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Abstract
Retinal image registration is of utmost importance due to its wide applications in medical practice. In this context, we propose
ConKeD, a novel deep learning approach to learn descriptors for retinal image registration. In contrast to current registration
methods, our approach employs a novel multi-positive multi-negative contrastive learning strategy that enables the utilization
of additional information from the available training samples. This makes it possible to learn high-quality descriptors from
limited training data. To train and evaluateConKeD,we combine these descriptorswith domain-specific keypoints, particularly
blood vessel bifurcations and crossovers, that are detected using a deep neural network. Our experimental results demonstrate
the benefits of the novel multi-positive multi-negative strategy, as it outperforms the widely used triplet loss technique (single-
positive and single-negative) aswell as the single-positivemulti-negative alternative.Additionally, the combination ofConKeD
with the domain-specific keypoints produces comparable results to the state-of-the-art methods for retinal image registration,
while offering important advantages such as avoiding pre-processing, utilizing fewer training samples, and requiring fewer
detected keypoints, among others. Therefore, ConKeD shows a promising potential towards facilitating the development and
application of deep learning-based methods for retinal image registration.

Keywords Self-supervised learning · Feature-based registration · Image registration · Retinal image registration ·
Medical imaging

1 Introduction

Image registration is the process of spatially aligning a pair
of images. In this process, one image is used as the reference,
thefixed image,while the second image, themoving image, is
spatially transformed tomatch the first one. These images are
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usually from the same subject, and they differ in their point
of view or in the instant they were captured in. In medicine,
image registration is particularly important due to its multi-
ple applications on clinical practice [1]. Image registration
enables the simultaneous analysis of multiple images which,
in turn, allows clinicians to draw more informed conclusions
[2].Additionally,medical image registration enables longitu-
dinal studies which are useful to monitor disease progression
or remission [3].

Retinal image registration (RIR) is a highly relevant task as
the eyes are the only organs in the humanbody that allownon-
invasive in vivo observation of the blood vessels and neuronal
tissue [4]. In particular, there is a high interest in the registra-
tion of color fundus (CF) images due to the widespread use
of this image modality in clinical practice [5]. CF images are
cost-effective due to the relatively low price of CF cameras
combined with their efficacy in the diagnosis of numerous
diseases [6, 7]. However, CF images also present particular
characteristics that complicate the registration. For instance,
their photographic nature can cause several imperfections
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due to incorrect placement of the device, incorrect capture
by the clinician, or movements by the patient. Some of these
imperfections are color or illuminance variation, changes in
focus, halos, etc. Moreover, certain diseases can drastically
alter the retinal appearance. These morphological changes
complicate the registration process in the presence of pathol-
ogy. The combination of all of these characteristics makes
the CF registration process a challenging task.

In broad terms, automatic registration approaches can be
classified according to their algorithmic basis as either clas-
sical approaches or deep learning approaches. Furthermore,
registration methods can also be divided into three main
groups: feature-based registration (FBR), which uses key-
points and descriptors; intensity-based registration (IBR),
which uses the intensity values of the image; and direct
parameter regression (DPR), which predicts a deformation
field or matrix directly from the input images [8, 9].

Classical registration methods are still widely used nowa-
days. However, novel deep learning approaches have several
advantages that usually make them more desirable over the
classical methods. For instance, deep learning methods can
be trained end-to-end from raw data to the expected result.
This eliminates the need for ad hoc feature engineeringwhich
allows deep learning methods to be more flexible and adapt-
able to changes in the input data.

FBR methods use keypoints to drive the registration pro-
cess. These keypoints are distinctive spatial locations that
can be detected in the different images to register. The key-
points are matched among the images and used to compute
the geometric transformation that aligns them. FBRmethods
are inherently explainable as the keypoints used to calculate
the transformation are known and can be visualized. Com-
monly, to aid in the matching process, point descriptors are
also computed. These descriptors are unique feature repre-
sentations that characterize each keypoint and facilitate their
distinction. FBR methods are divided into methods that use
generic keypoints (valid for anydomain) anddomain-specific
keypoints (generallymore accurate but only usable in a single
domain). Generic methods are potentially less accurate and
more computationally expensive due to the lower detection
specificity that makes necessary the detection and processing
of a higher number of keypoints.

IBR approaches work by iteratively maximizing a simi-
larity metric between the intensity values of the images to be
registered across transformation parameter space. There are
multiple suitable similarity metrics [10, 11], including deep
learning-based ones [12].

DPR methods allow direct transformation prediction or
deformation field prediction which, in turn, allows image
alignment [13, 14]. To achieve this, a deep neural network is
trained such that its output is used to transform the moving

image. In this case, the training objective is to maximize
the similarity between the transformed moving image and
the fixed image or, equivalently, between two simplified
representations of these images (such as, e.g., blood vessel
segmentation maps for CF images [15]). The key difference
between IBR and DPR is how they use similarity metrics.
IBR explicitly maximizes a similarity metric while DPR
uses the similarity metric to guide the learning of neural net-
work. This network learns to create suitable transformations
directly from the input data, only relying on the similarity
metric as guidance during its training step.

Finally, there are hybrid methods joining several of these
registration paradigms. In this case, FBR methods usually
provide an initial alignment which is then refined by other
IBR or DPR methods that are capable of deformable regis-
tration thus improving the results [16, 17]. However, while
these approachesmight be successful in terms of results, they
are not desirable since they increase the complexity and the
computational cost and may introduce extra hyperparame-
ters.

Currently,most state-of-the-artmedical registrationmeth-
odologies are based on IBR or DPR methods [14, 18, 19].
However, RIR tasks, and particularlyCF images, have certain
characteristics that limit the applicability of these methods.
In particular, the patterns that are useful for the registration
of CF images (i.e., blood vessel bifurcations and crossovers,
optic disc) are relatively small and are scattered over a homo-
geneous background. Furthermore, CF images can present
large displacements and low degree of overlapping between
the images in each pair. Additionally, there can be multiple
intra-pair differences produced by the photographic nature of
the capture process (i.e., light halos, blurriness due to subopti-
mal focus). These changes are specifically detrimental to IBR
methods as creating a robust similarity metric is challenging
under these conditions. Similarly, as the transformations on
the retina are almost always rigid, deformable registration
methods like DPR using deformation fields are not suitable
as they pose the risk of overfitting these fields creating unre-
alistic transformations. Therefore, commonly used methods
in othermedical imagemodalities such as [14, 18] are unsuit-
able for color fundus registration.

Traditionally, the CF registration field has been dominated
by classical FBR methods [20, 21]. Some of these methods,
such as REMPE and VOTUS, still obtain the best results
in most of the categories of the well-known FIRE bench-
mark dataset [20, 21]. REMPE [20] combines generic points
(SIFT) and domain-specific keypoints (blood vessel bifurca-
tions). Then, using RANSAC (Random Sample Consensus)
[22] and Particle Swarm Optimization, the transformation
is computed according to an ellipsoidal model of the eye
that has been created specifically for this task. Differently,
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VOTUS [21] creates graphs for the arterio-venous tree. Then,
the graphs from the corresponding images are matched using
a novel algorithm (Vessel Optimal Transform) that relies on
classical image features. The transformation matrix is com-
puted using DeSAC (Deterministic Sample And Consensus).

Recently, some novel FBR deep learning-based methods
have been able to compete with and even outperform the
classical approaches in some cases [8, 23, 24], whereas pre-
vious DPR deep learning methods could not [25]. Some of
these methods are based on domain-specific keypoints [23,
24] while others employ generic keypoint detectors [8].

The work of Rivas-Villar et al. [23] was the first FBR deep
learning method for CF image registration. It uses a CNN to
detect blood vessel crossovers and bifurcations which are
then used to infer a transformation using RANSAC with-
out the need for descriptor computation. However, the lack
of descriptors limits the complexity of the transformation as
calculating all the possible combinations of keypoints with
RANSAC by brute-force increases in computational cost
with the degrees of freedom in the geometric transforma-
tion. SuperRetina [24] adapted SuperPoint [26], a natural
image registration method, to RIR. They propose to train
this network using keypoints labeled by an expert manually
or by a classical approach, known as PBO [27]. To per-
form the matching of keypoints, they use descriptors that are
learned using a triplet loss approach. Their method requires
extensive ad hoc image pre-processing, firstly taking only the
green channel from the RGB images, normalizing it, apply-
ing CLAHE contrast enhancement [28], and finally using
gamma adjustment. These pre-processing steps simplify the
task but require multiple parameters that may need to be
tuned on a per-dataset or per-device basis. After this, the key-
points and descriptors are jointly trained starting from a set
of labeled keypoints which are progressively expanded using
the more confident detections of the network outside of the
ground truth. In order to complete the registration pipeline,
SuperRetina uses a double inference step. Thismeans that the
registration is firstly done normally and, after transforming
the moving image, the process is repeated again to improve
the results at the expense of more computation cost. Simi-
larly, in Rivas-Villar et al. [8], R2D2 [29] is adapted for the
retinal image registration task. R2D2 is a natural image reg-
istration method capable of jointly learning keypoints and
descriptors without ground truth data, making this method
fully unsupervised. Unlike SuperRetina, this method does
not require pre-processing or double inference. However,
it obtains worse results. In this method, the descriptors are
learned using a multi-negative loss, known as AP loss.

Overall, using domain-specific keypoints, such as blood
vessel crossovers and bifurcations, involves the use of super-
vised learning and manually labeled data [23, 24], whereas

methods which use generic keypoint detectors do not require
labeled data [8]. However, due to the lack of precise and
highly distinctive keypoints, generic detectors usually carry
an increased computational cost. In terms of descriptor
learning, deep learning methods use contrastive learning, a
technique based on comparing samples. For a given key-
point, which is used as a reference (anchor keypoint), there
are positive samples (the same point in another view of the
same image) and negative samples (any other point in the
same or another view). The main difference among methods
is how they use the different samples and howmany samples
they are able to process on each contrastive learning step.
Currently, in natural image registration as well as in RIR,
most approaches use triplet loss [24, 26] which exploits a
single positive and negative sample per anchor. Moreover, in
RIR, there are some approaches that employ multi-negative
single-positive methods [8] or do not use descriptors at
all [23]. In this regard, none of the state-of-the-art meth-
ods use novel multi-positive multi-negative approaches for
image registration, neither in natural images nor in medical
images. Multiple positive contrastive learning has been suc-
cessfully used in other tasks, such as image classification,
where it has demonstrated improved performance over just
multi-negative approaches [30]. Thesemethods employmul-
tiviewed batches to create multiple positives for each anchor,
which in turn, allows to leverage more information from
the input images. However, no multi-positive multi-negative
framework has been developed for keypoint-based registra-
tion despite the success and benefits that this self-supervised
approach demonstrated in other areas [31, 32].

In this work, we propose ConKeD, Contrastive Keypoint
Descriptors, a novel deep learning method to learn descrip-
tors for domain-specific keypoint-based RIR. In contrast to
previous methods, we use a multi-positive multi-negative
contrastive learning approach that allows to leverage addi-
tional information from the input images, hence improving
the learning of descriptors. Our multi-positive framework
represents the first approach of this kind for image regis-
tration. In that regard, we propose a complete methodology
for the registration of CF images, using vessel crossovers
and bifurcations as keypoints together with the descriptors
learned using ConKeD. These keypoints are highly specific
and unique which helps reducing the number of required
detections to perform the registration. The main contribu-
tions of the paper are the following:

• We propose the first multi-positive multi-negative con-
trastive learning approach for keypoint-based image
registration.

• We propose a complete RIR deep learning methodology
that takes advantage of domain-specific keypoints and
our novel descriptors.
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• We provide extensive experiments in the public FIRE
dataset comparing ConKeD against established baselines
and analyzing different factors of the method.

• Our experimentation reveals that the novel multi-positive
multi-negative approach improves the performance of
the commonly used triplet loss as well as multi-negative
approaches.

• Our proposal achieves results comparable to those in
the state-of-the-art while avoiding image pre-processing,
requiring less training samples, and also requiring less
detected keypoints.

2 Materials andmethods

2.1 Methodology

The proposed methodology for CF registration is described
in Fig. 1. This methodology is based on ConKeD, our novel
framework for learning descriptors for keypoint-based image
registration. These keypoints are detected using a state-of-
the-art neural network [23]. Meanwhile, another network
is used to compute the descriptors of these keypoints. The
descriptor network is trained with a multiviewed batch con-
taining one original image and N views or augmentations of
the original image. Therefore, each keypoint (i.e., anchor)
will have N positive samples while all the rest of detected

keypoints act as negatives, including the points in the own
image. These samples coupled with a suitable loss allow the
keypoint descriptor to be trained, learning to match the pos-
itive samples and differentiate the negatives. At inference
time, the keypoints are detected, described, and matched,
and, finally, RANSAC is used to infer a projective transform
(homography) to align both images.

2.1.1 Keypoint detection

The first step of the proposed methodology is to detect
blood vessel crossovers and bifurcations. These keypoints are
highly specific and distinctive, allowing for accurate match-
ing. However, the number of these keypoints in each image
is unknown a priori and can even change between images
of the same individual (i.e., in the same pair). This is due to
the difference in viewpoint as well as pathology progression,
which can occlude or banish some keypoints.

In order to detect these keypoints, we train a CNN to gen-
erate heatmaps depicting all the possible keypoints in the
input image [33]. Using heatmaps instead of binary maps
is beneficial due to the heavy imbalance between the pos-
itive class (the keypoint pixels) and the negative class (the
background pixels) [33]. The produced heatmaps have max-
imum values at the location of the detected keypoints and
progressively decreasing values in the neighboring pixels.

Fig. 1 Overview of the proposed method for both training and inference
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The heatmaps increase the information available to the net-
work during training, improving the learning process [33].

To distinguish between crossovers and bifurcations, two
separate heatmaps are generated, one for each type of key-
point. Moreover, to incentivize the network to detect all the
keypoints even if their type could not be inferred, a third
output heatmap containing both types of keypoints is also
generated. The network is trained using the mean squared
error (MSE) between the predicted heatmaps and the target
heatmaps as the loss function. In order to create the target
heatmaps, the original binary ground truth is convolved using
a Gaussian kernel.

Finally, during inference, in order to extract the key-
points, we compute the heatmaps using this network. From
the heatmaps, we can obtain the discrete locations of the
keypoints by using a local maxima filter and an intensity
threshold [33].

2.1.2 Keypoint description

The second step is to generate the descriptors for the detected
keypoints. For this step, we propose a novel framework,
ConKeD, which is schematically described in Fig. 2.

ConKeD follows a novel multi-positive multi-negative
contrastive learning approach in order to learn descrip-
tors for image registration. Typically, deep learning-based
FBRmethods learn descriptors using triplet loss approaches.
These approaches compare each given point against both a
positive and a negative sample. Some recent methods also
explored multi-negative approaches which, instead of select-
ing a particular negative sample, use of all of them. In
contrast, our method leverages multiple samples for both

positive and negative examples. This avoids the need for
explicit mining and increases the amount of contrastive com-
parisons, facilitating training.

The fundamental idea behind our proposal is to compare
the representations (i.e., descriptors) of different keypoints.
In particular, the key concept is to pull together the anchor (a
particular point used as reference) and all the positive samples
in the descriptor space while pushing apart the anchor from
all the different negative samples.

In order to process multiple positive and multiple nega-
tive samples during training, we create a multiviewed batch
for each input image during training. This batch includes
an image from the dataset, serving as base, and N views
or image augmentations. Thus, our multiviewed batch is of
size 1+ N . The image augmentations (views) are generated
from the base image using spatial and color transformations.
Therefore, all of the positive samples are augmentations of
the anchor keypoint while negative samples are the rest of
the detected keypoints, belonging to any image in the batch.
In any case, it should be noted that ConKeD does not require
multiple images from the same individual and, therefore, it
could be trained using unlabeled data.

Additionally, in order to maximize the number of compar-
isons, our novel approach is trained with the whole images
(as opposed to patches). For each image, the CNN produces
a dense block of descriptors, each descriptor corresponding
to one pixel of the input image. Therefore, for each keypoint
location detected in the previous step, it is possible to directly
select its specific descriptors. Considering that we have an
average of K keypoints per image and a multiviewed batch
size 1+N , there are a total of K (1+N ) keypoint samples per
batch. In particular, each one of the K keypoints will have

Fig. 2 ConKeD methodology for description learning
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N positive samples, and (K − 1)(N + 1) negative samples.
As we do not perform any explicit negative point mining,
for each keypoint, every other keypoint that is not a posi-
tive sample is considered a negative sample, including the
ones on the same image where this keypoint was detected.
However, in this case, all of the negative samples can be con-
sidered hard-negatives. This is because they are all from the
set of detected keypoints and, therefore, they are either ves-
sel crossovers or bifurcations (i.e., closely related points).
Finally, given the multiple positives and negatives for each
anchor point, all the possible pairings are created and all the
possible comparisons are computed between the descriptors.

In order to compare the descriptors, we use cosine sim-
ilarity as the metric. Similarly to other works [30, 32, 34],
we apply L2 normalization to the output of the neural net-
work which in combination with the dot product used in
the losses described below is equivalent to cosine similar-
ity. Thus, the cosine similarity between two descriptors can
be directly computed as the dot product. Moreover, this nor-
malization helps contrastive losses to perform intrinsic hard
positive/negative mining [30].

As training loss for ConKeD, we propose two different
alternatives: SupCon Loss [30] and MP-InfoNCE [31, 32,
34]. A schematic comparison between both losses can be
seen in Fig. 3.

SupCon loss SupCon Loss [30] is a loss function specifi-
cally designed for multi-positive multi-negative contrastive

learning in the context of supervised image classification.
This loss function can be directly applied to our proposal.
For our framework, which uses a multiviewed batch of N +1
images, each of them containing K keypoints, k is the unique
index of an arbitrary keypoint such that k ∈ [1, K ]. There-
fore, the SupCon Loss function is defined as follows:

Lsup = 1

N

N+1∑

i=1

N+1∑

j=1,
j �=i

K∑

k=1

− log
exp(zik · z jk/τ)

K∑
c=1,
c �=k

exp(zik · zic/τ) +
N+1∑
l=1,
l �=i

K∑
c=1

exp(zik · zlc/τ)

,

(1)

where we represent the network output for any keypoint as
z. This way, zik , z jk , and zlk represent the output of network
for keypoint k in the views of index i , j , and l, respectively.
We use the symbol · to denote the dot product. Finally, τ ∈ R
is the scalar temperature parameter.

MP-InfoNCE loss InfoNCE [34], also known as NT-Xent, is a
loss function commonly used in many metric learning meth-
ods [31, 32, 34]. However, it is only suitable for the paradigm
of a single positive and many negatives. Therefore we pro-
pose to modify it so that it can be applied in our framework.

Fig. 3 Schematic comparison between SupCon Loss and MP-InfoNCE, considering N +1 views, where N is the number of augmented versions of
the original (1) image, and K keypoints per view, each of whichmatches with one keypoint on each other view (i.e., N positives per keypoint/sample)
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We define our version of InfoNCE, MP-InfoNCE as follows.

LNCE = 1
(N+1

2
)
K

N+1∑

i=1

N+1∑

j=1,
j>i

K∑

k=1

− log
exp(zik · z jk/τ)

K∑
c=1,
c �=k

exp(zik · zic/τ) +
K∑

c=1
exp(zik · z jc/τ)

,

(2)

where N+1 is the number of views in ourmultiviewed batch
(1 original image, N augmented views). Since we compute
the loss pairwise, the total number of combinations amounts
to

(N+1
2

)
. i and j , such that j > i , are the indexes of two

different images from the multiviewed batch forming a pair.
k represents the unique index of a keypoint such that k ∈
[1, K ]. This way, zik represents the output of network for
keypoint k in the view of index i . Likewise, z jk represents
the output of network for keypoint k in the view of index j .

Overall, the main differences between SupCon Loss and
MP-Info-NCE lie in the denominator of the innermost sum-
mation term. The denominator in SupCon Loss contains the
matching similarities among all keypoints across all views,
involving as many positives as augmented views N . Con-
versely, the denominator of MP-Info-NCE only contrasts
against the matching similarities within the views involved
in the numerator, and only involving one positive from one
augmented view. Note that for N = 1, i.e., 2 images, both
losses would be equivalent.

2.1.3 Keypoint matching and transformation computation

After the keypoint extraction, the keypoint descriptors are
computed by the descriptor network trained using ConKeD,
which produces a dense block of descriptors for each image.
Using the keypoints’ locations, the descriptors for each key-
point are selected.Next, these descriptors arematched among
the images in each registration pair. It should be noted that, for
a descriptor to match another one, this match should be bidi-
rectional. That is, a given descriptor A matches with another
descriptorB, if bothA is the closest toB andB is the closest to
A. As in the training stage, the distance between descriptors
is measured using cosine similarity. Additionally, as the key-
point detection network can accurately classify the keypoints
in crossovers of bifurcations, we leverage this capability to
ease and speed up the matching. In particular, we only match
the descriptors of points within each class, that is, crossovers
with crossovers and bifurcationswith bifurcations. This dras-
tically reduces the number of required computations, which
was already lowdue to the high specificity of these keypoints.

After the descriptor matching step, the paired keypoints
are used to estimate the geometric transformation using
RANSAC [22]. This is a well-known algorithm that is com-
monly used to estimate the parameters of mathematical
models when there may be outliers in the data. In this case,
the model is the transformation matrix between the images
and the data are the matched keypoints. We employ a projec-
tive (or homographical) transformation, as previous works in
the state of the art [8, 24].

2.2 Experimental setup

2.2.1 Dataset

For the training phase, we employ the public DRIVE dataset.
The imageswere obtained fromadiabetic retinopathy screen-
ing program using a Canon CR5 non-mydriatic 3CCD
camera with a FOV of 45◦. Each image has a resolution of
584×565 pixels. This dataset of 40 images is equally divided
in the training and test sets, each of 20 images. This dataset
has a ground truth of vessel crossovers and bifurcations that
we use to train our keypoint detector [35]. The original binary
labeling from DRIVE is converted to heatmaps, as explained
in Hervella et al. [33].

For the testing phase, we use FIRE, which is the only pub-
lic CF dataset which has ground truth for registration. This
ground truth consists of a set of labeled control points which
can be used to compute the distance between the optimal and
the produced registration. This dataset provides 134 image
pairs, which can be divided into three categories. Category
S has high overlapping between the images that compose
each pair. On the contrary, category P has low overlapping.
Finally, categoryA has high overlapping but the images show
pathology progression within each pair. This complicates the
registration but makes this category the most relevant one for
clinical practice, where the registration is usually needed to
monitor diseases. The total 134 image pairs are divided into
71 from category S, 49 from P, and 14 from A. Finally, it
should be noted that there is an error in the ground truth pro-
vided by FIRE. In particular, a single point in an image in
category P is incorrectly tagged. We opted to simply discard
that point and evaluate the image with one less control point.

2.2.2 Keypoint detection

We train the keypoint detector network as in Hervella et al.
[33]. That is, we use the training set of the DRIVE dataset
(i.e., 20 images), while reserving 25% of the images for the
validation set. The remaining 20 images compose the test set.
For this task, we use the U-Net [36] network architecture as
in Hervella et al. [33]. To train the network, we use Adam
[37] with learning rate decay. The network was trained from
scratch. The learning rate is originally set to 1e − 4 with
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a patience of 2500 batches before reducing it. Each batch
contains a single image, and each time the learning rate is
reduced, it is by a factor of 0.1. The training stops after the
learning rate reaches 1e − 7. We use spatial augmentation
consisting of random affine transformations with the follow-
ing parameters: random rotations of ±90◦, random scaling
between 0.9 and 1.1 ×imageSize, and random shearing of
±20◦. Finally, color augmentation is also used randomly
changing image components in the HSV color space [38].

The value for the intensity threshold was selected by test-
ing multiple values and finding the one that provided the best
F1-score in the test set of the DRIVE dataset. In this case,
0.35 was found to be the optimal value [33].

2.2.3 Keypoint description

For the training, we use the whole DRIVE dataset (i.e., all the
40 images) in combinationwith the keypoint output produced
by the detection network. Therefore, this network is trained
using the DRIVE dataset resolution. As network architec-
ture, we use themodified L2-net [39] proposed in R2D2 [29].
This network produces a descriptor per input pixel without
the need to upscale the descriptor block. Moreover, it has
been demonstrated to produce accurate descriptors in other
works [29]. We train the network from scratch for 15,000
epochs using Adam [37] with a constant learning rate of
1e − 4. For both losses, SupCon Loss and MP-InfoNCE,
we set the temperature parameter τ = 0.1. As augmenta-
tions, we use random affine transformations with rotations of
±60◦, translations of 0.25 × imageSize in each axis, scal-
ing between 0.75 and 1.25 ×imageSize, and shearing of
±30◦. Moreover, we also include color augmentation in the
form of random changes in the HSV color space [40] as well
as random Gaussian noise with a mean of 0 and a standard
deviation of 0.05. The geometric and color augmentations
are applied to every augmented image while the random
Gaussian noise is applied with a probability of 0.25. Dur-
ing training, the detection of keypoints is performed only on
the original images. Therefore, the geometric augmentations
are applied to both images and keypoints. Finally, regarding
the multiviewed batch sizes, we perform experiments with
three different sizes. Using a single original image, we try
the multiviewed batch sizes 1 + 1 (i.e., 1 original image and
1 augmentation), 1 + 9, and 1 + 19. Moreover, we also train a
descriptor network using the triplet loss, to use as baseline. In
order for the comparison to be completely fair, we use cosine
similarity as the distance metric. Moreover, we use a margin
of value 0.05, which we empirically found to be the most
adequate. The training is done using the exact same settings
described above except that, in this case, we use a learning
rate of 1e − 5 and train the network during 75,000 epochs.

2.2.4 Keypoint matching

After the description step, we match the descriptors for both
images composing a registration pair. The resulting keypoint
matches are upscaled from the detection resolution (DRIVE)
to the test resolution (FIRE).Once thekeypoints are upscaled,
they are used in combination with RANSAC [22] to create a
projective transformation that aligns the image pair. There-
fore, the test images are aligned using their full size which is
required to compare among methods.

2.3 Evaluationmethodology

To validate our approach, first, we use the evaluation metric
proposed by the authors of the FIRE dataset [41]. This met-
ric, called registration score, measures the average Euclidean
distance between the control points of each image pair after
the registration process. Depending on whether the error
of an image pair falls below a threshold, the pair is clas-
sified as either successful or unsuccessful. By plotting the
ratio of successful registrations on the Y axis and progres-
sively increasing the error threshold along the X axis (defined
between 1 and 25 pixels for FIRE), we can create a 2D graph
and compute its area under curve (AUC), allowing for quick
and easy comparison among methods [20, 21, 23, 24].

We calculate this metric for each category separately as
well as for thewhole dataset as proposed in FIRE [41].More-
over, in order to compare our results to Liu et al. [24], we also
compute the average (Avg.) of the registration score among
the three categories. We also propose to compute a weighted
average (W.Avg.) among the three categories, using the num-
ber of images per category as the weighting factor. This
metric should provide a more representative picture of the
performance through the whole dataset.

The registration score only considers the error produced
using all the detected keypoints. Thus, this metric may
encourage brute-forcing both detection and description to
improve the results, without considering the efficiency or
computation time. Given an accurate enough description,
simply detecting more points (i.e., higher keypoint fre-
quency) improves the chance that eachkeypointmatcheswith
another one in its approximate corresponding space, even if
the detector is pseudo-random. However, this entails a much
higher computational cost. Performing the registration with
a smaller number of keypoints (i.e., more spaced out) puts
more emphasis on both steps, as the detection needs to be
repeatable enough so that the keypoints are in approximately
the same locations in both image of a pair.

In order to perform a more complete evaluation, we pro-
pose a new metric based on the registration score that takes
into account the number of matching keypoints. By limiting

123



Medical & Biological Engineering & Computing

the amount of paired keypoints (i.e., after descriptor match-
ing) used in RANSAC, we can better evaluate the quality of
the detected keypoints and their descriptors. For this metric,
we propose to use the top N keypoints, as ordered by the dis-
tance of their descriptors. That is, we take the N keypoints
whose descriptors are closest, i.e., which offer a higher qual-
ity match. By increasing the value of N (i.e., the number of
keypoint pairs) and computing the registration score for each
one of the values, we can plot another curve and calculate
its AUC. This way, we can evaluate the performance of the
network across a different number of keypoints. It should be
noted that we cannot have less keypoints than the required by
the transformationmodel; therefore, N > 4.Moreover, aswe
match the keypoints independently per class (i.e., crossovers
and bifurcations),we compute the top N points for each class.
In particular, we start the evaluation with the top 3 keypoints
per class, which is a total of 6 keypoints (i.e., the best 3
crossovers and the best 3 bifurcations). Next, we increase the
number to top 4, which is 8 points in total and so on, up to top
25 (with a total of 50 keypoints). In this evaluation, we set
the RANSAC budget according to the amount of keypoints
such that all RANSAC possibilities are computed. It should
be noted that, in some cases, the value of N might be bigger
than the number of available or matched keypoints for each
class (either crossovers or bifurcations). In this case, nomore
points are added to that specific class. We name this metric
Variable Top Keypoint Registration Score (VTKRS). Simi-
larly to the registration score, we also compute the VTKRS
per category and overall for the whole dataset.

3 Results and discussion

This section is structured as follows: first, in Sect. 3.1, we
evaluate our method. This includes a comparison with a
triplet baseline, as well as analyzing the effect of includ-
ing multiple positives as well as the effect of increasing the
number of positives, by increasing the multiviewed batch
size. Next, in Sect. 3.2, we compare both of the proposed
loss functions using the best multiviewed batch size. Finally,
in Sect. 3.3, we compare our approach with the different
state-of-the-art methods.

3.1 Evaluation of the proposed approach

In order to evaluate the performance of ConKeD, we com-
pare our approach to the Triplet Loss, used in state-of-the-art
approaches [24]. Additionally, we compare three different
variants of our proposal, the first one using a batch of 1 +
1 views such that our method is multi-negative and single-
positive and the other two using batches of 1 + 9 and 1 +
19 views each such that our method is both multi-negative
and multi-positive. Therefore, we are comparing a single-
negative single-positive (triplet) against a multi-negative
single-positive (1+1views) to the novelmulti-positivemulti-
negative methods (1 + 9, 1 + 19). For this comparison, we
use SupCon Loss [30]. Table 1 shows the results for this
experiment.

Firstly, the results show that our proposal clearly outper-
forms the triplet loss approach, regardless of themultiviewed
batch size. Moreover, we have empirically found that train-
ing with multi-positive multi-negative losses (either SupCon
Loss or MP-InfoNCE) drastically reduces the training time,
requiring five times less iterations to converge than the triplet
loss. In terms of categories in the FIRE dataset, the differ-
ence between methods is less notorious in the category S,
which is more forgiving with inaccurate descriptor matches
due to the high amount of overlapping. On the other hand,
the difference in categories A and P is notable due to the dis-
ease progression and low overlapping. These characteristics
make accurate descriptor matching more relevant, due to the
lower amount of available keypoints. In the category P, there
are less keypoints in the overlapping zone and, therefore, less
usable keypoints in the registration. Thus, it is more impor-
tant to correctly match the few usable keypoints, in order to
be able to produce an accurate alignment. In category A, due
to the progression of pathologies, the amount of keypoints is
also relevant, as some may be vanished or obstructed. How-
ever, given the higher amount of overlapping, the number of
keypoints is less limiting, putting more weight on the robust
description that allows to recognize keypoints under differ-
ent conditions (i.e., pathological progression). Therefore, to
evaluate the descriptors, category A is the most relevant one.
It should be noted that, as the detected keypoints are exactly
the same in all the approaches, the differences are purely due
to the improved descriptors.

Table 1 Results measured in
registration score AUC for the
different number of image view
sizes using SupCon Loss as well
as the baseline with triplet loss

FIRE A P S Avg W. Avg

Triplet (SP-SN) 0.696 0.683 0.349 0.939 0.657 0.697

Proposed 1 + 1 (SP-MN) 0.748 0.743 0.469 0.942 0.718 0.748

Proposed 1 + 9 (MP-MN) 0.755 0.76 0.477 0.946 0.728 0.755

Proposed 1 + 19 (MP-MN) 0.754 0.757 0.477 0.944 0.726 0.753

Best results in bold. SP means single-positive, SN means single-negative, MP means multi-positive, and
MN means multi-negative

123



Medical & Biological Engineering & Computing

Table 2 Results measured in
VTKRS for the different
number of image views using
SupCon Loss as well as the
baseline with triplet loss

FIRE A P S Avg W. Avg

Triplet (SP-SN) 0.602 0.613 0.231 0.857 0.567 0.603

Proposed 1 + 1 (SP-MN) 0.626 0.676 0.324 0.824 0.623 0.642

Proposed 1 + 9 (MP-MN) 0.656 0.685 0.368 0.849 0.634 0.656

Proposed 1 + 19 (MP-MN) 0.654 0.696 0.344 0.862 0.631 0.650

Best results in bold. SP means single-positive, SN means single-negative, MP means multi-positive, and
MN means multi-negative

Regarding the different multiviewed batch sizes, overall,
the results are accurate and the differences between the dif-
ferent number of views are small but highly relevant. These
differences in the results are constant across all the FIRE cat-
egories, creating a clear trend. In particular, the most notable
difference is between the batch size 1 + 1 and the other two (1
+ 9 and 1 + 19). In this case, the results on FIRE are around
1% less with the 1 + 1 batch size than with bigger batch
sizes. Similarly, in category P, the difference among the 1 +
1 batch and the rest is around 1% as well. For category A,
the difference increases to almost 2% while on category S, it
is less than 1%. This exemplifies the different levels of dif-
ficulty in learning adequate descriptors for each category, as
previously stated. Category S, having the most overlapping,
is the easiest, while A and P are more complex due to the
pathologies and low overlapping.

Table 2 shows the results of our evaluation using VTKRS.
These results are shown graphically in Fig. 4. Similarly to

the previous analyses, the difference between our proposal
and the triplet loss baseline is clear. In category S, where
the descriptor matching is less relevant, the results for all the
approaches are equivalent. However, in categories A and P,
the differences are notable and can be clearly seen in Fig. 4,
where the triplet VTKRS AUC is significantly lower than
in our proposals. Overall, in FIRE, due to the prevalence
of the category S, the difference between our method and
the triplet baseline is less notable but still highly significant.
Regarding the different variants of our proposal, it can be
seen that adding multiple positives (i.e., 1 + 9 and 1 + 19)
consistently improves the performance across all categories
and, especially, in the more complicated ones (A and P).

Regarding the number of views in a multi-positive set-
ting (i.e., 1 + 9 and 1 + 19), the results are equivalent
with both metrics. Moreover, given the extended training
in our experimentation, i.e., 15,000 epochs, we can ensure
that the difference in performance between 1 + 1 and other

Fig. 4 AUC curves for the
different losses measured in
VTKRS. In the legend, “Max.”
represents the maximum
registration score AUC
produced using all the keypoints
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Table 3 Results for the different losses measured in registration score

FIRE A P S Avg W. Avg

SupCon loss 0.755 0.76 0.477 0.946 0.728 0.755

MP-InfoNCE 0.758 0.749 0.489 0.945 0.728 0.758

Best results highlighted in bold

two approaches is not due to the different number of seen
image views. All three approaches are trained well beyond
their convergence point, such that there are no more mean-
ingful improvements possible. This serves to isolate the
improvements of themulti-positive approach from the poten-
tial improvements of using a higher number of views per
batch and thus allowing the network to see more images per
iteration. Therefore, the difference between adding multiple
positives (1 + 1 vs the rest) and just increasing the number
of views in the batch (1 + 9 vs 1 + 19) is clear. Given that the
results of batches 1 + 9 and 1 + 19 are equivalent, we choose
1 + 9 as the reference batch to compare losses and models in
the following sections.

3.2 Comparison of loss functions

In this section, we compare SupCon Loss against MP-
InfoNCE. The experiments are performed using the optimal
multiviewed batch size found in the previous experiments
(i.e., 1 + 9). The results are detailed in Tables 3 and 4 as well

Table 4 Results for the different losses measured in VTKRS

FIRE A P S Avg W. Avg

SupCon loss 0.656 0.685 0.368 0.849 0.634 0.656

MP-InfoNCE 0.656 0.692 0.362 0.852 0.635 0.656

Best results highlighted in bold

as in Fig. 5. Representative examples of registered images
from the FIRE dataset using our both losses can be seen in
the top rows of Fig. 6.

In terms of registration score over the FIRE dataset,
detailed in Table 3, the results for both losses are very simi-
lar. The biggest differences appear in category A (+1.1% for
SupCon) and category P (+1.2% for MP-InfoNCE). How-
ever, these differences are small due to the limited nature of
the registration score evaluation over FIRE. The results in
terms of VTKRS can be seen in Table 4 and in Fig. 5. The
final numeric differences in the AUC values for both losses
are small, like in the previous evaluation. However, look-
ing at the curves, the differences are much more evident. In
particular, for category A, we can see that MP-InfoNCE pro-
vides results that are more accurate with a low number of
keypoints. In category P, both losses perform similarly, and
MP-InfoNCE obtains better results with less points while
SupCon Loss improves more given more points. However,
in the end, the two approaches become virtually even when
many or all of the keypoints are used.

Fig. 5 AUC curves for the
different losses measured in
VTKRS. In the legend, “Max.”
represents the maximum
registration score AUC
produced using all the keypoints
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Fig. 6 Representative
registration examples from the
FIRE dataset for our proposals
and different state-of-the-art
methods

The difference in performance in the category A (the only
one where the difference is notable) is especially relevant as
this is the category with the most clinical relevance. RIR is
commonly used for disease monitoring and study follow-
up; therefore, any automated method should desirably be
robust to pathological lesions. Additionally, category A can
be viewed as the hardest category to align due to the num-
ber and variety of lesions and diseases that severely alter the
morphology of the ocular fundus. While category P obtains
the lowest scores, this is due to the lower overlapping and
thus the lower amount of common keypoints on both images
of the registration pair. However, in category A, the detected
keypoints can disappear or be altered by pathology progres-
sion. Therefore, improving the results in this category is
desirable and even more so with a low number of keypoints
as this makes the network more robust to pathology pro-
gression which can completely occlude the keypoints. Given
this benefit of MP-InfoNCE over SupCon Loss, we will use

the MP-InfoNCE as the method to compare our approach
against the state of the art. Nevertheless, while there are dif-
ferences between MP-InfoNCE and SupCon Loss, both loss
terms produce satisfactory performance. Therefore, we can
conclude that our multi-negative multi-positive approach is
robust to the specific loss term used.

3.3 Comparison with state-of-the-art registration
methods

The comparison with the state of the art is depicted in
Table 5. In this comparison, we include the three best-
performing approaches on the FIRE dataset as well as
previous approaches using deep learning. The results show
that the best-performing method overall is VOTUS [21] and
the best deep learning method is SuperRetina [24]. However,
it should be noted that SuperRetina does not provide theAUC
for the whole FIRE dataset as it is done in every other work
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Table 5 Comparison between our approach and state-of-the-art methods, sorted by average

FIRE A P S Avg W. Avg Keypoints Training images

VOTUS [21] 0.812 0.681 0.672 0.934 0.762 0.811 N/A N/A

SR Manual [24] − 0.783 0.542* 0.94 0.755* 0.780* 740 97 + 844

SR PBO [24] − 0.789 0.516* 0.944 0.750* 0.773* 740 97 + 844

Proposed 0.758 0.749 0.489 0.945 0.728 0.758 115 15 and 40

REMPE [20] 0.773 0.66 0.542 0.958 0.72 0.774 − N/A

Retina-R2D2 [8] 0.695 0.726 0.352 0.925 0.645 0.575 5000 1748

Rivas-Villar [23] 0.657 0.660 0.293 0.908 0.620 0.552 115 20

The asterisk symbol (*) indicates that the results were calculated using one image less. N/A indicates that the method does not use keypoints or
does not require training samples. The hyphen symbol (-) indicates that the method is not publicly available and does not specify the number of
keypoints used. k + d denotes that k images are used for the detector training and k + d images are used for the descriptor training. Meanwhile, k
and d denote that k images are used for the detector training and d images are used for the descriptor training. The best results are in bold. Results
sourced from the referenced papers

in the state of the art [20, 21, 23]. Analyzing each category
separately, we can see that in A, our proposal obtains the
second-best results only behind SuperRetina by around 4%.
In category P, both our method and SuperRetina produce sig-
nificantly worse results thanVOTUS [21], a classical method
that uses a quadratic transformation to help improving the
alignment in these low overlapping cases. Finally, in cate-
gory S, which is the easiest to register, the results of most
methods are within a margin of around 1%; therefore, the
differences are not notable.

In terms of registration score, our method is the second-
best deep learning approach and overall provides results that
are close to those reported bySuperRetina. Regarding the dif-
ferent categories, the most relevant difference is in category
P where our method obtains 2.7% less and 5.3% less AUC
than both SuperRetina methods. As explained, this is due to
the lower number of keypoints detected per image. In the
other categories, where the amount of keypoints is less rele-
vant, our results are even closer, even surpassing SuperRetina
in category S. Importantly, our method provides several
advantages, and there are also some important experimental
differences between both works that should be considered.
SuperRetina trains its detector using a private dataset con-
taining 97 images whereas we train the detector with just 15.
Additionally, SuperRetina uses an extra set of 844 images
to train the descriptor, for a total of 941, whereas we use
just 40 images for our descriptor. Furthermore, SuperRetina
requires extensive ad hoc image pre-processing. Moreover,
the descriptor computed by SuperRetina has 256 channels
compared to 128 in our descriptor. Additionally, the results
of SuperRetina depend greatly on the number of detected
keypoints. As shown in Table 5, SuperRetina detects more
than 6× more keypoints than our approach. In that regard,
the authors of SuperRetina also tested a variant of their
method that detects approximately the same amount as our
work (using just the labeled keypoints in their training set),

obtaining a notable performance drop, from 0.755 to 0.685
(Avg.) in which case our method, which produces approxi-
mately the same number of keypoints, would obtain better
results. Using more keypoints usually increases performance
as it provides more chances for the descriptors to match and
more paired keypoints to compute a transformation, at the
cost of more computation. This is especially notable in cat-
egory P where the small overlapping limits the number of
keypoints usable for registration. Additionally, SuperRetina
requires double inference (i.e., double run), including double
detection, description, descriptor matching, and transforma-
tion calculation. In contrast, our method does not require any
of these extra steps making it more efficient.

Our method was designed with efficiency in mind as our
multi-positive multi-negative training approach allows us
to leverage more information during training, allowing for
increased data efficiency. Additionally, through the use of
domain-specific keypoints, we can limit the cost of match-
ing and transformation estimation. Overall, our proposed
approach demonstrates execution times that are suitable for
use in clinical day-to-day practice, providing fast image reg-
istrations. In particular, the average execution time for our
whole methodology including each step in the process is,
approximately, 0.088s per image pair. This time can be itself
divided into the different steps of the method: 0.03 s for
keypoint detection inference, 0.01 s for descriptor inference,
0.0006 for descriptor matching, and 0.047 for transforma-
tion computation through RANSAC. In relation to this, our
method detects, on average, 115 keypoints throughout the
FIRE dataset. Given that the complexity of the descriptor
matching stage is O(n2), thismeans that 1152 = 13225 com-
parisons are performed for each image pair. However, if our
approach required the same amount of keypoints as Super-
Retina (740 keypoints) or Retina-R2D2 (5000 keypoints),
the number of comparisons required for the matching pro-
cess would increase to 547,600 or 25,000,000, respectively.
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This would increase the matching time by factors of 41×
and 1890×. Moreover, SuperRetina uses heavier descriptors
and double inference, which would increase execution time
and computational cost further. Our experiments revealed
that running our method a second time does not improve the
results. This evidences that our descriptors and keypoints are
more robust to transformations since they are correctly cal-
culated in a single pass, despite the larger transformations.

Finally, representative examples of registered images from
theFIREdataset using our approach aswell as available state-
of-the-artmethods can be seen inFig. 6.While there are slight
numerical differences between our approach and others, such
as SuperRetina, they can hardly be visually spotted in the
images. This is due to the high resolution of the images in
FIRE. Small registration errors (i.e., 1 or 2 pixels) become
really hard to spot on images of such size while significantly
impacting numerical results.

In conclusion, overall, ourmethod,with thenovelConKeD
description framework, provides very similar results to
SuperRetina while requiring significantly less training sam-
ples, avoiding the need for ad hoc pre-processing, using far
less keypoints, and just requiring a single execution.

4 Conclusion

In this work, we proposed ConKeD, the first multi-positive
multi-negative contrastive descriptor learning approach for
keypoint-based image registration. As it uses multiple pos-
itives and negatives, it can leverage additional information
from the input images, which improves the resulting descrip-
tors.We propose a completemethodology for the registration
of CF images, using vessel crossovers and bifurcations
as keypoints together with the descriptors learned using
ConKeD.

In order to validate our method, we perform several exper-
iments in the well-known FIRE dataset and analyze several
factors in the methodology. The results show that our pro-
posal clearly outperforms triplet loss, the alternative typically
used to learn descriptors in the state of the art. In terms of
the losses, we found that SupCon Loss and a multi-positive
InfoNCE performed similarly with a slight advantage to the
latter evidencing that our framework is robust to specific loss
terms. Moreover, our method provides results competitive
with the best deep learning state-of-the-art method while
using less training samples and less keypoints and not requir-
ing double inference or pre-processing.

As future work, it would be interesting to test more losses
in combination with our ConKeD framework. In this regard,
developing specific losses for the multi-positive paradigm is
also desirable to try and improve the results. Additionally, a
limitation of our current approach and of others in the state of
the art is the reliance on inherently limited domain-specific

keypoints, such as crossovers and bifurcations. These key-
points are not distributed evenly across the retina and may be
completely absent in some parts. This can reduce the overall
registration performance since there are no points to accu-
rately drive the transformation in everypart of the fundus.The
arbitrary nature of these domain-specific keypoints may also
reduce the performance of these methods on patients with
less crossovers and bifurcations visible in the eye fundus.
Therefore, future works could focus on developing methods
to increase the number of keypoints while keeping a high
specificity. This could potentially improve the results, espe-
cially in category P, which has the lowest overlapping. In that
regard, it could even be convenient to study the inclusion of
generic keypoints. These, despite their generally lower speci-
ficity, could help regularize the registration if there are zones
of the image that lack domain-specific keypoints. Therefore,
the inclusion of generic keypoints in a measured way may be
beneficial without a significant reduction in the efficiency of
the method.
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