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Linear mixed effects are considered excellent predictors of cluster-level parameters in various 
domains. However, previous research has demonstrated that their performance is affected by 
departures from model assumptions. Given the common occurrence of these departures in 
empirical studies, there is a need for inferential methods that are robust to misspecifications while 
remaining accessible and appealing to practitioners. Statistical tools have been developed for 
cluster-wise and simultaneous inference for mixed effects under distributional misspecifications, 
employing a user-friendly semiparametric random effect bootstrap. The merits and limitations 
of this approach are discussed in the general context of model misspecification. Theoretical 
analysis demonstrates the asymptotic consistency of the methods under general regularity 
conditions. Simulations show that the proposed intervals are robust to departures from modelling
assumptions, including asymmetry and long tails in the distributions of errors and random effects, 
outperforming competitors in terms of empirical coverage probability. Finally, the methodology 
is applied to construct confidence intervals for household income across counties in the Spanish 
region of Galicia.

 Introduction

Linear mixed models are frequently employed for modelling hierarchical and longitudinal data. Within this modelling framework, 
pulation parameters are represented by fixed regression parameters, while the additional between-cluster variation is captured by 
uster-specific random effects. Bootstrap methods are considered for statistically valid inference for mixed effects, which are linear 
mbinations of fixed and random effects. Mixed effects are recognized as excellent predictors of cluster-level parameters in various 
lds, such as small area estimation or medicine (cf. monographs of Verbeke and Molenberghs, 2000; Jiang, 2007; Rao and Molina, 
15).

Further inference on mixed parameters heavily relies on model and distributional assumptions. Consequently, numerous bootstrap 
ethods have been introduced to partially alleviate this reliance and flexibly approximate distribution functions of estimators. While 
ey can be derived analytically using model-dependent large sample theory, the application of the latter might lead to inaccurate 
sults in finite samples, and it is rarely robust to misspecifications.
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The family of bootstrap methods for clustered data is rich. Field and Welsh (2007); Chambers and Chandra (2013) and more 
cently Flores-Agreda and Cantoni (2019) provide extensive reviews of bootstrap methods for clustered data. In fact, all essential 
ocedures can be classified into three broad categories: bootstrapping by resampling clusters and observations within clusters (Davi-
n and Hinkley, 1997; McCullagh, 2000), bootstrapping by random weighing of estimating equations (Field et al., 2010; Samanta 
d Welsh, 2013; O’Shaughnessy and Welsh, 2018) and bootstrapping by resampling predictors of random effects and/or residuals 
avison and Hinkley, 1997). The latter is referred to as a random effect bootstrap and can be further subcategorized into: parametric 
rsions, which entails resampling from normal distributions with estimated variance (Butar and Lahiri, 2003; Hall and Maiti, 2006b; 
atterjee et al., 2008), and semiparametric versions in which stochastic components are obtained using estimated variance compo-
nts, but without making distributional assumptions (Carpenter et al., 2003; Hall and Maiti, 2006a; Lombardía and Sperlich, 2008; 
somer et al., 2008; Chambers and Chandra, 2013; Bertarelli et al., 2021). The main goal of all bootstrap schemes is to estimate 
e sample distribution or certain moments of a statistic using its bootstrap distribution. It is important to emphasize that the goal 
 this manuscript is not to compare the performance of all existing procedures or select the optimal scheme, even though such a 
mparison in the framework of mixed effects has not been attempted yet, and it might be an interesting future research direction.
There exist various criteria to assess the quality of bootstrap schemes for clustered data. In the context of inference for mixed 
rameters, the existing literature primarily concentrates on the bootstrap estimation of the mean squared error, which essentially 
volves an accurate estimation of the first few moments (see, e.g. Butar and Lahiri, 2003; Hall and Maiti, 2006a; Chatterjee et 
., 2008). In contrast, proposed bootstrap methods are required to reproduce cumulative distribution functions of studentized and 
aximal statistics, which are core elements in cluster-wise and simultaneous inference for mixed parameters. While the former has 
en intensively studied in the literature, the latter has been neglected until recently despite its role in formulating valid comparative 
tements. These are of utmost importance in policy making or public health, where decision-makers compare the estimates across 
any clusters to decide on resource reallocation or the introduction of new policies (see Tzavidis et al., 2018; Reluga et al., 2023b; 
amlinger et al., 2022, for discussions on the need for comparative tools in the small area estimation which relies on mixed effects).
In this manuscript, statistical tools have been constructed for cluster-wise and simultaneous inference for mixed parameters under 
stributional model misspecifications, employing a semiparametric random effect bootstrap as in Carpenter et al. (2003) and Opsomer 
 al. (2008). This bootstrap scheme is proven to successfully reproduce cumulative distribution functions of studentized and maximal 
tistics. These results provide novel contributions that complement and extend the derivations of Carpenter et al. (2003), who, 
suming normality, proved the consistency of bootstrap versions of fixed effects, as well as the variance of random effects and 
rors. Additionally, this work extends the methods developed by Reluga et al. (2023b) for cluster-wise and simultaneous inference 
r linear mixed effects under satisfied modelling assumptions.
The presented theory applies to the construction of intervals and corresponding testing procedures. The analysis demonstrates that 
e methods are asymptotically consistent under general regularity conditions, without assuming normality of stochastic components 
 the model. Simulations compare the performance of various bootstrap schemes to construct cluster-wise and simultaneous inter-
ls for mixed parameters. The results indicate that the constructed intervals are robust to departures from modelling assumptions, 
cluding asymmetry and long tails in the distributions of errors and random effects, outperforming competitors in terms of empirical 
verage probability. Additionally, the methodology is applied to construct simultaneous confidence intervals for household income 
ross counties in the Spanish region of Galicia. Finally, this simple bootstrap-based inference can be considered complementary to 
her existing techniques that handle distributional model misspecifications and deal with outliers, such as robust inference methods 
hambers and Tzavidis, 2006b; Sinha and Rao, 2009) or estimation by data transformation (Rojas-Perilla et al., 2020).
The remainder of this paper is structured as follows. Section 2 contains a brief introduction to the inference for mixed param-
ers. Section 3 describes the methodology to construct cluster-wise and simultaneous inference tools under distributional model 
isspecification. Section 4 discusses potential extensions and limitations of proposed methodology in the broader context of con-
ucting statistical methods under model misspecification. The simulation results and the data application are provided in Sections 5
d 6, respectively. Finally, Section 7 presents the conclusion. Proofs and regularity conditions can be found in Appendix A. The 
pplementary material (SM) contains further analytical details and simulations.

 Inference for mixed parameters

Consider an 𝑛-dimensional response vector 𝑦 ∈ ℝ𝑛 modelled by 𝑦 =𝑋𝛽 +𝑍𝑢 + 𝑒 where 𝑋 ∈ ℝ𝑛×(𝑝+1), 𝑍 ∈ ℝ𝑛×𝑞 are known full 
lumn rank design matrices for fixed and random effects, vector 𝛽 ∈ℝ𝑝+1 contains fixed effects, whereas random effects 𝑢 ∈ℝ𝑞 and 
rors 𝑒 ∈ℝ𝑛 are assumed to be mutually independent and identically distributed with 𝑣𝑎𝑟(𝑒) =𝐺 and 𝑣𝑎𝑟(𝑢) =𝑅. The model of Laird 
d Ware (1982) is used. It follows that for each cluster 𝑗 one has

𝑦𝑗 =𝑋𝑗𝛽 +𝑍𝑗𝑢𝑗 + 𝑒𝑗 , 𝑗 = 1,… ,𝑚, (1)

here 𝑦𝑗 ∈ℝ𝑛𝑗 , 𝑋𝑗 ∈ℝ𝑛𝑗×(𝑝+1), 𝑍𝑗 ∈ℝ𝑛𝑗×𝑞𝑗 , 𝑒𝑗 = (𝑒𝑇1 , 𝑒
𝑇
2 , … , 𝑒𝑇𝑚)

𝑇 , 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑚)𝑇 . The total sample size is denoted with 𝑛, the 
mber of clusters with 𝑚 such that 𝑛 =

∑𝑚
𝑗=1 𝑛𝑗 , where 𝑛𝑗 is the number of observations in the 𝑗

𝑡ℎ cluster. Furthermore, 𝐺 and 𝑅 are 
ock-diagonal with blocks 𝐺𝑗 = 𝐺𝑗 (𝛿) ∈ ℝ𝑞𝑗×𝑞𝑗 and 𝑅𝑗 = 𝑅𝑗 (𝛿) ∈ ℝ𝑛𝑗×𝑛𝑗 which depend on variance parameters 𝛿 = (𝛿1, ..., 𝛿ℎ)𝑇 . 
t 𝐸(𝑦) = 𝑋𝛽 and 𝑣𝑎𝑟(𝑦) = 𝑉 = 𝑅 + 𝑍𝐺𝑍𝑇 where 𝑉 is a block-diagonal with blocks 𝑉𝑗 = 𝑅𝑗 + 𝑍𝑗𝐺𝑍𝑇𝑗 . Under normality of 
ndom effects and errors, 𝑦𝑗 ∼ 𝑁(𝑋𝑗𝛽, 𝑉𝑗 ) and 𝑦𝑗 |𝑢𝑗 ∼ 𝑁(𝑋𝑗𝛽 + 𝑍𝑗𝑢, 𝐺𝑗 ). The methods of maximum likelihood and restricted 
aximum likelihood are often used to obtain an estimator 𝛿 = (𝛿1, … , 𝛿ℎ)𝑇 (see, for example, Verbeke and Molenberghs, 2000, 
2

apter 5). In contrast, 𝛽 and 𝑢 are estimated and predicted using two-stage techniques. In particular, after assuming that 𝛿 is 
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own, one can use maximum likelihood, estimating equations of Henderson (1950) or the h-likelihood of Lee and Nelder (1996)
 obtain best unbiased linear estimator (BLUE) 𝛽 = 𝛽(𝛿) = (𝑋𝑇 𝑉 −1𝑋)−1𝑋𝑇 𝑉 −1𝑦 and the best unbiased linear predictors (BLUP) 
= 𝑢𝑗 (𝛿) = 𝐺𝑗𝑍𝑇𝑗 𝑉

−1
𝑗 (𝑦𝑗 − 𝑋𝑗𝛽). In the second stage, 𝛿 is replaced by 𝛿 which results in empirical BLUE (EBLUE) 𝛽 = 𝛽(𝛿), and 

pirical BLUP (EBLUP) 𝑢̂𝑗 = 𝑢𝑗 (𝛿). The goal is to develop valid inferential tools for general cluster-level parameters

𝜃𝑗 = 𝑘𝑇𝑗 𝛽 + 𝑙
𝑇
𝑗 𝑢𝑗 , 𝑗 = 1,… ,𝑚, (2)

ith known 𝑘𝑗 ∈ℝ𝑝+1 and 𝑙𝑗 ∈ℝ𝑞𝑗 , i.e., 𝜃𝑗 is treated as random cluster-level parameter due to the randomness of 𝑢𝑗 . The application 
 the two-stage approach leads to

𝜃𝑗 = 𝜃𝑗 (𝛿) = 𝑘𝑇𝑗 𝛽 + 𝑙
𝑇
𝑗 𝑢̃𝑗 , 𝜃̂𝑗 = 𝜃𝑗 (𝛿) = 𝑘

𝑇
𝑗 𝛽 + 𝑙

𝑇
𝑗 𝑢̂𝑗 𝑗 = 1,… ,𝑚. (3)

The focus is on developing methods to construct 1 − 𝛼 confidence (or prediction) intervals and perform hypothesis testing for 
ixed parameters 𝜃𝑗 , 𝑗 = 1, …, following the ideas of Reluga et al. (2023b). Let 𝜎2𝑗 = 𝑣𝑎𝑟(𝜃̂𝑗 ) and 𝜎̂

2
𝑗 = 𝑣𝑎𝑟(𝜃̂𝑗 ) be a corresponding 

timator of the variability of the parameter estimate. A t-statistic and a maximal statistic are defined as follows:

𝑡𝑗 =
𝜃̂𝑗 − 𝜃𝑗
𝑣𝑎𝑟

1∕2(𝜃̂𝑗 )
, 𝑗 = 1,… ,𝑚, 𝑀 = max

𝑗=1,…𝑚
|||𝑡𝑗 ||| . (4)

 individual confidence interval 𝐼𝑗,1−𝛼 at 1 − 𝛼-level for 𝜃𝑗 is a region which satisfies 𝑃 (𝜃𝑗 ∈ 𝐼𝑗,1−𝛼) = 1 − 𝛼. To construct symmetric 
tervals 𝐼𝑗,1−𝛼 , it is enough to find a high quantile from the distribution of statistic 𝑡𝑗 , that is 𝑞𝑗,1−𝛼 = inf{𝑎 ∈ℝ ∶ 𝑃 (𝑡𝑗 ≤ 𝑎) ≥ 1 − 𝛼}. 
e thus have

𝐼𝑗,1−𝛼 ∶
{
𝜃̂𝑗 + 𝑞𝑗,𝛼∕2 × 𝜎̂𝑗 , 𝜃̂𝑗 + 𝑞𝑗,1−𝛼∕2 × 𝜎̂𝑗

}
, 𝑗 = 1,… ,𝑚. (5)

e to the central limit theorem, 𝑞𝑗,𝛼∕2 and 𝑞𝑗,1−𝛼∕2 are often replaced by high quantiles from the standard normal distribution or the 
udent’s t-distribution. Alternatively, one can consider constructing symmetric intervals with ±𝑞𝑗,1−𝛼∕2 . In simulations in Section 5, 
e performance of both symmetric and asymmetric intervals was tested, and it was concluded that the latter as defined in (5)
rformed better in terms of empirical coverage.
A similar strategy can be used to construct simultaneous confidence intervals 𝐼1−𝛼 at 1 − 𝛼-level which satisfy 𝑃 (𝜃𝑗 ∈ 𝐼1−𝛼 ∀𝑗 ∈
]) = 1 − 𝛼, where [𝑚] = {1, … , 𝑚}. Let 𝑞1−𝛼 = inf{𝑎 ∈ ℝ ∶ 𝑃 (𝑀 ≤ 𝑎) ≥ 1 − 𝛼} be a high quantile from the distribution of statistic 
. Then it follows that

𝐼1−𝛼 =
𝑚⨉
𝑗=1
𝐼𝑠
𝑗,1−𝛼, 𝐼

𝑠
𝑗,1−𝛼 ∶

{
𝜃̂𝑗 ± 𝑞1−𝛼 × 𝜎̂𝑗

}
, 𝑗 = 1,… ,𝑚, (6)

d it follows that 𝐼1−𝛼 covers all clusters with probability 1 − 𝛼 (see Reluga et al., 2023a,b, for more details). The relation between 
nfidence intervals and hypothesis testing allows us to define modified statistics 𝑡𝑗 and 𝑀 that can be used to carry out hypothesis 
sting. Due to the inherent similarity between intervals and tests, the derivation can be found in the SM.
The construction of the studentized statistics in (4) requires the estimation of 𝜎2𝑗 . The most common measure to assess the vari-
ility of predictions is the mean squared error MSE(𝜃̂𝑗 ) =𝐸[(𝜃̂𝑗 − 𝜃𝑗 )2], where 𝐸 denotes the expectation with respect to the model 
fined in (1). Nevertheless, following Chatterjee et al. (2008), a simpler choice of 𝜎̃2𝑗 = 𝑙

𝑇
𝑗 (𝐺𝑗 −𝐺𝑗𝑍

𝑇
𝑗 𝑉

−1
𝑗 𝑍𝑗𝐺𝑗 )𝑙𝑗 , which accounts 

r the variability of 𝜃𝑗 without accounting for the variability in the estimation of 𝛽 or 𝛿, leads to satisfactory numerical results. In 
ction 5 the empirical performance of cluster-wise and simultaneous intervals is tested using six different estimators of 𝜎2 , and the 
plication of 𝜎̃2𝑗 leads to the best results under many bootstrapping schemes.

 Bootstrap-based inference for mixed effects

Bootstrap schemes to construct individual and simultaneous intervals are introduced, with the aim of ensuring robustness to 
odel misspecifications, including asymmetry and long tails in the distribution of errors and random effects. Bootstrap-generated 
servations are denoted as:

𝑦∗ =𝑋𝛽 +𝑍𝑢∗ + 𝑒∗, (7)

here 𝑒∗ and 𝑢∗ are bootstrap replica of random components in the model. The generation of 𝑒∗ and 𝑢∗ depends on the bootstrap 
heme, which will be further elaborated upon. Setting 𝛿∗ = 𝛿, 𝑉 ∗ = 𝑉 , 𝐺∗ = 𝐺̂, the following definitions are used 𝛽∗ = 𝛽(𝛿∗) =
𝑇 𝑉 ∗−1𝑋)−1𝑋𝑇 𝑉 ∗−1𝑦∗, 𝑢̃∗𝑗 = 𝑢𝑗 (𝛿

∗) =𝐺∗
𝑗 𝑍
𝑇
𝑗 𝑉

∗−1
𝑗 (𝑦∗𝑗 −𝑋𝑗𝛽

∗). In addition, let 𝛿∗ be an estimated version of 𝛿∗ obtained by regress-
g 𝑦∗ on 𝑋. Then one obtains 𝛽∗ = 𝛽(𝛿∗) and 𝑢̂∗𝑗 = 𝑢𝑗 (𝛿

∗). Bootstrap mixed effects are thus defined as

𝜃∗𝑗 = 𝑘
𝑇
𝑗 𝛽 + 𝑙

𝑇
𝑗 𝑢

∗
𝑗 , 𝜃̂∗𝑗 = 𝜃𝑗 (𝛿

∗) = 𝑘𝑇𝑗 𝛽
∗ + 𝑙𝑇𝑗 𝑢̂

∗
𝑗 . (8)
3

e bootstrap versions of the statistics of interest in (4) are given by
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𝑡∗𝑗 =
𝜃̂∗𝑗 − 𝜃

∗
𝑗

𝑣𝑎𝑟1∕2(𝜃̂∗𝑗 )
, 𝑗 = 1,… ,𝑚, 𝑀∗ = max

𝑗=1,…𝑚
|||𝑡∗𝑗 ||| . (9)

atistics in (9) are used to construct bootstrap equivalents of intervals in (5) and (6), that is

𝐼∗
𝑗,1−𝛼 ∶

{
𝜃̂𝑗 + 𝑞∗𝑗,𝛼∕2 × 𝜎̂𝑗 , 𝜃̂𝑗 + 𝑞

∗
𝑗,1−𝛼∕2 × 𝜎̂𝑗

}
, (10)

𝐼∗1−𝛼 =
𝑚⨉
𝑗=1
𝐼∗𝑠
𝑗,1−𝛼, 𝐼

∗𝑠
𝑗,1−𝛼 ∶

{
𝜃̂𝑗 ± 𝑞∗1−𝛼 × 𝜎̂𝑗

}
, (11)

here 𝑞∗
𝑗,1−𝛼 = inf{𝑎 ∈ ℝ ∶ 𝑃 (𝑡∗𝑗 ≤ 𝑎) ≥ 1 − 𝛼} and 𝑞∗1−𝛼 = inf{𝑎 ∈ ℝ ∶ 𝑃 (𝑀∗ ≤ 𝑎) ≥ 1 − 𝛼} are quantiles from the distributions of 𝑡∗𝑗

d 𝑀∗. Alternatively, one can consider a symmetric confidence interval in (10), that is 𝐼∗
𝑗,1−𝛼 ∶

{
𝜃̂𝑗 ± 𝑞∗𝑗,1−𝛼∕2 × 𝜎̂𝑗

}
. This choice has 

rdly any effect on the performance of 𝐼∗
𝑗,1−𝛼 for large 𝑛𝑗 , but it might make a difference once 𝑛𝑗 is small. The most popular choice in 

e context of mixed models is to use a parametric bootstrap, drawing 𝑒∗ and 𝑢∗ from a postulated normal distribution with estimated 
riance parameters. In contrast, a semiparametric bootstrap method introduced by Carpenter et al. (2003) and generalised by 
somer et al. (2008) is used. The empirical performance of this bootstrap scheme for fixed parameters and variance components has 
en studied by Chambers and Chandra (2013). The goal is to mimic the data generating process in model (1). Before explicitly writing 
wn the bootstrap algorithm, it is important to provide some motivation behind it. Let 𝑦̃ = 𝑋𝛽 = 𝑋(𝑋𝑇 𝑉 −1𝑋)−1𝑋𝑇 𝑉 −1𝑦 =𝐻𝑦, 
𝑦 −𝑋𝛽 −𝑍𝑢̃ = (𝐼 −𝑍𝐺𝑍𝑇 𝑉 −1)(𝐼 −𝐻)𝑦 =𝑅𝑉 −1(𝐼 −𝐻)𝑦, 𝑒 = 𝑦 −𝑋𝛽 −𝑍𝑢̂ and 𝑢̂= 𝐺̂𝑍𝑇 𝑉 −1(𝑦 −𝑋𝛽). Then, by some algebraic 
nsformations one has 𝐼 −𝑍𝐺𝑍𝑇 𝑉 −1 =𝑅𝑉 −1, and

𝑣𝑎𝑟(𝑢̃) =𝐺𝑍𝑇 {𝑉 −1(𝐼 −𝐻)}𝑍𝐺, 𝑣𝑎𝑟(𝑒) =𝑅{𝑉 −1(𝐼 −𝐻)}𝑅.

us, 𝑒 and 𝑢̂ should be re-scaled before sampling with replacement to avoid the effects of shrinkage (Morris, 2002). Centring, that is 
btracting the empirical mean, is also advisable to ensure that the empirical rescaled residuals have a mean zero. Thus one should 
nsider sampling from

𝑒𝑠𝑐 = 𝑒𝑠 − ̄̂𝑒𝑠, ̄̂𝑒𝑠 =
𝑛∑
𝑖=1

𝑒𝑠𝑖
𝑛
, 𝑒𝑠 = [𝑅{𝑉 −1(𝐼 −𝐻)}]−1∕2𝑒, (12)

𝑢̂𝑠𝑐 = 𝑢̂𝑠 − ̄̂𝑢𝑠, ̄̂𝑢𝑠 =
𝑛∑
𝑖=1

𝑢̂𝑠𝑗

𝑚
, 𝑢̂𝑠 = [𝐺𝑍𝑇 {𝑉 −1(𝐼 −𝐻)}𝑍]−1∕2𝑢̂. (13)

low is an algorithm to obtain bootstrap quantiles and construct intervals as in (10) and (11).

gorithm 1. A semiparametric random bootstrap algorithm

. Obtain consistent estimators 𝛽 and 𝛿.

. For 𝑏 = 1, 2, … , 𝐵:
(a) Obtain vectors 𝑒∗(𝑏) ∈ℝ𝑛, 𝑢∗(𝑏) ∈ℝ𝑚 by sampling independently with replacement from 𝑒𝑠𝑐 in (12) and 𝑢̂𝑠𝑐 in (13).
(b) Generate sample 𝑦∗(𝑏) =𝑋𝛽 +𝑍𝑢∗(𝑏) + 𝑒∗(𝑏) as in (7) and obtain 𝜃∗(𝑏)𝑗 = 𝑘𝑇𝑗 𝛽 + 𝑙

𝑇
𝑗 𝑢

∗(𝑏)
𝑗 , 𝑗 = 1, … , 𝑚.

(c) Fit a LMM to the bootstrap sample of the previous step.
(d) Obtain bootstrap estimates 𝛿∗(𝑏), 𝛽∗(𝑏), 𝜃̂∗(𝑏)𝑗 , 𝑡∗(𝑏)𝑗 and 𝑀∗(𝑏), 𝑗 = 1, … , 𝑚.

. Estimate critical values 𝑞∗
𝑗,𝛼∕2 , 𝑞

∗
𝑗,1−𝛼∕2, 𝑞

∗
1−𝛼 by the [{(𝛼∕2)𝐵} + 1]𝑡ℎ and [{(1 − 𝛼∕2)𝐵} + 1]𝑡ℎ order statistics of 𝑡∗𝑗 , and [{(1 −

𝛼)𝐵} + 1]𝑡ℎ order statistic of 𝑀∗(𝑏).
. Construct bootstrap intervals as in (10) and (11).

Fisher consistency of 𝛿∗ and 𝛽∗ obtained using the semiparamteric bootstrap of Algorithm 1 has been proven by Carpenter et al. 
003). In Lemma 1 and 2 the consistency of statistics 𝑡∗𝑗 and 𝑀

∗ is shown.

mma 1 (Consistency of 𝑡∗𝑗 ). Let 𝑡𝑗 and 𝑡
∗
𝑗 be as defined in (4) and (9), 𝑚 →∞, 𝑛𝑗 → ∞, lim𝑛𝑗 ,𝑛→∞ 𝑛𝑗∕𝑛 = 𝑐, 𝑐 > 0. If the regularity 

nditions in Appendix A.1 are satisfied, then one has in probability

sup
𝑎∈ℝ

||||𝐹𝑡𝑗 (𝑎) − 𝐹𝑡∗𝑗 (𝑎)||||→ 0.

Corollary 1 ensures the consistency of individual intervals introduced in (10).

rollary 1 (Consistency of 𝐼∗
𝑗,1−𝛼). Lemma 1 implies that under the same regularity conditions one has
4

𝑃 (𝜃𝑗 ∈ 𝐼𝑗,1−𝛼)→ 1 − 𝛼, 𝛼 ∈ (0,1).
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Consistency of 𝑀∗ does not follow from Lemma 1 by the delta method, because the max function is not differentiable. Lemma 2
ovides a heuristic proof based on some results known from extreme value theory.

mma 2 (Consistency of 𝑀∗). Let 𝑀 and 𝑀∗ be as defined in (4) and (9), 𝑚 →∞, 𝑛𝑗 →∞, lim𝑛𝑗 ,𝑛→∞ 𝑛𝑗∕𝑛 = 𝑐, 𝑐 > 0. If the regularity 
nditions in Appendix A.1 are satisfied and Lemma 1 holds, then one has in probability

sup
𝑎∈ℝ

||𝐹𝑀 (𝑎) − 𝐹𝑀∗ (𝑎)||→ 0.

Corollary 2 ensures the consistency of bootstrap simultaneous intervals of (11).

rollary 2. Lemma 2 implies that under the same assumptions one has

𝑃 (𝜃𝑗 ∈ 𝐼∗1−𝛼 ∀𝑗 ∈ [𝑚])→ 1 − 𝛼, 𝛼 ∈ (0,1).

 Inference beyond moderate distributional model misspecifications

Misspecification of modelling assumptions is a very broad concept. The methodology presented here is readily applicable when 
aling with distributional model misspecification, specifically when the true data generating process follows a linear mixed model in 
) but does not assume normality for the random effects or errors, a common situation in practice (cf., the data analysis in Section 6). 
wever, one can consider at least two broader frameworks.
First, assume that the true data generating process 𝐺𝑗 , i.e. 𝑦𝑗 ∼ 𝐺𝑗 , is any distribution, which does not necessarily depend on 
. In this context, considering inference for 𝜃𝑗 becomes an ill-posed problem as the true 𝜃𝑗 might even not exist. Following White 
982), one approach is to consider cluster-wise and simultaneous inference for a pseudo-true parameter 𝜃𝑗 which minimizes the 
llback–Leibler (KL) divergence between the true and the model density. The development of methodology to cover this case 
quires substantial theoretical extensions such as sup inf convergence of cumulative distribution functions of statistics which is an 
teresting future research direction. While these considerations are interesting, the primary advantage of this paper for practitioners 
s in its provision of easy, yet theoretically well-grounded, solutions for anyone interested in conducting statistical inference on the 
uster or area effects under common model misspecification.
Second, let us consider a misspecification in covariates, often referred to as an omitted variable problem. In this scenario, the true 
ta-generating process follows a linear mixed model as shown in (1), but it is not modelled with the same linear mixed model, possibly 
e to a lack of access to all covariates or an erroneous omission of some polynomial terms. If the omitted terms are uncorrelated with 
e included covariates, the omission increases the variances of the random terms and may cause heteroscedasticity. However, nothing 
se changes, and proposed method remains unaffected. This differs from cases where the omitted variables are correlated with the 
cluded ones, leading to a correlation between the included covariates and random terms (𝑢 or 𝑒). Consequently, the estimates 𝜃̂𝑗
n be systematically biased, resulting in the incorporation of bias in the estimation of the empirical cumulative distribution function 
𝑗
and its bootstrap version 𝐹𝑡∗

𝑗
, as discussed in Lombardía and Sperlich (2012). As a result, both the cluster-wise and simultaneous 

tervals are not guaranteed to provide good coverage. This was confirmed by the results of a simulation study, which, although not 
esented here, is available upon request from the authors. The problem might be alleviated by introducing a surrogate covariate 
ghly predictive of the missing one.
Finally, this manuscript proposes simple tools for cluster-wise and simultaneous inference once analysed data suffers from moder-
e departures from modelling assumptions. Nevertheless, alternatives should be used if data are contaminated by outliers, a problem 
hich is particularly severe in the small area estimation. In this situation, a common approach is to fit a robust working model to 
e sample data and then use it to predict non-sampled units in the population of interest, see Chambers and Tzavidis (2006a); Sinha 
d Rao (2009); Chambers et al. (2014). The construction of confidence intervals or the estimation of MSE in this challenging setup 
ten requires bootstrapping. The bootstrapping scheme needs to be adapted such that outliers from the sample have a controlled 
ect on the bootstrap variability. Since the main goal is not to compare the performance of all existing bootstrap procedures in the 
esence of various types of outliers (see the literature review in Section 1), this discussion is limited to some recent bootstrap schemes 
hose performance was tested in the context of multi-level data and small area estimation. In the context of mixed and multi-level 
ta, Modugno and Giannerini (2015) compared numerically several bootstrap schemes. In their simulation study, a variation of wild 
otstrap performed the best in terms of the coverage of confidence intervals for fixed parameters and variance components. In the 
ntext of SAE, Bertarelli et al. (2021) proposed a bounded block bootstrap, an extension of REB that uses ‘Huberized’ cluster-level 
d individual-level residuals to restrict the effect of outliers. The latter proved to be effective for the construction of MSE for mixed 
ects. Nevertheless, neither Modugno and Giannerini (2015) nor Bertarelli et al. (2021) studied the performance of their schemes 
 construct cluster-wise or simultaneous intervals for mixed effects.

 Simulation study

1. Setup

Numerical simulation studies are conducted to evaluate the finite sample properties of the bootstrap intervals. In all scenarios, 
5

tcomes are generated from a linear mixed effect model (1) with a fixed and a random intercept, and a uniformly distributed 
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Fig. 1. Probability density functions used to generate errors and random effects in simulations.

variate. Specifically, the settings are 𝑥𝑖𝑗1 = 1, 𝑧𝑖𝑗 = 1, 𝑥𝑖𝑗2 ∼ 𝑈 (0, 1). Three types of sample sizes are considered to mimic joint 
ymptotics: 𝑛𝑗 ∈ {5, 10, 15}, 𝑚 ∈ {25, 50, 75}. Furthermore, in each simulation run, errors and random effects are drawn from one 
 the following distributions: standard normal, Student’s t with 6 degrees of freedom, or chi-squared with 5 degrees of freedom. 
g. 1 displays kernel density plots of 106 realisations of a random variable generated using one of the above mentioned distribution. 
e Student’s t-distribution is symmetric, but it has very long tails in comparison to the normal distribution. On the other hand, 
i-square is highly right skewed, with a long right tail. The simulation setting is deemed challenging enough to test the robustness 
 the methods to misspecifications of distributions of errors and/or random effects.
The distributions are centred to zero and re-scaled to variances 𝑣𝑎𝑟(𝑒𝑖𝑗 ) = 1 and 𝑣𝑎𝑟(𝑢𝑗 ) = 1. The following scenarios are considered: 
) 𝑒𝑖𝑗 ∼ 𝜒25 , 𝑢𝑗 ∼ 𝜒

2
5 , (b) 𝑒𝑖𝑗 ∼ 𝜒

2
5 , 𝑢𝑗 ∼ 𝑡6, (c) 𝑒𝑖𝑗 ∼ 𝑁(0, 1), 𝑢𝑗 ∼ 𝑁(0, 1), (d) 𝑒𝑖𝑗 ∼ 𝑡6, 𝑢𝑗 ∼ 𝜒25 , (e) 𝑒𝑖𝑗 ∼ 𝑡6, 𝑢𝑗 ∼ 𝑡6. The target 

rameter in each simulation run was set to 𝜃𝑗 = 1 + 𝑥̄𝑗2 + 𝑢𝑗 , where 𝑥̄𝑗2 =
∑𝑛𝑗
𝑖=1 𝑥𝑖𝑗2∕𝑛𝑗 and 𝑢𝑗 is a generated random effect in cluster 

which is different for each simulation run. The performance of cluster-wise intervals in (10) and simultaneous intervals in (11)
 the 𝛼 = 0.05 level is compared. These intervals are obtained using the semiparametric bootstrap (SPB) presented in Section 3, a 
rametric bootstrap (PB) as in Chatterjee et al. (2008), a wild bootstrap as in Lombardía and Sperlich (2008) and a random effect 
ock bootstrap as in Chambers and Chandra (2013). Different auxiliary distributions are considered while implementing a wild 
otstrap: Rademacher distribution (WBR), Mammen’s distribution (WBM, cf., Mammen, 1993), and a standard normal distribution 
BN). Two variations of REB, as originally proposed by Chambers and Chandra (2013), are implemented: with a random selection 

 clusters without scaling (REB) and with scaling (REBs). Additionally, the performance of the REB variants without the random 
lection of clusters is tested: without scaling (REBnc) and with scaling (REBsnc). Moreover, the performance of intervals constructed 
ing large-sample asymptotic approximations (A) is evaluated with (1 −𝛼∕2) and (1 −𝛼∕(2 ×𝑚)) quantiles from a normal distribution 
e latter by Bonferroni correction).
Inference based on the asymptotic theory or parametric bootstrap is notorious for not being robust to model misspecifications. 
ild bootstrap proved to be successful in alleviating the problem of heteroscedasticity (see, among other Sugasawa and Kubokawa, 
17, for a recent contribution), whereas the random effect bootstrap with scaling turned out to be successful in the inference for 
ed effects and variance components in the presence of distributional misspecifications or autocorrelated errors (Chambers and 
andra, 2013). Therefore, they are included in the study for comparison. Finally, six different methods to retrieve an estimate of 
are used: 𝜎̃2𝑗 defined in Section 2 (𝑣𝑎𝑟), asymptotic version of the MSE estimator under normality (𝑚𝑠𝑒𝑎), and four bootstrap 
timators of the MSE (𝑚𝑠𝑒𝑏, 𝑚𝑠𝑒3𝑡, 𝑚𝑠𝑒𝑠𝑝, 𝑚𝑠𝑒𝑠𝑝𝑎). Since the choice of estimators of variability is of minor importance, the definition 
 these estimators and related simulation results are deferred to the SM. In total, the performance of 55 types of cluster-wise and 
ultaneous intervals is tested (9 bootstrap schemes × 6 variance estimators plus an asymptotic derivation).
The following criteria to assess the performance of intervals are employed: empirical coverage probability in (14) for individual 
d simultaneous intervals, average widths of the intervals in (15), and the coverage error in percentage (16), all of them over 
𝑠 = 1000 simulation runs:

Cov𝑖𝑛𝑑 =
1
𝑚𝑁𝑠

𝑚∑
𝑗=1

𝑁𝑠∑
𝑛𝑠=1

𝟏{𝜃(𝑛𝑠)𝑗 ∈ 𝐼∗(𝑛𝑠)
𝑗,1−𝛼}, Cov𝑠𝑖𝑚 =

1
𝑁𝑠

𝑁𝑠∑
𝑛𝑠=1

𝟏{𝜃(𝑛𝑠)𝑗 ∈ 𝐼∗(𝑛𝑠)1−𝛼 ∀𝑗 ∈ [𝑚]}, (14)

Len = 1
𝑚𝑁𝑠

𝑚∑
𝑗=1

𝑁𝑠∑
𝑛𝑠=1
𝜌
(𝑛𝑠)
𝑗 , 𝜌

(𝑛𝑠)
𝑗 = 2𝑞(𝑛𝑠)(⋅) 𝜎̂

(𝑛𝑠)
𝑗 , (15)

%errind =
|Covind − (1 − 𝛼)|

(1 − 𝛼)
× 100, %errsim =

|Covsim − (1 − 𝛼)|
(1 − 𝛼)

× 100 (16)

here (⋅) stands for subindices 𝑗, 𝛼 for cluster-wise intervals, and index 𝛼 for simultaneous intervals. In each simulation run, they are 
= 1000 bootstrap samples generated.

mark 1. In their paper, Chambers and Chandra (2013) introduced three variations of the REB bootstrap: “REB/0”, “REB/1” and 
6

EB/2”. REB/0 and REB/1 correspond to REB and REBs in this manuscript. REB/2 involves scaling and bias adjustment after the 
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Table 1

Empirical coverage (Cov.), length (Len.) and error of coverage in percentage (%errind) of individual intervals at 
1 − 𝛼 = 0.95 level, 𝑒𝑖𝑗 ∼ 𝜒2

5 , 𝑢𝑗 ∼ 𝜒2
5 .

Method 𝜎̂2 𝑚 = 25, 𝑛𝑗 = 5 𝑚 = 50, 𝑛𝑗 = 10 𝑚 = 75, 𝑛𝑗 = 15

%errind Cov. Len. %errind Cov. Len. %errind Cov. Len.

A 𝑚𝑠𝑒𝑎 0.22 94.79 1.67 0.04 95.04 1.21 0.02 94.98 1.00

SPB 𝑣𝑎𝑟 0.24 94.77 1.69 0.54 94.49 1.21 0.50 94.53 0.99

PB 𝑣𝑎𝑟 0.17 94.84 1.69 0.06 94.95 1.21 0.13 94.88 0.99

REB 𝑣𝑎𝑟 0.70 95.67 1.77 0.25 95.23 1.24 0.08 95.08 1.01

REBnc 𝑣𝑎𝑟 8.20 87.21 1.56 4.89 90.36 1.15 3.54 91.64 0.96

REBs 𝑚𝑠𝑒𝑏 0.15 95.14 1.72 0.07 95.07 1.23 0.00 95.00 1.01

REBsnc 𝑚𝑠𝑒𝑏 0.15 95.14 1.72 0.07 95.07 1.23 0.00 95.00 1.01

WBM 𝑣𝑎𝑟 7.02 88.33 3.58 4.82 90.42 1.13 3.71 91.48 0.94

WBN 𝑣𝑎𝑟 6.55 88.78 3.69 4.81 90.43 1.15 3.74 91.45 0.96

WBR 𝑣𝑎𝑟 8.93 86.52 1.47 5.86 89.44 1.11 4.41 90.82 0.93

Table 2

Empirical coverage (Cov.), length (Len.) and error of coverage in percentage (%errind) of simultaneous intervals at 1 − 𝛼 = 0.95 level, 
𝑒𝑖𝑗 ∼ 𝜒2

5 , 𝑢𝑗 ∼ 𝜒2
5 .

Method 𝑚 = 25, 𝑛𝑗 = 5 𝑚 = 50, 𝑛𝑗 = 10 𝑚 = 75, 𝑛𝑗 = 15

𝜎̂2 %errind Cov. Len. 𝜎̂2 %errind Cov. Len. 𝜎̂2 %errind Cov. Len.

A 𝑚𝑠𝑒𝑎 4.84 90.40 2.64 𝑚𝑠𝑒𝑎 5.68 89.60 2.03 𝑣𝑎𝑟 6.21 89.10 1.73

SPB 𝑣𝑎𝑟 1.47 93.60 2.82 𝑚𝑠𝑒𝑠𝑝 1.58 93.50 2.17 𝑚𝑠𝑒𝑠𝑝𝑎 2.11 93.00 1.85

PB 𝑣𝑎𝑟 3.16 92.00 2.70 𝑣𝑎𝑟 5.26 90.00 2.04 𝑣𝑎𝑟 6.00 89.30 1.73

REB 𝑚𝑠𝑒𝑠𝑝 1.37 96.30 3.08 𝑚𝑠𝑒𝑏𝑐 2.95 97.80 2.46 𝑚𝑠𝑒𝑏 3.16 98.00 2.08

REBnc 𝑚𝑠𝑒𝑠𝑝 2.00 96.90 3.10 𝑚𝑠𝑒𝑠𝑝 3.47 98.30 2.48 𝑚𝑠𝑒𝑠𝑝 3.58 98.40 2.10

REBs 𝑚𝑠𝑒𝑏𝑐 3.58 98.40 3.38 𝑚𝑠𝑒3𝑡 3.79 98.60 2.58 𝑚𝑠𝑒𝑏𝑐 3.58 98.40 2.16

REBsnc 𝑚𝑠𝑒𝑏𝑐 4.00 98.80 3.37 𝑚𝑠𝑒𝑏𝑐 3.68 98.50 2.58 𝑚𝑠𝑒𝑏 3.68 98.50 2.15

WBM 𝑚𝑠𝑒𝑠𝑝 1.05 96.00 2.76 𝑚𝑠𝑒𝑠𝑝𝑎 2.84 97.70 2.21 𝑚𝑠𝑒𝑠𝑝𝑎 2.32 97.20 1.88

WBN 𝑣𝑎𝑟 2.84 97.70 3.33 𝑚𝑠𝑒𝑠𝑝 0.00 95.00 2.39 𝑚𝑠𝑒𝑠𝑝 0.74 94.30 2.01

WBR 𝑣𝑎𝑟 0.11 94.90 3.00 𝑣𝑎𝑟 0.11 95.10 2.19 𝑣𝑎𝑟 2.21 92.90 1.83

B bootstrapping. The performance of the latter variation is not considered, as its construction is tailored to provide valid confidence 
tervals only for parameters 𝛽, 𝜎2𝑢 , and 𝜎

2
𝑒 . It remains unclear how one can generalize their proposal to be applicable for the inference 

 statistics 𝑡𝑗 and 𝑀 .

The variations REBnc and REBsnc, tested in this manuscript, were not proposed by Chambers and Chandra (2013), and as far as is 
own, their theoretical properties have not been studied. Initially, their numerical performance was tested out of thoroughness and 
ientific curiosity. These variations were included in this manuscript because, surprisingly, their numerical performance was found 
 be comparable to variants REB/0 and REB/1 in Chambers and Chandra (2013) (see results in lines 5 and 7 of Tables 1 and 2). This 
ding warrants additional scrutiny and could be explored in future research.

2. Results of simulations

2.1. Cluster-wise inference
Table 1 displays the numerical performance of individual intervals for the mixed effects 𝜃𝑗 under scenario (a): 𝑒𝑖𝑗 ∼ 𝜒25 , 𝑢𝑗 ∼ 𝜒

2
5 . 

r the bootstrap-based intervals, for each sample size, only the performance of the interval with the lowest %errind is reported. For 
ample, SPB and 𝑣𝑎𝑟 in the second row refers to the performance of the cluster-wise interval constructed using the semiparametric 
otstrap and 𝜎̃2𝑗 defined in Section 2. The remaining results can be found in the SM. In this case, the performance of all methods 
art from REBnc, WBM, WBN and WBR is similar – the coverage error is smaller than 1% which means that the distribution of errors 
d random effects seem to hardly affect the empirical coverage, even for the intervals based on the asymptotic theory (cf. results in 
e first line of Table 1). The cluster-wise individual intervals seem to be robust to distributional misspecification. Furthermore, the 
, SPM and REB have similar performance which partially explains their popularity in small area estimation based on linear mixed 
odels. Since the analysis of the performance of cluster-wise intervals under other simulation scenarios leads to the same conclusions, 
ose results are deferred to the SM.

2.2. Simultaneous inference
The situation changes dramatically in Table 2 which shows the results for simultaneous intervals for mixed effects 𝜃𝑗 under scenario 
): 𝑒𝑖𝑗 ∼ 𝜒25 , 𝑢𝑗 ∼ 𝜒

2
5 . Intervals obtained using Bonferroni correction (A) and parametric bootstrap (PB) suffer from a significant 

dercoverage. The SPB-based intervals suffer from a minor undercoverage, the application of the REB leads to overcoverage, whereas 
e intervals constructed by WBN are closest to the nominal coverage.
In Section 3 it was proved that asymptotically, the cumulative distribution function of statistic 𝑀∗ should approach the cumulative 
7

stribution of statistic 𝑀 . To understand better the results in Table 2, the shapes of the probability density functions of the bootstrap-
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. 2. Monte Carlo approximation (red) of the true density function of statistic 𝑀 and bootstrap approximations (green): (left) SPB, (middle) REB, (right) WBN. (For 
erpretation of the colours in the figures, the reader is referred to the web version of this article.)

. 3. Monte Carlo approximation (red) of the true density function of statistic 𝑡1 and bootstrap approximations (green): (left) SPB, (middle) REB, (right) WBN. (For 
erpretation of the colours in the figures, the reader is referred to the web version of this article.)

. 4. Monte Carlo approximation of the true density function of statistic 𝑡2 and: (left) the SPB approximations, (middle) the REB approximations, (right) WBN 
proximations. (For interpretation of the colours in the figures, the reader is referred to the web version of this article.)

sed approximations in the simulation scenario with 𝑚 = 75, 𝑛𝑗 = 15 are visually assessed (the results obtained from simulation 
dies with the biggest sample size should be the most representative as one refers to the asymptotic theory to analyse them).
Fig. 2 displays the Monte Carlo approximation of the true cumulative distribution function of statistic 𝑀 , and 50 out of 1000
otstrap-based approximations in the simulation scenario with 𝑚 = 75, 𝑛𝑗 = 15. The left panel refers to the SPB-based simultaneous 
tervals with 𝜎̂2 =𝑚𝑠𝑒𝑠𝑝𝑎 (the second row of Table 2). As one can see, some of the bootstrap approximations suffer from some bias 
hich may explain the small undercoverage. Nonetheless, the shape of the distribution is well maintained in each of the simulation 
ns in contrast to the middle and right panel which represent the REB and WBN approximations respectively. Both of them seem to 
 skewed to the right with fewer observations from the bulk of the data and more observations with extreme values which explains 
eir overcoverage. This is also an indication that it is unclear if the REB or the WBN can be used to obtain results similar to those in 
mma 2.

The shape of the distributions in Fig. 2, and consequently the empirical coverage of simultaneous intervals, depend crucially on 
e ability of bootstrap schemes to reproduce the distribution of statistic 𝑀 as defined in (4). Since the latter is taken as a maximum 
er studentized statistics 𝑡𝑗 for which all three bootstrap schemes, SPB, REB and WBN, perform well, it might come as a surprise that 
ly SPB performs well as a tool for simultaneous inference. To understand this, Figs. 3-4 present the Monte Carlo approximations 
 the true cumulative distribution function of two statistics 𝑡𝑗 , along with 50 out of 1000 bootstrap-based approximations in the 
me simulation scenario as in Fig. 2. Similarly to Fig. 2, only the SPB-based bootstrap-based approximations capture the shape of 
e distributions of the true statistics in Figs. 3-4. In contrast, there is a lot of variability between bootstrap-based approximations 
der the REB; some of them are biased (moved to the right or the left from the truth), and for others, a bigger amount of data is 
cated around the centre of the distribution – the bootstrap-based distributions are “taller” than the truth. High variability between 
e REB approximations explains the overcoverage of the REB for the simultaneous intervals. As for the WBN, the bootstrap-based 
proximations are once again quite variable, being sometimes flatter with longer tails, and sometimes taller with shorter tails. This 
so explains why the WBN performed poorly for individual intervals but well for simultaneous intervals; for some clusters, the 
antiles were too low to give good individual coverage, but at least one of them was high enough to boost the maximum value 
8

hich drives the distribution of statistics 𝑀 , and affects the shape of the distribution in Fig. 2.
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Table 3

The computation time (in seconds) to estimate high quantiles 𝑞𝑗,1−𝛼∕2 , 𝑞𝑗,𝛼∕2 , 𝑞1−𝛼 .
Method PB SPB WRB WNB WMB REB REBs REBnc REBsnc

𝑚 = 25 17.187 17.111 17.095 16.961 17.049 18.544 18.517 18.764 18.918

𝑚 = 50 18.745 18.254 17.916 18.360 18.225 20.106 20.500 20.361 20.658

𝑚 = 75 21.565 21.535 21.349 21.924 21.654 24.748 24.029 23.917 24.103

Apart from the numerical results presented in this manuscript, there is a lack of theoretical or computational results regarding the 
bustness of bootstrap-based cluster-wise or simultaneous inference for mixed effects using wild or random effect block bootstrap. 
erefore, making general statements about their performance is challenging, and the discussion was confined to commenting on 
merical results in this section. Upon reviewing the literature on bootstrapping for linear mixed models, it has been observed that 
e majority of scholars test the performance of bootstrap methods in terms of empirical coverage of intervals for fixed effects and 
riance parameters. In this case, similar to the bootstrap estimation of the mean squared error for mixed effects (see discussion in 
ction 1), bootstrap schemes are required to reproduce the first few moments of the underlying data-generating process. As shown 
 Table 1 and Figs. 3-4, these quantities appear to be easier to reproduce by bootstrapping than the entire distribution of the statistic 
. The validity of bootstrapping to accurately estimate moments can be assessed by analyzing either the bootstrap version of the 
elihood or estimating equations, both converging to some sum-stable distribution.

2.3. Computational time
Finally, the computational time to construct different intervals depends on (a) the method to estimate 𝜎2𝑗 , (b) the method to 
timate high quantiles 𝑞𝑗,1−𝛼∕2 , 𝑞𝑗,𝛼∕2, 𝑞1−𝛼 . For example, when using ̂̃𝜎2𝑗 as an estimator of 𝜎

2
𝑗 , the asymptotic method (A) to construct 

tervals does not require any computational time, as the high quantiles from a standard normal distribution are tabularized. On the 
her hand, the average computation time (in seconds) to estimate quantiles for bootstrap-based methods is given in Table 3. The 
mputations were performed using a personal laptop with an Intel(R) Core(TM) processor running at 2.40GHz and 32GB of RAM. 
e computation time for all considered sample sizes and methods does not exceed 25 seconds, making it very affordable.

2.4. Summary of results
In summary, SPB-based cluster-wise and simultaneous intervals seem to be a viable option when addressing distributional model 
isspecifications. Other bootstrap schemes provide satisfactory coverage only for either the cluster-wise or the simultaneous intervals, 
t not for both. As the findings in other simulation settings lead to the same conclusions, they were deferred to the SM.

3. On the comparison with the results of Chambers and Chandra (2013)

It is important to exercise caution when attempting direct comparisons between the results of Chambers and Chandra (2013) and 
e simulations in this manuscript. Several reasons underpin the decision to avoid such comparisons: (a) this paper explores different 
ulation scenarios, including varied data-generating processes and departures from model assumptions; (b) the focus is on different 
rameters of interest; (c) different assumptions and methods are employed to establish Fisher consistency; (d) access to the code 
ed to generate their results is limited; and (e) two out of three bootstrap schemes proposed by Chambers and Chandra (2013)
e implemented. Nevertheless, given the poor performance of SPB reported by Chambers and Chandra (2013) in some simulations, 
e above results might come as a surprise for certain readers, particularly within the small area estimation community, prompting 
mments on some of them.
Chambers and Chandra (2013) considered the construction of confidence intervals for fixed effects and variances of random effects 
ing, among others, the SPB and the REB. They considered four simulation setups: without departures from normality (scenario A), 
ith scaled and centred random effects and errors following 𝜒2-distribution with 1 degree of freedom (scenario B), with first-order 
tocorrelated errors within each cluster (scenario C), with first-order autocorrelated errors in the entire sample of size 𝑛 (scenario D). 
or results for SPB were reported by the authors only for: (i) the intercept under scenarios A and B for 𝑛𝑖 = 20 and under scenarios C 
d D regardless of 𝑛𝑖, (ii) the variance of random effects under scenario B regardless of 𝑛𝑖 , (iii) the variance of errors under scenarios 
 C, D regardless of 𝑛𝑖.
Regarding case (i), Chambers and Chandra (2013) acknowledge the lack of significant differences between the coverage rates for 
gression coefficients under different bootstrap schemes. They admit that the poor coverage of SPB for the intercept might stem 
m “a potential bias problem with our implementation of this method.” Therefore, they decided to assess the quality of different 
otstrap methods by comparing the coverage of their intervals for the variances of random effects and errors, which brings us to 
e analysis of the SPB in cases (ii) and (iii). The simulation setups B to D violate the assumptions imposed to prove the consistency 
 the SPB (i.e., the lack of correlation between errors and the existence of the first 4 + 𝑏, 𝑏 > 0 moments of the outcome variable, 
rors, and random effects, as outlined in regularity condition 3 in Appendix A.1). Therefore, the better performance of SPB in the 
ulation study can likely be attributed to (a) a meticulous implementation of the method proposed by Carpenter et al. (2003), 

hich includes both centering and rescaling, as suggested by the authors; and (b) considering robustness in scenarios with moderate 
partures from modelling assumptions, such that the consistency of bootstrap-based equivalents of statistics of interest 𝑡𝑗 and 𝑀
9

n still be ensured.



K.

6.

th

𝑄

a 
of

da

an

𝜃̂𝑗
an

an

w

th

in

tra

re

ty

Re

us

in

di

ra

di

w

th

so

to
Computational Statistics and Data Analysis 199 (2024) 108014Reluga, M.-J. Lombardía and S. Sperlich

Fig. 5. REML empirical Bayes estimates of random effects: (left) QQ plot; Cholesky REML residuals: (middle) kernel density estimation and (right) QQ plot.

Fig. 6. 95% bootstrap CPI and SPI for the county-level averages of the monthly household income in Galicia.

 Simultaneous inference for household income in Galicia

The method is applied to construct simultaneous confidence intervals for household income across 𝑚 = 52 counties (comarcas) in 
e Spanish region of Galicia and 𝑛 = 9203 households. Descriptive statistics of households across counties are as follows: Min = 18, 
1 = 50, 𝑄2 = 108, Mean = 177, 𝑄3 = 184, Max = 1008. In some counties, the data were collected from only 18 households, indicating 
small area estimation problem. Similarly to Reluga et al. (2023b), household income data from the Structural Survey of Homes 
 Galicia is considered. In their analysis, Reluga et al. (2023b) compared the performance of direct estimates of household income 
ta and model-based estimates, and constructed cluster-wise and simultaneous intervals using parametric bootstrap. In the current 
alysis, the same linear mixed model and target parameter are considered: 𝜃𝑗 = 𝑘𝑇𝑗 𝛽 + 𝑙

𝑇
𝑗 𝑢𝑗 . The parameter is estimated with EBLUP 

= ̂̄𝑋𝑑𝑖𝑟𝑗 𝛽 + 𝑢̂𝑗 , where 
̂̄𝑋𝑑𝑖𝑟
𝑑

is an estimate of the county-level means of covariates including age, education level, type of household, 
d variables indicating financial difficulties of the household at the end of a month (see Reluga et al., 2023b, for the list of covariates 
d model selection criterion).
Income data are well known to be right-skewed. Fig. 5 displays the REML empirical Bayes estimates of random effects together 

ith the density and QQ-plot of Cholesky REML residuals. While the random effects (left panel) appear to follow a normal distribution, 
e skewness of the residuals (middle and right panel) is apparent. Parametric bootstrap is not appropriate to construct simultaneous 
tervals in settings with skewed residuals and/or random errors (cf., results in Section 5). The standard trick is to apply a log-
nsform to the income. However, the challenge lies in obtaining an unbiased back-transformation of the predicted log-income to 
al income. As demonstrated in Section 5, confidence intervals constructed using the semiparametric bootstrap are robust to this 
pe of model misspecification, allowing us to avoid the log transformation.
Fig. 6 presents bootstrap-based cluster-wise and simultaneous confidence intervals. Clearly, Fig. 6 closely resembles Figure 5 in 
luga et al. (2023b) as the same covariates and model to obtain the EBLUP were used. The estimate of the high quantile 𝑞1−𝛼 obtained 
ing SPB is 1.95% greater than the one obtained by PB, resulting in a corresponding increase in the widths of the simultaneous 
tervals across all counties. However, this increase is not detrimental – one can still distinguish many counties with significantly 
fferent levels of household income. On the other hand, the change in widths of individual intervals when switching from PB to SPB 
nges from -6% to 8.30%, with a mean of 1.07%. In summary, the application of the semiparametric bootstrap, which is robust to 
stributional model misspecifications, leads to a minor increase in interval widths compared to those of the parametric bootstrap, 
hich is not robust and model-dependent. Fig. 7 displays maps of the lower and upper boundaries of the simultaneous intervals for 
e county-level averages of household income. Certainly, one can again observe similarities with former results, but also note that 
me of the poorest counties are now assigned to different categories. In other words, the semiparametric bootstrap, which is robust 
10

 distributional assumptions, leads to different conclusions for the most precarious areas.
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Fig. 7. 95% bootstrap SCI for the county-level averages of the average household income in Galicia: (left) lower boundary, (middle) upper boundary.

 Discussion

Linear mixed effects are still popular for predicting cluster-level parameters in various domains. Yet, the underlying assumptions 
at should guarantee satisfactory numerical performance are often violated in practice. It has been shown that the application of 
relatively simple bootstrapping scheme can remedy issues arising from distributional model misspecifications without the need to 
ach for more complex techniques such as robust estimation or data transformation. Furthermore, compared to methods based on 
rametric bootstrap, which is still the most commonly used technique in small area estimation, proposed bootstrap-based method-
ogy offers at least three advantages: (a) robustness to distributional model misspecification, (b) no additional computational cost, 
d (c) simplicity of implementation. In addition, the numerical study confirms that mixed effects are fairly robust to distributional 
odel misspecification, including asymmetry and long tails of distributions of errors and random effects, unless they undergo com-
ex, nonlinear transformations such as max transformation. This is particularly important in the context of small area estimation in 
hich mixed effects are often used for nonlinear indicators (Rojas-Perilla et al., 2020). For future research, it would be interesting to 
dy how the bootstrap-based methodology could be extended to applications such as poverty analysis under model misspecification.
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pendix A. Regularity conditions and proofs

1. Regularity conditions

The regularity conditions from Shao et al. (2000) and Reluga et al. (2023b) are adopted. Let 𝜗 = (𝛽, 𝛿), 𝜗̂ = (𝛽, 𝛿) and 𝜗0 ∈ Θ ⊂
𝑝+ℎ+1 be the true parameter value. The following assumptions are made:

. Score equation 𝑠𝑛(𝜗) =
∑𝑚
𝑗=1

∑𝑛𝑗
𝑖=1𝜓(𝑦𝑖𝑗 , 𝜗) is well defined if: (a) 𝑠𝑛(𝜗) is continuous and differentiable for each fixed 𝑦, (b) 

𝐸{𝑠𝑛(𝜗)} = 0 at 𝜗0, (c) 𝜗0 is an interior point of Θ and the estimator 𝜗̂ is an interior point of the neighbourhood of 𝜗0.
. lim inf

𝑛
𝜆[𝑛−1var{𝑠𝑛(𝜗)}] > 0 and lim inf

𝑛
𝜆[−𝑛−1𝐸{∇𝑠𝑛(𝜗)}] > 0 where ∇𝑠𝑛(𝜗) =

𝜕𝜓(𝜗)
𝜕𝜗

and 𝜆[𝐴] indicates the smallest eigenvalue 
of matrix 𝐴.

. There exists a 𝑏 > 0 such that 𝐸
(‖‖‖𝜓(𝑦𝑖𝑗 , 𝜗‖‖‖4+𝑏

)
<∞, and 𝐸

[
{ℎ𝑁 (𝑦𝑖𝑗 )}2+𝑏

]
in a compact neighbourhood 𝑁 , where ℎ𝐶 (𝑦𝑖𝑗 ) =

sup𝜗∈𝑁 ‖‖∇𝑠𝑛(𝜗)‖‖.
. 𝑉𝑗 (𝛿) has a linear structure in 𝛿, 𝑗 = 1, … , 𝑚.

nditions 1 − 3 ensure that one can use the score equation 𝑠𝑛 to estimate fixed parameters 𝜗 up to a vanishing term. Condition 4
11

plies that the second derivatives of 𝑅𝑗 and 𝐺𝑗 are 0.
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2. Proofs

2.1. Proof of Lemma 1
Without loss of generality, it is assumed that the sequence of estimators 𝑡𝑗 converges to a continuous distribution function 𝐹 . A 
ndard way of proving the consistency of bootstrap procedures (see, for example, Van der Vaart, 2000, Chapter 23) is to show that, 
r every 𝑎 𝐹𝑡𝑗 (𝑎) → 𝐹 (𝑎) in distribution and 𝐹𝑡∗𝑗 (𝑎) → 𝐹 (𝑎) given the original sample size in probability. Let 𝜗̂

∗ = (𝛽∗, 𝛿∗) and 𝐸∗ be 

bootstrap operator of the expected value. Then 𝑡𝑗 and 𝑡∗𝑗 can be written as 𝑡𝑗 = 𝑓 (𝜗, 𝜗̂, 𝑢𝑗 ) and 𝑡
∗
𝑗 = 𝑓 (𝜗̂, 𝜗̂ ∗, 𝑢

∗
𝑗 ), respectively for a 

ntinuous and a differentiable function 𝑓 . Consider the score equation 𝑠𝑛(𝜗) in A.1 and its bootstrap equivalent 𝑠∗𝑛(𝜗) =
∑𝑛
𝑖 𝜓(𝑦𝑖, 𝜗)

ith 𝑦 replaced by 𝑦∗. It follows that 𝐸∗{𝑠∗𝑛(𝜗)} = 0 at 𝜗 = 𝜗̂ which yields the consistency of the sequence of bootstrap estimators 
. The consistency of random effects under random effect bootstrap was proven by Field and Welsh (2007) under 𝑚 →∞, 𝑛𝑗 →∞, 

𝑛𝑗 ,𝑛→∞ 𝑛𝑗∕𝑛 = 𝑐, 𝑐 > 0, which is in alignment with results of Jiang (1998). One thus has that 
√
𝑛(𝜃̂∗𝑗 −𝜃

∗
𝑗 ) and 

√
𝑛(𝜃̂𝑗 −𝜃𝑗 ) converge 

 the same distribution. Finally, the consistency result follows by Slutsky’s lemma.

2.2. Proof of Corollary 1
The proof follows along the same lines as in Lemma 23.3 of Van der Vaart (2000). By Lemma 1, the sequences of distribution 
nctions 𝐹𝑡𝑗 and 𝐹𝑡∗𝑗 converge weakly to 𝐹 , which implies the convergence of their quantile functions 𝐹

−1
𝑡𝑗

and 𝐹−1
𝑡∗
𝑗

at every continuity 

int. One thus concludes that 𝑞∗
𝑗,1−𝛼 = 𝐹

−1
𝑡∗
𝑗

(1 − 𝛼) → 𝐹−1(1 − 𝛼) almost surely, and

𝑃 {𝜃𝑗 ≥ 𝜃̂𝑗 − 𝜎̂𝑗𝑞∗𝑗,1−𝛼} = 𝑃

{
𝜃̂𝑗 − 𝜃𝑗
𝜎̂𝑗

≤ 𝑞∗
𝑗,1−𝛼

}
→ 𝑃

{
𝑡𝑗 ≤ 𝐹

−1(1 − 𝛼)
}
= 1 − 𝛼,

hich completes the proof.

2.3. Proof of Lemma 2
Observe that 𝐹𝑀 (𝑎) = 𝑃 (𝑀 < 𝑎) = 𝑃 (𝑡1 ≤ 𝑎, … , 𝑡𝑚 ≤ 𝑎, −𝑡1 ≤ 𝑎, … , −𝑡𝑚 ≤ 𝑎). Since 𝑡𝑗 , 𝑗 = 1, … , 𝑚 are asymptotically indepen-
nt and identically distributed. The following approximation is used: 𝐹𝑀 (𝑎) ≈

∏2𝑚
𝑗=1 𝐹𝑗 (𝑎) where 𝐹𝑗 (𝑎) is a proper, non-degenerate 

stribution. By classical results of extreme value theorem (or Fisher–Tippett–Gnedenko theorem, see Beirlant et al., 2004; Em-
echts et al., 2013, for more details), one can assume that there exist sequences of re-normalizing constants {𝑏𝑗 > 0}, {𝑐𝑗} such that 
{(𝑀𝜃 − 𝑐𝑗 )∕𝑏𝑗 ≤ 𝑎} converges to a non-degenerate distribution function 𝐻(𝑎) as 𝑗 →∞, i.e., 𝐹𝑗 (𝑎) belongs to the max-domain of 
traction of some non-degenerate, continuous distribution 𝐻(𝑎). The consistency of 𝐹𝑀∗ (𝑎) follows by evoking the properties of the 
ndom effect bootstrap and the arguments used in the proof of Lemma 1.

2.4. Proof of Corollary 2
The proof follows along the same lines as in Corollary 1 with statistic 𝑡𝑗 replaced by 𝑀 .

pendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2024 .108014.
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