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Sparse grid combination technique for Hagan
SABR/LIBOR market model

J. G. López-Salas and C. Vázquez

Abstract SABR models have been used to incorporate stochastic volatility to LI-
BOR market models (LMM) in order to describe interest rate dynamics and price
interest rate derivatives. From the numerical point of view, the pricing of deriva-
tives with SABR/LIBOR market models (SABR/LMMs) is mainly carried out with
Monte Carlo simulation. However, this approach could involve excessively long
computational times. In the present chapter we propose an alternative pricing based
on partial differential equations (PDEs). Thus, we pose the PDE formulation associ-
ated to the SABR/LMM proposed by Hagan [17]. As this PDE is high dimensional
in space, traditional full grid methods (like standard finite differences or finite ele-
ments) are not able to price derivatives over more than one or two underlying interest
rates and their corresponding stochastic volatilities. In order to overcome this curse
of dimensionality, a sparse grid combination technique is proposed. So as to assess
on the performance of the method a comparison with Monte Carlo is presented.

1 Introduction

The LMM [5, 19, 23] has become the most popular interest rate model. The main
reason is the agreement between this model and Black’s formulas, which are the
standard formulas employed in the market [6]. The standard LIBOR market model
considers constant volatilities for the forward rates, no volatility smile modeling is
taken into account.

Among the different stochastic volatility models offered in the literature, the
SABR model proposed by Hagan, Kumar, Lesniewski and Woodward [16] in the
year 2002 stands out for becoming the market standard to reproduce the price of
European options. The SABR model can not be used to price derivatives whose
payoff depends on several forward rates. In fact, SABR model works in the termi-
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nal measure, under which both the forward rate and its volatility are martingales.
This can always be done if we work with one forward rate in isolation at a time.
Under this same measure, however, the process for another forward rate and for its
volatility would not be driftless.

In order to allow LMM to fit market volatility smiles, different extensions of the
LMM that incorporate the volatility smile by means of the SABR model were pro-
posed. These models are known as SABR/LIBOR market models (SABR/LMMs).
In this chapter we will deal with the model proposed by Hagan et al. in [17].

While Monte Carlo [12] simulation remains the industry’s tool of choice for pric-
ing interest rate derivatives within SABR/LMM setting, several difficulties motivate
researchers to address alternative approaches based on PDE formulations. The first
issue is that the convergence of Monte Carlo methods, although it depends only
very weakly on the dimension of the problem, is very slow. The second drawback
of Monte Carlo methods is the valuation of options with early-exercise, like in the
case of the American options, due to the so-called “Monte Carlo on Monte Carlo”
effect. However, the modification of the PDE to a linear complementarity problem is
usually straightforward. Finally, the weakest point of Monte Carlo methods appears
to be the computation of the sensitivities of the solution with respect to the underly-
ings, the so-called “Greeks”, which are very used by traders, and are directly given
by the partial derivatives of the PDE solution.

In view of previous arguments, in the present chapter we pose the equivalent PDE
formulation for the SABR/LMM proposed by Hagan. From the numerical point of
view, one main difficulty in this PDE formulation lies in its high dimensionality
in space-like variables. In order to cope with this so-called curse of dimensionality
several methods are available in the literature, see [3,11] for example, which can be
put into three categories. The first group uses the Karhunen-Loeve transformation to
reduce the stochastic differential equation to a lower dimensional equation, therefore
this results in a lower dimensional PDE associated to the previously reduced SDE.
The second category gathers those methods which try to reduce the dimension of
the PDE itself, like for example dimension-wise decomposition algorithms. Finally,
the third category groups the methods which reduce the complexity of the problem
in the discretization layer, like for example the method of sparse grids, which we
use in the present chapter.

The sparse grid method was originally developed by Smolyak [28], who used
it for numerical integration. It is mainly based on a hierarchical basis [29, 30], a
representation of a discrete function space which is equivalent to the conventional
nodal basis, and a sparse tensor product construction. Zenger [32] and Bungartz and
Griebel [7] extended this idea and applied sparse grids to solve PDEs with finite
elements, finite volumes and finite differences methods. Besides working directly in
the hierarchical basis, the sparse grid can also be computed using the combination
technique [14] by linearly combining solutions on traditional Cartesian grids with
different mesh widths. This is the approach we follow in this chapter. Recently,
this technique has been used for a financial application related to the pricing of
basket options in [18]. Also in our previous work [21] we have posed the analogous
PDE formulation for the SABR/LMM proposed by Mercurio and Morini in [22].
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Moreover, we have used the same numerical methodology based on the sparse grids
combination technique to solve the resulting high dimensional PDE problem.

The chapter is organized as follows. In Section 2 we pose the PDE formulation
for the Hagan SABR/LMM. In Section 3 we describe the use of a full grid finite
differences scheme for the Hagan model. Numerical results show the limitations
of the full grid method when the number of forward rates increases. Therefore, in
Section 4 we describe the sparse grid combination technique applied to the Hagan
SABR/LMM and show numerical results that illustrate the behaviour of the method
when the number of forward rates increases. For this purpose, a comparison with
Monte Carlo simulation results is used.

2 The Hagan SABR/LMM PDE

We first consider a set of N − 1 LIBOR forward rates Fi, 1 ≤ i ≤ N − 1, F =
(F1, . . . ,FN−1) on the tenor structure [T0,T1, . . . ,TN−1,TN ], the accruals being τi =
Ti+1−Ti. Hagan SABR/LMM is defined by the following system of stochastic dif-
ferential equations [17]:

dFi(t) = µ
Fi(t)Fi(t)βidt +αiVi(t)Fi(t)βidWQ

i (t), Fi(0) given,

dVi(t) = µ
Vi(t)Vi(t)dt +σiVi(t)dZQ

i (t), Vi(0) = 1, (1)

which are posed on a probability space {Ω ,F ,Q} with filtration {Ft}, t ∈ [T0,TN ].
On one hand, µFi is the drift of the i-th forward rate, βi ∈ [0,1] is the variance elas-
ticity coefficient, WQ

i is a standard Brownian motion under the risk neutral measure
Q, and ρρρ is the correlation matrix between the forward rates, i.e.

< dWQ
i (t),dWQ

j (t)>= ρi jdt, ∀i, j ∈ {1, . . . ,N−1}.

On the other hand, Vi is the stochastic volatility of the forward rate Fi, µVi is the drift
of the i-th stochastic volatility, αi is a deterministic (constant) instantaneous volatil-
ity coefficient used to embed in the model any initial value of the volatility process
Vi, ZQ

i is a standard Brownian motion, and θθθ is the correlation matrix between the
stochastic volatilities, i.e.

< dZQ
i (t),dZQ

j (t)>= θi jdt, ∀i, j ∈ {1, . . . ,N−1}.

Besides, the Brownian motions driving the forward rates are correlated with those
ones driving the stochastic volatilities, φφφ will denote the correlation matrix between
the forward rates and their stochastic volatilities, i.e.

< dWQ
i (t),dZQ

j (t)>= φi jdt, ∀i, j ∈ {1, . . . ,N−1}.

Thus, the correlation structure is given by the block-matrix
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PPP =

[
ρρρ φφφ

φφφ
>>>

θθθ

]
,

which is assumed to be positive definite.
The drifts of the forward rates and their stochastic volatilities are determined

by the chosen numeraire. Under the terminal probability measure associated with
choosing the bond P(t,TN) as numeraire, the drifts of the forwards rates are given
by

µ
Fi(t) =


−αiVi(t)

N−1

∑
j=i+1

τ jFj(t)β j

1+ τ jFj(t)
ρi jα jVj(t) if j < N−1,

0 if j = N−1,

while the drifts of the stochastic volatilities are given by

µ
Vi(t) =


−σi

N−1

∑
j=i+1

τ jFj(t)β j

1+ τ jFj(t)
φi jα jVj(t) if j < N−1,

0 if j = N−1.

Our model for the correlation structure is taken from Rebonato [25], who sug-
gests the following functional parameterization:

ρi j = exp[−λ1|Ti−Tj|], (2)
θi j = exp[−λ2|Ti−Tj|], (3)

φi j = sign(φii)
√
|φiiφ j j|exp[−λ3(Ti−Tj)

+−λ3(Tj−Ti)
+]. (4)

So far we have introduced Hagan SABR/LMM. Now suppose we need to price
an interest rate product u(t,F,V) whose payoff at expiry TN is a function of forward
rates from F1 to FN−1, and also of their stochastic volatilities V = (V1, . . . ,VN−1). If
G is the payoff of the option, then the arbitrage-free value of the option relative to a
numeraire N is given by

u(t,F(t),V(t)) = EQ

(
G(T,F(T ),V(T ))

N (T )

∣∣∣∣∣Ft

)
. (5)

Thus, the value u of the option satisfies the PDE

∂u
∂ t

+
1
2

N−1

∑
i, j=1

θi jσiViσ jVj
∂ 2u

∂Vi∂Vj
+

1
2

N−1

∑
i, j=1

ρi jαiViF
βi
i α jVjF

β j
j

∂ 2u
∂Fi∂Fj

+

N−1

∑
i, j=1

φi jαiViF
βi
i σ jVj

∂ 2u
∂Fi∂Vj

+
N−1

∑
i=1

µ
Fi(t)Fβi

i
∂u
∂Fi

+
N−1

∑
i=1

µ
Vi(t)Vi

∂u
∂Vi

= 0, (6)

with the terminal condition given by the derivative payoff,
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u(T,F,V) = g(T,F,V),

on [0,T ]×RN−1×RN−1. For simplicity of notation, we have used the relative pay-

off g(·) = G(·)
N (T )

. This PDE was be derived by applying multi-dimensional Itô’s

Lemma to u, see [27] for details.
Hereafter, for sake of brevity in the notation, let us consider the following oper-

ator:

L [u] =
∂u
∂ t

+
1
2

N−1

∑
i, j=1

θi jσiViσ jVj
∂ 2u

∂Vi∂Vj
+

1
2

N−1

∑
i, j=1

ρi jαiViF
βi
i α jVjF

β j
j

∂ 2u
∂Fi∂Fj

+

N−1

∑
i, j=1

φi jαiViF
βi
i σ jVj

∂ 2u
∂Fi∂Vj

+
N−1

∑
i=1

µ
Fi(t)Fβi

i
∂u
∂Fi

+
N−1

∑
i=1

µ
Vi(t)Vi

∂u
∂Vi

,

where u is a function defined on the domain [0,T ]×RN−1×RN−1.

3 Finite Differences Method with full grids

In this section we introduce a full grid finite differences method to solve the problem
(6). Domain truncation and boundary conditions are proposed. Notice that while the
choice of the range of the time variable is totally unambiguous, [0,T ], an a priori
choice must be made about which values of the space variables are too high or too
low to be of interest, so far we will denote them by [Fmin

i ,Fmax
i ] and [V min

i ,V max
i ].

Selecting boundary values such that the option of interest is too deeply in or out-of-
the money is a common and reasonable choice.

We are going to define a (2N−1)-dimensional mesh with the time sampled from
today (time 0) to the final expiry of the option (time T ) at M + 1 points uniformly

spaced by the time step ∆ t =
T
M

.

The variables representing the forward rates F=(F1, . . . ,FN−1) and their stochas-
tic volatilities V = (V1, . . . ,VN−1), often referred as the “space variables”, will be

sampled at Ri + 1 and Si + 1 points, i = 1, . . . ,N− 1, spaced by hi =
Fmax

i −Fmin
i

Ri

and ĥi =
V max

i −V min
i

Si
, respectively.

For a given mesh, each point is uniquely determined by the time level m (m =
0, . . . ,M), the index vectors of the N − 1 forward rates f = ( f1, . . . , fi, . . . , fN−1)
and stochastic volatilities v = (v1, . . . ,vi, . . . ,vN−1), where fi = 0, . . . ,Ri and vi =
0, . . . ,Si. We seek approximations of the solution at these mesh points, which will
be denoted by

Um
f,v ≈ u(m∆ t,( fihi)1≤i≤N−1,(viĥi)1≤i≤N−1).
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It is natural for this PDE to be solved backwards in time. We approximate the
time derivative by the time-forward approximation

∂u
∂ t

∣∣∣∣∣
t=m∆ t,F=( fihi)1≤i≤N−1,V=(viĥi)1≤i≤N−1

=
∂u
∂ t

∣∣∣∣∣
m,f,v

≈
Um+1

f,v −Um
f,v

∆ t
.

For the space derivatives we have chosen second-order approximations. We will
write fi±1 to mean the forward rates index vector ( f1, . . . , fi±1, . . . , fN−1) which cor-
responds to the forward rates point ( f1h1, . . . ,( fi± 1)hi, . . . , fN−1hN−1). The same
notation will be used in the case of the stochastic volatilities index vector.
The first derivatives are approximated by central differences:

• ∂u
∂Fi

∣∣∣∣∣
m,f,v

≈
Um

fi+1,v−Um
fi−1,v

2hi
,

• ∂u
∂Vi

∣∣∣∣∣
m,f,v

≈
Um

f,vi+1
−Um

f,vi−1

2ĥi
.

The second derivatives are approximated by:

• ∂ 2u
∂F2

i

∣∣∣∣∣
m,f,v

≈
Um

fi+1,v−2Um
f,v +Um

fi−1,v

h2
i

,

• ∂ 2u
∂V 2

i

∣∣∣∣∣
m,f,v

≈
Um

f,vi+1
−2Um

f,v +Um
f,vi−1

ĥ2
i

.

The cross derivatives terms are approximated by:

• For i 6= j,
∂ 2u

∂Fi∂Fj

∣∣∣∣∣
m,f,v

≈
Um

fi+1, j+1,v +Um
fi−1, j−1,v−Um

fi+1, j−1,v−Um
fi−1, j+1,v

4hih j
,

• For i 6= j,
∂ 2u

∂Vi∂Vj

∣∣∣∣∣
m,f,v

≈
Um

f,vi+1, j+1
+Um

f,vi−1, j−1
−Um

f,vi+1, j−1
−Um

f,vi−1, j+1

4ĥiĥ j
,

• ∂ 2u
∂Fi∂Vj

∣∣∣∣∣
m,f,v

≈
Um

fi+1,v j+1
+Um

fi−1,v j−1
−Um

fi+1,v j−1
−Um

fi−1,v j+1

4hiĥ j
.

The finite differences solution under the so-called θ -scheme satisfies

Um+1
f,v −Um

f,v

∆ t
+θW m

f,v +(1−θ)W m+1
f,v = 0,

where θ ∈ [0,1] and W m
f,v is the discretization given by
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W m
f,v =

1
2

N−1

∑
i, j=1
i6= j

θi jσiViσ jVj

Um
f,vi+1, j+1

+Um
f,vi−1, j−1

−Um
f,vi+1, j−1

−Um
f,vi−1, j+1

4ĥiĥ j
+

1
2

N−1

∑
i=1

σ
2
i V 2

i

Um
f,vi+1
−2Um

f,v +Um
f,vi−1

ĥ2
i

+

1
2

N−1

∑
i, j=1
i6= j

ρi jαiViF
βi
i α jVjF

β j
j

Um
fi+1, j+1,v +Um

fi−1, j−1,v−Um
fi+1, j−1,v−Um

fi−1, j+1,v

4hih j
+

1
2

N−1

∑
i=1

α
2
i V 2

i F2βi
i

Um
fi+1,v−2Um

f,v−Um
fi−1,v

h2
i

+

N−1

∑
i, j=1

φi jαiViF
βi
i σ jVj

Um
fi+1,v j+1

+Um
fi−1,v j−1

−Um
fi+1,v j−1

−Um
fi−1,v j+1

4hiĥ j
+

N−1

∑
i=1

µ
Fi(m∆ t)Fβi

i

Um
fi+1,v−Um

fi−1,v

2hi
+

N−1

∑
i=1

µ
Vi(m∆ t)Vi

Um
f,vi+1
−Um

f,vi−1

2ĥi
, (7)

and with terminal condition UM
f,v = g(T,F,V).

Three different θ values represent three canonical discretization schemes, θ = 0
is the explicit scheme, θ = 1 the fully implicit scheme and θ = 0.5 the Crank-
Nicolson scheme. The fully implicit discretization is the best method with respect
to stability, whereas the Crank-Nicolson timestepping provides the best convergence
rate. Although the explicit method is the simplest to implement, it has the disadvan-
tage of being conditionally stable.

We shall first discriminate explicit and implicit parts as follows:

Um
f,v

∆ t
−θW m

f,v =
Um+1

f,v

∆ t
+(1−θ)W m+1

f,v . (8)

As a result of such discretization we arrive to the linear system of equations
Ax = b, where A is the band matrix of known coefficients, x is the vector of the
unknown solutions Um

f,v and b is the vector of known values corresponding to the
right-hand side of (8).

Equation (8) can be rewritten as:

θ

N−1

∑
i=1

(b̂i− r̂i)Um
f,vi−1

+θ

N−1

∑
i=1

(b̂i + r̂i)Um
f,vi+1

+

θ

N−1

∑
i=1

(bi− ri)Um
fi−1,v +θ

N−1

∑
i=1

(bi + ri)Um
fi+1,v+
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θ ∑
i j∈P

ai j
(
Um

fi+1,v j+1
+Um

fi−1,v j−1
−Um

fi−1,v j+1
−Um

fi+1,v j−1

)
+

θ ∑
i j∈C

ψ̂i j
(
Um

f,vi+1, j+1
+Um

f,vi−1, j−1
−Um

f,vi−1, j+1
−Um

f,vi+1, j−1

)
+

θ ∑
i j∈C

ψi j
(
Um

fi+1, j+1,v +Um
fi−1, j−1,v−Um

fi−1, j+1,v−Um
fi+1, j−1,v

)
+(

−1−2θ

N−1

∑
i=1

(b̂i +bi)

)
Um

f,v =

− θ̂

N−1

∑
i=1

(b̂i− r̂i)Um+1
f,vi−1
− θ̂

N−1

∑
i=1

(b̂i + r̂i)Um+1
f,vi+1

− θ̂

N−1

∑
i=1

(bi− ri)Um+1
fi−1,v− θ̂

N−1

∑
i=1

(bi + ri)Um+1
fi+1,v

− θ̂ ∑
i j∈P

ai j
(
Um+1

fi+1,v j+1
+Um+1

fi−1,v j−1
−Um+1

fi−1,v j+1
−Um+1

fi+1,v j−1

)
− θ̂ ∑

i j∈C
ψ̂i j
(
Um+1

f,vi+1, j+1
+Um+1

f,vi−1, j−1
−Um+1

f,vi−1, j+1
−Um+1

f,vi+1, j−1

)
− θ̂ ∑

i j∈C
ψi j
(
Um+1

fi+1, j+1,v +Um+1
fi−1, j−1,v−Um+1

fi−1, j+1,v−Um+1
fi+1, j−1,v

)
+(

−1+2θ̂

N−1

∑
i=1

(b̂i +bi)

)
Um+1

f,v , (9)

where θ̂ = (1− θ), P is the set containing the permutations of the numbers
1,2, . . . ,N − 1 taken two at a time with repetition (the number of elements in P
is (N−1)2), C is the set containing the combinations of the numbers 1,2, . . . ,N−1
taken two at a time without repetition (the number of elements in C is

(N−1
2

)
=

2−1(N − 1)(N − 2)) and the known coefficients b̂i, bi, r̂i, ri, ψ̂i j, ψi j and ai j are
defined as

b̂i =
∆ tσ2

i V 2
i

2ĥ2
i

, bi =
∆ tα2

i V 2
i F2βi

i

2h2
i

,

r̂i =
∆ tµVi(t)Vi

2ĥi
, ri =

∆ tµFi(t)Fβi
i

2hi
,

ψ̂i j =
∆ tθi jσiViσ jVj

4ĥiĥ j
, ψi j =

∆ tρi jαiViF
βi
i α jVjF

β j
j

4hih j
,

ai j =
∆ tφi jαiViF

βi
i σ jVj

4hiĥ j
,

where we have denoted F = (Fi = fihi)1≤i≤N−1 and V = (Vi = viĥi)1≤i≤N−1.
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3.1 Boundary conditions

In order to specify boundary conditions, a combination of mathematical, financial
and heuristic reasoning allows us to find consistent and acceptable ones. There are
several possibilities, see [8] for example.

We assume that forward rates and their stochastic volatilities are non negative
and hence take values in the range zero to infinity. We first truncate the unbounded
interval to a bounded one and then we must specify conditions at the new boundary.
Thus we will consider the truncated domain [Fmin

i ,Fmax
i ]× [V min

i ,V max
i ], with Fmin

i =
0 and V min

i = 0.
For the forward rates we consider Dirichlet boundary conditions. Particularly, the

terminal condition holds on the forward rates boundaries, i.e.

Um
{f|∃ fi=0},v =UM

f,v, ∀m = 0, . . . ,M−1,

Um
{f|∃ fi=Ri},v =UM

f,v, ∀m = 0, . . . ,M−1.

At the stochastic volatility boundaries we consider the following conditions:

L [u] = 0, Vk = 0, (10)
∂u
∂Vk

= 0, Vk =Vmax. (11)

Thus, when Vk = 0 we require that the PDE itself must be satisfied on this boundary.
When Vk approaches to infinity, the price of the derivative becomes independent of
Vk. This is reflected by using Neumann conditions instead of the Dirichlet ones used
for the forward rates boundaries.

For the boundary Vk = Vmax in order to maintain the second order accuracy in
the discretization of the first derivative the ghost point method is considered. Let
us consider the volatility index vector s = (v1,v2, . . . ,Sk, . . . ,vN−1). The ghost grid
points Uf,sk+1 are added. Then, the finite differences scheme of equation (9) can
also be applied at the boundary points Uf,s. However, we now have more unknowns
than equations. The additional equations come from the central finite differences
discretization of the Neumann boundary condition (11):

Uf,sk+1 −Uf,sk−1

2ĥk
= 0,

which yields Uf,sk+1 = Uf,sk−1 . Inserting this into the finite differences equation at
Vk =Vmax we achieve

θ

N−1

∑
i=1
i6=k

(b̂i− r̂i)Um
f,si−1

+θ

N−1

∑
i=1
i6=k

(b̂i + r̂i)Um
f,si+1

+2θ b̂kUm
f,sk−1

+
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θ

N−1

∑
i=1

(bi− ri)Um
fi−1,s +θ

N−1

∑
i=1

(bi + ri)Um
fi+1,s+

θ ∑
i j∈P
j 6=k

ai j
(
Um

fi+1,s j+1
+Um

fi−1,s j−1
−Um

fi−1,s j+1
−Um

fi+1,s j−1

)
+

θ ∑
i j∈C

i6=k, j 6=k

ψ̂i j
(
Um

f,si+1, j+1
+Um

f,si−1, j−1
−Um

f,si−1, j+1
−Um

f,si+1, j−1

)
+

θ ∑
i j∈C

ψi j
(
Um

fi+1, j+1,s +Um
fi−1, j−1,s−Um

fi−1, j+1,s−Um
fi+1, j−1,s

)
+(

−1−2θ

N−1

∑
i=1

(b̂i +bi)

)
Um

f,s =

− θ̂

N−1

∑
i=1
i6=k

(b̂i− r̂i)Um+1
f,si−1
− θ̂

N−1

∑
i=1
i6=k

(b̂i + r̂i)Um+1
f,si+1
−2θ̂ b̂kUm+1

f,sk−1

− θ̂

N−1

∑
i=1

(bi− ri)Um+1
fi−1,s− θ̂

N−1

∑
i=1

(bi + ri)Um+1
fi+1,s

− θ̂ ∑
i j∈P
j 6=k

ai j
(
Um+1

fi+1,s j+1
+Um+1

fi−1,s j−1
−Um+1

fi−1,s j+1
−Um+1

fi+1,s j−1

)
− θ̂ ∑

i j∈C
i6=k, j 6=k

ψ̂i j
(
Um+1

f,si+1, j+1
+Um+1

f,si−1, j−1
−Um+1

f,si−1, j+1
−Um+1

f,si+1, j−1

)
− θ̂ ∑

i j∈C
ψi j
(
Um+1

fi+1, j+1,s +Um+1
fi−1, j−1,s−Um+1

fi−1, j+1,s−Um+1
fi+1, j−1,s

)
+(

−1+2θ

N−1

∑
i=1

(b̂i +bi)

)
Um+1

f,s .

(12)

3.2 Numerical results

It is not clear where to place Fmax
i and V max

i . On one hand, it is advantageous to
place them far away of the initial forward rates. This reduces the error of the artifi-
cial boundary conditions. On the other hand a large computational domain requires
a large discretization width. This increases the error of the approximation of the
derivatives. In our experiments we will consider Fmax

i = 0.1 and V max
i = 2.0, which

corresponds to interest rates of 10% and volatilities of 200%.
We are going to value Tα × (Tβ − Tα) European swaptions, meaning that the

swaption has maturity at time Tα and the length of the underlying swap is (Tβ −Tα)
(also known as the tenor of the swaption).
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Some specifications of the financial product are given in Table 1 and the em-
ployed market data, taken from [4], are shown in Table 2. We will consider λ1 =
λ2 = λ3 = 0.1 in the model for the correlation structure (2)-(4). Besides, the Crank-
Nicolson scheme will be used in (8). For solving the system (9) the Gauss-Seidel
iterative solver has been employed using a tolerance of 10−6.

The numerical experiments have been performed with the following hardware
and software configurations: two recent multicore Intel Xeon CPUs E5-2620 v2
clocked at 2.10 GHz (6 cores per socket) with 62 GBytes of RAM, CentOS Linux,
GNU C++ compiler 4.8.2.

Table 1 Specification of the interest rate model.

Currency EUR
Index EURIBOR

Day Count e30/360
Strike 5.5%

Table 2 Market data used in pricing. Data taken from 27th July 2004.

Start date End date LIBOR Rate (%) Volatility (%)
T0 29-07-04 29-07-05 2.423306 0
T1 29-07-05 29-07-06 3.281384 24.73
T2 29-07-06 29-07-07 3.931690 22.45
T3 29-07-07 29-07-08 4.364818 19.36
T4 29-07-08 29-07-09 4.680236 17.43
T5 29-07-09 29-07-10 4.933085 16.15
T6 29-07-10 29-07-11 5.135066 15.02
T7 29-07-11 29-07-12 5.273314 14.24
T8 29-07-12 29-07-13 5.376115 13.42

First of all, the results from pricing a 1×1 European swaption are discussed. The
value ϑ of this swaption is the same as the price of the corresponding caplet, and so
depends only on F1. Hence, in one dimension a closed form expression for the price
of a European swaption can be found by using Black’s formula [6]:

ϑ = P(T0,T2)τ1Bl(K,F(T1,T2;T0),ν1),

where
Bl(K,F,ν) = FΦ

(
d1(K,F,ν)

)
−KΦ

(
d2(K,F,ν)

)
,

d1(K,F,ν) =
ln(F/K)+ν2/2

ν
,

d2(K,F,ν) =
ln(F/K)−ν2/2

ν
,
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νi = σBlack
√

Ti,

where P(T0,T2) is the price at time T0 of a bond with maturity T2 and σBlack is
the constant volatility of the forward rate. This value is equal to 0.659096 basis

points (one basis point is one hundredth of one percent,
1%
100

=
1

10000
). As Black-

Scholes formula for caplets considers constant volatility σBlack, in this first test the
volatility of the volatility parameter of Hagan model is considered equal to zero, i.e.,
σ1 = 0, therefore a standard LIBOR market model is used. The solution was found
on several levels and Table 3 shows the convergence of the model. In all tables of
this chapter, Level refers to the refinement level n, i.e., the mesh size is hi = 2−n · ci
in each coordinate direction, where ci denotes the computational domain length in
direction i, which is Fmax

i in the case of the forward rates and V max
i in the case of

their stochastic volatilities. Besides, the solution and the error with respect to the
exact solution are also shown in basis points. Additionally, the execution time is
measured in seconds and the column labeled as Grid points shows the number of
grid points employed in the full grid used by the finite differences method without
taking into account the time coordinate.

When the volatilities of the volatilities σi, 1≤ i < N, of the model are non zero or
when the length of the underlying swap of the swaption being considered is greater
than one, no closed form solutions are available. However, an estimate can be ob-
tained from Monte Carlo simulations. On Table 4 Monte Carlo values for the 1×1
European swaption with σ1 = 0 are shown for several numbers of paths (#Paths).
More details about Monte Carlo simulation of SABR/LMMs can be found in the
article [9].

Table 3 Convergence of the full grid finite differences solution in basis points in the pricing of a
1×1 swaption, σ1 = 0, V1(0) = 1, β1 = 1, 128 time steps. Exact solution, 0.659096 basis points.

Level Solution Error Time Grid points
3 2.078086 1.418989 0.0024 81
4 1.108211 0.449114 0.0094 289
5 0.779033 0.119936 0.07 1089
6 0.672004 0.012907 0.53 4225
7 0.665176 0.006079 6.34 16641
8 0.661164 0.002067 84.12 66049
9 0.659380 0.000283 1122.86 263169

10 0.659032 0.000064 14288.34 1050625

Table 4 Convergence of the Monte Carlo solution in basis points in the pricing of a 1×1 swaption,
σ1 = 0, V1(0) = 1, β1 = 1, 128 time steps. Exact solution, 0.659096 basis points.

#Paths Solution

105 0.616799
107 0.658598
109 0.659506
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In Table 5 the pricing of the 1×1 European swaption with σ1 = 0.3 for different
resolution levels n are shown. In Table 6 the results for the 1×2 swaption are given.
Note that with this numerical method it was not feasible to price the swaption past
refinement level n = 6 due to the huge number of required grid points.

Table 5 Convergence of the full grid finite differences solution in basis points in the pricing of a
1× 1 swaption, σ1 = 0.3, φ11 = 0.4, V1(0) = 1, β1 = 1, 128 time steps. Monte Carlo value using
107 paths, 1.657662 basis points.

Level Solution Time Grid points
3 6.254822 0.0039 81
4 2.501988 0.0122 289
5 1.991646 0.07 1089
6 1.597470 0.62 4225
7 1.526047 7.48 16641
8 1.519841 98.45 66049
9 1.519742 1291.76 263169

10 1.519732 16238.98 1050625

Table 6 Convergence of the full grid finite differences solution in basis points in the pricing of a
1×2 swaption, σi = 0.3, φii = 0.4, Vi(0) = 1, βi = 1, 128 time steps. Monte Carlo value using 107

paths, 4.564905 basis points.

Level Solution Time Grid points
3 5.289644 1.03 6561
4 5.134938 33.84 83521
5 5.023293 1258.56 1185921
6 4.997679 60396.44 17850625

Theoretically, it is possible to solve the discrete system (9) for a general number
of dimensions. However, in computational science, a major problem occurs when
the number of dimensions increases. A natural way to reduce the discretization error
is to decrease the mesh step in each coordinate direction. However, then the number
of grid points in the resulting full grid grows exponentially with the dimension, i.e.
the size of the discrete solution increases drastically. This is called the curse of di-
mensionality [2]. Therefore, this procedure of improving the accuracy by decreasing
the mesh step is mainly bounded by two factors, the storage and the computational
complexity. Due to these limitations, using a full grid discretization method which
achieves sufficiently accurate approximations is only possible for problems with up
to three or four dimensions, even on the most powerful machines presently avail-
able [7].
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4 Sparse grids and the combination technique

Two approaches to try to overcome the curse of dimensionality are increasing the
order of accuracy of the applied numerical approximation scheme or reducing the
dimension of the problem by choosing suitable coordinates. Both approaches are
not always possible for every option pricing problem. In this chapter we will take
advantage of the sparse grid combination technique first introduced by Zenger and
co-workers [14] in order to try to overcome the curse of dimensionality and allow
to use the PDE formulation of SABR/LMM for the pricing problem we are dealing
with. The combination technique replicates the structure of a so-called sparse grid
by linearly combining solutions on coarser grids of the same dimensionality. This
technique reduces the computational effort and the storage space involved with the
mentioned traditional finite differences discretization methods. The number of sub-
problems to solve increases, while the computational time per problem decreases
drastically. This method can be implemented in parallel as each sub-grid is indepen-
dent of the others. In the next two subsections we give a brief introduction to sparse
grids and the combination technique. For a detailed discussion we refer to [7].

4.1 Sparse grids

First, we introduce some notations and definitions. Let l = (l1, l2, . . . , ld) ∈Nd
0 de-

note a d-dimensional multi-index. Let |l|1 and |l|∞ denote the discrete L1−norm and
L∞−norm of the multi-index l, respectively, that are defined as

|l|1 =
d

∑
k=1

lk and |l|∞ = max
1≤k≤d

lk.

We define the anisotropic grid Ωl with mesh size h = (h1,h2, . . . ,hd) = (2−l1c1,
2−l2c2, . . . ,2−ld cd) with multi-index l and grid length c = (c1,c2, . . . ,cd).

Then, the full grid at refinement level n ∈N and mesh size hi = 2−n · ci for all i
can be defined via the sequence of subgrids

Ω
n = Ω(n,...,n) =

⋃
|l|∞≤n

Ωl.

Figure 1 visualizes two dimensional full grids for levels n = 0, . . . ,4.
The number of grid points in each coordinate direction of the full grid is 2n + 1

and therefore the number of grid nodes in the full grid increases with O(2n·d), i.e.
grows exponentially with the dimensionality d of the problem.

The sparse grid Ω n
s at refinement level n consists of all anisotropic Cartesian

grids Ωl, where the total sum of all refinement factors lk in each coordinate direction
equals the resolution n. Then, the sparse grid Ω n

s is given by
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Fig. 1 Two-dimensional full grid hierarchy up to level n = 4.

Ω
n
s =

⋃
|l|1≤n

Ωl =
⋃
|l|1=n

Ωl.

Figure 2 shows the two-dimensional grid hierarchy for levels n = 0, . . . ,4.

The total number of nodes in the grid Ωl is
d

∏
k=1

(2lk + 1) = O(2|l|1) = O(2n). In

addition, there exist exactly
(n+d−1

d−1

)
grids Ωl with |l|1 = n,(

n+d−1
d−1

)
=

(n+d−1)!
(d−1)!n!

=
(n+d−1) · . . . · (n+1)n!

(d−1)!n!

=
n+(d−1)

d−1
· n+(d−2)

d−2
· . . . · n+(d− (d−1))

d− (d−1)

=

(
1+

n
d−1

)
·
(

1+
n

d−2

)
· . . . ·

(
1+

n
2

)
·
(

1+
n
1

)
≤ (1+n)d−1 = O(nd−1).

Thus, the total number of grid points of the sparse grid Ω n
s grows according to(

n+d−1
d−1

)
·

d

∏
k=1

(2lk +1) = O(nd−1)O(2n) = O(nd−12n), (13)

which is far less the size of the corresponding full grid with O(2nd) grid points.
Let hn = 2−n, therefore the sparse grid employs O(h−1

n · log2(h
−1
n )d−1) grid points

compared to O(h−d
n ) nodes in the full grid.

Bungartz and Griebel [7] show that the accuracy of the sparse grid using O(h−1
n ·

log2(h
−1
n )d−1) nodes is of order O(h2

n log2(h
−1
n )d−1)) in the case of finite elements

discretization and under certain smoothness conditions. Thus, the accuracy of the
sparse grid is only slightly deteriorated from the accuracy O(h2

n) of conventional
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Fig. 2 Two-dimensional sparse grid hierarchy up to level n = 4.

full grid methods which need O(h−d
n ) grid points. Therefore, sparse grids need much

less points than regular full grids to achieve a similar approximation quality.
However, the structure of a sparse grid is more complicated than the one of a

full grid. Common PDE solvers usually manage only full grid solutions. Existing
sparse grid methods working directly in the hierarchical basis involve a challenging
implementation [1, 31]. This handicap can be circumvented with the help of the
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sparse grid combination technique which not only exploits the economical structure
of the sparse grids but also allows for the use of traditional full grid PDE solvers.

Finally, two and three dimensional sparse grids for several resolution levels n are
shown in Figures 3 and 4, respectively. Additionally, the growth of the grid points
when increasing n can be observed.

(a) Ω 5
s , 177 grid points. (b) Ω 6

s , 385 grid points.

(c) Ω 7
s , 833 grid points. (d) Ω 8

s , 1793 grid points.

(e) Ω 9
s , 3841 grid points. (f) Ω 10

s , 8193 grid points.

Fig. 3 Two dimensional sparse grids for levels n = 5, . . . ,10.
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(a) Ω 5
s , 705 grid points. (b) Ω 6

s , 1649 grid points.

(c) Ω 7
s , 3809 grid points. (d) Ω 8

s , 8705 grid points.

Fig. 4 Three dimensional sparse grids for levels n = 5,6,7 and 8.

4.2 Combination technique

Similar to the Richarson extrapolation [26], the so-called combination technique
linearly combines the numerical solution on the sequence of anisotropic grids Ωl
where

|l|1 = n−q, q = 0, . . . ,d−1.

The combination technique reads

Un
s =

d−1

∑
q=0

(−1)q ·
(

d−1
q

)
· ∑
|l|1=n−q

Ul, lk ≥ 0, ∀k = 1, . . . ,d, (14)

where Ul denotes the numerical solution on the grid Ωl and Un
s the combined solu-

tion on the sparse grid Ω n
s .

The grids employed by the combination technique of level n = 4 in two dimen-
sions are shown in Figure 5.

The idea of this technique is that the leading order errors from the dicretization
on each grid cancel each other out in the combination solution.
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Fig. 5 Combination technique with level n = 4 in two dimensions.

The number of grid points involved in the approximation of Un
s grows according

to O(nd−1 · 2n). In fact, from the formula (13) we have to solve
(n+d−1

d−1

)
problems

with O(2n) unknowns,
(n+d−2

d−1

)
problems with O(2n−1) unknowns, ... and

( n
d−1

)
problems with O(2n−(d−1)) unknowns. This results in a total number of O(nd−1 ·2n)
grid points which is much less than the O(2n·d) grid nodes used by traditional full
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grid methods. Thus, the efficient use of sparse grids greatly reduces the computing
time and the storage requirements which allows for the treatment of problems with
ten variables and even more [7].

We have seen that the combination technique linearly combines the numerical
solution on several traditional full grids. The solution can be calculated on each of
these grids by using any existing PDE numerical method like finite differences, finite
volume or finite elements. In addition, since all these sub-problems are independent
the combination technique can be parallelized [13].

The combination technique approach presumes the existence of a so-called error
splitting. It requires for an associated numerical approximation method on the full
grid Ωl an error splitting of the form

u(x)−Ul(x) =
d

∑
k=1

∑
{ j1,..., jk}
⊆{1,...,d}

C j1,..., jk(x,h j1 , . . . ,h jk) ·h
p
j1
· . . . ·hp

jk
, (15)

at each grid point x∈Ωl. Here u denotes the exact solution of the partial differential
equation under consideration, Ul the numerical solution on the grid Ωl, p > 0 is
the order of accuracy of the numerical approximation method with respect to each
coordinate direction and the coefficient functions C j1,..., jk of x and the mesh sizes
h jk , k = 1, . . . ,d are required to be bounded by a positive constant K such that

|C j1,..., jk(x,h j1 , . . . ,h jk)| ≤ K, ∀k,1≤ k ≤ d, ∀{ j1, . . . , jm} ⊆ {1, . . . ,d}.

In [15] Griebel and Thurner showed that if the solution of the PDE is sufficiently
smooth, the pointwise accuracy of the sparse grid combination technique is O(nd−1 ·
2−n·p) = O([log2 h−1

n ]d−1hp
n), which is only slightly worse than O(2−n·p) = O(hp

n)
obtained by the full grid solution.

The solution at points which do not belong to the sparse grid can be computed
through interpolation. The applied interpolation method should provide at least the
same order of accuracy of the numerical discretization scheme used to solve the
PDE. Otherwise, the accuracy of the numerical scheme will be deteriorated.

4.3 Numerical results

Taking advantage of the previously described sparse grid combination technique,
in this section we are pricing the same interest rate derivatives that have been val-
ued in the former Section 3.2 where traditional full grid finite differences methods
were considered. In addition to those products, we are going to price interest rate
derivatives with up to four underlying LIBOR rates and their stochastic volatilities,
showing that the sparse grid combination technique is able to cope with the curse
of dimensionality up to a certain extent. As in the previous Section 3.2, we will use
Crank-Nicolson scheme, we will consider the Gauss-Seidel iterative solver and the
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same boundary conditions as in Section 3.1. In the present case, we are interested in
the evaluation of the solution at a single point which corresponds with the value of
the forward rates at time zero (see Table 2) and Vi(0) = 1. The numerical solution on
each grid handled by the combination technique is interpolated at this point using
multilinear interpolation and then added up with the appropriate weights.

The sparse grid combination technique has been implemented to run on multi-
core CPUs. The program was optimized and parallelized using OpenMP [33]. CPU
times, measured in seconds, correspond to executions using 24 threads, so as to
take advantage of Intel Hyperthreading. The speedups of the parallel version with
respect to the pure sequential code are around 16. To the best of our knowledge,
graphic processor units (GPUs) are not well-suited to parallelize the combination
technique, due to the fact that the different grids employed by the combination tech-
nique involve memory accesses patterns totally different, therefore, it is not possible
to access the device memory in a coalesced way [24], thus GPU global memory can
not serve threads in parallel. In this scenario, the GPU code will be ill performing.
In the work [10] the authors take advantage of GPUs to parallelize the solver of each
full grid considered by the combination technique. However, they do not parallelize
the combination technique itself.

In Table 7 a 1× 1 European swaption is priced. The exact price of this deriva-
tive is 0.659096 basis points, as discussed in Section 3.2. These results are to be
compared with those of Table 3, where it can be seen how the computational times
and the grid points employed by the sparse grid combination technique have been
substantially reduced.

Table 7 Convergence of the sparse grid finite differences solution in basis points in the pricing of
a 1×1 swaption, σ1 = 0, V1(0) = 1, β1 = 1, 128 time steps. Exact solution, 0.659096 basis points.

Level Solution Error Time Grid points
3 6.715346 6.056250 0.04 37
4 2.182057 1.522961 0.05 81
5 1.097761 0.438665 0.05 177
6 0.782767 0.123671 0.05 385
7 0.663808 0.004712 0.06 833
8 0.657536 0.001560 0.11 1793
9 0.658183 0.000913 0.46 3841

10 0.659363 0.000267 2.32 8193

Next, in Table 8 a 1× 1 European swaption is priced considering stochastic
volatility. These results are to be compared with those of Table 5.

In the following Table 9, the pricing of a 1× 2 European swaption taking into
account stochastic volatilities is shown, as in the Table 6. For the higher resolution
levels, the full grid method became very slow, while the sparse grid combination
technique results much faster. Note that the combination technique is able to price
successfully the 1×2 European swaption, this was not attainable in Table 6.

Finally, in Tables 10 and 11, 1× 3 and 1× 4 European swaptions are priced,
respectively, taking into account stochastic volatilities. The pricing of these interest
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Table 8 Convergence of the sparse grid finite differences solution in basis points in the pricing of
a 1×1 swaption, σ1 = 0.3, φ11 = 0.4, V1(0) = 1, β1 = 1, 128 time steps. Monte Carlo value using
107 paths, 1.657662 basis points.

Level Solution Time
3 6.818116 0.05
4 2.694770 0.05
5 1.919198 0.05
6 1.596501 0.08
7 1.499332 0.12
8 1.505709 0.14
9 1.515855 0.64

10 1.521027 2.83

Table 9 Convergence of the sparse grid finite differences solution in basis points in the pricing of
a 1× 2 swaption, σi = 0.3, φii = 0.4, Vi(0) = 1, βi = 1, 128 time steps. Monte Carlo value using
107 paths, 4.564905 basis points.

Level Solution Time
7 5.260049 0.21
8 4.951410 0.47
9 4.651916 1.45

10 4.424338 4.10
11 4.463664 17.04
12 4.515542 81.04
13 4.537787 472.07

rate derivatives was not viable with the full grid approach of Section 3. In order to be
able to price derivatives over more than 4 LIBORs and their corresponding stochas-
tic volatilities, the combination technique method should be parallelized to run on a
cluster of processors. In the Chapter 13 of the book [11] Philipp Schrder et al. dis-
cuss the parallelization of the combination technique using MPI (Message Passing
Interface) API. In [20] the authors parallelize the sparse grid combination technique
taking advantage of a MapReduce framework, algorithms that are inherently fault
tolerant.

Table 10 Convergence of the sparse grid finite differences solution in basis points in the pricing
of a 1×3 swaption, σi = 0.3, φii = 0.4, Vi(0) = 1, βi = 1, 128 time steps. Monte Carlo value using
107 paths, 7.648443 basis points.

Level Solution Time
11 9.177020 151.26
12 8.461583 431.29
13 7.455562 1219.71
14 7.442483 3849.56
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Table 11 Convergence of the sparse grid finite differences solution in basis points in the pricing
of a 1× 4 swaption, σi = 0.3, φii = 0.4, Vi(0) = 1, βi = 1, 8 time steps. Monte Carlo value using
107 paths, 11.674706 basis points.

Level Solution Time
15 11.316526 16595.66
16 11.564127 53184.37
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