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Abstract

Shrinkage is one of the main concerns related to high performance concrete (HPC) durability. Its high
density paste, consequence of a low water to binder ratio, can be unprofitable if cracks appear due to
excessive tension when volume changes are restrained. Therefore, volume stability is a priority. In this
work, three different strategies have been studied with that purpose: integration of fly ash as a low
reactive supplementary cementitious material, internal curing via coal bottom ash particles as water
reservoirs and the use of an expansive agent based on magnesium oxide (MEA). Many research works
address the three shrinkage reduction strategies individually. However, studies regarding their
simultaneous use are not prevalent so this work proposes its combined application. Results indicate that
internal curing and MEA have a synergistic effect in HPC. Internal curing enhances MEA expansion due
to the lack of water in this kind of concrete, contributing to autogenous shrinkage compensation. When
concrete is affected by air-drying conditions, the use of MEA, internal curing, or both together make
shrinkage to increase. MEA effectively expands in wet cured HPC although internal curing is not
effective in this condition due to the absence of self-desiccation and limited porous aggregate water
desorption. Taking into account the effects of each shrinkage reduction strategy and curing condition, it
has been concluded that the use of fly ash as supplementary cementitious material, internal curing and

MEA is recommended together with prevention of water evaporation from HPC surface.
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Highlights:
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. MEA makes shrinkage to increase in HPC affected by air-drying curing conditions
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1. Introduction and objectives

Volume stability is a remarkable issue that must be taken into account when designing concrete for
structural and non-structural applications. Different phenomena can make concrete to suffer deformations,
generating internal stress if they are constrained. This tension can exceed tensile strength and produce
cracks letting potentially harmful agents to ingress concrete. Therefore, concrete shrinkage can lead to

important durability problems [1].

Concrete deformations can be positive (volume increase, i.e. swelling or expansion) or negative (volume
reduction, i.e. shrinkage) and some of them can be absent depending on concrete composition and
surrounding environmental conditions. Concrete external volume changes are known as autogenous
deformations when they are intrinsic to material’s composition, no matter surrounding conditions. These
kind of deformations can increase (autogenous swelling) or reduce (autogenous shrinkage) concrete

volume as a consequence of different physical and chemical processes.

Cement hydration provokes an external volume reduction before setting, and it is the driving force of
autogenous shrinkage after setting. Concrete internal relative humidity decreases due to cement hydration
and other supplementary cementitious materials reactions that consume water, such as pozzolanic
reactions [2]. This progressive process is named as self-desiccation and, when intense enough, it is the
cause of autogenous shrinkage [3—5]. Therefore, self-desiccation is a special concern in concrete with a
low water to cement ratio, i.e. high performance concrete (HPC) [3,6,7]. Cement hydration rate becomes
lower as time goes by. Therefore, autogenous shrinkage is more remarkable during the first days after
concrete mixing. However, an opposite deformation can compensate self-desiccation shrinkage at early
ages. That is autogenous swelling and can be caused by different phenomena such as absorption of
bleeding water, water adsorption by fillers, CH growth and primary ettringite formation [8,9]. Also, some
recent approaches to the effect of cement hydration on a porous-system scale state that C-S-H formation
decisively contributes to swelling as long as a sufficient relative humidity is maintained inside concrete
[10,11]. Sometimes, autogenous swelling cannot be observed as it coexists with autogenous shrinkage in

a minor magnitude, resulting an overall negative deformation [12]. That is one of the possible reasons for
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it to be less studied [13] although it plays an important role in shrinkage compensation and cracking

prevention at early ages [14].

Cement hydration is also the direct cause of thermal deformations, as it is an exothermic reaction. Heat
of hydration makes concrete temperature to rise to a peak and then decrease, causing associated
expansion and shrinkage. The magnitude of this temperature change depends on the rate of heat
dissipation into the surrounding environment. This is why thermal deformations should not be considered

autogenous.

When interaction of concrete with the environment is allowed, the moisture gradient forces unbound
water to evaporate. Then, water migration from the capillary pores to the outside develops pressure on
them and a volume reduction occurs. This mechanism is analogous to the one that governs self-
desiccation [15]. High water to cement ratios and low environmental humidity increase drying shrinkage
[16,17]. Drying shrinkage magnitude is related to specimens shape and size, as water release is not

homogeneous across specimen’s cross section [14,18-20].

On the opposite direction, from environment to concrete, there is another element that migrates: CO,.
Carbon dioxide is naturally present on air and can react with calcium based concrete compounds, mainly
calcium hydroxide formed as a product of Portland cement hydration. This carbonation implies a volume

reduction known as carbonation shrinkage, which is not completely understood yet [21].

All previously mentioned deformations can coexist in laboratory samples and construction elements,
depending on their size, shape and surrounding environment. Different strategies can be used in order to
mitigate them [2]: low reactive supplementary cementitious materials [22—25], internal restraint by fibre
reinforcement [26-28], internal curing [29-32], shrinkage reducing additives (SRA) [33-35] and

expansive agents [36—38] are among the most popular [39].

Some of these shrinkage reduction strategies are gathered in Fig. 1.
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SHRINKAGE MITIGATION STRATEGIES
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Fig. 1: Shrinkage reduction strategies.

Regarding expansive agents, the most known are based on calcium sulphoaluminate (C-S-A) [38,40,41],
calcium oxide (CaO) [42-49] and magnesium oxide (MgO). These expansive agents hydrate resulting in
new compounds with a higher volume. The calcium sulphoaluminate can give rise to ettringite or
monosulfate, with respective volumes of 9.3 and 4.1 times the initial C-S-A particle [50]. Calcium oxide
gives rise to calcium hydroxide, with a volume of 1.9 times CaO [50]. Finally, magnesium oxide gives
rise to magnesium hydroxide, with a volume of 2.2 times MgO [51]. However, hydration is not the only
important factor regarding the expansive process. Formation of surrounding hydrates subjected to the
compressive forces produced by the expansive ingredients plays also an important role [50]. The effect of
the use of expansive agents on compressive strength and tightness is strongly related to curing conditions
and especially with restraining extent. Some studies conclude that restrained concrete maintains the
values for these properties when including expansive agents into the mix, while some “loosening” can
happen when no restrictions are applied, causing small decreases of compressive strength and tightness
[50]. This must be taken into account when studying expansive agents’ performance in small non-

restrained laboratory specimens, as results can differ for reinforced structural elements.

Magnesium oxide is present in Portland cement as dead burnt periclase, coming mostly from impurities of
magnesite in calcite used as raw material for its manufacturing. In this case, magnesite is submitted to a
temperature over 1400 °C, producing low reactive a kind of magnesia that is only able to expand after
long periods of time. This can cause cracks and associated durability problems [51]. However,
magnesium oxide can be obtained from less intense burning (lightly burnt MgO), which is able to expand

at relatively early ages. Eq. 4 represents the involved chemical reaction in MgO manufacturing process:

MgCO; — MgO + CO, 1)
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Lightly burnt MgO has been proved to be convenient for compensating autogenous shrinkage [52-54],
thermal shrinkage in laboratory [55,56] and field conditions [57], and it even shows self-healing capacity
[52,58,59]. The expansive mechanism involves hydration of MgO, producing magnesium hydroxide (also
known as brucite), with a much higher molar solid volume (117 % bigger than MgO) [51]. Eq. 5

represents this chemical reaction. Kinetics of MgO dissolution are extendedly explained in [60].

MgO + H,0 — Mg(OH), 2

Research about lightly burnt MgO started when it was reported that no cracks were formed due to thermal
shrinkage in Baishan concrete arch gravity dam in China. This fact was attributed to the use of a Portland
Cement with high content of magnesia burnt at a lower than usual temperature [61]. Since then,
intentionally lightly burnt MgO has been used to fabricate expansive agents known as magnesium based
expansive agents (MEA). Most common MEAs have a high content of magnesium oxide, as they are
obtained from pure magnesite extracted in quarries. Less effective but more sustainable and cheap MEA,

with less content of MgO, can be obtained from impure magnesite or industrial wastes too [62—64].

When comparing MEA with calcium and ettringite based expansive agents, the main advantages are its
relatively low need of water to react and the stability of the reaction product, magnesium hydroxide [53].
Positive effects of MEA on other durability properties more than shrinkage have been reported [65,66]

and also on mechanical properties under restrain condition [67].

Supplementary cementitious materials have a remarkable influence on autogenous and thermal stress,
tending to reduce those parameters when they are low reactive. For instance, class F fly ash is frequently
included in concrete with MEA [37,53,55-57,59,65,66,68,69], working both elements in favour of
volume stability. Blended cements containing MEA, especially with class F fly ash, have been widely

studied and used for construction of massive dams in China [70].

An alternative strategy that can make autogenous shrinkage to decrease is internal curing. This consists in
the supply of water to a cementitious mixture using pre-wetted lightweight aggregate, or other materials
that readily release water from within particles, thereby mitigating self-desiccation and sustaining

hydration [71]. These pre-wetted particles are also known as water reservoirs. Lightweight aggregates and
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superabsorbent polymers are the most common elements used as water reservoirs [30]. Internal curing is
especially useful in high performance concrete, with a very low water to binder ratio. Water in HPC is
hardly available for cement hydration, and additional amounts cannot be effectively provided by external
curing due to paste low permeability [31]. The use of MEA does not seem a good option for this kind of
concrete, as it needs a certain amount of water to react. However, the simultaneous utilization of internal
curing and MEA could be a promising combination, as the former could provide the latter with the

necessary water to expand. Only a few studies have explored this option [36].

2. Research significance

Worries about HPC early age volume stability have motivated the publication of many papers about
shrinkage reduction strategies. However, the most of these research works address each strategy
individually. Studies about their combined effect are not prevalent, although this perspective is also
interesting because of potential synergistic effects. In addition, the proposal of more than one strategy in
order to avoid any concrete dysfunction is usually convenient as they all can present some drawbacks (not
only from a technical perspective, but also economical, ecological...). This is the case of the three
shrinkage reduction strategies proposed in this study: the use of fly ash as low reactive supplementary
cementitious material, internal curing via saturated coal bottom ash as water reservoirs and a magnesium
based expansive agent. Synergistic effects have been found and negative consequences of the use of each
of them can be minimized when reducing the amount of each of them in favour of a multi-constituent
approach. Moreover, three laboratory curing conditions have been stablished in this study with the aim of
getting information about the performance of the materials under study on a real field situation. The
authors conclude that HPC with high volume of fly ash, MEA and internal curing is volumetrically more

stable than conventional HPC and shows an acceptable strength.

3. Materials characterization and mix design

All materials have a particle size below 4 mm. Therefore, the object of the experimental programme is the
mortar phase of a hypothetical HPC. Designed mixes do not contain coarse aggregates but only fine

aggregates and paste constituents.
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Coal bottom ash particles (CBA) have been used as water reservoirs for internal curing. CBA is a porous
granular waste generated in coal power stations. As internal curing affects a wider volume of paste when
using small size water reservoirs [72], CBA particles were sieved to reach a 4 mm maximum size. Some

photographs of different size CBA fractions are shown in Fig. 2.

Fig. 2: CBA with a particle size between 2 and 4 mm (a). CBA with a particle size between 0.125 and 0.5
mm (b)

Sieved CBA has a dry-state density of 1.19 g/cm’ and a 24 h water absorption of 36.66 %. This element
partially replaces conventional sand (S) in designed mortars, which is crushed sand with a maximum size
of 4 mm, a dry-state density of 2.47 g/cm’ and a water absorption of 2.43 % after 24 h. Both granular
materials present a similar particle size distribution and fineness modulus, being 2.33 for CBA and 2.78

for conventional sand.

Ordinary Portland cement (OPC) with a density of 3.12 g/cm’ and Class F fly ash (FA) with a density of
2.21 g/em’ have been used as the main powder paste constituents. A magnesium based expansive agent
(MEA) has been used in this study. It was obtained by calcination of pure magnesite (see composition in
Table 1) with a maximum particle size of 100 um at 900 °C during 2 h (light burning) as it was done in
previous works by Sherir et al. [59]. Other authors have also deeply studied the influence of different
parameters of the calcining process over MEA performance [69,73]. Small samples of 2.7 kg, divided into
three different containers, were burnt at a time to guarantee a homogeneous calcination (up to an average
lost on ignition of 34 %). The resulting powder compound is basically magnesium oxide (MgO), with a

purity of 90 % and a density of 3.58 g/cm’.

Table 1: Magnesium carbonate chemical composition

CaO

Sio,

Fe:(');,

MgO

LOI

0.46 %

0.52 %

0.49 %

46.72 %

4721 %
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After burning, containers were carefully taken out of the kiln and MEA was spread on aluminium trays to
ensure a quick temperature drop of the material. After a cooling time of 15 min, MEA was kept in glass
jars inside a sealed box containing soda lime and silica gel, which are granular materials with a high water
vapour absorption capacity. The cooling procedure is very important as magnesium oxide is an unstable
compound that can easily react with environmental humidity. Some stages of this process can be seen in

Fig. 3.

Fig. 3: MEA obtaining process: taking out from the kiln, pouring and spreading on trays and packing.

A high range water reducing admixture (HRWRA) with a 1.05£0,02 g/cm’ density and solid residue of

20.3+1 % has been used in order to enhance fluidity of HPC mortar phase.

Taking into account the shown characteristics of each material involved in the study, twelve different

HPC mortar phase mixes were designed. The next criteria were considered to stablish the mix design:

- One half of the mixes contain CBA as internal curing water reservoirs. This material is introduced in
the mortar substituting the 30 % of conventional sand (S), by volume.

- Two different binders are used: Ordinary Portland cement (OPC) and blended cement (BC). BC is
obtained by mixing a 40 % of OPC with a 60 % of FA, proportioned on a volume basis.

- Two different MEA contents are stablished: 3 % and 5 %. MEA replaces OPC when no FA is in

binder, while it substitutes FA in BC mixes. This substitution is carried out by volume in both cases.

Mix proportions in relation with mortars nomenclature are described in Table 2.

Table 2: Mortar mixes
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GRANULAR MATERIALS POWDER MATERIALS

NOTATION
Q/1C S CBA | CM/BCM C FA | ©/MEA3/MEA5 | MEA
CM-MEA0 CM 100 % MEA0 0%
n CM-MEA3 100 % 0% CM 97 % MEA3 3%
% CM-MEA5 CM 95 % 0% MEAS5 5%
‘é’ ICCM-MEAO IC CM 100 % MEA0 0%
© | ICCM-MEA3 IC 70 % 30 % CcM 97 % MEA3 3%
ICCM-MEAS5 IC CM 95 % MEAS5 5%
BCM-MEA0 BCM 60 % MEA0 0%
% BCM-MEA3 100 % 0% BCM 57 % MEA3 3%
% BCM-MEA5 BCM 0o |5 MEAS 5%
s | ICBCM-MEA0 IC BCM 60 % MEAO 0%
& | ICBCM-MEA3 IC 70 % 30 % BCM 57 % MEA3 3%
ICBCM-MEAS5 IC BCM 55 % MEAS5 5%

Conventional sand and coal bottom ash were soaked in water during 24 h prior to mixing, with an amount

of water equivalent to their 24 h water absorption capacity. Water inside these particles performs as an

internal curing agent, so it is referred as internal curing water in conventional sand (ICW-S) and internal

curing water in coal bottom ash (ICW-CBA). It must be noted that the amount of ICW-S is much lower

than ICW-CBA, as coal bottom ash particles have a much higher water absorption. Therefore, only

mortars with CBA are referred as internally cured mortars (ICCM).

Mixing water (W) to powder materials ratio in terms of volume remains constant for all mixes. Note that

mixing water does not include internal curing water referred in previous paragraph. HRWRA dosage is

0.80 % in terms of solid residue/OPC, by volume. Note this dosage is not referred to the sum of all

powder materials but only to OPC. HRWRA is dosed as to get a fluid mortar with self-compacting

behaviour. Mix proportions of resulting mixtures are described in Table 3.

Table 3: Mix proportions [kg/m’].

10
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234

OPC FA MEA S ICW-S CBA ICW-CBA 4 HRWRA
CM-MEA0 923 0 0 1112 27 0 0 252 15
»nn | CM-MEA3 896 0 32 1112 27 0 0 252 15
% CM-MEA5S 878 0 53 1112 27 0 0 252 15
; ICCM-MEAO 923 0 0 778 19 161 59 252 15
© | ICCM-MEA3 896 0 32 778 19 161 59 252 15
ICCM-MEAS5 878 0 53 778 19 161 59 252 15
BCM-MEAO 370 393 0 1112 27 0 0 252 6
4 BCM-MEA3 370 373 32 1112 27 0 0 252 6
5 BCM-MEA5 370 360 53 1112 27 0 0 252 6
; ICBCM-MEAO 370 393 0 1112 19 161 59 252 6
L% ICBCM-MEA3 370 373 32 1112 19 161 59 252 6
ICBCM-MEAS5 370 360 53 1112 19 161 59 252 6

4. Test methods

Including MEA in concrete as a separate powder (not previously mixed with other elements in other
processes like, for example, cement grinding) demands a longer than usual mixing time [53,61]. Concrete
homogeneity when using an expansive agent is vital as irregular expansions may cause differential
tensions in paste and consequent damage [68]. Therefore, a 5.5 minutes mixing procedure was chosen,
which is considered to be enough for MEA proper dispersion. A planetary 20 litres capacity pan mixer

was used.

Length and mass change were measured using specimens with dimensions 25x25x285 mm’ (gauge length
of 250 mm), according to UNE 80112 [74]. Specimens were exposed to three different curing conditions:
sealed with aluminium foil (Fig. 4), air-drying in an 50 % RH environment (Fig. 5) and water immersion
(Fig. 6). Temperature was kept constant in all curing environments at 24+2 °C. Length and mass changes
were measured from 18 h after casting, when specimens were demoulded. An earlier than conventional
demoulding age (specimens for shrinkage test are commonly demoulded 24 h after casting) was chosen to
start measurements at a time as close as possible to final setting. Length change at different ages was
divided by initial length, obtaining strain (p€), while mass changes were divided by specimens’ surface in
order to get a unitary mass change (g/m?). Mass results normalization by area is chosen as a criterion

based on EN 16322 [75].

11
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Fig. 4: Sealed specimens Fig. 5: Specimens in air-drying Fig. 6: Specimens immersed in
conditions water

Compressive strength was measured on sealed cubic samples with 50 mm side at an early age, 7 days, and

long term, 244 days. This way, information about strength development over time can be obtained.
5. Results and discussion
5.1 Sealed condition: compressive strength and length change

Long term compressive strength of all mixes with OPC as the only binder reach 65 MPa, and mixes with
ended cement surpass 40 MPa (Fig. 7). These results are considered to be acceptable for a mortar phase

HPC.

90
100

90 80

MP

80 70

70 60

60
50
50

40
40

30 30

20 20

Compressive Strength at 7 and 24

10 10

Compressive Strength at 7 and 244 days (MPa)

0
CM-MEA0O CM-MEA3 CM-MEA5 ICCM-MEAO ICCM-MEA3 ICCM-MEAS 0
(a) BCM-MEAO BCM-MEA3 BCM-MEAS5 ICBCM-MEAQO ICBCM-MEA3 ICBCM-MEAS
W7 days B 245 days (b)

W7 days O 245 days

Fig. 7: Compressive Strength of CM (a) and BCM (b) series at 7 and 244 days [MPa]

The use of MEA slightly reduces strength of CM mixes because, in these mixes, MEA replaces part of
Portland cement. When blended cement is used, the effect of MEA on strength is not so clear as cement
content remains constant and not all fly ash is expected to have been reacted even at 245 days. Strength

index of mixes with CBA, considering mixes without CBA as reference, slightly varies around 1, being

12
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0.89 the minimum (ICBCM-MEAQOQ) and 1.19 the maximum (ICCM-MEAOQ). Therefore, the effect of the

alternative aggregate on compressive strength can be neglected. As expected, mixes with fly ash gain

strength slowly, reaching about a 50 % of their maximum at 7 days. On the other hand, CM mortars

strengthen faster, achieving the 90 % of their maximum at the same early age.

In sealed condition, control mixes without internal curing or MEA show the highest deformation of their

respective series at all times, as can be seen in Fig. 8.

300 -
200 A
100 A

-100 A
-200 A
-300 A
-400 A
-500 -
-600 -
-700 A
-800 -
-900 -

Strain (pe)

-1000

(a)

——CM-MEAO
-4 |CCM-MEAO

13 16

Age (days)
-e-CM-MEA3
-4 |ICCM-MEA3

o-CM-MEAS
A& |CCM-MEAS

Strain (pe)

1 4 7

—e-BCM-MEAO

Fig. 8: CM (a) and BCM (b) strain in sealed conditions [pe].

-4 |CBCM-MEAOQ

10 13 16
Age (days)

-e-BCM-MEA3

—4&- |CBCM-MEA3

19

22 25 28

o BCM-MEAS
& |CBCM-MEAS

For some of the mixes, it has been recorded an initial positive deformation which is possibly caused by

swelling due to internal bleeding, i.e. aggregates water desorption, and MEA expansion. Blended cement

internally cured mixes with MEA show the greatest positive deformation (Table 4). The lower hydration

activity in BCM mixes consumes less water at early ages, reducing paste self-desiccation and leaving

more water available for MEA hydration. Saturated CBA desorb water (internal bleeding) causing

swelling and enhancing MEA expansion.

Table 4: Swelling peak time (days) and strain (ue).

CM-MEA0 CM-MEA3 CM-MEAS5 ICCM-MEAO ICCM-MEA3 ICCM-MEAS5
Time _ - - - 2 2
Value _ - - - 16 18
BCM-MEAO | BCM-MEA3 | BCM-MEA5 | ICBCM-MEAO ICBCM-MEA3 ICBCM-MEAS
Time - 2 2 3 5 6
Value - 48 62 40 168 246

13
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After the swelling peak, shrinkage starts. In sealed curing condition, with no moisture exchange with the
environment, recorded shrinkage is autogenous shrinkage. In Fig. 9, Swelling has been removed from the
total recorded deformations in order to only analyse autogenous shrinkage. Over time, all mixes maintain

their relative position from the one with the highest shrinkage to the one with the lowest.

Strain (ue)
Strain (pe)

-1000 -1000

T T T T T T T T T T T T T T 1
1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28

Age (days) Age (days)
(a) ——-CM-MEAO -o-CM-MEA3 o-CM-MEAS (b) —o—-BCM-MEAO o-BCM-MEA3 o BCM-MEAS
-4 |ICCM-MEAO -4~ |CCM-MEA3 A |CCM-MEAS -4 |CBCM-MEAQO &~ |CBCM-MEA3 A |CBCM-MEAS

Fig. 9: CM (a) and BCM (b) autogenous shrinkage [pe].

Autogenous shrinkage is higher for CM specimens than for their BCM counterparts, as less cement
hydration leads to less self-desiccation. Autogenous shrinkage is lower when internal curing is applied, as
it mitigates paste self-desiccation. The positive effect of internal curing is more remarkable during the

first days and remains over time.

MEA expansion partially compensates autogenous shrinkage for both CM and BCM series. This effect,
however, is only visible during the first days after demoulding if internal curing is not applied. For that
case, there is no proportional improvement in late autogenous shrinkage (28 days) when increasing the
amount of MEA from 3 to 5 %. CM-MEA3 shows barely the same autogenous shrinkage at 28 days than
CM-MEAS, and there is no significant difference between BCM-MEA3 and BCM-MEAS either. HPC,
produced with a small amount of mixing water, seems not to be able to provide enough water for MEA to
expand. Some extra water is needed and internal curing can provide it. Proof of this are the improvements
of ICCM-MEAS over ICCM-MEA3 and of ICBCM-MEAS5 over ICBCM-MEA3 (84 and 130 pe at 28
days, respectively). Available water in non-internally cured mixes is not enough even for hydrating all
MEA in mixes with a 3 % content. This is stated after having registered a 228 pe compensation at 28 days

of ICCM-MEA3 over ICCM-MEAOQ, and a quite inferior, 116 pe, of CM-MEA3 over CM. Similar

14
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behaviour is found for mortars with fly ash, with a 216 pe compensation of ICBCM-MEA3 over ICBCM-
MEAQO, and an inferior one, 171 pe, of BCM-MEA3 over BCM. However, this lack of water for proper
MEA hydration in HPC is not detected during the first days after demoulding. At that time, the higher the
MEA content the lower the shrinkage in case of CM series, and the higher the swelling in case of BCM

series.

Internal curing is a shrinkage reducing strategy playing a double role in HPC with MEA. It contributes
not only to autogenous shrinkage reduction but also to compensate it by providing extra water for MEA

hydration. This beneficial synergistic effect has been also reported in other works [65].
5.2 Air-drying conditions: mass change and shrinkage

Mortars lose water by evaporation when submitted to air-drying conditions, which can be recorded as
mass loss. Mass loss is especially remarkable during the first days after demoulding and tends to stabilize
at early ages due to high surface to volume ratio of shrinkage specimens, and it even turns into mass gain

after 14 days for BCM series due to carbonation. The described tendency can be observed in Fig. 10.

0 0a
S R S
—
T -250 T 250 o |0
I E] o
g o | |
2 500 & _s00 | |7 days
2 g .
2 a o 0 4
g 750 g 750 4 M
<
g g I T Sl piuiuiuiiutniuby ilobulinl phyiulgh igighy 3
= 2 | -&--" A
S -1000 < -1000 Ap° "% X A
N
1250 + . . . . . . . . 1250 A . . . . . . . .
1 28 55 82 109 136 163 190 217 244 1 28 55 82 109 136 163 190 217 244
Age (days) Age (days)
( ) ——CM-MEAO -o-CM-MEA3 o~ CM-MEAS (b) -e-BCM-MEAQ o-BCM-MEA3 o-BCM-MEAS
a -4 ICCM-MEAQ -a- ICCM-MEA3 & ICCM-MEA5 - ICBCM-MEAO & ICBCM-MEA3 & ICBCM-MEAS

Fig. 10: CM (a) and BCM (b) mass loss in air-drying conditions (g/m?).

The initial drastic drop is lower for CM series because they consume more water during setting, when
mortar is still inside the sealed mould. Internally cured mixes have a higher mass loss as they contain a
higher amount of water (ICW-CBA > ICW-S). Presence of MEA increases mass loss in internally cured

specimens in a slight magnitude.
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As said before, after 14 days, mass gain due to carbonation can be observed in BCM series. Carbon
dioxide fixing capacity is typically lower when pozzolanic materials as fly ash are used due to portlandite
consumption [76]. However, specimens under air-drying conditions have been poorly cured so pozzolanic
reaction might not have taken place properly. Moreover, poorly cured BCM may develop a porous
network that enhances carbon dioxide diffusion, in contrast with CM exposed to the same curing
conditions. This long term tendency is not typically measurable when large specimens are used, but other
studies have registered similar mass gain [5,77,78]. Total mass gain from 14 days onwards can be found

in Table 5.

Table 5: Mass gain from 14 to 244 days age (g/m°).

BCM-MEAO BCM-MEA3 BCM-MEAS ICBCM-MEA0 ICBCM-MEA3 ICBCM-MEAS5

148 208 214 98 131 207

This registered mass gain is the result of the combination of CO, collection and water evaporation. That is
the reason for internally cured mixes to show a lower mass gain. They still lose a considerable amount of
water after 14 days, higher than their non-internally cured counterparts, because of their higher initial
water content. This effect is also noticeable at the period between 7 and 14 days, when non-internally
cured specimens already show a lower mass loss than the internally cured counterparts. For instance:
BCM-MEAO loses 11.59 g/m* during this time period, while ICBCM-MEAO loses 39.84 g/m”. The mass
gain rhythm due to carbonation is constant when no significant mass loss is simultaneously occurring and
drastically decreases when the carbonation depth reaches the whole specimen (with a small cross section),
i.e. almost all carbonatable compounds have been carbonated. This tendency can be seen in non-internally

cured specimens after 14 days, being the carbonation ending at around 91 days (Table 6).

Table 6: Mass gain rhythm (g/dm’-day).

Time period BCM-MEAO BCM-MEA3 BCM-MEAS
14 to 28 days 1.59 1.77 1.85
28 to 91 days 1.56 1.88 1.82
91 to 244 days 0.18 0.43 0.48
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This tendency cannot be clearly seen in internally cured mixes for the same period because they lose
water for a longer time. Although mass gain is not clearly observable in CM series, a little amount of
carbonation might coexist with water evaporation. Associated mass changes, positive and negative
respectively, may balance each other resulting a negligible mass loss for this period. After that age,
almost all carbonatable compounds are believed to be carbonated so a small mass loss due to water

evaporation is registered.

The presence of MEA means an increase in carbonation mass gain (Table 5), as magnesium hydroxide
can react with environmental carbon dioxide to form magnesium carbonate. This mass gain is also faster
when MEA is used, what means it reacts with environmental CO, at the same time other compounds
contained in fly ash and Portland cement do. For example, ICBCM-MEAO, ICBCM-MEA3 and ICBCM-
MEAS5 gain mass at a ratio of 0.87, 1.16 y 1.78 g/m*-day, respectively, for the time period between 28 and

91 days.

In air-drying curing condition, the interactions of mortar with the surrounding environment cause
continuous shrinkage (Fig. 11). Along time, all mixes maintain their relative position from the one with
the highest shrinkage to the one with the lowest. Expansions due to MEA are not registered in air-drying

curing conditions. What is more, mortars with MEA show a higher shrinkage.
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Fig. 11: CM (a) and BCM (b) shrinkage in air-drying conditions [pg].

Shrinkage increase decelerates over time and CM series show higher values than BCM series. At this
point, doing a quick comparison between Fig. 10 and Fig. 11, it can be clearly observed that CM series

lose less water but show a higher shrinkage than BCM series. This is not the usual correlation between
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mass loss and shrinkage that can be found in studies about conventional concrete. In HPC and mortars
with a low water to binder ratio, as it is the case of this study, paste self-desiccation coexists with drying
and carbonation in air-drying curing condition. An approach about the importance of each of those

phenomena on total shrinkage can be got by plotting shrinkage against unitary mass change ratio (Fig.

12).
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and BCM (b) shrinkage (pie) for corresponding unitary mass loss (g/m?).

day after demoulding (from first record until the age of 2 days), for the same mass loss,

er in non-internally than in the internally cured specimens for both CM and BCM series.

-MEAO has a shrinkage to mass loss ratio of 1.95 pe/(g/m?) at the age of 2 days while

the internally cured counterpart has a shrinkage of 1.16 pe/(g/m®). This corroborates that self-desiccation
shrinkage coexists with air-drying shrinkage at early ages, as internal curing is known to mitigate self-

desiccation shrinkage.

For CM series, from 28 to 91 days, the possible coexistence of drying and carbonation makes a low mass
loss to cause a relatively high shrinkage. Drying and carbonation produce mass loss and mass gain
respectively, so they can compensate each other when occurring simultaneously. However, both
phenomena cause negative strain, so their effects overlap in relation with length change. Self-desiccation
is believed not to be causing shrinkage at this period because cement hydration rate after 28 days might
be low in this air-drying curing condition. After 91 days, the tendency changes due to some residual
drying in the absence of further carbonation. At this late period, drying shrinkage seems not to produce a

strong shrinkage.
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The overlapping of drying and carbonation shrinkage, while respective mass changes compensate each
other, is a visible phenomenon in BCM series too, for the period between 7 and 28 days. Later, mass
starts to increase due to predominance of carbonation over drying. Internally cured mixes show a slightly

higher shrinkage to mass gain ratio after 28 days, as they suffer a higher drying.

The presence of MEA has a slight influence on shrinkage to mass ratio so the different substitution rates

show a similar trend for both CM and BCM series.
5.3 Water immersion: unitary water absorption and positive deformation / swelling-expansion

When mortar specimens are immersed in water after demoulding, they continuously absorb water which
can be recorded as mass gain. This mass gain is significant during the first days of immersion, following a
lower rhythm at later ages (Fig. 13). Although HPC paste is too dense for an effective external wet
curing, water can still penetrate to a certain depth in water immersion conditions. As specimens under
study have a high surface to volume ratio, water is believed to access a substantial proportion of the

mortar pores. Water gain over time is very similar for all mixes.
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Fig. 13: CM (a) and BCM (b) mass gain (g/dm”).

Absorbed water during immersion and interacts with the three different used binders and their reaction
products. Both phenomena contribute to continuous volume increase in all specimens (Fig. 14). Along
time, all mixes maintain their relative position from the one with the highest deformation to the one with

the lowest.
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Fig. 14: CM (a) and BCM (b) swelling and expansion [pe].

In general, the volume increase is more remarkable in CM than in BCM series, although their water gains
are very similar. The principal reason might be the formation of C-S-H and a higher amount of primary
ettringite, both cement hydration products. Ettringite is very porous (its structure is needle-like) and
occupies more volume than involved reactants, so an expansion occurs when it forms [8]. Moreover,
ettringite is able to adsorb big amounts of water causing associated expansion. The expansion due to C-S-
H formation at a porous material scale is a recent approach proposed by [10,11]. Furthermore, negligible
self-desiccation may occur in small specimens subjected to this curing condition, so no internal curing

effect or MEA expansion enhancement is visible.

As expected, the more the MEA the more the expansion due to its effective hydration in this curing
condition. This higher MEA expansion is observed in CM and BCM series, but it is proportionally higher
in the second. For example, at 244 days, CM-MEA3 and CM-MEAS5 show a deformation 1.35 and 1.80
times CM, while BCM-MEA3 and BCM-MEAS5 show a deformation 2.65 and 3.04 times BCM. When
MEA substitutes cement, it reduces the amount of C-S-H and ettringite and their commented associated
expansion, so an expansion is replaced by another one and the difference between them is not drastic. On

the other hand, when MEA substitutes fly ash, no OPC related expansion is avoided and they simply add
up.
The relation between water absorption and specimens deformation follows a quadratic tendency (Fig. 15).

The continuous expansion of MEA and OPC hydration products makes the pore network volume to

decrease, letting less space for new products growth. This progressive lack of space for free expansions in
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pores produce stronger tensions and associated external volume increase. This argument has been used by

other authors to explain other expansive phenomena such as those related to delayed ettringite formation

[79].

Strain (pe)

1200 4

1000 4

800 -

Strain (pe)

1200 ~

1000

800 o

600 -

o
400 400 + O s
% 5 ST
o
200 = w
0 G=="" T T T T T T | 0 & T T T T T T T |
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Unitary mass change (g/m?) Unitary mass change (g/m?)

( ) ® CM-MEAO CM-MEA3 o CM-MEAS (b) ® BCM-MEAO BCM-MEA3 o BCM-MEAS
a m |[CCM-MEAO i |CCM-MEA3 O ICCM-MEAS B |CBCM-MEAO ICBCM-MEA3 O ICBCM-MEAS

Fig. 15: CM (a) and BCM (b) deformation (ue) for corresponding unitary mass gain (g/m?).

CM series shows higher length increase for the same mass gain because the principal causes of expansion
are related to cement hydration. Mixes with MEA register a higher expansion to water gain ratio. For
instance: CM, CM-MEA3 and CM-MEAS specimens increase their length by 2.05, 2.36 and 3.09
ue/(g/m’) after 244 days. As water penetrates the mortar, at the same rhythm independent on MEA

content, it interacts with the different binders, hydrating MEA if present.
6. Effect of curing conditions on real applications

Three curing conditions have been used in this study: sealed, air-drying and water immersion. They have
been chosen because of their correspondence with the standard UNE 80112 [74] and because of their
similarity with some real field curing conditions. The correspondence between laboratory and real field
curing conditions is stablished taking into account the fundamental differences between laboratory
specimens and construction elements. These differences are related to size and geometry. Laboratory
specimens used in this study are smaller and have a much higher surface to volume ratio than a

construction element such as a standard building beam (Table 7).

21



407

408

409

410

411

412

413

Table 7: Comparison between the geometry of a laboratory specimen and a structural concrete element.

Length | High Width | Surface | Volume | Surface/Volume
(cm) (cm) (cm) (cm®) (cm’) (cm™)
Laboratory specimen™® 30.0 2.5 2.5 312.5 187.5 1.67
Ordinary building beam** 360 30 20 37200 | 216000 0.17

*Laboratory standard specimen for length change measurement according to UNE 80112 [74].
**Qrdinary building beam according to [80]

Environmental conditions affect any element from its surface. Therefore, elements with a high surface to
volume ratio, as it is the case of small laboratory specimens, get proportionally more affected by

surrounding conditions than a construction element for the same level of exposure (Fig. 16).

Environment surrounding the element.

Close to the surface volume, affected by environmental
O conditions.
Inner volume, unaffected by environmental conditions.

Fig. 16: Influence of environmental conditions on different concrete elements: (a) small laboratory
specimen and (b) construction element.

A real construction element can be continuously wetted or isolated from environmental humidity changes
by covering it with burlaps, plastic sheets or hydrophobic substances (Fig. 17). If this is the case, it can be

considered to perform as a sealed laboratory specimen.
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Fig. 17: External wet curing (a) and covering with burlaps and plastic sheet (b).

The absence of curing in field elements can have a similar effect on concrete close-to-surface volume
than air-drying conditions on laboratory specimens. Water immersion can be applied out of the laboratory
to small precast concrete elements. Finally, the non-affected zone of a HPC structural member by
environmental conditions (its inner part) can be considered to performance like laboratory specimens in
sealed conditions [39]. Relationships between analysed curing conditions and field curing conditions are

summarized in Table 8.

Table 8: Similarity between curing conditions in laboratory and field elements.

Analysed curing conditions Sealed Air-drying . Wate.r
immersion
Close-to-surface volume of a Wet external curing or Absence of Water
construction element covering curing immersion
A ibl i
Inner part of a HPC structural member ny poss1b © curing - -
condition

In HPC, with a highly dense paste, the inner part can occupy the vast majority of a construction element.
Concrete in similar to sealed conditions is, therefore, the principal contributor to concrete strength, as it
constitutes the most of a hypothetical structural member. This is the reason why compressive strength was

tested on sealed specimens.

For each of the three chosen laboratory curing conditions, the effect of three shrinkage mitigation
strategies has been analysed: fly ash as a low reactive supplementary cementitious material, internal
curing and MEA. More than the results analysis carried out in previous paragraphs, results obtained with

different curing conditions can be compared between them (Fig. 18). BCM series is chosen for this
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comparison as the use of blended cement is considered to be recommendable for economic and ecological
reasons over OPC binder. Moreover, only the higher content of MEA (5 %) is presented in order to make

graphs clearer.
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Fig. 18: Effect of the highest dosage of MEA (5 %) over blended cement mixes without (a) and with (b)
internal curing, when the three curing conditions are applied.

Water immersion leads to expansions whereas air-drying condition lead to the highest values of
shrinkage. Sealed condition lead to lower shrinkage than air-drying, and some mixes show initial

swelling.

Following the correspondence between laboratory and real field curing conditions stablished in previous
paragraphs (Table 8), the next can be stated. On the close to surface part of an HPC structural member,
the combination of internal curing and MEA has a negative effect if water evaporation is not prevented
somehow. On the other hand, if water curing is used, what can happen for small precast elements,
undesired expansions on the close to the surface area could happen, being more probable if this kind of
curing is applied for a long time. Finally, if HPC is covered with burlaps, plastic sheet or sealant, and in
the inner part of a construction element whatever curing condition is used, the three shrinkage reduction
strategies used in this study show a positive effect on shrinkage. What is more, internal curing and MEA

show a synergistic effect, having a superior performance together than separately in HPC.

Therefore, for internally cured HPC incorporating MEA, it is recommended not to dispense with external
curing and being careful with water immersion curing times. This way, it can be get better advantage of
the combined effect of both shrinkage reduction strategies.
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7. Conclusions

The combined effect on high performance concrete (HPC) of three shrinkage reduction strategies: the use
of fly ash as a low reactive cementitious material, internal curing via saturated coal bottom ash and

magnesium based expansive agent (MEA), has been studied. The following conclusions are drawn:

- The inclusion of small amounts of MEA (until 5 % of binder) and coal bottom ash as water
reservoirs for internal curing (until 30 % of aggregate) in HPC has a slight effect on compressive
strength.

- HPC with low content of water limits MEA expansion, however internal curing can effectively
provide the extra water needed for this propose. The synergistic effect of both shrinkage
reduction strategies is effective for minimising autogenous shrinkage.

- If water evaporation is not prevented, the use of both MEA and internal curing separately or
together makes shrinkage to increase.

- MEA effectively expands in water immersed HPC and, in this case, internal curing has no effect
over its expansion capacity.

- In comparison with a conventional HPC with no shrinkage reduction strategies, blended cement
HPC with high volume of fly ash, MEA and internal curing presents a much better volume
stability and acceptable compressive strength. Negative effects such as a possible higher
shrinkage on concrete surface are avoidable by preventing water evaporation with conventional
external curing methods.

- Other low reactive supplementary cementitious materials and other expansive agents could serve
to the same propose, and other aggregates could be suitable to work as internal curing water
reservoirs. Future research must study some alternative materials that could lead to comparable

results.
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