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Abstract

SABR models have been used to incorporate stochastic volatility to LI-
BOR market models (LMM) in order to describe interest rate dynamics and
price interest rate derivatives. From the numerical point of view, the pricing
of derivatives with SABR/LIBOR market models (SABR/LMMs) is mainly
carried out with Monte Carlo simulation. However, this approach could in-
volve excessively long computational times. For first time in the literature, in
the present paper we propose an alternative pricing based on partial differen-
tial equations (PDEs). Thus, we pose original PDE formulations associated
to the SABR/LMMs proposed by Hagan [22], Mercurio & Morini [31] and
Rebonato [35]. Moreover, as the PDEs associated to these SABR/LMMs are
high dimensional in space, traditional full grid methods (like standard finite
differences or finite elements) are not able to price derivatives over more than
three or four underlying interest rates. In order to overcome this curse of
dimensionality, a sparse grid combination technique is proposed. A compar-
ison between Monte Carlo simulation results and the ones obtained with the
sparse grid technique illustrates the performance of the method.
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dimensional PDEs, Sparse grids, Combination technique

1. Introduction

The LMM [6, 25, 32] has become the most popular interest rate model.
The main reason is the agreement between this model and Black’s formulas
[7]. The standard LIBOR market model considers constant volatilities for the
forward rates. However, this is a very limited hypothesis since it is impossible
to reproduce market volatility smiles.

Among the different stochastic volatility models offered in the literature,
the SABR model proposed by Hagan, Kumar, Lesniewski and Woodward [21]
in the year 2002 stands out for becoming the market standard to reproduce
the price of European options. SABR is the acronym for Stochastic, Alpha,
Beta and Rho, three of the four model parameters. The SABR model can not
be used to price derivatives whose payoff depends on several forward rates.
In fact, SABR model works in the terminal measure, under which both the
forward rate and its volatility are martingales. This can always be done if we
work with one forward rate in isolation at a time. Under this same measure,
however, the process for another forward rate and for its volatility would not
be driftless.

In order to allow LMM to fit market volatility smiles, different extensions
of the LMM that incorporate the volatility smile by means of the SABR
model were proposed. These models are known as SABR/LIBOR market
models (SABR/LMMs). In this article we will deal with the models proposed
by Hagan [22], Mercurio and Morini [31] and Rebonato [35].

While Monte Carlo [15] simulation remains the common choice for pricing
interest rate derivatives within SABR/LMM setting, several difficulties moti-
vate to address alternative approaches based on PDE formulations. The first
issue is that the convergence of Monte Carlo methods, although it depends
only very weakly on the dimension of the problem, is very slow. Indeed, if
the standard deviation of the result using a single simulation is ε then the
standard deviation of the error after N simulations is ε/

√
N . Therefore, to

improve the accuracy of the solution by a factor of 10, 100 times as many sim-
ulations must be performed. The second drawback of Monte Carlo methods
is the valuation of options with early-exercise, like in the case of the American
options, due to the so-called “Monte Carlo on Monte Carlo” effect. Avail-
able Monte Carlo methods for American options are also quite costly, see [29]
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for example. In contrast, the modification of the PDE to a linear comple-
mentarity problem is usually straightforward. Finally, the weakest point of
Monte Carlo methods appears to be the computation of the sensitivities of
the solution with respect to the underlyings, the so-called “Greeks”, which
are very used by traders, and are directly given by the partial derivatives
of the PDE solution. Besides, path-dependent options, like barrier options,
can be easily priced in the PDE context where only the boundary conditions
need to be changed, in contrast to Monte Carlo methods, where Brownian
bridge techniques [16] must be applied.

In view of previous arguments, in the present paper we pose equivalent
PDE formulations for the three above mentioned SABR/LMMs. As far as
we now, this is the first time in the literature that these PDE formulations
are posed. From the numerical point of view, one main difficulty in these
PDE formulations lies in their high dimensionality in space-like variables.
In order to cope with this so-called curse of dimensionality several methods
are available in the literature, see [14, 4] for example, which can be put into
three categories. The first group uses the Karhunen-Loeve transformation to
reduce the stochastic differential equation to a lower dimensional equation,
therefore this results in a lower dimensional PDE associated to the previ-
ously reduced SDE. The second category gathers those methods which try
to reduce the dimension of the PDE itself, like for example dimension-wise
decomposition algorithms. Finally, the third category groups the methods
which reduce the complexity of the problem in the discretization layer, like
for example the method of sparse grids, which we use in the present article.

The sparse grid method was originally developed by Smolyak [40], who
used it for numerical integration. It is mainly based on a hierarchical ba-
sis [41, 42], a representation of a discrete function space which is equivalent
to the conventional nodal basis, and a sparse tensor product construction.
Zenger [44] and Bungartz and Griebel [8] extended this idea and applied
sparse grids to solve PDEs with finite elements, finite volumes and finite
differences methods. Besides working directly in the hierarchical basis, the
sparse grid can also be computed using the combination technique [19] by lin-
early combining solutions on traditional Cartesian grids with different mesh
widths. This is the approach we follow in this article. Recently, this tech-
nique has been used for a financial application related to the pricing of basket
options in [24, 27, 37].

The paper is organized as follows. In Section 2 some basic concepts
related to interest rate derivatives and the corresponding terminology and
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notation are introduced. In Section 3 we pose the PDE formulations for the
SABR/LMMs. In Section 4 we describe the use of a full grid finite differ-
ences scheme for the Mercurio and Morini model, the application of which is
analogous for the other two SABR/LMMs. Numerical results show the lim-
itations of the full grid method when the number of forward rates increases.
Therefore, in Section 5 we describe the sparse grid combination technique
applied to the SABR/LMM and show numerical results that illustrate the
behaviour of the method when the number of forward rates increases. For
this purpose, a comparison with Monte Carlo simulation results is used when
analytic expressions of the solution are not available, as it happens in most
of the cases. Note that Monte Carlo techniques are the usual alternative to
price with SABR/LMM.

2. Interest rate derivatives. Caplets and swaptions

This section provides a brief introduction to the interest rate derivatives
we deal with in the present article, for a deeper study we refer the reader
to [7]. Interest rate derivatives consist of financial contracts that depend on
some interest rates.

A zero coupon bond with maturity at time T is a contract that pays its
holder one unit of currency at time T . The value of this product at time
t < T is denoted by P (t, T ), and is called the discount factor from time T to
time t. Note that P (T, T ) = 1 for all T .

A tenor structure is a set of ordered payment dates {Ti, i = 0, . . . , N},
such that

T0 < T1 < . . . < TN−1 < TN .

The time between the payment dates is denoted by τi = Ti+1 − Ti. In terms
of the corresponding discount factor, a payment of x units at time Ti is worth
xP (t, Ti) at time t < Ti.

A forward interest rate Fi(t) is an interest rate we can contract in order
to borrow or lend money during the future time period [Ti, Ti+1], and can be
expressed in terms of discount factors in the form:

Fi(t) = F (t;Ti, Ti+1) =
1

τi

(
P (t, Ti)

P (t, Ti+1)
− 1

)
where t ≤ Ti.

Conversely, the price of a bond at time Ti that matures at Tj, P (Ti, Tj),

4



can be expressed in terms of forward LIBOR rates as follows:

P (Ti, Tj) =

j−1∏
k=i

1

1 + τkFk(Ti)
.

A caplet is a European call option on a forward rate. If the caplet expires
at time Ti+1, at that time we will receive the payoff τi(Fi(Ti)−K)+, so that
its discounted payoff at time t < Ti+1 is given by

P (t, Ti+1)τi(Fi(Ti)−K)+,

where (·)+ denotes the function max(·, 0) and K is the strike of the contract,
which is given by a fixed interest rate in the contract. If constant volatilities
are assumed, the caplet pricing can be computed with Black’s formula [7]

P (t, Ti+1)τiBl
(
K,Fi(t), σBlack

√
Ti − t

)
,

where
Bl(K,F, ν) = FΦ

(
d1(K,F, ν)

)
−KΦ

(
d2(K,F, ν)

)
, (1)

d1(K,F, ν) =
ln(F/K) + ν2/2

ν
,

d2(K,F, ν) =
ln(F/K)− ν2/2

ν
,

and σBlack is the constant volatility of the forward rate which can be retrieved
from market quotes.

An interest rate swap (IRS) is a contract to exchange interest payments
at future fixed dates. At every time instant Ti+1 in a prescribed set of dates
Ta+1, . . . , Tb the contract holder pays a fixed interest rate K and receives
a floating interest rate at the LIBOR rate Fi(Ti) fixed at time Ti. The
discounted payoff at time t < Ta of this swap can be expressed as

IRS(t;Ta, . . . , Tb) =
b−1∑
i=a

P (t, Ti+1)τi(Fi(Ti)−K). (2)

A European Ta × (Tb − Ta) swaption is an option giving the right (and
not the obligation) to enter a swap at the future time Ta, called the swaption
maturity. The underlying swap length Tb − Ta is referred as the tenor of the
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swaption. Therefore, the discounted swaption payoff to the current time t is
equal to

P (t, Ta)
(
IRS(Ta;Ta, . . . , Tb)

)+
.

As indicated in the introduction, the main objective of this article is the
pricing of the previously described interest rate derivatives in the framework
of SABR/LMM which incorporates the stochastic volatility by means of PDE
formulations. Note that in most cases there are no analytical formulas for
the solution. Thus, the new models are posed and solved with suitable nu-
merical methods that overcome the high dimension in space of the equations.
Moreover, the proposed sparse grid technique is parallelized to make the ap-
proach computationally efficient. Although along the paper we concentrate
on Mercurio and Morini SABR/LMM, the proposed methodology can be
analogously applied to Rebonato and Hagan models.

3. Derivation of the PDE from the stochastic processes

In [12] the authors analyzed the three SABR/LIBOR market models pro-
posed by Hagan, Mercurio & Morini and Rebonato using Monte Carlo sim-
ulation and their implementation on GPUs in order to price several interest
rate derivatives. They have concluded that the Mercurio & Morini model is
the one with the best performance: it is the easiest to calibrate, it achieves
the best fit to swaption market prices and it results the fastest one in the
pricing with Monte Carlo simulation. Taking into account these reasons, in
the present article we mainly choose this model to pose the PDE formulation
and develop its numerical solution with the proposed methods. Nevertheless,
at the end of this section we also pose the PDEs for the models of Hagan
and Rebonato.

In order to describe the SABR/LMM setting, we first consider a set of
N − 1 LIBOR forward rates Fi, 1 ≤ i ≤ N − 1, F = (F1, . . . , FN−1) on the
tenor structure [T0, T1, . . . , TN−1, TN ], the accruals being τi = Ti+1 − Ti. The
Mercurio & Morini model is defined by the following system of stochastic
differential equations [31]:

dFi(t) = µi(t)Fi(t)
βdt+ αiV (t)Fi(t)

βdWQ
i (t), Fi(0) given,

dV (t) = σV (t)dZQ(t), V (0) = α, (3)

which are posed on a probability space {Ω,F ,Q} with filtration {Ft}, t ∈
[T0, TN ]. In (3) µi is the drift of the i-th forward rate, β ∈ [0, 1] is the local
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volatility coefficient, αi is a deterministic (constant) instantaneous volatil-
ity coefficient, WQ

i are standard Brownian motions under the risk neutral
measure Q, ρ is the correlation matrix between the forward rates, i.e.

< dWQ
i (t), dWQ

j (t) >= ρijdt, ∀i, j ∈ {1, . . . , N − 1},

V is the stochastic volatility of the forward rates, dZQ is a standard Brownian
motion correlated with the Brownian motions of the forward rates and φ is
the correlation vector between the forward rates and the stochastic volatility,
i.e.

< dWQ
i (t), dZQ(t) >= φidt, ∀i ∈ {1, . . . , N − 1}.

Due to the fact that the volatility process is lognormal, one can set the initial
value of the volatility equal to one, i.e. α = 1 with no loss of generality, since
any different initial value can be embedded in the model by adjusting the
deterministic coefficients αi. This is the choice we adopt in the following.

The drifts of the forward rates are determined by the chosen numeraire.
Under the terminal probability measure QTN associated with choosing the
bond P (t, TN) as numeraire, the drifts of the forwards rates are given by

µi(t) =


−αiV (t)2

N−1∑
j=i+1

τjFj(t)
β

1 + τjFj(t)
ρijαj if i < N − 1,

0 if i = N − 1.

In order to price Ta × (Tb − Ta) swaptions we will consider the probability
measure QTa associated with choosing the bond P (t, Ta) as numeraire. In
this case the drifts of the forward rates are given by

µi(t) =


0 if i = a,

αiV (t)2

i∑
j=a+1

τjFj(t)
β

1 + τjFj(t)
ρijαj if i > a.

Our model for the correlation structure is taken from Rebonato [34], who
suggests the time independent function

ρij = e−λ|Ti−Tj |. (4)

This function reflects the fact that the correlation increases as the time be-
tween the forward rates expiry decreases, so that two consecutive forward
rates influence each other more than a forward rate in many years time.
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A European option is characterized by its payoff function G, which deter-
mines the amount G(T,F(T ), V (T )) its holder receives at time t = T . The
arbitrage-free value of the option relative to a numeraire N is then given by

u(t,F(t), V (t)) =
U(t,F(t), V (t))

N(t)
= EQ

(
G(T,F(T ), V (T ))

N (T )

∣∣∣∣∣ Ft
)
. (5)

Closed-form solutions based on (5) are rarely available due to the multi-
asset feature of most LIBOR derivatives. In the next paragraphs we sketch
the derivation of the PDE formulation associated to the Mercurio & Morini
model.

By using Itô’s formula, see [39] for example, the stochastic differential
equation for u is given by

du(t,F(t), V (t)) =
∂u

∂t
dt+

N−1∑
i=1

∂u

∂Fi(t)
dFi(t) +

∂u

∂V (t)
dV (t)+

1

2

N−1∑
i,j=1

∂2u

∂Fi(t)∂Fj(t)
dFi(t)dFj(t) +

1

2

∂2u

∂V (t)2
(dV (t))2+

N−1∑
i=1

∂2u

∂Fi(t)∂V (t)
dFi(t)dV (t), (6)

with box algebra [30]:

dt dWQ
i dWQ

j dZQ

dt 0 0 0 0
dWQ

i 0 dt ρijdt φidt
dWQ

j 0 ρijdt dt φjdt
dZQ 0 φidt φjdt dt

.

The interpretation of the box algebra is the following. In an expansion to
terms of order dt, as dt→ 0 higher order terms such as (dt)j are all negligible
for j > 0. For example, (dt)2 is of order 0 as dt → 0, which is denoted as
(dt)(dt) ∼ 0. Similarly, cross terms such as (dt)(dWQ

i ) are negligible because
the increment dWQ

i is normally distributed with mean 0 and standard de-
viation (dt)1/2 and so (dt)(dWQ

i ) has standard deviation (dt)3/2 which tends
to 0 as dt→ 0.

8



Substituting equations (3) in (6) and using the box algebra, we get

du(t,F(t), V (t)) =

(
∂u

∂t
+

N−1∑
i=1

µi(t)Fi(t)
β ∂u

∂Fi(t)
+

1

2

N−1∑
i,j=1

αiαjV (t)2Fi(t)
βFj(t)

βρij
∂2u

∂Fi(t)∂Fj(t)
+

1

2
σ2V (t)2 ∂2u

∂V (t)2
+

N−1∑
i=1

σV (t)2αiFi(t)
βφi

∂2u

∂Fi(t)∂V (t)

)
dt+

N−1∑
i=1

αiV (t)Fi(t)
β ∂u

∂Fi(t)
dWQ

i + σV (t)
∂u

∂V (t)
dZQ. (7)

In order to comply with the no-arbitrage conditions and (5), the process
du(t,F, V ) has to be martingale under the measure Q. Thus, to satisfy this
requirement, the drift term dt in (7) must be equal to zero. The same result
could be directly obtained by applying Feynman-Kac theorem, see [39, 7].
The final parabolic PDE takes the following form:

∂u

∂t
+

1

2
σ2V 2 ∂

2u

∂V 2
+

1

2
V 2

N−1∑
i,j=1

ρijαiαjF
β
i F

β
j

∂2u

∂Fi∂Fj
+

σV 2

N−1∑
i=1

φiαiF
β
i

∂2u

∂Fi∂V
+

N−1∑
i=1

µi(t)F
β
i

∂u

∂Fi
= 0, (8)

with the terminal condition given by the derivative payoff,

u(T,F, V ) = g(T,F, V ),

on RN−1 × R. For simplicity of notation, we have used the relative payoff

g(·) =
G(·)
N (T )

. The derivative price at time t < T is given byN (t)u(t,F(t), V (t)).

Analytic solutions for (8) can be only found for suitable simple specifica-
tions of the functionals forms of the PDE and for straightforward boundary
conditions (e.g. simple caplets without stochastic volatility, i.e. σ = 0, see
Section 4.2).

Finally, we are going to present the PDE for Hagan model, which is
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defined by the following system of stochastic differential equations [22]:

dFi(t) = µFi(t)Fi(t)
βidt+ Vi(t)Fi(t)

βidWQ
i (t), Fi(0) given,

dVi(t) = µVi(t)Vi(t)dt+ σiVi(t)dZ
Q
i (t), Vi(0) = αi, (9)

with the associated correlations denoted by

< dWQ
i (t), dWQ

j (t) > = ρijdt,

< dWQ
i (t), dZQj (t) > = φijdt,

< dZQi (t), dZQj (t) > = θijdt.

The PDE for this model is obtained in the same way as previously with the
Mercurio & Morini model, thus obtaining:

∂u

∂t
+

1

2

N−1∑
i,j=1

θijσiViσjVj
∂2u

∂Vi∂Vj
+

1

2

N−1∑
i,j=1

ρijViF
βi
i VjF

βj
j

∂2u

∂Fi∂Fj
+

N−1∑
i,j=1

φijViF
βi
i σjVj

∂2u

∂Fi∂Vj
+

N−1∑
i=1

µFi(t)F βi
i

∂u

∂Fi
+

N−1∑
i=1

µVi(t)Vi
∂u

∂Vi
= 0.

(10)

Rebonato model [35] is analogous to Hagan one, therefore its PDE will
be also quite similar to (10).

4. Finite Differences Method with full grids

Hereafter, as we have motivated in the previous section, we are going
to just focus on the PDE (8) of the Mercurio & Morini model. This back-
ward parabolic PDE must be supplemented with a terminal condition, which
describes the value of the variable u at the final time T . Moreover, appro-
priate boundary conditions are required, which prescribe how the function
u, or its derivatives, behave at the boundaries of the necessarily bounded
computational domain.

We are going to define a (N+1)-dimensional mesh with the time sampled
from today (time 0) to the final expiry of the option (time T ) at M+1 points

uniformly spaced by the time step ∆t =
T

M
.

The variables representing the forward rates F = (F1, . . . , FN−1) and their
stochastic volatility V , often referred as the “space variables” will be sampled
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at Mi + 1 (i = 1, . . . , N − 1) and S + 1 points spaced by hi =
Fmax
i − Fmin

i

Mi

and hv =
V max − V min

S
, respectively.

Notice that while the choice of the range of the time variable is totally
unambiguous, [0, T ], an a priori choice must be made about which values of
the space variables are too high or too low to be of interest, so far we will
denote them by [Fmin

i , Fmax
i ] and [V min, V max]. Selecting boundary values

such that the option of interest is too deeply in or out-of-the money is a
common and reasonable choice.

For a given mesh, each point is uniquely determined by the time level m
(m = 0, . . . ,M), the index vector of theN−1 forward rates f = (f1, . . . , fi, . . . ,
fN−1) (fi = 0, . . . ,Mi) and the stochastic volatility level v (v = 0, . . . , S).
We seek approximations of the solution at these mesh points, which will be
denoted by

Um
f ,v ≈ u(m∆t, (fihi)1≤i≤N−1, vhv).

It is natural for this PDE to be solved backwards in time. We approximate
the time derivative by the time-forward approximation

∂u

∂t

∣∣∣∣∣
t=m∆t,F=(fihi)1≤i≤N−1,V=vhv

=
∂u

∂t

∣∣∣∣∣
m,f,v

≈
Um+1
f ,v − Um

f ,v

∆t
.

For the space derivatives we have chosen second-order approximations.
We will write fi±1 to mean the forward rates index vector (f1, . . . , fi ±
1, . . . , fN−1) which corresponds to the forward rates point (f1h1, . . . , (fi ±
1)hi, . . . , fN−1hN−1).
The first derivatives are approximated by central differences:

∂u

∂Fi

∣∣∣∣∣
m,f,v

≈
Um
fi+1,v

− Um
fi−1,v

2hi
.

The second derivatives are approximated by:

• ∂2u

∂F 2
i

∣∣∣∣∣
m,f,v

≈
Um
fi+1,v

− 2Um
fi,v

+ Um
fi−1,v

h2
i

,

• ∂2u

∂V 2

∣∣∣∣∣
m,f,v

≈
Um
f ,v+1 − 2Um

f ,v + Um
f ,v−1

h2
v

.
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The cross derivatives terms are approximated by:

• For i 6= j,
∂2u

∂Fi∂Fj

∣∣∣∣∣
m,f,v

≈
Um
fi+1,j+1,v

+ Um
fi−1,j−1,v

− Um
fi+1,j−1,v

− Um
fi−1,j+1,v

4hihj
,

• ∂2u

∂Fi∂V

∣∣∣∣∣
m,f,v

≈
Um
fi+1,v+1 + Um

fi−1,v−1 − Um
fi+1,v−1 − Um

fi−1,v+1

4hihv
.

The finite differences solution under the so-called θ-scheme is:

Um+1
f ,v − Um

f ,v

∆t
+ θWm

f ,v + (1− θ)Wm+1
f ,v = 0,

where θ ∈ [0, 1] and Wm
f ,v is the discretization given by

Wm
f,v =

1

2
σ2V 2

Um
f ,v+1 − 2Um

f ,v + Um
f ,v−1

h2
v

+

1

2
V 2

N−1∑
i,j=1

i6=j

ρijαiαjF
β
i F

β
j

Um
fi+1,j+1,v

+ Um
fi−1,j−1,v

− Um
fi+1,j−1,v

− Um
fi−1,j+1,v

4hihj
+

1

2
V 2

N−1∑
i=1

α2
iF

2β
i

Um
fi+1,v

− 2Um
fi,v

+ Um
fi−1,v

h2
i

+

σV 2

N−1∑
i=1

φiαiF
β
i

Um
fi+1,v+1 + Um

fi−1,v−1 − Um
fi+1,v−1 − Um

fi−1,v+1

4hihv
+

N−1∑
i=1

µi(m∆t)F β
i

Um
fi+1,v

− Um
fi−1,v

2hi
, (11)

and with terminal condition UM
f ,v = g(T,F, V ), where we have denoted F =

(Fi = fihi)1≤i≤N−1 and V = vhv.
Three different θ values represent three canonical discretization schemes,

θ = 0 is the explicit scheme, θ = 1 the fully implicit scheme and θ = 0.5 the
Crank-Nicolson scheme. The fully implicit discretization is the best method
with respect to stability, whereas the Crank-Nicolson timestepping provides
the best convergence rate. Although the explicit method is the simplest to
implement, it has the disadvantage of not being unconditionally stable.
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We shall first discriminate explicit and implicit parts as follows:

Um
f ,v

∆t
− θWm

f ,v =
Um+1
f ,v

∆t
+ (1− θ)Wm+1

f ,v . (12)

As a result of such discretization we arrive to the linear system of equa-
tions Ax = b, where A is the band matrix of known coefficients, x is the
vector of the unknown solutions Um

f ,v and b is the vector of known values
corresponding to the right-hand side of (12).

Equation (12) can be rewritten as:

dθUm
f ,v−1 + dθUm

f ,v+1 +
N−1∑
i=1

(bi − ri)θUm
fi−1,v

+
N−1∑
i=1

(bi + ri)θU
m
fi+1,v

+

N−1∑
i=1

(
aiθU

m
fi−1,v−1 + aiθU

m
fi+1,v+1 − aiθUm

fi−1,v+1 − aiθUm
fi+1,v−1

)
+∑

ij∈C

(
ψijθU

m
fi−1,j−1,v

+ ψijθU
m
fi+1,j+1,v

− ψijθUm
fi−1,j+1,v

− ψijθUm
fi+1,j−1,v

)
+(

−1− 2dθ − 2θ
N−1∑
i=1

bi

)
Um
f ,v =

− dθ̂Um+1
f ,v−1 − dθ̂U

m+1
f ,v+1 −

N−1∑
i=1

(bi − ri)θ̂Um+1
fi−1,v

−
N−1∑
i=1

(bi + ri)θ̂U
m+1
fi+1,v

−
N−1∑
i=1

(
aiθ̂U

m
fi−1,v−1 + aiθ̂U

m+1
fi+1,v+1 − aiθ̂U

m+1
fi−1,v+1 − aiθ̂U

m+1
fi+1,v−1

)
−
∑
ij∈C

(
ψij θ̂U

m+1
fi−1,j−1,v

+ ψij θ̂U
m+1
fi+1,j+1,v

− ψij θ̂Um+1
fi−1,j+1,v

− ψij θ̂Um+1
fi+1,j−1,v

)
+(

−1 + 2dθ̂ + 2θ̂
N−1∑
i=1

bi

)
Um+1
f ,v , (13)

where θ̂ = (1 − θ), C is the set containing the combinations of numbers
1, 2, . . . , N−1 taken two at a time without repetition (the number of elements
in C is

(
N−1

2

)
= 2−1(N − 1)(N − 2)) and the known coefficients d, bi, ri, ai
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and ψij are defined as

d =
∆tσ2V 2

2h2
v

, bi =
∆tV 2α2

iF
2β
i

2h2
i

,

ri =
∆tµi(t)F

β
i

2hi
, ai =

∆tσV 2φiαiF
β
i

4hihv
,

ψij =
∆tV 2ρijαiαjF

β
i F

β
j

4hihj
.

4.1. Boundary conditions

In order to specify boundary conditions, a combination of mathematical,
financial and heuristic reasoning allows us to find consistent and acceptable
ones. There are several possibilities, see [11] for example.

We assume that forward rates and their stochastic volatility are non neg-
ative and hence take values in the range zero to infinity. We first truncate
the unbounded interval to a bounded one and then we must specify con-
ditions at the new boundary. Thus we will consider the truncated domain
[Fmin
i , Fmax

i ]× [V min, V max], with Fmin
i = 0 and V min = 0.

For the forward rates we consider Dirichlet boundary conditions. Partic-
ularly, the terminal condition holds on the forward rates boundaries, i.e.

Um
{f |∃fi=0},v = UM

f ,v, ∀m = 0, . . . ,M − 1,

Um
{f |∃fi=Mi},v = UM

f ,v, ∀m = 0, . . . ,M − 1.

At the stochastic volatility boundaries we consider the following condi-
tions:

∂u

∂t
+

N−1∑
i=1

µi(t)F
β
i

∂u

∂Fi
= 0, V = 0, (14)

∂u

∂V
= 0, V = Vmax. (15)

Thus, when V = 0 we require that the PDE itself must be satisfied on this
boundary. When V approaches to infinity, the price of the derivative becomes
independent of V . This is reflected by using Neumann conditions instead of
the Dirichlet ones used for the forward rates boundaries.
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At the boundary V = 0, after discretizing the boundary condition (14)
we obtain (note that the coefficients d, bi, ai and ψij of equation (13) are
zero):

−
N−1∑
i=1

riθU
m
fi−1,0

+
N−1∑
i=1

riθU
m
fi+1,0

− Um
f ,0 =

N−1∑
i=1

riθ̂U
m+1
fi−1,0

−
N−1∑
i=1

riθ̂U
m+1
fi+1,0

+ Um+1
f ,0 .

For the boundary V = Vmax in order to maintain the second order ac-
curacy in the discretization of the first derivative the ghost point method is
considered. The ghost grid points Uf ,S+1 are added. Then, the finite differ-
ences scheme of equation (13) can also be applied at the points Uf ,S. However,
we now have more unknowns than equations. The additional equations come
from the central finite differences discretization of the Neumann boundary
condition (15):

Uf ,S+1 − Uf ,S−1

2hv
= 0,

which yields Uf ,S+1 = Uf ,S−1. Inserting this into the finite differences equa-
tion at V = Vmax we achieve

d̂θUm
f ,S−1 +

N−1∑
i=1

(bi − ri)θUm
fi−1,S

+
N−1∑
i=1

(bi + ri)θU
m
fi+1,S

+∑
ij∈C

(
ψijθU

m
fi−1,j−1,S

+ ψijθU
m
fi+1,j+1,S

− ψijθUm
fi−1,j+1,S

− ψijθUm
fi+1,j−1,S

)
+(

−1− d̂θ − 2θ
N−1∑
i=1

bi

)
Um
f ,S =

− d̂θ̂Um+1
f ,S−1 −

N−1∑
i=1

(bi − ri)θ̂Um+1
fi−1,S

−
N−1∑
i=1

(bi + ri)θ̂U
m+1
fi+1,S

+

−
∑
ij∈C

(
ψij θ̂U

m+1
fi−1,j−1,S

+ ψij θ̂U
m+1
fi+1,j+1,S

− ψij θ̂Um+1
fi−1,j+1,S

− ψij θ̂Um+1
fi+1,j−1,S

)
+(

−1 + d̂θ̂ + 2θ̂
N−1∑
i=1

bi

)
Um+1
f ,S ,

where d̂ = 2d =
∆tσ2V 2

max

h2
v

.
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4.2. Numerical results

It is not clear where to place Fmax
i and V max. On one hand, it is ad-

vantageous to place them far away of the initial forward rates. This reduces
the error of the artificial boundary conditions. On the other hand a large
computational domain requires a large discretization width. This increases
the error of the approximation of the derivatives. In our experiments we will
consider Fmax

i = 0.1 and V max = 3.5.
Some specifications of the financial product are given in Table 1 and

the employed market data, taken from [5], are shown in Table 2. We will
consider λ = 0.1 in the model for the correlation structure (4). Besides, the
Crank-Nicolson scheme will be used in (12). For solving the system (13) the
Gauss-Seidel iterative solver has been employed using a tolerance of 10−6.

The numerical experiments have been performed with the following hard-
ware and software configurations: two recent multicore Intel Xeon CPUs E5-
2620 v2 clocked at 2.10 GHz (6 cores per socket) with 62 GBytes of RAM,
CentOS Linux, GNU C++ compiler 4.8.2.

Currency EUR
Index EURIBOR

Day Count e30/360
Strike 5.5%

Table 1: Specification of the interest rate model.

We are going to value Ta × (Tb − Ta) European swaptions under the
Mercurio & Morini model.

First of all, the results when pricing a 1 × 1 European swaption are dis-
cussed. The value of this particular swaption is the same as the price of the
corresponding caplet, and so it only depends on F1. Hence, in one dimension
a closed form expression for the price of a European swaption can be found
by using Black’s formula (1) and is given by

P (T0, T2)τ1Bl(K,F1(T0), σBlack
√
T1 − T0).

This value is equal to 0.659096 basis points (one basis point is one hundredth
of one percent, 1%

100
= 10−4). As Black’s formula for caplets considers constant

volatility σBlack, in this first test the volatility of the volatility parameter of
Mercurio & Morini model is considered equal to zero, i.e., σ = 0, therefore a
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Start date End date LIBOR Rate (%) Volatility (%)

T0 29-07-04 29-07-05 2.423306 0
T1 29-07-05 29-07-06 3.281384 24.73
T2 29-07-06 29-07-07 3.931690 22.45
T3 29-07-07 29-07-08 4.364818 19.36
T4 29-07-08 29-07-09 4.680236 17.43
T5 29-07-09 29-07-10 4.933085 16.15
T6 29-07-10 29-07-11 5.135066 15.02
T7 29-07-11 29-07-12 5.273314 14.24
T8 29-07-12 29-07-13 5.376115 13.42

Table 2: Market data used in pricing. Data taken from 27th July 2004.

standard LIBOR market model is used. The solution was found on several
levels and Table 3 shows the convergence of the model when using 256 time
steps. In all tables of this article, Level refers to the refinement level n, i.e.,
the mesh size is hi = 2−n · ci in each coordinate direction, where ci denotes
the computational domain length in direction i, which is Fmax

i in the case of
the forward rates and V max in the case of the stochastic volatility. Besides,
the solution and the error with respect to the exact solution are also shown in
basis points. Additionally, the execution time is measured in seconds and the
column labeled as Grid points shows the number of grid points employed in
the full grid used by the finite differences method without taking into account
the time coordinate. The time discretization error decreases as increasing
the number of time steps. As an example, in Table 4 we show the achieved
solutions and the associated errors using only 12 time steps for the higher
resolution levels (n = 9, 10), these results are to be compared with those ones
of Table 3. From the results in Tables 3 and 4, we trust that the time step
∆t = 1/256 is small enough so that the reported errors are dominated by
the spatial discretization, at least up to level 10. Therefore, in the following
numerical tests we will consider 256 time steps.

When the volatility of the volatility σ of the model is non zero or when
the length of the underlying swap of the swaption being considered is greater
than one, no closed form solutions are available. However, an estimate can
be obtained from Monte Carlo simulations. On Table 5 Monte Carlo values
for the 1×1 European swaption with σ = 0 are shown for several numbers of
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paths (#Paths). More details about Monte Carlo simulation of SABR/LMMs
can be found in the article [12].

Level Solution Error Time Grid points

3 2.529194 1.870098 0.01 81
4 1.205248 0.546151 0.03 289
5 0.802744 0.143647 0.21 1089
6 0.674394 0.015297 1.95 4225
7 0.663856 0.004760 24.42 16641
8 0.659937 0.000840 340.57 66049
9 0.659381 0.000285 4775.27 263169

10 0.659163 0.000066 65013.50 1050625

Table 3: Convergence of the full grid finite differences solution in basis points for 1 LIBOR
and stochastic volatility, σ = 0, V (0) = 1, β = 1, 256 time steps. Exact solution, 0.659096
basis points.

Level Solution Error Time Grid points

9 0.658014 0.001082 1884.24 263169
10 0.657795 0.001301 23436.59 1050625

Table 4: Convergence of the full grid finite differences solution in basis points for 1 LIBOR
and stochastic volatility, σ = 0, V (0) = 1, β = 1, 12 time steps. Exact solution, 0.659096
basis points.

#Paths CI

105 [0.608003, 0.703098]
107 [0.654232, 0.663567]
109 [0.658629, 0.659562]

Table 5: 95% confidence intervals (CI) with Monte Carlo solution in basis points for 1
LIBOR and stochastic volatility, σ = 0, V (0) = 1, β = 1, 256 time steps. Exact solution,
0.659096 basis points.

In Table 6 the pricing of the 1 × 1 European swaption with σ = 0.3 for
different resolution levels n are shown. In Table 7 the results for the 1 × 2
swaption are given. Note that with this numerical method it was not feasible
to price the swaption past refinement level n = 8 due to the huge number of
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required grid points. In Table 8 the results for the 1× 3 swaption are given.
Full grid pricing is only possible on low grid levels. It is not achievable to
obtain a solution for a level greater than 6 in reasonable computational time
due to the high number of grid points.

Level Solution Time Grid points

3 3.440 0.01 81
4 2.168 0.03 289
5 1.800 0.21 1089
6 1.678 2.20 4225
7 1.670 27.57 16641
8 1.667 376.91 66049
9 1.665 5206.93 263169

10 1.663 70492.91 1050625

Table 6: Convergence of the full grid finite differences solution in basis points for 1 LIBOR
and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [1.652, 1.672] in basis
points.

Level Solution Time Grid points

3 7.162 0.14 729
4 5.565 1.84 4913
5 5.003 34.41 35937
6 4.865 806.02 274625
7 4.846 21903.33 2146689
8 4.824 611725.64 16974593

Table 7: Convergence of the full grid finite differences solution in basis points for 2 LIBORs
and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [4.800, 4.844] in basis
points.

Theoretically, it is possible to solve the discrete system (13) for a general
number of dimensions. However, in computational science, a major problem
occurs when the number of dimensions increases. A natural way to dimin-
ish the discretization error is to decrease the mesh step in each coordinate
direction. However, then the number of grid points in the resulting full grid
grows exponentially with the dimension, i.e. the size of the discrete solution

19



Level Solution Time Grid points

3 11.702 2.17 6561
4 9.497 73.90 83521
5 8.892 3033.58 1185921
6 8.771 157152.75 17850625

Table 8: Convergence of the full grid finite differences solution in basis points for 3 LIBORs
and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [8.635, 8.700] in basis
points.

increases drastically. This is called the curse of dimensionality [3]. There-
fore, this procedure of improving the accuracy by decreasing the mesh step is
mainly bounded by two factors, the storage and the computational complex-
ity. Due to these limitations, using a full grid discretization method which
achieves sufficiently accurate approximations is only possible for problems
with up to three or four dimensions, even on the most powerful machines
presently available [8].

5. Sparse grids and the combination technique

Two approaches to try to overcome the curse of dimensionality are in-
creasing the order of accuracy of the applied numerical approximation scheme
or reducing the dimension of the problem by choosing suitable coordinates.
Both approaches are not always possible for every option pricing problem.
In this article we will take advantage of the sparse grid combination tech-
nique first introduced by Zenger and co-workers [19] in order to try to over-
come the curse of dimensionality and allow to use the PDE formulation of
SABR/LMM for the pricing problem we are dealing with. The combination
technique replicates the structure of a so-called sparse grid by linearly com-
bining solutions on coarser grids of the same dimensionality. This technique
reduces the computational effort and the storage space involved with the
mentioned traditional finite differences discretization methods. The number
of sub-problems to solve increases, while the computational time per problem
decreases drastically. This method can be implemented in parallel as each
sub-grid is independent of the others. In the next two subsections we give
a brief introduction to sparse grids and the combination technique. For a
detailed discussion we refer to [8].
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5.1. Sparse grids

First, we introduce some notations and definitions. Let l = (l1, l2, . . . , ld) ∈
Nd

0 denote a d-dimensional multi-index. Let |l|1 and |l|∞ denote the discrete
L1−norm and L∞−norm of the multi-index l, respectively, that are defined
as

|l|1 =
d∑

k=1

lk and |l|∞ = max
1≤k≤d

lk.

We define the anisotropic grid Ωl with mesh size h = (h1, h2, . . . , hd) =
(2−l1c1, 2

−l2c2, . . . , 2
−ldcd) with multi-index l and grid length c = (c1, c2, . . . , cd).

Then, the full grid at refinement level n ∈ N and mesh size hi = 2−n · ci
for all i can be defined via the sequence of subgrids

Ωn = Ω(n,...,n) =
⋃
|l|∞≤n

Ωl.

Figure 1 visualizes two dimensional full grids for levels n = 0, . . . , 4.

Figure 1: Two-dimensional full grid hierarchy up to level n = 4.

The number of grid points in each coordinate direction of the full grid is
2n + 1 and therefore the number of grid nodes in the full grid increases with
O(2n·d), i.e. grows exponentially with the dimensionality d of the problem.
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The sparse grid Ωn
s at refinement level n consists of all anisotropic Carte-

sian grids Ωl, where the total sum of all refinement factors lk in each coor-
dinate direction equals the resolution n. Then, the sparse grid Ωn

s is given
by

Ωn
s =

⋃
|l|1≤n

Ωl =
⋃
|l|1=n

Ωl.

Figure 2 shows the two-dimensional grid hierarchy for levels n = 0, . . . , 4.

The total number of nodes in the grid Ωl is
d∏

k=1

(2lk +1) = O(2|l|1) = O(2n).

In addition, there exist exactly
(
n+d−1
d−1

)
grids Ωl with |l|1 = n,(

n+ d− 1

d− 1

)
=

(n+ d− 1)!

(d− 1)!n!
=

(n+ d− 1) · . . . · (n+ 1)n!

(d− 1)!n!

=
n+ (d− 1)

d− 1
· n+ (d− 2)

d− 2
· . . . · n+ (d− (d− 1))

d− (d− 1)

=

(
1 +

n

d− 1

)
·
(

1 +
n

d− 2

)
· . . . ·

(
1 +

n

2

)
·
(

1 +
n

1

)
≤ (1 + n)d−1 = O(nd−1).

Thus, the total number of grid points of the sparse grid Ωn
s grows according

to (
n+ d− 1

d− 1

)
·

d∏
k=1

(2lk + 1) = O(nd−1)O(2n) = O(nd−12n), (16)

which is far less the size of the corresponding full grid with O(2nd) grid points.
Let hn = 2−n, therefore the sparse grid employs O(h−1

n · log2(h−1
n )d−1) grid

points compared to O(h−dn ) nodes in the full grid.
Bungartz and Griebel [8] show that the accuracy of the sparse grid using

O(h−1
n ·log2(h−1

n )d−1) nodes is of order O(h2
n log2(h−1

n )d−1)) in the case of piece-
wise linear finite elements discretization and under the smoothness condition
that the mixed derivatives are bounded. Thus, the accuracy of the sparse
grid is only slightly deteriorated from the accuracy O(h2

n) of conventional full
grid methods which need O(h−dn ) grid points. Therefore, sparse grids need
much less points than regular full grids to achieve a similar approximation
quality.

However, the structure of a sparse grid is more complicated than the one
of a full grid. Common PDE solvers usually manage only full grid solutions.
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Existing sparse grid methods working directly in the hierarchical basis involve
a challenging implementation [1, 43]. This handicap can be circumvented
with the help of the sparse grid combination technique which not only exploits
the economical structure of the sparse grids but also allows for the use of
traditional full grid PDE solvers.

Concerning finite differences, in [9, 10] the authors obtain error bounds
in terms of the Fourier transform coefficients when using a combination tech-
nique with a central difference scheme for the Laplace equation. The adaptive
case with finite differences has been addressed in [18] for elliptic operators
and the errors are obtained in L2 and L∞-norms under the assumption that
the 2d-th mixed derivatives are bounded. In [26], the smoothness condition
is written in terms of Holder spaces, the continuity of the mixed derivatives
and their associated semi-norm to be finite, also including more general fi-
nite differences schemes. More recently, in [36] a methodology to obtain error
bounds for general finite differences schemes in any dimension is proposed. It
is mainly based on an error correction scheme leading to an appropriate error
expansion. The results are again based on the existence of bounded mixed
derivatives of the solution in the L∞ norm, which vanish at the boundary
to avoid regularity problems. For this kind of functions, results about the
expansion and interpolation are previously stated.

Concerning the smoothness of solution of the here treated PDEs, we note
that the parabolic operator involves a smoothness effect (it is a kind of Black-
Scholes operator in high spatial dimensions), so that the solution becomes
C∞ for t < T , and the usual payoff (final condition at t = T ) is continuous.
Note that sparse grids have been analyzed when applied to basket options in
[37], for example.

Finally, two and three dimensional sparse grids for several resolution levels
n are shown in Figures 3 and 4, respectively. Additionally, the growth of the
grid points when increasing n can be observed.
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Figure 2: Two-dimensional sparse grid hierarchy up to level n = 4.
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(a) Ω5
s, 177 grid points. (b) Ω6

s, 385 grid points.

(c) Ω7
s, 833 grid points. (d) Ω8

s, 1793 grid points.

(e) Ω9
s, 3841 grid points. (f) Ω10

s , 8193 grid points.

Figure 3: Two dimensional sparse grids for levels n = 5, . . . , 10.
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(a) Ω5
s, 705 grid points. (b) Ω6

s, 1649 grid points.

(c) Ω7
s, 3809 grid points. (d) Ω8

s, 8705 grid points.

Figure 4: Three dimensional sparse grids for levels n = 5, 6, 7 and 8.
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Figure 5: Combination technique with level n = 4 in two dimensions.
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5.2. Combination technique

Similar to the Richardson extrapolation [38], the so-called combination
technique linearly combines the numerical solution on the sequence of anisotropic
grids Ωl where

|l|1 = n− q, q = 0, . . . , d− 1.

The combination technique reads

Un
s =

d−1∑
q=0

(−1)q ·
(
d− 1

q

)
·
∑
|l|1=n−q

Ul, lk ≥ 0, ∀k = 1, . . . , d, (17)

where Ul denotes the numerical solution on the grid Ωl and Un
s the combined

solution on the sparse grid Ωn
s .

The grids employed by the combination technique of level n = 4 in two
dimensions are shown in Figure 5.

The idea of this technique is that the leading order errors from the di-
cretization on each grid cancel each other out in the combination solution.

The number of grid points involved in the approximation of Un
s grows

according to O(nd−1 · 2n). In fact, from the formula (16) we have to solve(
n+d−1
d−1

)
problems with O(2n) unknowns,

(
n+d−2
d−1

)
problems with O(2n−1) un-

knowns, ... and
(
n
d−1

)
problems with O(2n−(d−1)) unknowns. This results in a

total number of O(nd−1 · 2n) grid points which is much less than the O(2n·d)
grid nodes used by traditional full grid methods. Thus, the efficient use of
sparse grids greatly reduces the computing time and the storage requirements
which allows for the treatment of problems with ten variables and even more
[8].

We have seen that the combination technique linearly combines the nu-
merical solution on several traditional full grids. The solution can be calcu-
lated on each of these grids by using any existing PDE numerical method like
finite differences, finite volume or finite elements. In addition, since all these
sub-problems are independent the combination technique can be parallelized
[17, 23].

The combination technique approach presumes the existence of a so-called
error splitting. It requires for an associated numerical approximation method
on the full grid Ωl an error splitting of the form

u(x)− Ul(x) =
d∑

k=1

∑
{j1,...,jk}
⊆{1,...,d}

Cj1,...,jk(x, hj1 , . . . , hjk) · hpj1 · . . . · h
p
jk
, (18)
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at each grid point x ∈ Ωl. Here u denotes the exact solution of the partial
differential equation under consideration, Ul the numerical solution on the
grid Ωl, p > 0 is the order of accuracy of the numerical approximation method
with respect to each coordinate direction and the coefficient functions Cj1,...,jk
of x and the mesh sizes hjk , k = 1, . . . , d are required to be bounded by a
positive constant K such that

|Cj1,...,jk(x, hj1 , . . . , hjk)| ≤ K, ∀k, 1 ≤ k ≤ d, ∀{j1, . . . , jm} ⊆ {1, . . . , d}.

The existence of the expansion (18) is a crucial point to obtain the error
bounds of the sparse grid recombination technique and usually requires the
assumption of bounded mixed derivatives.

In [20] Griebel and Thurner showed that if the solution of the PDE is
sufficiently smooth, the pointwise accuracy of the sparse grid combination
technique is O(nd−1 ·2−n·p) = O([log2 h

−1
n ]d−1hpn), which is only slightly worse

than O(2−n·p) = O(hpn) obtained by the full grid solution.
The solution at points which do not belong to the sparse grid can be

computed through interpolation. The applied interpolation method should
provide at least the same order of accuracy of the numerical discretization
scheme used to solve the PDE. Otherwise, the accuracy of the numerical
scheme will be deteriorated.

Up to now we have assumed the existence of an error splitting of type
(18). However, such an error splitting has to be proven for each problem.
Nevertheless, proving the existence of this error splitting is usually very com-
plex. Bungartz et al. [9, 10] showed the existence of such an error splitting
for the finite differences discretization of the 2-d Laplace equation. Arciniega
and Allen [2] proved the existence of this error splitting for the fully implicit
as well as the Crank-Nicolson discretization scheme of the European call op-
tion. More recently, Reisinger [36] showed that such a splitting also holds
for a wider class of linear PDEs, for example convection-diffusion equations.
The author gives general conditions which need to be fulfilled to ensure the
existence of the desired splitting structure: sufficiently smooth initial data
and compatible boundary data, the existence of bounded mixed derivatives, a
consistent numerical scheme which provides a truncation error of the desired
splitting structure and stability of the discretization scheme. As a summary,
we can say that the deduction of the error splitting formula is very complex
and was until now only performed for some reference problems. However, we
will see in the following Section 5.3 that the numerical results for the sparse

29



grid combination technique are promising, even for more complex financial
products.

5.3. Numerical results

Taking advantage of the previously described sparse grid combination
technique, in this section we are pricing the same interest rate derivatives
that have been valued in the former Section 4.2 where traditional full grid
finite differences methods were considered. In addition to those products, we
are going to price interest rate derivatives with up to seven underlying LIBOR
rates and their stochastic volatility, showing that the sparse grid combination
technique is able to cope with the curse of dimensionality up to a certain
extent. As in the previous Section 4.2, we will use Crank-Nicolson scheme,
we will consider the Gauss-Seidel iterative solver and the same boundary
conditions as in Section 4.1. In the present case, we are interested in the
evaluation of the solution at a single point which corresponds with the value
of the forward rates at time zero (see Table 2) and V (0) = 1. The numerical
solution on each grid handled by the combination technique is interpolated
at this point using multilinear interpolation and then added up with the
appropriate weights.

The sparse grid combination technique has been implemented to run on
multicore CPUs. The program was optimized and parallelized using OpenMP
[45]. CPU times, measured in seconds, correspond to executions using 24
threads, so as to take advantage of Intel Hyperthreading. The speedups of the
parallel version with respect to the pure sequential code are around 16. To the
best of our knowledge, graphic processor units (GPUs) are not well-suited to
parallelize the combination technique, due to the fact that the different grids
employed by the combination technique involve memory accesses patterns
totally different, therefore, it is not possible to access the device memory
in a coalesced way [33], thus GPU global memory can not serve threads in
parallel. In this scenario, the GPU code will be ill performing. In the work
[13] the authors take advantage of GPUs to parallelize the solver of each
full grid considered by the combination technique. However, they do not
parallelize the combination technique itself.

In Table 9 a 1 × 1 European swaption is priced. The exact price of
this derivative is 0.659096 basis points, as discussed in Section 4.2. These
results are to be compared with those of Table 3, where it can be seen how
the computational times and the grid points employed by the sparse grid
combination technique have been substantially reduced.
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Level Solution Error Time Grid points

3 6.864576 6.205480 0.04 37
4 2.207696 1.548600 0.04 81
5 1.107670 0.448573 0.05 177
6 0.788659 0.129562 0.05 385
7 0.668489 0.009393 0.06 833
8 0.662096 0.002999 0.12 1793
9 0.659715 0.000618 0.54 3841

10 0.659287 0.000191 2.68 8193
11 0.659127 0.000031 16.79 9217

Table 9: Convergence of the sparse grid finite differences solution in basis points for 1
LIBOR and stochastic volatility, σ = 0, V (0) = 1, β = 1, 256 time steps. Exact solution,
0.659096 basis points.

Next, in Table 10 a 1×1 European swaption is priced considering stochas-
tic volatility. These results are to be compared with those of Table 6.

Level Solution Time

3 6.243 0.03
4 3.653 0.04
5 2.199 0.04
6 2.069 0.08
7 1.779 0.08
8 1.720 0.39
9 1.681 1.13

10 1.668 6.91
11 1.662 43.03

Table 10: Convergence of the sparse grid finite differences solution in basis points for 1
LIBOR and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [1.652, 1.672] in basis
points.

In the following Tables 11 and 12, the pricing of 1×2 and 1×3 European
swaptions taking into account stochastic volatility is shown, as in Tables 7
and 8, respectively. For the higher resolution levels, the full grid method
became very slow, while the sparse grid combination technique results much
faster. Note that the combination technique is able to price successfully the
1× 3 European swaption, this was not attainable in Table 7.
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Level Solution Time

5 9.560 0.12
6 7.416 0.12
7 5.896 0.17
8 5.318 0.46
9 5.007 1.05

10 4.826 5.34
11 4.833 31.42
12 4.820 197.90

Table 11: Convergence of the sparse grid finite differences solution in basis points for 2
LIBORs and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [4.800, 4.844] in basis
points.

Level Solution Time

7 5.872 0.34
8 13.279 0.88
9 7.466 2.29

10 8.642 8.37
11 9.809 29.74
12 9.686 156.75
13 8.694 895.75
14 8.671 5725.09

Table 12: Convergence of the sparse grid finite differences solution in basis points for 3
LIBORs and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [8.635, 8.700] in basis
points.

Finally, in Tables from 13 to 16, 1 × 4, ..., 1 × 7 European swaptions
are priced considering stochastic volatility. The pricing of these interest rate
derivatives was not viable with the full grid approach of Section 4.

In order to be able to price derivatives with more than 8 underlyings, the
combination technique method should be executed on a cluster of processors.
Furthermore, the use of a cluster would allow us to include higher resolution
levels which would probably better illustrate some of the cases where the er-
ror at the considered point exhibits an oscillatory behaviour (Tables 13 and
15, for example), although all results are consistent with the corresponding
Monte Carlo confidence intervals. In the Chapter 13 of the book [14] Philipp
Schrder et al. discuss the parallelization of the combination technique using
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Level Solution Time

9 12.51 8.29
10 10.35 21.60
11 15.75 64.52
12 16.30 223.30
13 9.95 921.53
14 13.03 4504.83
15 13.24 25980.70

Table 13: Convergence of the sparse grid finite differences solution in basis points for 4
LIBORs and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [13.20, 13.29] in basis
points.

Level Solution Time

11 23.71 305.46
12 9.45 855.16
13 20.38 2394.99
14 18.82 7584.20
15 18.60 29529.46
16 18.56 160027.61

Table 14: Convergence of the sparse grid finite differences solution in basis points for 5
LIBORs and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 256 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [18.51, 18.61] in basis
points.

Level Solution Time

13 18.30 627.97
14 15.55 2115.55
15 25.60 9892.70
16 24.49 50139.95

Table 15: Convergence of the sparse grid finite diffferences solution in basis points for 6
LIBORs and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 12 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [24.47, 24.59] in basis
points.

MPI (Message Passing Interface) API. In [28] the authors parallelize the
sparse grid combination technique taking advantage of a MapReduce frame-
work, algorithms that are inherently fault tolerant.

In the present paper the obtention of an estimate for the sparse grid com-
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Level Solution Time

15 19.56 24612.73
16 26.80 79463.11
17 30.93 324996.63

Table 16: Convergence of the sparse grid finite differences solution in basis points for 7
LIBORs and stochastic volatility, σ = 0.3, φi = 0.4, V (0) = 1, β = 1, 2 time steps. 95%
confidence interval with Monte Carlo simulation using 107 paths, [30.85, 30.98] in basis
points.

bination technique error in the solution of the SABR/LIBOR market model
PDE remains open. In order to achieve this goal the possible strategies start
from proving the existence of an expansion of the error and the bound of
the associated coefficients. This is usually complex and has been specifi-
cally proven for each problem in which this analysis has been successfully
addressed. In practice, we recommend to stop the refinement procedure as
soon as the solution obtained by two consecutive refinements are close enough
to each other.

6. Conclusion

In this work we have posed for first time in the literature the PDEs asso-
ciated to the SABR/LIBOR market models proposed by Mercurio & Morini
[31] and Hagan [22]. In order to price interest rate derivatives we have devel-
oped a traditional full grid finite difference method. This approach is able to
successfully price derivatives up to two or three underlying forward rates in
reasonable computational times. However, when the number of underlyings
increases this scheme suffers from the well-known curse of dimensionality. In
order to price derivatives over a moderately large number of forward rates
we have proposed to use the sparse grid combination technique. Taking into
account that this technique is embarrassingly parallel we have parallelized it
so as to drastically reduce computational times. Finally, we have tested the
proposed method in two different ways. On one hand, using the analytical
solution when it exists. On the other hand, when the exact solution is not
known, we have used as reference solution the one computed with the Monte
Carlo method, thus ensuring the correctness of the developed scheme.
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