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In this article, we propose an efficient approach for inverting computationally expensive cumulative
distribution functions. A collocation method, called the Stochastic Collocation Monte Carlo sampler
(SCMC sampler), within a polynomial chaos expansion framework, allows us the generation of any
number of Monte Carlo samples based on only a few inversions of the original distribution plus
independent samples from a standard normal variable. We will show that with this path-independent
collocation approach the exact simulation of the Heston stochastic volatility model, as proposed in
Broadie and Kaya [Oper. Res., 2006, 54, 217–231], can be performed efficiently and accurately. We
also show how to efficiently generate samples from the squared Bessel process and perform the exact
simulation of the SABR model.
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1. Introduction

In computational finance, we often require rapid and accurate
approximations of functions of stochastic variables. As an ex-
ample, think of the rapid evaluation of the integrated variance
process, which is a function of the variance process. The inte-
grated variance plays a role within the exact Heston stochastic
volatility Monte Carlo simulation scheme, by Broadie and
Kaya (2006). Another example is represented by arithmetic
Asian options where an accurate representation of integrated
asset prices is sought.
For these quantities, we generally do not know analytic

closed-form solutions, so numerical approximations are de-
veloped to estimate them. The Monte Carlo (MC) method is
considered an accurate simulation technique to approximate
these quantities, but quite a few samples are required to obtain
sufficient accuracy.
In another context, Uncertainty Quantification (UQ)

techniques are typically employed to uncover the probabilis-
tic dependence of solutions to partial differential equations
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on uncertainty in boundary conditions or model parameters
(Witteveen and Iaccarino 2013). The MC method can also be
used to quantify the impact of uncertainty on PDE solutions.
However, also in this caseMCmethods require a large number
of samples.
TheStochasticCollocation (SC)method (Xiu andHesthaven

2005, Nobile et al., 2008a, 2008b, Bieri and Schwab 2009,
Babuška et al. 2010, Beck et al. 2012) has been developed as
an efficient alternative for MC methods based on determinis-
tic sampling at quadrature points and Lagrangian polynomial
interpolation. The main idea of SC is to project the uncertainty
onto a probability space with known properties and condi-
tions. Suitable basis functions are determined for this space
and suitable interpolation points are computed, based on the
input distribution. With an increasing polynomial order of the
expansion, exponential convergence can be obtained.
In this paper, we will apply the SC method for the efficient

generation of samples of a stochastic variable with an expen-
sive distribution. To that end, we introduce another stochastic
variable with a distribution that is much cheaper to evaluate
and we use SC to approximate the relation between these two
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stochastic variables, thus avoiding many expensive computa-
tions or simulations.We will use the standard normal variable
for the cheap collocation variable here. One specific aim is
to efficiently sample the integrated variance process from a
Heston stochastic volatility model and provide an accurate
simulation scheme for the dynamics of the stock price process
with large time steps. Although an (involved) characteristic
function is in principle available for the integrated variance,
the computation of the distribution of the integrated variance
remains an expensive computational task where Fourier inver-
sion techniques to invert the characteristic function need to be
employed.
A variant of the sampling technique for processes that have

significantmass at zero is also discussed. Stochastic processes
forwhich the underlying assetmay hit and stay at zero are often
encountered in finance. This feature is desired as it describes
realistically stock movements and the possibility of default
events, i.e. once an asset price reaches the zero value it may
not recover in the future. We discuss two particular examples
of such models, the squared-Bessel process which, for certain
sets of parameters, models absorption at zero and the SABR
model in which also the volatility is modeled by a stochastic
process. We will see that the SC expansion can be efficiently
applied to these problems.
The paper is organised as follows: section 2 introduces a

general, basic description of the SC method and the specific
methodology used. An error analysis is presented in sections
3 and 4 presents analytic tests to show the performance of the
method and numerical results for the squared Bessel, the He-
ston and the SABR models. Conclusions are drawn in section
5. Basic background information on stochastic collocation and
tabulated values are placed in the appendices.

2. Lagrange polynomials and stochastic collocation

We consider two scalar random variables X and Y . The orig-
inal idea behind the SC method is to approximate a problem
variable of interest, Y , as function of another random variable
X . Random variable X is governed by a probability density
function (PDF) fX (x) and FX (x) is its cumulative distribution
function (CDF) with FX (x) ∈ [0, 1]. As fX (x) is not zero in
the interior of its domain, FX (x) is strictly monotonic and as a
consequence the transformation between the original probabil-
ity space and the new space is bijective. For X we choose the
standard normal variable here. In the general setting however,
when X is not normally distributed, we would require the first
2N moments, where N is the number of collocation points, to
exist and that for X : �X → R and Y : �Y → R we have
�Y ⊆ �X .

2.1. Sampling by the stochastic collocation method

Weconsider the problemof generating a sample from a random
variable Y with a strictly monotonic CDF FY (y) and its PDF
given by fY (y). FY (Y ) is uniformly distributed† on [0, 1], and

†Consider u ∈ [0, 1] for which we have P[FY (Y ) ≤ u] = P[Y ≤
F−1
Y (u)] = FY (F−1

Y (u)) = u. This equals the CDF of the uniform
distribution on [0, 1], i.e. FU (u) = u for U ∼ U([0, 1]).

we can use a standard approach to generate uniform samples
un and any desired sample by inverting the CDF,

FY (Y )
d= U, thus yn = F−1

Y (un), (2.1)

forU ∼ U([0, 1]), and un is a sample fromU([0, 1]). Inverting
the CDF in (2.1) is typically computationally expensive, espe-
cially when the inversion of the CDF of the random variable
Y is not known analytically. In such a case, it is important to
reduce the number of expensive inversions asmuch as possible.
We introduce another random variable, X , for which the

inversion F−1
X (un) is computationally less expensive than the

one in (2.1). As both FX (X) and FY (Y ) are uniformly dis-
tributedwehave FY (Y )

d= FX (X). This equality in distribution
does not imply that X and Y are equal in distribution, but only
the CDFs can be equated to the same uniform distribution.
Samples of Y , yn , and X , ξn , are related via the following
inversion,

yn = F−1
Y (FX (ξn)). (2.2)

Obviously, the sampling via (2.2) is considered expensive as
for each cheap realisation of X one needs to calculate the
expensive inverse of the CDF of Y . The objective is to find
an alternative relation which does not require the inversions
F−1
Y (·) for all samples of X .
The task is to find a function g(·) = F−1

Y (FX (·)), i.e.
FX (x) = FY (g(x)) which yields Y d= g(X), where the eval-
uations of function g(·) do not require expensive inversions
F−1
Y (·), as in (2.2). Once we determine the mapping function

g(·), the CDFs FX (x) and FY (g(x)) are equal not only in
distribution sense but also element-wise.
With g(·) determined, the sampling from the expensive ran-

domvariableY can be decomposed into sampling from a cheap
random variable X and a transformation to Y via an evaluation
of function g(·), i.e. yn = g(ξn). It is therefore crucial that g(·)
is as simple as possible.
The SC method is used here to efficiently approximate g(·).

The method approximates Y as a function g of X in terms of
an expansion in Lagrange polynomials �i (ξn), i.e.

yn ≈ gN (ξn) =
N∑
i=1

yi�i (ξn), �i (ξn) =
N∏

j=1, i 	= j

ξn − x j
xi − x j

,

(2.3)
where ξn is a sample from X and xi and x j are so-called
collocation points, yi is the exact evaluation at a collocation
point xi given in (2.2), i.e. yi = F−1

Y (FX (xi )). In the expres-
sion above �(x) = (�1(x), �2(x), . . . , �N (x))T is called the
Lagrange basis. Each element of the basis satisfies �i (x j ) =
δi j , with the Kronecker delta δi j = 1 for i = j and δi j = 0
otherwise. A special choice of the collocation points xi will be
discussed. We take a closer look at the equation (2.3). Once
we have determined N collocation points xi and N expen-
sive inversions F−1

Y (FX (xi )), we can generate any number of
samples by evaluating the polynomial gN (ξn). The resulting
collocation method is called the Stochastic Collocation Monte
Carlo sampler (SCMC sampler) here.
For any random variable X , the optimal collocation points

are based on the moments of X . The optimal collocation points
are chosen to be Gauss quadrature points that are definedas the
zeros of the corresponding orthogonal polynomial. This leads
to a stable interpolation under the probability distribution of X .
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A brief introduction to Lagrange polynomials, to the optimal
points based on the moments of X by means of the so-called
Grammatrix M , and a basic example involving the collocation
method are presented, for convenience, in appendix 1.

Remark [Monotonicity of gN (x)] With the collocation
points xi and the corresponding inversions yi = F−1

Y (FX (xi )),
the task is to construct an approximating function gN (x)which
is (ideally) monotonic, differentiable and which satisfies yi =
gN (xi ). In this paper we choose for gN (x) the Lagrange poly-
nomial which is a well-accepted choice in the field of Uncer-
tainty Quantification. With this choice of polynomial, mono-
tonicity is not guaranteed; however, the convergence of the
SCMC sampler does not really depend on the monotonicity of
gN (x).
Within [xi , xN ] monotonicity of the function gN (x) can be

guaranteed by the use of e.g. the monotone cubic Hermite
interpolation (Fritsch andCarlson 1980) which also guarantees
continuity of the first derivative. The resulting formulas for the
occurring expectations (for which we have analytic solutions
with the Lagrange polynomials) are somewhat more involved
in the case of monotone cubic Hermite interpolations which is
the main reason for us to stay with the Lagrange interpolation.

2.1.1. Sampling from the non-central chi squared distribu-
tion. As a first numerical example, we consider the problem
of generating samples from the non-central chi squared distri-
bution Y ∼ χ2(d, λ) with the number of degrees of freedom
parameter d and non-centrality parameter λ. We perform an
experiment with the following set of parameters,† d = 1.2
and λ = 0.1.
We take X ∼ N (0, 1), with the moments given by:

M = {E[Xi+ j ]}Ni, j=0 =
{

0, i + j is odd,
(i + j − 1)!!, i + j is even,

(2.4)
withE[X0] = 1 and where !! is the so-called double factorial.‡
For N = 5 we determine the collocation points for X based
on its moments. The resulting moment matrices M and Ĵ (see
appendix 1) are given by:

M =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 1 0 3 0
0 1 0 3 0 15
1 0 3 0 15 0
0 3 0 15 0 105
3 0 15 0 105 0
0 15 0 105 0 945

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ĵ =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
1 0 1.4142 0 0
0 1.4142 0 1.7321 0
0 0 1.7321 0 2
0 0 0 2 0

⎞⎟⎟⎟⎟⎠ ,

where matrix Ĵ is a symmetric tridiagonal matrix obtained
from the eigenvalue method (see theorem 1.2) in which the
matrix coefficients are obtained from the Cholesky decompo-
sition ofGrammatrixM , as described in detail in appendixA.1.

†Note that the non-central distribution is well defined for any positive
number of degrees of freedom, d (Johnson et al. 1994).
‡n!! = n(n − 2)(n − 4) . . .

Table 1. The collocation points xi , corresponding CDF and
inversions F−1

χ2(d,λ)
(xi ), for i = 1, . . . , 5.

xi FN (0,1)(xi ) yi = F−1
χ2(d,λ)

(FN (0,1)(xi )))

x1 −2.8570 0.0021 0.000063961434589
x2 −1.3556 0.0876 0.031420172480241
x3 0 0.5 0.685785887466036
x4 1.3556 0.9124 3.623925068433782
x5 2.8570 0.9979 10.846256627398553

For the standard normal random variable the collocation
points have been tabulated in table A1 in appendix A.3. The
corresponding values of the cheap CDF FN (0,1)(x) are given
in table 1. We perform N = 5 expensive inversions,§ yi =
F−1

χ2(d,λ)
(FN (0,1)(xi ))), i = 1, . . . , 5, also given in table 1.

When the expensive inversions are determined, we obtain a
vector of samples yn .
With the approximating polynomial, gN (ξn), it is not guar-

anteed that the obtained realisations are non-negative. In such
a case one can either ignore anynegative values, using g(ξn) :=
|g(ξn)|, or cap the realisations at 0, i.e. gN (ξn) :=
max(gN (ξn), 0).
The results are presented in figure 1, where N = 5 colloca-

tion points are considered. We see that when the distribution
of interest, Y , exhibits significant mass in the neighborhood
of zero, the number of collocation points should be increased
for accuracy reasons. Interpolation based on N = 5 already
provides excellent results in this rather extreme case. In table
2 the timing results, performed on an i5-2400 with 4 GB of
RAM, are presented. These results show that for simulating
1.000.000 samples the SCMC sampler is about 3 times faster
than MATLAB.

3. Error analysis

In this section, we discuss the errors generated by the SCMC
sampler.Webeginwith a case forwhich the collocationmethod
gives exact results. In example 3.1 below the results for a
normal distribution are presented.

Example 3.1 [Exact solution for normal distributionwith N =
2] For any two normally distributed random variables Y ∼
N (μY , σ 2

Y ) and X ∼ N (μX , σ 2
X ) the expansion in (2.3) is

exact in distribution, i.e. gN (X)
d= Y , for N = 2.

Choosing two collocation points, x1 and x2, equation (2.3)
gives for function g2(X),

g2(X) = y1
X − x2
x1 − x2

+ y2
X − x1
x2 − x1

. (3.1)

Since both random variables are normally distributed we can
transform them into standard normal variables, i.e. FN (0,1)(
yi−μY

σY

)
= FN (0,1)

(
xi−μX

σX

)
. So, for each collocation point

xi , we have yi = xi−μX
σX

σY + μY , in equation (3.1). Since
g2(X) follows the normal distribution, E[g2(X)] = μY and

§These inversions were calculated with the MATLAB function
ncx2inv(·).
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Figure 1. CDF and function g(x) for the non-central chi-squared distribution obtained analytically vs. the collocation method for N = 5
collocation points. The third graph shows the error in CDF for a different number of collocation points.

Table 2. Timing results for sampling from Y ∼ χ2(d, λ) by evaluating gN (ξn) with X ∼ N (0, 1) for different numbers of collocation
points N and for M = 1.000.000 Monte Carlo samples. The results are reported in seconds.

No.Coll. Coll. points x F−1
χ2(d,λ)

(FX (x)) ξn ∼ N (0, 1) gN (ξn) Total [s]

N=4 0.0002 0.0067 0.0658 0.0261 0.10
N=5 0.0002 0.0074 0.0658 0.0305 0.10
N=6 0.0002 0.0077 0.0658 0.0351 0.11
N=7 0.0003 0.0083 0.0658 0.0394 0.11
N=8 0.0004 0.0089 0.0658 0.0436 0.12
N=9 0.0003 0.0122 0.0658 0.0479 0.13
N=10 0.0004 0.0102 0.0658 0.0521 0.13
MATLAB — — — — 0.40 [s]

Var[g2(X)] = σ 2
Y , so that the distributions of Y and g2(X) are

the same, Y d= g2(X).

The essence is to project the expensive stochastic variable Y
on a polynomial of X , so a collocation method of sufficiently

high degree will yield exact results when a polynomial relation
between the variables X and Y exists. Standard examples of
such relations include the chi-squared distribution with one
degree of freedom, Y ∼ χ2

1 , which has the same distribution
as the squared standard normal distribution, X2, the Rayleigh
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distribution and the chi-squared distribution, the Maxwell dis-
tribution and the chi-squared distribution, the Gamma distri-
bution and the chi-squared distribution, and many others.
To measure the error which results from the collocation

method in a more general case, we can consider either the
difference between the functions g(X) and gN (X) or the error
associatedwith the approximated cumulative distribution func-
tion. The first type of error is due to the Lagrange interpolation,
so the corresponding error estimate is well known.
The relation between Y and X is y = g(x), which is ap-

proximated by a Lagrange polynomial, y ≈ gN (x), for N
collocation points. The error eX (ξn) is given by the standard
Lagrange interpolation error:

eX (ξn) = |g(ξn) − gN (ξn)|

=
∣∣∣∣∣ 1N !

dN g(x)
dxN

∣∣∣∣
x=ξ̂

N∏
i=1

(ξn − xi )

∣∣∣∣∣ , (3.2)

with xi a collocation point, ξ̂ ∈ [x1, xN ], and x =
(x1, . . . , xN )T,which can be bounded by defining ξ̂ as the point
where |dN g(x)/dxN | has its maximum. Equation (3.2) gives
the error eX (ξn) in yn as a function of ξn . A small probability
of large errors in the tails can be observed by deriving the error
eU (un), substituting the uniformly distributed random variable
un in (3.2), using ξn = F−1

X (un),

eU (un) =
∣∣∣g(F−1

X (un)) − gN (F−1
X (un))

∣∣∣
=

∣∣∣∣∣ 1N !
dN g(x)
dxN

∣∣∣∣
x=ξ̂

N∏
i=1

(F−1
X (un) − xi )

∣∣∣∣∣ . (3.3)

The probability to be in the tails is small, as the inverse of
the normal distribution, evaluated for uniform variables, de-
termines the error.A‘close-to-linear’relation between the vari-
ables X andY , or a polynomial of X andY (meaningdN g(x)/dxN
being small) gives a small approximation error. To reduce the
error, a variable X which is ‘similar’, in distributional sense,
to variable Y is beneficial.
On the other hand, when approximating the CDF of Y , we

have FY (y) = FY (g(x)) ≈ FY (gN (x)), which is exact at the
collocation points xi ,

FY (yi ) = FY (g(xi )) = FY (gN (xi )). (3.4)

3.1. Error analysis and Gauss-Hermite quadrature

Using the fact that the collocation points xi for i = 1, . . . , N
are optimal and correspond to the zeros of orthogonal polyno-
mials, we relate the collocation method to Gauss quadrature
where the integral of a real-valued function 	(x) can be ap-
proximated by a polynomial:∫

R

	(x) fX (x)dx =
N∑
i=1

	(xi )ωi + εN , (3.5)

with fX (x) the weight function, andωi the quadrature weights.
As explained in Golub andWelsch (1969), one can calculate

pairs {xi , ωi }Ni=1 when the three-term recurrence relation is
known for orthogonal polynomials generated by fX (x) and
the moments of X are known. The weights ωi are calculated
as the first row of matrix Ĵ in theorem 1.2.

The approximation Y ≈ YN ≡ gN (X) generates an error
which needs to be assessed. We have:

E

[
(Y − YN )2

]
= E

[
(g(X) − gN (X))2

]
=

∫
R

(g(x) − gN (x))2 fX (x)dx,

where g(x) = F−1
Y (FX (x)). The advantage of using optimal

collocation points is that the method can be connected to the
computation of integrals by quadrature. By theorem 1.2 the
collocation points xi and the corresponding weights wi can be
determined. Since g(xi ) = gN (xi ), for i = 1, . . . , N , the error
reads: ∫

R

(g(x) − gN (x))2 fX (x)dx

=
N∑
i=1

(g(xi ) − gN (xi ))
2 ωi + εN = εN . (3.6)

Thus, the error in L2 is determined by the quadrature error.
For X ∼ N (0, 1) a relation exists between the pairs

{xi , ωi }Ni=1 and the Gauss-Hermite quadrature rule. The differ-
ence between the Gauss-Hermite quadrature pair {xHi , ωH

i }Ni=1
and the Gauss quadrature pair {xi , ωi }Ni=1, with X ∼ N (0, 1),
is the weight function, i.e. we use the normal distribution while
Gauss-Hermite quadrature is based on the function e−x2 . For
any function 	(x) and X ∼ N (0, 1) we have:

E[	(X)] =
∫ +∞

−∞
1√
2π

e−
x2
2 	(x)dx

=
∫ +∞

−∞
1√
π
e−x2	(

√
2x)dx (3.7)

So, the relation between the abscissas and weights of these
rules is simply xHi = xi/

√
2 and ωH

i = ωi
√

π.

From standard text books, like Abramowitz and Stegun
(1972), the error for Gauss-Hermite quadrature, and thus for
the collocation method, is given by:

εN = N !√π

2N
	(2N )(ξ̂1)

(2N )! , with 	(x) = (g(x) − gN (x))2

=
(
1
N !

dN g(x)
dxN

∣∣∣∣
x=ξ̂2(x)

N∏
i=1

(x − xi )

)2

, (3.8)

as defined in (3.2) with−∞ < ξ̂1 < ∞ and x1 < ξ̂2(x) < xN .
In practical applications, when considering a bounded do-

main [a, b] and g(x) is C(a, b), by the Weierstrass Theorem
we have for any ε∗ > 0:∣∣∣∣∫ b

a
(g(x) − gN (x)) fX (x)dx

∣∣∣∣ ≤ ε∗,

for N sufficiently large, which is also a classical result.

Remark FX (·) is chosen to be the standard normal CDF in
the present paper. This works very well, particularly for distri-
butions of Y that are ‘close to normal’. The choice to use the
normal distribution for X is also motivated by the Cameron–
Martin Theorem (Cameron and Martin 1947), which states
that polynomial chaos approximations based on the normal
distribution converge to any distribution.
Other distributions for X may, of course, be used but the

inversion of these may be more expensive.
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In the sections to follow, we will show that for ‘non-normal’
distributions that we encounter in finance, we can still keep
the normal CDF for X , in combination however with certain
enhancements, like grid stretching and the prescription of an
atom at zero. A highly efficient and accurate approximation
then results.

4. Stochastic collocation for distributions in finance

In this section, we discuss two enhancements of the basic
stochastic collocation method in order to deal with specific
features that occur in distributions in computational finance.
In particular, we give some details on how to sample from
distributions with an atom at zero and present a so-called grid-
stretching technique which allows for more accurate handing
of leptokurtic distributions.
We will also perform some experiments for some distribu-

tions occurring frequently in finance.We start with the Heston
model (Heston 1993), and continue with the Stochastic Alpha
Beta Rho (SABR Hagan et al. 2002) model.

4.1. Stretching of the collocation grid

The collocation method relies on a preferably ‘close-to-linear’
relation between the variables X and Y . Optimal results are
obtained when the densities of X and Y resemble each other.
If the variables X and Y are related in a non-linear way,

a large number of collocation points may be required. The
collocation points xi of X are solely determined based on the
distribution and the moments of X , thus before the inversions
F−1
Y (·) take place.
When a symmetric random variable X is used to approxi-

mate an asymmetric variable Y , often a concentration of collo-
cation points is encountered at the domain boundaries. Increas-
ing the degree of the polynomial may not result in a significant
increase in accuracy.
Two possible techniques to accurately approximate a vari-

able Y with the help of X before the inversions F−1
Y (FX (xi ))

for x = (x1, x2, . . . , xN )T are:

• Moment matching: To ensure that the collocation points
determined from X are also based on Y one may choose
the parameters of X so that E[X ] = E[Y ], E[X2] =
E[Y 2], etc. Unfortunately, the moments of the expensive
variable Y are not always easily available or they do not
exist.

• Grid stretching:Assuming that we have determined a set
of collocation points, x = (x1, . . . , xN )T, based on the
moments of the variable X , instead of calculating FX (x),
we consider another random variable X̂ and calculate
FX̂ (x) at the collocation points determined by X. Grid
stretching provides us with a highly satisfactory redis-
tribution of points at which the inverse F−1

Y (FX (x)) is
calculated.

4.1.1. Grid stretching for normal distribution. To illus-
trate the grid stretching technique we consider X ∼ N (0, 1)
and N = 9 collocation points. As the computation of the col-
location points only requires the moments of X and the eigen-
value calculation of a certain matrix, this can be performed

instantly. In table 3 these collocation values are tabulated, for
convenience.
The first and last two values of FN (0,1)(·) accumulate at

the boundaries of the interval [0, 1]. This pattern is even more
pronounced for a larger number of collocation points N . We
need to calculate F−1

Y (FN (0,1)(·)), and numerical instabilities
for FN (0,1)(·) → 0 or FN (0,1)(·) → 1 may occur in the
inversion procedure.
In such a case, we propose to define a new random variable

X̂ and evaluate its CDF at the collocation points xi , i.e. FX̂ (xi ).
A natural choice for X̂ is another normally distributed random
variable X̂ ∼ N (0, σ 2)with standard deviation σ chosen such
that the CDF of X̂ at the first, x1, or the last collocation point,
xN , is equal to some predefined quantile limits, pmin or pmax,
respectively, i.e.

FN (0,σ 2)(x1) = pmin or FN (0,σ 2)(xN ) = pmax.

For any x , we have FN (0,σ 2)(x) = FN (0,1)(x/σ), so that,

σ = x1

F−1
N (0,1)(pmin)

or σ = xN

F−1
N (0,1)(pmax)

. (4.1)

To specify an appropriate value for pmin or pmax one needs
some insight in the distribution of interest. If, for example, the
distribution has heavy tails one needs to take pmax sufficiently
large so that the tail is well approximated by the polynomial-
in such a case pmax = 0.9995 might be appropriate. In the
case of moderate tails, a level of 0.995 should be sufficient to
approximate the distribution. The specification of a quantile
limit directly implies a minimum/maximum value for FX (x1)
and FX (xN ).

For the considered example, if we set pmax = 0.9995, with
(4.1) σ = x9/F

−1
N (0,1)(0.9995) = 1.3714. This σ -value leads

to the values in table 3. As expected, the maximum value is
found when the CDF is equal to the level determined by pmax.
With an appropriate σ determined, the sampling equation is

given by equation (2.3) with yi = F−1
Y (FN (0,σ 2)(xi )), where

the ξn are based onN (0, σ 2) and the collocation points xi are
determined by considering N (0, 1).
Due to obvious relations between normal CDFs, we can

express (2.3) in this case as:

yn ≈ gN (ξn) =
N∑
i=1

F−1
Y

(
FN (0,1)

(
xi/σ

))
�i (ξn),

�i (ξn) =
N∏

j=1, i 	= j

σξn − x j

xi − x j
,

where ξn represent samples from the standard normal distribu-
tion and xi are also collocation points from the standard normal
distribution.

Remark [When to apply grid stretching with a normal dis-
tribution?] To avoid numerically unstable inversions F−1

Y (a)
with a → 0 or a → 1 the collocation grid should be stretched
when a distribution is heavily tailed and the number of collo-
cation points required is N > 5. Moreover, the grid stretching
method should be used when there is clear evidence that the
distribution Y is of leptokurtic type or the distribution is highly
skewed.
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Table 3. Collocation points and corresponding values of FX (xi ) and the stretched variant FN (0,σ 2)(xi ) at the same collocation points.

x1 x2 x3 x4 x5 x6 x7 x8 x9

xi −4.5127 −3.2054 −2.0768 −1.0233 0.0 1.0233 2.0768 3.2054 4.5127
FN (0,1)(xi ) 0.0000 0.0007 0.0189 0.1531 0.5 0.8469 0.9811 0.9993 1.0000
FN (0,σ 2)(xi ) 0.0005 0.0097 0.0650 0.2278 0.5 0.7722 0.9350 0.9903 0.9995

Remark [Loss of optimality but not of stability]Gauss quadra-
ture has the optimal polynomial degree of convergence for inte-
gration. The location of the Gauss quadrature points also leads
to a stable interpolation. The grid stretching approach looses
the theoretically optimal degree of convergence. On the other
hand, it maintains the same interpolation stability properties,
because the grid stretching leads to a linear displacement of
quadrature nodes relative to the distribution.

4.2. Exact simulation of the Heston model

In financial applications we often need samples from distri-
butions involving two, or more, dimensions, like in the exact
simulation of stochastic volatility models, a particular exam-
ple is the Heston stochastic volatility model (Heston 1993).
Realisations of stock S(t) depend on the variance realisation
at time t and the integrated variance up to time t .
Although the exact simulation of the Heston model is well-

known (Broadie and Kaya 2006), it is considered to be com-
putationally expensive (see e.g. Andersen 2008). Variants to
improve this exact simulation scheme were proposed in Hong
Chan and Joshi (2013), Glasserman and Kim (2011).
Since the SCMC sampler is path independent, i.e. the num-

ber of inversions needed does not depend on the number of
paths, we can significantly improve the conditional sampling,
S(T2)|S(T1) for T2 > T1.
Recall that the dynamics of the Heston stochastic volatility

model under the risk-free measure Q are given by:

dS(t)/S(t) = rdt + √
V (t)

[
ρdWV (t) +

√
1− ρ2dWx (t)

]
,

S(t0) = S0,

dV (t) = κ(V̄ − V (t))dt + γ
√
V (t)dWV (t),

V (t0) = V0, (4.2)

with stock S(t), variance process V (t), correlation ρ, speed of
mean reversion κ , volatility of variance γ , mean variance V̄
and independent Brownian motions, dWS(t)dWV (t) = 0dt.
In log-space, log S(t), the model belongs to the class of affine
processes with the characteristic function (ChF) given by:

�log S(T )(u) = exp
[
iu log S0 + iurT + V0

γ 2

(
1− e−DT

1− Ge−DT

)
· (κ − iργ u − D)

]
· exp

[
κ V̄

γ 2 ((κ − iργ u − D) T

−2 log
(
1− Ge−DT

1− G

))]
,

with

D =
√

(κ − iργ u)2 + (u2 + iu)γ 2, and

G = κ − iργ u − D

κ − iuγ u + D
.

When the unconditional characteristic function is available we
can obtain the corresponding CDF using e.g. the COS method
(Fang and Oosterlee 2009).
From samples of log S(T ) we get realisations of S(T ) by

simply taking the exponent. Cheap random variable X and
corresponding random sample ξn are standard normally dis-
tributed variables. The samples, yn = log(S(T ))n , can then
be expressed as in equation (2.3) with yi = F−1

log S(T )

(FN (0,1)(xi )).
The unconditional sampling from the Heston model is

straightforward, as it requires only a few inversions of the orig-
inal CDF. In practice, however, when pricing path-dependent
options it is crucial to sample conditionally on previous reali-
sations of the process, i.e. log S(Ti+1)| log S(Ti ). This type of
sampling can be performed by the application of the SCMC
sampler in combination with the exact simulation by Broadie–
Kaya (Broadie and Kaya 2006). Application of the collocation
technique may significantly improve the speed of generating
samples of the stock price process.
Let us consider two time points T1 < T2 and t0 ≤ T1, so

that under the Heston dynamics in (4.2), the solution of the
log-stock, log S(t), is given by:

log
(
S(T2)

S(T1)

)
=

∫ T2

T1

(
r − 1

2
V (s)

)
ds

+ ρ

∫ T2

T1

√
V (s)dWV (s)

+
√
1− ρ2

∫ T2

T1

√
V (s)dWx (s). (4.3)

Integrating the variance process in (4.2) gives,∫ T2

T1

√
V (t)dWV (s) = 1

γ

[
V (T2) − V (T1)

+ κ

∫ T2

T1
V (s)ds − κ V̄ (T2 − T1)

]
,

so that the log-stock process reads (for details, see Broadie and
Kaya 2006):

log S(T2) = log S(T1) + μS(T1, T2) + σS(T1, T2)ξ, (4.4)

with ξ a standard normal, and

μS(T1, T2) = r(T2 − T1) +
[

κρ

γ
− 1
2

]
Y (T1, T2)

+ ρ

γ

[
V (T2) − V (T1) − κ V̄ (T2 − T1)

]
,

σ 2
S (T1, T2) = (1− ρ2)Y (T1, T2), (4.5)
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and Y (T1, T2) = ∫ T2
T1
V (s)ds.

The expressions above show how to obtain samples for
S(T2) given realisations of V (T2), V (T1), S(T1) and the in-
tegrated variance Y (T1, T2). Sampling from Y (T1, T2) is in-
volved as it dependson realisations of stochastic variableV (T2)
and initial realisations of V (T1).
Given realisations of V (T1) and conditional samples of

V (T2) a result by Broadie and Kaya (2006) can be used with a
closed-form expression of the characteristic function of Y :=
Y (T1, T2)†:

�Y |V (T1)=v,V (T2)=w(u)

:= E

[
eiuY (T1,T2)

∣∣∣V (T1) = v, V (T2) = w
]

(4.6)

= ψ(u)e−0.5(ψ(u)−κ)τ (1− e−κτ )

κ(1− e−ψ(u)τ )

· exp
[

v + w

γ 2

(
κ(1+ e−κτ )

1− e−κτ
− ψ(u)(1+ e−ψ(u)τ )

1− e−ψ(u)τ

)]

·
Ib

(√
vw 4

γ 2
ψ(u)e−0.5ψ(u)τ

1−eψ(u)τ

)
Ib

(√
vw 4κ

γ 2
e−0.5κτ

1−eκτ

) , (4.7)

with τ = T2 − T1, b = 2κ V̄ /γ 2 − 1, ψ(u) = √
κ2 − 2iuγ 2,

and Ib(·) themodifiedBessel function of the firstkind.As noted
in Lord and Kahl (2010), equation (4.7) involves a complex-
valued argument for Ib(·) which, if not treated carefully, may
give rise to discontinuities of the characteristic function,
�Y |V1=v,V2=w(u). To guarantee its continuity one needs to
evaluate the following, algebraically equivalent, representa-
tion:

�Y |V1=b,V2=w(u)
exp (b log q(u))

qb(u)
, with

q(u) = ψ(u)e−0.5ψ(u)τ

1− eψ(u)τ
. (4.8)

With the CDF for Y |V1 = v, V2 = w determined, we can
obtain samples by inverting the CDF, i.e. for un ∼ U([0, 1]),
yn = F−1

Y |v,w(un). When this inversion procedure would take
place for each sample un this technique would be inefficient.
By using the SCMC sampler, however, we can reduce the

number of inversions significantly by specifying a collocation
variable X for which the inversion is cheap.
Let us assume that, with the results of the previous sec-

tion, we have obtained samples for the non-central chi-squared
random variables V (T1) and‡ V (T2). We focus on efficient
sampling from Y (T1, T2), given the samples of V (T1) and
V (T2). Since the realisations yn from Y (T1, T2) are dependent
on the realisations vn from V (T1) and wn from V (T2), we
write yn|vn, wn =: yn(vn, wn). Using the definition of the 2D
Lagrange polynomial (Micchelli 1980, Sauer andXu 1995) we
find:

†Where a conditional expectation w.r.t. an event with null probability
is defined as E[X |Y = y] = ∫

R x fX |Y (x |y)dx with X and Y being
continuous random variables and where fX |Y (x |y) is the conditional
density.
‡Note that by V (T2) we actually mean V (T2)|V (T1)

yn|vn, wn ≈ yn(vn, wn) =
NV1∑
j=1

NV2∑
k=1

yn(v j , wk)� j (vn)�k(wn).

(4.9)

For a pair ( j, k), we use for the calculation of yn(v j , wk):

yn(v j , wk) =
NY∑
i=1

F−1
Y |V1=v j ,V2=wk

(FX (xi ))�i (ξn), (4.10)

so that

yn|vn, wn

≈
NY∑
i=1

NV1∑
j=1

NV2∑
k=1

F−1
Y |V1=v j ,V2=wk

(FX (xi ))� j (vn)�k(wn)�i (ξn),

(4.11)

with

�i (ξn) =
NY∏

i=1, j 	=i

ξn − xk
x j − xk

, � j (vn) =
NV1∏

k=1, 	=k

vn − vk

v j − vk
,

�i (wn) =
NV2∏

k=1, ı 	=k

wn − wk

wi − wk
, (4.12)

where vn , wn and ξn are samples of V (T1), V (T2) and X ,
respectively, and v j , wk, xi are collocation points of V (T1),
V (T2) and X .
With the collocation points v1, . . . , vNV1 ,w1, . . . , wNV2

and
x1, . . . , xNY determined and by NV1 · NV2 · NY inversions of
F−1
Y |V (T1)=v j ,V (T2)=vk

(FX (xi )), we can generate vectors of sam-
ples for variables X , V (T1) and V (T2) and evaluate polynomial
(4.11) to obtain the samples Y |V1, V2.
In order to facilitate efficient evaluation of the Lagrange

polynomial in 3D it is recommended to use the barycentric
polynomial representation given by§:

yn|vn, wn ≈
∑
i, j,k

yi, j,k
λiλ jλk�(ξn)�(vn)�(wn)

(ξn − xi )(vn − v j )(wn − wk)
,

where for z ∈ {x, v, w} we have �(zn) = ∏Nz
i=1(zn − zi ) and

for l ∈ {i, j, k} we have λl = 1/
∏Nz

i=1,i 	=l(zl − zi ).
In the next subsection an example is presented.

4.2.1. Integrated variance experiment. We present an ex-
ample of how the collocation technique can be used for ef-
ficient calculation of samples from the integrated variance,
Y (T1, T2)|vn, wn , given the samples of the variance process at
times T1 and T2, i.e. Y (T1, T2). We show how to efficiently ob-
tainM samples from the integrated variance given themarginal
variables V (T1) and V (T2).
In the experiment T1 = 5y and T2 = 10y are used with the

following set of parameters:

γ = 0.2, κ = 0.5, V̄ = V0 = 0.1. (4.13)

The first ingredient for obtaining samples of Y (T1, T2) is to
generate samples, vn , from V (T1). This is just sampling from
the non-central chi-squared random variable, as discussed in

§�(ξn)�(vn)�(wn) can be taken outside the sum.
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Table 4. Inversions yi, j,k = F−1
Y |v j ,wk

(FX (xi )) for all collocation points xi , v j , wk .

v j wk x1 x2 x3 x4 x5

v1 w1 0.1295 0.2106 0.3383 0.5391 0.8560
v1 w2 0.2040 0.3240 0.5023 0.7615 1.1450
v1 w3 0.3619 0.5481 0.7965 1.1267 1.5875

v2 w1 0.2387 0.3733 0.5667 0.8403 1.2393
v2 w2 0.3362 0.5210 0.7730 1.1081 1.5748
v2 w3 0.5347 0.7974 1.1214 1.5264 2.0692

Table 5. Timing results for evaluating the polynomial in (4.11) depending on the number of samples of vn , wn and ξn . The experiment was
performed on a standard PC, i5-2400 with 4 GB of RAM.

#paths 10 100 1.000 10.000 100.000 500.000 1.000.000

Time [s] 0.00010 0.00012 0.00082 0.0075 0.023 0.11 0.21

section 2.1.1.With the samples vn we need to determinewn|vn .
For this purpose we apply the SCMC sampler given by:

wn|vn ≈ gNV2 ,NV1
(ξn)

=
NV2∑
i=1

NV1∑
j=1

F−1
V (T2)|V (T1)=v j

(FX (xi ))�i (ξn)� j (vn),

(4.14)

where ξn are the independent samples from the normal distri-
bution, vn are samples from the non-central chi-squared V (T1),
and xi and vi are collocation points for approximating variable
X and non-central chi-squared variable V (T1), respectively.
These points can be calculated using equation (A9) and the
eigenvalues of the corresponding matrix (see theorem 1.2).
In order to obtain any number of samples from wn|vn we
need NV1 · NV2 inversions F−1

V (T2)|V (T1)=v j
(FX (xi )), for i =

1, . . . , NV2 and j = 1, . . . , NV1 .
Then, we sample from Y |vn, wn, with the following num-

bers of collocation points, NY = 5, NV1 = 2, NV2 = 3, which
implies 30 inversions in (4.11).
Under the Heston model both V (T1) and V (T2)|V (T1) are

non-centrally chi-squared distributed: V (T1) ∼ c(t)χ2
d,λ(t,V0)

,
V (T2)|V (T1) ∼ c(t)χ2

d,λ(T2−T1,V (T1))
, with d representing the

degrees of freedom and with non-centrality parameter λ(t, ·),
with values:

c(t) = γ 2

4κ
(
1− e−κt) , d = 4κ V̄

γ 2 ,

λ(t, V0) = 4κV0e−κt

γ 2(1− e−κt )
. (4.15)

With the parameter specifications in (4.13) we find:

V (T1) ∼ 0.0184χ2
5,0.4471,

V (T2)|V (T1) ∼ 0.0199χ2
5,λ(5,V (T1))

. (4.16)

The collocation points are determined by the moments of the
marginal distributions of V (T1) and V (T2). The moments for
the non-central chi-squared distribution are known. For ν ∼
χ2
d,λ we have:

Table 6. Heston model parameters sets (Andersen 2008). For
all tests, additionally, S(T ) = 100, r = 0 and K =

(50, 75, 100, 125, 150, 200).

Heston γ κ ρ T2 V̄ = V0

Set I 1 0.5 −0.9 10 0.04
Set II 0.9 0.3 −0.5 15 0.04
Set III 1 1 −0.3 5 0.09

E[νn] = 2n−1(n − 1)!(d + nλ)

+
n−1∑
i=1

(n − 1)!2i−1
(n − i)

(d + iλ)E[νn−1]. (4.17)

Application of equation (A9) and computation of the eigen-
values, according to theorem 1.2, of the corresponding matrix,
give the following sets of collocation points for V (T1) and
V (T2): v = (0.0651, 0.2139)T and w = (0.0488, 0.1524,
0.3388)T. In the experiment, the integrated variance Y will be
approximated by standard normal X , with collocation points
x = (−2.8570, −1.3556, 0.0, 1.3556, 2.8570)T. These col-
location points indicate the locations at which the expensive
inversions from (4.11) need to be calculated. The inversions
are presented in table 4, for convenience.
TheM samples from yn |vn, w j are determinedby evaluating

the polynomial in (4.11). The polynomial evaluation can be
vectorised and, as presented in table 5, with vectors of sam-
ples vn , wn and ξn for V (T1), V (T2) and X , the polynomial
evaluation is very fast, e.g. for 100.000 paths the time needed
is about 0.02 s. In figure 2 the simulation results are presented.
By using only 30 inversions, we generate samples that are very
close to those obtained by direct inversion.

4.2.2. Heston Model exact sampling experiment. We use
the SCMC sampler for exact sampling for the Heston model,
and specify three sets of Heston parameters in table 6, as in
Andersen (2008). These model parameters correspond to test
cases with leptokurtic densities. All parameter sets in table 6
do not satisfy the so-called Feller condition indicating a high
degree of asymmetry (skewness).
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Figure 2. Left: First 200 exact and approximated samples from the conditional integrated varianceY |V (T1), V (T2). The projected collocation
points on the space (V (T1), V (T2)) where V (T1) = {v1, v2} and V (T2) = {w1, w2, w3} as tabulated in table 4 are indicated by black dots.
Right: Empirical CDFs of the integrated variance obtained by the exact simulation and the SCMC sampler.

In all experiments a time grid is defined consisting of τ =
{T1, T2} with T1 = T2/2 (T2 as in table 6). Intermediate time
step T1 = T2/2 is of high interest here as the sampling for
stock S(T2) requires sampling from Y (t0, T1)|V (t0), V (T1)
and Y (T1, T2)|V (T1), V (T2). Sampling for the first time in-
terval is much easier than for any other interval, due to the fact
that the initial variance V (t0) is known and sampling from the
integrated variance then requires only a two-dimensional col-
location grid. In any other case a three-dimensional collocation
grid, as in (4.11), is needed.
Once the samples from the variances V (T1), V (T2) and the

integrated variances: Y (t0, T1), Y (T1, T2) are calculated by the
SCMC sampler, the samples for the stock S(T2) are obtained
via equation (4.4).
For all numerical experimentswe specify NV1 = 7, NV2 = 7

and vary the number of collocation points, NY , for the inte-
grated variance Y . We generate 1.000.000 Monte Carlo paths.
As explained in section 4.1.1,whenweuse a normal distribu-

tion for the collocation it is recommended to use the stretched
collocation grid, especially in the case of a large number of
collocation points.
Table 7 shows the results for pricing European options. The

table shows the impact of different numbers of collocation
points NY on the implied volatility error. For the given extreme
sets of parameters the SCMC sampler performs excellently. In
the worst case presented, it is necessary to perform 7 · 7 · 8
inversions of the original distribution to obtain an accuracy
at the level 0.1%. Based on these inversions we are able to
generate any number of Monte Carlo paths. In figure 3 the
final implied volatility results for the given sets of parameters
are depicted.

4.3. Distributions with mass at zero, virtual collocation
points

In this section we consider the problem of efficiently sampling
from distributions that have a significant probability mass at

0. Such distributions are typically associated with stochastic
processes with so-called absorbing boundary conditions. The
basic example in finance is the Bessel process associated with
Constant Elasticity of Variance (CEV) dynamics, given by:

dS(t) = σ Sβ(t)dW (t), (4.18)

with some initial condition S0 > 0. The invertible transforma-
tion, Z1(t) = S1−β(t)/(1 − β), for β 	= 1, and Itô’s lemma,
give the time-changed Bessel process:

dZ1(t) = − βσ 2

2(1− β)Z1(t)
dt + σdW (t). (4.19)

The process Z2(t) = Z21(t) is a time-changed squared Bessel
process of dimension δ := (1 − 2β)/(1 − β), which satisfies
the following SDE:

dZ2(t) = δσ 2dt + 2σ
√|Z2(t)|dW (t), (4.20)

and with ν(t) = σ 2t , we f ind Z2(t) ≡ Zν(t) where Z(t) is a
δ-dimensional squared Bessel process,

dZ(t) = δdt + 2
√|Z(t)|dW (t), (4.21)

with degrees of freedom δ. With δ ≤ 0, Z(t) has a boundary
condition at zero which is absorbing. One can show that for
1
2 ≤ β < 1 a unique solution of SDE (4.18) exists, and that the
boundary value at zero is absorbing. Moreover, the probability
density function does not integrate to unity for t > 0.
For 1

2 ≤ β < 1 the CDF of the CEV process in (4.18) is
given by (Schroder 1989):

P[S(T ) ≤ y|S0] = 1− Fχ2(b,c(y))(a), (4.22)

with

a = S2(1−β)

0
(1− β)2σ 2T

, b = 1
1− β

, c(y) = y2(1−β)

(1− β)2σ 2T
,

(4.23)
where Fχ2(b,c(y))(a) is the CDF of the non-central chi-squared
distribution with b degrees of freedom and non-centrality pa-
rameter c(y). Probability mass at zero is found for the follow-
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Table 7. Implied volatilities and errors calculated for different numbers of collocation points NY with fixed NV1 = NV2 = 7 calculated for
different strike levels, K , in the evaluation of European option prices. ‘Fourier IV’ stands for the reference implied volatilities obtained by
a Fourier technique (Fang and Oosterlee 2009). Superscript ∗ indicates the cases in which the stretched grid technique with q = 0.995 was
used. Parameters sets I, II and III are presented in table 6. ‘Collocation errors’ represent the difference of the implied volatilities between the
reference, Fourier implied volatility, and volatilities obtained from the collocation method. In the performed experiments the standard error

was < 0.0001.

Implied Volatilities and Errors [%]

Set I

Strike [K] 50 75 100 125 150 175 200
Fourier IV [%] 20.21 14.98 10.42 6.54 5.83 6.15 6.53
# Coll. points Collocation Errors [%]
NY = 3 2.09 1.00 −0.24 −1.38 −0.99 −0.68 −0.58
NY = 4 0.42 −0.18 −0.53 −0.82 −0.40 −0.25 −0.28
NY = 5 0.55 0.45 0.40 0.06 0.06 0.00 −0.04
NY = 6∗ 0.21 0.15 0.11 0.14 0.06 0.00 −0.04
NY = 7∗ 0.18 0.10 0.07 0.13 0.07 0.00 −0.05
NY = 8∗ 0.15 0.06 0.05 0.10 0.06 0.00 −0.05

Set II

Strike [K] 50 75 100 125 150 175 200
Fourier IV [%] 17.65 13.64 10.85 9.99 10.55 11.35 12.11
# Coll. points Collocation Errors [%]
NY = 3 0.04 −1.32 −2.59 −2.91 −2.45 −2.01 −1.68
NY = 4 −0.43 −1.11 −1.96 −2.12 −1.67 −1.32 −1.12
NY = 5 0.27 0.24 −0.15 −0.30 −0.08 0.01 −0.01
NY = 6∗ 0.05 0.05 0.12 0.13 0.01 −0.04 −0.09
NY = 7∗ 0.03 0.05 0.16 0.17 0.04 −0.04 −0.10
NY = 8∗ 0.01 0.03 0.13 0.13 0.02 −0.067 −0.11

Set III

Strike [K] 50 75 100 125 150 175 200
Fourier IV [%] 30.84 26.92 24.74 23.94 24.02 24.50 25.12
# Coll. points Collocation Errors [%]
NY = 3 −0.17 −0.29 0.04 0.24 −0.01 −0.20 −0.28
NY = 4 0.07 0.06 0.04 0.04 0.06 0.06 0.06
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Figure 3. Implied volatilities for Heston Sets I, II and III from table 6, evaluated at T2. The number of collocation points used corresponds
to the last NY in table 7. Simulation was performed with one intermediate time, i.e. τ = {T1, T2}.

ing (example) set of parameters, T = 2, S0 = 0.07, β = 0.5
and σ = 0.4, for whichwe obtainP[S(T = 2) = 0] = 0.6456.
We wish to approximate the (expensive) distribution for

S(t), so, referring to the general description Y (t) := S(t) in
this case. Following the strategy from the previous sections,
for some predetermined collocation points x of approximating
variable X withCDF FX (x), wemay encounter cases forwhich
FX (xi ) ≤ FS(T )(0). As S(T ) has an atom at zero there is no

bijective mapping and the inversion yi = F−1
S(T )(FX (xi )) is not

well-defined.Oneway to dealwith this is to choose a stochastic
variable X which also has an atom at 0. However, this would
not be beneficial as X would very likely need to follow an
expensive distribution as well.

Result 4.1 For any nonnegative random variable θ such that
P[θ = 0] = p andP[θ > 0] = 1−p, a randomvariable ζ ∈ R
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exists with P[ζ < 0] = p, so that P[θ = 0] = P[max(ζ, 0) =
0] = p.

The proposed technique here is the usage of so-called virtual
collocation points. Themain idea is to defineamixture ofCDFs
for S(T ), i.e.

F̂S(T )(y) =
{
FS(T )(y), for y > 0,
f (y), for y < 0, (4.24)

where f (y) is a monotonically increasing function of y such
that f (−∞) = 0 and f (0) = FY (0+ ε), ε → 0. The function
f (y) can be seen as a (virtual) monotonic extrapolation of the
original CDF, FS(T )(y) for y < 0.
In principle, f (y) in (4.24) can be chosen arbitrarily. Here,

a linear extrapolation of the CDF is used for f (y). This is to be
preferred over a linear extrapolation of the polynomial gN (x).
With the new, continuous, CDF F̂S(T )(y) defined, we relate

its inversions to the original distribution FS(T )(y). The samples
from S(T ) can be obtained from:

sn = max(F̂−1
S(T )(FX (ξn)), 0)

=
{
F−1
S(T )(FX (ξn)), for FX (ξn) > FS(T )(0),

0, for FX (ξn) < FS(T )(0).
(4.25)

The samples sn for S(T ) can be generated, employing the
SCMC sampler, via

sn ≈ gN (ξn) = max

(
N∑
i=1

F̂−1
S(T )(FX (xi ))�i (ξn), 0

)
. (4.26)

In order to determine n samples s2,n|s1,n from S(T2)|S(T1)
for times T2 > T1 one needs the 2D variant of the SCMC
sampler where the sampling is performed via:

s2,n|s1,n

≈ max

⎛⎝ N1∑
i=1

N2∑
j=1

F−1
S(T2)|S(T1)=s1, j (FX (xi ))�(ξn)�(s1,n), 0

⎞⎠ ,

with xi and s1, j the collocation points from X and S(T1),
respectively, ξn the samples from X , s1,n the samples from
S(T1) and where s2,n|s1,n indicates samples from S(T2) given
realisations from S(T1). The collocation points of S(T1) can
be calculated from the moments using (4.22).

4.3.1. Sampling from the CEV process. We consider the
following set of CEV parameters, T = 2, S0 = 0.07, β = 0.5
and σ = 0.4. Equation (4.22) indicates that the CEV model in
(4.18) has a mass at zero, i.e.

P[S(2) ≤ 0|S0 = 0.07] = 1− Fχ2(2,0)(0.8750) = 0.6456.
(4.27)

We take N = 5 collocation points and X ∼ N (0, 1). In
table 8 we tabulate the collocation points and corresponding
inversions, for convenience. The boxed points xi for which
FX (xi ) < P[S(T ) = 0] = 0.6456 are the virtual nodes. For
this set of collocation points f (x) is the linear extrapolation of
FS(T )(x) for x < 0. Our experiments show that linear extrap-
olation of the CDF provides a sufficiently smooth transition
towards the virtual part of the CDF. The linear extrapolation
requires two additional function evaluations to determine its
value and its gradient at FY (0+ ε) using finite differences.

The analytic and approximate CDFs of S(T ) are presented
in figure 4. The left-hand figure shows the approximating CDF
(red line) before the samples are capped at 0 and the right-hand
figure depicts the resulting approximate CDF. The experiment
is performed with M = 1.000.000 samples from the stan-
dard normal variable. As the computation of virtual points is
extremely cheap (i.e. extrapolation in only three points) the
timing results are similar to those obtained for sampling from
the non-central chi-squared distribution in section 2.1.1.

Remark [Grid stretching for the squaredBessel process]The
quality of the resultsmay be further improved by increasing the
number of collocation points and by applying grid stretching
as in section 4.1.1.

In section 4.4 we will show how the results from this section
can be used in the exact sampling from the SABR model.

4.4. The SABR model

The Stochastic Alpha Beta Rho (SABR) model by Hagan et
al. (2002) is a popular model in the financial industry be-
cause of the availability of an analytic asymptotic implied
volatility formula. Practical applications of the SABR model
include interpolation of volatility surfaces and the hedging of
volatility risk. In the context of pricing interest rate derivatives,
a combination of the SABR model and the market standard
LiborMarket Models (Rebonato 2007) is of particular interest.
Relevant references on this topic include Mercurio andMorini
(2009), Hagan and Leśniewski (2008) and Labordere (2007).
The SABR model is given by the following system of

stochastic differential equations (SDEs) with constant param-
eters α and β:

dS(t) = σ(t)Sβ(t)dWS(t), S(t0) = S0,
dσ(t) = ασ(t)dWσ (t), σ (t0) = σ0,

(4.28)

where dWS(t)dWσ (t) = ρdt and the processes are defined
under the T -forward measure Q

T . The process σ(t) follows
a log-normal distribution (just as the standard Black–Scholes
model). Further, since for a constantσ(t) = σ the asset forward
price, S(t), follows a CEV process, one can expect that the
conditional SABR process, S(T ) given the paths of σ(t) on
the interval 0 ≤ t ≤ T , is a CEV process as well. The next
step will be to combine the conditional CEV process with the
joint distribution of σ(T ) and†

∫ T
0 σ 2(s)ds.

As in Islah (2009) with the conditional samples∫ T
0 σ 2(t)dt

∣∣σ(T ) established, we are able to perform exact‡
sampling from S(T )with the help of the following proposition.

Proposition 4.2 [Cumulative distribution for conditional SABR
process] For some S(0) > 0, the conditional cumulative dis-
tribution of S(T ) with an absorbing boundary at S(T ) = 0,
given σ(T ) and ζ(T ) := ∫ T

0 σ 2(t)dt , reads§

P

[
S(T ) ≤ y

∣∣∣S(0) > 0, σ (T ), ζ(T )
]

= 1− Fχ2(d,λ(y))(a(T )), (4.29)

†The dependence on this integral will become clear later in the text.
‡The conditional probability is exact for ρ = 0 and for ρ 	= 0
constitutes an approximation.
§We use P[·] as the SABR model is defined under the T -forward
measure.
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Table 8. Collocation points and appropriate inversions for the CEV model, boxed numbers indicate virtual points obtained by linear
extrapolation of (xi , yi ).

x1 x2 x3 x4 x5

xi −2.8570 −1.3556 0.0 1.3556 2.8570
FN (0,1)(xi ) 0.0021 0.0876 0.5000 0.9124 0.9979
F−1
S(T )

(FX (xi )) — — — 0.2770 0.9901
yi −0.3646 −0.3162 −0.0825 0.2770 0.9901
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Figure 4. Analytic and approximate CDFs for the CEV process. The red dashed line corresponds to the samples obtained by the SCMC
sampler. Left: without capping the samples at 0, Right: including capping at 0.

where

a(T ) = 1
ν(T )

[
S(0)1−β

(1− β)
+ ρ

α

(
σ(T ) − σ(0)

)]2
,

d = 2− 1− 2β − ρ2(1− β)

(1− β)(1− ρ2)
,

λ(y) = y2(1−β)

(1− β)2ν(T )
,

ν(T ) = (1− ρ2)ζ(T ). (4.30)

Fχ2(d,λ(y))(a(T )) is the non-central chi-squared cumulative
distribution function evaluated at a(T ), with d degrees of
freedom and λ(y) the non-centrality parameter.

Proof. Proof can be found in Islah (2009).

The main objective here is to show how the sampling from
the SABR model can be performed efficiently where we as-
sume that conditional samples

∫ T
0 σ 2(t)dt

∣∣σ(T ) have already
been obtained.
We generate samples from S by using a collocation variable

X , where the samples of σ(T ), σn , and of ζ(T ), ζn are already
given. Naturally the samples sn are functions of σn and ζn ,
and we find, defined recursively as in the previous section, the
following interpolation formula:

sn|σn, ζn

≈
Nσ∑
i=1

Nζ∑
j=1

N∑
k=1

F−1
S|σ=σi ,ζ=ζ j

(FX (xi ))�i (σn)� j (ζn)�k(ξn),

(4.31)

with

�i (σn) =
Nσ∏

l=1, l 	= j

σn − σl

σi − σl
, � j (ζn) =

Nζ∏
l=1, l 	= j

ζn − ζl

ζ j − ζl
,

�k(ξn) =
N∏

l=1, l 	=k

ξn − xl
xk − xl

, (4.32)

where σn , ζn and ξn are samples of σ(T ), ζ(T ) and X , re-
spectively, and σi , σl , ζ j , ζl , xk, xl are the collocation points
of σ(T ), ζ(T ) and X , the variable used for approximating
S(T ). In order to facilitate efficient evaluation of the Lagrange
polynomial in 3D it is recommended to use the barycentric
polynomial representation.
The equations given above rely on the availability of samples

of the integrated log-normal ζn and the collocation points ζi for
i = 1, . . . Nζ .With the samples from the integrated log-normal
variable given,we can calculate the collocations points, ζ , from
the empirical moments, E[ζn], E[ζ 2n ], etc. The moments of the
log-normal random variable σ(T )may also be calculated from
the corresponding characteristic function, φlog(σ (T ))(−ik) for
k = 1, . . . , Nσ .
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Figure 5. Results for Set I; Left: CDFs obtained by Monte Carlo (exact inversion of equation (4.31)) vs. results from the SCMC sampler.
Right: corresponding implied volatilities.
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Figure 6. Results for Set II; Left: CDFs obtained by Monte Carlo (exact inversion of equation (4.31) vs. results from the SCMC sampler.
Right: corresponding implied volatilities.

Once the collocation points σ1, . . . , σNσ , ζ1, . . . , ζNζ and
x1, . . . , xN are determined and after Nσ · Nζ · N inversions of
F−1
S|σ=σi ,ζ=ζi

(FX (xi )) we can generate vectors of samples for
X , σ(T ) and ζ(T ) and evaluate polynomial (4.31) to obtain
the samples sn|σn, ζn .
So far, we have shown how to obtain the samples from the

SABRmodel at any time Ti .When dealingwithmultipleMonte
Carlo time steps, one needs to include an additional dimension
in the collocation method, i.e. for S(T2)|S(T1), σ (T2), ζ(T2)
the samples by the SCMC sampler can be generated via:

sn(T2)|σn, ζn, sn(T1)

≈
Nσ∑
i=1

Nζ∑
j=1

NS2∑
k=1

NS1∑
l=1

yi, j,k,l�i (σn)� j (ζn)�k(ξn)�l(sn(T1)).

4.4.1. Exact sampling from the SABR model. We test the
SCMC sampler for the exact sampling from the SABR model.
In this experiment we will perform a simulation based on the
conditional CDF given in proposition 4.2. Since this CDF is
exact only for ρ = 0 we concentrate on this case here, with
the following two SABR parameter sets (table 9): a moderate
set, set I, with a high initial stock S0 and moderate vol-vol
parameter α and more extreme parameters in set II (as studied
in Chen et al. (2012)). We take T = 2 which is standard in
the FX market. In the experiment we also assume that the
samples from the log-normal volatility σ(T ) and the integrated
variance ξ(T ) are given. The collocation points for these two
variables will be calculated based on the empirical moments.
As the approximation for S(T ), we take 1.000.000 samples
from X ∼ N (0, 1). The samples, ξn , are then used in (4.31).
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Table 9. SABR model parameters chosen in the experiments.

SABR S0 σ0 α β T

Set I 0.5 0.5 0.4 0.5 2
Set II 0.07 0.4 0.8 0.5 2

In the experiment we have taken Nσ = 6, Nζ = 6 and N = 9
which results in 6 · 6 · 9 expensive inversions of the CDF in
(4.29). In the experiments we have used the concept of virtual
points from section 4.3 and the grid stretching with σ = 1.3
from section 4.1. The results from the experiment are shown
in figures 5 and 6. For both sets we have obtained excellent
results.

5. Conclusions

We have presented the Stochastic Collocation Monte Carlo
(SCMC) sampler for highly efficient sampling from compu-
tationally expensive distributions. We have shown that even
for extreme distributions a few inversions of the cumulative
distribution function are sufficient for obtaining any number
of Monte Carlo samples. We have also shown that, although
our method allows any distribution for approximation of the
expensive distribution, high-quality results are obtained by us-
ing standard normals, even for a distribution with an atom at
zero. In our numerical experiment section we have shown that
the exact simulation scheme by Broadie–Kaya for sampling
from the Heston model can be performed highly efficiently, as
well as the simulation of the SABR model.
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Hagan, P.S., Kumar, D., Leśniewski, A.S. and Woodward, D.E.,
Managing smile risk.Wilmott Mag., 2002, pp. 84–108.
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Appendix 1. Lagrange polynomials

In this appendix we give a brief introduction to Lagrange polynomials
and their different representations.
For a basis of monomialsm(x) = (1, x, x2, . . . , xN−1)T, a func-

tion g can be decomposed as,

gN (x) = a(N )
0 + a(N )

1 x + · · · + a(N )
N−1x

N−1, with gN (xi ) = yi ,
(A1)

with some coefficients ai , i ∈ {0, . . . , N − 1}. The coefficients a =
(a(N )
0 , . . . , a(N )

N−1)T are determined by the interpolation conditions
gN (xi ) = yi , for i = 1, . . . , N . These coefficients can be found as
solutions of the following linear system, V a = y, i.e.
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1 x11 x21 . . . xN−1

1
1 x12 x22 . . . xN−1

2
...

...
...

...
...

1 x1N x2N . . . xN−1
N

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
a(N )
0
a(N )
1
...

a(N )
N−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
y1
y2
...
yN

⎞⎟⎟⎠ ,

with matrix V the so-called Vandermonde matrix. With this repre-
sentation the interpolating polynomial gN (x) can be presented as
gN (x) = aTm(x).
When interpolating with the Lagrange formula (2.3), for each new

x-value we would need to perform O(N2) operations. A variant
called the barycentric formula (Berrut and Trefethen 2004) exists,
which requires only O(N ) operations per interpolation point x . The
barycentric weight coefficients λi are defined as

λi = 1∏N
j=1,i 	= j (xi − x j )

, i = 1, . . . , N , (A2)

and �(x) = (x − x1)(x − x2) . . . (x − xN ). Each �i (x) can be written
as:

�i (x) = �(x)
λi

x − xi
. (A3)

Polynomial gN (x) is now expressed as,

gN (x) =
N∑
i=1

yi�i (x), �i (x) = λi�(x)

x − xi
, i = 1, . . . , N . (A4)

The representation in (A4) enables us to express the Lagrange poly-
nomial in terms of a Lagrange basis, as gN (x) = y�(x), with y =
(y1, y2, . . . , yN ).

A.1. Optimal collocation points, relation to moments

This section recalls this relation and themain properties of orthogonal
polynomials.
A sequence of orthogonal polynomials {pi }Ni=0, with deg(pi ) = i ,

is said to be orthogonal in L2 with respect to PDF fX (X) of X , if the
following holds,

E
[
pi (X)p j (X)

] =
∫
R
pi (x)p j (x) fX (x)dx

= δi jE
[
p2i (X)

]
, i, j = 0, . . . , N , (A5)

with R the support of X , δi j the Kronecker delta.
An important property of orthogonal polynomials is their definition

in terms of a recurrence relation, given in the theorem below.

Theorem 1.1 (Recurrence in orthogonal polynomials) For any
given density function fX (·), a unique sequence of monic orthogo-
nal polynomials pi (x) exists, with deg(pi (x)) = i , which can be
constructed as follows,

pi+1(x) = (x − αi )pi (x) − βi pi−1, i = 0, . . . , N − 1, (A6)

where p−1(x) ≡ 0, p0(x) ≡ 1andwhereαi andβi are the recurrence
coefficients,

αi = E[Xp2i (X)]
E[p2i (X)] , for i = 0, . . . , N − 1,

βi = E[p2i (X)]
E[p2i−1(X)] , for i = 1, . . . , N − 1, (A7)

with β0 = 0.

Proof. The proof can be found in Favard (1935).

Parameters αi and βi are completely determined in terms of the
moments of random variable X . For the standard normal distribution
they are αi = 0 and βi = i .
For many densities (weight functions in the integration in (A8)) the

three-term recurrence relation in (A6) of the corresponding orthogonal
polynomials has been determined. Sometimes however density fX (·)
is not known explicitly or its evaluation is computationally expensive.

In such cases it is desirable to express αi and βi in (A7) in terms of
the moments of X (Golub and Welsch 1969). Let us consider the
monomials mi (X) = Xi , and defineμi, j as follows,

μi, j = E
[
mi (X)m j (X)

] =
∫
R
xi+ j fX (x)dx

= E[Xi+ j ], i, j = 0, . . . , N . (A8)

From all moments μi, j we construct the so-called Gram matrix M =
{μi, j }Ni, j=0, which is symmetric and contains all moments
{1,E[X1], . . . ,E[X2N ]}. Since matrix M is, by definition, positive
definite (Golub andWelsch 1969), we decompose M = RTR, by the
Cholesky decomposition of M.
The next step is to relate the Cholesky lower triangular matrix R

to the orthogonal polynomials. This relation has been found in Golub
and Welsch (1969) and is given by,

α j = r j, j+1
r j, j

− r j−1, j
r j−1, j−1

, j = 1, . . . , N , and

β j =
(
r j+1, j+1
r j, j

)2
, j = 1, . . . , N − 1, (A9)

with r0,0 = 1 and r0,1 = 0 and where ri, j is the (i, j)th element of
matrix R. This relation gives us the expressions for α j and β j when
the matrix of moments has been computed.
The next step is to relate the coefficients αi and βi to the zeros of

the orthogonal polynomials pn(X), n = 0, . . . , N . This can be done
by the eigenvalue method, presented in the theorem below.

Theorem 1.2 (Eigenvalue method) The zeros xi , i = 1, . . . , N, of
the orthogonal polynomial pN (X) are the eigenvalues of the symmet-
ric tridiagonal matrix,

Ĵ :=

⎛⎜⎜⎜⎜⎜⎝
α1

√
β1 0 0 0√

β1 α2
√

β2 0 0
. . .

. . .
. . .

0 0
√

βN−2 αN−1
√

βN−1
0 0 0

√
βN−1 αN

⎞⎟⎟⎟⎟⎟⎠ , (A10)

i.e. x = (x1, x1, . . . , xN )T is a vector of eigenvalues satisfying Ĵv =
xiv with i = 1, . . . , N for any real vector v, with αi and βi being the
coefficients of the three-term recurrence relation (A6).

Proof. The proof can be found in Golub and Welsch (1969).

Based on the coefficientsαi andβi , the collocation points xi are the
eigenvalues of matrix (A10). Eigenvalue calculation for a tridiagonal
matrix in theorem 1.2 is performed by e.g. the Lanczos algorithm.
A basic illustrative example for the choice of optimal collocation

points is given below.

A.2. Basic example

We consider a simple, illustrative example, with a gamma distributed
random variable Y ∼ �(5, 2), where the first argument is the shape
parameter and the second controls the scale. As the second random
variable we take a standard normal variable, X ∼ N (0, 1). Our
objective is to sample from Y with only a few inversions F−1

Y and by
using the samples from the normal distribution X .
Let us choose a set of N = 2 collocation points x1 = −0.7, and

x2 = 0.7. For these collocation points we calculate the correspond-
ing cumulative probability, FN (0,1)(x1) = 0.2420, FN (0,1)(x2) =
0.758 and we calculate the expensive inversion y1 = F−1

Y
(FN (0,1)(x1)) = 6.6498, y2 = F−1

Y (FN (0,1)(x2)) = 12.6826.
As the final step to obtain M approximated samples of Y we need
to generate M samples from X and evaluate polynomial g2(X) in
(2.3). In the experiment we have generated M = 106 samples and
the corresponding CDF is depicted in the left-hand picture of figure
A1. In the considered example we obtain a satisfactory result, es-
pecially in the region between the evaluated collocation points yn .
To cover the whole domain of X , we take one additional collocation
point x3 = 1.5 for which we get FN (0,1)(x3) = 0.9332 and y3 =
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Figure A1. Left-hand side: Exact CDF for �(5, 2) and approximation with two collocation points. Right-hand side: Exact CDF for �(5, 2)
and approximation with three collocation points.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

C
D

F(
y)

FY

Fg(X)

−4 −3 −2 −1 0 1 2 3 4
0

5

10

15

20

25

30

35

40

X

Y

(X,Y)

(X,g(X))

collocation points (x(i),y(i))

Figure A2. Left-hand side: Exact CDF for Y ∼ �(5, 2) and approximation gN (X) with N = 3 collocation points.

F−1
Y (FN (0,1)(x3)) = 17.3581. The results for this additional collo-

cation point are shown in the right-hand picture of figureA1, showing
a significant improvement of the fit. Based on this illustrative example
we see that the method performs very well once an appropriate set of
collocation points x = (x1, . . . , xN )T is chosen.
Now,we use the results from appendix 1wherewe have established

an algorithm for calculating optimal collocation points. In order to
apply the technique, we need to calculate with equation (2.4) 2N
moments of random variable X . Matrix M and its upper triangular
matrix are given by

M =
⎛⎜⎝ 1 0 1 0
0 1 0 3
1 0 3 0
0 3 0 15

⎞⎟⎠ ⇒ R =
⎛⎜⎝ 1 0 1 0
0 1 0 3
0 0 1.4142 0
0 0 0 2.4495

⎞⎟⎠ . (A11)

By applying equation (A9) we find, α = (0, 0, 0)T and β = (1, 2)T
so the Jacobian matrix Ĵ and the corresponding eigenvalues (the

collocation points) are given by the upper triangular matrices, i.e.

Ĵ =
⎛⎝ 0 1 0
1 0 1.4142
0 1.4142 0

⎞⎠ ⇒ x = (−1.7321, 0, 1.7321)T,

(A12)

where x stands for the vector of the optimal collocation points.† As
before,we calculate the correspondingCDFs FN (0,1)(x) = (0.0416,
0.5, 0.9584)T and y = F−1

Y (FN (0,1)(x)) = (3.7386, 9.3418,
18.8938)T, and present the corresponding results in figureA2 (left).
figureA2 (right) depicts the collocation points, the relation between
the variables X and Y and the approximating function gN (X). We
see that, although the fit at the collocation points is exact and around
the collocation points it is highly satisfactory, the quality of the fit
deteriorates in the tails. In figure A3 we therefore present the results

†In appendix A.3 the collocation points for a standard normal have
been tabulated.
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Figure A3. Left-hand side: Exact CDF for �(5, 2) and approximation with N = 5 collocation points.

Table A1. Collocation points for a standard normal X ∼ N (0, 1).

xi N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11

x1 −1 −1.7321 −2.3344 −2.8570 −3.3243 −3.7504 −4.1445 −4.5127 −4.8595 −5.1880
x2 1 0.0 −0.7420 −1.3556 −1.8892 −2.3668 −2.8025 −3.2054 −3.5818 −3.9362
x3 1.7321 0.7420 0.0 −0.6167 −1.1544 −1.6365 −2.0768 −2.4843 −2.8651
x4 2.3344 1.3556 0.6167 0.0 −0.5391 −1.0233 −1.4660 −1.8760
x5 2.8570 1.8892 1.1544 0.5391 0.0 −0.4849 −0.9289
x6 3.3243 2.3668 1.6365 1.0233 0.4849 0.0
x7 3.7504 2.8025 2.0768 1.4660 0.9289
x8 4.1445 3.2054 2.4843 1.8760
x9 4.5127 3.5818 2.8651
x10 4.8595 3.9362
x11 5.1880

for N = 5 with the collocation points calculated according to the
technique described. The obtained results confirm that by increasing
the number of collocation points, we can also improve the fit signifi-
cantly.

A.3. Tabulated collocation points for a standard normal

Table A1 presents the collocation points for a standard normal
distribution.




