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ABSTRACT
GraCT and ContaCT were the first compressed data structures to represent object trajectories, 
demonstrating that it was possible to use orders of magnitude less space than classical indexes 
while staying competitive in query times. In this paper we considerably enhance their space, 
query capabilities, and time performance with three contributions. (1) We design and evaluate 
algorithms for more sophisticated nearest neighbor queries, finding the trajectories closest to 
a given trajectory or to a given point during a time interval. (2) We modify the data structure 
used to sample the spatial positions of the objects along time. This improves the performance 
on the classic spatio-temporal and the nearest neighbor queries, by orders of magnitude in 
some cases. (3) We introduce RelaCT, a tradeoff between the faster and larger ContaCT and the 
smaller and slower GraCT, offering a new relevant space-time tradeoff for large repetitive 
datasets of trajectories.
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1. Introduction

During the last decade, the number of GPS devices has 
sharply increased due to their popularization on dif
ferent objects: cars, ships, smartphones, smartwatches, 
etc. Consequently, a large amount of data about the 
route followed by objects along time (trajectory) is 
collected. That information is very useful in applica
tions like traffic management, analysis of human 
movement, tracking animal behavior, security and 
surveillance, military logistics and combat, and emer
gency-response planning (Gudmundsson, Laube, and 
Wolle 2008). However, storing and processing that 
enormous amount of data is a challenge that requires 
the development of new time- and space-efficient data 
structures and indexes (Y. Zheng and Zhou 2011).

Various proposals to represent trajectories exist, but 
all of them can be roughly classified into two groups 
depending on the type of movements that the objects 
can perform. In the first group, the movements of the 
objects are constrained by a network. The second group, 
instead, allows objects move freely in a space with no 
restrictions. This paper belongs to the second group.

The most basic query supported by applications deal
ing with moving objects is to retrieve the trajectory of an 
object during a period of time or at a specific time instant. 
However, most of those applications need more sophis
ticated queries, like spatio-temporal queries, which iden
tify the objects that are within a spatial region during 

a period of time, nearest neighbor queries, which return 
the objects that are closest to a given point or trajectory 
during a time interval, and even more sophisticated 
queries related to mining and clustering trajectories 
(Alamri, Taniar, and Safar 2013; Cao, Mamoulis, and 
Cheung 2005; Gudmundsson, van Kreveld, and 
Speckmann 2004; Lee, Han, and Whang 2007).

Various disk-based data structures have been pro
posed to store and index trajectories since the 1990s. In 
recent years, the sizes of the main memories have 
increased, and the gaps in time performance along the 
memory hierarchy have widened. As a consequence, in- 
memory indexes have become more popular in several 
areas, both for centralized and distributed deployments. 
In particular, different in-memory indexes for represent
ing trajectories were proposed (Cudre-Mauroux, Wu, 
and Madden 2010; B. Zheng et al. 2018). In parallel, the 
field of compact data structures (Navarro 2016) has 
emerged as a technique to operate larger datasets in 
main memory, or to use fewer nodes in distributed in- 
memory deployments. Compact data structures com
press the data in such a way that queries can be run 
directly on the compressed data. This type of compres
sion not only saves space but also expands the scenarios 
where a fast in-memory solution is affordable.

GraCT and ContaCT (Brisaboa et al. 2019, 2021) are 
two recent in-memory indexes for moving object trajec
tories that build on compact data structures. They were 
shown to require orders of magnitude less space than 
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classic solutions while offering competitive time perfor
mance. On large datasets they were still able to run in 
main memory, whereas other indexes needed to run on 
disk, where they were orders of magnitude slower.

Both GraCT and ContaCT have two components: 
spatial indexes called snapshots locating the objects at 
regular time intervals, and logs encoding the movements 
of the objects between snapshots. The structures use 
different techniques to compress the logs. GraCT uses 
grammar compression, which represents the trajectories 
with a context-free grammar that exploits their simila
rities. Therefore, GraCT obtains better compression 
when there are many similar trajectories. ContaCT, 
instead, is based on delta compression, which encodes 
shorter movements with fewer bits. The specific encod
ing used can compute in constant time the position of an 
object at any desired time instant. Therefore, ContaCT 
tends to obtain better performance than GraCT in sev
eral queries, at the price of worse compression.

GraCT and ContaCT support extracting trajectories, 
spatio-temporal queries, and a restricted form of near
est neighbor queries: they report the objects that are 
closest to a spatial point at a given instant of time.

1.1. Contributions

In this paper, we present contributions along three 
lines.

1.1.1. More sophisticated queries
We design and evaluate new algorithms for GraCT 
and ContaCT to solve more complex queries related to 
data mining. Those queries require obtaining the 
objects that are closest to a spatial point during 
a period of time (KNN during an interval) (Frentzos 
et al. 2007; Gao et al. 2007) or searching for the 
trajectories that are closest to a given trajectory 
(KNN of trajectories) (Tang et al. 2011). KNN queries 
have attracted considerable attention from the 
research community. They can be classified into 
three main types (Güting, Behr, and Xu 2010): i) the 
query and the data objects are static points, ii) the 
query is a trajectory and the data objects are static 
points or the query is a static point and the data objects 
are trajectories, and iii) the query and the data objects 
are trajectories. The original GraCT and ContaCT 
only handled a KNN query of the first type, restricting 
the query to a single-time instant.

The second and third types open the possibility of 
new queries like (type ii) find the two closest trajectories of 
animals to a given static point (e.g. a food source) in the 
time interval ½tb; te� (Gao et al. 2007), or observe the 
closest ambulances to the site of an accident (Güting, 
Behr, and Xu 2010) and (type iii) find the two animal 
trajectories nearest to a predefined one during the time 
period ½tb; te� (Gao et al. 2007), or which vehicles accom
panied President Obama on his trip through Berlin 

(Güting, Behr, and Xu 2010). These new KNN queries 
are also the basis to solve data-mining queries like mov
ing patterns together (Alamri, Taniar, and Safar 2013; 
Gudmundsson, van Kreveld, and Speckmann 2004) 
and trajectory clustering (Lee, Han, and Whang 2007).

In this paper, we extend GraCT and ContaCT to 
handle KNN queries of types ii and iii. Though both 
queries are an order of magnitude slower than the 
basic nearest neighbor query, which is not surprising, 
they still run in a few milliseconds. The ability of 
ContaCT to compute minimum bounding rectangles 
of trajectories in constant time makes it 2–4 times 
faster than GraCT on these complex queries.

1.1.2. Better data representations
The original GraCT and ContaCT variants combined 
an existing geometric representation for the snapshots 
with a representation for the logs. The snapshot repre
sentation, based on quadtrees, was not the ideal one to 
support the types of queries we needed to handle. In 
this paper, we design a snapshot representation that is 
not only more space-efficient but also better suited to 
the queries we need to run on GraCT and ContaCT.

Concretely, we introduce a new snapshot represen
tation based on R-trees, which speeds up those queries 
by orders of magnitude in some cases. That improve
ment is most noticeable in spatio-temporal queries, 
which become up to 200 times faster, and in nearest 
neighbor queries, which improve by a factor of 2–10. 
As a consequence, the new snapshots make GraCT 
and ContaCT faster than the MVR-tree (Tao and 
Papadias 2001), a classical spatio-temporal index, on 
both spatio-temporal and nearest neighbor queries.

1.1.3. New space/time tradeoffs
We propose a new data structure, called RelaCT, that 
combines the strong points of ContaCT and GraCT on 
highly repetitive sets of trajectories.

GraCT compresses more because it is based on Re- 
Pair, a grammar compressor (Kieffer and Yang 2000) 
that exploits both repetitions in the sequence and high- 
order frequency bias in the symbols. ContaCT, instead, 
is based on simple delta-compression that takes advan
tage only of the differences between one object’s posi
tion and the next one. The other side of the coin is that 
GraCT usually has to run a sequential decompression 
involving several symbols to obtain the position of an 
object at a given time instant, whereas ContaCT is able 
to obtain that position in constant time.

RelaCT is based on Relative Lempel-Ziv (Kuruppu, 
Puglisi, and Zobel 2010), a technique designed to 
compress highly repetitive collections, such as the 
genome of several individuals of the same species, 
while retaining nearly constant-time access. As 
a result, RelaCT brings a new tradeoff, exploiting 
repetitiveness in the sequences while staying close to 
ContaCT in speed.
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More in detail, the new structure chooses some 
reference trajectories and encodes those using 
ContaCT, while the others are encoded relatively to 
the references, that is, indicating what to change in 
a reference to obtain each other trajectory. The struc
ture, called RelaCT for Relative Compression of 
Trajectories, exploits the similarity of trajectories to 
obtain compression while keeping the ability of 
ContaCT to efficiently access the trajectories, faster 
than GraCT. RelaCT obtains relevant space-time tra
deoffs. For example, in one of our datasets, KNN of 
trajectories using RelaCT is twice as fast as GraCT, 
wasting just 5% more space, and it is 1:5 times slower 
than ContaCT, which uses twice the space.

1.2. Outline of the paper

Section 2 presents the state of the art in representing, 
compressing, and indexing trajectories. Section 3 
introduces several background knowledge that will 
be used later, including several data structures, as 
well as GraCT and ContaCT. Section 4 shows the 
queries supported by GraCT and ContaCT before 
this work. Section 5 presents the new KNN queries 
for GraCT and ContaCT, including an experimental 
study of their performance. Section 6 introduces 
the second contribution of this work, the snapshots 
based on the R-tree, also including an experimental 
study. Section 7 presents RelaCT, the third contribu
tion of this work, again with its experimental study. 
Finally, Section 8 shows our conclusions and future 
work.

2. State of the art

Different structures for representing moving objects 
and their trajectories were designed in the last decades. 
In this section, we present the most relevant strategies 
for modeling, compressing, and indexing free 
trajectories.

2.1. Modelling trajectories

Trajectories can be modeled as continuous space- 
time functions. Since objects emit their location at 
discrete time instants, trajectories are digitized as 
a list of timestamped positions. As the frequency of 
the timestamps increases, the accuracy of the trajec
tory improves, but more space is required to repre
sent it, which impacts on the costs of transmission, 
storage, and processing. Various trajectory simplifi
cation techniques (Douglas and Peuker 1973; Lin 
et al. 2017; Liu et al. 2015; Meratnia and de By  
2004; Muckell et al. 2011; Potamias, Patroumpas, 
and Sellis 2006; Trajcevski et al. 2006) aim to discard 
less relevant timestamped positions in order to 
reduce those costs. In this paper, we stick to the 

simplest method (Potamias, Patroumpas, and Sellis  
2006), which collects the positions at regular time 
intervals.

2.2. Compressing trajectories

The best-known method to reduce the amount of 
space needed to store trajectories, simplified or not, 
is delta compression. This method stores the first posi
tion of the trajectory and then stores the difference 
between each new position and the previous one. That 
is, it stores the first position and a sequence of move
ments. Delta compression exploits the fact that (i) 
consecutive positions are generally close to each 
other, and (ii) smaller numbers can be stored using 
fewer bits. A complete trajectory is efficiently 
extracted by adding each new difference to the pre
vious (already computed) position. Instead, obtaining 
the position of an object at a specific time instant t 
requires computing all the positions preceding t. Some 
methods sample the positions at regular timestamps, 
introducing a space-time trade-off to compute the 
position at any time t.

Several systems use delta compression, including 
TrajStore (Cudre-Mauroux, Wu, and Madden 2010) 
and SharkDB (B. Zheng et al. 2018). Trajic (Nibali and 
He 2015) uses delta compression but encodes each 
point as the difference between a predicted point and 
the real one. A different technique is used in REST 
(Zhao et al. 2018).

2.3. Indexing trajectories

The traditional spatio-temporal indexes for trajec
tories are based on the R-tree (Guttman 1984). The 
3DR-tree (Vazirgiannis, Theodoridis, and Sellis 1998) 
replaces the MBRs (Minimum Bounding Rectangles) 
of the R-tree with MBBs (Minimum Bounding Boxes), 
where the third dimension represents the time. Since 
the MBB can cover a long period of time, the MBB can 
be too large and this may spoil the search perfor
mance. An attempt to avoid this problem (Pfoser, 
Jensen, and Theodoridis 2000) introduces two new 
indexes: STR-tree, which modifies the procedure that 
builds the MBBs, and TB-tree, which splits the trajec
tories into portions to produce smaller MBBs. Other 
indexes, like the HR-tree (Nascimento and Silva 1998) 
and MVR-tree (Tao and Papadias 2001), conceptually 
store an R-tree for each timestamp. Those R-trees are 
called versions and, to save space, several versions can 
share nodes.

Grid-based indexes split the space into cells and 
build a temporal index for each cell. SETI (Chakka, 
Everspaugh, and Patel 2003), for example, indexes the 
trajectories of each cell by time with an R*-tree.

A different approach is followed by the SEST- 
Index (Gutiérrez et al. 2005; Worboys 2005), which 
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uses two components: snapshots and logs. The snap
shots are spatial indexes that record the positions of 
the objects at regular timestamps. The log stores 
“changes” (e.g. objects that appear or disappear at 
some position) between consecutive pairs of 
snapshots.

2.4. Combining compression and indexing

A few methods combine compression and indexing in 
a single structure. TrajStore (Cudre-Mauroux, Wu, and 
Madden 2010) divides each trajectory into sub- 
trajectories, each of which is stored in a cell whose size 
depends on the data distribution. Each cell contains 
a temporal and a spatial index (a quadtree) with all the 
sub-trajectories falling in the cell. TrajStore is a lossy 
method, however, because each cell clusters its sub- 
trajectories by similarity and only stores a representative 
of each cluster.

SharkDB (B. Zheng et al. 2018) combines delta 
compression and indexing. The time dimension is 
split into fixed-length intervals. SharkDB scores one 
point for each trajectory and interval of time. Those 
points that belong to the same interval are stored as 
a column of a column-oriented database. The columns 
of SharkDB are encoded with delta compression.

GraCT (Brisaboa et al. 2019) and ContaCT (Brisaboa 
et al. 2021) use the same architecture of the SEST-Index 
(Gutiérrez et al. 2005; Worboys 2005), logs and snapshots, 
but they compress the trajectories and support a larger 
variety of queries. GraCT and ContaCT represent the 
space as a tessellation of equal-sized squares (cells), and 
assume that every object emits its position at regular time 
instants. The snapshots are compact spatial indexes (k2- 
trees (Brisaboa, Ladra, and Navarro 2014), a quadtree 
variant) that store the location of all objects at regular 
timestamps. The logs store the movements of objects 
between snapshots. The main difference between 
GraCT and ContaCT is the method to compress those 
logs. GraCT compresses them with grammar compression 
(Kieffer and Yang 2000), whereas delta compression is 
applied in ContaCT. Instead of storing the consecutive 
movements, however, ContaCT represents those differ
ences using bitmaps and other compact data structures. 
This enables ContaCT to compute several kinds of 
queries in constant time, outperforming GraCT. The 
grammar compression of GraCT, on the other hand, 
exploits the repetitiveness of movements of objects (e.g. 
ships tend to follow similar paths), whereas the delta 
compression of ContaCT only exploits spatial locality. 
On repetitive trajectories, then, GraCT obtains better 
compression than ContaCT.

3. Background

This section presents different general concepts that 
are needed to understand our contributions, and how 

different compact data structures are combined for 
compressing and indexing spatial information.

3.1. Operations over bitmaps

A bitmap or bitvector is an array whose elements are 
valued at 0 or 1. There are two widely used operations 
over bitmaps: rankbðB; pÞ computes the number of 
times bit b appears in bitmap B until position p, and 
selectbðB; iÞ returns the position of the i-th bit b in 
bitmap B. Those operations can be computed in Oð1Þ
time by adding an additional structure of oðnÞ bits to 
the n bits used by the bitmap B½1::n� (Munro 1996). 
A related operation, select nextbðB; pÞ, returns the 
position of the next bit b after position p in B. 
Although it can be solved in Oð1Þ time using 
select nextbðB; pÞ ¼ selectbðB; rankbðB; pÞ þ 1Þ, 
a direct implementation of select next is as fast as rank 
in practice (Navarro 2016).

When B is sparse, that is, when the number of 1-bits 
m is much smaller than the total number of bits of the 
bitmap, an alternative representation based on Elias- 
Fano encoding (Okanohara and Sadakane 2007) uses 
only m logðn=mÞ þ 2m bits in total, and answers rank 
queries in time Oðlogðn=mÞÞ and select in Oð1Þ time.

3.2. Relative Lempel-Ziv

Relative Lempel-Ziv (Kuruppu, Puglisi, and Zobel  
2010) (RLZ) is a dictionary-based technique from the 
Lempel-Ziv family (Ziv and Lempel 1977, Ziv and 
Lempel 1978, which compresses one sequence with 
respect to another sequence called the reference. Let 
R be the reference and S be an input sequence. RLZ 
compresses S by using a Lempel-Ziv parse, where R 
plays the role of the dictionary. That is, S is repre
sented as a sequence of z phrases S ¼ w1w2 . . . wz , 
where every wi is the longest substring of R that is 
a prefix of wi . . . wz. Each phrase wi is encoded with 
a pair of values: a position in R where it occurs, and its 
length jwij. For example, with S ¼ abracadabra and 
R ¼ dabrac, S is represented with three phrases, 
S ¼ w1w2w3, where w1 ¼ abrac (occuring at R½2::6�), 
w2 ¼ a (at, say, R½2::2�), and w3 ¼ dabra (at R½1::5�Þ. 
The RLZ representation of S with reference R is 
then ð2; 5Þ; ð2; 1Þ; ð1; 5Þ.

An issue for RLZ is how to choose a reference from 
a set of potentially similar sequences to compress. One 
choice is to choose one such sequence as the reference, 
in which case it is called a real reference. Instead, 
artificial references can be built by combining 
sequences from the set or even generating new ones. 
One of the most powerful methods for building artifi
cial references concatenates uniform samples of the 
subsequences (Liao et al. 2016).

To succeed in generating the phrases, R must con
tain every distinct symbol in S. Alternatively, it might 
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be possible to specify a phrase formed by an explicit 
symbol, or a short substring, without referencing R.

3.3. Range minimum/maximum queries

Given an array of integers A½1; n�, the range minimum 
query rmqðA; i; jÞ returns the position of the leftmost 
minimum in A½i::j�. Analogously, the range maximum 
query rMqðA; i; jÞ computes the position of the left
most maximum in A½i::j�. Interestingly, each of these 
queries can be answered in Oð1Þ time with a structure 
that uses only 2nþ oðnÞ bits and does not access A 
(Ferrada and Navarro 2017; Fischer and Heun 2011).

ContaCT (Brisaboa et al. 2021) includes a structure 
that solves both queries, rmq and rMq, within at most 
3nþ oðnÞ bits. The structure uses rmq and rMq struc
tures over the local minima and maxima, respectively, 
whose positions are marked in a bitmap. After obtain
ing the extreme local minimum and maximum, these 
are compared with the values at the extremes of the 
queried interval, A½i� and A½j�. Therefore, to solve the 
query in Oð1Þ time, we need to store the array A or 
a structure that retrieves its cells in Oð1Þ time.

3.4. The k2-tree

A k2-tree (Brisaboa, Ladra, and Navarro 2014) repre
sents a binary matrix M of size s� s with a k2-ary tree, 
built by recursively splitting M into k2 submatrices of 
the same size. Thus, in each level, i the size of the 
submatrices is s2=k2i cells. The algorithm starts by 
splitting the matrix into k2 submatrices of size s2=k2, 
each corresponding to a child of the root node. When 
the submatrix is full of 0 bits, the node stores a 0-bit; 
otherwise, it stores a 1-bit. The children of a node are 
placed in Z-order. For example, in Figure 1, the four 
children of the root node correspond to the first four 
8� 8 submatrices, and as seen, the first and the third 
submatrices in Z-order are represented with 0-bits 
because they only contain 0-bits. For each node with 
a 1-bit, we continue recursively splitting its submatrix 
into k2 smaller submatrices. This procedure is 

repeated until reaching a submatrix full of 0s or until 
the submatrices are individual cells, whose contents 
are also stored as bits. Therefore, every empty subma
trix is encoded with only one node.

The tree is represented without using pointers, 
using just two bitmaps, T and L. Bitmap T is the level- 
wise concatenation of the bits of all the internal nodes, 
whereas L stores the nodes in the last level (the cell 
descriptions). The navigation of the tree is supported 
by rank and select operations over T. Given a 1-bit at 
position p in T, its k2 children are sequentially located 
from position childrenðpÞ ¼ rank1ðT; pÞ � k2 of T : L, 
which denotes the concatenation of T and L. The 
parent of a node at position p of T : L is computed 
as parentðpÞ ¼ select1ðT; p=k2Þ. For example, in 
Figure 1, the position of the first child of the node at 
T½3� is rank1ðT; 3Þ � 22 ¼ 8. Therefore, its children 
are stored at T½8::11�. The parent of one of those 
children, for example T½10�, is computed 
as select1ðT; 10=k2Þ ¼ 3.

By traversing the tree, we can obtain different infor
mation about the 1s in the matrix: in a top-down 
traversal we can discern which 1s are within 
a region, and from a leaf, we can obtain its position 
in the whole matrix with a bottom-up traversal.

3.5. R-trees

The R-tree (Guttman 1984) is a classical spatial index 
analogous to a B-tree. The variant that stores points is 
a balanced multiary tree where the leaves store point 
sets. Each subtree is summarized with its Minimum 
Bounding Rectangle (MBR), that is, the smallest rec
tangle containing all the points in its leaves. Each 
internal node points to several subtrees and stores 
their MBRs. To find all the points within a region, 
we start from the root and recursively enter into every 
subtree whose MBR intersects the region.

Although R-trees are dynamic and do not consider 
compression, there is a static version (Brisaboa et al.  
2013) where the nodes are compressed. Notice that 
each MBR can be represented by two coordinates: the 

Figure 1. Example of a k2-tree with k ¼ 2.
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bottom-left and the top-right corners. The com
pressed version represents the bottom-left corner as 
the difference with respect to the bottom-left of its 
parent node. The top-right corner is encoded as the 
difference from the bottom-left corner of the same 
node.

Figure 2 shows an example of R-tree. The left 
part shows the points and the MBRs of the nodes; 
the right part shows the resulting R-tree. To find 
all objects contained in the query window (or 
region) Q, the algorithm only traverses the nodes 
in gray, whose MBRs contain or intersect with Q. 
In the leaves, the points are checked one by one 
and added to the solution if they qualify. On the 
bottom of the right part, we show how the corners 
of node R6 are encoded.

3.6. Snapshots

As we presented in Section 2.4, GraCT and ContaCT 
structures share a spatial index called a snapshot. The 
snapshots are represented essentially as k2-trees.

We consider the space as a raster, that is, 
a tessellation of equal-sized squares (cells). Therefore, 
the locations where there are objects can be repre
sented as a binary matrix having one bit per square 
of the raster, that is, each 1-bit represents a cell with at 
least one object. By using the k2-tree to store that 
matrix, we also obtain an index over the positions 
containing objects. In fact, the k2-tree can be seen as 
a modern sophisticated version of a region quadtree 
(Samet 1984). Observe in the left part of Figure 3 that 
the space is represented as a raster with some cells with 
objects. On that grid, we depict the quadrants of the 
k2-tree (with k ¼ 2) shown on the right part. Recall 
that the k2-tree is represented with just the bitmaps T 
and L.

However, we also need to know which objects are 
within each cell. That is, we need to label those 1-bits 
of the matrix with the identifiers of the objects lying 
within the corresponding cell. For this purpose, the 
snapshot includes an array perm and a bitmap Q. 
Those are filled by traversing the bitmap L from left 
to right, and for each 1-bit in L, appending to perm the 

Figure 2. Example of an R-tree and how its nodes are compressed.

Figure 3. Example of a snapshot, the steps followed to retrieve the objects within a region, and the location of a specific object.
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list ids of object identifiers that lie on the correspond
ing cell, also adding to Q as many 1-bits as objects are 
in ids minus 1, followed by a 0-bit. Therefore, the 
objects that are within a leaf L½i� ¼ 1 can be located 
in perm½l::r�, where l ¼ select0ðQ; rank1ðL; iÞ � 1Þ þ 1 
and r ¼ select next0ðQ; lÞ. With this method, after tra
versing the k2-tree, the objects within a region can be 
efficiently identified. In our example, the cell (9,5) is 
represented with the 1-bit at position 33 of L. This is 
the second 1-bit of L, therefore, to check how many 
objects are located in that cell, we search for the posi
tion of the first 0-bit (obtained by subtracting 1 to 2, 
where the 2 comes from the second 1-bit of L) in Q, 
which in our case is at position 2. Then, we search 
from the next position (3) until reaching a 0-bit. In our 
case, there is one 0-bit at position 4, which indicates 
that there are two objects (corresponding to positions 
3 and 4 of Q) in the cell (9,5). In the same positions 3 
and 4 of perm, we can obtain the identifiers of the 
objects within the cell (9,5).

Given an object identifier, computing its location 
requires detecting its leaf on the k2-tree, and traversing 
the tree bottom-up. This requires identifying the posi
tion of the object in perm. To avoid a linear search, the 
snapshot includes a structure over perm (Munro et al.  
2012) that uses nð1þP log2 nÞ additional bits and 
computes the location of the object in perm in time 
Oð1=PÞ, where n ¼ jpermj and 0<P � 1. Then, the 
corresponding leaf of that object on the k2-tree is 
computed with rank and select operations. Finally, by 
traversing the k2-tree upwards, we can compute the 
position of that leaf in the space. Therefore, computing 
the location of an object takes Oð1=Pþ logk sÞ time. 
In Figure 3, to obtain the location of object 1, the index 
of this object in perm is computed: 6. It is the fourth 
(rank1ðQ; 6 � 1Þ þ 1 ¼ 4) leaf with objects, and its 
position in T:L corresponds to select1ðL; 4Þ ¼ 43. 
From that position on, the algorithm traverses the 
tree up to the root (underlined 1-bits) by running 
parent operations. Since each node determines 
a specific submatrix, the path of the traversal deter
mines the position of the object.

To obtain the objects within a region, the algorithm 
starts looking for the leaves of the k2-tree whose labels are 
1-bits and that are within the queried region. Those 
leaves can be computed by traversing the k2-tree from 
the root following the nodes whose regions overlap the 
query area. For each leaf obtained, the algorithm com
putes its range perm½l::r� of and adds those objects to the 
solution. For example in Figure 3, to obtain the objects 
within the region hð8; 5Þ � ð11; 9Þi, starting at the root 
of the tree, we traverse the tree with children operations 
through those 1-bits (the shadowed positions of T and 
L), which represent regions with objects that intersect or 
are contained within the queried region. Finally, we 
detect that the sixth element of L (at position 33) is the 

only leaf with objects within the region, and its corre
sponding range is perm½3::4� ¼ 4; 5. Hence, 4 and 5 are 
the identifiers of the objects within the region.

Since the range and values of perm are computed in 
constant time, the total time for a query of area p� q 
retrieving occ objects is Oðpþ qþ ðoccþ 1Þk logk sÞ
(Navarro 2016, Sec. 10.2.1).

3.7. Compact data structures for trajectories

The same snapshots are used by both GraCT and 
ContaCT. The difference between them is in the way 
the log is compressed. Recall that the log stores the 
movements between snapshots.

3.7.1. GraCT
To compress the logs GraCT exploits the repetitive
ness of the movements by compressing the log with 
RePair (Larsson and Moffat 2000), a grammar 
compressor.

In the upper part of Figure 4, we can see the original 
trajectory. The first step for compressing the log is to 
translate the original trajectory into a sequence of 
differences. That is, the first position of the object is 
stored in absolute coordinates, and the rest as differ
ences with respect to the previous position. Thus, the 
object’s position at t0 is represented as (0,1), and its 
position at t1, which in absolute coordinates is (1,0), is 
represented as ðþ1; � 1Þ. These relative coordinates 
are the symbols that RePair will compress.

Now, observe in Figure 4, in the middle part, that 
GraCT adds the snapshots at regular intervals of time. 
The first snapshot stores the first position in absolute 
coordinates, and the rest of the relative coordinates are 
processed following the RePair algorithm.

From the sequence of relative coordinates, RePair 
takes the most frequent pair of consecutive symbols 
(relative coordinates in this step). Those occurrences 
are replaced by a new symbol, and a rule is added to 
the grammar to keep a record of that substitution. In 
our example, there are five occurrences of the pair of 
symbols hðþ2;þ1Þ; ðþ1;þ1Þi, RePair replaces the five 
occurrences by a new symbol A, and adds a rule 
A! ðþ2;þ1Þ; ðþ1;þ1Þ to the grammar. This pro
cess continues as long there are two or more appear
ances of a pair of symbols, considering original and 
new symbols. For example, in our case, we assume that 
the pair hA;Bi appears more than once (the figure 
only displays part of the trajectory) and thus, all 
appearances of hA;Bi are replaced by C, and the cor
responding rule C! AB is added to the grammar.

At the end, the compression produces a sequence of 
symbols composed of two types of symbols: terminals 
and nonterminals. Terminals are the original symbols 
that were not replaced, whereas nonterminals are the 
new symbols defined by the grammar. For example, 
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the log of Figure 4 contains three nonterminals: A, B, 
and C. Observe that nonterminals represent two or 
more consecutive movements, for example, in 
Figure 4, B replaces two movements: moving one 
position to the right and one position up, and then, 
one position to the right.

GraCT enriches the basic rules of RePair with addi
tional information. For each nonterminal, it stores #t, 
the number of movements; ðx; yÞ, the total relative 
displacement in coordinates of those movements; 
and mbr, the relative MBR that encloses all the move
ments of the nonterminal. The nonterminal C in 
Figure 4 includes the nonterminals A and B, and 
corresponds to four movements. Applying the move
ments of C is equivalent to moving five positions right 
and three up. Finally, the relative MBR enclosing its 
movements is mbr ¼ ð0; 0;þ5;þ3Þ.

With the extra information, GraCT avoids the 
decompression of some nonterminals. For example, 
in Figure 4, to retrieve the position at time instant t6, 
the algorithm starts by retrieving the position of the 
object from the snapshot S0. Then, it traverses the log, 
until the symbol that contains the information at t6. 
During that traversal, the algorithm adds the move
ments to the previous computed position. In the 
example, after obtaining the position ð0; 1Þ at t0 from 
S0, the algorithm adds the first movement ðþ1; � 1Þ to 
ð0; 1Þ. The result ð1; 0Þ is the position at t1. Then, the 
positions at t2 and t3 are computed as ð1; 0Þþ
ðþ2;þ1Þ ¼ ð3; 1Þ and ð3; 1Þ þ ðþ1; � 1Þ ¼ ð4; 0Þ, 
respectively. The next entry from the log is 
a nonterminal representing #t ¼ 2 movements, thus 

that entry has information about the time interval 
½t4; t5�. Since it does not reach t6, we can directly 
compute the position of the object at t5 by adding 
the information of the rule ðx; yÞ ¼ ðþ3;þ2Þ to 
ð4; 0Þ, whose result is ð7; 2Þ. The next entry of the log 
covers ½t6; t7�. Since that interval contains t6, the sym
bol A has to be decompressed using its rule in the 
grammar, in this case, A! ðþ2;þ1Þ; ðþ1;þ1Þ. The 
first element corresponds to t6 and thus it gives us the 
movement of the object for t6, that is, the position at t6 
is ð7; 2Þ þ ðþ2;þ1Þ ¼ ð9; 3Þ.

Similarly, GraCT can compute the rectangular area 
where an object moves during a time interval repre
sented by a nonterminal. For example, we know that 
the position at t3 is ð4; 0Þ and the next symbol is the 
nonterminal A, whose time interval is ½t4; t5�. By add
ing ð4; 0Þ to the mbr of the rule ð0; 0;þ3;þ2Þ, we 
know that the MBR that covers the movements of 
that object in ½t4; t5� has its bottom-left corner at 
ð4; 0Þ þ ð0; 0Þ ¼ ð4; 0Þ and its top-right corner 
at ð4; 0Þ þ ðþ3;þ2Þ ¼ ð7; 2Þ.

Those tricks avoid sometimes decompressing non
terminals, thus speeding up queries. This enables 
GraCT to achieve time performance comparable to 
classic spatio-temporal indexes. The main feature of 
this structure, however, is its good compression ratios 
on highly repetitive datasets.

3.7.2. ContaCT
ContaCT stores the log movements by using delta 
compression, but its approach is completely different 
from the classic one. Instead of storing the 

Figure 4. Example of GraCT for an object trajectory. The snapshots and logs are represented with triangles and arrays, respectively.
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displacements between pairs of timestamped positions 
as a pair of integers, it represents those differences by 
using two bitmaps for each dimension. Let us define 
a dimension as D 2 fX;Yg, and two bitmaps Dp and 
Dn. The bitmap Dp stores the positive displacements in 
dimension D, and Dn the negative displacements. For 
each positive displacement of c cells, it appends c 
0-bits and one 1-bit to Dp, and a 1-bit to Dn. 
A negative displacement of c cells appends c 0-bits 
followed by a 1-bit to Dn, and appends one 1-bit to 
Dp. A zero displacement is represented with a 1-bit in 
Dn and a 1-bit in Dp.

Observe, in the upper part of Figure 5, the array of 
differences of an object trajectory, with the first posi
tion in absolute coordinates. The process of obtaining 
the bitmaps of ContaCT is depicted below for the Y 
coordinate. First, the values of the Y are extracted in 
the Y array. Then two arrays are created, Yp for the 
positive differences and Yn for the negative differ
ences. For example, in t1, the Y array contains a � 1, 
thus the corresponding position of Yp is 0, and in Yn, 
there is a 1. Finally, in the bitmap version of Yp and Yn, 
in each entry, there are as many 0-bits as the value 
stored in the integer version of the array, plus a 1-bit. 
For example, in t1, Yn stores a 1, thus in the bitmap 
version there is a 01.

This technique makes it possible to compute the 
position of an object in constant time. In order to 
compute the cumulative movement from t0 to ti, the 
algorithm only needs to compute the number of 0-bits 
in the positive bitmap until the i–th 1-bit and subtract 
the number of 0-bits in the negative bitmap until the 
i–th 1-bit, for each dimension. Therefore, the cumu
lative movement until ti in dimension D is computed 
as select1ðDp; iÞ � select1ðDn; iÞ. ContaCT keeps in Fid 

the initial position of the object id, so by adding the 
cumulative displacement to that value, we obtain the 
position at ti.

At the bottom of Figure 5, we illustrate the com
plete ContaCT structure for the trajectory and how we 
can obtain the cumulative movement until t6. 
Basically, this is the number of 0-bits in Xp until t6 

(9), minus the number of 0-bits in Xn until t6 (0), this 
can be computed in constant time as 
select1ðXp; 6Þ � select1ðXn; 6Þ ¼ 14 � 5 ¼ 9. For the 
Y coordinate, the process is analogous, 
select1ðYp; 6Þ � select1ðYn; 6Þ ¼ 9 � 7 ¼ 2. Therefore, 
the cumulative movement is ð9; 2Þ and by adding it 
to Fid, we obtain the position of the object at t6 in Oð1Þ
time.

Notice that the position of the object is not 
obtained from a snapshot, but instead from Fid, thus 

Figure 5. Example of ContaCT for an object trajectory. The snapshots and logs are represented with triangles and arrays, 
respectively.
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avoiding the traversal of the k2-tree. The structure that 
obtains the position of an object in perm is then not 
required.

In addition, ContaCT uses one rmq and rMq struc
ture for the local minima and maxima, respectively, 
and the bitmap that marks the positions where the 
local minima and maxima occur. This structure is 
replicated for each dimension. Since ContaCT can 
compute those positions in constant time, the mini
mum and maximum values can be computed in con
stant time for each dimension, thus making it possible 
to obtain the MBR of an object between two time 
instants also in Oð1Þ time.

4. Queries

We now present the queries supported by GraCT and 
ContaCT in the literature (Brisaboa et al. 2019, 2021); 
we will expand this set with new queries in subsequent 
sections. We define a trajectory of n movements of an 
object id as T id ¼ fht0; p0i; ht1; p1i; . . . ; htn; pnig, 
where each pair hti; pii stores the position pi of the 
object id at time instant ti. We classify the queries into 
three groups: trajectory, spatio-temporal, and nearest 
neighbor queries.

4.1. Trajectory queries

This group includes three kinds of queries, all of which 
are related to obtaining some information from the 
original set of trajectories.

The first query of this group is Object position, 
which computes the position of a specific object at 
a given time instant tq. 

Definition 4.1. Given an object identifier id and 
a specific time instant tq, the object position query 
computes the location pq such that htq; pqi 2 T id.

An extension of Object position is Object trajectory, 
which instead of computing the position at a specific 
time instant, computes all the positions of the object 
during an interval of time ½tb; te�. 

Definition 4.2. Given an object identifier id and a time 
interval ½tb; te�, the object trajectory query computes the 
sequence of locations hti; pii 2 T id such that 
tb � ti � te, in increasing order of ti.

In GraCT, the object position query requires 
Oðlogk sþ δ þ log nÞ time in the worst case, where δ 
is the distance between snapshots. Instead, ContaCT 
solves it in Oð1Þ time. Both require Oðte � tbÞ addi
tional time for an object trajectory query.

A non-classical query for structures that compress 
trajectories is computing the MBR of the trajectory of 

an object during an interval of time ½tb; te�. This query 
is quite useful for obtaining summary information 
about the path followed by an object between tb and 
te, without computing its whole trajectory. 

Definition 4.3. Given an object identifier id and a time 
interval ½tb; te�, the MBR query returns the smallest 
rectangular area R such that, for every element 
hti; pii 2 T id where tb � ti � te, it holds that pi 2 R.

In ContaCT, this query can be solved in Oð1Þ time by 
using rmq and rMq structures. Instead, GraCT 
requires Oðlogk sþ ðte � tb þ δÞ þ log nÞ time in the 
worst case, because it may need to extract the whole 
trajectory from tb to te (though in practice it can skip 
most nonterminals using the mbr fields).

4.2. Spatio-temporal queries

Spatio-temporal queries identify those objects that 
satisfy a spatio-temporal constraint, like being within 
a region during an interval of time. This group 
includes the typical queries supported by methods 
that focus on indexing trajectories (Section 2.3) and 
methods like TrajStore and SharkDB.

The simplest query, Time Slice, retrieves the objects 
within a region rq at a time instant tq. 

Definition 4.4. Given a region rq and a time instant tq, 
the time slice query returns the set of object identifiers 
O, such that, for each id 2 O, there exists a pair 
htq; pqi 2 T id where pq 2 rq.

The query Time Interval extends Time Slice so that the 
queried time instant tq becomes an interval ½tb; te� of 
time. 

Definition 4.5. For a given region rq and a time interval 
½tb; te�, the time interval query returns the set of object 
identifiers O, such that, for each id 2 O, there exists at 
least one pair hti; pii 2 T id where tb � ti � te and 
pi 2 rq.

4.3. Nearest neighbour queries

Nearest neighbor queries compute the objects closest 
to a spatial geometry (such as a point or a line). 
Systems that index trajectories with R-trees (MVR- 
tree, SETI, Trajstore, SharkDB) are efficient at com
puting the K objects closest to a given position at 
a given time instant. This is the only nearest neighbor 
query supported by GraCT and ContaCT. 

Definition 4.6. The K-nearest neighbour query for 
a point pq at time instant tq returns a set O of objects 
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such that jOj ¼ K and dðpq; id1Þ � dðpq; id2Þ for any 
objects id1 2 O and id2O, where dðpq; idÞ is the 
Euclidean distance from point pq to the position of 
object id at time instant tq (i.e. such that hpq; tqi 2 T id).

GraCT and ContaCT can efficiently handle the three 
types of queries: trajectory, spatio-temporal, and near
est neighbor. The other indexes are only efficient in 
running one or two types of queries. This is 
a consequence of the architecture of GraCT and 
ContaCT: they explicitly represent trajectories of 
objects with the log, which allows solving trajectory 
queries, and they are equipped with spatial indexes 
(snapshots) at regular time instants, which help in 
solving the spatio-temporal and nearest neighbor 
queries. The MVR-tree, for example, stores an R-tree 
per time instant, which solves spatio-temporal and 
nearest neighbor queries fast, but recovering the tra
jectory of a given object is costly.

5. Supporting complex nearest neighbor 
queries

In this section, we introduce two new more sophis
ticated nearest neighbor queries not supported in 
the original GraCT and ContaCT articles: KNN of 
trajectories and KNN during an interval. We show 
how the data structures already present in both 
GraCT and ContaCT can be used to solve these 
sophisticated queries: First, the spatial index (snap
shot) is able to prioritize the objects according to 
a distance bound. Second, both structures can 
implement an operation refine that shrinks the pre
vious bound to a tighter one.

5.1. KNN of trajectories

Given a query trajectory T q, our goal is to obtain the 
K trajectories that are closest to it during an interval 
of time ½tb; te�. We then obtain a list of objects whose 
trajectories during ½tb; te� are closest to T q. There are 
various choices in the literature to define a closeness 
(or similarity) measure between trajectories. The 
simplest measures assume that the points are already 
aligned and are variants of averaging the Euclidean 
distances between the corresponding points (Su et al.  
2020). More sophisticated variants enable varying the 
alignment between the points of both trajectories. 
For example, the edit distance (EDR) (Chen, Özsu, 
and Oria 2005) computes the number of “edits” 
needed to transform one trajectory to the other, 
where the cost of substituting one point by another 
may be their Euclidean distance in space. Dynamic 
time warping (DTW) (Berndt and Clifford 1994) is 
a variant of the latter that allows a single point in one 
trajectory to align with many of the others. The 

Discrete Fréchet distance (DFD) (Eiter and Mannila  
1994), instead, measures the maximum Euclidean 
distance between the aligned points. It can be 
regarded as an adaptation of the Hausdorff distance 
(Hausdorff 2005) to trajectory points, and has 
become a standard measure of distance between two 
parametric curves.

We choose a simplification of the DFD that 
suits our scenario where the points are already 
aligned. This becomes simply the farthest distance 
between all the (already aligned) points along the 
time interval. Such a definition is also connected 
with variants of the Euclidean distance that take 
the Lp-norm over the distances between the 
aligned points (Su et al. 2020); while the classic 
Euclidean distance uses L1, our definition corre
sponds to using L1. Besides its support in the 
literature, an algorithmic advantage of this defini
tion is that we can easily compute the lower and 
upper bounds of the maximum distance by using 
the MBR of the trajectory, and these bounds can 
be progressively refined by successively splitting 
the trajectory into sub-trajectories and using 
their MBRs. Note that the DFD measure does 
not depend on some of those MBRs (e.g. an 
MBR whose maximum distance to the trajectory 
is smaller than the current lower bound). We can 
then focus on the parts of the trajectory that can 
contain the maximum distance and avoid further 
splitting the sub-trajectories that cannot. Instead, 
using a similarity measure that sums or averages 
the pointwise distances forces us to consider every 
point. Indeed, various techniques that build on 
sums of distances allow returning approximate 
answers in order to perform efficiently, for exam
ple, PDTW (Keogh and Pazzani 2000), STLCSS 
(Vlachos, Kollios, and Gunopulos 2002), and 
STLC (Shang et al. 2017). Instead, we always find 
the correct KNN answers under our distance. 

Definition 5.1. The K-Nearest neighbour of trajectories 
for a given trajectory T q at time interval ½tb; te� returns 
a set O of objects such that jOj ¼ K and 
dmaxðT q; T 1Þ � dmaxðT q; T 2Þ for the trajectory T 1 of 
any id1 2 O and T 2 of any id2O, during ½tb; te�. We 
denote with dmaxðT q; T iÞ the maximum Euclidean dis
tance between two trajectories, dmaxðT q; T iÞ ¼ max 
fdðpk; pjÞ; hpk; tli 2 T q; hpj; tli 2 T i; tl 2 ½tb; te�g.

The idea to solve this query without comparing 
the trajectory of every object with T q is to prior
itize both the traversal of snapshots toward pro
mising objects and the precise computation of the 
trajectories of the objects so that we only compute 
as much as necessary to identify the K closest 
trajectories. To compute priorities efficiently, the 
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algorithm uses just the MBRs of trajectories to 
compute a range ½l; h� where the maximum dis
tance between both trajectories must lie.

GraCT and ContaCT implement the same algo
rithm, though they differ in the way the MBRs are 
computed and refined. In general terms, we 
divide our exposition into two parts: prioritizing 
the objects using the snapshots and refining the 
object distance bounds. Algorithm 1 gives the 
pseudocode.

5.1.1. Prioritizing the objects using the snapshots
We take advantage of the hierarchical structure of 
the k2-tree representing the snapshots, to sort the 
objects according to their chances of being close 
to T q. The objects to be prioritized are obtained 
from the snapshots in the interval ½tb; te�, that is, 
the snapshots from the time instant tb=δ � δ to 
te=δ � δ, where δ is the number of time instants 
between snapshots. The idea is to process first the 
k2-tree nodes that are closer to T q, independently 
of their depth in the k2-tree.

The algorithm builds a priority queue Qglobal 
where each element, called a header, is a triple 
hn; l; hi. The term n is a k2-tree node and ½l; h� is 
a range bounding the maximum distance between 
T q and any object in the region of n. Qglobal is 
a min-heap sorted by l and the ties are broken by 
h. We know the maximum speed M at which an 
object moves in the dataset and use it to compute 
½l; h� by expanding the area of n in all directions at 
the maximum speed, and then comparing the 
expanded region with the MBR of T q.

Let R be the region defined by n. The snapshot gives 
the position of the objects in a given time instant, say 
τ. Since every object moves at most c ¼ ðte � τÞ �M 
cells on every direction from time instant τ to te, an 
object within R ¼ ½x1; y1� � ½x2; y2� at τ can only move 
within the expanded region R0 ¼ ½x1 � c; y1 � c��
½x2 þ c; y2 þ c�. Hence, we define l and h as the mini
mum and maximum distances, respectively, between 
R0 and the MBR of T q. When the query spans several 
snapshots, the range ½tb; te� intersects with the area 
covered by the log of each snapshot when performing 
this computation. 

Algorithm 1: KNNTrajectory (K, T q, tb, te)
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The process then starts by adding the roots of the 
k2-trees of all the snapshots involved in the query; see 
lines 1–5 of Algorithm 1, where distances computes 
the described distance estimation between T q and k2- 
tree nodes. The nodes whose objects are estimated to 
have more chances to be closer to T q are at the top of 
Qglobal. We thus traverse the internal nodes of all the 
involved snapshots by popping the elements from 
Qglobal, and reinserting the children of the extracted k2- 
tree nodes (lines 7–12). It is then more likely that we 
reach sooner the k2-tree leaves that contain the objects 
whose trajectories are closer to T q.

5.1.2. Refining the object distance bounds
Once the children of a node extracted from Qglobal are 
leaves, we do not reinsert those leaves into Qglobal, but 
rather extract the objects associated with each leaf 
(lines 14–16; the objects are id 2 e:objects) and insert 
those. This means that Qglobal has not only headers 
associated with k2-tree nodes but also with objects. 
Those objects are also associated with an MBR, 
which is not anymore bounded using the maximum 
speed, but with data from their actual trajectory, which 
is stored in id:traj. In principle, function init initially 
computes the MBR of the trajectory during ½tb; te�

using the mbr query provided by GraCT or 
ContaCT, and uses it to provide a range ½lnew; hnew� of 
maximum distances to the MBR of T q.

As the algorithm progresses, the trajectory of the 
object will be successively split along time intervals to 
provide a better estimation and id:traj will become 
a max-heap of pieces of this trajectory. Each element 
of id:traj contains the minimum (dmin) and maximum 
(dmax) distance between the MBR of the object during 
some interval ½ti; tj� � ½tb; te� and the MBR of T q at the 
same interval. The exact partitioning into intervals in 
the beginning (init) and after successive refinements 
(refine) depends on the log used (GraCT or ContaCT); 
we will describe them later.

The queue id:traj is sorted by dmax, and the ties are 
broken with dmin. That is, we locate on top of the 
queue the time interval most likely to contain the 
point of the trajectory of id that is farthest from T q. 
The top of id:traj is used to compute the range ½l; h�
with which the header is prioritized in Qglobal.

Lines 18–23 show how we process object headers. 
We first examine the next header in Qglobal. If the 
maximum bound h of the current object does not 
exceed the minimum bound l0 of the next header, we 
can be sure that the current object is the next result, 
and include it in the result. Otherwise, we refine the 
trajectory estimation of the current object e. This is 
done by partitioning the top trajectory interval in 
e:traj into smaller subintervals, whose upper-bound 
distances to T q will be tighter, and reinserting them 
into e:traj. This is done by the function refine, which 

provides a new estimation ½lnew; hnew� that is used to 
reinsert the object in Qglobal.

5.1.3. Computing the MBR of the input trajectory
Along the algorithm, we need to compute MBRs of the 
input trajectory T q between arbitrary time instants 
½ti; tj�. We then start the query by preprocessing T q 

so as to build range minima and maxima (rmq and 
rMq) query structures (Ferrada and Navarro 2017; 
Fischer and Heun 2011) on the values of T q along 
each axis (X and Y), in time OðjT qjÞ. We can then 
compute any MBRðT q; ti; tjÞ in constant time as 

½X½rmqðX; ti; tjÞ�;Y½rmqðY; ti; tjÞ�

� ½X½rMqðX; ti; tjÞ;Y½rMqðY; ti; tjÞ�:

5.1.4. GraCT
Let S ¼ fs1; s2; . . . ; stg be the symbols of the log cover
ing ½tb; te�. In GraCT, we can compute in constant time 
the MBR of each sr 2 S, either from a single movement 
(if sr is a terminal) or else from the mbr data we store 
for sr. Let sr span times ½ti; tj�. We compute the mini
mum and maximum distances, dmin and dmax, between 
the MBR of sr and MBRðT q; ti; tjÞ. This is stored in 
a tuple hti; tj; dmin; dmax; pi� 1; sri, where pi� 1 is the 
object position at time ti� 1. The init operation adds 
all those tuples to the priority queue id:traj, and 
returns the values hnew and lnew as the maximum 
dmax and dmin values, respectively, of all those tuples.

Since id:traj is a max-heap sorted by dmax, h is 
always the dmax value on top of the queue, so it can 
be computed in Oð1Þ time. Instead, the value of l can 
be located in another position of the queue. To avoid 
traversing the queue looking for the maximum dmin, 
we use another max-priority queue sorted the dmin 
values, and synchronized with id:traj. That arrange
ment allows us to compute l in Oð1Þ time as well.

Once id:traj is initialized, every time we call refine, 
it takes the tuple on top of the queue. If the tuple has 
tj ¼ ti, we have obtained the exact maximum distance 
of the object to T q. Otherwise, the tuple refers to 
a nonterminal sr and we apply the corresponding 
rule to expand it. The tuple is then split into two that 
cover time intervals ½ti; tm� and ½tmþ1; tj�. After obtain
ing the MBRs associated with those intervals, their 
dmin and dmax values are computed with respect to 
MBRðT q; ti; tmÞ and MBRðT q; tmþ1; tjÞ, respectively, 
and reinserted in id:traj.

For example, in Figure 6, the first step takes the 
tuple ht9; t12; 10; 6; ð10; 6Þ;Ci. We observe that sr ¼ C 
and C! A;B, and A has #t ¼ 2, ðx; yÞ ¼ ðþ3;þ2Þ
and mbr ¼ ð0; 0;þ3;þ2Þ. Since A lasts two move
ments, the new tuples cover the intervals ½t9; t10� and 
½t11; t12�. For the first one, the previous position is still 
ð10; 6Þ, and for the second one, the previous position 
is ð10; 6Þ þ ðþ3;þ2Þ ¼ ð13; 8Þ. Then, the MBR of 
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each new tuple can be computed by adding those 
previous positions to the stored mbr for A and B, 
respectively. With those MBRs, the distances of the 
tuples are computed. Notice that our Tq is a horizontal 
line in y ¼ 0, thus its MBR covers all the cells at y ¼ 0. 
For the first new tuple the distances are dmin ¼ 6 and 
dmax ¼ 8, and for the second they are dmin ¼ 8 and 
dmax ¼ 9. The new values for hnew and lnew are 9 and 8, 
respectively.

5.1.5. ContaCT
ContaCT can compute arbitrary MBRs in constant 
time, which simplifies the implementation of init and 
refine. In principle, init could initialize id:traj with 
a single entry relating MBRðid; tb; teÞ and 
MBRðT j; tb; teÞ, computing dmin and dmax from those. 
However, the time interval ½tb; te� can cover several 
snapshots, so init must insert one tuple for each. For 
each involved snapshot starting at time τ, it computes 
the distances dmin and dmax between the MBRs of id 
and T q within times ½maxðτ; tbÞ;minðτ þ δ � 1; teÞ�.

The mechanics are then exactly as for GraCT, 
except that the tuples stored have the form 

hti; tj; dmax; dmini. To apply refine on such a tuple, the 
algorithm divides it by half, tm ¼ ðti þ tjÞ=2. For each 
half the algorithm computes its MBR and the values 
dmax and dmin with respect to T q, all in constant time.

Figure 7 shows an example. After the init operation 
we compute the MBR during ½t0; t12�with dmin ¼ 1 and 
dmax ¼ 9. With refine, that tuple is split into the inter
vals ½t0; t6� and ½t7; t12�. According their MBRs we 
obtain the distances dmax ¼ 5 and dmin ¼ 1, and 
dmax ¼ 9 and dmin ¼ 5, respectively. Therefore, the 
new tuples are ht0; t6; 5; 1i and ht7; t12; 9; 5i, and the 
new boundaries for the maximum distance are l ¼ 5 
and h ¼ 9.

5.2. KNN during an interval

In this kind of query, we compute the K objects 
whose trajectories during an interval of time ½tb; te�

are the closest to a given point pq. The distance 
between a trajectory and pq is defined as the mini
mum distance to pq at any time instant t 2 ½tb; te�. 
This distance measure was applied in previous 
works and applications. For example, in applications 

Figure 6. Example of GraCT for KNN of trajectories. The queues below the structure represent the different steps and states of 
id:traj.

14 A. GÓMEZ-BRANDÓN ET AL.



that study animal habits (Gao et al. 2007) and in 
social networks where users want to plan a trip 
based on routes of friends that visit their points of 
interest (Tang et al. 2011). 

Definition 5.2. The K-Nearest neighbour of an interval 
½tb; te� with respect to a point pq returns a set O of 
objects such that jOj ¼ K and dminðpq; T 1Þ �

dminðpq; T 2Þ for any trajectory T1 of id1 2 O and T 2 

of id2O, during ½tb; te�. We denote dminðpq; T iÞ

¼ minfdðpq; pkÞ; hpk; tli 2 T i, tl 2 ½tb; te�}.

This query is similar to that of Section 5.1, with two 
differences:

● The distance is computed with respect to a point 
pq, instead of a trajectory T q.

● This query finds the minimum distance of the 
objects to pq during the interval of time ½tb; te�, 
instead of the maximum distance to T q.

The algorithm is then similar to the one of 
Section 5.1, but instead of computing the maximum 
distance to the input spatial data (point or trajectory), 
we compute the minimum distance. The previous 
algorithm then undergoes some modifications:

● Each id:traj is transformed to a min-heap where the 
tuples are sorted by the minimum distance dmin 

Figure 7. Example of ContaCT for KNN of a trajectory. The right part represents the different steps and states of id:traj.

Figure 8. Average time and compression ratios for KNNTrajectory and KNNInterval.
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from the MBR to pq, and the ties are broken with 
dmax. By splitting the top tuple of id:traj, we focus 
on the interval of time where the object has more 
chances to be closer to pq.

● We now have the tuple with the smallest dmin on 
top, thus we can compute l in Oð1Þ time, but now 
we cannot compute h in Oð1Þ time. Analogously 
to Section 5.1, we synchronize another min-heap 
priority queue with id:traj, which stores the 
values of dmax. We can then compute h in Oð1Þ
time as well.

● Qglobal is still a min-heap storing tuples hn; l; hi
sorted by l and breaking ties with h. As we now 
look for the minimum distance, however, ½l; h�
now bounds the minimum distance between pq 

and the MBR of n. If n is an object, l and h are the 
minima over the dmin and dmax values of all the 
trajectory segments, respectively.

● Since we are comparing the distance to a point 
pq instead of a trajectory T q, we do not need the 
rmq and rMq structures for computing MBRs on 
Tq.

5.3. Analysis

It is not easy to give meaningful worst-case time guar
antees on KNN algorithms, because an adversarial setup 
where all the objects are at almost the same distance to 
the query forces the algorithms to inspect nearly every 
object in the dataset; this is known as the “curse of 
dimensionality” (Chávez et al. 2001). A useful concept 
for this kind of algorithm is range optimality (Böhm, 
Berchtold, and Keim 2001; G. Hjaltason and Samet  
2000), which states that an algorithm retrieving the K 
nearest neighbors performs the same amount of work as 
the canonical range-search algorithm that finds all the 
objects at distance d from the query, where d is the 
distance between the query and its K-th nearest 
neighbor.

G. Hjaltason and Samet (2000) and G. R. Hjaltason 
and Samet (2003) described a generic KNN search 
algorithm that works on any hierarchical data struc
ture and is range-optimal (with respect to that data 
structure). The algorithms we have described in this 
section follow their generic scheme and are therefore 
range-optimal.

The hierarchy in our case corresponds to the com
position of the k2-tree and then the recursive parti
tioning of the trajectory into subtrajectories. In other 
words, if we had to traverse our data structure in order 
to find all the trajectories at distance d from our 
(trajectory or point) query, we would have to traverse 
exactly the same nodes of the hierarchy. The multi
plicative overhead with respect to the range-search 
algorithm is the Oðlog nÞ time incurred by manipulat
ing the heaps, plus the time to compute the MBR 

queries. This is variable for GraCT and constant for 
ContaCT, as described.

5.4. Experimental evaluation

We now experimentally evaluate the performance of 
the new KNN queries on GraCT and ContaCT. We 
modified their original C++ implementations and 
used some components of the SDSL library1 (Gog 
et al. 2014). There are two possible implementations 
for ContaCT, where the bitmaps Dp and Dn are repre
sented either in plain form or using a representation 
for sparse bitmaps called sdarray (Okanohara and 
Sadakane 2007), depending on the magnitude of the 
differential values. The structure that uses plain bit
maps is labeled as ContaCT, and the one with sparse 
bitmaps is called ContaCT-SD.

The experiments were run on an Intel CoreTM i7– 
3820 CPU @ 3.60 GHz (4 cores) with 10MB of cache 
and 64 GB of RAM, running Debian GNU/Linux 9 
with kernel 4.9.0–8 (64 bits), gcc version 6.3.0 with - 
O3 optimization.

5.4.1. Datasets
We used the four datasets originally used to evaluate 
ContaCT (Brisaboa et al. 2021), formed by three real 
and a pseudo-real one:

● Ships: a real dataset that contains the coordinates 
of 4,461 vessels traveling within the UTM Zone 
10 during one month of 2017. The original data 
can be obtained from MarineCadastre.2

● Planes: real flight data of 2,263 aircrafts from 30 
different airlines between 30 European airports. 
Altitude is not considered, only latitude and 
longitude are represented in our dataset. The 
original data can be obtained from OpenSky 
Network.3

● Taxis: a pseudo-real dataset containing trajec
tories of 24 taxis in New York City during 2013. 
Since the original dataset only includes the origin 
and destination of each trip, the trajectory was 
computed as the shortest path between them by 
taking into account the road network. The origi
nal data are available at NYC Taxis: A Day in the 
Life.4

● Ciconia: a small and non-repetitive real dataset of 
88 white storks traveling between Europe and 
North Africa from 2013 to 2019. The original 
data can be obtained from MoveBank Data 
Repository (Cheng et al. 2019; Flack, Fiedler, 
and Wikelski 2016).

Those datasets are preprocessed as in previous 
work (Brisaboa et al. 2021). The trajectories are stored 
in a plain text file composed of four columns: object 
identifier, time instant, x coordinate, and y coordinate. 
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The features of each of our datasets are shown in 
Table 1. We show the size of the binary representation 
of each dataset, that is, by using the number of bytes 
required for each column. The last row is the size after 
compressing the binary representation with p7zip and 
gives us an idea of how repetitive the data is. We 
observe that p7zip compresses the data to 10–30% of 
its binary representation.

5.4.2. Time performance
In our first experiment, we implement the algorithms 
of KNN of trajectories (KNNTrajectory) and KNN 
during an interval (KNNInterval) on GraCT, 
ContaCT, and ContaCT-SD. All those structures are 
configured with four different distances δ between 
snapshots: 30, 60, 120, 240, 360, and 720. For each 
type of query, we ran 1; 000 different queries and 
computed the average user time. In both cases, K is 
a random value between 1 and 50. The queried interval 
covers 200 time instants. Additionally, we designed 
brute force algorithms for solving both KNN queries. 
They go through all the trajectories computing the 
distances of each timestamped position with respect 
to the input trajectory or point and sorting them 
according to minimum/maximum distance by using 
a min-heap. The K first trajectories of that heap will be 
the solution of the query.

In Figure 8, we can observe as ContaCT and 
ContaCT-SD are much faster than GraCT at solving 
KNNTrajectory queries. Comparing the least-space 
configuration of ContaCT or ContaCT-SD with the 
fastest configuration of GraCT, we see that ContaCT is 
2:9 times faster on Ships, and ContaCT-SD is 4:3 times 
faster on Planes, 2:3 on Taxis, and 1:7 on Ciconia. This 
is because ContaCT avoids the linear traversals of the 
log performed by GraCT, in order to retrieve the 
symbols and add them to the priority queue. The 
number of elements in the priority queue of each 
object is also smaller in ContaCT than in GraCT. 
This is more noticeable on Ships, the only case where 
GraCT is slower than the brute force algorithm. 
Instead, the ContaCT variants outperform the brute 
force algorithm when solving KNNTrajectory, being 3 
times faster on Ships and 8.4 on Planes.

The results for the KNNInterval queries are 
similar, but we observe an improvement in time 
performance. This is because the query is simpler 

and does not compute MBRs on an input trajec
tory. Since GraCT initializes the queue with more 
elements, the improvement with respect to 
KNNTrajectory is more evident, and now the 
three structures outperform the brute force algo
rithm. In the dataset where the brute force algo
rithm is closer to the performance of the three 
structures (Ships), we observe that GraCT is 1:5, 
ContaCT is 3:2, and ContaCT-SD is 3 times faster.

Although ContaCT is significantly faster than 
GraCT, it generally uses much more space. Except 
on Ciconia, in the tested datasets with δ ¼ 720, 
GraCT uses 40–80% of the space of ContaCT. This 
difference is due to the ability of GraCT to exploit 
the repetitiveness of movements between 
trajectories.

6. Discussion

The experimental evaluation shows the performance 
of our proposed algorithms for KNNTrajectory and 
KNNInterval queries on GraCT and ContaCT. Both 
structures offer a good space-time trade-off, but each 
is better depending on the application. When com
pression is a primary requirement, GraCT is the best 
option because it exploits the repetitiveness between 
trajectories, and thus it uses half the space of ContaCT. 
However, GraCT is slower than ContaCT to solve 
KNNTrajectory and KNNInterval queries. Note that, 
in the first step to solve these queries, GraCT needs to 
traverse the log, which is not necessary for ContaCT. 
During that traversal, GraCT inserts in the priority 
queue each log entry that belongs to the queried inter
val, whereas ContaCT initially adds only one entry per 
object. The subsequent process of each entry is also 
more costly in GraCT than in ContaCT. Hence 
ContaCT is more suitable for scenarios where time 
performance is a primary goal and space is secondary.

Therefore, we observe two weak points of these 
structures when solving those queries: (1) the per
formance of GraCT is not too far from the brute 
force algorithm; (2) ContaCT obtains a good time 
performance, but there is an important difference 
in compression compared to GraCT. In the follow
ing sections, we propose solutions to both points, 
which have positive effects on other types of 
queries.

Table 1. Datasets and their dimensions.
Ships Planes Taxis Ciconia

Total objects 4,461 2,263 24 88
Total points 63,093,559 36,741,877 46,677,278 4,390,159
Max x 6,000 229,010 1,074,480 4,073,661
Max y 647,755 46,872 340,142 2,995,928
Max time 44,639 172,547 2,102,639 505,573
Size Plain 1,413.47 MB 809.00 MB 1,024.00 MB 107.09 MB
Size Bin 541.54 MB 350.40 MB 426.08 MB 41.87 MB
Size p7zip 57.88 MB 85.40 MB 86.91 MB 12.06 MB
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7. Snapshots based on R-trees

One of the weakest points in the algorithms for 
KNNTrajectory is that the snapshot based on k2- 
trees does not give any information on where the 
objects can be during the interval up to the next snap
shot. That is, they only store the position of the objects 
at the time instant represented by the snapshot. 
Therefore, to upper bound the movements of the 
object during the time interval until the next snapshot, 
the query algorithms expand the k2-tree node areas 
assuming that the objects move at the maximum pos
sible speed in all possible directions. This leads to poor 
filtration performance, sometimes worse than the 
brute-force algorithm. In this section we present an 
alternative snapshot data structure to alleviate this 
problem, which instead of storing the current position 
of the objects, stores their MBR up to the next snap
shot, that is, for each object id in the snapshot at time τ 
we store MBRðid; τ; τ þ δ � 1Þ. For storing those 
MBRs, we use a static compressed R-tree (Brisaboa 
et al. 2013) instead of the k2-tree.

The first reason for this choice is that the k2-tree 
is conceptually a region quadtree, which stores 
points, not MBRs, while the R-tree is designed to 
store MBRs. The R-tree and its variants are the 
most well-known and commonly used storage tech
niques (Azri et al. 2013) and are the basis of several 
real systems (Rigaux, Scholl, and Voisard 2002, 
Section 6.1.3). A second advantage is that the 
R-tree is a data-driven structure (Rigaux, Scholl, 
and Voisard 2002, Section 6.1.3). These structures 
partition the space into rectangular areas by follow
ing the distribution of the objects, which makes the 
partition a better bound on the positions the 
objects will have up to the next snapshot. In 

contrast, space driven structures (Rigaux, Scholl, 
and Voisard 2002, Section 6.2) like the region 
quadtree partition the space independently of the 
indexed objects, which results in poorer bounds.

7.1. Structure

The new snapshot is then an R-tree storing, at its 
leaves, the object identifiers and their MBRs, as 
described. The internal nodes store the MBRs of the 
descendant MBRs.

Note that the snapshot does not contain the precise 
positions of the objects at its time instant τ. Since the 
log of GraCT does not store those positions, we add the 
necessary structures to the snapshots in GraCT. For 
each snapshot, we store a bitmap B whose size is the 
number of objects. We then have B½id� ¼ 1 if object id 
appears in the snapshot. The cell coordinates are stored 
in the same order in two arrays, X and Y , so that the 
position of id is ðX½rank1ðB; idÞ�;Y½rank1ðB; idÞ�Þ.

Figure 9 shows an example of a snapshot based on an 
R-tree. The left part represents the positions of the 
objects at τ and their trajectories during ½τ; τ þ δ � 1�. 
The right part illustrates the structure of the snapshot: 
the R-tree, the bitmap B, and the arrays X and Y . To 
obtain the objects that can be within the region delimited 
by the dashed line during ½τ; τ þ δ � 1�, the algorithm 
traverses the tree following the nodes whose MBRs inter
sect the queried region. In the first level, it only checks 
R3, and then its children. From those children, R8 inter
sects the region and includes the object with id 3. To 
obtain the location of the object at τ, we just have to 
compute ðX½rank1ðB; 3Þ�;Y½rank1ðB; 3Þ�Þ ¼ ð10; 13Þ.

Since every R-tree node stores the MBR that wraps 
the trajectories of the descendant objects, we can now 
prioritize the nodes with respect to a KNN query 

Figure 9. Example of a snapshot based on an R-tree.
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(trajectory or point) using the distances from the node 
MBR to the queried object (trajectory MBR or point). 
In the leaves of the R-tree, each object stores the MBR 
of its trajectory during ½τ; τ þ δ � 1�. Only when the 
individual MBR of an object is extracted from Qglobal 

we run init to compute a more precise trajectory in 
½tb; te�. All these explicitly stored MBRs allow the algo
rithm to compute a more accurate minimum and 
maximum distance between the area of a node or 
object and a trajectory or point.

This new type of snapshot not only improves near
est neighbor queries. The k2-tree based snapshots also 
need to expand, using the maximum speed, the quer
ied regions R of classical spatio-temporal queries, in 
order to determine if a k2-tree node must be inspected 
or not. This produces more candidate objects than 
with R-trees, which know the precise MBR of the 
objects descending from each node. Precisely, if any 
object under an R-tree node is within R at any 
t 2 ½τ; τ þ δ � 1�, the node MBR must intersect the 
query region R. Therefore, the algorithm simply runs 
a classical R-tree traversal following the nodes that 
intersect R.

In summary, with the snapshots based on R-trees, 
we can compute the location of an object at the snap
shot time instant τ in constant time, and obtain 
a stricter region to better prioritize or filter the nodes 
and objects in both nearest neighbor and spatio- 
temporal queries. The worst-case time complexities 
are then unchanged, and the KNN algorithms stay 
range-optimal (over this new structure), as described 
in Section 5.3. The next section shows that these 
advantages turn into orders-of-magnitude improve
ments in query times in practice.

7.2. Experimental evaluation

We implemented GraCT and ContaCT with snapshots 
based on R-trees, in C++, using an existing R-tree 
implementation (Brisaboa et al. 2013).5 We represent 
B as a plain bitmap, its rank being supported in Oð1Þ
time with a structure that adds 6.25% extra space to 
the bitmap. Both of them are included in the SDSL 
library. In figures, GraCT, ContaCT, and ContaCT-SD 
with this new type of snapshots are labeled with the 
“−R” suffix.

We built the three structures with different values 
of δ (30, 60, 120, 240, 360, 720) and used the same 
datasets presented in Section 5.4. We ran the following 
queries:

● ObjectPosition: We averaged 20,000 different 
queries where the objects and time instants were 
chosen randomly.

● ObjectTrajectory: We computed a set of 10,000 
queries for randomly chosen objects and 

intervals. The span of the interval was around 
2,000 time instants.

● MBR: We averaged the time of 1,000 queries for 
randomly chosen objects and time intervals of 
200 time instants.

● TimeSlice S and TimeSlice L: Both cases included 
1,000 queries of a region at a random time 
instant. In TimeSlice S the regions were small 
(40� 40 cells), and in TimeSlice L, they were 
large (320� 320 cells).

● TimeInterval S and TimeInterval L: In the first 
kind of query, we performed 1,000 queries for 
small regions (40� 40 cells) and short intervals 
of time (100 time instants). The second type runs 
the same number of queries with large regions 
(320� 320 cells) and long time intervals (200 
time instants).

● KNN: We averaged 1,000 queries for random 
positions at random time instants. The value of 
K was randomly chosen between 1 and 50.

● KNNTrajectory and KNNInterval: We averaged 
each kind of query over 1,000 queries where K is 
randomly chosen between 1 and 50. The span of 
the trajectory and the queried time interval is 200 
time instants.

7.2.1. Trajectory queries and space usage
Recall that to compute the position of an object at a given 
time instant t, GraCT requires Oðlogk sþ δ þ log nÞ
time, where the first term is the cost of traversing the 
snapshot at the latest time τ � t to obtain the position of 
the object at time τ. Since the snapshots based on R-trees 
can compute object positions in constant time, obtaining 
the position at time t requires time Oðδ þ log nÞ. 
Instead, in ContaCT the computation of the position 
does not depend on the snapshot, and it is always con
stant time.

Figure 10(a) shows that effect in ObjectPosition 
queries. GraCT-R can solve the query in around 20– 
85% of the time required by GraCT. Figures 10(b,c) 
show that the difference is smaller for 
ObjectTrajectory and MBR queries. This is because 
a larger fraction of the time in those queries is spent 
traversing and/or decompressing portions of the 
log, which takes the same time in both GraCT 
variants. The difference shrinks when δ increases 
because fewer snapshots need to be accessed to 
cover the same trajectory. While GraCT has a cost 
of Oðlogk sÞ for each such snapshot and thus 
improves for these queries as it uses less space, 
GraCT-R, and the ContaCT variants only incur 
a constant overhead per snapshot, so their time is 
mostly insensitive to δ (GraCT-R improves with 
shorter logs because it must sequentially scan δ=2 
unnecessary movements on average). Since the time 
interval of MBR queries lasts 200 time instants, and 
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ObjectTrajectory queries cover 2; 000 time instants, 
the difference of performance between GraCT var
iants is smaller in MBR queries. On the other hand, 
ContaCT and ContaCT-SD are constant and much 
faster, because they do not need to traverse any 
snapshot or logs, just to compute MBRs in constant 
time. For example, ContaCT takes 0.3–3.2 microse
conds for the ObjectPosition and MBR queries on 
all the datasets.

In addition, there is hardly any difference between 
the compression ratio achieved by the structures with 
the original snapshot and the new one. The new space 
usage is around 90–100% of the structures based on 
k2-trees.

7.2.2. Spatio-temporal queries
Figure 11 shows the average times for the spatio- 
temporal queries. Figure 11(a,b) show an improve
ment around 2–30 and 2–140 times in TimeSlice 

with GraCT-R and ContaCT-R compared to GraCT 
and ContaCT, respectively. Since snapshots based on 
R-trees obtain a tighter area about where the object is 
moving, the set of candidate objects is smaller, which 
reduces the number of positions to check and 
improves the performance. For the same reason, simi
lar speedups are seen on TimeInterval queries, where 
GraCT-R and ContaCT-R are 2–275 and 2–200 times 
faster than GraCT and ContaCT, respectively. The 
fastest configurations reach 12–80 microseconds in 
GraCT-R, 13–150 in ContaCT-R, and 12–160 in 
ContaCT-SD-R.

7.2.3. Nearest neighbour queries
Figure 12 shows that the R-tree-based snapshots also 
run faster on KNN queries. The effect is more 
noticeable on the larger datasets: the R-trees are 7– 
16 times faster on Ships, and 1.3–3.3 times faster on 
the others.

Figure 10. Space and time for trajectory queries.
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The improvements are larger for the more com
plex queries, KNNTrajectory and KNNInterval. For 
example, in Ships and Planes, both queries are 10– 
60 and 2.3–40 times faster, respectively, using 
R-trees. In the rest of the datasets, R-trees perform 
1.1–3.0 times faster. The datasets with more objects 
display better improvements, showing the ability of 
the snapshots based on R-trees to better prioritize 
the objects.

The fastest configurations reach 230–2,100 micro
seconds in GraCT-R, 190–900 in ContaCT-R, and 
190–930 in ContaCT-SD-R.

7.3. Comparison with a spatio-temporal index

In this section, we compare ContaCT-R and GraCT-R 
with the MVR-Tree (Tao and Papadias 2001), 
a classical spatio-temporal index that uses a set of 

Figure 11. Space and time for spatio-temporal queries.
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R-trees along time. Each R-tree is called a version and 
stores the MBR of the objects during an interval of 
time. Note that consecutive versions can be quite 
similar. To save space usage, when two consecutive 
R-trees share a subtree, that subtree in the second 
R-tree points to the first subtree. Since its basis is the 
R-tree, the MVR-Tree is designed for solving 
TimeSlice, TimeInterval, KNN, and KNNInterval 
queries. Supporting ObjectPosition and Object- 
Trajectory, it would require traversing all the nodes 
of the versions that intersect with the queried interval 
of time. Further, for KNNTrajectory it has no efficient 
mechanism to compute the distance between the 
information of a node and the trajectory.

Therefore, we compared ContaCT-R and GraCT-R 
with the MVR-tree in TimeSlice, TimeInterval, KNN, 
and KNNInterval queries on the two datasets with the 

most objects: Ships and Planes. The configuration of 
the queries is identical to those presented before. We 
set δ ¼ 120 on ContaCT-R and GraCT-R, with the 
variant of plain bitmaps in Ships, and sparse bitmaps 
in Planes. We used the MVR-tree implemented in the 
C++ spatialindex library with default parameters (the 
capacity of each node set to 10 records and the fill 
factor set to 70%).6 For a fair comparison, we load the 
MVR-tree into the main memory, thus avoiding any 
disk access at query time.

The average time of each query is shown in 
Figure 13. The MVR-tree obtains its best results in 
TimeSlice and KNN queries, because it needs to tra
verse only one version, even so, GraCT-R and 
ContaCT-R are faster. On Ships, ContaCT-R and 
GraCT-R are 3–9 and 1.3–1.7 times faster for 
TimeSlice and KNN queries, respectively. The 

Figure 12. Space and time for nearest neighbor queries.
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differences are more remarkable on Planes: 14–22 
times faster for TimeSlice, and 2.5–3.8 for KNN.

Queries TimeInterval and KNNInterval cover a larger 
interval of time and the MVR-tree has to check more 
versions, thus the differences between the compact data 
structures and MVR-tree grow more sharply (we use 
logscales). On Planes, for example, GraCT-R and 
ContaCT-R can solve TimeInterval queries in 50–300 
microseconds, whereas the MVR-tree needs 1.7–11.6 
milliseconds. The smallest difference occurs for 
KNNInterval on Planes, where GraCT-R and ContaCT- 
R are still 2:5 and 3:7 times faster than the MVR-tree, 
respectively.

With respect to space usage, the MVR-trees on Ships 
and on Planes require 12.16 GB and 11.72 GB, respec
tively. The sizes of GraCT-R and ContaCT-R indexes, 
even using a large-space configuration (δ ¼ 120), are 
around 100 times smaller.

8. Discussion

In our evaluation, we observe that both kinds of snap
shots require similar space. The most remarkable 

differences are in time performance on spatio- 
temporal and nearest neighbor queries. To solve those 
queries, the algorithm uses snapshots to obtain a rough 
idea of the area where the object moves during the 
queried interval. According to that area, the objects 
are selected or prioritized, depending on the query. 
Snapshots based on R-trees can retrieve that area as 
the MBR where the object is moving between two snap
shots. Snapshots based on k2-trees, instead, compute 
that area assuming that every object moves at the max
imum speed of the fastest object. That assumption 
enlarges the area where an object is moving, which is 
more noticeable when the number of objects is larger. 
The tighter area obtained from the snapshots based on 
R-trees allows us to get a better and smaller set of 
candidates, thereby improving the time performance 
by orders of magnitude.

Concerning trajectory queries, snapshots only 
affect GraCT. In that structure, the algorithms of tra
jectory queries need to obtain the positions of the 
objects from the snapshots. In snapshots based on 
R-trees, those positions are directly stored in an 
array. Hence, they are retrieved in constant time, 

Figure 13. Comparison with the MVR-tree. Note the log scale on the right plots.
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avoiding the top-down traversal of the snapshots 
based on k2-trees. For this reason, GraCT-R outper
forms the time performance of GraCT in this particu
lar kind of query.

In summary, with R-tree-based snapshots, we use 
about the same space of k2-tree-based snapshots, but 
the time performance is greatly improved on all 
queries. In fact, this new type of snapshot makes 
GraCT and ContaCT faster than the MVR tree, while 
using 100 times less space.

9. Relative compression of trajectories

The preceding evaluation shows that, while ContaCT 
is considerably faster than GraCT in several queries, 
the latter index is generally much smaller: GraCT uses 
40–80% of the space of ContaCT.

GraCT exploits the repetitiveness of the datasets, 
whereas ContaCT only takes advantage of the fact that 
most movements are small. In larger datasets, the repe
titiveness of the movements can play an important role 
in reducing the space. GraCT exploits repetitiveness 
using grammar compression (Kieffer and Yang 2000) 
of the trajectories, as explained in Section 3.7.1, and this 
induces a certain overhead when accessing trajectories 
at random positions. In this section, we explore instead 
Relative Lempel-Ziv (RLZ) (Kuruppu, Puglisi, and 
Zobel 2010), another compressor for highly repetitive 
sequences that enables fast random access to them.

Our new index, Relative Compression of Trajectories 
(RelaCT), adapts ContaCT to highly repetitive datasets 
by compressing the trajectories using RLZ. With this 
structure, we achieve a space usage closer to that of 
GraCT, and a time performance similar to that of 
ContaCT, which leads to a good space-time tradeoff.

9.1. Structure

As said, the RelaCT index builds on Relative 
Lempel-Ziv (RLZ) (Kuruppu, Puglisi, and Zobel  
2010). A special trajectory R called the reference is 
created and saved in plain form (this can be one of 
the trajectories in the dataset, a concatenation of 
parts of those, a synthetic sequence, etc.). Each 
trajectory in the dataset is then represented as the 
concatenation of z phrases: w1w2 . . . wz. Each 
phrase wi is represented as a pair of integers 
ðpi; liÞ, where pi is a position in the reference and 
li is the length of the phrase, that is, 
wi ¼ R½pi::pi þ li � 1�. The RLZ algorithm generates 
the phrases in greedy form, maximizing li at each 
step; recall Section 3.2.

9.1.1. The reference
In RelaCT, the reference R is an artificial trajectory 
built by concatenating some of the real trajectories. 

Note that we regard each trajectory as a sequence of 
movements, that is, of relative displacements. To build 
R, we copy the first trajectory to it and then, for each 
new trajectory S½1::n�:

(1) We compute the number of phrases z obtained 
from applying the RLZ algorithm to S, with 
respect to the current reference R.

(2) If the fraction z=n is below a parameter 
0< α< 1, the new trajectory S is well repre
sented by the reference R. Otherwise, we 
append S to R.

We note that the trajectories that are included in 
R can be represented by a single phrase, pointing 
to their position in R. On the other hand, we 
represent the reference R using the ContaCT 
structure. This allows us to compute any cumula
tive displacement, as well as relative MBRs, on R 
in constant time.

9.1.2. Log representation
The obtained reference R is global for the whole 
RelaCT index. Once R is defined with the process 
above, the log Sid½1::n� of relative movements of 
every object id between two snapshots is compressed 
by applying RLZ on Sid with respect to R. This results 
in a sequence of z pairs ðpi; liÞ representing the sub
strings wi of R that make up Sid.

The pointers pi are concatenated into an array 
Pid½1::z�, whereas the lengths li are represented by 
marking with 1s in a bitmap Lid½1::n� the starting 
position of each phrase wi in Sid, so that 
li ¼ select1ðLid; iÞ � select1ðLid; i � 1Þ. In addition, the 
log stores the initial position of the trajectory and its 
time instant as Fid ¼ hðxid; yidÞ; tidi. Finally, two arrays 
Xid½1::z� and Yid½1::z� store the cumulative movement 
from the beginning of the trajectory until the end of 
each phrase. Figure 14 shows an example.

To compute the position of object id at time instant 
tq, we find the phrase that contains tq with 
j ¼ rank1ðL; tq � tidÞ. The cumulative movement 
until the beginning of that phrase is 
ðXid½j � 1�;Yid½j � 1�Þ. Since the jth phrase starts at 
time instant t ¼ tid þ select1ðLid; jÞ, we have computed 
the cumulative movement until t � 1.

We now have to add the cumulative movement 
from t to tq. This is obtained from 
R½Pid½j�::Pid½j� þ t � tq�, since that substring of the 
reference is equal to the one we are querying. That 
sum of movements can be computed in constant time 
in the reference as ΔðPid½j� þ tq � tÞ � ΔðPid½j� � 1Þ, 
where 

ΔðiÞ ¼ ðselect1ðXp; iÞ � select1ðXn; iÞ; select1ðYp; iÞ
� select1ðYn; iÞÞ;
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is computed with the structures defined by ContaCT 
on R; recall Section 3.7.2.

By both results, we obtain the total displacement of 
the object from the beginning to tq. The location of the 
object at tq is computed by adding that displacement 
to ðxid; yidÞ: 

ðxid; yidÞ þ ðXid½j � 1�;Yid½j � 1�Þ þ ΔðPid½j� þ tq � tÞ
� ΔðPid½j� � 1Þ:

Figure 14 shows how the cumulative movement is 
computed for tq ¼ t10. This is the 8th movement of the 
trajectory because tq � tid ¼ 8. That movement lies on 
the second phrase because rank1ðL; 8Þ ¼ 2. This 
phrase starts at the time instant 
t ¼ t2 þ select1ðL; 8Þ ¼ t8. Therefore, the cumulative 
movement from the beginning of the trajectory until 
t7 is ð5; 2Þ. The remaining displacement from t8 to t10 
is computed as Δð10Þ � Δð7Þ ¼ ð3; 2Þ. Finally, the 
cumulative movement position until t10 is obtained 
as ð5; 2Þ þ ð3; 2Þ ¼ ð8; 4Þ. This value added to 
ðxid; yidÞ ¼ ð1; 3Þ results in the position of the object 
at t10, ð1; 3Þ þ ð8; 4Þ ¼ ð9; 7Þ.

9.1.3. Absence of information
In many cases, we lack information about the location 
of an object at some time instants, for different reasons 
(e.g. precision errors, low GPS signal, GPS device not 
working). We need a mechanism to represent that 

absence of information. Just as for GraCT and 
ContaCT, in RelaCT we use a bitmap Mid½1::n� per 
log, setting Mid½i� ¼ 1 when there is data about the 
location of the object at tid þ i, or else Mid½i� ¼ 0.

The mechanism for obtaining the location of an 
object works similarly with this bitmap, but instead 
of working with time instants, it uses movements. We 
compute the movement corresponding to time instant 
tq as mq ¼ rank1ðMid; tq � tidÞ. A given movement m 
is mapped back to its time with 
t ¼ tid þ select1ðMid;mÞ. We will ignore this mapping 
for simplicity in the sequel, still using tq instead of mq 

in the descriptions.

9.2. Queries

We now describe how the queries are handled with 
this data structure. The first three simple queries take 
constant time. As a consequence, the complexities of 
the following, more complex, queries are identical to 
those of ContaCT.

9.2.1. Object position
Algorithm 2 summarizes the constant-time procedure 
we have explained to retrieve the position of an object 
at a given time instant, considering the absence of 
information. 

Figure 14. Log structure for RelaCT with a reference and its corresponding trajectory.
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Algorithm 3: ObjectTrajectory (id, tb, te)

26 A. GÓMEZ-BRANDÓN ET AL.

Algorithm 2: ObjectPosition (id, tq)

9.2.2. Object trajectory
Algorithm 3 solves this query in optimal time, that 
is, constant per retrieved position. It is, in practice, 
more efficient than querying object positions one by 
one. The algorithm proceeds by phrases. Lines 3–7 
compute the phrase number i, the time interval 
½tb; te� it spans, and the starting object position in 
the reference, p, and in space, Δpre. Then it adds the 
points of this phrase to the trajectory in lines 9–12. 
Line 13 checks if we have completed the phrase, in 
which case the data of the next phrase, iþ 1, is 
computed in lines 14–17 before continuing.

9.2.3. Minimum bounding rectangle
To compute the MBR that covers the trajectory of an 
object between two time instants tb and te, we use the 
structure of ContaCT that computes the position of the 
local minimum and maximum in constant time using at 
most 3nþ oðnÞ bits per coordinate, where n is the length 
of the log. We call those operations rmqD and rMqD, for 
D 2 fX;Yg. To compute the final results, we must com
pare those local extremes with the values at the endpoints 
of the queried time interval. To obtain those values to 
compare, we use the same procedure of the 
ObjectPosition query. 



Algorithm 4: MBR (id, tb, te)

Algorithm 5: Best (id, pos, D, d, Op)

Algorithm 4 shows the pseudocode for this constant-time query. The minima and maxima of the local 
extremes, for both coordinates, are computed in mx, my, Mx, and My. The comparison with the endpoints is 
done by Best, which is depicted in Algorithm 5.

More than an algorithm, Best should be regarded as a macro to avoid writing similar code 4 times. It receives in 
pos a list of positions to compare, in D/d the coordinate (X/x or Y/y), and in Op what to take from the values 
(minimum or maximum).

9.2.4. Time slice

Algorithm 6: TimeSlice (R, tq)

We retrieve the objects that are within a region R at a time instant tq by computing their position at tq with 
ObjectPosition, and checking if they are within R. We use the preceding snapshot, at time τ � tq < τ þ δ, to find 
the candidates that have chances of being within R at time tq, namely those whose MBR in the snapshot (which 
covers their positions in ½τ; τ þ δ � 1�) intersects R. Algorithm 6 shows the pseudocode.
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9.2.5. Time interval

Algorithm 7: TimeInterval (R, tb, te)

Algorithm 8: Contained (id, R, tb, te)

Retrieving the objects that are within a region R at 
any time instant of the interval ½tb; te� can be solved 
similarly to Time Slice. As seen in Algorithm 7, we 
take the snapshots covering any time instant in 
½tb; te� and search them looking for the candidates 
(lines 2–5). For each candidate, the algorithm 
checks if it is contained within R at any time instant 
of ½tb; te�. The set checked is used to avoid checking 
several times the objects that appear in more than 
one snapshot.

An object is checked to be contained in R during 
½tb; te� in Algorithm 8. Lines 7–9 compute the object’s 
MBR and check for two immediate inclusion- 
exclusion conditions (MBR contained in or disjoint 
with R). If those are not met, the time interval is 
partitioned in two halves and those are recursively 
checked in line 11. Lines 1–5 handle short enough 
intervals, defined by a parameter λ, by directly 

obtaining the object’s trajectory and checking its posi
tions one by one.

9.2.6. Nearest neighbour queries
To obtain the K objects closest to a point pq at 
a time instant tq, we proceed as in Algorithm 9. 
The algorithm takes the snapshot Sτ that covers the 
time interval ½τ; τ þ δ � 1� containing tq, and tra
verses its R-tree nodes according to their proximity 
to the point pq. The leaf nodes with the objects that 
have more chances to be closer to pq are then 
reached earlier. We use a min-heap priority queue 
Qc to prioritize those nodes, according to the mini
mum distance l to R, and breaking ties with the 
maximum distance h. In every iteration, the algo
rithm takes the element on top of Qc. If it is an 
internal R-tree node, its children are reinserted to 
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Qc (lines 6–9). If, instead, it is a leaf, lines 11–13 
insert its objects prioritized by their precise distance 
to pq at time tq, into a min-heap Qr capped to 
size K.

The algorithm repeats those steps until there are K 
elements in Qr and there is no element in Qc that can 
improve the distance of the K-th element of Qr with 
respect to pq. That is, the object on top of Qc has an l 
value larger than the distance of the last element on Qr 
(line 4). The result is the set of K elements of Qr. 

Algorithm 9: Knn (K, pq, tq)

9.2.7. Complex nearest neighbor queries
For KNN of trajectories and KNN during an interval, the 
algorithms of RelaCT are completely identical to those 
presented in Section 5.1. Recall that there are two stages: 
prioritizing the object by using snapshots and refining the 
object distance bounds. For the first one, the algorithm 
traverses the nodes of the R-tree as in GraCT and 
ContaCT, prioritizing the nodes according to their dis
tances to the input data (trajectory or point) in constant 
time. In the second stage, since RelaCT can compute the 
MBR between two time instants just as in ContaCT, we 
refine the bounds of the object distance by applying the 
same algorithm as ContaCT.

9.3. Speeding up queries

We can improve the time performance of the queries by 
adding to each log an additional structure that stores the 
minimum and maximum value within each phrase for 
each axis D 2 fX;Yg: Dm½1::z� and DM½1::z�, respec
tively. A range minimum query structure rmqD, using 
2z þ oðzÞ bits (Ferrada and Navarro 2017; Fischer and 
Heun 2011), is added on Dm, and an analogous range 
maximum query rMqD is added on DM . In total, the extra 

structures use 4z log sþ 8z þ oðzÞ bits, where s is the size 
of the represented two-dimensional space. Those struc
tures replace the original bitvectors rmqD and rMqD of 
the basic RelaCT.

With these additional structures, we can compute the 
MBR of the phrases that are completely contained in 
a time interval ½tb; te� without accessing the reference. 
More precisely, the MBR of the phrases wi . . . wj is 

½Xm½rmqðXm; i; jÞ�;Ym½rmqðYm; i; jÞ�� �

½XM½rMqðXM; i; jÞ�;YM½rMqðYM; i; jÞ��:

While these structures do not affect the worst-case 
complexities of the queries, they can be used to improve 
the practical performance of MBR and Time Interval 
queries.

9.3.1. Minimum bounding rectangle
To compute MBR on the interval ½tb; te�, let us assume 
that wi . . . wj are the phrases completely contained in 
the queried time interval. The MBR of those whole 
phrases, MBRC, can be computed as shown above. The 
result of the query will be MBRC, except when the 
phrases that are not completely contained but intersect 
½tb; te� can change it. We compute the MBRs of those 
(whole) phrases, wi� 1 and wjþ1, as 

MBRi� 1 ¼ ½Xm½i � 1�;Ym½i � 1��
� ½XM½i � 1�;YM½i � 1��

MBRjþ1 ¼ ½Xm½jþ 1�;Ym½jþ 1��
� ½XM½jþ 1�;YM½jþ 1��:

If MBRi� 1 and MBRjþ1 are completely contained 
within MBRC, then there is nothing else to do. 
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Otherwise, the part of the trajectory not covered by 
wi . . . wj might enlarge MBRC. Thus, if MBRi� 1MBRC, 
we compute MBR on the interval ½tb; te0 � � ½tb; te� that 
overlaps the phrase wi� 1, using the reference as we 
explained in Section 7.2.3, and enlarge MBRC so as to 
contain that MBR. We handle MBRjþ1 analogously. After 
those adjustments, MBRC is the answer to the query.

Figure 15 illustrates an example, where we compute 
MBR from time instant t8 to t41. Here, MBRC covers 
the phrases w3w4w5w6 and the time interval ½t14; t36�. It 
is computed using the arrays Xm, Ym, XM, and YM, and 
their rmq and rMq structures. The values pointed out 
by the range minimum and maximum structures are 
marked in bold. We obtain MBRC ¼ ½2; 0� � ½7; 6�. 
The MBR of the phrases at the extremes (w2 and w7) 
are computed by directly accessing the arrays of 
minima and maxima. Hence, we have 
MBR2 ¼ ½2; 1� � ½4; 2� and MBR7 ¼ ½1; 2� � ½5; 5�. 
Since MBR7 is completely within MBRC but MBR2 is 
not, we have to compute on the reference the MBR 
between time instants t8 and t13. That MBR is 
½2; 1� � ½2; 2�, which is completely contained in 
MBRC. Therefore, our answer is MBRC.

This approach avoids as much as possible using the 
reference, which speeds up the MBR query. This also 
improves the performance of several other queries that 
directly use the MBR query, such as the complex 
nearest neighbor queries.

9.3.2. Time interval
We now exploit the fact that we can obtain the MBR of 
a sequence of phrases very quickly to speed up Time 
Interval queries, which make intensive use of MBR 
queries. Concretely, for each candidate, this query 
performs a binary search with such queries.

We go further than merely exploiting the faster 
MBR algorithm obtained in the previous section. We 
maintain the binary search but work on whole phrases 
as much as possible because computing their MBR is 

faster. We exploit the fact that, if the MBR of 
a sequence of phrases overlapping ½tb; te� is contained 
in R, then the object qualifies.

Let wi� 1 . . . wjþ1 the phrases that minimally contain 
½tb; te�. Our algorithm computes the MBR of the current 
interval of phrases without resorting to the reference. If it 
is contained in R, the object is added to the output and we 
finish. Otherwise, the interval of phrases ½i � 1::jþ 1� is 
halved (into whole references) and we continue recur
sively by each subinterval. When the interval is formed by 
a single phrase whose MBR is not contained in R, we 
resort to the previous procedure with the time interval of 
the phrase. Note also that, in the binary search of phrase 
sequences, we can also abort the branches where the MBR 
is disjoint from R.

Figure 16 shows how we check if an object is contained 
within R ¼ ½5; 5� � ½5; 5� during the interval ½t8; t41�. 
Those time instants are contained in the phrases 
w2w3w4w5w6w7. The algorithm starts computing the 
MBR covered by all those phrases, MBR2� 7. As it inter
sects the queried region, we split it into MBR2� 4 and 
MBR5� 7, which cover w2w3w4 and w5w6w7, respectively. 
Since MBR2� 4 does not intersect R, we stop splitting it, 
and continue recursively with MBR5� 7. We continue in 
this way until reaching the interval of the phrase w7, 
which covers the time interval ½t36; t41�. Since it intersects 
R, it is partitioned in two halves: MBRt36� t38 and 
MBRt39� t41 . Since MBRt36� t38 is completely contained in 
R, the algorithm stops and the object is added to the 
solution.

9.4. Experimental evaluation

We experimentally compare RelaCT with GraCT and 
ContaCT. The evaluation focuses on larger datasets, 
which are more repetitive since RelaCT shows little 
advantage over the smaller ones. Since the snapshots 
based on R-trees have shown much better performance 
than the original ones, we only test those snapshots.

Figure 15. Example of computing the minimum bounding rectangle between two time instants.
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9.4.1. Large datasets
We build larger variants of the original datasets of 
Ships and Taxis, with the same format:

● ShipsLarge: a real dataset from MarineCadastre 
that contains 19,764 vessels that move around the 
coast of the USA during the first four months of 
2020. As in the first experiment, the raster model 
of this dataset uses a cell size of 10� 3 � 10� 3 

degrees and the frequency with which an object 
emits its location is normalized to regular inter
vals of 1 minute.

● TaxisLarge: a pseudo-real dataset containing tra
jectories of 433 taxis in New York City during 
2013. As in the first experiment, the dataset only 
contains the origin and destination of each trip, 
thus each trajectory was computed as the shortest 
path between them by taking into account the 
road network. The original data are available at 
NYC Taxis: A Day in the Life. The cell size of the 
raster model is 10� 5 � 10� 5 degrees, and the sig
nals are taken at regular intervals of 15 seconds.

As before, Table 2 shows the dimensions of the 
datasets, their size in plain form, binary form, and 
p7zip-compressed. The compression ratios of p7zip 
are around 8% and 20% in ShipsLarge and 
TaxisLarge, respectively.

9.4.2. Compression
We built GraCT, ContaCT, and RelaCT on both data
sets, with δ values 30, 60, 120, 240, 360, and 720. We 
have variants ContaCT and ContaCT-SD, as in 
Section 5.4. Since the reference of RelaCT is repre
sented with ContaCT, we have the corresponding 

configurations RelaCT and RelaCT-SD. In addition, 
the RelaCT configurations that include the structure 
for speeding up the queries (Section 7.3) are suffixed 
with “+”.

Figure 17 shows the size of those structures and 
the compression ratios. In both datasets, GraCT 
obtains the best compression ratio. In ContaCT and 
RelaCT, the variants using sparse bitmaps are the 
smallest ones.

GraCT is still the only structure that outperforms 
the compression ratios of p7zip, whereas ContaCT-SD 
uses around 3:7 and 1:6 times more space than p7zip 
in ShipsLarge and TaxisLarge, respectively. RelaCT- 
SD and RelaCT-SD+ are between both. For example, 
the configuration of GraCT with the space-time trade- 
off δ ¼ 120 uses 81% and 77% of the space required by 
RelaCT-SD in ShipsLarge and TaxisLarge, respec
tively. On the other hand, RelaCT-SD is much smaller 
than ContaCT-SD.

The relative compression of trajectories is a good 
approach to use space close to grammar compression, 
while computing object positions and MBRs in con
stant time. To solve MBR and Time Interval queries 
faster, RelaCT-SD+ increases the space of RelaCT by 
around 8–60%. The next experiments measure the 
time performance achieved.

Figure 16. Simulation of the procedure to detect if an object is within a region during an interval of time.

Table 2. Large datasets and their dimensions.
ShipsLarge TaxisLarge

Total objects 19,765 433
Total points 671,088,660 851,369,612
Max x 1,199,974 1,379,380
Max y 891,731 664,900
Max time 262,079 2,102,691
Size Plain 16,838.92 MB 20,480.00 MB
Size Bin 7,040.00 MB 8,931.22 MB
Size p7zip 574.69 MB 1,738.86 MB
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9.4.3. Query performance
We test the query performance of the different struc
tures on both large datasets, using the same settings 
defined in Section 6.2.

Figure 18(a) shows that all the RelaCT variants 
have similar time performance for ObjectPosition 
queries. It was expected that the ’+’ variants perform 
similarly to the basic ones since they do not affect 

this query. ContaCT and ContaCT-SD are 1.5–2.5 
times faster than RelaCT, but use nearly twice the 
space. GraCT is twice as slow as RelaCT on 
ShipsLarge, but uses about half its space, with 
δ ¼ 240. The situation is similar on TaxisLarge, 
except that GraCT is now many times slower than 
RelaCT. Overall, RelaCT-SD offers a very relevant 
tradeoff for this query.

Figure 17. Compression ratios of the structures with different values of δ.

Figure 18. Space and time for trajectory queries.
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ObjectTrajectory queries behave in a similar 
way. However, as shown in Figure 18(b), there is 
a noticeable difference between the RelaCT struc
tures that use plain (RelaCT and RelaCT+) and 
sparse bitmaps (RelaCT-SD and RelaCT-SD+). 
The cause of this difference is that computing the 
displacements on the reference with ContaCT-SD is 
slower than with ContaCT; observe that the origi
nal ContaCT is 1.7–1.9 times faster than ContaCT- 
SD on the same kind of queries. RelaCT is also 
slower than ContaCT because it incurs the cost of 
synchronizing every phrase with the reference. In 
addition, no RelaCT variant is competitive with 
GraCT in space-time. Thus, RelaCT does not 
stand out for this query.

The time performance on MBR queries is similar to 
that of ObjectPosition, but on ShipsLarge, RelaCT+ 
and RelaCT-SD+ improve by up to 1.4 times the 
performance of RelaCT and RelaCT-SD, respectively. 
Instead, there is no significant difference on 
TaxisLarge. The RelaCT variants are 3.0–5.5 times 
faster than GraCT, and 40–100% slower than 
ContaCT. Relative compression is 1.25 times worse 
than GraCT in space consumption, but it obtains the 
best space-time trade-off in MBR queries: they are 
only slightly slower than ContaCT while using about 
half the space.

Figure 19 shows the performance for spatio- 
temporal queries. In TimeSlice with both large and 
small regions, the variants of RelaCT obtain competi
tive times compared to the remaining structures. On 
ShipsLarge, the RelaCT-SD variants reach very similar 
time and space to GraCT, with δ ¼ 120. In TaxisLarge, 
instead, RelaCT-SD becomes 2–15% faster than GraCT 
using slightly more space. It is also slightly slower than 
ContaCT, using about half the space. Since this query 
only involves one time instant, the structures labeled 
with “+” do not change the performance.

In general, all the structures obtain comparable 
performance on spatio-temporal queries, with 
GraCT, closely followed by RelaCT, using much less 
space than ContaCT.

The space-time trade-offs for nearest neighbor 
queries can be observed in Figure 20. There is no 
significant time difference between the four RelaCT 
variants, so RelaCT-SD is always the best choice for its 
smaller space usage.

Figure 20(a) shows that RelaCT-SD is the most 
interesting variant on for KNN queries on 
TaxisLarge: it is just 9% slower than ContaCT-SD 
and 1.4 times faster than GraCT with δ ¼ 120, and 
its space is much closer to that of GraCT than to 
ContaCT. On ShipsLarge, instead, GraCT is smaller 
and 10% faster than RelaCT-SD.

With respect to KNNTrajectory (Figure 20(b)), 
GraCT dominates RelaCT-SD with δ ¼ 120, by 
around 10% in time. Instead, RelaCT-SD is much 
faster than GraCT and 1.5 times slower than 
ContaCT (which needs twice the space) on 
TaxisLarge.

The last complex nearest neighbor query, 
KNNInterval, is shown in Figure 20(c). On 
TaxisLarge the performance is similar to 
KNNTrajectory, though this time RelaCT-SD is 
only 1:4 times faster than GraCT with δ ¼ 120. On 
ShipsLarge, the RelaCT variants are faster when δ 
increases. This can be explained by the larger num
ber of elements maintained in the priority queues 
from the beginning of the algorithm, as more snap
shots are covered by the query. For example, before 
adding each element to the queue, we have to com
pute its MBR. This effect is more noticeable in 
RelaCT than in ContaCT, whose MBRs are com
puted faster. On ShipsLarge, GraCT is the dominant 
solution, whereas RelaCT-SD offers a very good 
tradeoff on TaxisLarge.

Figure 19. Space and time for spatio-temporal queries.
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10. Discussion

Overall, RelaCT-SD is the most remarkable variant. 
There are small differences in the performance of 
RelaCT, but the compression is better. This technique 
offers times slightly over those of ContaCT, but it uses 
half the space. It uses slightly more space than GraCT 
and has competitive query times. In particular, 
RelaCT-SD offers an outstanding space-time tradeoff 
for ObjectPosition and MBR queries, and it is close 
(sometimes better and sometimes worse) to the domi
nant performance of GraCT for spatio-temporal and 
nearest neighbor queries. The worst performance of 
RelaCT-SD is obtained in ObjectTrajectory queries, 
where it is sharply dominated by GraCT. Note that 
each phrase that covers the interval of time needs to be 
synchronized with the reference, which adds a cost to 
each processed phrase.

The configurations of RelaCT suffixed with “+” 
provide a new space-time tradeoff, being clearly faster 
in MBR and TimeInterval. Indeed, they reduce the gap 
with GraCT in time performance of TimeInterval. 
However, the difference in space consumption 
between GraCT and those variants increases.

11. Conclusions

Previous work has demonstrated that compressed 
indexes for large collections of object trajectories in 
free space can compete with classical indexes in query 
performance while using orders of magnitude less 
space. In this work, we introduce new algorithms 
and data representations that yield stronger 

compressed indexes, in terms both of functionality 
and of space-time performance.

(1) We introduce new algorithms for more sophisti
cated nearest-neighbor queries. Previously com
pressed indexes could only find the objects that 
were closest to a spatial point at a certain time 
instant. We now consider the queries KNN on an 
interval and KNN of trajectories, which have been 
studied in the literature (Gao et al. 2007; Tang 
et al. 2011). The former extends the basic query 
to a time interval, considering the least distance 
between the object and the query point during 
the interval. The second compares object trajec
tories with a given trajectory, looking for the 
maximum distance reached during a time inter
val. Our new algorithms solve those more com
plex queries on the existing compressed indexes, 
GraCT (Brisaboa et al. 2019) and ContaCT 
(Brisaboa et al. 2021), in about an order of mag
nitude more time than the basic nearest neighbor 
query, but still within a few milliseconds.

(2) Motivated by the fact that estimating the MBR 
of an object during a period of time is key for an 
efficient nearest neighbor algorithm, we intro
duce a new data structure for storing the posi
tions of the objects at sampled times during the 
trajectories, based on R-trees instead of the 
quadtree-like data structure used in previous 
compressed structures. The R-tree maintains 
the MBR of the object during the sampled 
time period and, without increasing the space 
of the data structures, improves the 

Figure 20. Space and time for nearest neighbor queries.
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performance of all nearest neighbor queries by 
a factor of 2–10. The new representation in fact 
improves the times for all the other queries, 
reaching speedups of two orders of magnitude 
on spatio-temporal queries.

(3) Motivated by the fact that ContaCT uses twice 
the space of GraCT, but it is much faster at 
computing object positions and MBRs, two of 
the most basic queries, we define RelaCT, a new 
compressed index that exploits redundancies in 
the trajectories using Relative Lempel-Ziv, 
a compression method that provides fast ran
dom access to the data. This is in contrast to the 
grammar compression used by GraCT, which is 
slower for access. On large repetitive datasets, 
RelaCT uses about half the space of ContaCT 
and is only slightly slower. Instead, it uses 
slightly more space than GraCT and offers 
competitive query times, particularly outper
forming it on the mentioned queries. RelaCT 
then provides a new relevant tradeoff between 
both previously compressed indexes.

A relevant future work direction is to introduce dyna
mism in these compressed indexes. Right now, all of 
them are static, so they must be rebuilt in order to add 
or remove new objects, and extend or modify trajec
tories. The easiest of those challenges is to extend 
already existing trajectories, as this involves appending 
movements to the logs and possibly creating new snap
shots. In the case of GraCT, this implies adapting the 
context-free grammar to accommodate longer strings. 
This could be achieved by replacing RePair (Larsson 
and Moffat 2000), which is an offline grammar com
pressor, with an online version like FOLCA (Maruyama 
et al. 2013). ContaCT and RelaCT are even easier to 
adapt, as their construction is already online. Other 
kinds of updates, like modifying past trajectories or 
adding/removing objects, are more complex and 
require not only rebuilding logs but also updating snap
shots. While k2-trees offer dynamic versions (Brisaboa, 
de Bernardo, and Navarro 2012), we are unaware of any 
compressed dynamic R-tree data structure, only the 
classic pointer-based one (Guttman 1984).

Another research direction of interest is to further 
expand the functionality with new queries that have 
been shown to be useful in the literature. For example, 
we could extend the functionality of the structures to 
detect moving-together patterns (Alamri, Taniar, and 
Safar 2013; Gudmundsson, van Kreveld, and 
Speckmann 2004), that is, objects that move together 
during a period of time. This query could be solved by 
obtaining the closest objects from a snapshot and refin
ing their proximity with a similarity function applied 
on the objects’ MBRs. With a similar approach, those 
structures could also detect common patterns between 

trajectories (trajectory clustering) (Lee, Han, and 
Whang 2007) and mine sequential patterns from tra
jectories (Cao, Mamoulis, and Cheung 2005), two 
important tasks in applications related to travel recom
mendation or life pattern understanding.

Notes

1. https://github.com/simongog/sdsl-lite
2. http://marinecadastre.gov/ais
3. https://opensky-network.org
4. http://chriswhong.github.io/nyctaxi/
5. https://lbd.udc.es/research/serangequerying/
6. http://libspatialindex.github.io
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