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Speedup of calibration and pricing with SABR
models: from equities to interest rates
derivatives

A. M. Ferreiro, J. A. Garcı́a, J. G. López-Salas and C. Vázquez

Abstract In the more classical models for equities and interest rates evolution, con-
stant volatility is usually assumed. However, in practice the volatilities are not con-
stant in financial markets and different models allowing a varying local or stochas-
tic volatility also appear in the literature. Particularly, we consider here the SABR
model that has been first introduced in a paper by Hagan and coworkers, where an
asymptotic closed-form formula for the implied volatility of European plain-vanilla
options with short maturities is proposed. More recently, different works (Hagan-
Lesniewski, Mercurio-Morini and Rebonato) have extended the use of SABR model
in the context of LIBOR market models for the evolution of forward rates (SABR-
LMM). One drawback of these models in practice comes from the increase of com-
putational cost, mainly due to the growth of model parameters to be calibrated.
Additionally, sometimes either it is not always possible to compute an analytical
approximation for the implied volatility or its expression results to be very com-
plex, so that numerical methods (for example, Monte Carlo in the calibration pro-
cess) have to be used. In this work we mainly review some recently proposed global
optimization techniques based on Simulated Annealing (SA) algorithms and its im-
plementation on Graphics Processing Units (GPUs) in order to highly speed up the
calibration and pricing of different kinds of options and interest rate derivatives.
Finally, we present some examples corresponding to real market data.
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1 Introduction

Mathematical models have become of great importance in order to price financial
derivatives on different underlying assets. However, in most cases there is no explicit
solution to the governing equations, so that accurate robust fast numerical methods
are required. Furthermore, financial models usually depend on many parameters
that need to be calibrated to market data. As in practice the valuations are required
almost in real time, the speed of numerical computations becomes critical and this
calibration process must be performed as fast as possible.

In the classical BlackScholes model [1], the underlying asset follows a lognor-
mal process with constant volatility. However, in real markets the volatilities are not
constant and they can vary for each maturity and strike (volatility surface). In order
to overcome this problem, different local and stochastic volatility models have been
introduced. In [7], Hagan, Kumar, Lesniewski and Woodward proposed a stochas-
tic volatility model known as the SABR model (acronym for stochastic, alpha, beta
and rho, three of the four model parameters), arguing that sometimes local volatility
models could not reproduce market volatility smiles and that their predicted volatil-
ity dynamics contradicts market smiles and skews. The forward price of an asset
follows, under the assets canonical measure, a CEV type process with stochastic
volatility driven by a driftless process. The Brownian motion driving the volatility
can be correlated with the one associated to the forward price. The main advantages
of the model are the following. Firstly, it is able to correctly capture market volatil-
ity smiles. Secondly, its parameters, which play specific roles in the generation of
smiles and skews, have an intuitive meaning. Thirdly, the authors obtained an ana-
lytical approximation for the implied volatility (known as Hagan formula) through
singular perturbation techniques, thus allowing an easy calibration of the model. Fi-
nally, it has become the market standard for interpolating and extrapolating prices of
plain vanilla options [13]. In [10] Oblój proved that for strikes far from the money
and/or long maturities Hagan formula is neither arbitrage free nor a good approxi-
mation of implied volatilities. Besides, the author improved the former formula.

The existence of closed-form formula simplifies the calibration of the parameters
to fit market data. However, when considering constant parameters (static SABR
model), the volatility surface of a set of market data for several maturities cannot be
suitably fitted. In order to cope with this problem, SABR model with time depen-
dent parameters (dynamic SABR) is proposed in [7]. Nevertheless, time dependent
parameters highly increase the computational cost and it is not always possible to
compute an analytical approximation for the implied volatility [3]. In this case, we
can use numerical methods (for example, Monte Carlo) in the calibration process.

The standard Libor Market Model (LMM) [2] presents the same drawbacks as
the classical Black-Scholes theory. The major disadvantage comes from the assump-
tion of deterministic volatility coefficients that prevents matching cap and swaption
volatility smiles and skews observed in the markets. Thus, there has been great re-
search in extending the standard LMM to correctly capture market volatility smiles
and skews. Several authors have recently tried to unify SABR and LIBOR market
models. In the more standard LIBOR market model, the dynamics of each LIBOR
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forward rate under the corresponding terminal measure are assumed to be martin-
gales with constant volatility.

In [6], Hagan et al. studied the natural extension of both the LMM and the SABR
model. They used the technique of low noise expansions in order to produce accurate
and workable approximations to swaption volatilities. Mercurio and Morini, arguing
that a number of volatility factors lower than the number of state variables is often
chosen, proposed in [9] a SABR/LIBOR market model with one single volatility
factor. They designed a LIBOR market model starting from the reference SABR
dynamics, with the purpose of preserving the SABR closed formula approximation.
In [12], Rebonato designed a time-homogeneous SABR-consistent extension of the
LMM. More precisely, the author specified financially motivated dynamics for the
LMM forward rates and volatilities that match the SABR prices very close. Rebon-
ato also suggested a simple financially justifiable and computationally affordable
way to calibrate the model. For sake of brevity, in this work we only focus in the
Mercurio and Morini model. Readers interested in the other two models are referred
to [5].

The main objective of the present work is to efficiently calibrate plain SABR
models and SABR/LIBOR market models. As computations based financial analysis
should be carried out almost in real-time, an efficient robust and fast optimization
algorithm has to be chosen.

In general, swaptions cannot be priced in closed form in the LMM and the main
challenge of these works comes from the analytical approximations to price these
derivatives. All the previous papers argue that the “brute-force” approach, which
consists in calibrating the models using Monte Carlo simulation to price swaptions,
is not a practical choice, because each Monte Carlo evaluation is computationally
very expensive. However, in this article we propose the use of relatively old Sim-
ulated Annealing type algorithms [8], which becomes highly efficient when imple-
mented using High Performance Computing techniques. This combination makes
possible the calibration in a reasonable computational time.

2 SABR model

The dynamics of the forward price and its volatility satisfy the system of stochastic
differential equations

dF(t) =V (t)F(t)β dW (t), F0 = f̂ , (1)
dV (t) = νV (t)dZ(t), V0 = α, (2)

where F(t) = S(t)e(r−y)(T−t) denotes the forward price of the underlying asset S,
r being the constant interest rate and y the constant dividend yield. Moreover, V (t)
denotes the asset volatility process, dW and dZ are two correlated Brownian motions
with constant correlation coefficient ρ (i.e. dW (t)dZ(t) = ρdt) and S0 is the spot
price of the asset. The parameters of the model are: α > 0 (the volatility’s reference
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level), 0≤ β ≤ 1 (the variance elasticity), ν > 0 (the volatility of the volatility) and
ρ (the correlation coefficient).

This model with constant parameters is known as static SABR model. The main
drawback of this static SABR model arises when market data for options with sev-
eral maturities are considered. In this case, too large errors can appear in the calibra-
tion process (see, for example, [3]). In order to overcome this problem, the following
dynamic SABR model allows time dependency in some parameters:

dF(t) =V (t)F(t)β dW (t), F0 = f̂ , (3)
dV (t) = ν(t)V (t)dZ(t), V (0) = α, (4)

where ν and the correlation coefficient ρ are time dependent, i.e. dW (t)dZ(t) =
ρ(t)dt. As in the static SABR model, the dynamic one also provides an expression
to approximate the implied volatility [11],

σmodel(K, f̂ ,T ) =
1
ω

(
1+A1(T ) ln(K/ f̂ )+A2(T ) ln2(K/ f̂ )+B(T )T

)
, (5)
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(6)
The choice of the functions ρ and ν constitutes a very important decision. The

values of ρ(t) and ν(t) have to be smaller for long terms (t large) rather than for
short terms (t small). In this work we consider two possibilities with exponential
decay:

• Case I: It is more classical and corresponds to the choice

ρ(t) = ρ0e−at , ν(t) = ν0e−bt . (7)

with ρ0 ∈ [−1,1], ν0 > 0, a ≥ 0 and b ≥ 0. In this case, the expressions of the
functions ν2

1 , ν2
2 , η1 and η2

2 , defined by (6), can be exactly calculated and are
given by:
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(8)

• Case II: A more general case corresponds to the choice (see [3], for details)

ρ(t) = (ρ0 +qρ t)e−at +dρ , ν(t) = (ν0 +qν t)e−bt +dν . (9)

In this case, the symbolic software package Mathematica allows to calculate ex-
actly the functions ν2

1 , ν2
2 and η1. However, it is not possible to obtain an explicit

expression for the function η2
2 , an appropriate quadrature formula has to be used.

2.1 Calibration of the parameters using GPUs

The calibration of the SABR model parameters can be done using the implied
volatility formula or the Monte Carlo simulation method. Usually, in trading envi-
ronments the second one is not used, mainly due to its high execution times. How-
ever, if we have a parallel and efficient implementation of the Monte Carlo method,
we can consider its usage in the calibration procedure.

In this work, the calibration of the parameters has been done with a Simulated
Annealing stochastic global optimization method (see [8], for example). The algo-
rithm consists in an external decreasing temperature loop. At each fixed temperature
a Metropolis process, that can be seen as a Markov chain, is performed to compute
the equilibrium state at this temperature level. This Markov chain consists of ran-
domly choosing points in the search domain: if the value of the cost function at
a new point decreases, the point is accepted; otherwise the point is randomly ac-
cepted following the Boltzman criterion, where the probability of accepting points
with higher cost function value decreases with temperature. This process is repeated
at each temperature level until temperature is low enough. As it is well known in the
literature, SA involves a great computational cost.

In order to speed up this algorithm it must be parallelized. In [4], the authors
discuss about the parallelization of the SA using GPUs. In next sections 2.1.1 and
2.1.2 we briefly introduce two calibration techniques which are further detailed in
[3, 5].
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2.1.1 Calibration with Technique I

The idea is that at each temperature level the Markov chains are distributed among
the GPU threads. Among all the final reached points of the threads, the one with
the minimum cost function value is selected, thus performing a reduction operation.
The selected point is the starting one for all the threads in the next temperature level.
The process is repeated until reaching a certain value of temperature.

The previous implementation can also be improved using multi-GPUs. In this
case, the Markov chains are distributed among GPUs (for example, if we have two
GPUs, half of the chains are computed by each GPU, see Figure 1) and at each
GPU the chains are distributed among the threads of this particular GPU. Before
advancing to the next temperature level the best point must be computed in each
GPU and then the best point of all GPUs is computed and used as starting point
for all the upcoming threads of the new temperature level (see Figure 1). In order
to calibrate models with many parameters, the multi-GPU version becomes more
suitable, since the minimization process is very costly.

Fig. 1 Sketch of the parallel SA algorithm using two GPUs.

2.1.2 Calibration with Technique II

In this calibration technique the cost function is computed in GPU by a Monte Carlo
method. As the Monte Carlo method is carried out inside the GPU, the SA mini-
mization algorithm is run on CPU. In order to use all available GPUs in the system,
we propose a CPU SA parallelization using OpenMP [15]. So, each OpenMP SA
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thread uses a GPU to assess on the Monte Carlo objective function. This approach
can be easily extrapolated to a cluster of GPUs using, for example, MPI [14].

2.2 Numerical results

We consider market data corresponding to the EUR/USD exchange rate. The EUR/USD
spot rate is S0 = 1.2939 US dollars quoted in December of 2011. In Figure 2, the
whole volatility surface at maturities 3, 6, 12 and 24 months is shown. Note that
the dynamic SABR model captures correctly the volatility skew. The mean relative
error is 2.441714× 10−2 and the maximum relative error is 6.954307× 10−2. For
one GPU the speedup is around 240, while for two GPUs is near 451. More details
can be found in [3].

Fig. 2 EURUSD. Dynamic SABR. σmodel vs σmarket for the whole volatility surface.

3 SABR/LIBOR Mercurio & Morini model

When adding the SABR model, the forward rates and volatility processes satisfy the
following coupled dynamics

dFi(t) =Vi(t)Fi(t)βidWi(t),

dVi(t) = σiVi(t)dZi(t).

We note that if the interest rate derivative only depends on one particular forward
rate, then it is convenient to use the corresponding terminal measure. However, when
derivatives depend on several forward rates, a common measure needs to be used.
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Thus, in the case of pricing complex derivatives a change of measure produces the
appearance of drift terms in forward rates and volatilities dynamics.

In the Mercurio & Morini model [9], the existence of a lognormal common
volatility process to all forward rates is assumed, while each forward rate Fi
i = 1, . . . ,M satisfies a particular SDE. More precisely, we have

dFi(t) = µ
Fi(t)dt +αiV (t)Fi(t)β dWi(t), (10)

dV (t) = σV (t)dZ(t), (11)

with the associated correlations denoted by

E[dWi(t) ·dWj(t)] = ρi, jdt, E[dWi(t) ·dZ(t)] = φidt,

and the initial given values V (0) = 1 and Fi(0). Thus, the correlation structure is
given by the block-matrix

P =

[
ρ φ

φ
> 1

]
,

where the submatrix ρ = (ρi, j) represents the correlations between the forward rates
Fi and Fj and the vector φ = (φ1, . . . ,φM)> includes the correlations between the
forward rates Fi and the instantaneous volatility V .

More precisely, if we introduce the bank-account numeraire β (t), defined by

β (t) =
i−1

∏
j=0

(
1+∆ tFj(Tj)

)
if t ∈ [Ti,Ti+1],

then, under the associated spot probability measure, the drift terms of the processes
defined in (10) are

µ
Fi(t) = αiV (t)Fi(t)β

i

∑
j=h(t)

τ jρi, jα jV (t)Fj(t)β

1+ τ jFj(t)
,

where h(t) denotes the index of the first unfixed Fi, i.e.,

h(t) = j, if t ∈ [Tj−1,Tj). (12)

The implied volatility for this model can be computed from Hagan second order
approximation formula [10]:

σ
(
K,Fi(0)

)
≈ αi

Fi(0)(1−β )
×

{
1− 1

2
(1−β −φiσωi) · ln

( K
Fi(0)

)
+

1
12

(
(1−β )2 +(2−3φ

2
i )σ

2
ω

2
i +3

(
(1−β )−φiσωi

))
·
[

ln
( K

Fi(0)

)]2
}
,

(13)
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where ωi = ᾱi
−1Fi(0)(1−β ), ᾱi =αi

[
e
∫ Ti

0 Mi(s)ds
]

and Mi(t)=−σ

i

∑
j=h(t)

τ jφ jα jFj(0)β

1+ τ jFj(0)
.

For the correlations, we consider the following functional parameterizations:

ρi, j = η1 +(1−η1)exp[−λ1|Ti−Tj|]. (14)

3.1 Model calibration

We consider the market prices of caplets and swaptions and we pose the corre-
sponding global optimization problems to calibrate the model parameters. Model
parameters are calibrated in two stages, firstly to caplets and secondly to swaptions.
We note that model parameters can be classified into two categories (volatility and
correlation parameters). The volatility parameters are xxx = (φi,σ ,αi) and the corre-
lation ones yyy = (η1,λ1). According to this classification, the cost functions to be
minimized in the calibration process are the following:

• Function to calibrate the market prices of caplets:

fc(xxx) =
M

∑
i=1

numK

∑
j=1

(
σ
(
K j,Fi(0)

)
−σmarket

(
K j,Fi(0)

))2
(xxx),

where σ is given by Hagan formula (13) with the parameters (??), σmarket are
the market smiles and xxx is the vector containing the volatility parameters of the
model. Moreover, M and numK denote the number of maturities and strikes of
the caplets, respectively. In order to minimize this function we use the previous
calibration technique I.

• Function to calibrate the market prices of swaptions:

fs(yyy) =
numSws

∑
i=1

(SBlack(swaptioni)−SMC(swaptioni))
2 (yyy),

where swaptioni denotes the i-th swaption, SBlack is the Black formula for swap-
tions and SMC(swaptioni) is the value of the i-th swaption computed using Monte
Carlo method. Moreover, yyy denotes the vector containing the correlation parame-
ters of the model and numSws is the number of swaptions. So as to optimize this
function we employ the former calibration technique II.

3.2 Numerical results

Market data correspond to the 6 month EURIBOR rate (see [5] for details). We show
in Table 1 the smiles of the forward rates and in Table 2 the smiles of the swap rates.
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Table 1 Smiles of forward rates. Fixing dates (first column) and moneyness (first row).
-80% -60% -40% -20% 0% 20% 40% 60% 80%

21-05-12 142.61% 117.05% 97.26% 82.58% 72.29% 70.89% 69.49% 68.08% 66.67%
21-11-12 112.74% 99.23% 88.27% 79.62% 73.03% 71.95% 70.87% 69.77% 68.69%
21-05-13 91.55% 83.75% 77.09% 71.50% 67.93% 67.10% 66.41% 65.88% 65.49%
21-11-13 64.82% 60.95% 57.08% 53.21% 52.49% 51.34% 50.61% 50.30% 50.46%
21-05-14 66.96% 61.84% 56.69% 52.43% 50.32% 48.72% 47.70% 47.14% 46.97%
21-11-14 69.20% 62.75% 56.30% 51.65% 48.19% 46.19% 44.91% 44.12% 43.66%
21-05-15 71.49% 63.67% 55.92% 50.89% 46.19% 43.83% 42.32% 41.35% 40.64%
21-11-15 73.89% 64.61% 55.54% 50.13% 44.25% 41.56% 39.84% 38.71% 37.78%
21-05-16 76.34% 65.56% 55.16% 49.39% 42.40% 39.43% 37.54% 36.26% 35.15%
21-11-16 78.90% 66.53% 54.78% 48.65% 40.61% 37.38% 35.34% 33.94% 32.68%
21-05-17 81.50% 67.50% 54.41% 47.94% 38.93% 35.47% 33.30% 31.81% 30.42%
21-11-17 84.24% 68.50% 54.03% 47.22% 37.29% 33.63% 31.36% 29.78% 28.28%
21-05-18 87.02% 69.50% 53.67% 46.53% 35.74% 31.92% 29.55% 27.90% 26.32%

Table 2 Smiles of swap rates. Maturities (first column) and moneyness (first row).
-80% -60% -40% -20% 0% 20% 40% 60% 80%

1
ye

ar

21/05/2012 122.30% 102.40% 87.12% 76.45% 70.40% 66.47% 64.20% 63.03% 62.56%
21/11/2012 102.86% 89.97% 79.85% 72.49% 67.90% 64.58% 62.16% 60.39% 59.19%
21/05/2013 95.64% 83.17% 73.42% 66.40% 62.10% 59.03% 56.84% 55.26% 54.18%
21/11/2013 88.11% 76.06% 66.69% 60.00% 56.00% 53.18% 51.22% 49.84% 48.87%

2
ye

ar
s 21/05/2012 111.50% 91.60% 76.32% 65.65% 59.60% 55.67% 53.40% 52.23% 51.76%

21/11/2012 89.66% 76.77% 66.65% 59.29% 54.70% 51.38% 48.96% 47.19% 45.99%
21/05/2013 82.94% 70.47% 60.72% 53.70% 49.40% 46.33% 44.14% 42.56% 41.48%
21/11/2013 77.81% 65.76% 56.39% 49.70% 45.70% 42.88% 40.92% 39.54% 38.57%

3
ye

ar
s 21/05/2012 106.40% 86.50% 71.22% 60.55% 54.50% 50.57% 48.30% 47.13% 46.66%

21/11/2012 83.66% 70.77% 60.65% 53.29% 48.70% 45.38% 42.96% 41.19% 39.99%
21/05/2013 78.34% 65.87% 56.12% 49.10% 44.80% 41.73% 39.54% 37.96% 36.88%
21/11/2013 73.61% 61.56% 52.19% 45.50% 41.50% 38.68% 36.72% 35.34% 34.37%

4
ye

ar
s 21/05/2012 101.90% 82.00% 66.72% 56.05% 50.00% 46.07% 43.80% 42.63% 42.16%

21/11/2012 80.26% 67.37% 57.25% 49.89% 45.30% 41.98% 39.56% 37.79% 36.59%
21/05/2013 75.24% 62.77% 53.02% 46.00% 41.70% 38.63% 36.44% 34.86% 33.78%
21/11/2013 70.91% 58.86% 49.49% 42.80% 38.80% 35.98% 34.02% 32.64% 31.67%

5
ye

ar
s 21/05/2012 96.15% 74.25% 58.83% 49.88% 47.40% 45.74% 44.61% 43.76% 43.05%

21/11/2012 89.58% 68.82% 54.14% 45.54% 43.00% 39.36% 37.33% 36.15% 35.37%
21/05/2013 83.91% 64.51% 50.71% 42.51% 39.90% 36.48% 34.59% 33.50% 32.76%
21/11/2013 79.13% 61.09% 48.17% 40.37% 37.70% 34.50% 32.74% 31.75% 31.05%

3.2.1 Calibration to caplets

The calibrated parameters are shown in Table 3. The execution time was 9.165 sec-
onds: the mono-GPU SA employed 9.124 s (the cost function was evaluated roughly
112 million times) and the Nelder-Mead local optimization algorithm consumed the
remaining time.

In Table 4, market vs. model volatilities for the smiles of F1 to F4 and the mon-
eyness −40% to 40% are shown. The mean relative error considering all smiles is
3.11×10−2.

Figure 3 shows the model fitting to the smiles of the first four forward rates.
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Table 3 Mercurio & Morini model, calibration to caplets with SABR formula (13): calibrated
parameters.

φi αi φi αi

F1 −0.7549 0.0888 F8 −0.3661 0.0696
F2 −0.2309 0.0842 F9 −0.4770 0.0683
F3 0.0666 0.0817 F10 −0.5760 0.0693
F4 0.1698 0.0662 F11 −0.6615 0.0682
F5 0.0302 0.0635 F12 −0.7380 0.0682
F6 −0.1098 0.0684 F13 −0.8044 0.0669
F7 −0.2417 0.0667

σ = 0.5986

Table 4 Calibration to caplets, σmarket vs. σmodel .
Moneyness Smile of F1 Smile of F2

σmarket σmodel
|σmarket−σmodel |

σmarket
σmarket σmodel

|σmarket−σmodel |
σmarket

−40% 97.26 102.19 5.07×10−2 88.27 89.59 1.50×10−2

−20% 82.58 90.71 9.85×10−2 79.62 81.81 2.75×10−2

0% 72.29 81.16 1.23×10−1 73.03 75.77 3.74×10−2

20% 70.89 73.55 3.76×10−2 71.95 71.47 6.69×10−3

40% 69.49 67.88 2.31×10−2 70.87 68.91 2.77×10−2

Moneyness Smile of F3 Smile of F4

σmarket σmodel
|σmarket−σmodel |

σmarket
σmarket σmodel

|σmarket−σmodel |
σmarket

−40% 77.09 77.13 4.45×10−4 57.08 55.98 1.92×10−2

−20% 71.50 71.99 6.92×10−3 53.21 52.54 1.26×10−2

0% 67.93 68.27 5.11×10−3 52.49 50.39 4.00×10−2

20% 67.10 65.96 1.69×10−2 51.34 49.53 3.51×10−2

40% 66.41 65.07 2.03×10−2 50.61 49.97 1.27×10−2

3.2.2 Calibration to swaptions

The calibrated parameters are η1 = 0.779175 and λ1 = 2.722489. Using two GPUs
the execution time was approximately 2 hours (by using a cluster of GPUs, comput-
ing time could be substantially reduced).

In Table 5, some market vs. model swaption prices are shown. The mean absolute
error considering all market swaptions is 5.50×10−2.

Table 5 Calibration to swaptions, SBlack vs. SMC , prices in %.
Moneyness 0.5×1 swaptions 1×1 swaptions

SBlack SMC |SBlack−SMC | SBlack SMC |SBlack−SMC |
−40% 0.4866 0.4870 4.00×10−4 0.5917 0.5870 4.70×10−3

−20% 0.3562 0.3670 1.08×10−2 0.4661 0.4699 3.80×10−3

0% 0.2356 0.2478 1.22×10−2 0.3467 0.3517 5.00×10−3

20% 0.1363 0.1427 6.40×10−3 0.2394 0.2422 2.80×10−3

40% 0.0680 0.0657 2.30×10−3 0.1517 0.1514 3.00×10−4

Moneyness 1.5×1 swaptions 2×1 swaptions
SBlack SMC |SBlack−SMC | SBlack SMC |SBlack−SMC |

−40% 0.7357 0.6872 4.85×10−2 0.8184 0.7465 7.19×10−2

−20% 0.5908 0.5516 3.92×10−2 0.6603 0.5959 6.44×10−2

0% 0.4536 0.4170 3.66×10−2 0.5118 0.4469 6.49×10−2

20% 0.3277 0.2951 3.26×10−2 0.3754 0.3137 6.17×10−2

40% 0.2213 0.1957 2.56×10−2 0.2587 0.2078 5.09×10−2
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Fig. 3 σmarket vs. σmodel , smiles of F1, . . . ,F4.

Figure 4 shows the model fitting to the first four swaption market prices.
In [5], a comparative analysis of the SABR/LIBOR models proposed by Hagan,

Mercurio & Morini and Rebonato is presented. The model with the best perfor-
mance is the Mercurio & Morini one, since it is the easiest to calibrate, it achieves
the best fit to the swaption market prices and it results the fastest one in the pricing
with Monte Carlo simulation.

Note that the speedup with GPUs of the Monte Carlo calibration techniques can
be applied to more complex products, for example CMS spread options which con-
tain more information on the smile structure and the correlation of LIBOR rates.
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