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Efficient calibration and pricing in LIBOR
Market Models with SABR stochastic volatility
using GPUs

A. M. Ferreiro, J. A. Garcı́a, J. G. López-Salas and C. Vázquez

Abstract In order to overcome the drawbacks of assuming deterministic volatility
coefficients in the standard LIBOR market models, several extensions of LIBOR
models to incorporate stochastic volatilities have been proposed. The efficient cali-
bration to market data of these more complex models becomes a relevant target in
practice. The main objective of the present work is to efficiently calibrate some re-
cent SABR/LIBOR market models to real market prices of caplets and swaptions.
For the calibration we propose a parallelized version of the simulated annealing al-
gorithm for multi-GPUs. The numerical results clearly illustrate the advantages of
using the proposed multi-GPUs tools when applied to real market data and popular
SABR/LIBOR models.

1 SABR/LIBOR market models

This work is mainly concerned with three extensions of the LIBOR market model
(LMM) that incorporate the volatility smile by means of the SABR stochastic
volatility model. The SABR model has become the market standard for interpolating
and extrapolating prices of plain vanilla caplets and swaptions [6]. It is widely used
because it involves a closed-form formula for the implied volatility which allows an
easy calibration of the model. In the more standard LIBOR market model [1] the dy-
namics of each LIBOR forward rate under the corresponding terminal measure are
assumed to be martingales with constant volatility. When adding the SABR stochas-
tic volatility model, the forward rates and volatility processes satisfy the following
coupled dynamics
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dFi(t) =Vi(t)Fi(t)βidWi(t),

dVi(t) = σiVi(t)dZi(t).

We note that if the interest rate derivative only depends on one particular forward
rate then it is convenient to use the corresponding terminal measure. However when
derivatives depend on several forward rates, a common measure needs to be used.
Thus, in the case of pricing complex derivatives a change of measure produces the
appearance of drift terms in both dynamics. The main drawback of classical LMM
comes from considering constant volatilities. SABR/LIBOR market models com-
bine the advantages of these two models. In this paper we consider the different
SABR/LIBOR models proposed by P. Hagan [5], F. Mercurio & M. Morini [8]
and R. Rebonato [10]. Hereafter, for sake of brevity we only present the Rebon-
ato model. Interested readers on the other two models are referred to [4].

For each i = 1, . . . ,M let Fi and Vi be the i-th forward rate that matures at time
Ti and its corresponding stochastic volatility, respectively. Then, under a common
measure their dynamics are given by (see [10])

dFi(t) = µ
Fi(t)dt +Vi(t)Fi(t)βidWi(t), (1)

Vi(t) = κi(t)gi(t), (2)
dκi(t) = µ

κi(t)dt +κi(t)hi(t)dZi(t), (3)

where

gi(t)=
(
a+b(Ti−t)

)
exp
(
−c(Ti−t)

)
+d, hi(t)=

(
α+β (Ti−t)

)
exp
(
−γ(Ti−t)

)
+δ ,

with the associated correlations denoted by

E[dWi(t) ·dWj(t)]= ρi, jdt, E[dWi(t) ·dZ j(t)]= φi, jdt, E[dZi(t) ·dZ j(t)]= θi, jdt,

and the initial given values κi = κi(0) and Fi(0). Thus, the correlation structure is
given by the block-matrix

P =

[
ρ φ

φ> θ

]
,

where the submatrix ρ = (ρi, j) represents the correlations between the forward rates
Fi and Fj, the submatrix φ = (φi, j) includes the correlations between the forward
rates Fi and the instantaneous volatilities Vj, and the submatrix θ = (θi, j) contains
the correlations between the instantaneous volatilities Vi and Vj.

More precisely, if we introduce the bank-account numeraire β (t), defined by

β (t) =
i−1

∏
j=0

(
1+∆ tFj(Tj)

)
if t ∈ [Ti,Ti+1],

then, under the associated spot probability measure, the drift terms of the processes
defined in (1) and (3) are
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µ
Fi(t)=Vi(t)Fi(t)βi

i

∑
j=h(t)

τ jρi, jVj(t)Fj(t)β j

1+ τ jFj(t)
, µ

κi(t)= κi(t)hi(t)
i

∑
j=h(t)

τ jφi, jVj(t)Fj(t)β j

1+ τ jFj(t)
,

where h(t) denotes the index of the first unfixed Fi, i.e.,

h(t) = j, if t ∈ [Tj−1,Tj). (4)

The implied volatility for this model can be computed from Hagan second order
approximation formula [9]:

σ
(
K,Fi(0)

)
≈ αi

Fi(0)(1−βi)
×

{
1− 1

2
(1−βi−φi,iσiωi) · ln

( K
Fi(0)

)
+

1
12

(
(1−βi)

2 +(2−3φ
2
i,i)σ

2
i ω

2
i +3

(
(1−βi)−φi,iσiωi

))
·
[

ln
( K

Fi(0)

)]2
}
,

(5)

where ωi = α
−1
i Fi(0)(1−βi), by using the following parameters denoted with SABR

superindexes,

β
SABR
i = βi, φ

SABR
i,i = φi,i, α

SABR
i = κi(0)

(
1
Ti

∫ Ti

0
gi(t)2dt

) 1
2
,

σ
SABR
i =

κi(0)
αSABR

i Ti

(
2
∫ Ti

0
gi(t)2ĥi(t)2tdt

) 1
2
, where ĥi(t) =

√
1
t

∫ t

0
(hi(s))

2 ds.

(6)

For the correlations, we consider the following function parameterizations:

ρi, j = η1 +(1−η1)exp[−λ1|Ti−Tj|], (7)
θi, j = η2 +(1−η2)exp[−λ2|Ti−Tj|], (8)

φi, j = sign(φi,i)
√
|φi,iφ j, j|exp

[
−λ3(Ti−Tj)

+−λ3(Tj−Ti)
+
]
, (9)

where the terms φi,i are previously calibrated using Hagan formula (5) for the whole
volatilities surface.

In this work we propose an efficient calibration strategy to some market prices for
the parameters appearing in the three previous models. More precisely, we consider
the market prices of caplets and swaptions and we pose the corresponding global
optimization problems to calibrate the model parameters. In order to speed up the
optimization algorithm we use an implementation in GPUs.
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2 Model calibration

Model parameters are calibrated in two stages, firstly to caplets and secondly
to swaptions. We note that model parameters can be classified into two cate-
gories (volatility and correlation parameters). The volatility parameters are xxx =
(φii,κi,parameters of the volatility functions g and h) and the correlation ones yyy =
(η1,λ1,η2,λ2,λ3). According to this classification, the cost functions to be mini-
mized in the calibration process are the following:

• Function to calibrate the market prices of caplets:

fc(xxx) =
M

∑
i=1

numK

∑
j=1

(
σ
(
K j,Fi(0)

)
−σmarket

(
K j,Fi(0)

))2
(xxx),

where σ is given by Hagan formula (5) with the parameters (6), σmarket are
the market smiles and xxx is the vector containing the volatility parameters of the
model. Moreover, M and numK denote the number of maturities and strikes of
the caplets, respectively.

• Function to calibrate the market prices of swaptions:

fs(yyy) =
numSws

∑
i=1

(SBlack(swaptioni)−SMC(swaptioni))
2 (yyy),

where swaptioni denotes the i-th swaption, SBlack is the Black formula for swap-
tions and SMC(swaptioni) is the value of the i-th swaption computed using Monte
Carlo method. Moreover yyy denotes the vector containing the correlation parame-
ters of the model and numSws is the number of swaptions.

Fig. 1 Sketch of the parallel SA algorithm using two GPUs and OpenMP.
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In this work, the calibration of the parameters has been performed with a Sim-
ulated Annealing (SA) global optimization algorithm [7]. The algorithm consists
in an external decreasing temperature loop. At each fixed temperature a Metropolis
process, that can be seen as a Markov chain, is performed to compute the equilib-
rium state at this temperature level. This Markov chain consists of randomly choos-
ing points in the search domain: if the value of the cost function at a new point
decreases, the point is accepted; otherwise the point is randomly accepted following
the Boltzman criterion, where the probability of accepting points with higher cost
function value decreases with temperature. This process is repeated at each temper-
ature level until temperature is low enough. As it is well known in the literature, SA
involves a great computational cost.

In [3], the parallelization of the SA algorithm has been performed with GPUs.
The idea is that at each temperature level the Markov chains are distributed among
the GPU threads. Among all the final reached points of the threads, the one with
the minimum cost function value is selected, thus performing a reduction operation.
The selected point is the starting one for all the threads in the next temperature level.
The process is repeated until reaching a certain value of temperature.

The previous implementation can also be improved using multi-GPUs. In this
case, the Markov chains are distributed among GPUs (for example, if we have two
GPUs, half of the chains are computed by each GPU, see Figure 1) and at each
GPU the chains are distributed among the threads of this particular GPU. Before
advancing to the next temperature level the best point must be computed in each
GPU and then the best point of all GPUs is computed and used as starting point for
all the upcoming threads of the new temperature level (see Figure 1). This multi-
GPU algorithm was presented in [2], where it was used to calibrate some SABR
models to a volatility surface.

In order to calibrate models with many parameters, as the Rebonato one, the
multi-GPU version becomes more suitable, since the minimization process is very
costly.

In the SABR/LIBOR market models, for the calibration to swaption market
prices there is not an explicit formula to price swaptions. Therefore, we use a Monte
Carlo simulation technique to price swaptions, thus leading to two nested Monte
Carlo loops: one for the SA and the other one for the swaption pricer. So, as the
Monte Carlo swaption pricer is carried out inside the GPU, the SA minimization al-
gorithm is run on CPU. In order to use all available GPUs in the system, we propose
a CPU SA parallelization using OpenMP. So, each OpenMP SA thread uses a GPU
to evaluate the Monte Carlo objective function.

3 Numerical results

Market data correspond to the 6 month EURIBOR rate. In this section, for sake of
brevity, we only present the results of the calibration of the model to the smiles of
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the swap rates shown in Table 2. The results of the previous calibration to the smiles
of the forward rates presented in Table 1 are detailed in the article [4].

Table 1 Smiles of forward rates. Fixing dates (first column) and moneyness (first row).
-80% -60% -40% -20% 0% 20% 40% 60% 80%

21-05-12 142.61% 117.05% 97.26% 82.58% 72.29% 70.89% 69.49% 68.08% 66.67%
21-11-12 112.74% 99.23% 88.27% 79.62% 73.03% 71.95% 70.87% 69.77% 68.69%
21-05-13 91.55% 83.75% 77.09% 71.50% 67.93% 67.10% 66.41% 65.88% 65.49%
21-11-13 64.82% 60.95% 57.08% 53.21% 52.49% 51.34% 50.61% 50.30% 50.46%
21-05-14 66.96% 61.84% 56.69% 52.43% 50.32% 48.72% 47.70% 47.14% 46.97%
21-11-14 69.20% 62.75% 56.30% 51.65% 48.19% 46.19% 44.91% 44.12% 43.66%
21-05-15 71.49% 63.67% 55.92% 50.89% 46.19% 43.83% 42.32% 41.35% 40.64%
21-11-15 73.89% 64.61% 55.54% 50.13% 44.25% 41.56% 39.84% 38.71% 37.78%
21-05-16 76.34% 65.56% 55.16% 49.39% 42.40% 39.43% 37.54% 36.26% 35.15%
21-11-16 78.90% 66.53% 54.78% 48.65% 40.61% 37.38% 35.34% 33.94% 32.68%
21-05-17 81.50% 67.50% 54.41% 47.94% 38.93% 35.47% 33.30% 31.81% 30.42%
21-11-17 84.24% 68.50% 54.03% 47.22% 37.29% 33.63% 31.36% 29.78% 28.28%
21-05-18 87.02% 69.50% 53.67% 46.53% 35.74% 31.92% 29.55% 27.90% 26.32%

Table 2 Smiles of swap rates. Maturities (first column) and moneyness (first row).
-80% -60% -40% -20% 0% 20% 40% 60% 80%

1
ye

ar

21/05/2012 122.30% 102.40% 87.12% 76.45% 70.40% 66.47% 64.20% 63.03% 62.56%
21/11/2012 102.86% 89.97% 79.85% 72.49% 67.90% 64.58% 62.16% 60.39% 59.19%
21/05/2013 95.64% 83.17% 73.42% 66.40% 62.10% 59.03% 56.84% 55.26% 54.18%
21/11/2013 88.11% 76.06% 66.69% 60.00% 56.00% 53.18% 51.22% 49.84% 48.87%

2
ye

ar
s 21/05/2012 111.50% 91.60% 76.32% 65.65% 59.60% 55.67% 53.40% 52.23% 51.76%

21/11/2012 89.66% 76.77% 66.65% 59.29% 54.70% 51.38% 48.96% 47.19% 45.99%
21/05/2013 82.94% 70.47% 60.72% 53.70% 49.40% 46.33% 44.14% 42.56% 41.48%
21/11/2013 77.81% 65.76% 56.39% 49.70% 45.70% 42.88% 40.92% 39.54% 38.57%

3
ye

ar
s 21/05/2012 106.40% 86.50% 71.22% 60.55% 54.50% 50.57% 48.30% 47.13% 46.66%

21/11/2012 83.66% 70.77% 60.65% 53.29% 48.70% 45.38% 42.96% 41.19% 39.99%
21/05/2013 78.34% 65.87% 56.12% 49.10% 44.80% 41.73% 39.54% 37.96% 36.88%
21/11/2013 73.61% 61.56% 52.19% 45.50% 41.50% 38.68% 36.72% 35.34% 34.37%

4
ye

ar
s 21/05/2012 101.90% 82.00% 66.72% 56.05% 50.00% 46.07% 43.80% 42.63% 42.16%

21/11/2012 80.26% 67.37% 57.25% 49.89% 45.30% 41.98% 39.56% 37.79% 36.59%
21/05/2013 75.24% 62.77% 53.02% 46.00% 41.70% 38.63% 36.44% 34.86% 33.78%
21/11/2013 70.91% 58.86% 49.49% 42.80% 38.80% 35.98% 34.02% 32.64% 31.67%

5
ye

ar
s 21/05/2012 96.15% 74.25% 58.83% 49.88% 47.40% 45.74% 44.61% 43.76% 43.05%

21/11/2012 89.58% 68.82% 54.14% 45.54% 43.00% 39.36% 37.33% 36.15% 35.37%
21/05/2013 83.91% 64.51% 50.71% 42.51% 39.90% 36.48% 34.59% 33.50% 32.76%
21/11/2013 79.13% 61.09% 48.17% 40.37% 37.70% 34.50% 32.74% 31.75% 31.05%

The calibrated correlation parameters are η1 = 0.650997, λ1 = 3.617546, η2 =
0.999000, λ2 = 0.380984 and λ3 = 0.001000. Using two GPUs the execution time
was approximately 2 hours (by using a cluster of GPUs time could be substantially
reduced). In Table 3, some market vs. model swaption prices are shown. The mean
absolute error considering all market swaptions is 6.30×10−2. Figure 2 shows the
model fitting to the first four swaption market prices.
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Table 3 Calibration to swaptions, SBlack vs. SMC , prices in %.
Moneyness 0.5×1 swaptions 1×1 swaptions

SBlack SMC |SBlack−SMC | SBlack SMC |SBlack−SMC |
−40% 0.4866 0.4870 4.00×10−4 0.5917 0.5839 7.80×10−3

−20% 0.3562 0.3669 1.07×10−2 0.4661 0.4693 3.20×10−3

0% 0.2356 0.2477 1.21×10−2 0.3467 0.3546 7.90×10−3

20% 0.1363 0.1441 7.80×10−3 0.2394 0.2488 9.40×10−3

40% 0.0680 0.0699 1.90×10−3 0.1517 0.1606 8.90×10−3

Moneyness 1.5×1 swaptions 2×1 swaptions
SBlack SMC |SBlack−SMC | SBlack SMC |SBlack−SMC |

−40% 0.7357 0.6902 4.55×10−2 0.8184 0.7465 7.19×10−2

−20% 0.5908 0.5612 2.96×10−2 0.6603 0.6028 5.75×10−2

0% 0.4536 0.4339 1.97×10−2 0.5118 0.4620 4.98×10−2

20% 0.3277 0.3171 1.06×10−2 0.3754 0.3354 4.00×10−2

40% 0.2213 0.2188 2.50×10−3 0.2587 0.2308 2.79×10−2
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Fig. 2 SBlack vs. SMC , {0.5, . . . ,2}×1 swaptions.
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9. Oblój, J.: Fine-tune your smile: Correction to Hagan et al. Wilmott Magazine (2008) (2008)
10. Rebonato, R.: A time-homogeneous SABR-consistent extension of the LMM. Risk (2008)




