0.8𝐾𝐴𝑇 𝑀 8.032271 × 10−4 1.553333 × 10−3

7. Conclusions and future work

After the recent scandal of manipulation of IBORs, the worldwide 
financial authorities, and regulators started the replacement of IBORs by 
the so-called RFRs, that rely on real transactions. In this so-called IBOR 
transition banks started to offer interest rate derivatives based on RFRs, 
thus motivating the need for an appropriate modeling RFRs dynamics 
to price these derivative products. The recent seminal rigorous article 
[1] introduced the generalized FMM. Pricing with Monte Carlo under 
FMM is very natural.

Having in view the limitations of Monte Carlo pricing techniques, 
in the present article we have rigorously stated for the first time in 
the literature a PDE formulation for pricing RFRs derivatives. Note that 
the spatial dimension is equal to the number of RFRs involved in the 
derivative payoff and can become large. In order to solve efficiently the 
PDE formulation, we propose the use of an AMFR-W1 finite differences 
method, which is specially appropriate and efficient to cope with the 
presence of mixed derivatives in the spatial variables. The numerical 
results illustrate the correctness of the method, by comparing them with 
a reference solution obtained with converged Monte Carlo simulations. 
Moreover, order two in space is verified for the different examples.

In future work, we aim to adapt the previous FMM PDE of Proposi-

tion 4.1 to allow the pricing of derivatives with payoffs including past 
fixings of RFRs. Many interest-rate contracts have payoffs depending 
not only on 𝑅𝑘(𝑇𝑘) = 𝑅(𝑇𝑘−1, 𝑇𝑘), but also on the backward-looking 
rates

𝑅(𝑡, 𝑇 ) = 1
𝑇 − 𝑡

(
𝑒∫ 𝑇

𝑡 𝑟(𝑢)d𝑢 − 1
)

, (31)

for general 𝑡 < 𝑇 . Such derivatives with payment times and settings out-

side the FMM tenor structure {𝑇0, 𝑇1, … , 𝑇𝑁} can not be priced directly 
with the FMM or its corresponding PDE. In [21], Lyashenko and Mercu-

rio completed the FMM by embedding it into a Markovian HJM model 
with separable Cheyette volatility structure by aligning the HJM and 
FMM dynamics of the forward rates modeled by the FMM. Under this 
aligned FMM-Cheyette Markovian HJM model, it is possible to derive 
the dynamics of the short rate 𝑟. Besides, this short rate can be simulated 
by leveraging the realized paths of the simulated generalized FMM rates 
𝑅𝑘(𝑡) and their volatilities 𝜈𝑘(𝑡). In order to adapt the FMM PDE to be 
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able to price such path-dependent products, one possible approach is to 
introduce additional path-dependent variables. For example, to price a 
derivative whose payoff depends on the evolution of 𝑅𝑘(𝜏) for all times 
𝜏 ∈ [𝑇𝑘−1, 𝑡], we can define a path-dependent variable of the general 
form

𝐼𝑘(𝑡) =

𝑡

∫
𝑇𝑘−1

𝜁𝑘(𝜏,𝑅𝑘(𝜏))d𝜏, 𝑇𝑘−1 < 𝑡 < 𝑇𝑘. (32)

Here, the given function 𝜁𝑘 vanishes for the time values outside the 
specified interval [𝑇𝑘−1, 𝑡]. The specification of the function 𝜁𝑘 is part 
of future work and needs to be consistent with the FMM-HJM model 
in [21]. From now on, one must compute the SDE for 𝐼𝑘, and apply 
Itô’s lemma to the derivative price function Π depending on time, for-

ward rates, and the additional state variable 𝐼𝑘. Finally, the PDE to 
price path-dependent RFR derivatives will be obtained by imposing no-

arbitrage conditions. This strategy is classical and is explained for Asian 
options in equity markets in [29], for example. Discrete sampling is 
also possible within this path-dependent framework and can be imple-

mented by forcing Π to satisfy the so-called jump conditions.

Another possible extension is the consideration of sparse grid combi-

nation techniques for solving PDEs with higher spatial dimensions. The 
authors have already developed this strategy for pricing interest rate 
derivatives under the SABR/LIBOR model in [2]. This approach will 
also open the door to parallel computing.
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Appendix A. Matrices in problem (29)

In this Appendix, we detail the coefficients of the matrices of the 
semi-discretized initial value problem (29) and how the linear systems 
involved in the one-stage AMFR-W1-method (30) are solved.

In order to simplify this explanation, we denote 𝐼 (𝑘) as the identity 
matrix of dimension 𝑀𝑘 + 1, 𝑘 = 1, … , 𝑁 . By using the tensor product 
notation (𝐴 ⊗ 𝐵 = (𝑎𝑖𝑗𝐵)), we define the matrices

̃1 = 𝐼 (𝑁) ⊗ 𝐼 (𝑁−1) ⊗⋯⊗ 𝐼 (2) ⊗ 𝐴1,

̃(𝑙)
𝑘

= 𝐼 (𝑁) ⊗⋯⊗ 𝐼 (𝑘+1) ⊗ 𝐴
(𝑙)
𝑘

⊗ 𝐼 (𝑘−1) ⊗⋯⊗ 𝐼 (1),

𝑙 = 1,2, 𝑘 = 2,… ,𝑁.

The matrix 𝐴1 = ((𝐴1)𝑖𝑗 )𝑀𝑖,𝑗=0 is a tridiagonal matrix of dimension 𝑀1 +
1. The entries of its diagonals are
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(𝐴1)𝑗1 ,𝑗1−1 =

⎧⎪⎪⎨⎪⎪⎩

(
− 1

ℎ1

𝜏1
1 + 𝜏1𝑥1,𝑗1

+ 1
ℎ2
1

)
𝑥2
1,𝑗1
2

, if 1 ≤ 𝑗1 ≤ 𝑀1 − 1,

− 1
ℎ1

𝜏1
1 + 𝜏1𝑥1,𝑗1

𝑥2
1,𝑗1

, if 𝑗1 = 𝑀1,

(𝐴1)𝑗1 ,𝑗1 =

⎧⎪⎪⎨⎪⎪⎩
− 1

ℎ2
1

𝑥2
1,𝑗1

, if 0 ≤ 𝑗1 ≤ 𝑀1 − 1,

1
ℎ1

𝜏1
1 + 𝜏1𝑥1,𝑗1

𝑥2
1,𝑗1

, if 𝑗1 = 𝑀1,

(𝐴1)𝑗1 ,𝑗1+1 =

(
1
ℎ1

𝜏1
1 + 𝜏1𝑥1,𝑗1

+ 1
ℎ2
1

)
𝑥2
1,𝑗1
2

, if 0 ≤ 𝑗1 ≤ 𝑀1 − 1.

For each 𝑘 = 2, … , 𝑁 , both matrices 𝐴(1)
𝑘

and 𝐴(2)
𝑘

are tridiagonal ma-

trices of dimension 𝑀𝑘 + 1. Their respective diagonals’ elements are

(𝐴(1)
𝑘
)𝑗𝑘,𝑗𝑘−1 =

(
𝜏𝑘

1 + 𝜏𝑘𝑥𝑘,𝑗𝑘

𝛽
(𝑘)
𝑗𝑘,−1 +

1
2

𝜂
(𝑘)
𝑗𝑘,−1

)
𝑥2

𝑘,𝑗𝑘
, if 1 ≤ 𝑗𝑘 ≤ 𝑀𝑘,

(𝐴(1)
𝑘
)𝑗𝑘,𝑗𝑘

=

(
𝜏𝑘

1 + 𝜏𝑘𝑥𝑘,𝑗𝑘

𝛽
(𝑘)
𝑗𝑘,0 +

1
2

𝜂
(𝑘)
𝑗𝑘,0

)
𝑥2

𝑘,𝑗𝑘
, if 0 ≤ 𝑗𝑘 ≤ 𝑀𝑘,

(𝐴(1)
𝑘
)𝑗𝑘,𝑗𝑘+1 =

(
𝜏𝑘

1 + 𝜏𝑘𝑥𝑘,𝑗𝑘

𝛽
(𝑘)
𝑗𝑘,1 +

1
2

𝜂
(𝑘)
𝑗𝑘,1

)
𝑥2

𝑘,𝑗𝑘
, if 0 ≤ 𝑗𝑘 ≤ 𝑀𝑘 − 1,

(𝐴(2)
𝑘
)𝑗𝑘,𝑗𝑘−1 = 𝛽

(𝑘)
𝑗𝑘,−1 𝑥𝑘,𝑗𝑘

, if 1 ≤ 𝑗𝑘 ≤ 𝑀𝑘,

(𝐴(2)
𝑘
)𝑗𝑘,𝑗𝑘

= 𝛽
(𝑘)
𝑗𝑘,0 𝑥𝑘,𝑗𝑘

, if 0 ≤ 𝑗𝑘 ≤ 𝑀𝑘,

(𝐴(2)
𝑘
)𝑗𝑘,𝑗𝑘+1 = 𝛽

(𝑘)
𝑗𝑘,1 𝑥𝑘,𝑗𝑘

, if 0 ≤ 𝑗𝑘 ≤ 𝑀𝑘 − 1,

where the finite difference coefficients 𝛽(𝑘)
𝑗𝑘,⋅ and 𝜂(𝑘)

𝑗𝑘,⋅ are given in (28). 
Moreover, in order to compute the Jacobian 𝑘 for 𝑘 = 2, … , 𝑁 , the 
diagonal matrix 𝑘(𝑡) = diag((𝑑𝑘(𝑡))𝐽 )𝑀−1

𝐽=0 of dimension 𝑀 is needed. 
Its entries are

(𝑑𝑘(𝑡))𝐽 =
𝑘−1∑
𝑙=1

𝜆𝑙(𝑡)𝜌𝑘𝑙

𝜏𝑙

1 + 𝜏𝑙𝑥𝑙,𝑗𝑙

𝑥𝑙,𝑗𝑙
, with (𝑗1,… , 𝑗𝑁 ) = 𝜗−1(𝐽 ).

(A.1)

Note that the first row of all of these matrices is null, since 𝑥𝑘,0 = 0, 
for all 𝑘 = 1, … , 𝑁 .

As a consequence, the linear systems of the form

(𝐼 − 𝜈𝜏1(𝑡𝑛))𝐾 = 𝑅

of dimension 𝑀 in the AMFR-W1-method (30) are decoupled into ∏𝑁
𝑘=2(𝑀𝑘 + 1) systems of dimension 𝑀1 + 1 with coefficient matrix 

(𝐼 − 𝜈𝜏𝜆21(𝑡𝑛)𝐴1).
Moreover, since the coefficients of the diagonal matrix 𝑘(𝑡) defined in 
(A.1) only depend on the indices 𝑗1, … , 𝑗𝑘−1, the linear systems in (30)

of the form

(𝐼 − 𝜈𝜏𝑘(𝑡𝑛))𝐾 = 𝑅, for 𝑘 = 2,… ,𝑁,

can be decoupled into 
∏

𝑙≠𝑘(𝑀𝑙+1) linear systems of dimension 𝑀𝑘+1.

More precisely, for each 𝑘 = 2, … , 𝑁 , for each multi-index (… , 𝑗𝑘−1,
𝑗𝑘+1, … ) of (𝑁 −1) integers with 0 ≤ 𝑗𝑟 ≤ 𝑀𝑟, 𝑟 ≠ 𝑘, the code computes

𝑑𝑘(𝑡𝑛) =
𝑘−1∑
𝑙=1

𝜆𝑙(𝑡𝑛)𝜌𝑘𝑙

𝜏𝑙

1 + 𝜏𝑙𝑥𝑙,𝑗𝑙

𝑥𝑙,𝑗𝑙
,

and solves a linear system of dimension 𝑀𝑘 + 1 with coefficient matrix

(𝐼 − 𝜈𝜏(𝜆2
𝑘
(𝑡𝑛)𝐴

(1)
𝑘

+ 𝜆𝑘(𝑡𝑛)𝑑𝑘(𝑡𝑛)𝐴
(2)
𝑘
)).
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