
Stronger compact representations of object trajectories
Adrián Gómez-Brandón a, Gonzalo Navarro b, José R. Paramá a, Nieves R. Brisaboa a

and Travis Gagie c

aCITIC, Facultade de Informática, Universidade da Coruña, A Coruña, Spain; bMillennium Institute for Foundational Research on Data,
Department of Computer Science, University of Chile, Santiago, Chile; cDepartment of Computer Science, Dalhousie University, Halifax,
Canada

ABSTRACT
GraCT and ContaCT were the first compressed data structures to represent object trajectories,
demonstrating that it was possible to use orders of magnitude less space than classical indexes
while staying competitive in query times. In this paper we considerably enhance their space,
query capabilities, and time performance with three contributions. (1) We design and evaluate
algorithms for more sophisticated nearest neighbor queries, finding the trajectories closest to
a given trajectory or to a given point during a time interval. (2) We modify the data structure
used to sample the spatial positions of the objects along time. This improves the performance
on the classic spatio-temporal and the nearest neighbor queries, by orders of magnitude in
some cases. (3) We introduce RelaCT, a tradeoff between the faster and larger ContaCT and the
smaller and slower GraCT, offering a new relevant space-time tradeoff for large repetitive
datasets of trajectories.

ARTICLE HISTORY
Received 8 December 2021
Accepted 23 January 2024

KEYWORDS
Moving objects; mobile
computing; trajectories
representation; compact
data structures; nearest
neighbor algorithms

1. Introduction

During the last decade, the number of GPS devices has
sharply increased due to their popularization on dif-
ferent objects: cars, ships, smartphones, smartwatches,
etc. Consequently, a large amount of data about the
route followed by objects along time (trajectory) is
collected. That information is very useful in applica-
tions like traffic management, analysis of human
movement, tracking animal behavior, security and
surveillance, military logistics and combat, and emer-
gency-response planning (Gudmundsson, Laube, and
Wolle 2008). However, storing and processing that
enormous amount of data is a challenge that requires
the development of new time- and space-efficient data
structures and indexes (Y. Zheng and Zhou 2011).

Various proposals to represent trajectories exist, but
all of them can be roughly classified into two groups
depending on the type of movements that the objects
can perform. In the first group, the movements of the
objects are constrained by a network. The second group,
instead, allows objects move freely in a space with no
restrictions. This paper belongs to the second group.

The most basic query supported by applications deal-
ing with moving objects is to retrieve the trajectory of an
object during a period of time or at a specific time instant.
However, most of those applications need more sophis-
ticated queries, like spatio-temporal queries, which iden-
tify the objects that are within a spatial region during

a period of time, nearest neighbor queries, which return
the objects that are closest to a given point or trajectory
during a time interval, and even more sophisticated
queries related to mining and clustering trajectories
(Alamri, Taniar, and Safar 2013; Cao, Mamoulis, and
Cheung 2005; Gudmundsson, van Kreveld, and
Speckmann 2004; Lee, Han, and Whang 2007).

Various disk-based data structures have been pro-
posed to store and index trajectories since the 1990s. In
recent years, the sizes of the main memories have
increased, and the gaps in time performance along the
memory hierarchy have widened. As a consequence, in-
memory indexes have become more popular in several
areas, both for centralized and distributed deployments.
In particular, different in-memory indexes for represent-
ing trajectories were proposed (Cudre-Mauroux, Wu,
and Madden 2010; B. Zheng et al. 2018). In parallel, the
field of compact data structures (Navarro 2016) has
emerged as a technique to operate larger datasets in
main memory, or to use fewer nodes in distributed in-
memory deployments. Compact data structures com-
press the data in such a way that queries can be run
directly on the compressed data. This type of compres-
sion not only saves space but also expands the scenarios
where a fast in-memory solution is affordable.

GraCT and ContaCT (Brisaboa et al. 2019, 2021) are
two recent in-memory indexes for moving object trajec-
tories that build on compact data structures. They were
shown to require orders of magnitude less space than

CONTACT Adrián Gómez-Brandón adrian.gbrandon@udc.es

GEO-SPATIAL INFORMATION SCIENCE
https://doi.org/10.1080/10095020.2024.2310590

© 2024 Wuhan University. Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting
of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0002-1216-2176
http://orcid.org/0000-0002-2286-741X
http://orcid.org/0000-0002-8727-0980
http://orcid.org/0000-0001-8025-3048
http://orcid.org/0000-0003-3689-327X
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10095020.2024.2310590&domain=pdf&date_stamp=2024-02-08

classic solutions while offering competitive time perfor-
mance. On large datasets they were still able to run in
main memory, whereas other indexes needed to run on
disk, where they were orders of magnitude slower.

Both GraCT and ContaCT have two components:
spatial indexes called snapshots locating the objects at
regular time intervals, and logs encoding the movements
of the objects between snapshots. The structures use
different techniques to compress the logs. GraCT uses
grammar compression, which represents the trajectories
with a context-free grammar that exploits their simila-
rities. Therefore, GraCT obtains better compression
when there are many similar trajectories. ContaCT,
instead, is based on delta compression, which encodes
shorter movements with fewer bits. The specific encod-
ing used can compute in constant time the position of an
object at any desired time instant. Therefore, ContaCT
tends to obtain better performance than GraCT in sev-
eral queries, at the price of worse compression.

GraCT and ContaCT support extracting trajectories,
spatio-temporal queries, and a restricted form of near-
est neighbor queries: they report the objects that are
closest to a spatial point at a given instant of time.

1.1. Contributions

In this paper, we present contributions along three
lines.

1.1.1. More sophisticated queries
We design and evaluate new algorithms for GraCT
and ContaCT to solve more complex queries related to
data mining. Those queries require obtaining the
objects that are closest to a spatial point during
a period of time (KNN during an interval) (Frentzos
et al. 2007; Gao et al. 2007) or searching for the
trajectories that are closest to a given trajectory
(KNN of trajectories) (Tang et al. 2011). KNN queries
have attracted considerable attention from the
research community. They can be classified into
three main types (Güting, Behr, and Xu 2010): i) the
query and the data objects are static points, ii) the
query is a trajectory and the data objects are static
points or the query is a static point and the data objects
are trajectories, and iii) the query and the data objects
are trajectories. The original GraCT and ContaCT
only handled a KNN query of the first type, restricting
the query to a single-time instant.

The second and third types open the possibility of
new queries like (type ii) find the two closest trajectories of
animals to a given static point (e.g. a food source) in the
time interval ½tb; te� (Gao et al. 2007), or observe the
closest ambulances to the site of an accident (Güting,
Behr, and Xu 2010) and (type iii) find the two animal
trajectories nearest to a predefined one during the time
period ½tb; te� (Gao et al. 2007), or which vehicles accom-
panied President Obama on his trip through Berlin

(Güting, Behr, and Xu 2010). These new KNN queries
are also the basis to solve data-mining queries like mov-
ing patterns together (Alamri, Taniar, and Safar 2013;
Gudmundsson, van Kreveld, and Speckmann 2004)
and trajectory clustering (Lee, Han, and Whang 2007).

In this paper, we extend GraCT and ContaCT to
handle KNN queries of types ii and iii. Though both
queries are an order of magnitude slower than the
basic nearest neighbor query, which is not surprising,
they still run in a few milliseconds. The ability of
ContaCT to compute minimum bounding rectangles
of trajectories in constant time makes it 2–4 times
faster than GraCT on these complex queries.

1.1.2. Better data representations
The original GraCT and ContaCT variants combined
an existing geometric representation for the snapshots
with a representation for the logs. The snapshot repre-
sentation, based on quadtrees, was not the ideal one to
support the types of queries we needed to handle. In
this paper, we design a snapshot representation that is
not only more space-efficient but also better suited to
the queries we need to run on GraCT and ContaCT.

Concretely, we introduce a new snapshot represen-
tation based on R-trees, which speeds up those queries
by orders of magnitude in some cases. That improve-
ment is most noticeable in spatio-temporal queries,
which become up to 200 times faster, and in nearest
neighbor queries, which improve by a factor of 2–10.
As a consequence, the new snapshots make GraCT
and ContaCT faster than the MVR-tree (Tao and
Papadias 2001), a classical spatio-temporal index, on
both spatio-temporal and nearest neighbor queries.

1.1.3. New space/time tradeoffs
We propose a new data structure, called RelaCT, that
combines the strong points of ContaCT and GraCT on
highly repetitive sets of trajectories.

GraCT compresses more because it is based on Re-
Pair, a grammar compressor (Kieffer and Yang 2000)
that exploits both repetitions in the sequence and high-
order frequency bias in the symbols. ContaCT, instead,
is based on simple delta-compression that takes advan-
tage only of the differences between one object’s posi-
tion and the next one. The other side of the coin is that
GraCT usually has to run a sequential decompression
involving several symbols to obtain the position of an
object at a given time instant, whereas ContaCT is able
to obtain that position in constant time.

RelaCT is based on Relative Lempel-Ziv (Kuruppu,
Puglisi, and Zobel 2010), a technique designed to
compress highly repetitive collections, such as the
genome of several individuals of the same species,
while retaining nearly constant-time access. As
a result, RelaCT brings a new tradeoff, exploiting
repetitiveness in the sequences while staying close to
ContaCT in speed.

2 A. GÓMEZ-BRANDÓN ET AL.

More in detail, the new structure chooses some
reference trajectories and encodes those using
ContaCT, while the others are encoded relatively to
the references, that is, indicating what to change in
a reference to obtain each other trajectory. The struc-
ture, called RelaCT for Relative Compression of
Trajectories, exploits the similarity of trajectories to
obtain compression while keeping the ability of
ContaCT to efficiently access the trajectories, faster
than GraCT. RelaCT obtains relevant space-time tra-
deoffs. For example, in one of our datasets, KNN of
trajectories using RelaCT is twice as fast as GraCT,
wasting just 5% more space, and it is 1:5 times slower
than ContaCT, which uses twice the space.

1.2. Outline of the paper

Section 2 presents the state of the art in representing,
compressing, and indexing trajectories. Section 3
introduces several background knowledge that will
be used later, including several data structures, as
well as GraCT and ContaCT. Section 4 shows the
queries supported by GraCT and ContaCT before
this work. Section 5 presents the new KNN queries
for GraCT and ContaCT, including an experimental
study of their performance. Section 6 introduces
the second contribution of this work, the snapshots
based on the R-tree, also including an experimental
study. Section 7 presents RelaCT, the third contribu-
tion of this work, again with its experimental study.
Finally, Section 8 shows our conclusions and future
work.

2. State of the art

Different structures for representing moving objects
and their trajectories were designed in the last decades.
In this section, we present the most relevant strategies
for modeling, compressing, and indexing free
trajectories.

2.1. Modelling trajectories

Trajectories can be modeled as continuous space-
time functions. Since objects emit their location at
discrete time instants, trajectories are digitized as
a list of timestamped positions. As the frequency of
the timestamps increases, the accuracy of the trajec-
tory improves, but more space is required to repre-
sent it, which impacts on the costs of transmission,
storage, and processing. Various trajectory simplifi-
cation techniques (Douglas and Peuker 1973; Lin
et al. 2017; Liu et al. 2015; Meratnia and de By
2004; Muckell et al. 2011; Potamias, Patroumpas,
and Sellis 2006; Trajcevski et al. 2006) aim to discard
less relevant timestamped positions in order to
reduce those costs. In this paper, we stick to the

simplest method (Potamias, Patroumpas, and Sellis
2006), which collects the positions at regular time
intervals.

2.2. Compressing trajectories

The best-known method to reduce the amount of
space needed to store trajectories, simplified or not,
is delta compression. This method stores the first posi-
tion of the trajectory and then stores the difference
between each new position and the previous one. That
is, it stores the first position and a sequence of move-
ments. Delta compression exploits the fact that (i)
consecutive positions are generally close to each
other, and (ii) smaller numbers can be stored using
fewer bits. A complete trajectory is efficiently
extracted by adding each new difference to the pre-
vious (already computed) position. Instead, obtaining
the position of an object at a specific time instant t
requires computing all the positions preceding t. Some
methods sample the positions at regular timestamps,
introducing a space-time trade-off to compute the
position at any time t.

Several systems use delta compression, including
TrajStore (Cudre-Mauroux, Wu, and Madden 2010)
and SharkDB (B. Zheng et al. 2018). Trajic (Nibali and
He 2015) uses delta compression but encodes each
point as the difference between a predicted point and
the real one. A different technique is used in REST
(Zhao et al. 2018).

2.3. Indexing trajectories

The traditional spatio-temporal indexes for trajec-
tories are based on the R-tree (Guttman 1984). The
3DR-tree (Vazirgiannis, Theodoridis, and Sellis 1998)
replaces the MBRs (Minimum Bounding Rectangles)
of the R-tree with MBBs (Minimum Bounding Boxes),
where the third dimension represents the time. Since
the MBB can cover a long period of time, the MBB can
be too large and this may spoil the search perfor-
mance. An attempt to avoid this problem (Pfoser,
Jensen, and Theodoridis 2000) introduces two new
indexes: STR-tree, which modifies the procedure that
builds the MBBs, and TB-tree, which splits the trajec-
tories into portions to produce smaller MBBs. Other
indexes, like the HR-tree (Nascimento and Silva 1998)
and MVR-tree (Tao and Papadias 2001), conceptually
store an R-tree for each timestamp. Those R-trees are
called versions and, to save space, several versions can
share nodes.

Grid-based indexes split the space into cells and
build a temporal index for each cell. SETI (Chakka,
Everspaugh, and Patel 2003), for example, indexes the
trajectories of each cell by time with an R*-tree.

A different approach is followed by the SEST-
Index (Gutiérrez et al. 2005; Worboys 2005), which

GEO-SPATIAL INFORMATION SCIENCE 3

uses two components: snapshots and logs. The snap-
shots are spatial indexes that record the positions of
the objects at regular timestamps. The log stores
“changes” (e.g. objects that appear or disappear at
some position) between consecutive pairs of
snapshots.

2.4. Combining compression and indexing

A few methods combine compression and indexing in
a single structure. TrajStore (Cudre-Mauroux, Wu, and
Madden 2010) divides each trajectory into sub-
trajectories, each of which is stored in a cell whose size
depends on the data distribution. Each cell contains
a temporal and a spatial index (a quadtree) with all the
sub-trajectories falling in the cell. TrajStore is a lossy
method, however, because each cell clusters its sub-
trajectories by similarity and only stores a representative
of each cluster.

SharkDB (B. Zheng et al. 2018) combines delta
compression and indexing. The time dimension is
split into fixed-length intervals. SharkDB scores one
point for each trajectory and interval of time. Those
points that belong to the same interval are stored as
a column of a column-oriented database. The columns
of SharkDB are encoded with delta compression.

GraCT (Brisaboa et al. 2019) and ContaCT (Brisaboa
et al. 2021) use the same architecture of the SEST-Index
(Gutiérrez et al. 2005; Worboys 2005), logs and snapshots,
but they compress the trajectories and support a larger
variety of queries. GraCT and ContaCT represent the
space as a tessellation of equal-sized squares (cells), and
assume that every object emits its position at regular time
instants. The snapshots are compact spatial indexes (k2-
trees (Brisaboa, Ladra, and Navarro 2014), a quadtree
variant) that store the location of all objects at regular
timestamps. The logs store the movements of objects
between snapshots. The main difference between
GraCT and ContaCT is the method to compress those
logs. GraCT compresses them with grammar compression
(Kieffer and Yang 2000), whereas delta compression is
applied in ContaCT. Instead of storing the consecutive
movements, however, ContaCT represents those differ-
ences using bitmaps and other compact data structures.
This enables ContaCT to compute several kinds of
queries in constant time, outperforming GraCT. The
grammar compression of GraCT, on the other hand,
exploits the repetitiveness of movements of objects (e.g.
ships tend to follow similar paths), whereas the delta
compression of ContaCT only exploits spatial locality.
On repetitive trajectories, then, GraCT obtains better
compression than ContaCT.

3. Background

This section presents different general concepts that
are needed to understand our contributions, and how

different compact data structures are combined for
compressing and indexing spatial information.

3.1. Operations over bitmaps

A bitmap or bitvector is an array whose elements are
valued at 0 or 1. There are two widely used operations
over bitmaps: rankbðB; pÞ computes the number of
times bit b appears in bitmap B until position p, and
selectbðB; iÞ returns the position of the i-th bit b in
bitmap B. Those operations can be computed in Oð1Þ
time by adding an additional structure of oðnÞ bits to
the n bits used by the bitmap B½1::n� (Munro 1996).
A related operation, select nextbðB; pÞ, returns the
position of the next bit b after position p in B.
Although it can be solved in Oð1Þ time using
select nextbðB; pÞ ¼ selectbðB; rankbðB; pÞ þ 1Þ,
a direct implementation of select next is as fast as rank
in practice (Navarro 2016).

When B is sparse, that is, when the number of 1-bits
m is much smaller than the total number of bits of the
bitmap, an alternative representation based on Elias-
Fano encoding (Okanohara and Sadakane 2007) uses
only m logðn=mÞ þ 2m bits in total, and answers rank
queries in time Oðlogðn=mÞÞ and select in Oð1Þ time.

3.2. Relative Lempel-Ziv

Relative Lempel-Ziv (Kuruppu, Puglisi, and Zobel
2010) (RLZ) is a dictionary-based technique from the
Lempel-Ziv family (Ziv and Lempel 1977, Ziv and
Lempel 1978, which compresses one sequence with
respect to another sequence called the reference. Let
R be the reference and S be an input sequence. RLZ
compresses S by using a Lempel-Ziv parse, where R
plays the role of the dictionary. That is, S is repre-
sented as a sequence of z phrases S ¼ w1w2 . . . wz ,
where every wi is the longest substring of R that is
a prefix of wi . . . wz. Each phrase wi is encoded with
a pair of values: a position in R where it occurs, and its
length jwij. For example, with S ¼ abracadabra and
R ¼ dabrac, S is represented with three phrases,
S ¼ w1w2w3, where w1 ¼ abrac (occuring at R½2::6�),
w2 ¼ a (at, say, R½2::2�), and w3 ¼ dabra (at R½1::5�Þ.
The RLZ representation of S with reference R is
then ð2; 5Þ; ð2; 1Þ; ð1; 5Þ.

An issue for RLZ is how to choose a reference from
a set of potentially similar sequences to compress. One
choice is to choose one such sequence as the reference,
in which case it is called a real reference. Instead,
artificial references can be built by combining
sequences from the set or even generating new ones.
One of the most powerful methods for building artifi-
cial references concatenates uniform samples of the
subsequences (Liao et al. 2016).

To succeed in generating the phrases, R must con-
tain every distinct symbol in S. Alternatively, it might

4 A. GÓMEZ-BRANDÓN ET AL.

be possible to specify a phrase formed by an explicit
symbol, or a short substring, without referencing R.

3.3. Range minimum/maximum queries

Given an array of integers A½1; n�, the range minimum
query rmqðA; i; jÞ returns the position of the leftmost
minimum in A½i::j�. Analogously, the range maximum
query rMqðA; i; jÞ computes the position of the left-
most maximum in A½i::j�. Interestingly, each of these
queries can be answered in Oð1Þ time with a structure
that uses only 2nþ oðnÞ bits and does not access A
(Ferrada and Navarro 2017; Fischer and Heun 2011).

ContaCT (Brisaboa et al. 2021) includes a structure
that solves both queries, rmq and rMq, within at most
3nþ oðnÞ bits. The structure uses rmq and rMq struc-
tures over the local minima and maxima, respectively,
whose positions are marked in a bitmap. After obtain-
ing the extreme local minimum and maximum, these
are compared with the values at the extremes of the
queried interval, A½i� and A½j�. Therefore, to solve the
query in Oð1Þ time, we need to store the array A or
a structure that retrieves its cells in Oð1Þ time.

3.4. The k2-tree

A k2-tree (Brisaboa, Ladra, and Navarro 2014) repre-
sents a binary matrix M of size s� s with a k2-ary tree,
built by recursively splitting M into k2 submatrices of
the same size. Thus, in each level, i the size of the
submatrices is s2=k2i cells. The algorithm starts by
splitting the matrix into k2 submatrices of size s2=k2,
each corresponding to a child of the root node. When
the submatrix is full of 0 bits, the node stores a 0-bit;
otherwise, it stores a 1-bit. The children of a node are
placed in Z-order. For example, in Figure 1, the four
children of the root node correspond to the first four
8� 8 submatrices, and as seen, the first and the third
submatrices in Z-order are represented with 0-bits
because they only contain 0-bits. For each node with
a 1-bit, we continue recursively splitting its submatrix
into k2 smaller submatrices. This procedure is

repeated until reaching a submatrix full of 0s or until
the submatrices are individual cells, whose contents
are also stored as bits. Therefore, every empty subma-
trix is encoded with only one node.

The tree is represented without using pointers,
using just two bitmaps, T and L. Bitmap T is the level-
wise concatenation of the bits of all the internal nodes,
whereas L stores the nodes in the last level (the cell
descriptions). The navigation of the tree is supported
by rank and select operations over T. Given a 1-bit at
position p in T, its k2 children are sequentially located
from position childrenðpÞ ¼ rank1ðT; pÞ � k2 of T : L,
which denotes the concatenation of T and L. The
parent of a node at position p of T : L is computed
as parentðpÞ ¼ select1ðT; p=k2Þ. For example, in
Figure 1, the position of the first child of the node at
T½3� is rank1ðT; 3Þ � 22 ¼ 8. Therefore, its children
are stored at T½8::11�. The parent of one of those
children, for example T½10�, is computed
as select1ðT; 10=k2Þ ¼ 3.

By traversing the tree, we can obtain different infor-
mation about the 1s in the matrix: in a top-down
traversal we can discern which 1s are within
a region, and from a leaf, we can obtain its position
in the whole matrix with a bottom-up traversal.

3.5. R-trees

The R-tree (Guttman 1984) is a classical spatial index
analogous to a B-tree. The variant that stores points is
a balanced multiary tree where the leaves store point
sets. Each subtree is summarized with its Minimum
Bounding Rectangle (MBR), that is, the smallest rec-
tangle containing all the points in its leaves. Each
internal node points to several subtrees and stores
their MBRs. To find all the points within a region,
we start from the root and recursively enter into every
subtree whose MBR intersects the region.

Although R-trees are dynamic and do not consider
compression, there is a static version (Brisaboa et al.
2013) where the nodes are compressed. Notice that
each MBR can be represented by two coordinates: the

Figure 1. Example of a k2-tree with k ¼ 2.

GEO-SPATIAL INFORMATION SCIENCE 5

bottom-left and the top-right corners. The com-
pressed version represents the bottom-left corner as
the difference with respect to the bottom-left of its
parent node. The top-right corner is encoded as the
difference from the bottom-left corner of the same
node.

Figure 2 shows an example of R-tree. The left
part shows the points and the MBRs of the nodes;
the right part shows the resulting R-tree. To find
all objects contained in the query window (or
region) Q, the algorithm only traverses the nodes
in gray, whose MBRs contain or intersect with Q.
In the leaves, the points are checked one by one
and added to the solution if they qualify. On the
bottom of the right part, we show how the corners
of node R6 are encoded.

3.6. Snapshots

As we presented in Section 2.4, GraCT and ContaCT
structures share a spatial index called a snapshot. The
snapshots are represented essentially as k2-trees.

We consider the space as a raster, that is,
a tessellation of equal-sized squares (cells). Therefore,
the locations where there are objects can be repre-
sented as a binary matrix having one bit per square
of the raster, that is, each 1-bit represents a cell with at
least one object. By using the k2-tree to store that
matrix, we also obtain an index over the positions
containing objects. In fact, the k2-tree can be seen as
a modern sophisticated version of a region quadtree
(Samet 1984). Observe in the left part of Figure 3 that
the space is represented as a raster with some cells with
objects. On that grid, we depict the quadrants of the
k2-tree (with k ¼ 2) shown on the right part. Recall
that the k2-tree is represented with just the bitmaps T
and L.

However, we also need to know which objects are
within each cell. That is, we need to label those 1-bits
of the matrix with the identifiers of the objects lying
within the corresponding cell. For this purpose, the
snapshot includes an array perm and a bitmap Q.
Those are filled by traversing the bitmap L from left
to right, and for each 1-bit in L, appending to perm the

Figure 2. Example of an R-tree and how its nodes are compressed.

Figure 3. Example of a snapshot, the steps followed to retrieve the objects within a region, and the location of a specific object.

6 A. GÓMEZ-BRANDÓN ET AL.

list ids of object identifiers that lie on the correspond-
ing cell, also adding to Q as many 1-bits as objects are
in ids minus 1, followed by a 0-bit. Therefore, the
objects that are within a leaf L½i� ¼ 1 can be located
in perm½l::r�, where l ¼ select0ðQ; rank1ðL; iÞ � 1Þ þ 1
and r ¼ select next0ðQ; lÞ. With this method, after tra-
versing the k2-tree, the objects within a region can be
efficiently identified. In our example, the cell (9,5) is
represented with the 1-bit at position 33 of L. This is
the second 1-bit of L, therefore, to check how many
objects are located in that cell, we search for the posi-
tion of the first 0-bit (obtained by subtracting 1 to 2,
where the 2 comes from the second 1-bit of L) in Q,
which in our case is at position 2. Then, we search
from the next position (3) until reaching a 0-bit. In our
case, there is one 0-bit at position 4, which indicates
that there are two objects (corresponding to positions
3 and 4 of Q) in the cell (9,5). In the same positions 3
and 4 of perm, we can obtain the identifiers of the
objects within the cell (9,5).

Given an object identifier, computing its location
requires detecting its leaf on the k2-tree, and traversing
the tree bottom-up. This requires identifying the posi-
tion of the object in perm. To avoid a linear search, the
snapshot includes a structure over perm (Munro et al.
2012) that uses nð1þP log2 nÞ additional bits and
computes the location of the object in perm in time
Oð1=PÞ, where n ¼ jpermj and 0<P � 1. Then, the
corresponding leaf of that object on the k2-tree is
computed with rank and select operations. Finally, by
traversing the k2-tree upwards, we can compute the
position of that leaf in the space. Therefore, computing
the location of an object takes Oð1=Pþ logk sÞ time.
In Figure 3, to obtain the location of object 1, the index
of this object in perm is computed: 6. It is the fourth
(rank1ðQ; 6 � 1Þ þ 1 ¼ 4) leaf with objects, and its
position in T:L corresponds to select1ðL; 4Þ ¼ 43.
From that position on, the algorithm traverses the
tree up to the root (underlined 1-bits) by running
parent operations. Since each node determines
a specific submatrix, the path of the traversal deter-
mines the position of the object.

To obtain the objects within a region, the algorithm
starts looking for the leaves of the k2-tree whose labels are
1-bits and that are within the queried region. Those
leaves can be computed by traversing the k2-tree from
the root following the nodes whose regions overlap the
query area. For each leaf obtained, the algorithm com-
putes its range perm½l::r� of and adds those objects to the
solution. For example in Figure 3, to obtain the objects
within the region hð8; 5Þ � ð11; 9Þi, starting at the root
of the tree, we traverse the tree with children operations
through those 1-bits (the shadowed positions of T and
L), which represent regions with objects that intersect or
are contained within the queried region. Finally, we
detect that the sixth element of L (at position 33) is the

only leaf with objects within the region, and its corre-
sponding range is perm½3::4� ¼ 4; 5. Hence, 4 and 5 are
the identifiers of the objects within the region.

Since the range and values of perm are computed in
constant time, the total time for a query of area p� q
retrieving occ objects is Oðpþ qþ ðoccþ 1Þk logk sÞ
(Navarro 2016, Sec. 10.2.1).

3.7. Compact data structures for trajectories

The same snapshots are used by both GraCT and
ContaCT. The difference between them is in the way
the log is compressed. Recall that the log stores the
movements between snapshots.

3.7.1. GraCT
To compress the logs GraCT exploits the repetitive-
ness of the movements by compressing the log with
RePair (Larsson and Moffat 2000), a grammar
compressor.

In the upper part of Figure 4, we can see the original
trajectory. The first step for compressing the log is to
translate the original trajectory into a sequence of
differences. That is, the first position of the object is
stored in absolute coordinates, and the rest as differ-
ences with respect to the previous position. Thus, the
object’s position at t0 is represented as (0,1), and its
position at t1, which in absolute coordinates is (1,0), is
represented as ðþ1; � 1Þ. These relative coordinates
are the symbols that RePair will compress.

Now, observe in Figure 4, in the middle part, that
GraCT adds the snapshots at regular intervals of time.
The first snapshot stores the first position in absolute
coordinates, and the rest of the relative coordinates are
processed following the RePair algorithm.

From the sequence of relative coordinates, RePair
takes the most frequent pair of consecutive symbols
(relative coordinates in this step). Those occurrences
are replaced by a new symbol, and a rule is added to
the grammar to keep a record of that substitution. In
our example, there are five occurrences of the pair of
symbols hðþ2;þ1Þ; ðþ1;þ1Þi, RePair replaces the five
occurrences by a new symbol A, and adds a rule
A! ðþ2;þ1Þ; ðþ1;þ1Þ to the grammar. This pro-
cess continues as long there are two or more appear-
ances of a pair of symbols, considering original and
new symbols. For example, in our case, we assume that
the pair hA;Bi appears more than once (the figure
only displays part of the trajectory) and thus, all
appearances of hA;Bi are replaced by C, and the cor-
responding rule C! AB is added to the grammar.

At the end, the compression produces a sequence of
symbols composed of two types of symbols: terminals
and nonterminals. Terminals are the original symbols
that were not replaced, whereas nonterminals are the
new symbols defined by the grammar. For example,

GEO-SPATIAL INFORMATION SCIENCE 7

the log of Figure 4 contains three nonterminals: A, B,
and C. Observe that nonterminals represent two or
more consecutive movements, for example, in
Figure 4, B replaces two movements: moving one
position to the right and one position up, and then,
one position to the right.

GraCT enriches the basic rules of RePair with addi-
tional information. For each nonterminal, it stores #t,
the number of movements; ðx; yÞ, the total relative
displacement in coordinates of those movements;
and mbr, the relative MBR that encloses all the move-
ments of the nonterminal. The nonterminal C in
Figure 4 includes the nonterminals A and B, and
corresponds to four movements. Applying the move-
ments of C is equivalent to moving five positions right
and three up. Finally, the relative MBR enclosing its
movements is mbr ¼ ð0; 0;þ5;þ3Þ.

With the extra information, GraCT avoids the
decompression of some nonterminals. For example,
in Figure 4, to retrieve the position at time instant t6,
the algorithm starts by retrieving the position of the
object from the snapshot S0. Then, it traverses the log,
until the symbol that contains the information at t6.
During that traversal, the algorithm adds the move-
ments to the previous computed position. In the
example, after obtaining the position ð0; 1Þ at t0 from
S0, the algorithm adds the first movement ðþ1; � 1Þ to
ð0; 1Þ. The result ð1; 0Þ is the position at t1. Then, the
positions at t2 and t3 are computed as ð1; 0Þþ
ðþ2;þ1Þ ¼ ð3; 1Þ and ð3; 1Þ þ ðþ1; � 1Þ ¼ ð4; 0Þ,
respectively. The next entry from the log is
a nonterminal representing #t ¼ 2 movements, thus

that entry has information about the time interval
½t4; t5�. Since it does not reach t6, we can directly
compute the position of the object at t5 by adding
the information of the rule ðx; yÞ ¼ ðþ3;þ2Þ to
ð4; 0Þ, whose result is ð7; 2Þ. The next entry of the log
covers ½t6; t7�. Since that interval contains t6, the sym-
bol A has to be decompressed using its rule in the
grammar, in this case, A! ðþ2;þ1Þ; ðþ1;þ1Þ. The
first element corresponds to t6 and thus it gives us the
movement of the object for t6, that is, the position at t6
is ð7; 2Þ þ ðþ2;þ1Þ ¼ ð9; 3Þ.

Similarly, GraCT can compute the rectangular area
where an object moves during a time interval repre-
sented by a nonterminal. For example, we know that
the position at t3 is ð4; 0Þ and the next symbol is the
nonterminal A, whose time interval is ½t4; t5�. By add-
ing ð4; 0Þ to the mbr of the rule ð0; 0;þ3;þ2Þ, we
know that the MBR that covers the movements of
that object in ½t4; t5� has its bottom-left corner at
ð4; 0Þ þ ð0; 0Þ ¼ ð4; 0Þ and its top-right corner
at ð4; 0Þ þ ðþ3;þ2Þ ¼ ð7; 2Þ.

Those tricks avoid sometimes decompressing non-
terminals, thus speeding up queries. This enables
GraCT to achieve time performance comparable to
classic spatio-temporal indexes. The main feature of
this structure, however, is its good compression ratios
on highly repetitive datasets.

3.7.2. ContaCT
ContaCT stores the log movements by using delta
compression, but its approach is completely different
from the classic one. Instead of storing the

Figure 4. Example of GraCT for an object trajectory. The snapshots and logs are represented with triangles and arrays, respectively.

8 A. GÓMEZ-BRANDÓN ET AL.

displacements between pairs of timestamped positions
as a pair of integers, it represents those differences by
using two bitmaps for each dimension. Let us define
a dimension as D 2 fX;Yg, and two bitmaps Dp and
Dn. The bitmap Dp stores the positive displacements in
dimension D, and Dn the negative displacements. For
each positive displacement of c cells, it appends c
0-bits and one 1-bit to Dp, and a 1-bit to Dn.
A negative displacement of c cells appends c 0-bits
followed by a 1-bit to Dn, and appends one 1-bit to
Dp. A zero displacement is represented with a 1-bit in
Dn and a 1-bit in Dp.

Observe, in the upper part of Figure 5, the array of
differences of an object trajectory, with the first posi-
tion in absolute coordinates. The process of obtaining
the bitmaps of ContaCT is depicted below for the Y
coordinate. First, the values of the Y are extracted in
the Y array. Then two arrays are created, Yp for the
positive differences and Yn for the negative differ-
ences. For example, in t1, the Y array contains a � 1,
thus the corresponding position of Yp is 0, and in Yn,
there is a 1. Finally, in the bitmap version of Yp and Yn,
in each entry, there are as many 0-bits as the value
stored in the integer version of the array, plus a 1-bit.
For example, in t1, Yn stores a 1, thus in the bitmap
version there is a 01.

This technique makes it possible to compute the
position of an object in constant time. In order to
compute the cumulative movement from t0 to ti, the
algorithm only needs to compute the number of 0-bits
in the positive bitmap until the i–th 1-bit and subtract
the number of 0-bits in the negative bitmap until the
i–th 1-bit, for each dimension. Therefore, the cumu-
lative movement until ti in dimension D is computed
as select1ðDp; iÞ � select1ðDn; iÞ. ContaCT keeps in Fid

the initial position of the object id, so by adding the
cumulative displacement to that value, we obtain the
position at ti.

At the bottom of Figure 5, we illustrate the com-
plete ContaCT structure for the trajectory and how we
can obtain the cumulative movement until t6.
Basically, this is the number of 0-bits in Xp until t6

(9), minus the number of 0-bits in Xn until t6 (0), this
can be computed in constant time as
select1ðXp; 6Þ � select1ðXn; 6Þ ¼ 14 � 5 ¼ 9. For the
Y coordinate, the process is analogous,
select1ðYp; 6Þ � select1ðYn; 6Þ ¼ 9 � 7 ¼ 2. Therefore,
the cumulative movement is ð9; 2Þ and by adding it
to Fid, we obtain the position of the object at t6 in Oð1Þ
time.

Notice that the position of the object is not
obtained from a snapshot, but instead from Fid, thus

Figure 5. Example of ContaCT for an object trajectory. The snapshots and logs are represented with triangles and arrays,
respectively.

GEO-SPATIAL INFORMATION SCIENCE 9

avoiding the traversal of the k2-tree. The structure that
obtains the position of an object in perm is then not
required.

In addition, ContaCT uses one rmq and rMq struc-
ture for the local minima and maxima, respectively,
and the bitmap that marks the positions where the
local minima and maxima occur. This structure is
replicated for each dimension. Since ContaCT can
compute those positions in constant time, the mini-
mum and maximum values can be computed in con-
stant time for each dimension, thus making it possible
to obtain the MBR of an object between two time
instants also in Oð1Þ time.

4. Queries

We now present the queries supported by GraCT and
ContaCT in the literature (Brisaboa et al. 2019, 2021);
we will expand this set with new queries in subsequent
sections. We define a trajectory of n movements of an
object id as T id ¼ fht0; p0i; ht1; p1i; . . . ; htn; pnig,
where each pair hti; pii stores the position pi of the
object id at time instant ti. We classify the queries into
three groups: trajectory, spatio-temporal, and nearest
neighbor queries.

4.1. Trajectory queries

This group includes three kinds of queries, all of which
are related to obtaining some information from the
original set of trajectories.

The first query of this group is Object position,
which computes the position of a specific object at
a given time instant tq.

Definition 4.1. Given an object identifier id and
a specific time instant tq, the object position query
computes the location pq such that htq; pqi 2 T id.

An extension of Object position is Object trajectory,
which instead of computing the position at a specific
time instant, computes all the positions of the object
during an interval of time ½tb; te�.

Definition 4.2. Given an object identifier id and a time
interval ½tb; te�, the object trajectory query computes the
sequence of locations hti; pii 2 T id such that
tb � ti � te, in increasing order of ti.

In GraCT, the object position query requires
Oðlogk sþ δ þ log nÞ time in the worst case, where δ
is the distance between snapshots. Instead, ContaCT
solves it in Oð1Þ time. Both require Oðte � tbÞ addi-
tional time for an object trajectory query.

A non-classical query for structures that compress
trajectories is computing the MBR of the trajectory of

an object during an interval of time ½tb; te�. This query
is quite useful for obtaining summary information
about the path followed by an object between tb and
te, without computing its whole trajectory.

Definition 4.3. Given an object identifier id and a time
interval ½tb; te�, the MBR query returns the smallest
rectangular area R such that, for every element
hti; pii 2 T id where tb � ti � te, it holds that pi 2 R.

In ContaCT, this query can be solved in Oð1Þ time by
using rmq and rMq structures. Instead, GraCT
requires Oðlogk sþ ðte � tb þ δÞ þ log nÞ time in the
worst case, because it may need to extract the whole
trajectory from tb to te (though in practice it can skip
most nonterminals using the mbr fields).

4.2. Spatio-temporal queries

Spatio-temporal queries identify those objects that
satisfy a spatio-temporal constraint, like being within
a region during an interval of time. This group
includes the typical queries supported by methods
that focus on indexing trajectories (Section 2.3) and
methods like TrajStore and SharkDB.

The simplest query, Time Slice, retrieves the objects
within a region rq at a time instant tq.

Definition 4.4. Given a region rq and a time instant tq,
the time slice query returns the set of object identifiers
O, such that, for each id 2 O, there exists a pair
htq; pqi 2 T id where pq 2 rq.

The query Time Interval extends Time Slice so that the
queried time instant tq becomes an interval ½tb; te� of
time.

Definition 4.5. For a given region rq and a time interval
½tb; te�, the time interval query returns the set of object
identifiers O, such that, for each id 2 O, there exists at
least one pair hti; pii 2 T id where tb � ti � te and
pi 2 rq.

4.3. Nearest neighbour queries

Nearest neighbor queries compute the objects closest
to a spatial geometry (such as a point or a line).
Systems that index trajectories with R-trees (MVR-
tree, SETI, Trajstore, SharkDB) are efficient at com-
puting the K objects closest to a given position at
a given time instant. This is the only nearest neighbor
query supported by GraCT and ContaCT.

Definition 4.6. The K-nearest neighbour query for
a point pq at time instant tq returns a set O of objects

10 A. GÓMEZ-BRANDÓN ET AL.

such that jOj ¼ K and dðpq; id1Þ � dðpq; id2Þ for any
objects id1 2 O and id2O, where dðpq; idÞ is the
Euclidean distance from point pq to the position of
object id at time instant tq (i.e. such that hpq; tqi 2 T id).

GraCT and ContaCT can efficiently handle the three
types of queries: trajectory, spatio-temporal, and near-
est neighbor. The other indexes are only efficient in
running one or two types of queries. This is
a consequence of the architecture of GraCT and
ContaCT: they explicitly represent trajectories of
objects with the log, which allows solving trajectory
queries, and they are equipped with spatial indexes
(snapshots) at regular time instants, which help in
solving the spatio-temporal and nearest neighbor
queries. The MVR-tree, for example, stores an R-tree
per time instant, which solves spatio-temporal and
nearest neighbor queries fast, but recovering the tra-
jectory of a given object is costly.

5. Supporting complex nearest neighbor
queries

In this section, we introduce two new more sophis-
ticated nearest neighbor queries not supported in
the original GraCT and ContaCT articles: KNN of
trajectories and KNN during an interval. We show
how the data structures already present in both
GraCT and ContaCT can be used to solve these
sophisticated queries: First, the spatial index (snap-
shot) is able to prioritize the objects according to
a distance bound. Second, both structures can
implement an operation refine that shrinks the pre-
vious bound to a tighter one.

5.1. KNN of trajectories

Given a query trajectory T q, our goal is to obtain the
K trajectories that are closest to it during an interval
of time ½tb; te�. We then obtain a list of objects whose
trajectories during ½tb; te� are closest to T q. There are
various choices in the literature to define a closeness
(or similarity) measure between trajectories. The
simplest measures assume that the points are already
aligned and are variants of averaging the Euclidean
distances between the corresponding points (Su et al.
2020). More sophisticated variants enable varying the
alignment between the points of both trajectories.
For example, the edit distance (EDR) (Chen, Özsu,
and Oria 2005) computes the number of “edits”
needed to transform one trajectory to the other,
where the cost of substituting one point by another
may be their Euclidean distance in space. Dynamic
time warping (DTW) (Berndt and Clifford 1994) is
a variant of the latter that allows a single point in one
trajectory to align with many of the others. The

Discrete Fréchet distance (DFD) (Eiter and Mannila
1994), instead, measures the maximum Euclidean
distance between the aligned points. It can be
regarded as an adaptation of the Hausdorff distance
(Hausdorff 2005) to trajectory points, and has
become a standard measure of distance between two
parametric curves.

We choose a simplification of the DFD that
suits our scenario where the points are already
aligned. This becomes simply the farthest distance
between all the (already aligned) points along the
time interval. Such a definition is also connected
with variants of the Euclidean distance that take
the Lp-norm over the distances between the
aligned points (Su et al. 2020); while the classic
Euclidean distance uses L1, our definition corre-
sponds to using L1. Besides its support in the
literature, an algorithmic advantage of this defini-
tion is that we can easily compute the lower and
upper bounds of the maximum distance by using
the MBR of the trajectory, and these bounds can
be progressively refined by successively splitting
the trajectory into sub-trajectories and using
their MBRs. Note that the DFD measure does
not depend on some of those MBRs (e.g. an
MBR whose maximum distance to the trajectory
is smaller than the current lower bound). We can
then focus on the parts of the trajectory that can
contain the maximum distance and avoid further
splitting the sub-trajectories that cannot. Instead,
using a similarity measure that sums or averages
the pointwise distances forces us to consider every
point. Indeed, various techniques that build on
sums of distances allow returning approximate
answers in order to perform efficiently, for exam-
ple, PDTW (Keogh and Pazzani 2000), STLCSS
(Vlachos, Kollios, and Gunopulos 2002), and
STLC (Shang et al. 2017). Instead, we always find
the correct KNN answers under our distance.

Definition 5.1. The K-Nearest neighbour of trajectories
for a given trajectory T q at time interval ½tb; te� returns
a set O of objects such that jOj ¼ K and
dmaxðT q; T 1Þ � dmaxðT q; T 2Þ for the trajectory T 1 of
any id1 2 O and T 2 of any id2O, during ½tb; te�. We
denote with dmaxðT q; T iÞ the maximum Euclidean dis-
tance between two trajectories, dmaxðT q; T iÞ ¼ max
fdðpk; pjÞ; hpk; tli 2 T q; hpj; tli 2 T i; tl 2 ½tb; te�g.

The idea to solve this query without comparing
the trajectory of every object with T q is to prior-
itize both the traversal of snapshots toward pro-
mising objects and the precise computation of the
trajectories of the objects so that we only compute
as much as necessary to identify the K closest
trajectories. To compute priorities efficiently, the

GEO-SPATIAL INFORMATION SCIENCE 11

algorithm uses just the MBRs of trajectories to
compute a range ½l; h� where the maximum dis-
tance between both trajectories must lie.

GraCT and ContaCT implement the same algo-
rithm, though they differ in the way the MBRs are
computed and refined. In general terms, we
divide our exposition into two parts: prioritizing
the objects using the snapshots and refining the
object distance bounds. Algorithm 1 gives the
pseudocode.

5.1.1. Prioritizing the objects using the snapshots
We take advantage of the hierarchical structure of
the k2-tree representing the snapshots, to sort the
objects according to their chances of being close
to T q. The objects to be prioritized are obtained
from the snapshots in the interval ½tb; te�, that is,
the snapshots from the time instant tb=δ � δ to
te=δ � δ, where δ is the number of time instants
between snapshots. The idea is to process first the
k2-tree nodes that are closer to T q, independently
of their depth in the k2-tree.

The algorithm builds a priority queue Qglobal
where each element, called a header, is a triple
hn; l; hi. The term n is a k2-tree node and ½l; h� is
a range bounding the maximum distance between
T q and any object in the region of n. Qglobal is
a min-heap sorted by l and the ties are broken by
h. We know the maximum speed M at which an
object moves in the dataset and use it to compute
½l; h� by expanding the area of n in all directions at
the maximum speed, and then comparing the
expanded region with the MBR of T q.

Let R be the region defined by n. The snapshot gives
the position of the objects in a given time instant, say
τ. Since every object moves at most c ¼ ðte � τÞ �M
cells on every direction from time instant τ to te, an
object within R ¼ ½x1; y1� � ½x2; y2� at τ can only move
within the expanded region R0 ¼ ½x1 � c; y1 � c��
½x2 þ c; y2 þ c�. Hence, we define l and h as the mini-
mum and maximum distances, respectively, between
R0 and the MBR of T q. When the query spans several
snapshots, the range ½tb; te� intersects with the area
covered by the log of each snapshot when performing
this computation.

Algorithm 1: KNNTrajectory (K, T q, tb, te)

12 A. GÓMEZ-BRANDÓN ET AL.

The process then starts by adding the roots of the
k2-trees of all the snapshots involved in the query; see
lines 1–5 of Algorithm 1, where distances computes
the described distance estimation between T q and k2-
tree nodes. The nodes whose objects are estimated to
have more chances to be closer to T q are at the top of
Qglobal. We thus traverse the internal nodes of all the
involved snapshots by popping the elements from
Qglobal, and reinserting the children of the extracted k2-
tree nodes (lines 7–12). It is then more likely that we
reach sooner the k2-tree leaves that contain the objects
whose trajectories are closer to T q.

5.1.2. Refining the object distance bounds
Once the children of a node extracted from Qglobal are
leaves, we do not reinsert those leaves into Qglobal, but
rather extract the objects associated with each leaf
(lines 14–16; the objects are id 2 e:objects) and insert
those. This means that Qglobal has not only headers
associated with k2-tree nodes but also with objects.
Those objects are also associated with an MBR,
which is not anymore bounded using the maximum
speed, but with data from their actual trajectory, which
is stored in id:traj. In principle, function init initially
computes the MBR of the trajectory during ½tb; te�

using the mbr query provided by GraCT or
ContaCT, and uses it to provide a range ½lnew; hnew� of
maximum distances to the MBR of T q.

As the algorithm progresses, the trajectory of the
object will be successively split along time intervals to
provide a better estimation and id:traj will become
a max-heap of pieces of this trajectory. Each element
of id:traj contains the minimum (dmin) and maximum
(dmax) distance between the MBR of the object during
some interval ½ti; tj� � ½tb; te� and the MBR of T q at the
same interval. The exact partitioning into intervals in
the beginning (init) and after successive refinements
(refine) depends on the log used (GraCT or ContaCT);
we will describe them later.

The queue id:traj is sorted by dmax, and the ties are
broken with dmin. That is, we locate on top of the
queue the time interval most likely to contain the
point of the trajectory of id that is farthest from T q.
The top of id:traj is used to compute the range ½l; h�
with which the header is prioritized in Qglobal.

Lines 18–23 show how we process object headers.
We first examine the next header in Qglobal. If the
maximum bound h of the current object does not
exceed the minimum bound l0 of the next header, we
can be sure that the current object is the next result,
and include it in the result. Otherwise, we refine the
trajectory estimation of the current object e. This is
done by partitioning the top trajectory interval in
e:traj into smaller subintervals, whose upper-bound
distances to T q will be tighter, and reinserting them
into e:traj. This is done by the function refine, which

provides a new estimation ½lnew; hnew� that is used to
reinsert the object in Qglobal.

5.1.3. Computing the MBR of the input trajectory
Along the algorithm, we need to compute MBRs of the
input trajectory T q between arbitrary time instants
½ti; tj�. We then start the query by preprocessing T q

so as to build range minima and maxima (rmq and
rMq) query structures (Ferrada and Navarro 2017;
Fischer and Heun 2011) on the values of T q along
each axis (X and Y), in time OðjT qjÞ. We can then
compute any MBRðT q; ti; tjÞ in constant time as

½X½rmqðX; ti; tjÞ�;Y½rmqðY; ti; tjÞ�

� ½X½rMqðX; ti; tjÞ;Y½rMqðY; ti; tjÞ�:

5.1.4. GraCT
Let S ¼ fs1; s2; . . . ; stg be the symbols of the log cover-
ing ½tb; te�. In GraCT, we can compute in constant time
the MBR of each sr 2 S, either from a single movement
(if sr is a terminal) or else from the mbr data we store
for sr. Let sr span times ½ti; tj�. We compute the mini-
mum and maximum distances, dmin and dmax, between
the MBR of sr and MBRðT q; ti; tjÞ. This is stored in
a tuple hti; tj; dmin; dmax; pi� 1; sri, where pi� 1 is the
object position at time ti� 1. The init operation adds
all those tuples to the priority queue id:traj, and
returns the values hnew and lnew as the maximum
dmax and dmin values, respectively, of all those tuples.

Since id:traj is a max-heap sorted by dmax, h is
always the dmax value on top of the queue, so it can
be computed in Oð1Þ time. Instead, the value of l can
be located in another position of the queue. To avoid
traversing the queue looking for the maximum dmin,
we use another max-priority queue sorted the dmin
values, and synchronized with id:traj. That arrange-
ment allows us to compute l in Oð1Þ time as well.

Once id:traj is initialized, every time we call refine,
it takes the tuple on top of the queue. If the tuple has
tj ¼ ti, we have obtained the exact maximum distance
of the object to T q. Otherwise, the tuple refers to
a nonterminal sr and we apply the corresponding
rule to expand it. The tuple is then split into two that
cover time intervals ½ti; tm� and ½tmþ1; tj�. After obtain-
ing the MBRs associated with those intervals, their
dmin and dmax values are computed with respect to
MBRðT q; ti; tmÞ and MBRðT q; tmþ1; tjÞ, respectively,
and reinserted in id:traj.

For example, in Figure 6, the first step takes the
tuple ht9; t12; 10; 6; ð10; 6Þ;Ci. We observe that sr ¼ C
and C! A;B, and A has #t ¼ 2, ðx; yÞ ¼ ðþ3;þ2Þ
and mbr ¼ ð0; 0;þ3;þ2Þ. Since A lasts two move-
ments, the new tuples cover the intervals ½t9; t10� and
½t11; t12�. For the first one, the previous position is still
ð10; 6Þ, and for the second one, the previous position
is ð10; 6Þ þ ðþ3;þ2Þ ¼ ð13; 8Þ. Then, the MBR of

GEO-SPATIAL INFORMATION SCIENCE 13

each new tuple can be computed by adding those
previous positions to the stored mbr for A and B,
respectively. With those MBRs, the distances of the
tuples are computed. Notice that our Tq is a horizontal
line in y ¼ 0, thus its MBR covers all the cells at y ¼ 0.
For the first new tuple the distances are dmin ¼ 6 and
dmax ¼ 8, and for the second they are dmin ¼ 8 and
dmax ¼ 9. The new values for hnew and lnew are 9 and 8,
respectively.

5.1.5. ContaCT
ContaCT can compute arbitrary MBRs in constant
time, which simplifies the implementation of init and
refine. In principle, init could initialize id:traj with
a single entry relating MBRðid; tb; teÞ and
MBRðT j; tb; teÞ, computing dmin and dmax from those.
However, the time interval ½tb; te� can cover several
snapshots, so init must insert one tuple for each. For
each involved snapshot starting at time τ, it computes
the distances dmin and dmax between the MBRs of id
and T q within times ½maxðτ; tbÞ;minðτ þ δ � 1; teÞ�.

The mechanics are then exactly as for GraCT,
except that the tuples stored have the form

hti; tj; dmax; dmini. To apply refine on such a tuple, the
algorithm divides it by half, tm ¼ ðti þ tjÞ=2. For each
half the algorithm computes its MBR and the values
dmax and dmin with respect to T q, all in constant time.

Figure 7 shows an example. After the init operation
we compute the MBR during ½t0; t12�with dmin ¼ 1 and
dmax ¼ 9. With refine, that tuple is split into the inter-
vals ½t0; t6� and ½t7; t12�. According their MBRs we
obtain the distances dmax ¼ 5 and dmin ¼ 1, and
dmax ¼ 9 and dmin ¼ 5, respectively. Therefore, the
new tuples are ht0; t6; 5; 1i and ht7; t12; 9; 5i, and the
new boundaries for the maximum distance are l ¼ 5
and h ¼ 9.

5.2. KNN during an interval

In this kind of query, we compute the K objects
whose trajectories during an interval of time ½tb; te�

are the closest to a given point pq. The distance
between a trajectory and pq is defined as the mini-
mum distance to pq at any time instant t 2 ½tb; te�.
This distance measure was applied in previous
works and applications. For example, in applications

Figure 6. Example of GraCT for KNN of trajectories. The queues below the structure represent the different steps and states of
id:traj.

14 A. GÓMEZ-BRANDÓN ET AL.

that study animal habits (Gao et al. 2007) and in
social networks where users want to plan a trip
based on routes of friends that visit their points of
interest (Tang et al. 2011).

Definition 5.2. The K-Nearest neighbour of an interval
½tb; te� with respect to a point pq returns a set O of
objects such that jOj ¼ K and dminðpq; T 1Þ �

dminðpq; T 2Þ for any trajectory T1 of id1 2 O and T 2

of id2O, during ½tb; te�. We denote dminðpq; T iÞ

¼ minfdðpq; pkÞ; hpk; tli 2 T i, tl 2 ½tb; te�}.

This query is similar to that of Section 5.1, with two
differences:

● The distance is computed with respect to a point
pq, instead of a trajectory T q.

● This query finds the minimum distance of the
objects to pq during the interval of time ½tb; te�,
instead of the maximum distance to T q.

The algorithm is then similar to the one of
Section 5.1, but instead of computing the maximum
distance to the input spatial data (point or trajectory),
we compute the minimum distance. The previous
algorithm then undergoes some modifications:

● Each id:traj is transformed to a min-heap where the
tuples are sorted by the minimum distance dmin

Figure 7. Example of ContaCT for KNN of a trajectory. The right part represents the different steps and states of id:traj.

Figure 8. Average time and compression ratios for KNNTrajectory and KNNInterval.

GEO-SPATIAL INFORMATION SCIENCE 15

from the MBR to pq, and the ties are broken with
dmax. By splitting the top tuple of id:traj, we focus
on the interval of time where the object has more
chances to be closer to pq.

● We now have the tuple with the smallest dmin on
top, thus we can compute l in Oð1Þ time, but now
we cannot compute h in Oð1Þ time. Analogously
to Section 5.1, we synchronize another min-heap
priority queue with id:traj, which stores the
values of dmax. We can then compute h in Oð1Þ
time as well.

● Qglobal is still a min-heap storing tuples hn; l; hi
sorted by l and breaking ties with h. As we now
look for the minimum distance, however, ½l; h�
now bounds the minimum distance between pq

and the MBR of n. If n is an object, l and h are the
minima over the dmin and dmax values of all the
trajectory segments, respectively.

● Since we are comparing the distance to a point
pq instead of a trajectory T q, we do not need the
rmq and rMq structures for computing MBRs on
Tq.

5.3. Analysis

It is not easy to give meaningful worst-case time guar-
antees on KNN algorithms, because an adversarial setup
where all the objects are at almost the same distance to
the query forces the algorithms to inspect nearly every
object in the dataset; this is known as the “curse of
dimensionality” (Chávez et al. 2001). A useful concept
for this kind of algorithm is range optimality (Böhm,
Berchtold, and Keim 2001; G. Hjaltason and Samet
2000), which states that an algorithm retrieving the K
nearest neighbors performs the same amount of work as
the canonical range-search algorithm that finds all the
objects at distance d from the query, where d is the
distance between the query and its K-th nearest
neighbor.

G. Hjaltason and Samet (2000) and G. R. Hjaltason
and Samet (2003) described a generic KNN search
algorithm that works on any hierarchical data struc-
ture and is range-optimal (with respect to that data
structure). The algorithms we have described in this
section follow their generic scheme and are therefore
range-optimal.

The hierarchy in our case corresponds to the com-
position of the k2-tree and then the recursive parti-
tioning of the trajectory into subtrajectories. In other
words, if we had to traverse our data structure in order
to find all the trajectories at distance d from our
(trajectory or point) query, we would have to traverse
exactly the same nodes of the hierarchy. The multi-
plicative overhead with respect to the range-search
algorithm is the Oðlog nÞ time incurred by manipulat-
ing the heaps, plus the time to compute the MBR

queries. This is variable for GraCT and constant for
ContaCT, as described.

5.4. Experimental evaluation

We now experimentally evaluate the performance of
the new KNN queries on GraCT and ContaCT. We
modified their original C++ implementations and
used some components of the SDSL library1 (Gog
et al. 2014). There are two possible implementations
for ContaCT, where the bitmaps Dp and Dn are repre-
sented either in plain form or using a representation
for sparse bitmaps called sdarray (Okanohara and
Sadakane 2007), depending on the magnitude of the
differential values. The structure that uses plain bit-
maps is labeled as ContaCT, and the one with sparse
bitmaps is called ContaCT-SD.

The experiments were run on an Intel CoreTM i7–
3820 CPU @ 3.60 GHz (4 cores) with 10MB of cache
and 64 GB of RAM, running Debian GNU/Linux 9
with kernel 4.9.0–8 (64 bits), gcc version 6.3.0 with -
O3 optimization.

5.4.1. Datasets
We used the four datasets originally used to evaluate
ContaCT (Brisaboa et al. 2021), formed by three real
and a pseudo-real one:

● Ships: a real dataset that contains the coordinates
of 4,461 vessels traveling within the UTM Zone
10 during one month of 2017. The original data
can be obtained from MarineCadastre.2

● Planes: real flight data of 2,263 aircrafts from 30
different airlines between 30 European airports.
Altitude is not considered, only latitude and
longitude are represented in our dataset. The
original data can be obtained from OpenSky
Network.3

● Taxis: a pseudo-real dataset containing trajec-
tories of 24 taxis in New York City during 2013.
Since the original dataset only includes the origin
and destination of each trip, the trajectory was
computed as the shortest path between them by
taking into account the road network. The origi-
nal data are available at NYC Taxis: A Day in the
Life.4

● Ciconia: a small and non-repetitive real dataset of
88 white storks traveling between Europe and
North Africa from 2013 to 2019. The original
data can be obtained from MoveBank Data
Repository (Cheng et al. 2019; Flack, Fiedler,
and Wikelski 2016).

Those datasets are preprocessed as in previous
work (Brisaboa et al. 2021). The trajectories are stored
in a plain text file composed of four columns: object
identifier, time instant, x coordinate, and y coordinate.

16 A. GÓMEZ-BRANDÓN ET AL.

The features of each of our datasets are shown in
Table 1. We show the size of the binary representation
of each dataset, that is, by using the number of bytes
required for each column. The last row is the size after
compressing the binary representation with p7zip and
gives us an idea of how repetitive the data is. We
observe that p7zip compresses the data to 10–30% of
its binary representation.

5.4.2. Time performance
In our first experiment, we implement the algorithms
of KNN of trajectories (KNNTrajectory) and KNN
during an interval (KNNInterval) on GraCT,
ContaCT, and ContaCT-SD. All those structures are
configured with four different distances δ between
snapshots: 30, 60, 120, 240, 360, and 720. For each
type of query, we ran 1; 000 different queries and
computed the average user time. In both cases, K is
a random value between 1 and 50. The queried interval
covers 200 time instants. Additionally, we designed
brute force algorithms for solving both KNN queries.
They go through all the trajectories computing the
distances of each timestamped position with respect
to the input trajectory or point and sorting them
according to minimum/maximum distance by using
a min-heap. The K first trajectories of that heap will be
the solution of the query.

In Figure 8, we can observe as ContaCT and
ContaCT-SD are much faster than GraCT at solving
KNNTrajectory queries. Comparing the least-space
configuration of ContaCT or ContaCT-SD with the
fastest configuration of GraCT, we see that ContaCT is
2:9 times faster on Ships, and ContaCT-SD is 4:3 times
faster on Planes, 2:3 on Taxis, and 1:7 on Ciconia. This
is because ContaCT avoids the linear traversals of the
log performed by GraCT, in order to retrieve the
symbols and add them to the priority queue. The
number of elements in the priority queue of each
object is also smaller in ContaCT than in GraCT.
This is more noticeable on Ships, the only case where
GraCT is slower than the brute force algorithm.
Instead, the ContaCT variants outperform the brute
force algorithm when solving KNNTrajectory, being 3
times faster on Ships and 8.4 on Planes.

The results for the KNNInterval queries are
similar, but we observe an improvement in time
performance. This is because the query is simpler

and does not compute MBRs on an input trajec-
tory. Since GraCT initializes the queue with more
elements, the improvement with respect to
KNNTrajectory is more evident, and now the
three structures outperform the brute force algo-
rithm. In the dataset where the brute force algo-
rithm is closer to the performance of the three
structures (Ships), we observe that GraCT is 1:5,
ContaCT is 3:2, and ContaCT-SD is 3 times faster.

Although ContaCT is significantly faster than
GraCT, it generally uses much more space. Except
on Ciconia, in the tested datasets with δ ¼ 720,
GraCT uses 40–80% of the space of ContaCT. This
difference is due to the ability of GraCT to exploit
the repetitiveness of movements between
trajectories.

6. Discussion

The experimental evaluation shows the performance
of our proposed algorithms for KNNTrajectory and
KNNInterval queries on GraCT and ContaCT. Both
structures offer a good space-time trade-off, but each
is better depending on the application. When com-
pression is a primary requirement, GraCT is the best
option because it exploits the repetitiveness between
trajectories, and thus it uses half the space of ContaCT.
However, GraCT is slower than ContaCT to solve
KNNTrajectory and KNNInterval queries. Note that,
in the first step to solve these queries, GraCT needs to
traverse the log, which is not necessary for ContaCT.
During that traversal, GraCT inserts in the priority
queue each log entry that belongs to the queried inter-
val, whereas ContaCT initially adds only one entry per
object. The subsequent process of each entry is also
more costly in GraCT than in ContaCT. Hence
ContaCT is more suitable for scenarios where time
performance is a primary goal and space is secondary.

Therefore, we observe two weak points of these
structures when solving those queries: (1) the per-
formance of GraCT is not too far from the brute
force algorithm; (2) ContaCT obtains a good time
performance, but there is an important difference
in compression compared to GraCT. In the follow-
ing sections, we propose solutions to both points,
which have positive effects on other types of
queries.

Table 1. Datasets and their dimensions.
Ships Planes Taxis Ciconia

Total objects 4,461 2,263 24 88
Total points 63,093,559 36,741,877 46,677,278 4,390,159
Max x 6,000 229,010 1,074,480 4,073,661
Max y 647,755 46,872 340,142 2,995,928
Max time 44,639 172,547 2,102,639 505,573
Size Plain 1,413.47 MB 809.00 MB 1,024.00 MB 107.09 MB
Size Bin 541.54 MB 350.40 MB 426.08 MB 41.87 MB
Size p7zip 57.88 MB 85.40 MB 86.91 MB 12.06 MB

GEO-SPATIAL INFORMATION SCIENCE 17

7. Snapshots based on R-trees

One of the weakest points in the algorithms for
KNNTrajectory is that the snapshot based on k2-
trees does not give any information on where the
objects can be during the interval up to the next snap-
shot. That is, they only store the position of the objects
at the time instant represented by the snapshot.
Therefore, to upper bound the movements of the
object during the time interval until the next snapshot,
the query algorithms expand the k2-tree node areas
assuming that the objects move at the maximum pos-
sible speed in all possible directions. This leads to poor
filtration performance, sometimes worse than the
brute-force algorithm. In this section we present an
alternative snapshot data structure to alleviate this
problem, which instead of storing the current position
of the objects, stores their MBR up to the next snap-
shot, that is, for each object id in the snapshot at time τ
we store MBRðid; τ; τ þ δ � 1Þ. For storing those
MBRs, we use a static compressed R-tree (Brisaboa
et al. 2013) instead of the k2-tree.

The first reason for this choice is that the k2-tree
is conceptually a region quadtree, which stores
points, not MBRs, while the R-tree is designed to
store MBRs. The R-tree and its variants are the
most well-known and commonly used storage tech-
niques (Azri et al. 2013) and are the basis of several
real systems (Rigaux, Scholl, and Voisard 2002,
Section 6.1.3). A second advantage is that the
R-tree is a data-driven structure (Rigaux, Scholl,
and Voisard 2002, Section 6.1.3). These structures
partition the space into rectangular areas by follow-
ing the distribution of the objects, which makes the
partition a better bound on the positions the
objects will have up to the next snapshot. In

contrast, space driven structures (Rigaux, Scholl,
and Voisard 2002, Section 6.2) like the region
quadtree partition the space independently of the
indexed objects, which results in poorer bounds.

7.1. Structure

The new snapshot is then an R-tree storing, at its
leaves, the object identifiers and their MBRs, as
described. The internal nodes store the MBRs of the
descendant MBRs.

Note that the snapshot does not contain the precise
positions of the objects at its time instant τ. Since the
log of GraCT does not store those positions, we add the
necessary structures to the snapshots in GraCT. For
each snapshot, we store a bitmap B whose size is the
number of objects. We then have B½id� ¼ 1 if object id
appears in the snapshot. The cell coordinates are stored
in the same order in two arrays, X and Y , so that the
position of id is ðX½rank1ðB; idÞ�;Y½rank1ðB; idÞ�Þ.

Figure 9 shows an example of a snapshot based on an
R-tree. The left part represents the positions of the
objects at τ and their trajectories during ½τ; τ þ δ � 1�.
The right part illustrates the structure of the snapshot:
the R-tree, the bitmap B, and the arrays X and Y . To
obtain the objects that can be within the region delimited
by the dashed line during ½τ; τ þ δ � 1�, the algorithm
traverses the tree following the nodes whose MBRs inter-
sect the queried region. In the first level, it only checks
R3, and then its children. From those children, R8 inter-
sects the region and includes the object with id 3. To
obtain the location of the object at τ, we just have to
compute ðX½rank1ðB; 3Þ�;Y½rank1ðB; 3Þ�Þ ¼ ð10; 13Þ.

Since every R-tree node stores the MBR that wraps
the trajectories of the descendant objects, we can now
prioritize the nodes with respect to a KNN query

Figure 9. Example of a snapshot based on an R-tree.

18 A. GÓMEZ-BRANDÓN ET AL.

(trajectory or point) using the distances from the node
MBR to the queried object (trajectory MBR or point).
In the leaves of the R-tree, each object stores the MBR
of its trajectory during ½τ; τ þ δ � 1�. Only when the
individual MBR of an object is extracted from Qglobal

we run init to compute a more precise trajectory in
½tb; te�. All these explicitly stored MBRs allow the algo-
rithm to compute a more accurate minimum and
maximum distance between the area of a node or
object and a trajectory or point.

This new type of snapshot not only improves near-
est neighbor queries. The k2-tree based snapshots also
need to expand, using the maximum speed, the quer-
ied regions R of classical spatio-temporal queries, in
order to determine if a k2-tree node must be inspected
or not. This produces more candidate objects than
with R-trees, which know the precise MBR of the
objects descending from each node. Precisely, if any
object under an R-tree node is within R at any
t 2 ½τ; τ þ δ � 1�, the node MBR must intersect the
query region R. Therefore, the algorithm simply runs
a classical R-tree traversal following the nodes that
intersect R.

In summary, with the snapshots based on R-trees,
we can compute the location of an object at the snap-
shot time instant τ in constant time, and obtain
a stricter region to better prioritize or filter the nodes
and objects in both nearest neighbor and spatio-
temporal queries. The worst-case time complexities
are then unchanged, and the KNN algorithms stay
range-optimal (over this new structure), as described
in Section 5.3. The next section shows that these
advantages turn into orders-of-magnitude improve-
ments in query times in practice.

7.2. Experimental evaluation

We implemented GraCT and ContaCT with snapshots
based on R-trees, in C++, using an existing R-tree
implementation (Brisaboa et al. 2013).5 We represent
B as a plain bitmap, its rank being supported in Oð1Þ
time with a structure that adds 6.25% extra space to
the bitmap. Both of them are included in the SDSL
library. In figures, GraCT, ContaCT, and ContaCT-SD
with this new type of snapshots are labeled with the
“−R” suffix.

We built the three structures with different values
of δ (30, 60, 120, 240, 360, 720) and used the same
datasets presented in Section 5.4. We ran the following
queries:

● ObjectPosition: We averaged 20,000 different
queries where the objects and time instants were
chosen randomly.

● ObjectTrajectory: We computed a set of 10,000
queries for randomly chosen objects and

intervals. The span of the interval was around
2,000 time instants.

● MBR: We averaged the time of 1,000 queries for
randomly chosen objects and time intervals of
200 time instants.

● TimeSlice S and TimeSlice L: Both cases included
1,000 queries of a region at a random time
instant. In TimeSlice S the regions were small
(40� 40 cells), and in TimeSlice L, they were
large (320� 320 cells).

● TimeInterval S and TimeInterval L: In the first
kind of query, we performed 1,000 queries for
small regions (40� 40 cells) and short intervals
of time (100 time instants). The second type runs
the same number of queries with large regions
(320� 320 cells) and long time intervals (200
time instants).

● KNN: We averaged 1,000 queries for random
positions at random time instants. The value of
K was randomly chosen between 1 and 50.

● KNNTrajectory and KNNInterval: We averaged
each kind of query over 1,000 queries where K is
randomly chosen between 1 and 50. The span of
the trajectory and the queried time interval is 200
time instants.

7.2.1. Trajectory queries and space usage
Recall that to compute the position of an object at a given
time instant t, GraCT requires Oðlogk sþ δ þ log nÞ
time, where the first term is the cost of traversing the
snapshot at the latest time τ � t to obtain the position of
the object at time τ. Since the snapshots based on R-trees
can compute object positions in constant time, obtaining
the position at time t requires time Oðδ þ log nÞ.
Instead, in ContaCT the computation of the position
does not depend on the snapshot, and it is always con-
stant time.

Figure 10(a) shows that effect in ObjectPosition
queries. GraCT-R can solve the query in around 20–
85% of the time required by GraCT. Figures 10(b,c)
show that the difference is smaller for
ObjectTrajectory and MBR queries. This is because
a larger fraction of the time in those queries is spent
traversing and/or decompressing portions of the
log, which takes the same time in both GraCT
variants. The difference shrinks when δ increases
because fewer snapshots need to be accessed to
cover the same trajectory. While GraCT has a cost
of Oðlogk sÞ for each such snapshot and thus
improves for these queries as it uses less space,
GraCT-R, and the ContaCT variants only incur
a constant overhead per snapshot, so their time is
mostly insensitive to δ (GraCT-R improves with
shorter logs because it must sequentially scan δ=2
unnecessary movements on average). Since the time
interval of MBR queries lasts 200 time instants, and

GEO-SPATIAL INFORMATION SCIENCE 19

ObjectTrajectory queries cover 2; 000 time instants,
the difference of performance between GraCT var-
iants is smaller in MBR queries. On the other hand,
ContaCT and ContaCT-SD are constant and much
faster, because they do not need to traverse any
snapshot or logs, just to compute MBRs in constant
time. For example, ContaCT takes 0.3–3.2 microse-
conds for the ObjectPosition and MBR queries on
all the datasets.

In addition, there is hardly any difference between
the compression ratio achieved by the structures with
the original snapshot and the new one. The new space
usage is around 90–100% of the structures based on
k2-trees.

7.2.2. Spatio-temporal queries
Figure 11 shows the average times for the spatio-
temporal queries. Figure 11(a,b) show an improve-
ment around 2–30 and 2–140 times in TimeSlice

with GraCT-R and ContaCT-R compared to GraCT
and ContaCT, respectively. Since snapshots based on
R-trees obtain a tighter area about where the object is
moving, the set of candidate objects is smaller, which
reduces the number of positions to check and
improves the performance. For the same reason, simi-
lar speedups are seen on TimeInterval queries, where
GraCT-R and ContaCT-R are 2–275 and 2–200 times
faster than GraCT and ContaCT, respectively. The
fastest configurations reach 12–80 microseconds in
GraCT-R, 13–150 in ContaCT-R, and 12–160 in
ContaCT-SD-R.

7.2.3. Nearest neighbour queries
Figure 12 shows that the R-tree-based snapshots also
run faster on KNN queries. The effect is more
noticeable on the larger datasets: the R-trees are 7–
16 times faster on Ships, and 1.3–3.3 times faster on
the others.

Figure 10. Space and time for trajectory queries.

20 A. GÓMEZ-BRANDÓN ET AL.

The improvements are larger for the more com-
plex queries, KNNTrajectory and KNNInterval. For
example, in Ships and Planes, both queries are 10–
60 and 2.3–40 times faster, respectively, using
R-trees. In the rest of the datasets, R-trees perform
1.1–3.0 times faster. The datasets with more objects
display better improvements, showing the ability of
the snapshots based on R-trees to better prioritize
the objects.

The fastest configurations reach 230–2,100 micro-
seconds in GraCT-R, 190–900 in ContaCT-R, and
190–930 in ContaCT-SD-R.

7.3. Comparison with a spatio-temporal index

In this section, we compare ContaCT-R and GraCT-R
with the MVR-Tree (Tao and Papadias 2001),
a classical spatio-temporal index that uses a set of

Figure 11. Space and time for spatio-temporal queries.

GEO-SPATIAL INFORMATION SCIENCE 21

R-trees along time. Each R-tree is called a version and
stores the MBR of the objects during an interval of
time. Note that consecutive versions can be quite
similar. To save space usage, when two consecutive
R-trees share a subtree, that subtree in the second
R-tree points to the first subtree. Since its basis is the
R-tree, the MVR-Tree is designed for solving
TimeSlice, TimeInterval, KNN, and KNNInterval
queries. Supporting ObjectPosition and Object-
Trajectory, it would require traversing all the nodes
of the versions that intersect with the queried interval
of time. Further, for KNNTrajectory it has no efficient
mechanism to compute the distance between the
information of a node and the trajectory.

Therefore, we compared ContaCT-R and GraCT-R
with the MVR-tree in TimeSlice, TimeInterval, KNN,
and KNNInterval queries on the two datasets with the

most objects: Ships and Planes. The configuration of
the queries is identical to those presented before. We
set δ ¼ 120 on ContaCT-R and GraCT-R, with the
variant of plain bitmaps in Ships, and sparse bitmaps
in Planes. We used the MVR-tree implemented in the
C++ spatialindex library with default parameters (the
capacity of each node set to 10 records and the fill
factor set to 70%).6 For a fair comparison, we load the
MVR-tree into the main memory, thus avoiding any
disk access at query time.

The average time of each query is shown in
Figure 13. The MVR-tree obtains its best results in
TimeSlice and KNN queries, because it needs to tra-
verse only one version, even so, GraCT-R and
ContaCT-R are faster. On Ships, ContaCT-R and
GraCT-R are 3–9 and 1.3–1.7 times faster for
TimeSlice and KNN queries, respectively. The

Figure 12. Space and time for nearest neighbor queries.

22 A. GÓMEZ-BRANDÓN ET AL.

differences are more remarkable on Planes: 14–22
times faster for TimeSlice, and 2.5–3.8 for KNN.

Queries TimeInterval and KNNInterval cover a larger
interval of time and the MVR-tree has to check more
versions, thus the differences between the compact data
structures and MVR-tree grow more sharply (we use
logscales). On Planes, for example, GraCT-R and
ContaCT-R can solve TimeInterval queries in 50–300
microseconds, whereas the MVR-tree needs 1.7–11.6
milliseconds. The smallest difference occurs for
KNNInterval on Planes, where GraCT-R and ContaCT-
R are still 2:5 and 3:7 times faster than the MVR-tree,
respectively.

With respect to space usage, the MVR-trees on Ships
and on Planes require 12.16 GB and 11.72 GB, respec-
tively. The sizes of GraCT-R and ContaCT-R indexes,
even using a large-space configuration (δ ¼ 120), are
around 100 times smaller.

8. Discussion

In our evaluation, we observe that both kinds of snap-
shots require similar space. The most remarkable

differences are in time performance on spatio-
temporal and nearest neighbor queries. To solve those
queries, the algorithm uses snapshots to obtain a rough
idea of the area where the object moves during the
queried interval. According to that area, the objects
are selected or prioritized, depending on the query.
Snapshots based on R-trees can retrieve that area as
the MBR where the object is moving between two snap-
shots. Snapshots based on k2-trees, instead, compute
that area assuming that every object moves at the max-
imum speed of the fastest object. That assumption
enlarges the area where an object is moving, which is
more noticeable when the number of objects is larger.
The tighter area obtained from the snapshots based on
R-trees allows us to get a better and smaller set of
candidates, thereby improving the time performance
by orders of magnitude.

Concerning trajectory queries, snapshots only
affect GraCT. In that structure, the algorithms of tra-
jectory queries need to obtain the positions of the
objects from the snapshots. In snapshots based on
R-trees, those positions are directly stored in an
array. Hence, they are retrieved in constant time,

Figure 13. Comparison with the MVR-tree. Note the log scale on the right plots.

GEO-SPATIAL INFORMATION SCIENCE 23

avoiding the top-down traversal of the snapshots
based on k2-trees. For this reason, GraCT-R outper-
forms the time performance of GraCT in this particu-
lar kind of query.

In summary, with R-tree-based snapshots, we use
about the same space of k2-tree-based snapshots, but
the time performance is greatly improved on all
queries. In fact, this new type of snapshot makes
GraCT and ContaCT faster than the MVR tree, while
using 100 times less space.

9. Relative compression of trajectories

The preceding evaluation shows that, while ContaCT
is considerably faster than GraCT in several queries,
the latter index is generally much smaller: GraCT uses
40–80% of the space of ContaCT.

GraCT exploits the repetitiveness of the datasets,
whereas ContaCT only takes advantage of the fact that
most movements are small. In larger datasets, the repe-
titiveness of the movements can play an important role
in reducing the space. GraCT exploits repetitiveness
using grammar compression (Kieffer and Yang 2000)
of the trajectories, as explained in Section 3.7.1, and this
induces a certain overhead when accessing trajectories
at random positions. In this section, we explore instead
Relative Lempel-Ziv (RLZ) (Kuruppu, Puglisi, and
Zobel 2010), another compressor for highly repetitive
sequences that enables fast random access to them.

Our new index, Relative Compression of Trajectories
(RelaCT), adapts ContaCT to highly repetitive datasets
by compressing the trajectories using RLZ. With this
structure, we achieve a space usage closer to that of
GraCT, and a time performance similar to that of
ContaCT, which leads to a good space-time tradeoff.

9.1. Structure

As said, the RelaCT index builds on Relative
Lempel-Ziv (RLZ) (Kuruppu, Puglisi, and Zobel
2010). A special trajectory R called the reference is
created and saved in plain form (this can be one of
the trajectories in the dataset, a concatenation of
parts of those, a synthetic sequence, etc.). Each
trajectory in the dataset is then represented as the
concatenation of z phrases: w1w2 . . . wz. Each
phrase wi is represented as a pair of integers
ðpi; liÞ, where pi is a position in the reference and
li is the length of the phrase, that is,
wi ¼ R½pi::pi þ li � 1�. The RLZ algorithm generates
the phrases in greedy form, maximizing li at each
step; recall Section 3.2.

9.1.1. The reference
In RelaCT, the reference R is an artificial trajectory
built by concatenating some of the real trajectories.

Note that we regard each trajectory as a sequence of
movements, that is, of relative displacements. To build
R, we copy the first trajectory to it and then, for each
new trajectory S½1::n�:

(1) We compute the number of phrases z obtained
from applying the RLZ algorithm to S, with
respect to the current reference R.

(2) If the fraction z=n is below a parameter
0< α< 1, the new trajectory S is well repre-
sented by the reference R. Otherwise, we
append S to R.

We note that the trajectories that are included in
R can be represented by a single phrase, pointing
to their position in R. On the other hand, we
represent the reference R using the ContaCT
structure. This allows us to compute any cumula-
tive displacement, as well as relative MBRs, on R
in constant time.

9.1.2. Log representation
The obtained reference R is global for the whole
RelaCT index. Once R is defined with the process
above, the log Sid½1::n� of relative movements of
every object id between two snapshots is compressed
by applying RLZ on Sid with respect to R. This results
in a sequence of z pairs ðpi; liÞ representing the sub-
strings wi of R that make up Sid.

The pointers pi are concatenated into an array
Pid½1::z�, whereas the lengths li are represented by
marking with 1s in a bitmap Lid½1::n� the starting
position of each phrase wi in Sid, so that
li ¼ select1ðLid; iÞ � select1ðLid; i � 1Þ. In addition, the
log stores the initial position of the trajectory and its
time instant as Fid ¼ hðxid; yidÞ; tidi. Finally, two arrays
Xid½1::z� and Yid½1::z� store the cumulative movement
from the beginning of the trajectory until the end of
each phrase. Figure 14 shows an example.

To compute the position of object id at time instant
tq, we find the phrase that contains tq with
j ¼ rank1ðL; tq � tidÞ. The cumulative movement
until the beginning of that phrase is
ðXid½j � 1�;Yid½j � 1�Þ. Since the jth phrase starts at
time instant t ¼ tid þ select1ðLid; jÞ, we have computed
the cumulative movement until t � 1.

We now have to add the cumulative movement
from t to tq. This is obtained from
R½Pid½j�::Pid½j� þ t � tq�, since that substring of the
reference is equal to the one we are querying. That
sum of movements can be computed in constant time
in the reference as ΔðPid½j� þ tq � tÞ � ΔðPid½j� � 1Þ,
where

ΔðiÞ ¼ ðselect1ðXp; iÞ � select1ðXn; iÞ; select1ðYp; iÞ
� select1ðYn; iÞÞ;

24 A. GÓMEZ-BRANDÓN ET AL.

is computed with the structures defined by ContaCT
on R; recall Section 3.7.2.

By both results, we obtain the total displacement of
the object from the beginning to tq. The location of the
object at tq is computed by adding that displacement
to ðxid; yidÞ:

ðxid; yidÞ þ ðXid½j � 1�;Yid½j � 1�Þ þ ΔðPid½j� þ tq � tÞ
� ΔðPid½j� � 1Þ:

Figure 14 shows how the cumulative movement is
computed for tq ¼ t10. This is the 8th movement of the
trajectory because tq � tid ¼ 8. That movement lies on
the second phrase because rank1ðL; 8Þ ¼ 2. This
phrase starts at the time instant
t ¼ t2 þ select1ðL; 8Þ ¼ t8. Therefore, the cumulative
movement from the beginning of the trajectory until
t7 is ð5; 2Þ. The remaining displacement from t8 to t10
is computed as Δð10Þ � Δð7Þ ¼ ð3; 2Þ. Finally, the
cumulative movement position until t10 is obtained
as ð5; 2Þ þ ð3; 2Þ ¼ ð8; 4Þ. This value added to
ðxid; yidÞ ¼ ð1; 3Þ results in the position of the object
at t10, ð1; 3Þ þ ð8; 4Þ ¼ ð9; 7Þ.

9.1.3. Absence of information
In many cases, we lack information about the location
of an object at some time instants, for different reasons
(e.g. precision errors, low GPS signal, GPS device not
working). We need a mechanism to represent that

absence of information. Just as for GraCT and
ContaCT, in RelaCT we use a bitmap Mid½1::n� per
log, setting Mid½i� ¼ 1 when there is data about the
location of the object at tid þ i, or else Mid½i� ¼ 0.

The mechanism for obtaining the location of an
object works similarly with this bitmap, but instead
of working with time instants, it uses movements. We
compute the movement corresponding to time instant
tq as mq ¼ rank1ðMid; tq � tidÞ. A given movement m
is mapped back to its time with
t ¼ tid þ select1ðMid;mÞ. We will ignore this mapping
for simplicity in the sequel, still using tq instead of mq

in the descriptions.

9.2. Queries

We now describe how the queries are handled with
this data structure. The first three simple queries take
constant time. As a consequence, the complexities of
the following, more complex, queries are identical to
those of ContaCT.

9.2.1. Object position
Algorithm 2 summarizes the constant-time procedure
we have explained to retrieve the position of an object
at a given time instant, considering the absence of
information.

Figure 14. Log structure for RelaCT with a reference and its corresponding trajectory.

GEO-SPATIAL INFORMATION SCIENCE 25

Algorithm 3: ObjectTrajectory (id, tb, te)

26 A. GÓMEZ-BRANDÓN ET AL.

Algorithm 2: ObjectPosition (id, tq)

9.2.2. Object trajectory
Algorithm 3 solves this query in optimal time, that
is, constant per retrieved position. It is, in practice,
more efficient than querying object positions one by
one. The algorithm proceeds by phrases. Lines 3–7
compute the phrase number i, the time interval
½tb; te� it spans, and the starting object position in
the reference, p, and in space, Δpre. Then it adds the
points of this phrase to the trajectory in lines 9–12.
Line 13 checks if we have completed the phrase, in
which case the data of the next phrase, iþ 1, is
computed in lines 14–17 before continuing.

9.2.3. Minimum bounding rectangle
To compute the MBR that covers the trajectory of an
object between two time instants tb and te, we use the
structure of ContaCT that computes the position of the
local minimum and maximum in constant time using at
most 3nþ oðnÞ bits per coordinate, where n is the length
of the log. We call those operations rmqD and rMqD, for
D 2 fX;Yg. To compute the final results, we must com-
pare those local extremes with the values at the endpoints
of the queried time interval. To obtain those values to
compare, we use the same procedure of the
ObjectPosition query.

Algorithm 4: MBR (id, tb, te)

Algorithm 5: Best (id, pos, D, d, Op)

Algorithm 4 shows the pseudocode for this constant-time query. The minima and maxima of the local
extremes, for both coordinates, are computed in mx, my, Mx, and My. The comparison with the endpoints is
done by Best, which is depicted in Algorithm 5.

More than an algorithm, Best should be regarded as a macro to avoid writing similar code 4 times. It receives in
pos a list of positions to compare, in D/d the coordinate (X/x or Y/y), and in Op what to take from the values
(minimum or maximum).

9.2.4. Time slice

Algorithm 6: TimeSlice (R, tq)

We retrieve the objects that are within a region R at a time instant tq by computing their position at tq with
ObjectPosition, and checking if they are within R. We use the preceding snapshot, at time τ � tq < τ þ δ, to find
the candidates that have chances of being within R at time tq, namely those whose MBR in the snapshot (which
covers their positions in ½τ; τ þ δ � 1�) intersects R. Algorithm 6 shows the pseudocode.

GEO-SPATIAL INFORMATION SCIENCE 27

9.2.5. Time interval

Algorithm 7: TimeInterval (R, tb, te)

Algorithm 8: Contained (id, R, tb, te)

Retrieving the objects that are within a region R at
any time instant of the interval ½tb; te� can be solved
similarly to Time Slice. As seen in Algorithm 7, we
take the snapshots covering any time instant in
½tb; te� and search them looking for the candidates
(lines 2–5). For each candidate, the algorithm
checks if it is contained within R at any time instant
of ½tb; te�. The set checked is used to avoid checking
several times the objects that appear in more than
one snapshot.

An object is checked to be contained in R during
½tb; te� in Algorithm 8. Lines 7–9 compute the object’s
MBR and check for two immediate inclusion-
exclusion conditions (MBR contained in or disjoint
with R). If those are not met, the time interval is
partitioned in two halves and those are recursively
checked in line 11. Lines 1–5 handle short enough
intervals, defined by a parameter λ, by directly

obtaining the object’s trajectory and checking its posi-
tions one by one.

9.2.6. Nearest neighbour queries
To obtain the K objects closest to a point pq at
a time instant tq, we proceed as in Algorithm 9.
The algorithm takes the snapshot Sτ that covers the
time interval ½τ; τ þ δ � 1� containing tq, and tra-
verses its R-tree nodes according to their proximity
to the point pq. The leaf nodes with the objects that
have more chances to be closer to pq are then
reached earlier. We use a min-heap priority queue
Qc to prioritize those nodes, according to the mini-
mum distance l to R, and breaking ties with the
maximum distance h. In every iteration, the algo-
rithm takes the element on top of Qc. If it is an
internal R-tree node, its children are reinserted to

28 A. GÓMEZ-BRANDÓN ET AL.

Qc (lines 6–9). If, instead, it is a leaf, lines 11–13
insert its objects prioritized by their precise distance
to pq at time tq, into a min-heap Qr capped to
size K.

The algorithm repeats those steps until there are K
elements in Qr and there is no element in Qc that can
improve the distance of the K-th element of Qr with
respect to pq. That is, the object on top of Qc has an l
value larger than the distance of the last element on Qr
(line 4). The result is the set of K elements of Qr.

Algorithm 9: Knn (K, pq, tq)

9.2.7. Complex nearest neighbor queries
For KNN of trajectories and KNN during an interval, the
algorithms of RelaCT are completely identical to those
presented in Section 5.1. Recall that there are two stages:
prioritizing the object by using snapshots and refining the
object distance bounds. For the first one, the algorithm
traverses the nodes of the R-tree as in GraCT and
ContaCT, prioritizing the nodes according to their dis-
tances to the input data (trajectory or point) in constant
time. In the second stage, since RelaCT can compute the
MBR between two time instants just as in ContaCT, we
refine the bounds of the object distance by applying the
same algorithm as ContaCT.

9.3. Speeding up queries

We can improve the time performance of the queries by
adding to each log an additional structure that stores the
minimum and maximum value within each phrase for
each axis D 2 fX;Yg: Dm½1::z� and DM½1::z�, respec-
tively. A range minimum query structure rmqD, using
2z þ oðzÞ bits (Ferrada and Navarro 2017; Fischer and
Heun 2011), is added on Dm, and an analogous range
maximum query rMqD is added on DM . In total, the extra

structures use 4z log sþ 8z þ oðzÞ bits, where s is the size
of the represented two-dimensional space. Those struc-
tures replace the original bitvectors rmqD and rMqD of
the basic RelaCT.

With these additional structures, we can compute the
MBR of the phrases that are completely contained in
a time interval ½tb; te� without accessing the reference.
More precisely, the MBR of the phrases wi . . . wj is

½Xm½rmqðXm; i; jÞ�;Ym½rmqðYm; i; jÞ�� �

½XM½rMqðXM; i; jÞ�;YM½rMqðYM; i; jÞ��:

While these structures do not affect the worst-case
complexities of the queries, they can be used to improve
the practical performance of MBR and Time Interval
queries.

9.3.1. Minimum bounding rectangle
To compute MBR on the interval ½tb; te�, let us assume
that wi . . . wj are the phrases completely contained in
the queried time interval. The MBR of those whole
phrases, MBRC, can be computed as shown above. The
result of the query will be MBRC, except when the
phrases that are not completely contained but intersect
½tb; te� can change it. We compute the MBRs of those
(whole) phrases, wi� 1 and wjþ1, as

MBRi� 1 ¼ ½Xm½i � 1�;Ym½i � 1��
� ½XM½i � 1�;YM½i � 1��

MBRjþ1 ¼ ½Xm½jþ 1�;Ym½jþ 1��
� ½XM½jþ 1�;YM½jþ 1��:

If MBRi� 1 and MBRjþ1 are completely contained
within MBRC, then there is nothing else to do.

GEO-SPATIAL INFORMATION SCIENCE 29

Otherwise, the part of the trajectory not covered by
wi . . . wj might enlarge MBRC. Thus, if MBRi� 1MBRC,
we compute MBR on the interval ½tb; te0 � � ½tb; te� that
overlaps the phrase wi� 1, using the reference as we
explained in Section 7.2.3, and enlarge MBRC so as to
contain that MBR. We handle MBRjþ1 analogously. After
those adjustments, MBRC is the answer to the query.

Figure 15 illustrates an example, where we compute
MBR from time instant t8 to t41. Here, MBRC covers
the phrases w3w4w5w6 and the time interval ½t14; t36�. It
is computed using the arrays Xm, Ym, XM, and YM, and
their rmq and rMq structures. The values pointed out
by the range minimum and maximum structures are
marked in bold. We obtain MBRC ¼ ½2; 0� � ½7; 6�.
The MBR of the phrases at the extremes (w2 and w7)
are computed by directly accessing the arrays of
minima and maxima. Hence, we have
MBR2 ¼ ½2; 1� � ½4; 2� and MBR7 ¼ ½1; 2� � ½5; 5�.
Since MBR7 is completely within MBRC but MBR2 is
not, we have to compute on the reference the MBR
between time instants t8 and t13. That MBR is
½2; 1� � ½2; 2�, which is completely contained in
MBRC. Therefore, our answer is MBRC.

This approach avoids as much as possible using the
reference, which speeds up the MBR query. This also
improves the performance of several other queries that
directly use the MBR query, such as the complex
nearest neighbor queries.

9.3.2. Time interval
We now exploit the fact that we can obtain the MBR of
a sequence of phrases very quickly to speed up Time
Interval queries, which make intensive use of MBR
queries. Concretely, for each candidate, this query
performs a binary search with such queries.

We go further than merely exploiting the faster
MBR algorithm obtained in the previous section. We
maintain the binary search but work on whole phrases
as much as possible because computing their MBR is

faster. We exploit the fact that, if the MBR of
a sequence of phrases overlapping ½tb; te� is contained
in R, then the object qualifies.

Let wi� 1 . . . wjþ1 the phrases that minimally contain
½tb; te�. Our algorithm computes the MBR of the current
interval of phrases without resorting to the reference. If it
is contained in R, the object is added to the output and we
finish. Otherwise, the interval of phrases ½i � 1::jþ 1� is
halved (into whole references) and we continue recur-
sively by each subinterval. When the interval is formed by
a single phrase whose MBR is not contained in R, we
resort to the previous procedure with the time interval of
the phrase. Note also that, in the binary search of phrase
sequences, we can also abort the branches where the MBR
is disjoint from R.

Figure 16 shows how we check if an object is contained
within R ¼ ½5; 5� � ½5; 5� during the interval ½t8; t41�.
Those time instants are contained in the phrases
w2w3w4w5w6w7. The algorithm starts computing the
MBR covered by all those phrases, MBR2� 7. As it inter-
sects the queried region, we split it into MBR2� 4 and
MBR5� 7, which cover w2w3w4 and w5w6w7, respectively.
Since MBR2� 4 does not intersect R, we stop splitting it,
and continue recursively with MBR5� 7. We continue in
this way until reaching the interval of the phrase w7,
which covers the time interval ½t36; t41�. Since it intersects
R, it is partitioned in two halves: MBRt36� t38 and
MBRt39� t41 . Since MBRt36� t38 is completely contained in
R, the algorithm stops and the object is added to the
solution.

9.4. Experimental evaluation

We experimentally compare RelaCT with GraCT and
ContaCT. The evaluation focuses on larger datasets,
which are more repetitive since RelaCT shows little
advantage over the smaller ones. Since the snapshots
based on R-trees have shown much better performance
than the original ones, we only test those snapshots.

Figure 15. Example of computing the minimum bounding rectangle between two time instants.

30 A. GÓMEZ-BRANDÓN ET AL.

9.4.1. Large datasets
We build larger variants of the original datasets of
Ships and Taxis, with the same format:

● ShipsLarge: a real dataset from MarineCadastre
that contains 19,764 vessels that move around the
coast of the USA during the first four months of
2020. As in the first experiment, the raster model
of this dataset uses a cell size of 10� 3 � 10� 3

degrees and the frequency with which an object
emits its location is normalized to regular inter-
vals of 1 minute.

● TaxisLarge: a pseudo-real dataset containing tra-
jectories of 433 taxis in New York City during
2013. As in the first experiment, the dataset only
contains the origin and destination of each trip,
thus each trajectory was computed as the shortest
path between them by taking into account the
road network. The original data are available at
NYC Taxis: A Day in the Life. The cell size of the
raster model is 10� 5 � 10� 5 degrees, and the sig-
nals are taken at regular intervals of 15 seconds.

As before, Table 2 shows the dimensions of the
datasets, their size in plain form, binary form, and
p7zip-compressed. The compression ratios of p7zip
are around 8% and 20% in ShipsLarge and
TaxisLarge, respectively.

9.4.2. Compression
We built GraCT, ContaCT, and RelaCT on both data-
sets, with δ values 30, 60, 120, 240, 360, and 720. We
have variants ContaCT and ContaCT-SD, as in
Section 5.4. Since the reference of RelaCT is repre-
sented with ContaCT, we have the corresponding

configurations RelaCT and RelaCT-SD. In addition,
the RelaCT configurations that include the structure
for speeding up the queries (Section 7.3) are suffixed
with “+”.

Figure 17 shows the size of those structures and
the compression ratios. In both datasets, GraCT
obtains the best compression ratio. In ContaCT and
RelaCT, the variants using sparse bitmaps are the
smallest ones.

GraCT is still the only structure that outperforms
the compression ratios of p7zip, whereas ContaCT-SD
uses around 3:7 and 1:6 times more space than p7zip
in ShipsLarge and TaxisLarge, respectively. RelaCT-
SD and RelaCT-SD+ are between both. For example,
the configuration of GraCT with the space-time trade-
off δ ¼ 120 uses 81% and 77% of the space required by
RelaCT-SD in ShipsLarge and TaxisLarge, respec-
tively. On the other hand, RelaCT-SD is much smaller
than ContaCT-SD.

The relative compression of trajectories is a good
approach to use space close to grammar compression,
while computing object positions and MBRs in con-
stant time. To solve MBR and Time Interval queries
faster, RelaCT-SD+ increases the space of RelaCT by
around 8–60%. The next experiments measure the
time performance achieved.

Figure 16. Simulation of the procedure to detect if an object is within a region during an interval of time.

Table 2. Large datasets and their dimensions.
ShipsLarge TaxisLarge

Total objects 19,765 433
Total points 671,088,660 851,369,612
Max x 1,199,974 1,379,380
Max y 891,731 664,900
Max time 262,079 2,102,691
Size Plain 16,838.92 MB 20,480.00 MB
Size Bin 7,040.00 MB 8,931.22 MB
Size p7zip 574.69 MB 1,738.86 MB

GEO-SPATIAL INFORMATION SCIENCE 31

9.4.3. Query performance
We test the query performance of the different struc-
tures on both large datasets, using the same settings
defined in Section 6.2.

Figure 18(a) shows that all the RelaCT variants
have similar time performance for ObjectPosition
queries. It was expected that the ’+’ variants perform
similarly to the basic ones since they do not affect

this query. ContaCT and ContaCT-SD are 1.5–2.5
times faster than RelaCT, but use nearly twice the
space. GraCT is twice as slow as RelaCT on
ShipsLarge, but uses about half its space, with
δ ¼ 240. The situation is similar on TaxisLarge,
except that GraCT is now many times slower than
RelaCT. Overall, RelaCT-SD offers a very relevant
tradeoff for this query.

Figure 17. Compression ratios of the structures with different values of δ.

Figure 18. Space and time for trajectory queries.

32 A. GÓMEZ-BRANDÓN ET AL.

ObjectTrajectory queries behave in a similar
way. However, as shown in Figure 18(b), there is
a noticeable difference between the RelaCT struc-
tures that use plain (RelaCT and RelaCT+) and
sparse bitmaps (RelaCT-SD and RelaCT-SD+).
The cause of this difference is that computing the
displacements on the reference with ContaCT-SD is
slower than with ContaCT; observe that the origi-
nal ContaCT is 1.7–1.9 times faster than ContaCT-
SD on the same kind of queries. RelaCT is also
slower than ContaCT because it incurs the cost of
synchronizing every phrase with the reference. In
addition, no RelaCT variant is competitive with
GraCT in space-time. Thus, RelaCT does not
stand out for this query.

The time performance on MBR queries is similar to
that of ObjectPosition, but on ShipsLarge, RelaCT+
and RelaCT-SD+ improve by up to 1.4 times the
performance of RelaCT and RelaCT-SD, respectively.
Instead, there is no significant difference on
TaxisLarge. The RelaCT variants are 3.0–5.5 times
faster than GraCT, and 40–100% slower than
ContaCT. Relative compression is 1.25 times worse
than GraCT in space consumption, but it obtains the
best space-time trade-off in MBR queries: they are
only slightly slower than ContaCT while using about
half the space.

Figure 19 shows the performance for spatio-
temporal queries. In TimeSlice with both large and
small regions, the variants of RelaCT obtain competi-
tive times compared to the remaining structures. On
ShipsLarge, the RelaCT-SD variants reach very similar
time and space to GraCT, with δ ¼ 120. In TaxisLarge,
instead, RelaCT-SD becomes 2–15% faster than GraCT
using slightly more space. It is also slightly slower than
ContaCT, using about half the space. Since this query
only involves one time instant, the structures labeled
with “+” do not change the performance.

In general, all the structures obtain comparable
performance on spatio-temporal queries, with
GraCT, closely followed by RelaCT, using much less
space than ContaCT.

The space-time trade-offs for nearest neighbor
queries can be observed in Figure 20. There is no
significant time difference between the four RelaCT
variants, so RelaCT-SD is always the best choice for its
smaller space usage.

Figure 20(a) shows that RelaCT-SD is the most
interesting variant on for KNN queries on
TaxisLarge: it is just 9% slower than ContaCT-SD
and 1.4 times faster than GraCT with δ ¼ 120, and
its space is much closer to that of GraCT than to
ContaCT. On ShipsLarge, instead, GraCT is smaller
and 10% faster than RelaCT-SD.

With respect to KNNTrajectory (Figure 20(b)),
GraCT dominates RelaCT-SD with δ ¼ 120, by
around 10% in time. Instead, RelaCT-SD is much
faster than GraCT and 1.5 times slower than
ContaCT (which needs twice the space) on
TaxisLarge.

The last complex nearest neighbor query,
KNNInterval, is shown in Figure 20(c). On
TaxisLarge the performance is similar to
KNNTrajectory, though this time RelaCT-SD is
only 1:4 times faster than GraCT with δ ¼ 120. On
ShipsLarge, the RelaCT variants are faster when δ
increases. This can be explained by the larger num-
ber of elements maintained in the priority queues
from the beginning of the algorithm, as more snap-
shots are covered by the query. For example, before
adding each element to the queue, we have to com-
pute its MBR. This effect is more noticeable in
RelaCT than in ContaCT, whose MBRs are com-
puted faster. On ShipsLarge, GraCT is the dominant
solution, whereas RelaCT-SD offers a very good
tradeoff on TaxisLarge.

Figure 19. Space and time for spatio-temporal queries.

GEO-SPATIAL INFORMATION SCIENCE 33

10. Discussion

Overall, RelaCT-SD is the most remarkable variant.
There are small differences in the performance of
RelaCT, but the compression is better. This technique
offers times slightly over those of ContaCT, but it uses
half the space. It uses slightly more space than GraCT
and has competitive query times. In particular,
RelaCT-SD offers an outstanding space-time tradeoff
for ObjectPosition and MBR queries, and it is close
(sometimes better and sometimes worse) to the domi-
nant performance of GraCT for spatio-temporal and
nearest neighbor queries. The worst performance of
RelaCT-SD is obtained in ObjectTrajectory queries,
where it is sharply dominated by GraCT. Note that
each phrase that covers the interval of time needs to be
synchronized with the reference, which adds a cost to
each processed phrase.

The configurations of RelaCT suffixed with “+”
provide a new space-time tradeoff, being clearly faster
in MBR and TimeInterval. Indeed, they reduce the gap
with GraCT in time performance of TimeInterval.
However, the difference in space consumption
between GraCT and those variants increases.

11. Conclusions

Previous work has demonstrated that compressed
indexes for large collections of object trajectories in
free space can compete with classical indexes in query
performance while using orders of magnitude less
space. In this work, we introduce new algorithms
and data representations that yield stronger

compressed indexes, in terms both of functionality
and of space-time performance.

(1) We introduce new algorithms for more sophisti-
cated nearest-neighbor queries. Previously com-
pressed indexes could only find the objects that
were closest to a spatial point at a certain time
instant. We now consider the queries KNN on an
interval and KNN of trajectories, which have been
studied in the literature (Gao et al. 2007; Tang
et al. 2011). The former extends the basic query
to a time interval, considering the least distance
between the object and the query point during
the interval. The second compares object trajec-
tories with a given trajectory, looking for the
maximum distance reached during a time inter-
val. Our new algorithms solve those more com-
plex queries on the existing compressed indexes,
GraCT (Brisaboa et al. 2019) and ContaCT
(Brisaboa et al. 2021), in about an order of mag-
nitude more time than the basic nearest neighbor
query, but still within a few milliseconds.

(2) Motivated by the fact that estimating the MBR
of an object during a period of time is key for an
efficient nearest neighbor algorithm, we intro-
duce a new data structure for storing the posi-
tions of the objects at sampled times during the
trajectories, based on R-trees instead of the
quadtree-like data structure used in previous
compressed structures. The R-tree maintains
the MBR of the object during the sampled
time period and, without increasing the space
of the data structures, improves the

Figure 20. Space and time for nearest neighbor queries.

34 A. GÓMEZ-BRANDÓN ET AL.

performance of all nearest neighbor queries by
a factor of 2–10. The new representation in fact
improves the times for all the other queries,
reaching speedups of two orders of magnitude
on spatio-temporal queries.

(3) Motivated by the fact that ContaCT uses twice
the space of GraCT, but it is much faster at
computing object positions and MBRs, two of
the most basic queries, we define RelaCT, a new
compressed index that exploits redundancies in
the trajectories using Relative Lempel-Ziv,
a compression method that provides fast ran-
dom access to the data. This is in contrast to the
grammar compression used by GraCT, which is
slower for access. On large repetitive datasets,
RelaCT uses about half the space of ContaCT
and is only slightly slower. Instead, it uses
slightly more space than GraCT and offers
competitive query times, particularly outper-
forming it on the mentioned queries. RelaCT
then provides a new relevant tradeoff between
both previously compressed indexes.

A relevant future work direction is to introduce dyna-
mism in these compressed indexes. Right now, all of
them are static, so they must be rebuilt in order to add
or remove new objects, and extend or modify trajec-
tories. The easiest of those challenges is to extend
already existing trajectories, as this involves appending
movements to the logs and possibly creating new snap-
shots. In the case of GraCT, this implies adapting the
context-free grammar to accommodate longer strings.
This could be achieved by replacing RePair (Larsson
and Moffat 2000), which is an offline grammar com-
pressor, with an online version like FOLCA (Maruyama
et al. 2013). ContaCT and RelaCT are even easier to
adapt, as their construction is already online. Other
kinds of updates, like modifying past trajectories or
adding/removing objects, are more complex and
require not only rebuilding logs but also updating snap-
shots. While k2-trees offer dynamic versions (Brisaboa,
de Bernardo, and Navarro 2012), we are unaware of any
compressed dynamic R-tree data structure, only the
classic pointer-based one (Guttman 1984).

Another research direction of interest is to further
expand the functionality with new queries that have
been shown to be useful in the literature. For example,
we could extend the functionality of the structures to
detect moving-together patterns (Alamri, Taniar, and
Safar 2013; Gudmundsson, van Kreveld, and
Speckmann 2004), that is, objects that move together
during a period of time. This query could be solved by
obtaining the closest objects from a snapshot and refin-
ing their proximity with a similarity function applied
on the objects’ MBRs. With a similar approach, those
structures could also detect common patterns between

trajectories (trajectory clustering) (Lee, Han, and
Whang 2007) and mine sequential patterns from tra-
jectories (Cao, Mamoulis, and Cheung 2005), two
important tasks in applications related to travel recom-
mendation or life pattern understanding.

Notes

1. https://github.com/simongog/sdsl-lite
2. http://marinecadastre.gov/ais
3. https://opensky-network.org
4. http://chriswhong.github.io/nyctaxi/
5. https://lbd.udc.es/research/serangequerying/
6. http://libspatialindex.github.io

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

For the A Coruña team: This work was supported by GAIN/
Xunta de Galicia: GRC: grants ED431C 2021/53, and
CIGUS 2023-2026; Ministerio de Ciencia e Innovación and
EU/ERDF A way of making Europe under grant [PID2022-
141027NB-C21];Ministerio de Ciencia e Innovación under
grant [PID2020-114635RB-I00]; Ministerio de Ciencia
e Innovación and Next-GenerationEU/PRTR under grants
[TED2021-129245B-C21; PDC2021-120917-C21]; Gonzalo
Navarro was funded by ANID – Millennium Science
Initiative Program – Code ICN17_002 and by Fondecyt
under grants [1-200038; 1-230755]. Travis Gagie was funded
by Fondecyt under grant [1171058] and by NSERC
Discovery under grant [RGPIN-07185-2020].

Notes on contributors

Adrián Gómez-Brandón is an assistant professor in the
Facultade de Informática at Universidade da Coruña
(Spain). He has received the Ph.D. degree in Computer
Science from the same university. His research interests are
compact data structures, algorithms, and databases.

Gonzalo Navarro is a full professor at the Department of
Computer Science, University of Chile. He participates in the
Millennium Institute for Foundational Research on Data
(IMFD) and in the Center for Biotechnology and
Bioengineering (CeBiB). His areas of interest are algorithms
and data structures, data compression, text searching, and
databases.

José R. Paramá is a full professor at the University of
A Coruña, Spain. His research interests include compres-
sion and indexation of information, spatial databases, and
bioinformatics.

Nieves R. Brisaboa is a full professor at the University of
A Coruña. Her research interests include digital libraries, text
retrieval, compressed text retrieval, Information Systems and
GIS.

Travis Gagie is an associate professor in the Faculty of
Computer Science at Dalhousie University in Canada. His
areas of interest are algorithms, compact data structures, and
bioinformatics.

GEO-SPATIAL INFORMATION SCIENCE 35

https://github.com/simongog/sdsl-lite
http://marinecadastre.gov/ais
https://opensky-network.org
http://chriswhong.github.io/nyctaxi/
https://lbd.udc.es/research/serangequerying/
http://libspatialindex.github.io

ORCID

Adrián Gómez-Brandón http://orcid.org/0000-0002-
1216-2176
Gonzalo Navarro http://orcid.org/0000-0002-2286-741X
José R. Paramá http://orcid.org/0000-0002-8727-0980
Nieves R. Brisaboa http://orcid.org/0000-0001-8025-
3048
Travis Gagie http://orcid.org/0000-0003-3689-327X

Data availability statement

The data that support the findings of this study are openly
available in figshare at https://doi.org/10.6084/m9.figshare.
c.5740388.v2, reference number 10.6084/m9.figshare.
c.5740388.v2.

References

Alamri, S., D. Taniar, and M. Safar. 2013. “Indexing Moving
Objects for Directions and Velocities Queries.”
Information Systems Frontiers 15 (2): 235–248. https://
doi.org/10.1007/s10796-012-9367-8 .

Azri, S., U. Ujang, F. Anton, D. Mioc, and A. A. Rahman.
2013. Proceedings of International Symposium &
Exhibition on Geoinformation ISG 2013. In edited by
editor, Kuala Lumpur, Malaysia.

Berndt, D. N. A. I. N. J., and J. Clifford. 1994. KDD
Workshop. In edited by editor, Vol. 10, 359–370. Seattle,
WA: AAAI Press.

Böhm, C., S. Berchtold, and D. Keim. 2001. “Searching in
High-Dimensional Spaces: Index Structures for
Improving the Performance of Multimedia Databases.”
ACM Computing Surveys 33 (3): 322–373. https://doi.org/
10.1145/502807.502809 .

Brisaboa, N. R., G. de Bernardo, and G. Navarro. 2012.
Proceeding 22nd Data Compression Conference (DCC).
In edited by editor 52–61. Snowbird, UT.

Brisaboa, N. R., T. Gagie, A. Gómez-Brandón, G. Navarro,
and J. R. Paramá. 2021. “An Index for Moving Objects
with Constant-Time Access to Their Compressed
Trajectories.” International Journal of Geographical
Information Science 35 (7): 1392–1424. https://doi.org/
10.1080/13658816.2020.1833015 .

Brisaboa, N. R., A. Gómez-Brandón, G. Navarro, and
J. R. Paramá. 2019. “GraCT: A Grammar-Based
Compressed Index for Trajectory Data.” Information
Sciences 483:106–135. https://doi.org/10.1016/j.ins.2019.01.
035 .

Brisaboa, N. R., S. Ladra, and G. Navarro. 2014. “Compact
Representation of Web Graphs with Extended
Functionality.” Information Systems 39 (1): 152–174.
https://doi.org/10.1016/j.is.2013.08.003 .

Brisaboa, N. R., M. R. Luaces, G. Navarro, and D. Seco. 2013.
“Space-Efficient Representations of Rectangle Datasets
Supporting Orthogonal Range Querying.” Information
Systems 38 (5): 635–655. https://doi.org/10.1016/j.is.
2013.01.005 .

Cao, H., N. Mamoulis, and D. W. Cheung. 2005. Proceedings
of the 5th IEEE International Conference on Data Mining
(ICDM). In edited by editor 82–89. Houston, TX.

Chakka, V. P., A. Everspaugh, and J. M. Patel. 2003. Proceedings
of the Conference on Innovative Data Systems Research
(CIDR). In edited by editor Silomar, CA.

Chávez, E., G. Navarro, R. Baeza-Yates, and J. Marroquin.
2001. “Searching in Metric Spaces.” ACM Computing

Surveys 33 (3): 273–321. https://doi.org/10.1145/502807.
502808 .

Chen, L., M. T. Özsu, and V. Oria. 2005. Proceedings of the 2005
ACM SIGMOD international conference on Management of
data. In edited by editor 491–502. Baltimore, MD.

Cheng, Y., W. Fiedler, M. Wikelski, and A. Flack. 2019.
““Closer-To-home” Strategy Benefits Juvenile Survival in
a Long-Distance Migratory Bird.” Ecology and Evolution
9 (16): 8945–8952. https://doi.org/10.1002/ece3.5395.

Cudre-Mauroux, P., E. Wu, and S. Madden. 2010.
Proceedings of the 26th IEEE International Conference
on Data Engineering (ICDE). In edited by editor
109–120. Long Beach, CA.

Douglas, D. H., and T. K. Peuker. 1973. “Algorithms for the
Reduction of the Number of Points Required to
Represent a Line or Its Caricature.” The Canadian
Cartographer 10 (2): 112–122. https://doi.org/10.3138/
FM57-6770-U75U-7727 .

Eiter, T., and H. Mannila. 1994. “Computing discrete
Fréchet distance.”

Ferrada, H., and G. Navarro. 2017. “Improved Range
Minimum Queries.” Journal of Discrete Algorithms
43:72–80. https://doi.org/10.1016/j.jda.2016.09.002 .

Fischer, J., and V. Heun. 2011. “Space-efficient preproces-
sing schemes for range minimum queries on static
arrays.” SIAM Journal on Computing 40 (2): 465–492.
https://doi.org/10.1137/090779759 .

Flack, A., W. Fiedler, and M. Wikelski. 2016. “Data From:
Wind Estimation Based on Thermal Soaring of Birds.”
https://doi.org/10.5441/001/1.bj96m274 .

Frentzos, E., K. Gratsias, N. Pelekis, and Y. Theodoridis.
2007. “Algorithms for Nearest Neighbor Search on
Moving Object Trajectories.” Geoinformatica 11 (2):
159–193. https://doi.org/10.1007/s10707-006-0007-7 .

Gao, Y.-J., C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and
C. Chen. 2007. “Efficient K-Nearest-Neighbor Search
Algorithms for Historical Moving Object Trajectories.”
Journal of Computer Science and Technology 22 (2):
232–244. https://doi.org/10.1007/s11390-007-9030-x .

Gog, S., T. Beller, A. Moffat, and M. Petri. 2014. Proceedings
of the13th International Symposium on Experimental
Algorithms (SEA). In edited by editor 326–337.
Copenhagen, Denmark.

Gudmundsson, J., P. Laube, and T. Wolle. 2008. “Movement
Patterns in Spatio-Temporal Data.” Encyclopedia of GIS
726 (1): 732. doi:10.1007/978-0-387-35973-1_823 .

Gudmundsson, J., M. van Kreveld, and B. Speckmann. 2004.
Proceeding 12th Annual ACM International Workshop on
Geographic Information Systems. In edited by editor
250–257. Washington, DC.

Gutiérrez, G., G. Navarro, A. Rodrguez, A. González, and
J. Orellana. 2005. Proceedings of the 13th ACM
International Symposium on Advances in Geographic
Information Systems (GIS), In edited by editor 115–124.
Bremen, Germany.

Güting, R. H., T. Behr, and J. Xu. 2010. “Efficient K-Nearest
Neighbor Search on Moving Object Trajectories.” The
VLDB Journal 19 (5): 687–714. https://doi.org/10.1007/
s00778-010-0185-7 .

Guttman, A. 1984. Proceedings of the ACM International
Conference on Management of Data (SIGMOD), In edited
by editor 47–57. Boston, MA.

Hausdorff, F. 2005. Set Theory. Vol. 119. American
Mathematical Soc. Chelsea Publishing Company.

Hjaltason, G., and H. Samet. 2000. Incremental similarity
search in multimedia databases. Technical Report 4199.
Department of Computer Sience, University of Maryland.

36 A. GÓMEZ-BRANDÓN ET AL.

https://doi.org/10.6084/m9.figshare.c.5740388.v2
https://doi.org/10.6084/m9.figshare.c.5740388.v2
https://doi.org/10.1007/s10796-012-9367-8
https://doi.org/10.1007/s10796-012-9367-8
https://doi.org/10.1145/502807.502809
https://doi.org/10.1145/502807.502809
https://doi.org/10.1080/13658816.2020.1833015
https://doi.org/10.1080/13658816.2020.1833015
https://doi.org/10.1016/j.ins.2019.01.035
https://doi.org/10.1016/j.ins.2019.01.035
https://doi.org/10.1016/j.is.2013.08.003
https://doi.org/10.1016/j.is.2013.08.003
https://doi.org/10.1016/j.is.2013.01.005
https://doi.org/10.1016/j.is.2013.01.005
https://doi.org/10.1145/502807.502808
https://doi.org/10.1145/502807.502808
https://doi.org/10.1002/ece3.5395
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1016/j.jda.2016.09.002
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.5441/001/1.bj96m274
https://doi.org/10.5441/001/1.bj96m274
https://doi.org/10.1007/s10707-006-0007-7
https://doi.org/10.1007/s11390-007-9030-x
https://doi.org/10.1007/978-0-387-35973-1_823
https://doi.org/10.1007/s00778-010-0185-7
https://doi.org/10.1007/s00778-010-0185-7

Hjaltason, G. R., and H. Samet. 2003. “Index-Driven
Similarity Search in Metric Spaces (Survey Article).”
ACM Transactions on Database Systems 28 (4):
517–580. https://doi.org/10.1145/958942.958948 .

Keogh, E. J., and M. J. Pazzani. 2000. Proceedings of the sixth
ACM SIGKDD international conference on Knowledge
discovery and data mining, In edited by editor 285–289.
Boston, MA.

Kieffer, J. C., and E.-H. Yang. 2000. “Grammar-Based
Codes: A New Class of Universal Lossless Source
Codes.” IEEE Transactions on Information Theory
46 (3): 737–754. https://doi.org/10.1109/18.841160 .

Kuruppu, S., S. J. Puglisi, and J. Zobel. 2010. Proceedings of
the 17th International Symposium on String Processing
and Information Retrieval (SPIRE), In edited by editor
LNCS 6393, 201–206. Los Cabos, MX.

Larsson, N. J., and A. Moffat. 2000. “Off-line
dictionary-based compression.” Proceedings of the IEEE
88 (11): 1722–1732. https://doi.org/10.1109/5.892708 .

Lee, J.-G., J. Han, and K.-Y. Whang. 2007. Proceedings of the
ACM International Conference on Management of Data
(SIGMOD), In edited by editor 593–604. Beijing, China.

Liao, K., M. Petri, A. Moffat, and A. Wirth. 2016.
Proceedings of the 25th International Conference on
World Wide Web (WWW), In edited by editor 807–816.
Montreal, Canada.

Lin, X., S. Ma, H. Zhang, T. Wo, and J. Huai. 2017. “One-
Pass Error Bounded Trajectory Simplification.”
Proceedings of the VLDB Endowment 10 (7): 841–852.
https://doi.org/10.14778/3067421.3067432 .

Liu, J., K. Zhao, P. Sommer, S. Shang, B. Kusy, and
R. Jurdak. 2015. Proceedings of the 31st IEEE
International Conference on Data Engineering (ICDE),
In edited by editor 987–998. Seoul, South Korea.

Maruyama, S., Y. Tabei, H. Sakamoto, and K. Sadakane.
2013. Proceedings of the 20th International Symposium
on String Processing and Information Retrieval (SPIRE),
In edited by editor 218–229. Jerusalem, Israel.

Meratnia, N., and R. A. de by. 2004. Proceedings of the 9th
International Conference on Extending Database
Technology (EDBT), In edited by editor 765–782.
Heraklion, Crete, Greece.

Muckell, J., J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and
S. Ravi. 2011. Proceedings of the 2nd International
Conference on Computing for Geospatial Research &
Applications, In edited by editor 1–8. Washington, DC.

Munro, J. I. 1996. Proceeding 16th Conference Foundations
of Software Technology and Theoretical Computer Science
(FSTTCS). In edited by editor 37–42. Hyderabad, India.

Munro, J. I., R. Raman, V. Raman, and S. Rao. 2012.
“Succinct Representations of Permutations and
Functions.” Theoretical Computer Science 438:74–88.
https://doi.org/10.1016/j.tcs.2012.03.005 .

Nascimento, M. A., and J. R. O. Silva. 1998. Proceeding ACM
Symposium on Applied Computing (SAC), In edited by
editor 235–240. Atlanta, Georgia.

Navarro, G. 2016. Compact Data Structures – a Practical
Approach. New York, NY: Cambridge University Press.

Nibali, A., and Z. He. 2015. “Trajic: An Effective Compression
System for Trajectory Data.” IEEE Transactions on
Knowledge and Data Engineering 27 (11): 3138–3151.
https://doi.org/10.1109/TKDE.2015.2436932 .

Okanohara, D., and K. Sadakane. 2007. Proceedings of the
9th Workshop on Algorithm Engineering and Experiments
(ALENEX), In edited by editor 60–70. New Orleans, LA.

Pfoser, D., C. S. Jensen, and Y. Theodoridis. 2000.
Proceedings of the 26th International Conference on Very
Large Data Bases (VLDB), In edited by editor 395–406.
Cairo, Egypt.

Potamias, M., K. Patroumpas, and T. Sellis. 2006.
Proceedings of the 18th International Conference on
Scientific and Statistical Database Management
(SSDBM), In edited by editor 275–284. Vienna, Austria.

Rigaux, P., M. Scholl, and A. Voisard. 2002. Spatial
Databases: With Application to GIS. San Francisco, CA:
Morgan Kaufmann.

Samet, H. 1984. “The Quadtree and Related Hierarchical
Data Structures.” ACM Computing Surveys 16 (2):
187–260. https://doi.org/10.1145/356924.35693010.1145/
356924.356930 .

Shang, S., L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and
P. Kalnis. 2017. “Trajectory similarity join in spatial
networks.” Proceedings of the VLDB Endowment 10 (11).
https://doi.org/10.14778/3137628.3137630 .

Su, H., S. Liu, B. Zheng, X. Zhou, and K. Zheng. 2020.
“A Survey of Trajectory Distance Measures and
Performance Evaluation.” The VLDB Journal 29 (1):
3–32. https://doi.org/10.1007/s00778-019-00574-9 .

Tang, L.-A., Y. Zheng, X. Xie, J. Yuan, X. Yu, and J. Han.
2011. Proceedings of the International Symposium on
Spatial and Temporal Databases, In edited by editor
223–241. Minneapolis, MN.

Tao, Y., and D. Papadias. 2001. Proceedings of the 27th
International Conference on Very Large Data Bases
(VLDB), In edited by editor 431–440. Seattle, WA.

Trajcevski, G., H. Cao, P. Scheuermann, O. Wolfson, and
D. Vaccaro. 2006. Proceedings of the 5th ACM
International Workshop on Data Engineering for Wireless
and Mobile Access, In edited by editor 19–26. Chicago, IL.

Vazirgiannis, M., Y. Theodoridis, and T. K. Sellis. 1998. “Spatio-
Temporal Composition and Indexing for Large Multimedia
Applications.” ACM Multimedia Systems Journal 6 (4):
284–298. https://doi.org/10.1007/s005300050094 .

Vlachos, M., G. Kollios, and D. Gunopulos. 2002.
Proceedings 18th international conference on data engi-
neering, In edited by editor 673–684. San Jose, CA: IEEE.

Worboys, M. F. 2005. “Event-Oriented Approaches to
Geographic Phenomena.” International Journal of
Geographical Information Science 19 (1): 1–28. https://
doi.org/10.1080/13658810412331280167 .

Zhao, Y., S. Shang, Y. Wang, B. Zheng, Q. V. H. Nguyen,
and K. Zheng. 2018. Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, In edited by editor
2797–2806. London, UK.

Zheng, B., H. Wang, K. Zheng, H. Su, K. Liu, and S. Shang.
2018. “SharkDb: An In-Memory Column-Oriented
Storage for Trajectory Analysis.” World Wide Web-
Internet & Web Information Systems 21 (2): 455–485.
https://doi.org/10.1007/s11280-017-0466-9 .

Zheng, Y., and X. Zhou, eds. 2011. Computing with Spatial
Trajectories. New York, NY: Springer.

Ziv, J., and A. Lempel. 1977. “A Universal Algorithm for
Sequential Data Compression.” IEEE Transactions on
Information Theory 23 (3): 337–343. https://doi.org/10.
1109/TIT.1977.1055714 .

Ziv, J., and A. Lempel. 1978. “Compression of indivi-
dual sequences via variable-rate coding.” IEEE
Transactions on Information Theory 24 (5): 530–536.
https://doi.org/10.1109/TIT.1978.1055
934.

GEO-SPATIAL INFORMATION SCIENCE 37

https://doi.org/10.1145/958942.958948
https://doi.org/10.1109/18.841160
https://doi.org/10.1109/5.892708
https://doi.org/10.14778/3067421.3067432
https://doi.org/10.14778/3067421.3067432
https://doi.org/10.1016/j.tcs.2012.03.005
https://doi.org/10.1016/j.tcs.2012.03.005
https://doi.org/10.1109/TKDE.2015.2436932
https://doi.org/10.1109/TKDE.2015.2436932
https://doi.org/10.1145/356924.35693010.1145/356924.356930
https://doi.org/10.1145/356924.35693010.1145/356924.356930
https://doi.org/10.14778/3137628.3137630
https://doi.org/10.14778/3137628.3137630
https://doi.org/10.1007/s00778-019-00574-9
https://doi.org/10.1007/s005300050094
https://doi.org/10.1080/13658810412331280167
https://doi.org/10.1080/13658810412331280167
https://doi.org/10.1007/s11280-017-0466-9
https://doi.org/10.1007/s11280-017-0466-9
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/TIT.1978.1055934

	Abstract
	1. Introduction
	1.1. Contributions
	1.1.1. More sophisticated queries
	1.1.2. Better data representations
	1.1.3. New space/time tradeoffs

	1.2. Outline of the paper

	2. State of the art
	2.1. Modelling trajectories
	2.2. Compressing trajectories
	2.3. Indexing trajectories
	2.4. Combining compression and indexing

	3. Background
	3.1. Operations over bitmaps
	3.2. Relative Lempel-Ziv
	3.3. Range minimum/maximum queries
	3.4. The <italic><inline-formula id="ilm0085"><alternatives><inline-graphic xlink:href="TGSI_A_2310590_ILM0085.gif"/><tex-math>${k^2}$</tex-math></alternatives></inline-formula></italic>-tree
	3.5. R-trees
	3.6. Snapshots
	3.7. Compact data structures for trajectories
	3.7.1. GraCT
	3.7.2. ContaCT

	4. Queries
	4.1. Trajectory queries
	4.2. Spatio-temporal queries
	4.3. Nearest neighbour queries

	5. Supporting complex nearest neighbor queries
	5.1. KNN of trajectories
	5.1.1. Prioritizing the objects using the snapshots
	5.1.2. Refining the object distance bounds
	5.1.3. Computing the MBR of the input trajectory
	5.1.4. GraCT
	5.1.5. ContaCT

	5.2. KNN during an interval
	5.3. Analysis
	5.4. Experimental evaluation
	5.4.1. Datasets
	5.4.2. Time performance

	6. Discussion
	7. Snapshots based on R-trees
	7.1. Structure
	7.2. Experimental evaluation
	7.2.1. Trajectory queries and space usage
	7.2.2. Spatio-temporal queries
	7.2.3. Nearest neighbour queries

	7.3. Comparison with a spatio-temporal index

	8. Discussion
	9. Relative compression of trajectories
	9.1. Structure
	9.1.1. The reference
	9.1.2. Log representation
	9.1.3. Absence of information

	9.2. Queries
	9.2.1. Object position
	9.2.2. Object trajectory
	9.2.3. Minimum bounding rectangle
	9.2.4. Time slice
	9.2.5. Time interval
	9.2.6. Nearest neighbour queries
	9.2.7. Complex nearest neighbor queries

	9.3. Speeding up queries
	9.3.1. Minimum bounding rectangle
	9.3.2. Time interval

	9.4. Experimental evaluation
	9.4.1. Large datasets
	9.4.2. Compression
	9.4.3. Query performance

	10. Discussion
	11. Conclusions
	Notes
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

