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ABSTRACT
Genomics applications are becoming more and more important
in the field of bioinformatics, as they allow researchers to extract
meaningful information from the huge amount of data generated
by the new sequencing technologies. The analysis of these data is
a very time consuming task and, therefore, the use of High Per-
formance Computing (HPC) and parallel processing techniques is
essential. Although the structure of these applications can be easily
adapted to parallel systems by distributing the data to be processed
among the available processors, load imbalance is a usual cause
of performance degradation. In this paper we propose a dynamic
load balancing method based on MPI RMA one-sided communica-
tions to minimize the synchronization among processes and the
overhead due to communications while improving the workload
balance. The strategy is applied, as a case study, to ParRADMeth, an
MPI/OpenMP parallel application for the identification of Differen-
tial Methylated Regions (DMRs). Results show that the new version
of the tool outperforms the previous one in all cases, achieving high
performance and scalability. For example, our approach is up to 243
times faster than the sequential version and 1.74 times faster than
the previous parallel version when processing a real dataset on a
cluster with 8 nodes, each one with 32 CPU cores.

CCS CONCEPTS
• Applied computing→ Computational genomics; • Comput-
ing methodologies→ Parallel algorithms.
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1 INTRODUCTION
In the last decade, genomics datasets growth has been impressive,
doubling approximately every seven months [20]. Thanks to the
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advancements in sequencing technologies, whose capacities are
expected to continue growing rapidly in the next years, estimates
predict that this field will generate between 2 and 40 exabytes of
data within the next decade 1. Then, High Performance Comput-
ing (HPC) and parallel processing techniques become essential for
researchers to apply the powerful computational and statistical
methods needed to extract meaningful information out of this huge
amount of data in a reasonable time.

In order to use parallel processing techniques the work must be
decomposed into tasks that can be executed concurrently. When
working with genomic data, these tasks usually have heteroge-
neous processing costs due to the variability of biological sequence
sizes and the use of iterative algorithms to process the data. There-
fore, dynamic task distributions are needed to avoid load balancing
problems and poor performance.

MPI is the de facto standard for programming distributed-memory
systems and the most widely used programming framework in the
HPC community. Traditionally dynamic load balancing in MPI
applications is implemented through the master-worker method,
using two-sided communications for the exchange of information.
However, this method also implies performance degradation, as it
introduces many synchronization points, which generate an impor-
tant overhead as the number of MPI processes increases, making it
a non-scalable solution.

In this paper we propose a dynamic load balancing method based
on the use of the MPI RMA one-sided communications included
in MPI-3. It minimizes the synchronization among processes and
the overhead due to communications, overcoming the limitations
of the classical dynamic load balancing methods. The strategy is
applied, as a case study, to ParRADMeth [8], a parallel genomics
application for the identification of Differential Methylated Regions
(DMRs).

2 RELATED WORK
MPI has been used for decades to reduce the execution time of bioin-
formatics applications. The proposals found in the literature can be
divided into three main groups depending on how the workload
distribution is performed: those that use a static distribution; those
based on a hybrid scheme with MPI and multithreading (and apply
a static distribution at the MPI process level and a dynamic distribu-
tion at the thread level); and those that use a dynamic distribution
already at process level.

Within the first group we can find applications such as pblat-
cluster [21], a hybrid MPI/pthreads sequence alignment tool that
divides the input FASTA file to be aligned into as many parts as MPI
processes are available. Although it is able to significantly reduce
1https://www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science
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Figure 1: Workflow of ParRADMeth

the execution time of the sequential code, the achieved speedup
is not proportional to the number of available processes due to
imbalance issues related with the length of the sequences being
processed. That is, the slowest process, the one with the longest
sequences, determines the overall execution time.

Examples of the second group are EPISNPmpi [17], a hybrid
MPI/OpenMP tool to accelerate epistasis detection in large-Scale
GWAS studies; MPIGeneNet [9], which uses these two program-
ming models for the calculation of gene co-expression networks;
or ParRADMeth [8], a parallel tool for the analysis of differential
methylation, which is the case study of this paper. Results in [17]
and [8] prove that the hybrid version of the tools are more scalable
than the pure MPI codes.

The applications in the third group traditionally use the master-
worker execution model to dynamically distribute the tasks among
the MPI processes. Some examples of this group areDiALIGNTX [7],
which applies an iterative heuristic method to align multiple bio-
logical sequences; parMATT [18], which designates a master pro-
cess to distribute the pairwise structural comparison between pro-
teins among the workers; or Autodock4.Iga.MPI [6], which uses this
approach to rapidly perform Virtual High-Throughput Docking
(VHTD) of massive databases against a variety of protein targets.
On this last application, the overhead due to MPI operations means
a third of the total overhead of the executions.

In this paper we propose the use of the MPI RMA one-sided com-
munications to reduce the cost associated to the implementation
of a dynamic distribution at the process level. Specifically, we will
make use of shared-memory window creation, as well as atomic
read-modify-write operations to build a shared queue of pending
tasks that will be globally accessible by all the MPI processes. The
MPI RMA one-sided communications have been also successfully
applied to reduce the communication overhead of applications with
irregular communications patterns [2, 16].

3 BACKGROUND: PARRADMETH
ParRADMeth is a high performance tool for the analysis of dif-
ferential methylation. It is based on the tool RADMeth, which is
part of the MethPipe framework [19] and it is widely used on ge-
nomics real-world analyses [4, 15]. Both tools analyze CpG sites
(fragments of DNA where a cytosine (C) is followed by a guanine
(G)) in a set of samples, using a statistical method based on the
Beta-Binomial distribution to determine if they present different
methylating patterns.

ParRADMeth uses a hybrid parallel approach that combines MPI
processes and OpenMP threads. The workflow of the tool is shown
in Figure 1, and can be divided into three phases. First, during the
input phase, which is explained in detail in Section 3.1, each MPI
process reads a block of contiguous bytes from the input file using
MPI-IO functions. The whole file is allocate to memory at the same
time. Then, each process parses its block to extract the CpG sites
by using all the available OpenMP threads. After that, ParRADMeth
enters the processing phase, the most time consuming part of the
tool. In this phase each MPI process fits the statistical model to
each of its CpG sites, dynamically distributing them among all its
OpenMP threads, to determine if they are differentially methylated.
Finally, the output phase (detailed in Section 3.2) is performed,
where the resulting DMRs are parsed to raw data and written to
the output file in parallel.

3.1 ParRADMeth input phase
The input file of ParRADMeth follows a text-based table format,
where each line represents a CpG site and each column represents
a sample. Figure 2 shows an example of this format, where the first
line is the header containing the name of the samples and the rest
of the lines represent the CpG sites. Each CpG site is represented by
its chromosome, initial and final position, as well as the coverage
and methylation level of each sample.
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Algorithm 1: ParRADMeth’s parallel input phase pseudocode
Input: A string, 𝑝𝑎𝑡ℎ_𝑡𝑜_𝑖𝑛𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒 , containing the path to the CpG sites table
Output: A list of CpG sites, 𝑖𝑛𝑝𝑢𝑡_𝑐𝑝𝑔_𝑠𝑖𝑡𝑒𝑠 , containing the input CpG sites for each process

1 𝑖𝑛𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒 ← MPI_File_open(𝑝𝑎𝑡ℎ_𝑡𝑜_𝑖𝑛𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒)
2 𝑓 𝑖𝑙𝑒𝑠𝑖𝑧𝑒 ← MPI_File_get_size(𝑖𝑛𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒)
/* Figure out who reads what */

3 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ← 𝑓 𝑖𝑙𝑒𝑠𝑖𝑧𝑒 / 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑠𝑒𝑠
4 𝑠𝑡𝑎𝑟𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← CalculateStartOffset(𝑓 𝑖𝑙𝑒𝑠𝑖𝑧𝑒)

5 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← CalculateMaxLineLength(𝑖𝑛𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒)
/* Read raw data */

6 𝑖𝑛𝑝𝑢𝑡_𝑏𝑙𝑜𝑐𝑘 ← MPI_File_read_at_all(𝑖𝑛𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒 , 𝑠𝑡𝑎𝑟𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 , 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 + 𝑜𝑣𝑒𝑟𝑙𝑎𝑝)
/* Parse raw data */

7 𝑖𝑛𝑝𝑢𝑡_𝑐𝑝𝑔_𝑠𝑖𝑡𝑒𝑠 ← ParseDataToAppropiateStructure(𝑖𝑛𝑝𝑢𝑡_𝑏𝑙𝑜𝑐𝑘)
8 MPI_File_close(𝑖𝑛𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒)

control_1 control_2 case_1 case_2

chr1:10468:+:CpG

chr1:10470:+:CpG

chr1:10483:+:CpG

chr1:10488:+:CpG

chr1:10492:+:CpG

9 97 6 12 10 8 7

23 2522 22 12 11 16 14

27 2225 22 30 28 24 23

30 4128 36 24 23 35 32

47 3445 29 38 36 37 33

C M C M C M C M

C - coverage
M - methylation level

Figure 2: Example of the input file format with five CpG sites
(rows) and four individuals (pairs of columns)

Due to this text-based format, each line in the input file has a
different size (different chromosome name, numbers with different
amount of digits, etc.), and hence the number of lines can not
be known in advance just looking at the file size. However, each
line contains the same number of columns and therefore it can be
assumed that two blocks of the same size will contain a similar
number of lines.

Taking these particularities of the input format into account,
ParRADMeth reads the input file using MPI-IO functions, as shown
in Algorithm 1. ParRADMeth processes all the input file at once, that
is, it reads the whole file to memory and then it parses it to extract
the CpG sites, following a series of steps. First, all the processes
open the file in parallel (Line 1), and get its size in bytes (Line 2).
Then the processes distribute the file by blocks of the same size.
To achieve this they calculate the size of the blocks (Line 3), and
their start offset (Line 4). In addition, to ensure that no line is split
between two blocks, each block is overlapped with the next one.
This overlapping size is calculated by overestimating the maximum
size of a line of the input file (Line 5). With this information, each
process reads its block and the overlapping bytes (Line 6) as raw
text and, then, using all the available OpenMP threads, it parses the
block into a list of the appropriate CpG site data structure (Line 7).
Finally, processes close the file (Line 8).

3.2 ParRADMeth output phase
The output file also follows a text-based format, where each input
CpG site becomes a line in the output file, indicating whether it
presents differential methylation or not. To obtain the same output
file than the one produced by the original tool RADMeth, the output
phase of ParRADMeth follows the steps shown in Algorithm 2 to
write the results as if they had been processed sequentially.

First, all the processes open the output file in parallel (Line 1).
Then, each process parses the list of DMRs to the text representation
that will be written to the output file (Line 2). After that, processes
synchronize to ensure all of them have finished the processing
phase, and share the length of its text block using MPI_Allgather
(Line 3). With this information, each process calculates the offset
at which it has to start writing (Lines 4-6). Finally, processes write
their block in parallel, using MPI_File_write_at_all (Line 7) and
close the output file (Line 8).

4 LOAD BALANCING PROBLEM
The main computational bottleneck of ParRADMeth is the statistical
analysis of the CpG sites. This phase comes with a high workload
imbalance, as several factors make the processing time of each CpG
site different from the others:

• Most of the CpG sites do not need to fit the statistical models,
as it may be obvious that they do not represent two differ-
ent methylation patterns. This splits the CpG sites into two
groups: those that do not need to be tested and take almost
no time to be processed, and those that need to be tested,
which are a minority but require a much longer time to be
processed.
• The statistical method applied to the CpG sites that need to be
tested is an iterative algorithm, whichmeans that the number
of iterations needed to converge is different for each CpG site.
This implies that even within the minority of CpG sites that
need to be tested, there is a great disparity in the processing
time. In addition, this number of iterations is not known in
advance, as it is not related to any observable feature of the
CpG site, as it does happen in other applications where the
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Algorithm 2: ParRADMeth’s parallel output phase pseudocode
Input: A list of DMRs,𝑚𝑦_𝑜𝑢𝑡𝑝𝑢𝑡_𝐷𝑀𝑅𝑠 , containing the output results of the process

A string, 𝑝𝑎𝑡ℎ_𝑡𝑜_𝑜𝑢𝑡𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒 , containing a path to the output file
Output: The output file with every output block correctly written

1 𝑜𝑢𝑡𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒 ← MPI_File_open(𝑝𝑎𝑡ℎ_𝑡𝑜_𝑜𝑢𝑡𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒)
2 𝑚𝑦_𝑜𝑢𝑡𝑝𝑢𝑡_𝑏𝑙𝑜𝑐𝑘 ← ToString(𝑚𝑦_𝑜𝑢𝑡𝑝𝑢𝑡_𝐷𝑀𝑅𝑠)

/* Gather all output blocks lengths in every process */

3 𝑜𝑢𝑡𝑝𝑢𝑡_𝑏𝑙𝑜𝑐𝑘_𝑙𝑒𝑛𝑔𝑡ℎ𝑠 ← MPI_Allgather(𝑚𝑦_𝑜𝑢𝑡𝑝𝑢𝑡_𝑏𝑙𝑜𝑐𝑘 .length())
4 𝑚𝑦_𝑤𝑟𝑖𝑡𝑒_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 0
5 for 𝑖 ← 0 to𝑚𝑦_𝑟𝑎𝑛𝑘 do
6 𝑚𝑦_𝑤𝑟𝑖𝑡𝑒_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ←𝑚𝑦_𝑤𝑟𝑖𝑡𝑒_𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝑜𝑢𝑡𝑝𝑢𝑡_𝑏𝑙𝑜𝑐𝑘_𝑙𝑒𝑛𝑔𝑡ℎ𝑠[i]
end
/* Write in parallel to the output file */

7 MPI_File_write_at_all(𝑜𝑢𝑡𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒 ,𝑚𝑦_𝑜𝑢𝑡𝑝𝑢𝑡_𝑏𝑙𝑜𝑐𝑘 ,𝑚𝑦_𝑤𝑟𝑖𝑡𝑒_𝑜 𝑓 𝑓 𝑠𝑒𝑡)
8 MPI_File_close(𝑜𝑢𝑡𝑝𝑢𝑡_𝑓 𝑖𝑙𝑒)

processing time may be related to the length of the sequence,
for example.

Moreover, it is common for few CpG sites to be much more
expensive to process than the rest. These few CpG sites represent
a small percentage of the total, but they take a high percentage
of the runtime of the program. As it happens with the number of
iterations, this is not related to any observable feature of the CpG
site.

Due to these factors, it is not possible to statically create blocks of
CpG sites with similar computational requirements at the beginning
of the execution and thus all static distributions introduce work-
load imbalance. Although the hybrid MPI/OpenMP parallel scheme
helps mitigate the problem, the use of a dynamic distribution at the
process level would achieve higher performance.

5 DYNAMIC LOAD BALANCING
The new version of ParRADMeth, ParRADMeth-DB, implements a
modern dynamic load balancing algorithm based on the use of MPI
RMA one-sided communications.

ParRADMeth-DB follows the same three steps shown in Figure 1,
with the main difference being that now the input data is not read
all at once, but on demand, in small blocks.

For a certain number of blocks, two structures are allocated in
the shared memory of the root process to implement this approach:

• A shared index, initialized to zero, that indicates the next
block of CpG sites to be processed.
• A shared array, with a length equal to the number of blocks,
that contains the size of the text-based representation of the
results of each block.

After initializing these structures and opening the input and
output file in parallel, all processes enter a loop that repeats until
all the CpG sites have been processed.

The workflow of ParRADMeth-DB is shown in Algorithm 3. First,
the shared memory structures are initialized in the root process
(Lines 1-2). Then, each process requests its initial block index and
increments it to the next position atomically (Line 3). This behaviour
is implemented using MPI_Fetch_and_op. Afterwards, the process

enters a loop where it works on the blocks until they are out of
bounds (Line 4). In the first place, the process gets the block of CpG
sites from the input file (Line 5). The particular details of this step
are explained in Section 5.1. Then, the process fits the statistical
model to each CpG site, distributing the elements among all the
available threads, and based on the results determines whether there
are DMRs (Lines 6-9). After that, the process writes the results of
the block to the output file (Lines 10-11). To do this, it first parses its
DMRs into the raw bytes that will be written to the output file (Line
10), and then it inserts the raw bytes into the output queue (Line 11).
The particularities of how the output queue communicates with
the shared memory structures and tries to write the results to the
output file are explained in Section 5.2. Finally, the process requests
the next block index (Line 12). Once the loop ends, the processes
synchronize and write the blocks that still remain in each other’s
queue to the output file (Line 13).

A critical factor for this algorithm to be as efficient as possible
is the size of the blocks. If the blocks are too big, the imbalance
among them may be too high, and then it will not solve the initial
problem. However, if the blocks are too small, the overhead due to
communications and synchronization may be too high. Therefore,
the size of the blocks must be chosen carefully. After a preliminary
evaluation, we have chosen to use a fixed number of 100 blocks per
process, as it has been proven to be the best option. In addition, as
the imbalance has a more critical effect as computing progresses,
the size of the blocks is reduced as the index advances. In particular,
the first half of the blocks are of the default size, half to third quarter
of the blocks are half the default size, and the last quarter of the
blocks are a quarter of the default size.

In addition, to implement this new algorithm, the input and
output phases of the tool have been redesigned, as each process
does not know in advance which data blocks it will need to compute,
and then, reading the whole file at once is not advisable. This also
comes with the advantage that now the file does not need to fit in
memory, allowing ParRADMeth-DB to process larger datasets, even
in systems with limited memory.
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Algorithm 3: ParRADMeth-DB’s pseudocode
Input: A integer, 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑏𝑙𝑜𝑐𝑘𝑠 , containing the number of blocks the input file is divided into

A file handle, 𝑖𝑛𝑝𝑢𝑡_ℎ𝑎𝑛𝑑𝑙𝑒 , to the input file
A queue, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑞𝑢𝑒𝑢𝑒 , where the results are inserted to be written to the output file

/* Initialize shared memory structures on root process */

1 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥 ← Init_Shared_Index()

2 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑠 ← Init_Shared_Array(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑏𝑙𝑜𝑐𝑘𝑠)
/* Get initial index and start processing */

3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘 ← Get_Block_Index_And_Update(𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥)
4 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘 ≤ 𝑙𝑎𝑠𝑡_𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥 do
5 𝑖𝑛𝑝𝑢𝑡_𝑐𝑝𝑔_𝑠𝑖𝑡𝑒𝑠 ← Read_Block(𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘 , 𝑖𝑛𝑝𝑢𝑡_ℎ𝑎𝑛𝑑𝑙𝑒)
6 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑚𝑟𝑠 .Clear()
7 foreach 𝑐𝑝𝑔 in 𝑖𝑛𝑝𝑢𝑡_𝑐𝑝𝑔_𝑠𝑖𝑡𝑒𝑠 do
8 𝑟𝑒𝑠𝑢𝑙𝑡 ← Fit_Model(𝑐𝑝𝑔)

9 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑚𝑟𝑠 .Append(𝑟𝑒𝑠𝑢𝑙𝑡)
end

10 𝑟𝑎𝑤_𝑜𝑢𝑡𝑝𝑢𝑡 ← ToString(𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑚𝑟𝑠)

11 Try_To_Write_Output_Block(𝑟𝑎𝑤_𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘 , 𝑜𝑢𝑡𝑝𝑢𝑡_𝑞𝑢𝑒𝑢𝑒 , 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑠)
12 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘 ← Get_Block_Index_And_Update(𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥)

end
13 Write_Remaining_Blocks(𝑜𝑢𝑡𝑝𝑢𝑡_𝑞𝑢𝑒𝑢𝑒 , 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑠)

5.1 Block input
The input phase of ParRADMeth has been redesigned to read the
input file in small blocks. Nevertheless, few changes have been
made to the original version, as the desired behaviour is very similar.
Known an initial offset and a size, the MPI processes read a block
of bytes from the input file. The main difference is that now this is
not done once, but several times during the execution of the tool.
In addition, the initial offset and size of the blocks are not fixed,
but they are calculated based on the index of the block. Another
challenge is to ensure that no line is split between two blocks, as
this would lead to an error in the parsing of the input file. However,
this can be achieved by using the overlapping technique already
used in the original version (see Section 3.1).

Algorithm 4 shows the pseudocode of the new function to read
a block of CpG sites (Read_Block in Algorithm 3). First, the process
calculates the initial offset and size of the block (Lines 1-3). These
are fixed values for each block, and they are calculated based on
the index of the block. In addition, the overlapping technique is
applied by increasing the size of the block by the maximum size of
a line. Then, the process reads the block from the input file (Line 5),
and finally parses it to the list of CpG sites using all the available
threads (Line 6).

5.2 Block output
The output phase of ParRADMeth has also been redesigned to write
the results in small blocks. This redesign is more complex than
the input one, as the output phase of the original version was
executed after a process synchronization, and all the processes
could share all the information about the results of the blocks. This
synchronization is not possible in this new version, as the processes

do need to write the results of the blocks while other blocks are
still being computed.

This means that two problems arise with the new version of the
tool. First, for the processes to know where to write their results,
they need to know the size of the previous results. However, as the
processes do not synchronize after every block, they need a new
mechanism to share this information with the others. Second, even
if the first problem was solved and once a block is processed its size
was instantly communicated to all processes, a process may remain
waiting while trying to write the results of a block 𝐵𝑛 if it does still
not know the size of the previous block 𝐵𝑛−1. That is, as blocks
are processed dynamically and each one has a different associated
runtime, the order in which they are read is not necessarily the
order in which they finish their processing. That could lead to a
situation where the block 𝐵𝑛 has been processed but it can not be
written, as its start offset is not known until the results of the blocks
[𝐵0, 𝐵𝑛−1] have been computed.

With these restrictions in mind a new output algorithm has been
implemented, relying on shared memory and a buffering queue
to overcome two problems, respectively. Algorithm 5 shows the
pseudocode of the new output phase (Try_To_Write_Output_Block
function in Algorithm 3). First, the process calculates the size of
the block (Line 1), and then it inserts the block into the output
queue (Line 2). After that, the process updates the size of the block
in the shared memory (Line 3). That is, it locks the shared mem-
ory window with MPI_Win_lock, writes the size of the block 𝐵𝑛

into the 𝑛𝑡ℎ position of the array using MPI_Put, reads the size of
the previous blocks [𝐵0, 𝐵𝑛−1] using MPI_Get, and finally unlocks
the shared memory window with MPI_Win_unlock. This way, the
process ensures that the other processes know that block 𝐵𝑛 has
been computed, and also checks if the size of blocks [𝐵0, 𝐵𝑛−1] are
already known. With this information, the process tries to write
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Algorithm 4: ParRADMeth-DB’s block input pseudocode
Input: A file handle, 𝑖𝑛𝑝𝑢𝑡_ℎ𝑎𝑛𝑑𝑙𝑒 , to the input file

A integer, 𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥 , containing the index of the block to be read
Output: A list of CpG sites, 𝑖𝑛𝑝𝑢𝑡_𝑐𝑝𝑔_𝑠𝑖𝑡𝑒𝑠 , containing the input CpG sites contained in the current block

/* Figure out where to start reading and how many bytes to read */

1 𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← Get_Start_Offset(𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥)
2 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ← Get_Block_Size(𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑑𝑒𝑥)
3 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ← 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 +𝑀𝐴𝑋_𝐿𝐼𝑁𝐸_𝐿𝐸𝑁𝐺𝑇𝐻

/* Read data */

4 𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘 ← MPI_File_read_at(𝑖𝑛𝑝𝑢𝑡_ℎ𝑎𝑛𝑑𝑙𝑒 , 𝑏𝑙𝑜𝑐𝑘_𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑜 𝑓 𝑓 𝑠𝑒𝑡 , 𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒)
5 𝑖𝑛𝑝𝑢𝑡_𝑐𝑝𝑔_𝑠𝑖𝑡𝑒𝑠 ← Raw_Block_To_CpG_Sites(𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘)

Algorithm 5: ParRADMeth-DB’s block output pseudocode
Input: A file handle, 𝑜𝑢𝑡𝑝𝑢𝑡_ℎ𝑎𝑛𝑑𝑙𝑒 , to the output file

A integer, 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑 , containing the index of the block to be written
A string, 𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘 , containing the raw bytes of the result to be written
A queue, 𝑜𝑢𝑡𝑝𝑢𝑡_𝑞𝑢𝑒𝑢𝑒 , containing the output blocks to be written
A shared memory array, 𝑠ℎ𝑎𝑟𝑒𝑑_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑠 , initialized to 0s containing the sizes of the blocks to be written

1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 ← 𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘 .Size()
2 𝑜𝑢𝑡𝑝𝑢𝑡_𝑞𝑢𝑒𝑢𝑒 .Push(𝑏𝑙𝑜𝑐𝑘_𝑖𝑑 , 𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘)
/* Update the size of the current block on the shared memory */

3 Update_Block_Size(𝑠ℎ𝑎𝑟𝑒𝑑_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑠 , 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒)
4 while Previous_Block_Sizes_Are_Known(𝑜𝑢𝑡𝑝𝑢𝑡_𝑞𝑢𝑒𝑢𝑒 .Front().𝑏𝑙𝑜𝑐𝑘_𝑖𝑑) do
5 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑 , 𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘 ← 𝑜𝑢𝑡𝑝𝑢𝑡_𝑞𝑢𝑒𝑢𝑒 .Pop()
6 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← Calculate_Start_Offset(𝑠ℎ𝑎𝑟𝑒𝑑_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒𝑠 , 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑)
7 MPI_File_Write_at(𝑜𝑢𝑡𝑝𝑢𝑡_ℎ𝑎𝑛𝑑𝑙𝑒 , 𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘 , 𝑟𝑎𝑤_𝑏𝑙𝑜𝑐𝑘 .Size(), 𝑏𝑙𝑜𝑐𝑘_𝑠𝑡𝑎𝑟𝑡_𝑜 𝑓 𝑓 𝑠𝑒𝑡)
end

the results of the blocks in its queue to the output file. To do this,
for each block in the queue, it checks if the size of the previous
blocks is known (Line 4) and, if it is, it pops the block out of the
queue (Line 5), calculates the offset at which the block should be
written by adding the previous block sizes (Line 6), and writes the
block to the output file using MPI_File_write_at (Line 7).

This algorithm ensures that the results of the blocks are written
in the correct order, and that the processes do not remain waiting
for the size of the previous blocks. However, it does not ensure that
the results of the blocks are written as soon as they are computed.
This means that after a process exits the main loop the output queue
may contain blocks that have been processed but not written to the
output file. To solve this, at the end of the loop, when it is ensured
that all the blocks have already been processed, processes synchro-
nize and read the shared memory array to write the remaining
blocks in the queue to the output file (Line 13 in Algorithm 3).

6 EXPERIMENTAL RESULTS
This section provides a performance comparison of ParRADMeth
and ParRADMeth-DB to illustrate the benefits of the new dynamic
load balancing techniques. This evaluation has been performed on
an eight-node cluster with 256 CPU cores (32 cores per node). Each
node has two Intel Xeon Silver 4216 Cascade Lake-SP CPUs with
16 cores each that support Hyperthreading (up to 64 threads per

node), and 256 GB of memory. The nodes are interconnected by a
Infinitiband EDR network. The programs have been compiled with
the GNU GCC compiler v.8.3.0, and the parallel versions of the tool
have been linked to the OpenMPI library v.4.0.5.

The precision of the results is not evaluated in this work, since
both versions return exactly the same results as the original RAD-
Meth, whose high precision has been demonstrated and compared
in previous works [10, 13, 14].

6.1 Datasets
Five different real biological datasets were used for this experi-
mental evaluation. Table 1 summarizes the characteristics of these
datasets, which are named according to the first author of the ex-
periment where they were published. The four datasets from the
original evaluation of ParRADMeth were mantained [1, 3, 11, 12],
while the new Xiongfeng dataset, which compares the methylomes
of patients with type 2 diabetic with control individuals [5], was
added to this evaluation. Table 1 includes two columns with the
size of the input file and the sequential time required by RADMeth
to analyze these datasets, which can be more than 8 hours.

As it will be shown in the next subsection, the Akalin dataset is
particularly challenging for ParRADMeth. This is due to the fact that
some of the input CpGs are much more expensive to process that
the rest. While most CpG sites take less than 0.1 seconds to process,
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Table 1: Datasets specification

Dataset #CpG sites #Samples Size input
file (GB)

Seq. time (s)

Akalin 28,670,426 2 0.82 6,894
Heyn 28,299,639 2 0.87 12,147

Berman 28,149,963 2 0.88 26,984
Hansen 28,217,449 6 1.4 30,027

Xiongfeng 28,532,123 18 3.3 29,744

a few of them need more than 20 seconds. This, joined to the fact
that these CpGs sites appear at the end of the file, leads to a very
high workload imbalance at the end of the processing loop, with a
very low margin to balance it. This is a very challenging scenario
both for the original and the dynamic load balancing algorithm,
and the reason why the Akalin dataset obtains the worst scalability.

6.2 Performance Evaluation
The threads-to-process ratio has a huge impact on the performance
of the tool. For ParRADMeth the higher this ratio the better, as it
only applies a dynamic distribution that alleviates the workload
imbalance at thread level. Therefore, the best configuration for Par-
RADMeth is to use one process per node, and the maximum number
of threads per process. However, this is not true for ParRADMeth-
DB, as it relies on both processes and threads to balance the work-
load. After a preliminar experimental evaluation, it was determined
that the best configuration is two processes per node, as this is the
number of sockets per node.

Figure 3 shows the speedups over the sequential tool RADMeth
of the new and the original version of ParRADMeth, for a vary-
ing number of nodes (32 cores per node), using Hyperthreading
and the best configuration of processes and threads for both tools.
ParRADMeth-DB improves the scalability of the original version in
all the datasets. However, the impact is not the same for all datasets.

First, for the Berman, Hansen and Xiongfeng datasets, where
ParRADMeth already obtained almost ideal speedups, ParRADMeth-
DB still improves the performance, showing that, even in these cases
where the workload is fairly balanced, the dynamic load balancing
brings benefits as it reduces the overheads and synchronizations.

Second, for the Akalin dataset, where the workload imbalance is
extreme, ParRADMeth-DB improves the performance of the original
version, even though the speedups are still not as high as in the
other datasets, due to the reasons already discussed at the beginning
of this section.

Finally, for the Heyn dataset, where the original version did not
obtain as high values, the new version of the tool obtains the best
results, showing that the dynamic load balancing is able to overcome
the workload imbalance and obtain almost ideal speedups. That is,
for this dataset the new version of ParRADMeth is able to obtain as
high performance as it does on the fairly balanced datasets.

This proves that the dynamic load balancing at process level al-
leviates the workload imbalance and does not introduce significant
overheads but instead brings benefits to the tool that contributes
to achieving high performance. Table 2 summarizes the impact of
these benefits in terms of execution time. This translates into a
reduction of the execution time of the Heyn dataset from 3 hours

Table 2: Execution times for different versions of the tool (in
seconds)

Dataset RADMeth ParRADMeth ParRADMeth-DB
1 core 1 node 8 nodes 1 node 8 nodes

Akalin 6,894 249 77 271 64
Heyn 12,147 415 88 392 51

Berman 26,984 846 138 840 111
Hansen 30,027 874 159 938 131

Xiongfeng 29,744 888 155 950 125

and 22 minutes, to just 50 seconds. In addition, when compared to
ParRADMeth for this dataset on eight nodes, the execution time is
reduced by 37 seconds, which represents a 42% of its runtime.

7 CONCLUSIONS
In this paper we have presented a low overhead dynamic load
balancing algorithm from which several genomics applications can
benefit. This approach has been implemented in a new version of
the tool ParRADMeth, which is a parallel tool that detects DMRs
in methylomes. The new version of the tool has been evaluated in
terms of performance and scalability on an eight-node cluster with
32 CPU cores per node (256 CPU cores in total), using five different
real biological datasets with different characteristics.

The results show that, while the original ParRADMeth obtains a
better performance in one node for some datasets, the new version
of the tool obtains a significant improvement in all the datasets
when scaling to multiple nodes. For example, for the Heyn dataset
ParallelTool-DB achieves an almost ideal performance, while the
original version did not obtain a good scalability. In addition, the
approach has also proven to not introduce significant overheads
in the scenarios where the original tool was already obtaining
high performance. For example, the Berman dataset which is fairly
balanced and already had a great scalability in the original tool
(210 Speedup), is even outperformed by the newer version (243
Speedup), reducing the execution time to less than two minutes.

These experimental results prove that this dynamic approach is
a good candidate to be used in other bioinformatics applications,
as it is able to achieve fair distributions in the imbalanced datasets,
while still matching the performance of the static version in the
balanced ones. As future work, we plan to apply this approach to
other bioinformatics applications, focusing on other stages of the
MethPipe pipeline, and other genomics tools for the analysis of
DNA methylation.
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Figure 3: Speedup of ParRADMeth-DB and ParRADMeth over RADMeth for a varying number of nodes (32 cores per node)
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