
This is an ACCEPTED VERSION of the following published document:  

General rights:

©2016 This version of the article has been accepted for publication, after 
peer review, but is not the version of record and does not reflect post-
acceptance improvements, or any corrections. The version of record is 
available online at: 
https://doi.org/10.1137/16M106371X

E. Gobet, J. G. López-Salas, P. Turkedjiev, y C. Vázquez, «Stratified 
Regression Monte-Carlo Scheme for Semilinear PDEs and BSDEs with Large 
Scale Parallelization on GPUs», SIAM J. Sci. Comput., vol. 38, n.o 6, pp. C652-
C677, ene. 2016, doi: 10.1137/16M106371X

Link to published version: https://doi.org/10.1137/16M106371X

https://doi.org/10.1016/j.eswa.2018.07.016
20091117192514516
Tachado

https://doi.org/10.1137/16M106371X


STRATIFIED REGRESSION MONTE-CARLO SCHEME FOR
SEMILINEAR PDES AND BSDES WITH LARGE SCALE

PARALLELIZATION ON GPUS

E. GOBET∗, J. G. LÓPEZ-SALAS† , P. TURKEDJIEV‡ , AND C. VÁZQUEZ§

Abstract. In this paper, we design a novel algorithm based on Least-Squares Monte Carlo
(LSMC) in order to approximate the solution of discrete time Backward Stochastic Differential
Equations (BSDEs). Our algorithm allows massive parallelization of the computations on many core
processors such as graphics processing units (GPUs). Our approach consists of a novel method of
stratification which appears to be crucial for large scale parallelization. In this way, we minimize the
exposure to the memory requirements due to the storage of simulations. Indeed, we note the lower
memory overhead of the method compared with previous works.

Key words. Backward stochastic differential equations, dynamic programming equation, em-
pirical regressions, parallel computing, GPUs, CUDA.

AMS subject classifications. 49L20, 62Jxx, 65C30, 93E24, 68W10.

1. Introduction.
The problem. The aim of the algorithm in this paper is to approximate the (Y,Z)

components of the solution to the decoupled forward-backward stochastic differential
equation (BSDE)

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs,(1.1)

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs,(1.2)

where W is a q ≥ 1 dimensional Brownian motion. The algorithm will also approx-
imate the solution u to the related semilinear, parabolic partial differential equation
(PDE) of the form
(1.3)
∂tu(t, x) +Au(t, x) + f(t, x, u(t, x),∇xuσ(t, x)) = 0 for t < T and u(T, .) = g(.),

where A is the infinitesimal generator of X, through the Feynman-Kac relation
(Yt, Zt) = (u(t,Xt), (∇xuσ)(t,Xt)). In recent times, there has been an increasing
interest to have algorithms which work efficiently when the dimension d of the space
occupied by the process X is large. This interest has been principally driven by
the mathematical finance community, where nonlinear valuation rules are becoming
increasingly important.
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In general, currently available algorithms [8, 3, 4, 16, 5, 12, 13, 11] rarely handle
the case of dimension greater than 8. The main constraint is not only due to the
computational time, but mainly due to memory consumption requirements by the
algorithms. For example, the recent work [13] uses a Regression Monte Carlo approach
(a.k.a. Least Squares MC), in which the solutions (u,∇xuσ) of the semi-linear PDE
are approximated on a K-dimensional basis of functions at each point of a time grid of
cardinality N . Popular choices of basis functions are global [16] or local polynomials
[13]. In both cases, the approximation error behaves in general like K−α′/d where
α′ measures the smoothness of the function of interest and d is the dimension (curse
of dimensionality): see [7, Theorem 6.2.6] for global polynomials, see [15, Section
11.2] for local polynomials. Later, we use local approximations in order to allow
parallel computing. We restrict to affine polynomials for implementation in GPU.
The coefficients of the basis functions are computed at every time point ti with the
aid of M simulations of a discrete time Markov chain (which approximates X) in
the interval [ti, T ]. The main memory constraints of this scheme are (a) to store the
K×N coefficients of the basis functions, and (b) to store theM×N simulations used
to compute the coefficients. To illustrate the problem of high dimension, in order
to ensure the convergence the dimension of the basis is typically K = const × Nαd,
for some α > 0 (which decreases with the regularity of the solution), so K increases
geometrically with d. Moreover, the error analysis of these algorithms demonstrates
that the local statistical error is proportional to NK/M, so that one must choose
M = const×KN2 to ensure a convergence O(N−1) of the scheme. This implies that
the simulations pose by far the most significant constraint on the memory.

Objectives. The purpose of this paper is to drastically rework the algorithm of [13]
to first minimize the exposure to the memory due to the storage of simulations. This
will allow computation in larger dimension d. Secondly, in this way the algorithm can
be implemented in parallel on GPU processors to optimize the computational time.

New Regression Monte Carlo paradigm. We develop a novel algorithm called the
Stratified Regression MDP (SRMDP) algorithm; the name is aimed to distinguish
from the related LSMDP algorithm [13]. The key technique is to use stratified sim-
ulation of the paths of X. In order to estimate the solution at ti, we first define
a set of hypercubes (Hk ⊂ Rd : 1 ≤ k ≤ K). Then, for each hypercube Hk, we
simulate M paths of the process X in the interval [ti, T ] starting from i.i.d. random
variables valued in Hk; these random variables are distributed according to the con-
ditional logistic distribution, see (Aν) later. By using only the paths starting in Hk,
we approximate the solution to the BSDE restricted to Xti ∈ Hk on linear functions
spaces LY,k and LZ,k (both of small dimension), see (AStrat.) later. 1 This allows us
to minimize the amount of memory consumed by the simulations, since we only need
to generate samples on one hypercube at a time. In Theorem 3.5, we demonstrate
that the error of our scheme is proportional to N max(dim(LY,k), dim(LZ,k))/M and,
since max(dim(LY,k), dim(LZ,k)) = const, we require only M = const × N2 to en-
sure the convergence O(N−1). Therefore, the memory consumption of the algorithm
will be dominated by the storage of the coefficients, which equals const × Nαd (the
theoretical minimum). Moreover, the computations are performed in parallel across

1To distinguish from previous algorithms, we use two notations for the number of simulations
in this section: M and M . M stands for the overall number of simulations for computing the full
approximation in the unstratified algorithms, while M stands for the number of simulations used to
evaluate the approximation locally in each stratum (our stratified regression algorithm). Later we
will mainly use M .
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the hypercubes, which allows for massive parallelization. The speed-up compared to
sequential programming increases as the dimension d increases, because of the geo-
metric growth of the number of hypercubes with respect to d. In the subsequent tests
(§5), for instance we can solve problems in dimension d = 11 within eight seconds
using 2000 simulations per hypercube.

This regression Monte Carlo approach is very different from the algorithm pro-
posed in [13]. Although local approximations were already proposed in that work,
the paths of the process X were simulated from a fixed point at time 0 rather than
directly in the hypercubes. This implies that one must store all the simulated paths
at any given time, rather than only those for the specific hypercubes. This is because
the trajectories are random, and one is not certain which paths will end up in which
hypercubes a priori. Therefore, our scheme essentially removes the main constraint
on the memory consumption of LSMC algorithms for BSDEs.

The choice of the logistic distribution for the stratification procedure is crucial.
Firstly, it is easy to simulate from the conditional distribution. Secondly, it possesses
the important USES property (see later (Aν)), which enables us to recover equivalent
L2-norms (up to constant) for the marginal of the forward process initialized with the
logistic distribution (Proposition 2.1).

Literature review. Parallelization of Monte-Carlo methods for solving non-linear
probabilistic equations has been little investigated. Due to the non-linearity, this is a
challenging issue. For optimal stopping problems, we can refer to the works [1, 2, 6]
with numerical results up to dimension 4. To the best of our knowledge, the only
work related to BSDEs in parallel version is [16]. It is based on a Picard iteration
for finding the solution, coupled with iterative control variates. The iterative solution
is computed through an approximation on sparse polynomial basis. Although the
authors report efficient numerical experiments up to dimension 8, this study is not
supported by a theoretical error analysis. Due to the stratification, our proposed
approach is quite different from [16] and additionally, we provide an error analysis
(Theorem 3.5).

Notation.
(i) |x| stands for the Euclidean norm of the vector x.

(ii) log(x) stands for the natural logarithm of x ∈ R+.
(iii) For a multidimensional process U = (Ui)0≤i≤N , its l-th component is de-

noted by Ul = (Ul,i)0≤i≤N .
(iv) For any finite L > 0 and x = (x1, . . . , xn) ∈ Rn, define the truncation

function

(1.4) TL(x) := (−L ∨ x1 ∧ L, . . . ,−L ∨ xn ∧ L).

(v) For a probability measure ν on a domain D, and function h : D → Rl in

L2(D, ν), denote the L2 norm of h by |h|ν :=
√∫

D
|h|2(x)ν(dx).

(vi) For a probability measure ν, disjoint sets {H1, . . . ,HK} in the support of
ν, and finite dimensional function spaces L{L1, . . . ,LK} such that the domain of Lk
is in the respected set Hk

ν(dim(L)) =
K∑
k=1

ν(Hk)dim(Lk).

(vii) For function g : R+ → R+, the order notation g(x) = O(x) means that there
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exists some universal unspecified constant, const > 0, such that g(x) ≤ const× x for
all x ∈ R+.

2. Mathematical framework and basic properties. We work on a filtered
probability space (Ω,F , (Ft)0≤t≤T ,P) containing a q-dimensional (q ≥ 1) Brownian
motion W . The filtration (Ft)0≤t≤T satisfies the usual hypotheses. The existence of
a unique strong solution X to the forward equation (1.2) follows from usual Lipschitz
conditions on b and σ, see (AX). The BSDE (1.1) is approximated using a multistep-
forward dynamical programming equation (MDP) studied in [12]. Let π := {ti :=
i∆t : 0 ≤ i ≤ N} be the uniform time-grid with time step ∆t = T/N . The solution
(Yi, Zi)0≤i≤N−1 of the MDP can be written in the form:

Yi = Ei
(
g(XN ) +

∑N−1
j=i fj(Xj , Yj+1, Zj)∆t

)
,

∆tZi = Ei
(

(g(XN ) +
∑N−1
j=i+1 fj(Xj , Yj+1, Zj)∆t)∆Wi

)  for i ∈ {0, . . . , N − 1},

(2.1)

where (Xj)i≤j≤N is a Markov chain approximating the forward component (1.2)
(typically the Euler scheme, see Algorithm 2 below), ∆Wi := Wti+1

− Wti is the
(i + 1)-th Brownian motion increment, and Ei (·) := E (· | Fti) is the conditional
expectation. Our working assumptions on the functions g and f are as follows:
(Ag) g is a bounded measurable function from Rd to R, the upper bound of which is

denoted by Cg.
(Af ) for every i < N , fi(x, y, z) is a measurable function Rd×R×Rq to R, and there

exist two finite constants Lf and Cf such that, for every i < N ,

|fi(x, y, z)− fi(x, y′, z′)| ≤ Lf (|y − y′|+ |z − z′|),
∀(x, y, y′, z, z′) ∈ Rd × (R)2 × (Rq)2,

|fi(x, 0, 0)| ≤ Cf , ∀x ∈ Rd.

The definition of the Markov chain (Xj)j is made under the following assumptions.
(AX) The coefficients functions b and σ satisfy

(i) b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd ⊗ Rq are bounded
measurable, uniformly Lipschitz in the space dimensions;

(ii) there exists ζ ≥ 1 such that, for all ξ ∈ Rd, the following inequalities
hold: ζ−1|ξ|2 ≤ ξ>σ(t, x)σ(t, x)>ξ ≤ ζ|ξ|2.

Let Xi be a random variable with some distribution η (more details on this to follow).
Then Xj for j > i is generated according to one of the two algorithms below:

Algorithm 1 (SDE dynamics). Xj+1 = X̄tj+1
= Xj +

∫ tj+1

tj
b(s, X̄s)ds +∫ tj+1

tj
σ(s, X̄s)dWs;

Algorithm 2 (Euler dynamics). Xj+1 = Xj + b(ti, Xi)∆t + σ(ti, Xi)∆Wi.

The above ellipticity condition (ii) will be used in the proof of Proposition 2.1.
As in the continuous time framework (1.1), the solution of the MDP (2.1) admits a

Markov representation: under (Ag), (Af ) and (AX) (and using for X either the SDE
itself or its Euler scheme), for every i, there exist measurable deterministic functions
yi : Rd → R and zi : Rd → Rq, such that Yi = yi(Xi) and Zi = zi(Xi), almost surely.
In fact, the value functions yi(·) and zi(·) are independent of how we initialize the
forward component.2

2Actually under our assumptions, the measurability of yi and zi can be easily established by
induction on i. More precisely, we can write yi and zi as a (N − i)-fold integrals in space, using the
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For the subsequent stratification algorithm, Xi will be sampled randomly (and
independently of the Brownian motion W ) according to different squared-integrable

distributions η. When Xi ∼ η, we will write (X
(i,η)
j )i≤j≤N the Markov chain given in

(AX), using either the SDE dynamics (better when possible) or the Euler one. One
can recover the value functions from the conditional expectations: almost surely,

yi(X
(i,η)
i ) = E

(
g(X

(i,η)
N ) +

N−1∑
j=i

fj(X
(i,η)
j , yj+1(X

(i,η)
j+1 ), zj(X

(i,η)
j ))∆t

∣∣ X(i,η)
i

)
,(2.2)

∆tzi(X
(i,η)
i ) = E

(
(g(X

(i,η)
N ) +

N−1∑
j=i+1

fj(X
(i,η)
j , yj+1(X

(i,η)
j+1 ), zj(X

(i,η)
j ))∆t)∆Wi

∣∣ X(i,η)
i

)
;

the proof of this is the same as [13, Lemma 4.1].
Approximating the solution to (2.1) is actually achieved by approximating the

functions yi(·) and zi(·). In this way, we are directly approximating the solution to
the semilinear PDE (1.3). Our approach consists in approximating the restrictions of
the functions yi and zi to subsets of a cubic partition of Rd using finite dimensional
linear function spaces. The basic assumptions for this local approximation approach
are given below.
(AStrat.) There are K ∈ N∗ disjoint hypercubes (Hk : 1 ≤ k ≤ K), that is

Hk ∩Hl = ∅,
K⋃
k=1

Hk = Rd and Hk =
d∏
l=1

[x−k,l, x
+
k,l)

for some −∞ ≤ x−k,l < x+
k,l ≤ +∞. Additionally, there are linear function

spaces LY,k and LZ,k, valued in R and Rq respectively, which are subspaces
of L2(Hk, νk) w.r.t. a probability measure νk on Hk defined in (Aν) below.

Common examples of hypercubes are:
(i) Hypercubes of equal size: x+

k,l − x
−
k,l = const > 0 for all k and l, except for

exterior strata that must be infinite.
(ii) Hypercubes of equal probability: ν(Hk) = 1/K for some probability ν to be

defined later in (Aν).
Common examples of local approximations spaces LY,k and LZ,k are:

(i) Piece-wise constant approximation (LP0): LY,k := span{1Hk}, and LZ,k :=
(LY,k)q; dim(LY ) = 1 and dim(LZ,k) = q.

(ii) Affine approximations (LP1): LY,k := span{1Hk , x11Hk , . . . , xd1Hk}, and
LZ,k := (LY,k)q; dim(LY ) = d+ 1 and dim(LZ,k) = q(d+ 1).

The key idea in this paper is to select a distribution ν, the restriction of which to
the hypercubes Hk, νk, can be explicitly computed. Then, we can easily simulate i.i.d.

copies of X
(i,νk)
i directly in Hk and use the resulting paths of the Markov chain to

estimate yk(·)|Hk . This sampling method is traditionally known as stratification, and
for this reason we will call the hypercubes in (AStrat.) the strata. For the stratification,

the components X
(i,νk)
i are sampled as i.i.d. conditional logistic random variables,

which is precisely stated in the following assumption.

C2 transition density of X given in Algorithms 1 or 2. From this, we observe that zi is a C2 function
of xi; regarding yi all the contributions in the sum for j > i are also smooth, and only the j = i term
may be non-smooth (because of xi 7→ fi(xi, .) is only assumed measurable). From this, we easily see
that the initialization xi of X at time i can be made arbitrary, provided that this is independent of
W .
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(Aν) Let µ > 0. The distribution of X
(i,νk)
i is given by P ◦ (X

(i,νk)
i )−1(dx) = νk(dx),

where

νk(dx) =
1Hk(x)ν(dx)

ν(Hk)
,

and

ν(dx) = p
(µ)
logis.(x)dx, p

(µ)
logis.(x) :=

d∏
l=1

µe−µxl

(1 + e−µxl)2
, x = (x1, . . . , xd) ∈ Rd.

Remark 2.1. An important relation of ν and νk is that one has the L2-norm
identity |·|2ν =

∑K
k=1 ν(Hk) |·|2νk .

In order to generate the random variable X
(i,νk)
i , we make use of the inverse

conditional distribution function of νk and the simulation of uniform random variables,
as shown in the following algorithm:

Algorithm 3. Draw d independent random variables (U1, . . . , Ud) which are
uniformly distributed on [0, 1], and compute

X
(i,νk)
i :=

(
F−1

ν,[x−k,1,x
+
k,1)

(U1), . . . , F−1

ν,[x−k,d,x
+
k,d)

(Ud)

)
d∼ νk,

where we use the functions Fν(x) :=
∫ x
−∞ ν(dx′) = 1/ (1 + exp(−µx)) and

F−1
ν,[x−,x+)(U) = − 1

µ
log

(
1

Fν(x−) + U(Fν(x+)− Fν(x−))
− 1

)
.

A further reason for the choice of the logistic distribution is that it induces the

following stability property on the L2 norms of the Markov chain (X
(i,ν)
j )i≤j≤N ; this

property will be crucial for the error analysis of the stratified regression scheme in
§3.2. The proof is postponed to Appendix A.1.

Proposition 2.1. Suppose that ν is the logistic distribution defined in (Aν).
There is a constant c(Aν) ∈ [1,+∞) such that, for any function h : Rd 7→ R or Rq in
L2(ν), for any 0 ≤ i ≤ N , and for any i ≤ j ≤ N − 1, we have

1

c(Aν)
E[|h(X

(i,ν)
j )|2] ≤ |h|2ν ≤ c(Aν)E[|h(X

(i,ν)
j )|2].

To conclude this section, we recall standard uniform absolute bounds for the
functions yi(·) and zi(·).

Proposition 2.2 (a.s. upper bounds, [13, Proposition 3.3]). For N large enough
such that T

NL
2
f ≤ 1

12q , we have for any x ∈ Rd and any 0 ≤ i ≤ N − 1,

|yi(x)| ≤ Cy := e
T
4 +6q(1∨L2

f )(T∨1)
(
Cg +

T

2
√
q
Cf

)
, |zl,i(x)| ≤ Cz :=

Cy√
∆t

.(2.3)

3. Stratified algorithm and convergence results.
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3.1. Algorithm. In this section, we define the SRMDP algorithm mathemati-
cally, and then expose in §4 how to efficiently perform it using GPUs. Our algorithm
involves solving a sequence of Ordinary linear Least Squares regression (OLS) prob-
lems. For a precise mathematical statement, we recall the seemingly abstract but
very convenient definition from [13]; explicit algorithms for the computation of OLS
solutions are exposed in §4.1.

Definition 3.1 (Ordinary linear least-squares regression). For l, l′ ≥ 1 and
for probability spaces (Ω̃, F̃ , P̃) and (Rl,B(Rl), η), let S be a F̃ ⊗ B(Rl)-measurable
Rl′-valued function such that S(ω, ·) ∈ L2(B(Rl), η) for P̃-a.e. ω ∈ Ω̃, and L a
linear vector subspace of L2(B(Rl), η) spanned by deterministic Rl′-valued functions
{pk(.), k ≥ 1}. The least squares approximation of S in the space L with respect to η
is the (P̃× η-a.e.) unique, F̃ ⊗ B(Rl)-measurable function S? given by

S?(ω, ·) = arg inf
φ∈L

∫
|φ(x)− S(ω, x)|2η(dx).

We say that S? solves OLS(S,L, η).

On the other hand, suppose that ηM = 1
M

∑M
m=1 δX (m) is a discrete probability

measure on (Rl,B(Rl)), where δx is the Dirac measure on x and X (1), . . . ,X (M) :
Ω̃→ Rl are i.i.d. random variables. For an F̃ ⊗B(Rl)-measurable Rl′-valued function
S such that

∣∣S(ω,X (m)(ω)
)∣∣ < ∞ for any m and P̃-a.e. ω ∈ Ω̃, the least squares

approximation of S in the space L with respect to ηM is the (P̃-a.e.) unique, F̃⊗B(Rl)–
measurable function S? given by

S?(ω, ·) = arg inf
φ∈L

1

M

M∑
m=1

|φ
(
X (m)(ω)

)
− S

(
ω,X (m)(ω)

)
|2.

We say that S? solves OLS(S,L, ηM ).
Definition 3.2 (Simulations and empirical measures). Recall the Markov chain

(X
(i,νk)
j )i≤j≤N initialized as in (Aν). For any i ∈ {0, . . . , N − 1} and k ∈ {1, . . . ,K},

define M ≥ dim(LY,k) ∨ dim(LZ,k) independent copies of (∆Wi, (X
i,νk
j )i≤j≤N ) that

we denote by

Ci,k :=
{

(∆W
(i,k,m)
i , (X

(i,k,m)
j )i≤j≤N ) : m = 1, . . . ,M

}
.

The random variables Ci,k form a cloud of simulations used for the regression at
time i and in the stratum k. Furthermore, we assume that the clouds of simulations
(Ci,k : 0 ≤ i ≤ N − 1, 1 ≤ k ≤ K) are independently generated. All these random
variables are defined on a probability space (Ω(M),F (M),P(M)). Denote by νi,k,M the
empirical probability measure of the Ci,k-simulations, i.e.

νi,k,M =
1

M

M∑
m=1

δ
(∆W

(i,k,m)
i ,X

(i,k,m)
i ,...,X

(i,k,m)
N )

.

Denoting by (Ω,F ,P) the probability space supporting (∆Wi, X
i,νk : 0 ≤ i ≤ N−1, 1 ≤

k ≤ K), which serves as a generic element for the clouds of simulations Ci,k, the
full probability space used to analyze our algorithm is the product space (Ω̄, F̄ , P̄) =
(Ω,F ,P) ⊗ (Ω(M),F (M),P(M)). By a slight abuse of notation, we write P (resp. E)
to mean P̄ (resp. Ē) from now on.
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We now come to the definition of the stratified LSMDP algorithm, which computes

random approximations y
(M)
i (.) and z

(M)
i (.)

Algorithm 4 (SRMDP). Recall the linear spaces LY,k and LZ,k from (AStrat.),
the bounds (2.3) and the truncation function TL (see (1.4)).

Initialization. Set y
(M)
N (·) := g(·).

Backward iteration for i = N − 1 to i = 0. For any stratum index k ∈ {1, . . . ,K},
generate the empirical measure νi,k,M as in Definition 3.2, and define
(3.1)

ψ
(M)
Z,i,k(·) solution of OLS(S

(M)
Z,i (w,xi) , LZ,k , νi,k,M )

for S
(M)
Z,i (w,xi) :=

1

∆t
S

(M)
Y,i+1(xi) w,

z
(M)
i (·)|Hk := TCz

(
ψ

(M)
Z,i,k(·)

)
(truncation),

ψ
(M)
Y,i,k(·) solution of OLS(S

(M)
Y,i (xi) , LY,k , νi,k,M )

for S
(M)
Y,i (xi) := g(xN ) +

N−1∑
j=i

fj
(
xj , y

(M)
j+1 (xj+1), z

(M)
j (xj)

)
∆t,

y
(M)
i (·)|Hk := TCy

(
ψ

(M)
Y,i,k(·)

)
(truncation),

where w ∈ Rq and xi = (xi, . . . , xN ) ∈ (Rd)N−i+1.
An important difference between SRMDP and established Monte Carlo algorithms

[9, 18, 12, 13] is that the number of simulations falling in each hypercube is no more
random but fixed and equal to M . Observe first that this is likely to improve the nu-
merical stability of the regression algorithm: there is no risk that too few simulations
will land in the hypercube, leading to under-fitting. Later, in §4, we shall explain how
to implement Algorithm 4 on a GPU device. The key point is that the calculations at
every time point are fully independent between the different hypercubes, so that we
can perform them in parallel across the hypercubes. The choice of M independent on
k is made in order to maintain a computational effort equal on each of the strata. In
this way, the gain in parallelization is likely to be the largest. However, the subsequent
mathematical analysis can be easily adapted to make the number of simulations vary
with k whenever necessary.

An easy but important consequence of Algorithm 4 and of the bounds of Proposi-
tion 2.2 is the following absolute bound; the proof is analogous to that of [13, Lemma
4.7].

Lemma 3.3. With the above notation, we have

sup
0≤i≤N

sup
xi∈(Rd)N−i+1

|S(M)
Y,i (xi)| ≤ C3.3 := Cg + T

(
LfCy

[
1 +

√
q

√
∆t

]
+ Cf

)
.

3.2. Error analysis. The analysis will be performed according to several L2-
norms, either w.r.t. the probability measure ν, or the empirical norm related to the
cloud simulations. They are defined as follows:

E(Y,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
i,k,M

)
,

Ē(Y,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
νk

)
= E

(∣∣∣y(M)
i (·)− yi(·)

∣∣∣2
ν

)
,
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E(Z,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣z(M)

i (·)− zi(·)
∣∣∣2
i,k,M

)
,

Ē(Z,M, i) :=
K∑
k=1

ν(Hk)E
(∣∣∣z(M)

i (·)− zi(·)
∣∣∣2
νk

)
= E

(∣∣∣z(M)
i (·)− zi(·)

∣∣∣2
ν

)
,

where

|h|i,k,M :=

(∫
|h|2(ω,xi)νi,k,M (dω, dxi)

)1/2

.

In fact, the norms E(.,M, i) and Ē(.,M, i) are related through model-free concentration-
of-measures inequalities. This relation is summarized in the proposition below.

Proposition 3.4. For each i ∈ {0, . . . , N − 1}, we have

Ē(Y,M, i) ≤ 2E(Y,M, i) +
2028C2

y log(3M)

M
(ν(dim(LY,.)) + 1) ,

Ē(Z,M, i) ≤ 2E(Z,M, i) +
2028qC2

y log(3M)

∆tM
(ν(dim(LZ,.)) + 1) .

Proof. It is clearly sufficient to show that

E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
νk

)
≤ 2E

(∣∣∣y(M)
i (·)− yi(·)

∣∣∣2
i,k,M

)
+

2028C2
y log(3M)

M
(dim(LY,.) + 1) ,

E
(∣∣∣z(M)

i (·)− zi(·)
∣∣∣2
νk

)
≤ 2E

(∣∣∣z(M)
i (·)− zi(·)

∣∣∣2
i,k,M

)
+

2028qC2
y log(3M)

∆tM
(dim(LZ,.) + 1) ,

which follows exactly as in the proof of [13, Proposition 4.10].
From the previous proposition, the controls on Ē(Y,M, i) and Ē(Z,M, i) stem

from those on E(Y,M, i) and E(Z,M, i), which are handled in Theorem 3.5 below.
In order to study the impact of basis selection, we define the squared quadratic ap-
proximation errors associated to the basis in hypercube Hk by

TYi,k := inf
φ∈LY,k

|φ− yi|2νk , TZi,k := inf
φ∈LZ,k

|φ− zi|2νk .

These terms are the minimal error that can possibly be achieved by the basis LY,k
(resp. LZ,k) in order to approximate the restriction yi(·)|Hk (resp. zi(·)|Hk) in the L2

norm. Consequently, the global squared quadratic approximation error is given by

TYi :=
K∑
k=1

ν(Hk)TYi,k = inf
φ s.t. φ|Hk∈LY,k

|φ− yi|2ν ,(3.2)

TZi :=
K∑
k=1

ν(Hk)TZi,k = inf
φ s.t. φ|Hk∈LZ,k

|φ− zi|2ν .(3.3)
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As we shall see in Theorem 3.5 below, the terms TYi and TZi are closely associated to
the limit of the expected quadratic error of the numerical scheme in the asymptotic
M →∞; for this reason, these terms are usually called bias terms.

Now, we are in the position to state our main result giving non-asymptotic error
estimates.

Theorem 3.5 (Error for the Stratified LSMDP scheme). Recall the constants
Cy from Proposition 2.2, C3.3 from Lemma 3.3, and c(Aν) from Proposition 2.1. For
each i ∈ {0, . . . , N − 1}, define

E(i) := 2
N−1∑
j=i

∆t

(
TYj + 3C2

3.3

ν(dim(LY,.))
M

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ 3TZj + 6qC2
3.3

ν(dim(LZ,.))
∆tM

)
+ (T − ti)

1014C2
y log(3M)

M

(
(ν(dim(LY,.)) + 1) +

q

∆t
(ν(dim(LZ,.)) + 1)

)
.

For ∆t small enough such that Lf∆t ≤
√

2
15 and ∆tL

2
f ≤ 1

288c2
(Aν )

CA.1(1+T )
, we have,

for all 0 ≤ i ≤ N − 1,

E(Y,M, i) ≤ TYi + 3C2
3.3

ν(dim(LY,.))
M

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ (1 + 15L2
f∆t)C3.5E(i),(3.4)

N−1∑
j=i

∆tE(Z,M, j) ≤ C3.5E(i),(3.5)

where C3.5 := exp(288c2(Aν)CA.1(1 + T )L2
fT ).

3.3. Proof of Theorem 3.5. We start by obtaining estimates on the local em-
pirical quadratic errors terms

E
(∣∣∣y(M)

i (·)− yi(·)
∣∣∣2
i,k,M

)
, E

(∣∣∣z(M)
i (·)− zi(·)

∣∣∣2
i,k,M

)
,

on each of the hypercubes Hk (k = 1, . . . ,K). We first reformulate (2.2) with η = νk
in terms of the Definition 3.1 of OLS. For each i ∈ {0, . . . , N −1} and k ∈ {1, . . . ,K},
let νi,k := P ◦ (∆Wi, X

i,νk
i , . . . , Xi,νk

N )−1, so that we have

yi(·)|Hk solution of OLS( SY,i(xi) , L
(1)
k , νi,k )

where SY,i(xi) := g(xN ) +
N−1∑
j=i

fj
(
xj , yj+1(xj+1), zj(xj)

)
∆t,

zi(·)|Hk solution of OLS( SZ,i(w,xi) , L
(q)
k , νi,k )

where SZ,i(w,xi) :=
1

∆t
SY,i+1(xi) w,

where w ∈ Rq, xi := (xi, . . . , xN ) ∈ (Rd)N−i+1 and where L(l′)
k is any dense separable

subspace in the Rl′ -valued functions belonging to L2(B(Hk), νk). The above OLS
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solutions and those defined in (3.1) will be compared with other intermediate OLS
solutions given by{

ψY,i,k(·) solution of OLS( SY,i(xi) , LY,k , νi,k,M ),

ψZ,i,k(·) solution of OLS( SZ,i(w,xi) , LZ,k , νi,k,M ).

In order to handle the dependence on the simulation clouds, we define the follow-
ing σ-algebras.

Definition 3.6. Define the σ-algebras

F (∗)
i := σ(Ci+1,k, . . . , CN−1,k : 1 ≤ k ≤ K), F (M)

i,k := F (∗)
i ∨ σ(X

(i,k,m)
i : 1 ≤ m ≤M).

For every i ∈ {0, . . . , N − 1} and k ∈ {1, . . . ,K}, let E(M)
i,k (·) (resp. PMi,k (·)) with

respect to F (M)
i,k . Defining additionally the functions

ξ∗Y,i(x) := E
(
S

(M)
Y,i (Xi)− SY,i(Xi) | Xi = x,F (M)

)
,

ξ∗Z,i(x) := E
(
S

(M)
Z,i (∆Wi,Xi)− SZ,i(∆Wi,Xi) | Xi = x,F (M)

)
,

now we are in the position to prove that

E
(∣∣∣yi(·)− y(M)

i (·)
∣∣∣2
i,k,M

)
≤ TYi,k + 6E

(∣∣ξ∗Y,i(·)∣∣2νk)+ 3C2
3.3

dim(LY,k)

M
,

+ 15L2
f∆2

tE
(∣∣∣zi(·)− z(M)

i (·)
∣∣∣2
i,k,M

)
+ 12168L2

f∆t

(dim(LZ,k) + 1)qC2
y log(3M)

M
,(3.6)

E
(∣∣∣zi(·)− z(M)

i (·)
∣∣∣2
i,k,M

)
≤ TZi,k + 2E

(∣∣ξ∗Z,i(·)∣∣2νk)+ 2qC2
3.3

dim(LZ,k)

∆tM
.(3.7)

In fact, the proof of (3.6)–(3.7) follows analogously the proof of [13, (4.12)–(4.13)]; in
order to follow the steps of that proof, one must note that the term Rπ of that paper
is equal to 1 here, Cπ is equal to ∆t, and θL = 1. Moreover, one must exchange all
norms, OLS problems, σ-algebras, and empirical functions from the reference to the
localized versions defined in the preceding paragraphs. Indeed, the proof method of
[13, (4.12)–(4.13)] is model free in the sense that it does not care about the distribution
of the Markov chain at time ti.

We now aim at aggregating the previous estimates across the strata and propa-
gating them along time. For this, let

E1(i) :=
N−1∑
j=i

∆t

(
TYj + 3C2

3.3

ν(dim(LY,.))
M

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ 3TZj + 6qC2
3.3

ν(dim(LZ,.))
∆tM

)
Γj ,(3.8)

where Γi := (1 + γ∆t)
i with γ to be determined below. Next, defining

(3.9) γ := 288c2(Aν)CA.1(1 + T )L2
f .
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and recalling that ∆tL
2
f ≤ 1

288c2
(Aν )

CA.1(1+T )
, then γ and ∆t satisfy

max

(
1

γ
× 12c2(Aν)CA.1(1 + T )L2

f ,∆t × 12c2(Aν)CA.1(1 + T )L2
f

)
≤ 1

6
× 1

4
.(3.10)

Additionally, Γi ≤ exp(γT ) := C3.5 for every 0 ≤ i ≤ N . Now, multiply (3.6) and
(3.7) by ν(Hk)∆tΓi and sum them up over i and k to ascertain that

N−1∑
j=i

∆tE(Y,M, j)Γj +

N−1∑
j=i

∆tE(Z,M, j)Γj

≤
N−1∑
j=i

∆t

(
TYj + 3C2

3.3
ν(dim(LY,k))

M
+ 12168L2

f∆t
(ν(dim(LZ,k)) + 1)qC2

y log(3M)

M

)
Γj

+

N−1∑
j=i

∆t

{(
TZj + 2qC2

3.3
ν(dim(LZ,k))

∆tM
+ 2E

(∣∣ξ∗Z,j(·)∣∣2ν)) (1 + 15L2
f∆2

t ) + 6E
(∣∣ξ∗Y,j(·)∣∣2ν)}Γj

≤ E1(i) + 6

N−1∑
j=i

∆t

(
E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν))Γj ,(3.11)

where we have used (1 + 15L2
f∆2

t ) ≤ 3 (since Lf∆t ≤
√

2
15 ), and the term E1 from

(3.8) above. Next, from Proposition 2.1, we have

E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν) ≤ c(Aν)

(
E
(
|ξ∗Y,j(X

0,ν
j )|2

)
+ E

(
|ξ∗Z,j(X

0,ν
j )|2

))
.

Furthermore, note that (ξ∗Y,j(X
0,ν
j ), ξ∗Z,j(X

0,ν
j ) : 0 ≤ j ≤ N − 1) solves a discrete

BSDE (in the sense of Appendix A.2) with terminal condition 0 and driver

fξ∗,j(y, z) := fj(X
0,ν
j , y

(M)
j+1 (X0,ν

j+1), z
(M)
j (X0,ν

j ))− fj(X0,ν
j , yj+1(X0,ν

j+1), zj(X
0,ν
j )).

This allows the application of Proposition A.1, with the first BSDE (ξ∗Y,j(X
0,ν
j ), ξ∗Z,j(X

0,ν
j ) :

0 ≤ j ≤ N − 1), and the second one equal to 0: since Lf2 = 0, any choice of γ > 0 is
valid and we take γ as in (3.9). We obtain

N−1∑
j=i

∆t

(
E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν))Γj

≤ 6c(Aν)CA.1(1 + T )

(
1

γ
+ ∆t

)
L2
f

N−1∑
j=i

∆t

×
[
E
(
|y(M)
j+1 (X0,ν

j+1)− yj+1(X0,ν
j+1)|2

)
+ E

(
|z(M)
j (X0,ν

j )− zj(X0,ν
j )|2

)]
Γj .

Now, Proposition 2.1 yields to

E
(
|y(M)
j+1 (X0,ν

j+1)− yj+1(X0,ν
j+1)|2

)
+ E

(
|z(M)
j (X0,ν

j )− zj(X0,ν
j )|2

)
≤ c(Aν)[Ē(Y,M, j + 1) + Ē(Z,M, j)]

≤ 2c(Aν)[E(Y,M, j + 1) + E(Z,M, j)] + c(Aν)

2028C2
y log(3M)

M
(ν(dim(LY,.)) + 1)
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+ c(Aν)

2028qC2
y log(3M)

∆tM
(ν(dim(LZ,.)) + 1) ,

where the last inequality follows from the concentration-measure inequalities in Propo-
sition 3.4. In order to summarize this, we define

E2(i) :=
1014C2

y log(3M)

M

N−1∑
j=i

∆tΓj

( (ν(dim(LY,.)) + 1) +
q

∆t
(ν(dim(LZ,.)) + 1)

)

and make use of (3.10), and that Γj ≤ Γj+1 in order to ascertain that we have

N−1∑
j=i

∆t

(
E
(∣∣ξ∗Y,j(·)∣∣2ν)+ E

(∣∣ξ∗Z,j(·)∣∣2ν))Γj

≤ 12c2(Aν)CA.1(1 + T )

(
1

γ
+ ∆t

)
L2
f

N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)


≤ 1

6
× 1

2

N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)

 .
By plugging this into (3.11) readily yields to

N−1∑
j=i

∆tE(Y,M, j)Γj +

N−1∑
j=i

∆tE(Z,M, j)Γj

≤ E1(i) +
1

2

N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)


and therefore

N−1∑
j=i

∆tE(Y,M, j)Γj +
N−1∑
j=i

∆tE(Z,M, j)Γj ≤ 2E1(i) + E2(i).(3.12)

This completes the proof of the estimate (3.5) on z as stated in Theorem 3.5, using
1 ≤ Γi ≤ C3.5 and 2E1(i) + E2(i) ≤ C3.5E(i). It remains to derive (3.4). Starting from
(3.6), multiplying by ν(Hk) and summing over k yields to

E(Y,M, i) ≤TYi + 6E
(∣∣ξ∗Y,i(·)∣∣2ν)+ 3C2

3.3

ν(dim(LY,.))
M

+ 15L2
f∆t(2E1(i) + E2(i))

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M
(3.13)

where we use the inequality (3.12) to control ∆tE(Z,M, i). Using the same arguments

as before, we upper bound E
(∣∣ξ∗Y,i(·)∣∣2ν) by

6c2(Aν)CA.1

(
1

γ
+ ∆t

)
L2
f

N−1∑
j=i

∆t

(
Ē(Y,M, j) + Ē(Z,M, j)

)
Γj .
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By additionally bounding Ē(Y,M, j) and Ē(Z,M, j) using the concentration-measure
inequalities of Proposition 3.4 and plugging this in (3.13), we finally obtain

E(Y,M, i) ≤ TY1,i + 3C2
3.3

ν(dim(LY,.))
M

+ 15L2
f∆t (2E1(i) + E2(i))

+ 12168L2
f∆t

(ν(dim(LZ,.)) + 1)qC2
y log(3M)

M

+ 72c2(Aν)CA.1

(
1

γ
+ ∆t

)
L2
f

N−1∑
j=i

∆t (E(Y,M, j) + E(Z,M, j)) Γj + E2(i)

 .
From (3.10) and (3.12), the last term in previous inequality is bounded by(

1

4(1 + T )
+

1

4(1 + T )

)
(2E1(i) + E2(i) + E2(i)) ≤ E1(i) + E2(i) ≤ 2E1(i) + E2(i).

This completes the proof of (3.6), using again 2E1(i) + E2(i) ≤ C3.5E(i). �

4. GPU implementation. In this section, we consider the computation of

y
(M)
i (·) for a given stratum Hk and time point i. The calculation of z

(M)
i (·) is rather

similar, only requiring component-wise calculations to be taken into account, so that
we do not provide details. The theoretical description of the calculation was given in
§3.1. In this section, we first describe the required computations to implement the
approximations with LP0 and LP1 local polynomials in §4.1, and then present their
implementation on the GPU in §4.2.

3

4.1. Explicit solutions to OLS in Algorithm 4.
LP0. This piecewise solution is given by the simple formula [15, Ch. 4]

(4.1) y
(M)
i (·)|Hk = TCy

(∑M
m=1 S

(M)
Y,i (X

(i,k,m)
i )

M

)
.

Observe that there will be a memory consumption of O(1) per hypercube to store the

simulations needed for the computation of S
(M)
Y,i (X

(i,k,m)
i ). Once added in the sum

(4.1), their allocation can be freed.
LP1. Let A be the RM ⊗ Rd+1 matrix, the components of which are given by

A[m, j] = 11{0}(j)+X
(i,k,m)
i,j 1{0}c(j), whereX

(i,k,m)
i,j is the j-th component of X

(i,k,m)
i ,

and let S be the RM vector given by S[m] = S
(M)
Y,i (X

(i,k,m)
i ). In order to compute

y
(M)
i (·)|Hk , we first perform a QR-factorization A = QR, where Q is an RM ⊗ RM

orthogonal matrix, and R is an RM ⊗ Rd+1 upper triangular matrix. The computa-
tional cost to compute this factorization is (d + 1)2 (M − (d+ 1)/3) flops using the
Householder reflections method [14, Alg. 5.3.2]. Using the form of LP1 and the
density of νk, we can prove that the rank of A is d + 1 with probability 1, i.e. R is
invertible a.s. (the OLS problem is non-degenerate).

3 Theoretically, we are not restricted from going to higher order local polynomials. We restrict to
LP1 for implementation in GPU due to memory limitations. In our forthcoming numerical examples,
the GPU’s global memory is limited to 6GB. Higher order polynomials would require not only more
memory per hypercubes but also more memory for storing the regression coefficients, therefore we
would be able to estimate over fewer hypercubes in parallel. Note that this is not an issue for parallel
computing on CPUs.
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Then, we obtain the approximation y
(M)
i (·)|Hk by computing the coefficients α =

(α0, . . . , αd) ∈ Rd+1 using the QR factorization and backward-substitution method
as follows:

(4.2) Rα = Q>S, y
(M)
i (x(k)) = TCy

α0 +
d∑
j=1

αj × xj(k)

 ,

for any vector (x(k) = (x1(k), . . . , xd(k)) in Hk. By using the Householder reflection
algorithm for computing the QR-factorization, there will be memory consumption of
O (M × (d+ 1)) for the storage of the matrix A on each hypercube. This memory can
be deallocated once the computation (4.2) is completed. We remark that the memory
consumption is considerably lower than other alternative QR-factorization methods,
as for example the Givens rotations method [14, Alg. 5.2.2], which requires a memory
consumption O(M2) to store the matrix Q. This reduced memory consumption is
instrumental in the GPU approach, as we explain in forthcoming §5.2.2.

4.2. Pseudo-algorithms for GPU. Algorithm 4 will be implemented on an
NVIDIA GPU device. The device architecture is built around a scalable array of
multithreaded Streaming Multiprocessors (SMs); each multiprocessor is designed to
execute hundreds of threads concurrently. To manage such a large amount of threads,
it employs a unique architecture called SIMT (Single-Instruction, Multiple-Thread).
The code execution unit is called a kernel and is executed simultaneously on all
SMs by independent blocks of threads. Each thread is assigned to a single processor
and executes within its own execution environment. Thus, all threads run the same
instruction at a time, although over different data. In this section we briefly describe
pseudo-codes for the Algorithm 4.

The algorithm has been programmed using the Compute Unified Device Archi-
tecture (CUDA) toolkit, specially designed for NVIDIA GPUs, see [20]. The code
was built from an optimized C code. The below pseudo-algorithms reflect this pro-
gramming feature. For the generation of the random numbers in parallel we took
advantage of the NVIDIA CURAND library, see [21].

The time loop corresponding to the backward iteration of Algorithm 4 is shown
in Listing 1; the kernel corresponds to the use of either the LP0 or the LP1 basis. In
Listing 2, a sketch for the LP0 kernel is given. Notice that we are paralellizing the

loop for any stratum index k ∈ {1, . . . ,K} in the Algorithm 4; the terms S
(M)
Y,i (xi) and

S
(M)
Z,i (w,xi) are computed in the compute responses i function, and the coefficients

for ψ
(M)
Y,i,k(·) and ψ

(M)
Z,i,k(·) are computed in compute psi Y and compute psi Z, respec-

tively, according to (4.1). Having in view an optimal performance, matrices storing
the simulations, responses and regression coefficients are fully interleaved, thus allow-
ing coalesced memory accesses, see [20]. Note that all device memory accesses are
coalesced except those accesses to the regression coefficients in the resimulation stage
during the computation of the responses, because one is not certain in which hyper-
cube up each path will land. In Listing 3, the sketch for the LP1 kernel is given.
Additionally to the tasks of the kernel in Listing 2, each thread builds the matrix
A and applies a QR factorization, as detailed in §4.1. Note that in addition to the
matrices just explained in LP0, the matrix A is fully interleaved thus allowing fully
coalesced accesses. The global memory is allocated at the beginning of the program
and is freed at the end, thus allowing kernels to reuse already-allocated memory wher-
ever possible. In addition to global memory, kernels are also using local memory, for
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example for storing the resimulated forward paths used for computing the responses.

The coefficients for ψ
(M)
Y,i,k(·) and ψ

(M)
Z,i,k(·) are computed according to (4.2).

int i
curandState ∗devStates
I n i t i a l i z e devStates
I n i t i a l i z e n blocks , n th r ead s pe r b l o ck
for ( i=N−1; i>=0; i−−)

kerne l bsde<<<n blocks , n th r eads pe r b l o ck>>>(i , devStates , . . . )

Listing 1
Backward iteration for i = N − 1 to i = 0.

g l o b a l void kerne l bsde LP0 ( int i , curandState ∗ devStates , . . . ) {
const unsigned int g l o b a l t i d = blockDim . x ∗ blockIdx . x + threadIdx . x
curandState l o c a l S t a t e = devStates [ g l o b a l t i d ]

unsigned long long int bin
for ( bin=g l o b a l t i d ; bin<K; bin+=n blocks ∗ n th r ead s pe r b l o ck ) {

s imu la t e s x (& l o c a l S t a t e , g l o b a l t i d , bin , . . . )

compute re sponse s i (& l o ca l S t a t e , g l o b a l t i d , i , . . . )

compute psi Z ( g l o b a l t i d , bin , i , . . . )

compute psi Y ( g l o b a l t i d , bin , i , . . . )
}
devStates [ g l o b a l t i d ] = l o c a l S t a t e

}
Listing 2

Kernel for the approximation with LP0.

g l o b a l void kerne l bsde LP1 ( int i , curandState ∗devStates , . . . ) {
const unsigned int g l o b a l t i d = blockDim . x ∗ blockIdx . x + threadIdx . x
curandState l o c a l S t a t e = devStates [ g l o b a l t i d ]

unsigned long long int bin
for ( bin=g l o b a l t i d ; bin<K; bin+=n blocks ∗ n th r ead s pe r b l o ck ) {

s imu la t e s x (& l o c a l S t a t e , g l o b a l t i d , bin , . . . )

compute re sponse s i (& l o ca l S t a t e , g l o b a l t i d , i , . . . )

bui ld d A ( g l o b a l t i d , d A , . . . )

qr ( g l o b a l t i d , d A , . . . )

compute psi Z ( g l o b a l t i d , bin , i , d A , . . . )

compute psi Y ( g l o b a l t i d , bin , i , d A , . . . )
}
devStates [ g l o b a l t i d ] = l o c a l S t a t e

}
Listing 3

Kernel for the approximation with LP1.

4.3. Theoretical complexity analysis. In this section, we assume that the
functions yi(·) and zi(·) are smooth, namely globally Lipschitz (resp. C1 and the first
derivatives are globally Lipschitz) in the LP0 (resp. LP1) case. The strata will be
composed of uniform hypercubes of side length δ > 0 in the domain [−L,L]d, where
L = log(N)/µ and µ is the parameter of the logistic distribution. This choice ensures
ν
(
Rd\[−L,L]d

)
≤ 2d exp(−µL) = O(N−1). Our aim is to calibrate the numerical

parameters (number of simulations and number of strata) so that the error given in
Theorem 3.5 is O(N−1), where N is the number of time-steps. This tolerance error is
the one we usually obtain after time discretization with N time points [23, 10, 22]. In
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the following, we focus on polynomial dependency w.r.t. N , keeping only the highest
degree, ignoring constants and log(N) terms.

Squared bias errors TY1,i and TZ1,i in (3.2)-(3.3). First, we remark that the ap-
proximation error of the numerical scheme, namely the error due to basis selection,
depends principally on the size δ of strata. In the case of LP0, the squared bias er-
ror is proportional to the squared hypercube diameter plus the tail contribution, i.e.
O
(
δ2 + ν

(
Rd\[−L,L]d

))
; to calibrate this bias to O(N−1), we require δ = O(N−1/2).

In contrast, the squared bias in [−L,L]d using LP1 is proportional to the fourth power
of the hypercube diameter, whence δ = O(N−1/4). As a result, ignoring the log terms
the number of required hypercubes is

LP0 : K = O(Nd/2), LP1 : K = O(Nd/4),

in both cases.
Statistical and interdependence errors. These error terms depend on the number

of local polynomials, as well as on the number of simulations. Indeed, denoting
K ′ = dim(LY or Z,.) the number of local polynomials and M the number of simulations
in the hypercube, then both errors are dominated by O (NK ′ log(M)/M), where the
factor N comes from the Z part of the solution (see E(i) in Theorem 3.5). For LP0
(resp. LP1), K ′ = 1 or q (resp. K ′ = d+ 1 or q(d+ 1)). This implies to select

LP0 : M = O(N2), LP1 : M = O(N2),

again omitting the log terms.
Computational cost. The computational cost (in flops) of the simulations per

hypercube is equal to O(M ×N), because we simulate M paths (of length N) of the
process X. The cost of the regression per hypercube is O (M ×N), see §4.1, and thus
equivalent to the simulation cost. Putting in the values of M from the last paragraph,
the overall computational cost Ccost (summed over all hypercubes and time steps) is

LP0 : CSEQcost = O(N4+d/2), LP1 : CSEQcost = O(N4+d/4).

This quantity is related to the computational time for a sequential system (SEQ
implementation) where there is no parallel computing. For the GPU implementation,
described in §4.2, there is an additional computational time improvement since the
computations on the hypercubes will be threaded across the cores of the card. Thus,
the computational cost on GPU is

LP0 : CGPUcost = O(N4+d/2)/CLoad factor, LP1 : CGPUcost = O(N4+d/4)/CLoad factor.

where the load factor CLoad factor is ideally the number of threads on the device.
Finally, we quantify the improvement in memory consumption offered by the SR-

MDP algorithm compared to the LSMDP algorithm of [13]. This is a very important
improvement, because, as explained in the introduction, the memory is the key con-
straint in solving problems in high dimension. We only compare sequential versions
of the algorithms, meaning that the computational costs will be the same. The main
difference between the two schemes is then in the number of simulations that must
be stored in the machine at any given time. We summarize this in Table 1 below.

In SRMDP, the memory consumption is mainly related to storing coefficients
representing the solutions on hypercubes, that is O(N ×dim(LY or Z,.)×K); if one is
using the LP1 basis, one must also take into account the memory consumption per
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Algorithm Number of Computational
simulations cost

LP0 LP1 LP0 LP1

SRMDP N2 N2 N4+d/2 N4+d/4

LSMDP N2+d/2 N2+d/4 N4+d/2 N4+d/4

Table 1
Comparison of numerical parameters with or without stratified sampling, as a function of N .

strata M × (d+ 1) = O(N2) for the QR factorization, explained in §4.1. In contrast,
the memory consumption for LSMDP is mainly O(K × N2), which represents the
number of simulated paths of the Markov chains that must be stored in the machine
at any given time. We summarize the memory consumption of the two algorithms in
Table 2.

Algorithm LP0 LP1

SRMDP N1+d/2 N1+d/4 ∨N2

LSMDP N2+d/2 N2+d/4

Table 2
Comparison of memory requirement as a function of N .

Observe that SRMDP requires N times less memory than LSMDP with the LP0
basis. This implicitly implies a gain of 2 on the dimension d that can be handled. On
the other hand, if the LP1 basis is used, the SRMDP requires O(Nd/4) less memory
for d ≤ 4 than LSMDP, and N times less memory for d ≥ 4. Therefore, there is an
implicit gain of 4 in the dimension that can be handled by the algorithm.

5. Numerical experiments.

5.1. Model, stratification, and performance benchmark. We use the Brow-
nian motion model X = W (d = q). Moreover, the numerical experiments will
consider the performance according to the dimension d. We introduce the function
ω(t, x) = exp(t +

∑q
k=1 xk). We perform numerical experiments on the BSDE with

data g(x) = ω(T, x)(1 + ω(T, x))−1 and

f(t, x, y, z) =

(
q∑

k=1

zk

)(
y − 2 + q

2q

)
,

where z = (z1, . . . , zq). The BSDE has explicit solutions in this framework, given by

yi(x) = ω(ti, x)(1 + ω(ti, x))−1, zk,i(x) = ω(ti, x)(1 + ω(ti, x))−2,

where zk,i(x) is the k-th component of the q-dimensional cylindrical function zi(x) ∈
Rq.

The logistic distribution for Algorithm 4 is parameterized by µ = 1 and we con-
sider T = 1. For the least-squares Monte Carlo, we stratify the domain [−6.5, 6.5]q

with uniform hypercubes. To assess the performance of the algorithm, we compute
the average mean squared error (MSE) over 103 independent runs of the algorithm
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for three error indicators:

MSEY,max := ln

10−3 max
0≤i≤N−1

103∑
m=1

|yi(Ri,m)− y(M)
i (Ri,m)|2

 ,

MSEY,av := ln

10−3N−1
103∑
m=1

N−1∑
i=0

|yi(Ri,m)− y(M)
i (Ri,m)|2

 ,

MSEZ,av := ln

10−3N−1
103∑
m=1

N−1∑
i=0

|zi(Ri,m)− z(M)
i (Ri,m)|2

 ,

where the simulations {Ri,m; i = 0, . . . , N − 1, m = 1, . . . , 103} are independent and
identically ν-distributed, and independently drawn from the simulations used for the
LSMC scheme. We parameterize the hypercubes according to the instructions given
in the theoretical complexity analysis, see §4.3. In particular, we consider different
values of N and always set K = O(Nd/2) in LP0 (resp. O(Nd/4) in LP1) and
M = O(N2). Note, however, that we do not specify the value of δ, but rather the
number of hypercubes per dimension K1/q, which we denote #C in what follows; this
being equivalent to setting δ, but is more convenient to program. As we shall illustrate,
the error converges as predicted as N increases, although the exact error values will
depend on the constants that we choose in the parameterization of K and M .

5.2. CPU and GPU performance. In this section, several experiments based
on §5.1 are presented to assess the performance of CUDA implementation of Algo-
rithm 4; the pseudo-algorithms are given in §4.2. We shall compare its performance
with a version of SRMDP implemented to run on multicore CPUs. For the design of
this comparison we have followed some ideas in [17]. Moreover, in order to test the
theoretical results of §4.3, we compare the performance of the two algorithms accord-
ing to the choice of the basis functions, the impact of this choice on the convergence of
the approximation of the BSDE, and the impact of this choice on the computational
performance in terms of computational time and memory consumption.

There are two types of basis functions we investigate: LP0 in §5.2.1, and LP1 in
§5.2.2. As explained in §4.3, the LP0 basis is highly suited to GPU implementation
because it has a very low memory requirement per thread of computation. On the
other hand, it has a very high global memory requirement for storing coefficients. This
represents a problem in high dimensions because one needs many coefficients to obtain
a good accuracy. On the other hand, the LP1 basis involves a higher cost per thread,
although requires a far lower global memory for storing coefficients; this implies that
the impact of the GPU implementation is lower in moderate dimensional problems,
but that one can solve problems in higher dimension. Moreover, the full performance
impact of the GPU implementation on the LP1 basis is in high dimension, where
the number of strata is very high and therefore the GPU is better saturated with
computations. We illustrate numerically all of these effects in the following sections.

The numerical experiments have been performed with the following hardware and
software configurations: a GPU GeForce GTX TITAN Black with 6 GBytes of global
memory (see [19] for details in the architecture), two recent multicore Intel Xeon
CPUs E5-2620 v2 clocked at 2.10 GHz (6 cores per socket) with 62 GBytes of RAM,
CentOS Linux, NVIDIA CUDA SDK 7.5 and INTEL C compiler 15.0.6. The CPU
programs were optimized and parallelized using OpenMP [24]. Since the CUDA code
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has been derived from an optimized C code, both codes perform the same algorithms,
and their performance can be fairly compared according to computational times; the
multicore CPUs time (CPU) and the GPU time (GPU) will all be measured in seconds
in the forthcoming tables. CPU times correspond to executions using 24 threads so as
to take advantage of Intel Hyperthreading. The speedups of the CPU parallel version
with respect to pure sequential CPU code are around 16. The results are obtained in
single precision, both in CPU and GPU.

5.2.1. Examples with the approximation with LP0 local polynomials.
All examples will be run using 64 thread blocks each with 256 threads. In Table 3 we

show results for d = 4, with #C=
⌊
4
√
N
⌋

and M = N2. Except for the cases ∆t = 0.2

and ∆t = 0.1 where there are not enough strata to fully take advantage of the GPU,
the GPU implementation provides a significant reduction in the computational time:
the GPU speed-up reaches the value 18.90. Moreover, the speed-up improves as we
increase the #C.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 8 4096 25 −3.712973 −3.774071 −0.964842 0.23 2.00
0.1 12 20736 100 −4.066741 −4.303750 −1.607104 5.23 2.20

0.05 17 83521 400 −4.337988 −4.698645 −2.302092 171.92 12.39
0.02 28 614656 2500 −4.472564 −4.988069 −3.225411 58066.33 3070.92

Table 3
LP0 local polynomials, d = 4, #C=

⌊
4
√
N
⌋

, M = N2.

Tables 4 and 5 show results for d = 6 with #C=
⌊√

N
⌋

and #C=
⌊
2
√
N
⌋
, re-

spectively. Convergence is clearly improved by doubling #C. In Table 5 the case of
∆t = 0.02 is not shown due to insufficient GPU global memory 4. In Table 4, the
GPU speed-up reaches 15.93, whereas in Table 5 it reaches 14.85. As in Table 3,
the increase in the speed-up is explained due to the increased number of hypercubes,
thus demonstrating how important it is to have many hypercubes in the GPU imple-
mentation. However, the finer basis requires 26 times as much memory for storing
coefficients.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 64 25 −2.392320 −2.451332 −0.431059 0.21 1.99
0.1 3 729 100 −2.440274 −2.500775 −1.096603 0.47 2.05

0.05 4 4096 400 −2.829757 −2.905192 −1.687142 17.21 3.15
0.02 7 117649 2500 −3.235130 −3.539011 −2.557686 13930.70 874.25

Table 4
LP0 local polynomials, d = 6, #C=

⌊√
N
⌋

, M = N2.

Table 6 shows that the algorithm can work for d = 11 in several seconds with
a reasonable accuracy in a GPU. The corresponding speed-up with respect to CPU
version is around 13.35. For the execution with ∆t = 0.1 we are going to report the
GFlop rate, and also the memory transfer to/from the global memory. Inside the ker-
nel, the functions computing the regression coefficients (denoted by compute psi Z

4For ∆t = 0.02, the array for storing the regression coefficients will be of size N ×K × (D + 1),
i.e. 50× 146 × 7× 4 bytes using single precision, which equals 9.81 GBytes, much greater than the
available 6 GBytes of device memory.



Stratified regression Monte-Carlo scheme for BSDEs 21

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 4 4096 25 −2.707882 −2.784022 −0.477751 0.29 1.94
0.1 6 46656 100 −3.195937 −3.294488 −1.133834 13.72 2.44

0.05 8 262144 400 −3.505867 −3.664396 −1.795697 775.33 52.20
Table 5

LP0 local polynomials, d = 6, #C=
⌊
2
√
N
⌋

, M = N2.

and compute psi Y in the Listing 2) are memory bounded, reaching 236.795 GBytes/s
when reading/writing from/to global memory. The rest of the kernel is more compu-
tationally limited. In the overall kernel, the memory transfer from/to global memory
is around 160 GBytes/s and the Gflop rate is around 238 GFlop/s, although around
the 30% of the instructions executed by the kernel are integer instructions to assign
the simulations to the strata in the resimulation stage during the computation of the
responses.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 2048 25 −2.152253 −2.202357 0.211590 0.27 1.99
0.1 3 177147 100 −2.144843 −2.267742 −0.469759 67.96 6.29

0.05 4 4194304 400 −2.484169 −2.633602 −1.070096 28154.07 2108.64
Table 6

LP0 local polynomials, d = 11, #C=
⌊√

N
⌋

, M = N2.

5.2.2. Examples with the approximation with LP1 local polynomials.
In this section we show the results corresponding to the approximation with the LP1
basis. Compared to LP0, this basis consumes much less global memory to store
coefficients, because it requires far fewer hypercubes, see §4.3. On the other hand, the
approximation with LP1 basis demands higher thread memory due to the storage of
a large matrix for each hypercube, as explained in §4.3. This may have an impact on
the computational time on the GPU: recalling from §4.2 the GPU handles multiple
hypercubes at any given time, each one requiring the storage of a matrix A, the global
memory capacity of the GPU device restricts the number of threads we can handle
at any given time. This issue is much less significant with the LP0 basis. In order
to optimize the performance of the LP1 basis, we must minimize the thread memory
storage. We implement the Householder reflection method for QR-factorization, [14,
Alg. 5.3.2]. For this, we must store a matrix containing M × (d+1) = O(N2) floating
point values per thread on the GPU memory. Thanks to the reduced global memory
storage for coefficients, we are able to work in a rather high dimension d = 19.

Remark 5.1. There are many methods to implement QR-factorization. How-
ever, the choice of method has a substantial impact on the performance of the GPU
implementation. For example, the Givens rotation method [14, Alg. 5.2.2] requires
the storage of an M ×M matrix, which corresponds to O(N4) floating points. This
is rather more than the required O(N2) for the Householder reflection method given
in Section 4.1. Therefore, the Givens rotation method would be far slower when im-
plemented on a GPU than the Householder reflection method, because it may not be
possible to use an optimal thread configuration.

Remark 5.2. In the forthcoming examples, we use more simulations per stratum
for the LP1 basis compared to the equivalent results for LP0. This is to account for
the additional statistical and interdependence errors, as explained in §4.3.
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In Table 7, we present results for d = 4. These results are to be compared
with Table 3, where in particular the MSEZ,av results are closer line to line. The
computational time is substantially improved for the CPU and GPU calculations.
Also note that, unlike for the Z component, the accuracy for the Y component is
substantially better for the LP1 basis than for the LP0 one. The difference in the
accuracy results between the Y and Z components is likely explained by the fact that
the function x 7→ zi(x) is rather flat, so it is much better approximated by LP0 basis
functions than x 7→ yi(x). The GPU speed-up reaches 8.05.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 3 81 125 −4.021483 −4.131725 −0.900286 0.11 0.23
0.1 5 625 500 −4.290881 −4.695769 −1.551480 1.26 0.79

0.05 7 2401 2000 −4.541253 −5.022405 −2.281332 43.56 7.83
0.02 10 10000 12500 −4.574551 −5.143310 −3.228237 6827.98 847.83

Table 7
LP1 local polynomials, d = 4, #C=

⌊
3
√

d
√
N − 5

⌋
, M = (d + 1)N2.

Next, results for d = 6 are shown. Thus, we compare Table 8 below with Table
5. For a given precision on the Z component of the solution, we observe substantial
improvements in the CPU codes, but no such gains on the GPU version. In contrast,
the accuracy of the Y approximation is, as in the d = 4 case, substantially better.
Moreover, whereas we were not able to do computations for ∆t = 0.02 with the LP0
basis due to insufficient GPU memory, we are now able to make these calculations
with the LP1 basis. The GPU speed-up reaches 6.13, which is lower than the LP0
basis speed-up factor, as expected.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 64 175 −3.504153 −3.668801 −0.461077 0.20 0.32
0.1 3 729 700 −3.804091 −3.911488 −1.133263 1.84 1.66

0.05 4 4096 2800 −4.075928 −4.231639 −1.791519 125.81 20.50
0.02 6 46656 17500 −3.809734 −4.529827 −2.689432 82529.21 15283.18

Table 8
LP1 local polynomials, d = 6, #C=

⌊
1.5

√
d
√
N − 3

⌋
, M = (d + 1)N2.

In the high dimensional d = 11 setting shown in Table 9, we compare with Table
6. We observe a speed-up of order 5.63 compared to the CPU implementation.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 2048 2000 −3.271648 −3.368051 −1.455388 10.33 3.41
0.2 3 177147 4000 −3.269004 −3.403994 −1.975300 1635.95 290.56

Table 9
LP1 local polynomials, d = 11.

In the remainder of this section, we present results in dimension d = 12 to d = 19
(in Tables 10, 11, 12 and 13, respectively) for which the capacity of the GPU is
maximally used to provide the highest possible accuracy. The GPU speed-up reaches
up to 5.67 compared to the CPU implementation. Note that for the example with
d = 19 in Table 13 the LSMDP algorithm would require 118 GBytes of memory to
store all the simulations at a given time, whereas the here proposed SRMDP algorithm
can be executed with less than 6 GBytes and with much less computational time owing
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to it does not need to associate the simulations to hypercubes. Finally, for the example
with ∆t = 0.2, #C= 2 and M = 4000 of Table 11 we next report the GFlop rate and the
memory transfer from/to global memory. In the overall kernel, the memory transfer
from/to global memory is around 132 GBytes/s and the GFlop rate is around 136
GFlop/s. In order to understand why the device memory bandwidth used by LP1
kernel is lower than the one used by LP0 kernel, observe that at any given time, for
each strata we are accessing (d + 1) times more elements in the LP1 framework in
the re-simulation stage of the responses computation. Moreover, these accesses are
potentially non-coalesced, because the forward process is randomly re-simulated and
we do not know a priori in which strata is going to fall.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 4096 2000 −3.111153 −3.232051 −1.297737 22.29 4.95
0.2 3 531441 4000 −3.214096 −3.272644 −1.821935 5554.49 1196.28

Table 10
LP1 local polynomials, d = 12.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 8192 3000 −2.995413 −3.153302 −1.460911 69.45 12.46
0.2 2 8192 4000 −3.022855 −3.158471 −1.649632 94.07 16.58

Table 11
LP1 local polynomials, d = 13.

∆t #C K M MSEY,max MSEY,av MSEZ,av CPU GPU

0.2 2 16384 2000 −3.011673 −3.092870 −1.026128 102.11 19.55
0.2 2 16384 4000 −3.029663 −3.105833 −1.558935 205.82 50.62

Table 12
LP1 local polynomials, d = 14.

Appendix A.

A.1. Proof of Proposition 2.1. It is known from [11, Proposition 3.1] that
it is sufficient to show that there is a continuous Cρ : R → [1,∞) such that, for all
Λ ≥ 0, λ ∈ [0,Λ], and y ∈ Rd,

(A.1)
p

(µ)
logis.(y)

Cρ(Λ)
≤
∫
Rd
p

(µ)
logis.(y + z

√
λ) exp(−|z|

2

2
)dz ≤ Cρ(Λ)p

(µ)
logis.(y).

The proof is given for d = 1; generalization to higher dimensions is obvious be-
cause the multidimensional density is just the product of the one-dimensional densities
over the components. Moreover, for simplicity the proof is given for µ = 1, as gen-
erality in this parameter does not change the proof. For simplicity, we will write

p
(µ)
logis.(x) = p(x) in what follows.

In terms of the hyperbolic cosine function, the density can be expressed as

p(x) =
exp(−x)(

1 + exp(−x)
)2 =

(
exp(

x

2
) + exp(−x

2
)
)−1

=
(

2 cosh(
x

2
)
)−1

.
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d K M MSEY,max MSEY,av MSEZ,av CPU GPU

15 32768 5000 −2.981181 −3.106590 −1.574532 578.88 139.60
16 65536 6000 −2.795353 −2.959375 −1.588716 1411.75 429.53
17 131072 5000 −2.772595 −2.936549 −1.371146 2580.06 793.61
18 262144 4000 −2.845755 −2.918057 −1.114600 4275.13 1589.30
19 524288 3200 −2.726427 −2.851617 −0.839849 7245.91 4370.31

Table 13
LP1 local polynomials, d = 15, . . . , 19, ∆t = 0.2, #C = 2.

We define I(y, λ) := 2
∫
R p(y + z

√
λ) exp(− z

2

2 )dz, so that from the relation cosh(x+
y) = cosh(x) cosh(y) + sinh(x) sinh(y), we have that

I(y, λ) =

∫
R

exp(− z
2

2 )

cosh( y2 ) cosh( z
√
λ

2 ) + sinh( y2 ) sinh( z
√
λ

2 )
dz := I+(y, λ) + I−(y, λ)

where I+,− denotes respectively the integral on R+ and R−.

Upper bound. Suppose that y ≥ 0. Then, if z ≥ 0, it follows that sinh(y/2) sinh(z
√
λ/2) ≥

0, whence

I+(y, λ) ≤
∫
R+

exp(− z
2

2 )

cosh( y2 ) cosh( z
√
λ

2 )
dz = 2

∫
R+

e−
z2

2 dz × p(y).

On the other hand, if z ≤ 0, then sinh( y2 ) sinh( z
√
λ

2 ) ≥ cosh( y2 ) sinh( z
√
λ

2 ), therefore

I−(y, λ) ≤
∫
R−

exp(− z
2

2 )

cosh( y2 ){cosh( z
√
λ

2 ) + sinh( z
√
λ

2 )}
dz = 2

∫
R−

exp

(
−z

2

2
− z
√
λ

2

)
dz × p(y).

Therefore, if y ≥ 0 then I(y, λ) ≤ 2
∫
R exp(−z

2+(z)−
√

Λ
2 )dz × p(y). Observing that

I(y, λ) is symmetric in y, thus the upper bound (A.1) is proved.

Lower bound. Suppose that y ≥ 0. For z ≤ 0, observe that sinh( y2 ) sinh( z
√
λ

2 ) ≤ 0,
whence

I−(y, λ) ≥
∫
R−

exp(− z
2

2 )

cosh( y2 ) cosh( z
√
λ

2 )
dz ≥ 2

∫
R−

exp(− z
2

2 )

cosh( z
√

Λ
2 )

dz × p(y).

For z ≥ 0, we use that sinh( y2 ) sinh( z
√
λ

2 ) ≤ cosh( y2 ) sinh( z
√
λ

2 ) to obtain

I+(y, λ) ≥
∫
R+

exp(− z
2

2 )

cosh( y2 ){cosh( z
√
λ

2 ) + sinh( z
√
λ

2 )}
dz

≥ 2

∫
R+

exp

(
−z

2

2
− z
√

Λ

2

)
dz × p(y).

The result on y < 0 follows again from the symmetry of I(y, λ). �

A.2. Stability results for discrete BSDE. We recall standard results bor-
rowed to [13] and adapted to our setting, they are aimed at comparing two solutions
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of discrete BSDEs of the form (2.1) with different data. Namely, consider two discrete
BSDEs, (Y1,i, Z1,i)0≤i<N and (Y2,i, Z2,i)0≤i<N , given by

Yl,i = Ei

g(XN ) +
N−1∑
j=i

fl,j(Xj , Yl,j+1, Zl,j)∆t

 ,

∆tZl,i = Ei

(g(XN ) +
N−1∑
j=i+1

fl,j(Xj , Yl,j+1, Zl,j)∆t)∆Wi

 ,

for i ∈ {0, . . . , N − 1}, l ∈ {1, 2}.
To allow the driver f1,i to depend on the clouds of simulations (necessary in the

analysis), we require that it is measurable w.r.t. FT instead of Fti as usually.
Proposition A.1. Assume that (Ag) and (AX)hold. Moreover, for each i ∈

{0, . . . , N − 1}, assume that f1,i(Xi, Y1,i+1, Z1,i) ∈ L2(FT ) and f2 satisfies (Af ) with
constants Lf2 and Cf2 . Then, for any γ ∈ (0,+∞) satisfying 6q(∆t + 1

γ )L2
f2
≤ 1, we

have for 0 ≤ i < N

|Y1,i − Y2,i|2Γi +
N−1∑
j=i

∆tEi
(
|Z1,j − Z2,j |2

)
Γj

≤ 3CA.1

(
1

γ
+ ∆t

)N−1∑
j=i

∆tEi
(
|f1,j(Xj , Y1,j+1, Z1,j)− f2,j(Xj , Y1,j+1, Z1,j)|2

)
Γj ,

where Γi := (1 + γ∆t)
i and CA.1 := 2q + (1 + T )eT/2.
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