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Foreword

It is with great pleasure that we present the Proceedings of the 26" Congress of Differential Equations and Appli-
cations / 16" Congress of Applied Mathematics (XXVI CEDYA / XVI CMA), the biennial congress of the Spanish
Society of Applied Mathematics SEMA, which is held in Gijén, Spain from June 14 to June 18, 2021.

In this volume we gather the short papers sent by some of the almost three hundred and twenty communications
presented in the conference. Abstracts of all those communications can be found in the abstract book of the
congress. Moreover, full papers by invited lecturers will shortly appear in a special issue of the SEMA Journal.

The first CEDYA was celebrated in 1978 in Madrid, and the first joint CEDYA / CMA took place in Mélaga in
1989. Our congress focuses on different fields of applied mathematics: Dynamical Systems and Ordinary Differ-
ential Equations, Partial Differential Equations, Numerical Analysis and Simulation, Numerical Linear Algebra,
Optimal Control and Inverse Problems and Applications of Mathematics to Industry, Social Sciences, and Biol-
ogy. Communications in other related topics such as Scientific Computation, Approximation Theory, Discrete
Mathematics and Mathematical Education are also common.

For the last few editions, the congress has been structured in mini-symposia. In Gijén, we will have eighteen
minis-symposia, proposed by different researchers and groups, and also five thematic sessions organized by the
local organizing committee to distribute the individual contributions. We will also have a poster session and ten
invited lectures. Among all the mini-symposia, we want to highlight the one dedicated to the memory of our
colleague Francisco Javier “Pancho” Sayas, which gathers two plenary lectures, thirty-six talks, and more than
forty invited people that have expressed their wish to pay tribute to his figure and work.

This edition has been deeply marked by the COVID-19 pandemic. First scheduled for June 2020, we had to
postpone it one year, and move to a hybrid format. Roughly half of the participants attended the conference online,
while the other half came to Gijén. Taking a normal conference and moving to a hybrid format in one year has
meant a lot of efforts from all the parties involved. Not only did we, as organizing committee, see how much of the
work already done had to be undone and redone in a different way, but also the administration staff, the scientific
committee, the mini-symposia organizers, and many of the contributors had to work overtime for the change.

Just to name a few of the problems that all of us faced: some of the already accepted mini-symposia and
contributed talks had to be withdrawn for different reasons (mainly because of the lack of flexibility of the funding
agencies); it became quite clear since the very first moment that, no matter how well things evolved, it would be
nearly impossible for most international participants to come to Gijon; reservations with the hotels and contracts
with the suppliers had to be cancelled; and there was a lot of uncertainty, and even anxiety could be said, until we
were able to confirm that the face-to-face part of the congress could take place as planned.

On the other hand, in the new open call for scientific proposals, we had a nice surprise: many people that would
have not been able to participate in the original congress were sending new ideas for mini-symposia, individual
contributions and posters. This meant that the total number of communications was about twenty percent greater
than the original one, with most of the new contributions sent by students.

There were almost one hundred and twenty students registered for this CEDYA / CMA. The hybrid format
allows students to participate at very low expense for their funding agencies, and this gives them the opportunity
to attend different conferences and get more merits. But this, which can be seen as an advantage, makes it harder
for them to obtain a full conference experience. Alfréd Rényi said: “a mathematician is a device for turning coffee
into theorems”. Experience has taught us that a congress is the best place for a mathematician to have a lot of
coffee. And coffee cannot be served online.

In Gijén, June 4, 2021

The Local Organizing Committee from the Universidad de Oviedo
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Abstract

Target Accumulation Redemption Notes (TARNS) are financial derivatives which give their holders the right
to receive periodic coupons until the accumulated sum of those ones reaches an agreed target. In this work, we
solve a partial differential equations (PDEs) model for pricing TARN options by implementing an alternating-
direction implicit finite difference method (ADI method). We combine the numerical solution with a stochastic
local volatility (SLV) technique and show the numerical results for a particular example.

1. Introduction

European and American options are the most well-known derivative products, and have been widely studied from
the financial and mathematical points of view. For these options, jointly known as vanilla options, their price
depends mainly on the value of the underlying asset.

On the opposite side, exotic options present different features which also have an effect on the price. For
example, Bermudan options offer multiple exercise dates, the pay-off of Asian options depends on the average price
of the underlying asset and the pay-off of barrier options depends on whether or not the price of the underlying asset
reaches an agreed value during the option’s lifetime. Other examples of exotic products are the target redemption
products, whose notional amount increases until a certain target is reached [5]. In particular, the value of a Target
Accumulation Redemption Note (TARN) depends on an accumulated amount: if the sum of coupons reaches an
agreed target before the maturity date, the holder of the note receives a final payment, also known as knockout, and
the contract terminates. These products are usually traded in foreign exchange (FX) markets.

2. Mathematical model

We propose a stochastic local volatility model based on Heston model [4]:

dS; = (ra(t) = ry(0))S; dt + L(S;, )V, S, dW}
dv, = k(6 = V,) dt + ANV; dW? .1
dw} dw? = p dt,

where L is the leverage function, which represents the contribution of the local volatility and will be calibrated
with the help of market data, S; is the underlying asset, V; is the stochastic variance, W,l and W,2 are two Brownian
motions, r4 and ry are the domestic and foreign interest rates, respectively, and «, 6, 4 and p are the Heston
parameters.

Let r(¢) = rq(t) — ry(t). Let us assume 2«0 < A% and Vy > 0. Then, Feller condition states that V, > 0 for
every t > 0. Moreover, we will assume Sy, «, 8 and A are strictly positive, —1 < p < 1 and the leverage function
is positive and bounded. Under these hypotheses, it is proven [4] that there exists a unique solution of model (2.1)
and there also exists a function p := p(S, V, ), called transition probability function, solution of the Fokker-Planck
(FP) equation:

2 2

14
T3V (ApLSVp) + EW(AZVp) , (2.2)

I _
ar

9 0 1 02
_ﬁ(r(t)Sp) - W(K(G - V)p) + EW(I}SZVP) +

such that the leverage function can be written as [4]:

L p(S.V.0)dv

L(S,I)ZO'LV(S,I) m
R s Vo

2.3)

Let S(t) be the FX rate at time ¢, ¢y the actual date and 71,1, ..., tx the so-called fixing dates. Moreover, let
E be the strike, U the target accrual level and A(t) the accumulated amount at time ¢ [3]. On each fixing date, f,
there is a cash flow payment: _
Cr = B(S(tk) = E) X 18xS (1) »BxE »
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PRICING TARN OPTIONS WITH A STOCHASTIC LOCAL VOLATILITY MODEL

where f3 is a strategy on foreign exchange (8 = 1 for a call option and 8 = —1 for a put option), until the accumulated
amount A reaches the target U. Let tz be the first fixing date when the target is breached:

.....

and let K = K if the target is not breached, the payment can be written as:

EkX(1A> Vol U+WkX1A. Vol U)’ iflkSlE,
Ci(S, A) = (tr-1)+Cr < (tr-1)+Cr > 2.4)

0, lftk>tE,

where A(tx_1) is the accumulated amount immediately after #;_;. This magnitude is given by a piecewise constant
function:

A(tg-1) + Cr (S(tx), At-1)) ifr=1.

Moreover, Wy is a weight that depends on the knockout when the target is breached. We will consider three
types of knockout, such that the weight can be written as:

A(tr-1), ifte_) <t <ty,
A(t):{ (tx-1) if 15 k

1, in the case of full gain,
U - A(tk,]) . .
W= ———, in the case of part gain,
B (S(ix) - E) part &
0, in the case of no gain.

Finally, let u := u(S,V,t, A) be the value of a TARN option, the following SLV option pricing PDE:
u ou ou 1 0%u 8%u 1 8%u

— +7(1)S—+ (k(0 = V)) — + =L*VS*— + pLASV + - 2V— —rg(Hu=0
gr TrDSGg OV 5+ 5 a5z TPV Gsgy 2 Vgya —rau

is valid between fixing dates. Furthermore, for each fixing date we can pose:

u(S,V, 1., A(t;)) = u(S,V,tx, A(t;) + Ck (S, A(17))) + Ci (S, A(1})),

where Cy is given by (2.4) and 7 is the time infinitesimally before 7.

2.1. Numerical methods

We compute the optimal Heston parameters (k, 6, A, p) for the calibration of the SLV model. For each maturity, the

COS method is developed to price European options under the Heston model, [WH‘*S];." = whe(E;, T™) and the

Levenberg-Marquardt non-linear least squares algorithm is applied to find the optimal parameters by minimizing
NE

. Hes 2
KI?TPZ 1 (W™ (k, 8,2, 011" = wi")",
i=

where wi" = w(E;,T™) are the market data for different strikes and maturities.
As Feller condition does not always hold in real markets, we propose a logarithmic change of variable [2]. Thus,
let Sp and Vj be the initial values of the underlying and the variance, and let

X, =log(S;/So), Z; =log(V; /).
In the new domain (—o0, o) X (—c0, 00), model (2.1) is rewritten as:
dX; = (r(1) - 1%L(x,, 02Voe?)dt + L(X;, 1)\ VoeZ dW}
dz, = (k0 - $0%) -z — K)di + 2 v;ezt dW;
dW}dw? = pdt.

A previous step to apply numerical methods is the truncation of the new unbounded domain to a bounded one.
Thus, we consider the fixed domain Q = (Xin, Xmax) X (Zmin, Zmax ), Which is finer around (X = 0, Zp = 0), and
pose the FP equation (2.2):

dp __ 9 Loy 2y v 0 e Ly L

L == (0 = 3206 p) = (60 = 3225 = ) o
+la_2(L2VeZ )+‘9_2(/1 L )+16_2(,12 1 ) .
2ax2 0 0PI Gxaz VPEPI T 5572\ ez Pl
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I. ARREGUI AND J. RAFALES

with the initial condition:

p(X,Z,0) =6(X)6(2), (2.6)
where ¢ is the Dirac function. Additionally, we impose the boundary conditions:
d*p d’p d’p d’p
W(Xmin,Z,t) 207 W(Xmax’z’t) :07 E(X’me?t) =05 @(X,Zmax’t) =0' (2'7)

Moreover, the leverage function (2.3) is given by:

L P(X.Z,1)dZ
fo Voe? p(X, Z,1)dZ’

L(X,1) =orv (X, t)J (2.8)
As we can see in (2.5) and (2.8), the computing of the transition probability function needs the leverage function
and reciprocally. Therefore, we propose a fixed point scheme to solve the problem at each time step, in which
an alternating directions implicit (ADI) method is developed to solve the FP problem and the trapezoidal rule is
applied to approximate the leverage function. The modified Douglas ADI scheme at each step can be written as:

A= pn—l + A" [Fo(p"_],tn_]) +F1 (pn—l,tn—l) +F2(pn—1’tn—])],

B — aA"Fi (B, ") = A — aAt"F; (p" !, 171, (2.9)
C — aAt"F>(C,1") = B — aAt"F>(p" !, "), (2.10)
p'=C,
forn=1,2,..., Ny, where
2
Fo(p.1) = axaz(ﬂpr)’
d 1, 19>, A2
Fi(p,1) = ——(((k6 - =A - - ,
(P 1) = =57 (0 = 3005z = p) + 3573 (5 2 P)
Fapt) = 2 () - Li2vee?yp) + 2 2 (12vie? )
’ X 2 20X ‘

In addition, a mixing fraction parameter, 7, is applied to the volatility of the volatility, A:
dV, = k(0 = V,)dt + nAyJV,dW?.
For each maturity, the ADI method is developed to price options under the SLV model, [yS™V] "= ySW(E;, T™)

and the golden section search algorithm is applied to determine the optimal parameter by minimizing
Ng

. 2
m);nz (17 =)’
i=1
where y* == y(E;, T™) are the market data for different strikes and maturities.
Finally, we introduce the time-to-maturity variable (7 = T — ) and deduce the TARN price PDE in terms of X
and Z:

ou 1 5 2 0u 1, Zﬁzu 0%u
— = - 2 LVpe?) — + = LVye? —— + AnpL——
g7 = V(0 = 3 LVeeT) g + S LVoe oo + el gz .
T L N L e o
Tt ez "oz T2 Vgez 522 T TN
with the initial condition:
u(X,Z,0,A) = 0. (2.12)
Additionaly, we assume the boundary conditions [4]:
1y, 0%u ou 1 ., 0%u ou
S—(Q) zx(m(xmin,z, 1) - ﬁ(xmimZ, 1) =0, v—02€ 22(@()(, Zmin, 1) — ﬁ(X, Zmin, 1)) =0,
2.13
1y, 0% ou B 1 ,, 0%u ou 3 @13
S_ge (W Xmax, Z, 1) = a_X(Xmax, Z, t)) =0, V_Oze (ﬁ(x’ Zmax>t) = a_Z(X, Zmax’t)) =0.

As for the numerical solution of the FP problem, we also propose the use of the ADI algorithm to solve
(2.11 — 2.13), jointly with the jump condition for each fixing date 7:

u(X, Z, 18, ATy )=u(X,Z, T, A(T) + Ck(X,A(T,:r))) +Ck(X,A(T,‘(L ),

where 7} is the time infinitesimally after 7. Fig. 1 shows a sketch of the scheme.
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Fig. 1 Jump condition

2.2. Numerical results

We present a numerical test for the valuation of a TARN call option in the frame of foreign exchange. For this aim,
we have considered the US dollar and British pound as domestic and foreign currencies, respectively, an initial
underlying So = 1.320, an initial variance Vy = 0.004 and a strike £ = 1.283. Furthermore, the domestic and
foreign interest rates are shown in Tab. 1 of [1], the maturity period is T = 12 months and the fixing dates are taken
every 30 days, thus K = 12.

Fig. 2 shows the market implied volatility (left) and the local volatility (right), which is computed by means of
Dupire’s formula. Thus, we apply the previous techniques to compute the Heston parameters, which are shown in
Tab. 3 (left) of [1].

— "2 RY —
— < 4 s — <
— ~ 7 T '
05 — 1 0 g5 T
X =log(8/S,) 2

—
0

log-strike 2
Fig. 2 The implied volatility (left) and the local volatility (right)

Next, we have approximated the (X, Z) domain with a mesh similar to the one plotted in Fig. 3, consisting of
400 x 100 nodes. As we have previously detailed, the mesh is finer around the point (Xy = 0, Zy = 0). We have
also refined the mesh for values close to Z,i, in order to minimize the errors arising from the fact that the Feller
condition may be not accurate for these values of the volatility. Moreover, we have used 180 time steps and the
parameter @ = 0.5 in the ADI method. Fig. 4 shows the computed solution of the FP problem at the maturity (left)
and the leverage function (right).

5 1 5 2

5 3 3
X =log(s/S,)

Fig. 3 Mesh
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Fig. 4 Numerical solution of the FP equation (left) and the leverage function (right)
Finally, we calibrate the mixing fraction parameter r, which is shown in Tab. 3 (right) of [1], and show the

numerical approximation of the TARN price for different knockouts in Fig. 5. More details and results are available
in [1].

0
7= log(VVy)

R X=log(ss,)

Fig. 5 TARN option price: no gain (left), part gain (center) and full gain (right) knockouts for U = 0.90.

2.3. Conclusions

We solve a partial differential equations model to price TARN options. We have improved previous results by
introducing a SLV technique in order to better reflect the market volatilities (taking advantage of local volatility
methods) on a path dependent derivative product (for which stochastic volatility methods are more convenient).
This SLV approach can be extended to other kinds of exotic options.

An alternating directions method (ADI) is implemented and the volatility surfaces, transition probability
function, leverage function and option price are computed. Therefore, we have a tool to valuate this kind of exotic
options.
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