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aDepartment of Mathematics, Faculty of Informatics, Campus Elviña s/n, 15071-A Coruña (Spain)

Abstract

In order to overcome the drawbacks of assuming deterministic volatility coefficients in the standard
LIBOR market models to capture volatility smiles and skews in real markets, several extensions of
LIBOR models to incorporate stochastic volatilities have been proposed. The efficient calibration to
market data of these more complex models becomes a relevant target in practice. The main objective
of the present work is to efficiently calibrate some recent SABR/LIBOR market models to real market
prices of caplets and swaptions. For the calibration we propose a parallelized version of the simulated
annealing algorithm for multi-GPUs. The numerical results clearly illustrate the advantages of using
the proposed multi-GPUs tools when applied to real market data and popular SABR/LIBOR models.
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1. Introduction

Since the seminal papers by Brace, Gatarek and Musiela [1], Jamshidian [2] and Miltersen, Sand-
mann and Sondermann [3] to introduce the Libor Market Model (LMM), several authors extended it to
reproduce volatility smiles appearing in real markets.

The basic LMM has some desirable features: it is flexible, supports multiple factors and rich volatility
structures and it justifies the use of Black’s formula for caplet prices, which is the standard formula
employed in the cap market (see [4]). The last one constitutes its major advantage since it allows an
implicit calibration of at-the-money caps volatilities. In addition, it is possible to calibrate at-the-money
swaption volatilities via closed formula approximations with high accuracy (e.g. the Rebonato swaption
approximation, see [5]). These reasons explain the success of the model and why it has been widely
accepted by the financial industry.

Nevertheless, the standard LMM presents the same drawbacks as the classical Black-Scholes theory.
The major disadvantage comes from the assumption of deterministic volatility coefficients that prevents
matching cap and swaption volatility smiles and skews observed in the markets. This implies that after
calibrating the model to at-the-money options, the model underprices the off-the-money options.

In order to overcome this drawback, there has been great research in extending the standard LMM to
correctly capture market volatility smiles and skews. Different extended LMMs were suggested and can
mainly fall into three categories: local volatility models, stochastic volatility models and jumps-diffusion
models.

In the local volatility models the volatility is a function of the underlying asset price (forward rate)
and the time. These models were introduced by Dupire [6] and Derman and Kani [7], who proposed this
extension for equity and foreign-exchange options. Andersen and Andreasen [8] introduced a special
case of local volatility models, the Constant Elasticity of Variance (CEV), to develop an extension of the
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LMM for capturing the skew. They showed how to obtain swaption smile asymptotically. Their method
is still based in the Rebonato “freezing” argument, see [5], which is not completely mathematically
justified. CEV model can generate a monotone skew of implied volatilities but fails to reproduce a
smile, which is often the case in reality.

Jump-diffusion models for assets were introduced by Merton [9] and Eberlein [10]. Jamshidian
[11], Glasserman and Kou [12], Glasserman and Merener [13] and Belomestny and Schoenmakers [14]
proposed alternative extensions of the LMM by adding jumps in the forward rate dynamics. Lévy LIBOR
models have been studied by Eberlein and Özkan [15]. With these models one can manipulate the slope
and the curvature of a skewed smile by changing jump intensity and jump sizes. While this jump
approach can generate stationary nonmonotonic volatility smiles, it involves several technical difficulties
to develop numerical schemes for the resulting model. Moreover, these models result unsuitable to
generate asymmetric smiles and skews, since the jump component of the forward rate dynamics typically
needs to be of substantial magnitude. While such dynamics are probably reasonable for equity prices
(see [16]) they might be less natural for the term structure of interest rate forwards.

In order to correctly capture the stochastic behaviour of the volatility and to reproduce market smiles,
different stochastic volatility models have been proposed. The main examples are Hull and White
[17] and Heston [18] models. In the Hull and White model, lognormal variance process is modelled.
When the correlation between spot and variance is zero, by using a mixing approach, the authors
obtained asymptotic expansions for options prices. However, the main drawback of this model comes
from its inability to capture nonsymmetric smiles. Heston proposed a model where the volatility is a
mean-reverting square-root process. By using Fourier transforms he derived a closed form formula for
option prices. The main advantages of this model are its nice empirical properties and its analytical
tractability. An application of the Heston model to the LMM appears in Wu and Zhang [19]. They
adopt a multiplicative stochastic factor to the volatility functions of all relevant forward rates. The
stochastic factor follows a square-root diffusion process, and it can be correlated to the forward rates.
They also develop a closed-form formula for swaptions in terms of Fourier transforms. Other extensions
of the LIBOR market model allowing stochastic volatility are those we mention hereafter. Andersen
and Brotherton-Ratcliffe [20] proposed a general framework for extending the LIBOR market model.
Their model allows for nonparametric volatility structures and includes a multiplicative perturbation
of the forward volatility surface by a one-dimensional mean reverting volatility process. This volatility
process is driven by a Brownian motion independent of the Brownian motions driving the forward
rates, so that, under different numeraires, the dynamics of the volatilities remains the same. Using
asymptotic expansion techniques, they provided closed-form pricing formulas for caplets and swaptions
prices. In [21], Piterbarg has extended this approach with a model where forward rates follow shifted-
lognormal diffusion processes with stochastic volatility. The volatility is a mean reverting square-root
process uncorrelated with the Brownian motions governing the dynamics of the forward rates. Using
Markovian projection and parameter averaging, Piterbarg derives fast and accurate European option
pricing techniques under general time-dependent parameters. In [22], Joshi and Rebonato proposed
a shifted-lognormal LIBOR model with a volatility parameterization based on a functional form with
stochastic coefficients. This model has very similar properties to the Andersen and Andreasen [8] one,
among them its major problem being the monotonicity of implied volatility curves. All the stochastic
volatility models presented so far have one single volatility factor.

In [23], Hagan, Kumar, Lesniewski and Woodward proposed a stochastic volatility model known as
the SABR model (acronym for stochastic, alpha, beta and rho, three of the four model parameters),
arguing that local volatility models could not reproduce market volatility smiles and that their predicted
volatility dynamics contradicts market smiles and skews. The forward price of an asset follows, under
the assets canonical measure, a CEV type process with stochastic volatility driven by a driftless process.
The Brownian motion driving the volatility can be correlated with the one associated to the forward
price. The main advantages of the model are the following. Firstly, it is able to correctly capture market
volatility smiles. Secondly, its parameters, which play specific roles in the generation of smiles and skews,
have an intuitive meaning. Thirdly, the authors obtained an analytical approximation for the implied
volatility (known as Hagan formula) through singular perturbation techniques, thus allowing an easy
calibration of the model. Finally, it has become the market standard for interpolating and extrapolating
prices of plain vanilla caplets and swaptions (see [24]). In [25] Oblój improved Hagan formula.
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Several authors have recently tried to unify SABR and LIBOR market models. In the more standard
LIBOR market model [1], the dynamics of each LIBOR forward rate under the corresponding terminal
measure are assumed to be martingales with constant volatility. When adding the SABR model, the
forward rates and volatility processes satisfy the following coupled dynamics

dFi(t) = Vi(t)Fi(t)
βidWi(t),

dVi(t) = σiVi(t)dZi(t).

We note that if the interest rate derivative only depends on one particular forward rate, then it is
convenient to use the corresponding terminal measure. However, when derivatives depend on several
forward rates, a common measure needs to be used. Thus, in the case of pricing complex derivatives a
change of measure produces the appearance of drift terms in forward rates and volatilities dynamics.

In [26, 27], Labordère presents a unification of LIBOR and SABR models using hyperbolic geometry
and heat kernel expansion to fit Taylor expansions for swaption implied volatilities. In [28], Hagan et
al. studied the natural extension of both the LMM and the SABR model. They used the technique of
low noise expansions in order to produce accurate and workable approximations to swaption volatilities.
Mercurio and Morini, arguing that a number of volatility factors lower than the number of state variables
is often chosen, proposed in [29] a SABR/LIBOR market model with one single volatility factor. They
designed a LIBOR market model starting from the reference SABR dynamics, with the purpose of
preserving the SABR closed formula. In [24, 30, 31], Rebonato et al. designed a time-homogeneous
SABR-consistent extension of the LMM. More precisely, they specified financially motivated dynamics
for the LMM forward rates and volatilities that match the SABR prices very close. They also suggested
a simple financially justifiable and computationally affordable way to calibrate the model. In this work
we focus in these last three different SABR/LIBOR market models.

By using heuristic, empirical or very qualitative arguments, in all the here presented extensions of
the LMM, the authors obtain accurate analytical approximations for caps/swaptions to calibrate the
model. In general, swaptions cannot be priced in closed form in the LMM and the main challenge of
these works comes from the analytical approximations to price these swaptions.

All the previous papers argue that the “brute-force” approach, which consists in calibrating the mod-
els using Monte Carlo simulation to price swaptions, is not a practical choice, because each Monte Carlo
evaluation results computationally very expensive. However, in this article we propose the use of rela-
tively old Simulated Annealing type algorithms [32], which reveal as highly efficient when implemented
using High Performance Computing techniques. This combination makes possible the calibration in a
reasonable computational time. Such algorithms have already been successfully applied in other related
contexts, see [33, 34] for more details.

In this work we propose an efficient calibration strategy to some market prices for the parameters
appearing in the three selected SABR/LIBOR market models. More precisely, we consider the market
prices of caplets and swaptions and we pose the corresponding global optimization problems to calibrate
the model parameters. Moreover, we use a simulated annealing algorithm to solve the problem. In order
to speed up the algorithm we propose a parallel implementation in GPUs.

The paper is organized as follows. In Section 2, the SABR/LIBOR market models proposed by
Hagan, Mercurio & Morini and Rebonato are introduced. In Section 3, the calibration procedures are
explained. In Section 4, the obtained numerical results are shown. Finally, in Section 5 some conclusions
are discussed.

2. SABR/LIBOR market models

2.1. Hagan model

This model arises as the natural coupling between SABR and LMM models [28]. Thus, for each
i = 1, . . . ,M let Fi and Vi be the i-th forward rate that matures at time Ti and its corresponding
stochastic volatility, respectively. Then, under a common measure their dynamics are given by

dFi(t) = µFi(t)dt+ Vi(t)Fi(t)
βidWi(t), (1)

dVi(t) = µVi(t)dt+ σiVi(t)dZi(t), (2)
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with the associated correlations denoted by

E[dWi(t) · dWj(t)] = ρi,jdt, E[dWi(t) · dZj(t)] = φi,jdt, E[dZi(t) · dZj(t)] = θi,jdt,

and the initial given values αi = Vi(0) and Fi(0). Thus, the correlation structure is given by the
block-matrix

P =

[
ρ φ
φ> θ

]
,

where the submatrix ρ = (ρi,j) contains all the correlations between the forward rates Fi and Fj , the
submatrix φ = (φi,j) includes the correlations between the forward rates Fi and the instantaneous
volatilities Vj , and the submatrix θ = (θi,j) contains the correlations between the instantaneous volatil-
ities Vi and Vj .

More precisely, if we introduce the bank-account numeraire β(t), defined by

β(t) =
i−1∏
j=0

(
1 + ∆tFj(Tj)

)
if t ∈ [Ti, Ti+1],

then, under the associated spot probability measure, the drift terms of the processes defined in (1) and
(2) are

µFi(t) = Vi(t)Fi(t)
βi

i∑
j=h(t)

τjρi,jVj(t)Fj(t)
βj

1 + τjFj(t)
, µVi(t) = σiVi(t)

i∑
j=h(t)

τjφi,jVj(t)Fj(t)
βj

1 + τjFj(t)
,

where h(t) denotes the index of the first unfixed Fi, i.e.,

h(t) = j, if t ∈ [Tj−1, Tj). (3)

In terms of the moneyness1, defined as ln
( K

Fi(0)

)
, the implied volatility2 for this model is given by

the Hagan second order approximation formula (also including the correction of Oblój in [25]):

σ
(
K,Fi(0)

)
≈ αi
Fi(0)(1−βi)

×

{
1− 1

2
(1− βi − φi,iσiωi) · ln

( K

Fi(0)

)
+

1

12

(
(1− βi)2 + (2− 3φ2

i,i)σ
2
i ω

2
i + 3

(
(1− βi)− φi,iσiωi

))
·
[
ln
( K

Fi(0)

)]2
}
, (4)

where ωi = α−1
i Fi(0)(1−βi).

For the correlations, we consider the following functional parameterizations:

ρi,j = η1 + (1− η1) exp[−λ1|Ti − Tj |], (5)

θi,j = η2 + (1− η2) exp[−λ2|Ti − Tj |], (6)

φi,j = sign(φi,i)
√
|φi,iφj,j | exp

[
−λ3(Ti − Tj)+ − λ3(Tj − Ti)+

]
, (7)

where the terms φi,i have been previously calibrated using (4) for the whole volatilities surfaces. More-
over, parameters ηi, λi and φij are calibrated to fit the smiles of swap rates.

1Moneyness measures the ratio between the strike price, K, and the current value of the underlying, Fi(0). Thus, if
K = Fi(0) then the call or put options are said to be at the money (moneyness is equal zero). If K < Fi(0) then a call
option is said to be in the money (moneyness is negative) and if K > Fi(0) then the call option is said to be out of the
money (moneyness is positive). For put options, out of the money and in the money correspond to negative and positive
moneyness, respectively.

2The implied volatility is the one that reproduces the market price when inserted in Black-Scholes formula.
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2.2. Mercurio & Morini model

For this model [29], the existence of a lognormal common volatility process to all forward rates is
assumed, while each Fi satisfies a particular SDE. More precisely, we have

dFi(t) = µFi(t)dt+ αiV (t)Fi(t)
βdWi(t), (8)

dV (t) = σV (t)dZ(t), (9)

with
E[dWi(t) · dWj(t)] = ρi,jdt, E[dWi(t) · dZ(t)] = φidt,

and the initial given values V (0) = 1 and Fi(0). In this case, the correlation block-matrix is

P =

[
ρ φ
φ> 1

]
,

where φ = (φ1, . . . , φM )>. Under the spot probability measure, the drift terms in equation (8) are

µFi(t) = αiV (t)Fi(t)
β

i∑
j=h(t)

τjρi,jαjV (t)Fj(t)
β

1 + τjFj(t)
,

where h(t) is given by the expression (3).
The calibration is similar to the previous case. By using SABR superindexes, the parameters of the

Hagan implied volatility formula (4) are

βSABRi = β, φSABRi,i = φi, σSABRi = σ,

αSABRi = αi

[
e
∫ Ti
0 Mi(s)ds

]
, where Mi(t) = −σ

i∑
j=h(t)

τjφjαjFj(0)β

1 + τjFj(0)
. (10)

Note that in this case we only need to consider (5) for the forward rates correlations.

2.3. Rebonato model

This model is analogous to Hagan one, except for the dynamics of the volatilities. More precisely,
this model assumes the following dynamics [30]:

dFi(t) = µFi(t)dt+ Vi(t)Fi(t)
βidWi(t), (11)

Vi(t) = κi(t)gi(t), (12)

dκi(t) = µκi(t)dt+ κi(t)hi(t)dZi(t), (13)

where

gi(t) =
(
a+ b(Ti − t)

)
exp

(
− c(Ti − t)

)
+ d, hi(t) =

(
α+ β(Ti − t)

)
exp

(
− γ(Ti − t)

)
+ δ,

and the correlation structure is given by the parameterizations (5)-(7).
Again, using the spot probability measure, the drift terms of the previous processes are

µFi(t) = Vi(t)Fi(t)
βi

i∑
j=h(t)

τjρi,jVj(t)Fj(t)
βj

1 + τjFj(t)
, µκi(t) = κi(t)hi(t)

i∑
j=h(t)

τjφi,jVj(t)Fj(t)
βj

1 + τjFj(t)
.

Furthermore, in this model the parameters of the Hagan implied volatility formula (4) are

βSABRi = βi, φSABRi,i = φi,i, αSABRi = κi(0)

(
1

Ti

∫ Ti

0

gi(t)
2dt

) 1
2

,

σSABRi =
κi(0)

αSABRi Ti

(
2

∫ Ti

0

gi(t)
2ĥi(t)

2tdt

) 1
2

, where ĥi(t) =

√
1

t

∫ t

0

(hi(s))
2
ds. (14)
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3. Model calibration

Model parameters are calibrated in two stages, firstly to caplets3 and secondly to swaptions4. We
note that model parameters can be classified into two categories (volatility and correlation parameters):

• The volatility parameters for each model are given by:

– Hagan: xxx = (φii, σi, αi).

– Mercurio & Morini: xxx = (φi, σ, αi).

– Rebonato: xxx = (φii, κi, parameters of the volatility functions g and h).

• The correlation parameters for each model are given by:

– Hagan: yyy = (η1, λ1, η2, λ2, λ3).

– Mercurio & Morini: yyy = (η1, λ1).

– Rebonato: yyy = (η1, λ1, η2, λ2, λ3).

According to the previous classification, the cost functions to be minimized in the calibration process
are the following:

• Function to calibrate the market prices of caplets:

fc(xxx) =
M∑
i=1

numK∑
j=1

(
σ
(
Kj , Fi(0)

)
− σmarket

(
Kj , Fi(0)

))2

(xxx),

where σ is given by Hagan formula ((4), (10) or (14), depending on the model), σmarket are the
market volatilities and xxx is the vector containing the volatility parameters of the model. Moreover,
M and numK denote the number of maturities and strikes of the caplets, respectively.

• Function to calibrate the market prices of swaptions:

fs(yyy) =
numSws∑
i=1

(SBlack(swaptioni)− SMC(swaptioni))
2

(yyy),

where swaptioni denotes the i-th swaption, SBlack represents the Black formula for swaptions
and SMC(swaptioni) denotes the value of the i-th swaption computed with Monte Carlo method.
Moreover, the vector yyy contains the correlation parameters and numSws is the number of swap-
tions.

In this work, the calibration of the parameters has been performed with a Simulated Annealing (SA)
global optimization algorithm [32]. The idea of the algorithm mimics the annealing process used in
metal formation. The metal is heated so that at high temperature, and therefore with a high energy,
atoms can move freely. Then the metal is cooled down and as temperature decreases the movement of
the atoms is constrained, until they reach an equilibrium state when metal gets cold.

Thus, the algorithm consists in an external decreasing temperature loop. At each fixed temperature
a Metropolis process, that can be seen as a Markov chain, is performed to compute the equilibrium
state at this temperature level. This Markov chain consists of randomly choosing points in the search
domain: if the value of the cost function at a new point decreases, the point is accepted; otherwise
the point is randomly accepted following the Metropolis criterion, where the probability of accepting
points with higher cost function value decreases with temperature. This process is repeated at each
temperature level until temperature is low enough. The pseudocode of the algorithm can be sketched as

3A caplet is a basic interest rate derivative which mainly consists in a call option that pays the positive difference
between a floating rate and a fixed one (strike). A cap contract is a set of caplets associated with related maturity dates
(tenor structure). See [4], for example.

4A swap contract is an interest rate derivative that exchanges two different interest rates. A swaption is an option
giving the right to enter in a swap contract at a given future time. See [4], for example.
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follows, where f denotes the cost function and xxx0 the starting point; the parameters of the algorithm are
the following, initial temperature T0, minimum temperature Tmin, decreasing factor of the temperature
0 < ρ < 1 and length of the Markov chains N :

xxx = xxx0; T = T0;
do

for j = 1 to N do
xxx′ = ComputeNeighbour(xxx);
∆E = f(xxx′)− f(xxx); // Energy increment
if
(
∆E < 0 or AcceptWithProbability exp(−∆E/T )

)
xxx = xxx′; // The trial is accepted

end for
T = ρT ; // with 0 < ρ < 1

while (T > Tmin);

In real applications the hybrid approaches (in which SA provides a starting point for a local min-
imization algorithm) are widely used. In this work we have considered the Nelder-Mead algorithm as
the local minimizer.

As it is well known in the literature, SA involves a great computational cost. In [33], a parallelization
of the SA algorithm has been performed for GPUs. The idea is that at each temperature level the Markov
chains are distributed among the GPU threads. Among all the final reached points of the threads, the one
with the minimum cost function value is selected, thus performing a reduction operation. The selected
point is the starting one for all the threads in the next temperature level. The process is repeated
until reaching a certain value of temperature, see Figure 1 for more details. In [33], the algorithm
was also tested against a benchmark of classical problems in optimization literature and details of the
implementation can be found. The code has been integrated in the CUSIMANN library [35].

Figure 1: Sketch of the parallel SA algorithm using one GPU.

The previous implementation can also be improved using multi-GPUs. In this case, the Markov
chains are firstly distributed among GPUs (for example, if we have two GPUs, half of the chains are
computed by each GPU) and inside each GPU the chains are distributed among the threads. Before
advancing to the next temperature level the best point must be computed in each GPU and then the
best point of all GPUs is computed and used as starting point for all the upcoming threads of the new
temperature level (see Figure 2). This multi-GPU algorithm was presented in [34], where it was used
to calibrate some SABR models to a volatility surface.

In order to calibrate the models with fewer parameters (Hagan and Mercurio & Morini), the mono-
GPU version results to be enough. However, in order to calibrate models with more parameters (Re-
bonato), the multi-GPU version becomes more suitable, since the minimization process is much more
costly.

Section 4 contains the achieved speedups when implied volatility formulas are available.
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Figure 2: Sketch of the parallel SA algorithm using two GPUs and OpenMP.

In the SABR/LIBOR market models, for the general calibration to swaption market prices an explicit
formula to price swaptions is not available. Therefore, we use Monte Carlo simulation technique to
price swaptions, thus leading to two nested Monte Carlo loops: one for the SA and the other one for
the swaption pricer. So, as the Monte Carlo swaption pricer is carried out inside the GPU, the SA
minimization algorithm is run on CPU. At this point we illustrate in Table 1 the obtained speedups in
the LIBOR/SABR pricing with Monte Carlo simulation for different number of paths and values of ∆t.
Notice that speedups around 200 are obtained for 106 paths. In order to use all available GPUs in the
system, we propose a CPU SA parallelization using OpenMP [36]. So, each OpenMP SA thread uses
a GPU to evaluate the Monte Carlo objective function (see Figure 3). This approach could be easily
extrapolated to a cluster of GPUs using MPI [37]. Notice that in this case the sequential Monte Carlo
pricing with CPU leads to prohibited times for the whole calibration procedure.

Number of paths ∆t CPU (s) GPU (s) Speedup

10−1 0.558 0.094 ×5.936

103 10−2 5.580 0.222 ×25.135

10−3 55.956 1.406 ×39.798

10−1 5.572 0.119 ×46.823

104 10−2 55.740 0.390 ×142.923

10−3 557.698 3.081 ×181.012

10−1 55.692 0.323 ×172.421

105 10−2 558.331 2.886 ×193.462

10−3 5601.292 28.550 ×196.192

10−1 557.696 2.375 ×234.819

106 10−2 5588.070 27.950 ×199.931

10−3 55904.184 283.970 ×196.866

Table 1: Execution times (in seconds) and speedups in the pricing of caplets with Monte Carlo and using single precision
(Hagan model).

4. Numerical results

In this section we present a test where we calibrate Hagan, Mercurio & Morini and Rebonato models
to real market data. Market data correspond to the 6 months EURIBOR rate. We show in Table 2 the
discount factor curve, in Table 3 the smiles of the forward rates and in Table 4 the smiles of the swap
rates.
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Figure 3: Sketch of the parallel SA using OpenMP and considering a Monte Carlo method in the cost function.

Numerical experiments have been performed with the following hardware and software configura-
tions: two GPUs Nvidia Geforce GTX470, two quad-core CPUs Xeon E5620 clocked at 2.4 Ghz with
16 GB of RAM, CentOS Linux, Nvidia CUDA SDK 4.0 and GNU C/C++compilers 4.1.2.

Date P (0, t) Date P (0, t) Date P (0, t)

21/11/2011 1 19/09/2013 0.97713559399 23/11/2021 0.77845715189
22/11/2011 0.99998041705 25/11/2013 0.97412238564 23/11/2023 0.72565274014
23/02/2012 0.99622554093 24/11/2014 0.95730277130 23/11/2026 0.65317498182
21/03/2012 0.99575871128 23/11/2015 0.93611709432 24/11/2031 0.56564376817
21/06/2012 0.99263851754 23/11/2016 0.91144251116 24/11/2036 0.50321672724
20/09/2012 0.98966227733 23/11/2017 0.88505982818 25/11/2041 0.45392855927
19/12/2012 0.98673874563 23/11/2018 0.85798260233 23/11/2051 0.34982415774
19/03/2013 0.98372608449 25/11/2019 0.83116001862 23/11/2061 0.26125094146
20/06/2013 0.98048414547 23/11/2020 0.80486541573 23/11/2071 0.19657659346

Table 2: Discount factor curve.

-80% -60% -40% -20% 0% 20% 40% 60% 80%
21-05-12 142.61% 117.05% 97.26% 82.58% 72.29% 70.89% 69.49% 68.08% 66.67%
21-11-12 112.74% 99.23% 88.27% 79.62% 73.03% 71.95% 70.87% 69.77% 68.69%
21-05-13 91.55% 83.75% 77.09% 71.50% 67.93% 67.10% 66.41% 65.88% 65.49%
21-11-13 64.82% 60.95% 57.08% 53.21% 52.49% 51.34% 50.61% 50.30% 50.46%
21-05-14 66.96% 61.84% 56.69% 52.43% 50.32% 48.72% 47.70% 47.14% 46.97%
21-11-14 69.20% 62.75% 56.30% 51.65% 48.19% 46.19% 44.91% 44.12% 43.66%
21-05-15 71.49% 63.67% 55.92% 50.89% 46.19% 43.83% 42.32% 41.35% 40.64%
21-11-15 73.89% 64.61% 55.54% 50.13% 44.25% 41.56% 39.84% 38.71% 37.78%
21-05-16 76.34% 65.56% 55.16% 49.39% 42.40% 39.43% 37.54% 36.26% 35.15%
21-11-16 78.90% 66.53% 54.78% 48.65% 40.61% 37.38% 35.34% 33.94% 32.68%
21-05-17 81.50% 67.50% 54.41% 47.94% 38.93% 35.47% 33.30% 31.81% 30.42%
21-11-17 84.24% 68.50% 54.03% 47.22% 37.29% 33.63% 31.36% 29.78% 28.28%
21-05-18 87.02% 69.50% 53.67% 46.53% 35.74% 31.92% 29.55% 27.90% 26.32%

Table 3: Smiles of forward rates. Fixing dates (first column) and moneyness (first row).

4.1. Hagan model

4.1.1. Calibration to caplets

In Table 5 the calibrated parameters with SABR formula (4) are shown. The execution time was
8.739 seconds, 8.565 seconds employed by the mono-GPU SA (launched with a relaxed configuration,
specifically, T0 = 10, Tmin = 0.01, ρ = 0.99, N = 10, w = 256 × 64, the cost function was evaluated
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-80% -60% -40% -20% 0% 20% 40% 60% 80%

1
y
e
a
r 21/05/2012 122.30% 102.40% 87.12% 76.45% 70.40% 66.47% 64.20% 63.03% 62.56%

21/11/2012 102.86% 89.97% 79.85% 72.49% 67.90% 64.58% 62.16% 60.39% 59.19%
21/05/2013 95.64% 83.17% 73.42% 66.40% 62.10% 59.03% 56.84% 55.26% 54.18%
21/11/2013 88.11% 76.06% 66.69% 60.00% 56.00% 53.18% 51.22% 49.84% 48.87%

2
y
e
a
rs 21/05/2012 111.50% 91.60% 76.32% 65.65% 59.60% 55.67% 53.40% 52.23% 51.76%

21/11/2012 89.66% 76.77% 66.65% 59.29% 54.70% 51.38% 48.96% 47.19% 45.99%
21/05/2013 82.94% 70.47% 60.72% 53.70% 49.40% 46.33% 44.14% 42.56% 41.48%
21/11/2013 77.81% 65.76% 56.39% 49.70% 45.70% 42.88% 40.92% 39.54% 38.57%

3
y
e
a
rs 21/05/2012 106.40% 86.50% 71.22% 60.55% 54.50% 50.57% 48.30% 47.13% 46.66%

21/11/2012 83.66% 70.77% 60.65% 53.29% 48.70% 45.38% 42.96% 41.19% 39.99%
21/05/2013 78.34% 65.87% 56.12% 49.10% 44.80% 41.73% 39.54% 37.96% 36.88%
21/11/2013 73.61% 61.56% 52.19% 45.50% 41.50% 38.68% 36.72% 35.34% 34.37%

4
y
e
a
rs 21/05/2012 101.90% 82.00% 66.72% 56.05% 50.00% 46.07% 43.80% 42.63% 42.16%

21/11/2012 80.26% 67.37% 57.25% 49.89% 45.30% 41.98% 39.56% 37.79% 36.59%
21/05/2013 75.24% 62.77% 53.02% 46.00% 41.70% 38.63% 36.44% 34.86% 33.78%
21/11/2013 70.91% 58.86% 49.49% 42.80% 38.80% 35.98% 34.02% 32.64% 31.67%

5
y
e
a
rs 21/05/2012 96.15% 74.25% 58.83% 49.88% 47.40% 45.74% 44.61% 43.76% 43.05%

21/11/2012 89.58% 68.82% 54.14% 45.54% 43.00% 39.36% 37.33% 36.15% 35.37%
21/05/2013 83.91% 64.51% 50.71% 42.51% 39.90% 36.48% 34.59% 33.50% 32.76%
21/11/2013 79.13% 61.09% 48.17% 40.37% 37.70% 34.50% 32.74% 31.75% 31.05%

Table 4: Smiles of swap rates. Length of the underlying swaps (first column), swaptions maturities (second column) and
moneyness (first row).

112738304 times) and 0.174 seconds to the Nelder-Mead algorithm. The sequential time of the mini-
mization with SA is 971.960 seconds. Thus, the speedup of the proposed SA parallelization is 113.480
times.

φii σi αi φii σi αi

F1 −0.4712 1.0000 0.0847 F8 −0.4552 0.4658 0.0723
F2 −0.1879 0.7354 0.0830 F9 −0.5215 0.5369 0.0703
F3 0.0719 0.5260 0.0822 F10 −0.5663 0.6116 0.0706
F4 0.2636 0.3329 0.0686 F11 −0.5973 0.6858 0.0684
F5 0.0273 0.3242 0.0662 F12 −0.6204 0.7609 0.0674
F6 −0.1942 0.3505 0.0714 F13 −0.6378 0.8337 0.0652
F7 −0.3514 0.4008 0.0696

Table 5: Hagan model, calibration to caplets with SABR formula (4): calibrated parameters.

In Table 6 market vs. model volatilities (both in %) for the first twelve smiles and the moneyness
varying from −40% to 40% are shown. In addition, the mean relative error (MRE) considering the
whole set of smiles is presented.

In order to validate the algorithm we also performed the equivalent calibration with Monte Carlo
simulation thus obtaining the same parameters as in Table 5, except φ11 = 0.0287. Moreover the
computational time is approximately 2 hours. We note that with formula (4) the mean absolute error
(MAE, in %) in prices is 4.14 × 10−2, while using Monte Carlo simulation the obtained MAE is
4.08× 10−2.

In Figure 4 the model fitting for the smiles of all forward rates is shown. Market volatilities are
plotted with triangles, while model volatilities are shown in continuous line.

4.1.2. Calibration to swaptions

The calibrated parameters are η1 = 0.814904, λ1 = 3.378797, η2 = 0.975928, λ2 = 3.777324 and
λ3 = 0.013940. In Table 7 market vs. model swaptions prices (in %) for the first fourteen swaptions
and the the moneyness varying from −40% to 40% are shown, each pair with its corresponding absolute
error. In addition, for the whole set of swaptions the mean absolute error (MAE) is presented.

In Figures 5 and 6 the model fitting when considering the whole swaption matrix is shown. Market
prices are shown using triangles and the model ones using stars.

In the forthcoming sections 4.2 and 4.3, the analogous analysis for the other two models using the
same scheme for figures and tables is presented.

10



Moneyness Smile of F1 Smile of F2

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 97.26 100.61 3.44× 10−2 88.27 89.06 8.97× 10−3

−20% 82.58 87.53 6.00× 10−2 79.62 80.85 1.55× 10−2

0% 72.29 77.45 7.13× 10−2 73.03 74.70 2.28× 10−2

20% 70.89 70.36 7.48× 10−3 71.95 70.61 1.85× 10−2

40% 69.49 66.26 4.64× 10−2 70.87 68.59 3.21× 10−2

Moneyness Smile of F3 Smile of F4

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 77.09 77.41 4.08× 10−3 57.08 57.14 1.05× 10−3

−20% 71.50 72.46 1.34× 10−2 53.21 54.37 2.18× 10−2

0% 67.93 68.77 1.24× 10−2 52.49 52.29 3.82× 10−3

20% 67.10 66.34 1.13× 10−2 51.34 50.90 8.56× 10−3

40% 66.41 65.17 1.88× 10−2 50.61 50.19 8.23× 10−3

Moneyness Smile of F5 Smile of F6

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 56.69 56.92 4.05× 10−3 56.30 56.74 7.69× 10−3

−20% 52.43 53.22 1.51× 10−2 51.65 52.10 8.76× 10−3

0% 50.31 50.37 1.07× 10−3 48.19 48.48 6.03× 10−3

20% 48.72 48.36 7.29× 10−3 46.19 45.89 6.52× 10−3

40% 47.70 47.21 1.03× 10−2 44.91 44.32 1.31× 10−2

Moneyness Smile of F7 Smile of F8

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.92 56.59 1.19× 10−2 55.54 56.47 1.68× 10−2

−20% 50.89 51.04 3.00× 10−3 50.13 50.01 2.35× 10−3

0% 46.19 46.70 1.09× 10−2 44.25 44.95 1.59× 10−2

20% 43.83 43.56 6.33× 10−3 41.56 41.28 6.80× 10−3

40% 42.32 41.61 1.67× 10−2 39.84 39.00 2.12× 10−2

Moneyness Smile of F9 Smile of F10

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.16 56.39 2.22× 10−2 54.78 56.34 2.85× 10−2

−20% 49.39 49.04 7.16× 10−3 48.65 48.09 1.15× 10−2

0% 42.40 43.28 2.07× 10−2 40.61 41.65 2.54× 10−2

20% 39.43 39.11 8.06× 10−3 37.38 37.00 1.02× 10−2

40% 37.54 36.53 2.68× 10−2 35.34 34.15 3.36× 10−2

Moneyness Smile of F11 Smile of F12

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 54.41 56.33 3.52× 10−2 54.03 56.35 4.28× 10−2

−20% 47.94 47.20 1.54× 10−2 47.22 46.34 1.87× 10−2

0% 38.93 40.09 2.99× 10−2 37.29 38.57 3.44× 10−2

20% 35.47 35.00 1.33× 10−2 33.63 33.04 1.76× 10−2

40% 33.30 31.92 4.16× 10−2 31.36 29.75 5.12× 10−2

MRE = 1.80× 10−2

Table 6: Hagan model, calibration to caplets, σmarket vs. σmodel.
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Figure 4: Hagan model, σmarket vs. σmodel, smiles of F1, . . . , F13.
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Moneyness 0.5× 1 swaptions 1× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.4866 0.4842 2.40× 10−3 0.5917 0.5758 1.59× 10−2

−20% 0.3562 0.3628 6.60× 10−3 0.4661 0.4602 5.90× 10−3

0% 0.2356 0.2427 7.10× 10−3 0.3467 0.3450 1.70× 10−3

20% 0.1363 0.1390 2.70× 10−3 0.2394 0.2399 5.00× 10−4

40% 0.0680 0.0659 2.10× 10−3 0.1517 0.1539 2.20× 10−3

Moneyness 1.5× 1 swaptions 2× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.7357 0.6840 5.17× 10−2 0.8184 0.7490 6.94× 10−2

−20% 0.5908 0.5548 3.60× 10−2 0.6603 0.6068 5.35× 10−2

0% 0.4536 0.4270 2.66× 10−2 0.5118 0.4651 4.67× 10−2

20% 0.3277 0.3095 1.82× 10−2 0.3754 0.3340 4.14× 10−2

40% 0.2213 0.2101 1.12× 10−2 0.2587 0.2229 3.58× 10−2

Moneyness 0.5× 2 swaptions 1× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.0570 1.0144 4.26× 10−2 1.2427 1.1963 4.64× 10−2

−20% 0.7440 0.7275 1.65× 10−2 0.9322 0.9163 1.59× 10−2

0% 0.4555 0.4573 1.80× 10−3 0.6394 0.6460 6.60× 10−3

20% 0.2299 0.2418 1.19× 10−2 0.3886 0.4116 2.30× 10−2

40% 0.0925 0.1046 1.21× 10−2 0.2037 0.2343 3.06× 10−2

Moneyness 1.5× 2 swaptions 2× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.4884 1.4260 6.24× 10−2 1.6938 1.6160 7.78× 10−2

−20% 1.1367 1.1168 1.99× 10−2 1.3077 1.2732 3.45× 10−2

0% 0.8059 0.8141 8.20× 10−3 0.9466 0.9320 1.46× 10−2

20% 0.5154 0.5446 2.92× 10−2 0.6269 0.6229 4.00× 10−3

40% 0.2919 0.3304 3.85× 10−2 0.3736 0.3748 1.20× 10−3

Moneyness 0.5× 3 swaptions 1× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.7380 1.6538 8.42× 10−2 2.0341 1.9648 6.93× 10−2

−20% 1.1980 1.1506 4.74× 10−2 1.4851 1.4628 2.23× 10−2

0% 0.7011 0.6838 1.73× 10−2 0.9696 0.9812 1.16× 10−2

20% 0.3242 0.3277 3.50× 10−3 0.5413 0.5748 3.35× 10−2

40% 0.1128 0.1214 8.60× 10−3 0.2479 0.2882 4.03× 10−2

Moneyness 1.5× 3 swaptions 2× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.3898 2.3012 8.86× 10−2 2.6885 2.6037 8.48× 10−2

−20% 1.7850 1.7586 2.64× 10−2 2.0311 2.0155 1.56× 10−2

0% 1.2175 1.2288 1.13× 10−2 1.4178 1.4296 1.18× 10−2

20% 0.7304 0.7676 3.72× 10−2 0.8856 0.9064 2.08× 10−2

40% 0.3749 0.4203 4.54× 10−2 0.4832 0.5044 2.12× 10−2

Moneyness 0.5× 4 swaptions 1× 4 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.5381 2.4226 1.15× 10−1 2.9426 2.8472 9.54× 10−2

−20% 1.7151 1.6480 6.71× 10−2 2.1123 2.0763 3.60× 10−2

0% 0.9584 0.9314 2.70× 10−2 1.3344 1.3375 3.10× 10−3

20% 0.4031 0.4035 4.00× 10−4 0.7016 0.7295 2.79× 10−2

40% 0.1188 0.1250 6.20× 10−3 0.2907 0.3268 3.61× 10−2

MAE = 6.19× 10−2

Table 7: Hagan model, calibration to swaptions, SBlack vs. SMC , prices in %.
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Figure 5: Hagan model, calibration to swaptions, SBlack vs. SMC , part I.
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Figure 6: Hagan model, calibration to swaptions, SBlack vs. SMC , part II.
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4.2. Mercurio & Morini model

4.2.1. Calibration to caplets

In Table 8 the calibrated parameters are shown. The execution time was 9.165 seconds, 9.124
seconds employed by the mono-GPU SA (launched with a relaxed configuration, specifically, T0 = 10,
Tmin = 0.01, ρ = 0.99, N = 10, w = 256 × 64, the cost function was evaluated 112738304 times) and
0.041 seconds to the Nelder-Mead algorithm. The speedup is very similar to the previous Hagan case.

φi αi φi αi

F1 −0.7549 0.0888 F8 −0.3661 0.0696
F2 −0.2309 0.0842 F9 −0.4770 0.0683
F3 0.0666 0.0817 F10 −0.5760 0.0693
F4 0.1698 0.0662 F11 −0.6615 0.0682
F5 0.0302 0.0635 F12 −0.7380 0.0682
F6 −0.1098 0.0684 F13 −0.8044 0.0669
F7 −0.2417 0.0667

σ = 0.5986

Table 8: Mercurio & Morini model, calibration to caplets with SABR formula (4): calibrated parameters.

In Table 9 market vs. model volatilities (both in %) for the first twelve smiles and the moneyness
varying from −40% to 40% are shown. In addition, the mean relative error (MRE) considering the
whole set of smiles is presented.

We also performed the equivalent calibration with Monte Carlo simulation thus obtaining the same
parameters as in Table 8, except for φ1 = −0.5714. We note that the MAE in prices is 3.83 × 10−2

with formula (4), while MAE is 3.84× 10−2 using Monte Carlo.
In Figure 7 the the model fitting for the smiles of all forward rates is shown. Market volatilities are

plotted with triangles, while model volatilities are shown in continuous line.

4.2.2. Calibration to swaptions

The calibrated parameters are η1 = 0.779175 and λ1 = 2.722489. In Table 10 market vs. model
swaptions prices (in %) for the first fourteen swaptions and the the moneyness varying from −40%
to 40% are shown, each pair with its corresponding absolute error. In addition, for the whole set of
swaptions the mean absolute error (MAE) is presented.

In Figures 8 and 9 the model fitting when considering the whole swaption matrix is shown. Market
prices are shown using triangles and the model ones using stars.

4.3. Rebonato model

4.3.1. Calibration to caplets

The calibrated parameters are shown in Table 11. The execution time was 146.729 seconds, 119.913
seconds employed by the multi-GPU SA (launched with a more demanding configuration, specifically,
T0 = 10, Tmin = 0.01, ρ = 0.99, N = 100, w = 256× 64, #GPUs = 2, the cost function was evaluated
roughly two billion times) and the Nelder-Mead local optimization algorithm consumed the remaining
time. When using the multi-GPU approach (see Figure 2) we obtain a speedup of 1.88 with respect to
mono-GPU version, and of 207.796 with respect to sequential computations.

In Table 12, market vs. model volatilities for the smiles of F1 to F12 and the moneyness −40% to
40% are shown. The mean relative error considering all smiles is presented.

We also performed the equivalent calibration with Monte Carlo simulation thus obtaining the same
parameters as in Table 11, except for φ11 = 0.0940. We note that the MAE in prices is 3.43 × 10−2

with formula (4), while MAE is 3.39× 10−2 using Monte Carlo.
In Figure 10 the model fitting for the smiles of all forward rates is shown. Market volatilities are

plotted with triangles, while model volatilities are shown in continuous line.
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Moneyness Smile of F1 Smile of F2

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 97.26 102.19 5.07× 10−2 88.27 89.59 1.50× 10−2

−20% 82.58 90.71 9.85× 10−2 79.62 81.81 2.75× 10−2

0% 72.29 81.16 1.23× 10−1 73.03 75.77 3.74× 10−2

20% 70.89 73.55 3.76× 10−2 71.95 71.47 6.69× 10−3

40% 69.49 67.88 2.31× 10−2 70.87 68.91 2.77× 10−2

Moneyness Smile of F3 Smile of F4

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 77.09 77.13 4.45× 10−4 57.08 55.98 1.92× 10−2

−20% 71.50 71.99 6.92× 10−3 53.21 52.54 1.26× 10−2

0% 67.93 68.27 5.11× 10−3 52.49 50.39 4.00× 10−2

20% 67.10 65.96 1.69× 10−2 51.34 49.53 3.51× 10−2

40% 66.41 65.07 2.03× 10−2 50.61 49.97 1.27× 10−2

Moneyness Smile of F5 Smile of F6

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 56.69 55.76 1.65× 10−2 56.30 55.70 1.08× 10−2

−20% 52.43 51.25 2.25× 10−2 51.65 50.20 2.81× 10−2

0% 50.31 48.26 4.08× 10−2 48.19 46.38 3.77× 10−2

20% 48.72 46.79 3.96× 10−2 46.19 44.25 4.21× 10−2

40% 47.70 46.83 1.82× 10−2 44.91 43.79 2.47× 10−2

Moneyness Smile of F7 Smile of F8

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.92 55.77 2.78× 10−3 55.54 55.93 7.03× 10−3

−20% 50.89 49.40 2.92× 10−2 50.13 48.83 2.60× 10−2

0% 46.19 44.82 2.97× 10−2 44.25 43.55 1.58× 10−2

20% 43.83 42.03 4.12× 10−2 41.56 40.09 3.54× 10−2

40% 42.32 41.02 3.08× 10−2 39.84 38.45 3.49× 10−2

Moneyness Smile of F9 Smile of F10

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.16 56.14 1.78× 10−2 54.78 56.39 2.94× 10−2

−20% 49.39 48.45 1.91× 10−2 48.65 48.23 8.78× 10−3

0% 42.40 42.56 3.80× 10−3 40.61 41.81 2.95× 10−2

20% 39.43 38.48 2.39× 10−2 37.38 37.15 6.21× 10−3

40% 37.54 36.21 3.53× 10−2 35.34 34.24 3.12× 10−2

Moneyness Smile of F11 Smile of F12

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 54.41 56.66 4.14× 10−2 54.03 56.96 5.41× 10−2

−20% 47.94 48.13 3.97× 10−3 47.22 48.13 1.93× 10−2

0% 38.93 41.27 6.02× 10−2 37.29 40.89 9.65× 10−2

20% 35.47 36.08 1.72× 10−2 33.63 35.21 4.70× 10−2

40% 33.30 32.57 2.22× 10−2 31.36 31.11 7.79× 10−3

MRE = 3.11× 10−2

Table 9: Mercurio & Morini model, calibration to caplets, σmarket vs. σmodel.

4.3.2. Calibration to swaptions

The calibrated parameters are η1 = 0.650997, λ1 = 3.617546, η2 = 0.999000, λ2 = 0.380984 and
λ3 = 0.001000. Using two GPUs the execution time was approximately 2 hours, as in the previous
models (by using a cluster of GPUs time could be substantially reduced). In Table 13 market vs. model
swaptions prices (in %) for the first fourteen swaptions and the the moneyness varying from −40%
to 40% are shown, each pair with its corresponding absolute error. In addition, for the whole set of
swaptions the mean absolute error is presented.

In Figures 11 and 12 the model fitting when considering the whole swaption matrix is shown. Market
prices are shown using triangles, and the model ones using stars.

In the recent paper [31] an approximation formula for swaptions is proposed, so that we used it to
check the obtained results with our Monte Carlo simulation. Thus, the calibration with the approxi-
mation formula provides the parameters η1 = 0.619778, λ1 = 3.617546, η2 = 0.858516, λ2 = 0.380984
and λ3 = 0.001000. Moreover the obtained MAE with the approximation formula for swaptions is
1.05 × 10−1, a bit larger than the one obtained with Monte Carlo (MAE = 6.30 × 10−2 as shown in
Table 13).
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Figure 7: Mercurio & Morini model, σmarket vs. σmodel, smiles of F1, . . . , F13.
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Moneyness 0.5× 1 swaptions 1× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.4866 0.4870 4.00× 10−4 0.5917 0.5870 4.70× 10−3

−20% 0.3562 0.3670 1.08× 10−2 0.4661 0.4699 3.80× 10−3

0% 0.2356 0.2478 1.22× 10−2 0.3467 0.3517 5.00× 10−3

20% 0.1363 0.1427 6.40× 10−3 0.2394 0.2422 2.80× 10−3

40% 0.0680 0.0657 2.30× 10−3 0.1517 0.1514 3.00× 10−4

Moneyness 1.5× 1 swaptions 2× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.7357 0.6872 4.85× 10−2 0.8184 0.7465 7.19× 10−2

−20% 0.5908 0.5516 3.92× 10−2 0.6603 0.5959 6.44× 10−2

0% 0.4536 0.4170 3.66× 10−2 0.5118 0.4469 6.49× 10−2

20% 0.3277 0.2951 3.26× 10−2 0.3754 0.3137 6.17× 10−2

40% 0.2213 0.1957 2.56× 10−2 0.2587 0.2078 5.09× 10−2

Moneyness 0.5× 2 swaptions 1× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.0570 1.0338 2.32× 10−2 1.2427 1.2143 2.84× 10−2

−20% 0.7440 0.7452 1.20× 10−3 0.9322 0.9266 5.60× 10−3

0% 0.4555 0.4679 1.24× 10−2 0.6394 0.6460 6.60× 10−3

20% 0.2299 0.2428 1.29× 10−2 0.3886 0.4038 1.52× 10−2

40% 0.0925 0.0984 5.90× 10−3 0.2037 0.2242 2.05× 10−2

Moneyness 1.5× 2 swaptions 2× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.4884 1.4382 5.02× 10−2 1.6938 1.6298 6.40× 10−2

−20% 1.1367 1.1173 1.94× 10−2 1.3077 1.2746 3.31× 10−2

0% 0.8059 0.8024 3.50× 10−3 0.9466 0.9220 2.46× 10−2

20% 0.5154 0.5266 1.12× 10−2 0.6269 0.6116 1.53× 10−2

40% 0.2919 0.3182 2.63× 10−2 0.3736 0.3751 1.50× 10−3

Moneyness 0.5× 3 swaptions 1× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.7380 1.6737 6.43× 10−2 2.0341 1.9880 4.61× 10−2

−20% 1.1980 1.1659 3.21× 10−2 1.4851 1.4761 9.00× 10−3

0% 0.7011 0.6868 1.43× 10−2 0.9696 0.9803 1.07× 10−2

20% 0.3242 0.3198 4.40× 10−3 0.5413 0.5666 2.53× 10−2

40% 0.1128 0.1112 1.60× 10−3 0.2479 0.2825 3.46× 10−2

Moneyness 1.5× 3 swaptions 2× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.3898 2.3268 6.30× 10−2 2.6885 2.6302 5.83× 10−2

−20% 1.7850 1.7690 1.60× 10−2 2.0311 2.0258 5.30× 10−3

0% 1.2175 1.2215 4.00× 10−3 1.4178 1.4218 4.00× 10−3

20% 0.7304 0.7526 2.22× 10−2 0.8856 0.8935 7.90× 10−3

40% 0.3749 0.4168 4.19× 10−2 0.4832 0.5068 2.36× 10−2

Moneyness 0.5× 4 swaptions 1× 4 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.5381 2.4434 9.47× 10−2 2.9426 2.8764 6.62× 10−2

−20% 1.7151 1.6621 5.30× 10−2 2.1123 2.0935 1.88× 10−2

0% 0.9584 0.9298 2.86× 10−2 1.3344 1.3357 1.30× 10−3

20% 0.4031 0.3918 1.13× 10−2 0.7016 0.7174 1.58× 10−2

40% 0.1188 0.1160 2.80× 10−3 0.2907 0.3205 2.98× 10−2

MAE = 5.50× 10−2

Table 10: Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC , prices in %.

φii κi φii κi

F1 −0.4060 0.0021 F8 −0.4218 0.0010
F2 −0.1935 0.0017 F9 −0.5355 0.0010
F3 0.0684 0.0015 F10 −0.6466 0.0010
F4 0.1825 0.0011 F11 −0.7413 0.0010
F5 0.0158 0.0010 F12 −0.8175 0.0010
F6 −0.1306 0.0010 F13 −1.0000 0.0010
F7 −0.2665 0.0010

a = 3.7789, b = 44.7668, α = 0.0010, β = 19.5812,
c = 0.3076, d = 25.3412. γ = 6.2339, δ = 0.5533.

Table 11: Rebonato model, calibration to caplets with SABR formula (4): calibrated parameters.
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Figure 8: Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC , part I.
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Figure 9: Mercurio & Morini model, calibration to swaptions, SBlack vs. SMC , part II.
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Moneyness Smile of F1 Smile of F2

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 97.26 99.64 2.45× 10−2 88.27 89.14 9.83× 10−3

−20% 82.58 85.31 3.31× 10−2 79.62 81.00 1.73× 10−2

0% 72.29 74.78 3.45× 10−2 73.03 74.86 2.51× 10−2

20% 70.89 68.05 4.00× 10−2 71.95 70.74 1.68× 10−2

40% 69.49 65.12 6.28× 10−2 70.87 68.63 3.16× 10−2

Moneyness Smile of F3 Smile of F4

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 77.09 77.26 2.13× 10−3 57.08 56.36 1.27× 10−2

−20% 71.50 72.20 9.78× 10−3 53.21 53.13 1.56× 10−3

0% 67.93 68.49 8.29× 10−3 52.49 51.00 2.85× 10−2

20% 67.10 66.13 1.45× 10−2 51.34 49.96 2.69× 10−2

40% 66.41 65.12 1.95× 10−2 50.61 50.02 1.17× 10−2

Moneyness Smile of F5 Smile of F6

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 56.69 55.85 1.48× 10−2 56.30 56.13 3.11× 10−3

−20% 52.43 51.58 1.61× 10−2 51.65 50.99 1.28× 10−2

0% 50.31 48.60 3.42× 10−2 48.19 47.25 1.96× 10−2

20% 48.72 46.89 3.76× 10−2 46.19 44.92 2.75× 10−2

40% 47.70 46.46 2.59× 10−2 44.91 44.00 2.01× 10−2

Moneyness Smile of F7 Smile of F8

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.92 56.74 1.46× 10−2 55.54 55.75 3.90× 10−3

−20% 50.89 50.82 1.45× 10−3 50.13 49.08 2.09× 10−2

0% 46.19 46.39 4.14× 10−3 44.25 43.95 6.82× 10−3

20% 43.83 43.44 8.87× 10−3 41.56 40.35 2.92× 10−2

40% 42.32 41.99 7.69× 10−3 39.84 38.28 3.92× 10−2

Moneyness Smile of F9 Smile of F10

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 55.16 57.11 3.54× 10−2 54.78 56.57 3.26× 10−2

−20% 49.39 49.84 9.09× 10−3 48.65 48.84 3.91× 10−3

0% 42.40 44.10 4.00× 10−2 40.61 42.61 4.90× 10−2

20% 39.43 39.89 1.17× 10−2 37.38 37.85 1.26× 10−2

40% 37.54 37.21 8.79× 10−3 35.34 34.59 2.13× 10−2

Moneyness Smile of F11 Smile of F12

σmarket σmodel
|σmarket−σmodel|

σmarket
σmarket σmodel

|σmarket−σmodel|
σmarket

−40% 54.41 57.20 5.13× 10−2 54.03 56.71 4.95× 10−2

−20% 47.94 49.07 2.36× 10−2 47.22 48.33 2.34× 10−2

0% 38.93 42.36 8.81× 10−2 37.29 41.29 1.07× 10−1

20% 35.47 37.07 4.51× 10−2 33.63 35.59 5.82× 10−2

40% 33.30 33.21 2.95× 10−3 31.36 31.23 3.95× 10−3

MRE = 2.93× 10−2

Table 12: Rebonato model, calibration to caplets, σmarket vs. σmodel.
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Figure 10: Rebonato model, σmarket vs. σmodel, smiles of F1, . . . , F13.
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Moneyness 0.5× 1 swaptions 1× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.4866 0.4870 4.00× 10−4 0.5917 0.5839 7.80× 10−3

−20% 0.3562 0.3669 1.07× 10−2 0.4661 0.4693 3.20× 10−3

0% 0.2356 0.2477 1.21× 10−2 0.3467 0.3546 7.90× 10−3

20% 0.1363 0.1441 7.80× 10−3 0.2394 0.2488 9.40× 10−3

40% 0.0680 0.0699 1.90× 10−3 0.1517 0.1606 8.90× 10−3

Moneyness 1.5× 1 swaptions 2× 1 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 0.7357 0.6902 4.55× 10−2 0.8184 0.7465 7.19× 10−2

−20% 0.5908 0.5612 2.96× 10−2 0.6603 0.6028 5.75× 10−2

0% 0.4536 0.4339 1.97× 10−2 0.5118 0.4620 4.98× 10−2

20% 0.3277 0.3171 1.06× 10−2 0.3754 0.3354 4.00× 10−2

40% 0.2213 0.2188 2.50× 10−3 0.2587 0.2308 2.79× 10−2

Moneyness 0.5× 2 swaptions 1× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.0570 1.0333 2.37× 10−2 1.2427 1.2175 2.52× 10−2

−20% 0.7440 0.7514 7.40× 10−3 0.9322 0.9400 7.80× 10−3

0% 0.4555 0.4841 2.86× 10−2 0.6394 0.6713 3.19× 10−2

20% 0.2299 0.2674 3.75× 10−2 0.3886 0.4369 4.83× 10−2

40% 0.0925 0.1237 3.12× 10−2 0.2037 0.2578 5.41× 10−2

Moneyness 1.5× 2 swaptions 2× 2 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.4884 1.4357 5.27× 10−2 1.6938 1.6184 7.54× 10−2

−20% 1.1367 1.1256 1.11× 10−2 1.3077 1.2721 3.56× 10−2

0% 0.8059 0.8250 1.91× 10−2 0.9466 0.9309 1.57× 10−2

20% 0.5154 0.5599 4.45× 10−2 0.6269 0.6292 2.30× 10−3

40% 0.2919 0.3520 6.01× 10−2 0.3736 0.3931 1.95× 10−2

Moneyness 0.5× 3 swaptions 1× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 1.7380 1.6792 5.88× 10−2 2.0341 1.9953 3.88× 10−2

−20% 1.1980 1.1850 1.30× 10−2 1.4851 1.4966 1.15× 10−2

0% 0.7011 0.7235 2.24× 10−2 0.9696 1.0176 4.80× 10−2

20% 0.3242 0.3653 4.11× 10−2 0.5413 0.6130 7.17× 10−2

40% 0.1128 0.1484 3.56× 10−2 0.2479 0.3241 7.62× 10−2

Moneyness 1.5× 3 swaptions 2× 3 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.3898 2.3112 7.86× 10−2 2.6885 2.6048 8.37× 10−2

−20% 1.7850 1.7661 1.89× 10−2 2.0311 2.0098 2.13× 10−2

0% 1.2175 1.2360 1.85× 10−2 1.4178 1.4192 1.40× 10−3

20% 0.7304 0.7797 4.93× 10−2 0.8856 0.9005 1.49× 10−2

40% 0.3749 0.4417 6.68× 10−2 0.4832 0.5124 2.92× 10−2

Moneyness 0.5× 4 swaptions 1× 4 swaptions
SBlack SMC |SBlack − SMC | SBlack SMC |SBlack − SMC |

−40% 2.5381 2.4493 8.88× 10−2 2.9426 2.8751 6.75× 10−2

−20% 1.7151 1.6834 3.17× 10−2 2.1123 2.1053 7.00× 10−3

0% 0.9584 0.9709 1.25× 10−2 1.3344 1.3649 3.05× 10−2

20% 0.4031 0.4401 3.70× 10−2 0.7016 0.7572 5.56× 10−2

40% 0.1188 0.1506 3.18× 10−2 0.2907 0.3538 6.31× 10−2

MAE = 6.30× 10−2

Table 13: Rebonato model, calibration to swaptions, SBlack vs. SMC , prices in %.
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Figure 11: Rebonato model, calibration to swaptions, SBlack vs. SMC , part I.
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Figure 12: Rebonato model, calibration to swaptions, SBlack vs. SMC , part II.
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5. Conclusions

As a summary, in Table 14 the mean errors obtained in the calibration to caplets and swaptions
of the three previous models are shown. The same measures are used, MRE for the volatilities and
MAE(%) for the swaptions. In both cases, the model which achieves the best fit is highlighted by using
a decreasing order of intensity.

Hagan Mercurio & Morini Rebonato
Caplets (MRE) 1.80× 10−2 3.11× 10−2 2.93× 10−2

Swaptions (MAE) 6.19× 10−2 5.50× 10−2 6.30× 10−2

Table 14: Mean relative errors of the three models.

The three presented models are able to correctly capture market data. An indicator of the quality of
the fit is the one used by Piterbarg in [38]: a mean absolute error considered acceptable in the calibration
to swaptions is 0.1%. The three models have mean absolute errors less than this value.

In the case of the calibration to the smiles of the forward rates, Hagan model achieves the best fit,
followed by Rebonato and Mercurio & Morini models. In the case of the calibration to the smiles of the
swap rates, Mercurio & Morini model is the best one, followed by Hagan and Rebonato models.

Therefore, a model with one single volatility factor is able to obtain a satisfactory fit to the swaption
market. Mercurio & Morini argue that models with only one stochastic volatility disturbance can capture
better market regularities on the movements of the term structure, while when each rate is calibrated
independently of the others the important common factors driven the market could be missed.

In Hagan model, and mainly in Rebonato model, a set of parameters must be specified for each
forward rate. This may lead to overparameterization, with risk of instability, considering also the
presence of many cross-correlations between stochastic volatilities not easy to determine based on market
quotes. This issue is reflected in our calibrations: in the case of the calibration to caplets, Hagan and
Mercurio & Morini models are easier to calibrate than the Rebonato one. When dealing with the
calibration to swaptions, Mercurio & Morini model is also simpler to calibrate than the other two
models.

Once the models have been calibrated, when pricing products using Monte Carlo simulation, the
most relevant factor in execution times is the number of processes to be simulated. Obviously, regarding
this issue, Mercurio & Morini model is the fastest. The pricing of caplets with the Mercurio & Morini
model is approximately 1.40 times faster than the pricing using the other two models. Although the
difference is not huge, the fact that a model is a little faster or slower, could have a big impact in the
execution time of a calibration process using Monte Carlo simulation.

Moreover, in order to validate the proposed Monte Carlo calibration approach we have successfully
compared its results with the ones obtained by using the classical SABR formula for caplets and the
more recent approximated formula for swaptions.

Note that the speedup with GPUs of the Monte Carlo calibration techniques can be applied to more
complex products, for example CMS options or CMS spread options which contain more information
on the smile structure and the correlation of LIBOR rates. In these and other complex products it is
not clear that alternative approximation formulas are easily available and accurate enough [39].

As a brief final conclusion, for the set of used market data, the model with the best performance is the
Mercurio & Morini one, since it is the easiest to calibrate, it achieves the best fit to the swaption market
prices and it results the fastest one in the pricing with Monte Carlo simulation. The main drawback
of the Rebonato model comes from its complexity in the calibration procedure. The performance of
Hagan model falls is between the other two models: market data are reasonable well fitted and the
model results not overly difficult to calibrate.
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SABR stochastic volatility models: calibration and option pricing using GPUs, Mathematics and
Computers in Simulation 94 (2013) 55–75.

[35] CUSIMANN web pages: http://gforge.i-math.cesga.es/projects/cusimann/ or http://

code.google.com/p/cusimann/.

[36] OpenMP web page: http://openmp.org.

[37] MPI: A message-passing interface standard. Message passing interface forum., http://www.

mpi-forum.org/docs/mpi-11-html/mpi-report.html.

[38] V. Piterbarg, Pricing and Hedging Callable Libor Exotics in Forward Libor Models, The Journal
of Computational Finance 8 (2) (2005) 65–119.

[39] J. Kienitz, M. Wittke, Option Valuation in Multivariate SABR Models, Research Paper Quantita-
tive Finance Research Centre, University of Technology Sydney 272 (2010) 1–24.

29

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=877762
http://lesniewski.us/papers/working/SABRLMM.pdf
http://gforge.i-math.cesga.es/projects/cusimann/
http://code.google.com/p/cusimann/
http://code.google.com/p/cusimann/
http://openmp.org
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

	Introduction
	SABR/LIBOR market models
	Hagan model
	Mercurio & Morini model
	Rebonato model

	Model calibration
	Numerical results
	Hagan model
	Calibration to caplets
	Calibration to swaptions

	Mercurio & Morini model
	Calibration to caplets
	Calibration to swaptions

	Rebonato model
	Calibration to caplets
	Calibration to swaptions


	Conclusions



