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Clustering is an unsupervised learning technique for organizing complex datasets into coherent groups. 
A novel clustering algorithm is presented, with a simple grouping concept depending on only one 
hyperparameter, which makes it suitable for further extensions to any topology and space. It is compared 
to state-of-the-art algorithms, overall achieving a better performance independently on the structure and 
complexity of the data, making the proposed algorithm a valuable tool for real applications such as 
market segmentation, sentiment analysis and anomaly detection.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

Clustering is an unsupervised learning technique for organiz-
ing populations into coherent groups, extracting some inherent 
structure in the data in terms of meaningful subclasses. Resulting 
clusters should not only have good statistical properties (compact, 
well-separated, connected, and stable) [3], but also give relevant 
and useful results. Effective clustering algorithms can facilitate nu-
merous applications, including gen clustering, customer grouping, 
pattern recognition, image analysis and data compression, to name 
a few.

There are two basic types of clustering algorithms [8]: parti-
tioning and hierarchical. The former constructs a partition of a 
database into k clusters, being k a parameter usually not available 
beforehand. The partitioning algorithm typically starts with an ini-
tial partition and then uses an iterative strategy to optimize an 
objective function. Finally, each cluster is represented by its grav-
ity center, e.g. the mean point of the group [10]. Some of the most 
popular partitioning clustering algorithms include k-means [10], 
k-medoids, and Gaussian mixture models [2]. On the other hand, 
hierarchical algorithms create a hierarchical decomposition of the 
data represented by a dendrogram defined by a distance metric, 
until each subset consists of only one object. The dendrogram can 
either be created by merging (agglomerative approach) or dividing 
clusters (divisive approach) at each step. In contrast to partition-
ing algorithms, hierarchical algorithms do not need the number of 
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clusters, k, as an input. However, a termination condition (pruning) 
has to be defined indicating when the merge or division process 
should be terminated, which is usually not straightforward.

State-of-the-art clustering notions include small distances be-
tween cluster members [13], dense areas of the data space [6,1], 
centroid models [10], connectivity models [8,11] or particular sta-
tistical distributions [2]. Regarding the challenges to overcome, ap-
propriate hyperparameters (such as the number of clusters, the un-
derlying distribution of the data, a density threshold or the concept 
of closeness in terms of a metric or a number of observations) are 
often not known in advance. The estimation of these hyperparame-
ters is not straightforward as it is metric-dependent and subject to 
some degree of subjectivity. Therefore it can be a daunting task de-
termining the most appropriate algorithm, which depends on the 
specific application and the characteristics of the data.

In this paper it is considered the hard clustering approach, 
meaning that each point belongs exactly to one and only one 
cluster. The proposed Clustering Algorithm Based on Regular Arrange-
ment (CABRA) extends density and connectivity-oriented previous 
approaches considering a new grouping concept. It starts assum-
ing the null hypothesis that the data is generated by an uniform 
distribution on each dimension. Then, points that are at a dis-
tance smaller than a quantile of the distribution of the minimum 
distance are grouped together. This quantile is the only hyper-
parameter of the algorithm, which autonomously determine the 
number of clusters. Furthermore, as the algorithm relies on a null 
hypothesis and not on characteristics of the data or initial val-
ues, it is robust to noise and provides stable results. Consequently, 
the proposed algorithm has a simple parameter tuning based on 
a straightforward grouping logic, which makes it suitable for fur-
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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Fig. 1. Regular arrangement assumption.

ther generalizations and applications in a broad range of clustering 
tasks.

The paper is organized as follows. Section 2 introduces the pro-
posed clustering algorithm, explaining its grouping logic, steps and 
some refinements. Section 3 introduces the state-of-the-art clus-
tering algorithms considered to compare the CABRA performance 
and summarize the results obtained over various commonly used 
datasets. Section 4 gives conclusions and further extensions of the 
proposed algorithm.

2. Clustering based on regular arrangement

The algorithm starts from the null hypothesis that the data has 
an independent uniform distribution across all its dimensions. This 
can be understood as the stochastic version of all the points be-
ing as far apart as possible from each other in the data support, 
case where it would be no clustering structure except from the 
trivial groupings. The left graph in Fig. 1 represents this setting. 
Under the null hypothesis, the underlying distribution of the data 
is known, so it can be calculated the distribution of the minimum 
distance between any two points. Afterwards, a quantile of this 
distribution is taken as distance threshold for clustering. Two ob-
servations closer than this quantile are considered to break the null 
hypothesis and are assigned to the same group. The quantile, q, is 
a hyperparameter that needs to be tuned. Depending on the data, a 
high value of q can be too strict and the algorithm would estimate 
only one cluster, or vice versa. Thus, the algorithm has flexibil-
ity depending on the data with just one hyperparameter and a 
straightforward grouping criteria.

It is assumed that the uniform distribution hypothesis is ex-
tended across dimensions, i.e. there is a direct relation between 
the support of the data in a dimension j, L j , and the number 
of different points in that dimension, n j . As example, consider a 
two-dimensional data set of size n = 12 and support L1 × L2 =
[0,4] × [0,3]. Then, it is assumed that there are n1 = 4 different 
values in the first dimension and n2 = 3 in the second one, like 
a 4 × 3 grid as represented in the left graph in Fig. 1. Note that 
n = n1n2. Under this setting, it is easy to realize that the minimum 
distance between points is R1 = L1/(n1 − 1) = L2/(n2 − 1). Note 
that the minimum distance is the same independently of the con-
sidered dimension. Thus, the distribution of the minimum distance 
between two points in the multidimensional space is the same 
as for the distribution in one of the dimensions, and the thresh-
old estimation can be addressed as a one-dimensional problem. 
Extending this setting to its stochastic version where the data is 
independently uniformly distributed on each dimension, the algo-
rithm grouping threshold is obtained.

To construct the algorithm, it is needed to know the distribu-
tion of the minimum distance between two points of an uniform 
distributed sample. First, the number of different points per di-
mension, n j , has to be estimated when there are more than two 
dimensions. This is achieved extending the logic explained above 
for Fig. 1. For a d-dimensional sample X = {xi = (xi1, · · · , xid)}n , 
i=1

2

let n j be the number of different values in the j-th dimension and [
0, L j

]
the support of the j-th dimension. It is assumed mini xi j =

0 without loss of generality. Thus, the number of different points 
in the j-th dimension is:

n j = L j

d

√∏d
j=1 L j

n

(1)

Note that 
∏d

j=1 n j = n. The second step consists in obtain the 
grouping threshold, Rq . By assumption, there is a direct relation 
between n j and L j . Consequently, the expected distribution of the 
minimum distance between two points of a d-dimensional sam-
ple is the distribution of the minimum distance in each of the 
dimensions (as explained for the example in Fig. 1). Thus, with-
out loss of generality, the grouping threshold, Rq , is calculated 
over the first dimension ( j = 1). Considering a different dimen-
sion, the same value for Rq will be obtained as previously men-
tioned. Consider the distribution of the minimum distance be-
tween two points from an univariate uniformly-distributed sample, 
already developed in [5]. Let U = {ui}ni=1, whit ui ∼ U [0, 1] and 
M = min1≤i �= j≤n |ui − u j|. Then,

P (M >m) = (1− (n − 1)m)n (2)

As we are considering an uniform distribution, the same results 
hold multiplying by L when ui ∼ U [0, L]. Considering equation (2), 
the q quantile of the distribution of M = min1≤i �= j≤n1 |ui −u j | with 
ui ∼ U [0, L1] is given by:

Rq = 1− (1− q)
1
n1

n1 − 1
L1 (3)

where q ∈ [0,1]. The quantile Rq is taken as distance grouping 
threshold. To break the null hypothesis, two points have to be at a 
shorter distance than Rq , case when they are considered to belong 
to the same group. Extending this reasoning, the CABRA algorithm 
is developed.

Note that the grouping threshold, Rq , depends on the data sup-
port. Thus, outliers increasing the range L j in any of the dimen-
sions can affect the estimated threshold and thus the algorithm 
output. Depending on the size of the outlier, this can result in an 
inconsistent or impractical clustering. For example, an outlier in 
the first dimension would increase the value of Rq , thus resulting 
in a more relaxed grouping threshold that could even end with just 
one single estimated cluster. To address this, it can be of practical 
interest to consider the points contained in some quantiles of the 
support e.g. 0.5% and 99.5% in order to address outliers. An initial 
exploratory analysis of the data can help in this stage. In addition, 
depending on the dimension of the data, can be of interest to omit 
outliers from a multidimensional perspective.

2.1. Algorithm

Intuitively, the idea of the algorithm is to consider a ball with 
radius Rq as defined in equation (3) centered in each point of the 
data sample and group together those points whose balls inter-
sect. Then, the centroids of the formed groups are calculated and 
used as the as the data set for the next step. The radius Rq (3)
is recalculated over the new centroids sample and the clusters are 
constructed analogously, with the same ball intersection logic. If 
two centroids are are clustered together in this step, all points 
represented by these centroids are considered to be in the same 
cluster. This process is iterated until no more clusters are obtained 
or some stopping criteria are met.
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Fig. 2. Data set with superimposed balls of radius Rq where a single point (black 
dot) produces one cluster and the dense clustering criteria produces two separate 
clusters (red and blue dots) plus a noise point (black dot). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

A toy example with three steps is shown in Fig. 3. In the left, it 
is represented the two-dimensional data considered, with the as-
signed clustering in each step represented with different colors. In 
the right, it is represented the centroids at that iteration, with the 
corresponding ball with radius Rq superimposed calculated at that 
step. The centroids are calculated as the median point of all the 
points assigned to a cluster, as can be seen in the second and third 
step. Note that the radius Rq grows at each step as it is considered 
the same space but with less points. In the left, when a centroid is 
linked with another one, all the points defining that centroid are 
assigned to the same cluster (second step). In the last step no new 
cluster is found and the algorithm stops.

The clustering algorithm is described in detail in Algorithm 
CABRA. The stopping criterion considered is the reduction of the 
silhouette coefficient from one step to another as defined in [12], 
but any other criteria could be considered. Centroids are calculated 
as the mean of all points assigned to the same cluster, but any cri-
teria can be used, such as median or mode.

With this grouping criterion, two different clusters may be con-
nected by a single point that is connected to a point on each 
cluster. An example is shown in Fig. 2, where the effect of a sin-
gle point (black dot) is shown. A refinement of the introduced 
algorithm is developed to avoid the effect of this single “link” 
point. For a point to be introduced into a cluster, two different 
points of the cluster must be at a smaller distance than Rq from 
the point, i.e. they must share at least one other connection. This 
eliminates “weak” connections just because two points are close. 
This is inspired by the DBSCAN algorithm [6], so “denser” clus-
ters are obtained. The code in Algorithm CABRA shows the dense 
version of the algorithm. In the example in Fig. 2, the dense ap-
proach estimates two different clusters and one point that does 
not belong to any cluster, which seems more reasonable. In some 
applications it might be of interest to have this clustering crite-
ria and in others to get a single cluster, for which both algorithms 
are considered useful depending on the problem. It can even be 
considered a stricter clustering criterion, requiring more than two 
connected points to consider them clustered together. However, 
since the main drawback is the presence of a single link point 
grouping different clusters, which is considered a weak and incon-
sistent grouping criterion, further restrictions are not considered. 
Thus, throughout the paper, the dense version of the algorithm 
is considered, which omits single link points as the black dot in 
Fig. 2, as this is the criterion most likely to be of interest in prac-
tice.

In order to speed up the iterative process, it is of practical util-
ity to consider one value for q in the first step and another one 
for the remaining steps. This way, in the first step, there can be 
grouped several points reducing the sample size in the successive 
steps. It could even be explored a different value of q in each step, 
3

Fig. 3. Two-dimensional example of CABRA algorithm functioning. In the left it is 
represented with colors the assigned cluster to each point at each step. In the right, 
it is represented the considered centroids at each step with a ball of the corre-
sponding radius Rq superimposed.

selecting its value by cross-validation for example. Nevertheless, 
with this simple approach of considering one value of q in the 
first step and another one in the successive steps, a reduction in 
the computational burden has been observed without compromis-
ing the results, even improving them in some scenarios thanks to 
the extra flexibility. Thus, further extensions although interesting 
are not explored in this paper for brevity sake.

Algorithm CABRA: Clustering algorithm based on regular arrange-
ment.
1: Data X = {xi = (xi1, · · · , xid)}ni=1

2: Input q parameter

3: g0 ← (1, 2, · · · , n), the vector indicating the clusters in step 0. Each point is 
assigned to a different cluster in this first step

4: t ← 0
5: Silold ← −2
6: Sil ← Silhouette(g0, X )

7: while Sil > Silold do
8: Silold ← Sil
9: X t ← medioids of the clusters given by gt

10: L j = maxi xti1 −mini xti1, j = 1, · · · , d
11: n1 = L1

d
√ ∏d

j=1 L1
n

12: Rq = 1−(1−q)
1
n1

n1−1 L1
13: Assign the same cluster in the vector of clusters in step t , gt , to the in-

stances in X t that are at a distance smaller than Rq and share another con-
nection (a different point at distance smaller than Rq)

14: g ← gt ◦ gt−1 ◦ · · · ◦ g0, i.e., the cluster assigned to each original point in X
is the assigned to its medioid in the last iteration and so on

15: Sil ← Silhouette(g, X )

16: t ← t + 1
17: end while
18: Output Clustering groups defined by g
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3. Performance study

The performance of the proposed algorithm is compared with 
the most outstanding state-of-the-art clustering algorithms. Several 
widely used datasets are considered to evaluate the advantages 
and disadvantages of different algorithms depending on the struc-
ture and underlying distribution of the data. All datasets are two-
dimensional in order to easily present the obtained clusters, but 
the proposed algorithm can be extended to any multi-dimensional 
dataset since it relies only on the distance between points. All sam-
ples (except Skewed and Symetric) consist of labeled data, so an 
evaluation of the clustering and classification performance is per-
formed.

There are a number of metrics that can be used to assess clus-
tering quality. However, there is no single, universally accepted 
way to evaluate clustering algorithms. Consequently, in this study 
there are considered different performance metrics, including ex-
ternal evaluation using the true labels and internal evaluation 
using cohesion and separation measures. Specifically, there are 
considered the Purity, Adjusted Rand index (ARI), Silhouette Co-
efficient (SC), Calinski-Harabasz index (CHI) and Dunn index (DI). 
Purity is the proportion of correctly matched classes and cluster la-
bels. The ARI is a measure of the similarity between the estimated 
groups and the true labels, adjusted for the chance grouping. The 
SC measures how similar an object is to its own cluster (cohesion) 
compared to other clusters (separation). The CHI is based on the 
principle of variance ratio, calculated between the within-cluster 
diffusion and the between cluster dispersion. The DI captures the 
intuition that dense clusters that are well-spaced from each other 
are a ‘good’ clustering. For all the metrics, the greater the value, 
the better the clustering.

The considered algorithms are: UPGMA [13], K-means (KM) 
[10], DBSCAN [6], OPTICS [1], Mean-shift (MS) [4,7], partitioning 
around medoids (PAM) [9], fuzzy clustering (FC) as proposed in [8]
and a Gaussian mixture (GM) model [2]. The dense CABRA algo-
rithm is run with different values of q for the first and successive 
steps and the one obtaining the greatest Purity (or SC when labels 
are not available) is selected. It is considered the usual euclidean 
distance, but the algorithm can be extended to any metric and 
space. The clusters obtained with each algorithm over the different 
data sets are represented in Figs. 4-15 and the results summarized 
in Table 1.

It can be seen the good performance of CABRA regardless of 
the structure and noise in the data. The worst Purity is obtained 
in the Path and Flame datasets (89% and 94% respectively), but it is 
attained a performance similar to OPTICS, the winning algorithm. 
In the density-separable datasets as R15, Network and Basic4, UP-
GMA, KM, FC, PAM and GM obtain the better results, but CABRA 
attains a similar performance as well. When the data shows some 
structure or is not well separated, these algorithms have a worse 
performance, something that does not occur with CABRA. DBSCAN 
and OPTICS achieve overall good results, but CABRA always attains 
a similar or higher Purity as well. Regarding the datasets with-
out labels, even though CABRA does not obtain the best metrics, 
it visually obtains the best results in view of Fig. 11 and 12 af-
ter GM, which does not win in any metric either. Depending on 
the dataset, different algorithms obtain the best results depend-
ing on the structure, noise, and complexity of the data. However, 
CABRA obtains in all the datasets either the best results or compa-
rable to the winning algorithm, something that no other algorithm 
achieves. Taking this into account, it is considered that CABRA 
is the algorithm with the best overall performance, consistently 
obtaining reasonable clusters regardless of the structure and com-
plexity of the data. Adding that it can handle outliers, the stability 
that it offers by not depending on any starting point, and that 
it does not need to know the number of clusters in advance, it 
4

is concluded that CABRA is an algorithm that offers all the ad-
vantages of the state-of-the-art algorithms in a simpler and more 
intuitive way.

4. Conclusions

A new clustering algorithm is proposed extending density and 
connectivity-oriented previous approaches, taking its distinct ad-
vantages and condensing them with a straightforward grouping 
criteria. It only relies on one hyperparameter, the quantile q. Thus, 
it is not needed to estimate the number of clusters beforehand 
neither perform any pruning step, making easier the algorithm 
tuning. Outliers can be addressed considering some quantiles of 
the data support when constructing the distance grouping thresh-
old Rq (3). In addition, the algorithm does not depend on starting 
points, for which stable results are obtained. Lastly, it only de-
pends on a distance metric over a multidimensional feature space, 
for which the algorithm can be extended to any topology and 
space.

Several state-of-the-art algorithms along with CABRA were 
evaluated on a variety of datasets, with a wide range of structures, 
shapes and complexity. All algorithms have a good performance 
over certain settings, but have problems when considering other 
data structures. Nevertheless, CABRA has shown to consistently 
obtain coherent clusters as shown in Figs. 4-15 and to overall out-
perform previous approaches as illustrated in Table 1. In all the 
settings there are obtained results better than or similar to the best 
state-of-the-art algorithm, concluding with the satisfactory perfor-
mance of the proposed algorithm independently on the setting 
and problem complexity. Adding the adaptability of the algorithm 
to any setting and space, the straightforward grouping logic and 
how easy it is to tune the model, CABRA is considered a promising 
algorithm for clustering problems.
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Table 1
Results for the different datasets and algorithms introduced.
Dataset Algorithm Purity ARI SC CHI DI Dataset Algorithm Purity ARI SC CHI DI

Aggregation

UPGMA 99.49 99.13 47.36 11.43 4.67

Multi

UPGMA 50.64 27.04 38.86 8.17 1.68
KM 75.76 71.14 46.20 12.79 3.40 KM 42.73 21.05 38.30 10.69 0.97
DBSCAN 82.49 80.58 28.69 5.33 4.79 DBSCAN 60.18 43.63 37.18 3.77 4.23
OPTICS 95.30 94.53 37.25 7.01 0.87 OPTICS 80.73 78.77 26.13 4.10 1.23
PAM 81.47 68.14 46.60 12.71 3.25 PAM 42.27 23.89 41.82 11.22 1.20
FC 68.65 57.56 32.38 9.75 1.25 FC 38.82 27.02 28.82 8.19 0.68
GM 81.47 79.09 45.23 11.76 3.45 GM 52.82 34.93 29.27 8.59 0.49
CABRA 98.86 97.68 47.62 11.61 3.58 CABRA 95.27 94.95 -6.77 0.95 2.52

Flame

UPGMA 80.00 35.70 35.89 1.40 4.38

Basic4

UPGMA 99.93 99.79 45.37 37.93 5.23
KM 82.92 43.12 37.40 1.52 3.40 KM 99.40 98.14 45.34 38.02 0.90
DBSCAN 65.42 2.60 21.73 0.10 4.95 DBSCAN 99.73 99.62 41.58 25.23 4.53
OPTICS 95.42 90.21 25.67 0.48 3.84 OPTICS 95.03 92.27 32.84 16.92 0.53
PAM 85.00 48.80 35.99 1.36 3.80 PAM 99.23 97.61 45.32 37.97 1.23
FC 84.58 47.63 35.97 1.36 3.86 FC 98.27 94.66 45.06 37.87 0.23
GM 74.58 23.62 35.01 1.37 4.47 GM 99.70 99.06 45.39 37.99 0.90
CABRA 94.17 81.76 17.02 0.37 4.07 CABRA 99.70 99.54 -13.61 7.64 2.97

Path

UPGMA 75.33 47.17 50.89 3.02 5.10

Boxes2

UPGMA 69.03 40.71 35.13 20.67 1.39
KM 76.00 47.97 50.92 3.04 4.57 KM 44.87 24.89 38.70 24.21 0.49
DBSCAN 36.67 0.00 -100.00 0.00 DBSCAN 82.03 68.46 35.81 10.53 0.75
OPTICS 89.33 71.86 10.38 0.22 1.23 OPTICS 93.43 88.54 -16.36 3.71 0.18
PAM 75.67 47.57 50.93 3.04 3.23 PAM 54.37 39.90 39.85 25.42 0.59
FC 72.33 42.42 47.69 2.70 1.96 FC 61.10 25.04 38.51 24.69 0.46
GM 70.67 43.04 47.15 2.38 2.09 GM 79.37 46.33 28.05 14.99 0.04
CABRA 88.67 72.21 -10.28 0.12 2.63 CABRA 99.37 98.85 -30.10 2.19 0.99

R15

UPGMA 99.50 98.93 75.22 48.60 18.65

Network

UPGMA 99.62 99.06 69.90 85.75 6.44
KM 80.50 81.39 60.92 24.32 2.09 KM 99.54 98.95 70.05 86.54 4.42
DBSCAN 89.83 88.37 67.19 7.97 0.29 DBSCAN 98.44 98.42 64.59 52.16 1.35
OPTICS 95.83 93.99 71.20 9.78 0.39 OPTICS 95.18 93.99 66.39 46.75 0.92
PAM 99.67 99.28 75.27 48.71 19.41 PAM 99.54 98.95 70.05 86.54 4.42
FC 99.67 99.28 75.27 48.71 19.41 FC 99.54 98.95 70.00 86.41 3.55
GM 99.67 99.28 75.27 48.71 19.41 GM 99.51 98.76 69.84 84.81 3.68
CABRA 92.83 91.22 27.86 20.90 6.17 CABRA 99.05 98.73 24.54 16.26 1.38

Skewed

UPGMA 40.57 13.47 2.55

Spirals

UPGMA 100.00 100.00 52.60 29.01 8.39
KM 44.20 19.01 0.82 KM 90.98 75.95 52.58 31.31 0.76
DBSCAN -3.32 0.87 6.73 DBSCAN 100.00 100.00 52.60 29.01 8.39
OPTICS 27.71 5.57 0.78 OPTICS 93.69 90.49 -28.07 6.34 0.24
PAM 44.44 18.59 1.23 PAM 94.76 85.10 52.64 30.70 0.26
FC 42.87 17.61 0.21 FC 94.80 85.21 52.68 30.76 0.33
GM 39.17 14.10 3.64 GM 71.31 31.17 41.21 18.78 0.17
CABRA 6.61 7.02 2.41 CABRA 100.00 100.00 52.60 29.01 8.39

Asymmetric

UPGMA 59.75 17.59 3.62

Triangle
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Fig. 4. Aggregation data set results.

Fig. 5. Flame data set results.

Fig. 6. Path data set results.

Fig. 7. Multi data set results.

Fig. 8. Basic4 data set results.

Fig. 9. Boxes2 data set results.
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Fig. 10. R15 data set results.

Fig. 11. Skewed data set results.

Fig. 12. Asymmetric data set results.

Fig. 13. Network data set results.

Fig. 14. Spirals data set results.

Fig. 15. Triangle data set results.
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