
Generating Commonsense Explanations with

Answer Set Programming

PhD Thesis

Brais Muñiz Castro

2024

Brais Muñiz Castro: Generating Commonsense Explanations with Answer Set Programming, PhD
Thesis, Universidade da Coruña, 2024.

Copyright © 2024 – Brais Muñiz Castro.

Published under Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0

Generating Commonsense Explanations with Answer Set Programming

Brais Muñiz Castro

PhDThesis / 2024

Advisors:

José Pedro Cabalar Fernández

Gilberto Pérez Vega

PhD in Computer Science

José Pedro Cabalar Fernández, Chair Professor at the Department of Computer Science and

Information of Universidade da Coruña,

and

Gilberto PérezVega, Professor at the Department of Computer Science and Information of Uni-

versidade da Coruña,

HEREBY CERTIFY

that the present Doctoral Thesis,Generating Commonsense Explanations with Answer Set Pro-
gramming, submitted to the Universidade da Coruña by Brais Muñiz Castro, has been carried

out under our supervision and fulfils all the requirements for the award of the degree of PhD in Com-
puter Science with InternationalMention.

José Pedro Cabalar Fernández

Advisor

Gilberto Pérez Vega

Advisor

To Tesi.
Thank you for bringing happiness to my heart.

I need you. You are my home.

Acknowledgments
Every day, I am acutely aware that the majority of what I have been able to achieve, and will achieve, is

thanks to the people around me who support and help me, rather than solely due to my own efforts.

Please, let the individuals I will mention next know that my words below come from the depths of my

sincerity.

I would like to start by expressing my heartfelt gratitude to my thesis advisors, without whom this

workwouldnot have beenpossible. I feel incredibly fortunate tohave had you asmymentors. Gilberto,

your support and guidance throughout these years have been invaluable. Especially regarding teaching,

where you have taught me countless things and where I consider you my role model. However, above

all, I want to sincerely thank you for your unwavering care and concern for me over the years. I want

you to know that your selfless affection has been a source of strength that has helped me persevere and

reach this point. Pedro, I am also deeply grateful to you. The time and effort you have dedicated to me

and this project are immeasurable, and I doubt Iwill ever be able to fully repay you. Even in timeswhen

I may have fallen short or made mistakes, you have always been there to help me without hesitation

and with the best attitude. Above all, I greatly appreciate that you have always cared about seeking the

best for me.

I also want to extend my gratitude to Feli, Conchi, and Javier, who also cared for me deeply. Sin-

cerely: your gestures of affection have not gone unnoticed, and I appreciate themmore thanwords can

express. Thank you all five from the bottomofmyheart for taking care ofme. Iwould also like to thank

my friends and colleagues at the IRLab: Paloma,Manu,David, Anxo, Alfonso, Jorge, Eliseo, Juan, An-

tón, Edu, and everyone else. Thank you for making work so enjoyable. On the toughest days, when

motivation is lacking, knowing that these incredible people are there waiting for you makes work ef-

fortless. Also, I would like tomention the rest of my fellow professors in the algebra department: Ana,

Pedro, Óscar, and everyone else. I have had the pleasure of learning from them, and I hope to continue

doing so.

I also want to express my gratitude to the people at the Knowledge Processing and Information

Systems group at the University of Potsdam, where I carried out my stay. I will never forget how wel-

comed I felt there.

I want to thank my lifelong friends, whom I love dearly. Having you all by my side is incredibly

important to me. Knowing that our friendship will never break gives me so much strength. I will

always strive to live up to the love you’ve shown me.

Finally, I reserve the greatest gratitude for my incredible family. Mom, Dad: know that, to me,

you are the epitome of goodness, and I can only hope to one day become even half as amazing as you

both are. My dear wife, Tesi, thank you for always being by my side and loving me so much. I can rest

assured knowing that, even if everything else were to fail, I would still have you.

Abstract

In this thesis, we explore the notion of commonsense explanation in the context of Artificial Intelli-

gence by extending the formalism of Answer Set Programming (ASP) with formal annotations. To

this aim, we define the concept of support graphs to account for the multiple explanations for each

model of a logic program, andwe provide different operations to filter irrelevant information from the

graphs. These definitions are implemented in a tool called xclingo that additionally allows the specifi-
cation of natural language, commonsense explanations. xclingo obtains the support graphs via anASP
meta-encoding that is proved to be correct. We study different examples in the context of ASP such

as planning, problem-solving, or diagnosis, among others, and we analyze the effect of alternative an-

notations for the same scenario, illustrating the need for explanation design. Additionally, we address

the generation of non-technical explanations of Machine Learning models for real users in a pair of

problems from other disciplines (Medicine and Pharmacy), covering both symbolic and sub-symbolic

learning algorithms.

Resumen

En esta tesis, exploramos la noción de “commonsense explanation” en el contexto de la Inteligencia

Artificial mediante la extensión del formalismo Answer Set Programming (ASP) con anotaciones for-

males. Con este objetivo, definimos el concepto de “support graphs” para obtener múltiples expli-

caciones de cada modelo de un programa lógico, y proporcionamos diferentes operaciones para fil-

trar la información irrelevante de estos grafos. Dichas definiciones son implementadas por una her-

ramienta llamada xclingo que adicionalmente permite la especificación de explicaciones “common-

sense” en lenguaje natural. xclingo obtiene los “support graphs” empleando un meta-programa ASP,

cuya corrección es demostrada. Estudiamos los diferentes ejemplos en el contexto de ASP tales como

planificación, resolución de problemas o diagnóstico, entre otros, y analizamos el efecto de diferentes

anotaciones para el mismo escenario, ilustrando la necesidad de diseñar las explicaciones. Adicional-

mente, abordamos la generación de explicaciones no técnicas de modelos de Aprendizaje Automático

con usuarios reales en dos problemas de otras disciplinas (Medicina y Farmacia), cubriendo tanto al-

goritmos de aprendizaje simbólico como subsimbólico.

Resumo

Nesta tese, exploramos a noción de “commonsense explanation” no contexto da Intelixencia Artificial

mediante a extensión do formalismo Answer Set Programming (ASP) con anotacións formais. Con

este obxectivo, definimos o concepto de “support graphs” para obter múltiples explicacións de cada

modelo dunprograma lóxico, e proporcionamos diferentes operacións para filtrar a información irrele-

vante de destes grafos. Ditas definicións son implementadas porunha ferramenta chamada xclingoque
adicionalmente permite a especificación de explicacións “commonsense” en linguaxe natural. xclingo
obténOs “support graphs” empregando unmeta-programaASP, cuxa corrección é demostrada. Estu-

damos os diferentes exemplos no contexto de ASP tales como planificación, resolución de problemas

ou diagnóstico, entre outros, e analizamos o efecto de diferentes anotacións para o mesmo escenario,

ilustrando a necesidade de deseñar as explicacións. Adicionalmente, abordamos a xeración de expli-

cacións non técnicas de modelos de Aprendizaxe Automático con usuarios reais en dous problemas de

outras disciplinas (Medicina e Farmacia), cubrindo tanto algoritmos de aprendizaxe simbólico como

subsimbólico

Contents

1 Introduction 1
1.1 In the Quest for Commonsense Explanations . 6

1.2 Motivation . 7

1.3 Goals and Structure . 11

2 Background 15
2.1 Answer Set Programming . 15

2.1.1 Monotonicity vs Non-Monotonicity . 16

2.1.2 Grounding Answer Set ProgramsWith Variables 16

2.1.3 Aggregates . 17

2.1.4 Choice rules . 18

2.2 ASP Solver Clingo and Python API . 19

2.2.1 Pooling . 19

2.2.2 #show and #project . 19

2.2.3 clingo’s Abstract Syntax Tree . 21

2.2.4 Executing Python code within clingowith Context class 22

2.2.5 Theory definitions . 24

I Explanation in Answer Set Programming 25

3 Support Graphs 27
3.1 Introduction . 27

3.2 Explanations as Support Graphs . 27

3.3 Filtered Explanations . 34

3.4 An ASP Encoding to Compute and Filter Explanations 35

4 Xclingo 41
4.1 Introduction . 41

4.2 Using Xclingo to Generate Explanations . 41

4.2.1 Annotating a program to obtain Explanations 41

4.2.2 Tracing or Hiding Atoms . 47

4.2.3 Obtaining Explanations without Manually Tracing Atoms 50

4.2.4 Muting ASP Code to Avoid Causal Links 52

4.2.5 Explanation Explosion . 55

4.2.6 Explaining aggregates . 57

4.2.7 Explaining unsatisfiable programs . 61

4.3 ASP Implementation . 63

4.3.1 Representation of the explained model . 65

4.3.2 Reifing ASP rules . 66

4.3.3 Show Trace annotations and to-explain atoms 70

4.3.4 Building Support Graphs . 71

4.3.5 Filtering support graphs . 75

4.3.6 Relaxing Constraints for Explaining Unsatisfiability 78

4.4 Architecture and Design . 79

4.4.1 Preprocessing module . 79

4.4.2 Explaining module . 84

4.4.3 Extensions . 84

5 Commonsense Explanations with xclingo 87
5.1 Technical vs Commonsense explanations . 87

5.2 Strong equivalence does not suffice . 91

5.3 A Practical Example of Explanation Design: Blocks World 94

5.4 Model Feeding for Fast Commonsense Explanations 100

5.5 Answering Different Types of Causal Queries . 100

5.5.1 Classifying types of answers . 100

5.5.2 Answering Causal Questions . 103

5.5.3 Counterfactuals in xclingo . 106

6 Related Work 111
6.1 Causal Graphs . 111

6.2 And-Or Explanation Trees and Tree Explanations 115

6.3 s(CASP) . 119

6.4 Offline Justifications . 127

6.5 m-justifications And r-justifications For C-Atoms 133

6.6 LABAS justifications . 134

6.7 Justification Theory . 137

6.8 Explaining unsatisfiability . 138

II Applications to Explainable Machine Learning 141

7 A Tool for Explaining Decision Trees Applied to Liver Transplantation 143
7.1 Introduction . 143

7.2 Machine LearningModels for Utility Estimation in Liver Transplantation 144

7.3 The Support Decision System . 146

7.4 Crystal Tree: A Tool for Explaining Decision Trees 149

7.5 Implementation using Xclingo . 154

7.6 Discussing Decision Tree Explanations . 156

8 Explanations for ML Applied to 3D Printing of Medicines 163
8.1 Introduction . 163

8.2 Accelerating 3D-PrintedMedicine Research withML 164

8.2.1 Obtaining the FDM-Predicting MLModels 166

8.3 aspBEEF: an ASP implementation of BEEF . 168

III Conclusions 177

9 Conclusions 179

A Markup Annotations in Detail 193
A.1 Show Trace annotation . 194

A.2 Trace annotation . 194

A.3 Mute annotation . 195

A.4 Trace_rule annotation . 195

A.5 Mute_rule annotations . 196

B Xcligo’s logic program 197

C Additional Examples 199
C.1 An example on explaining constraints . 199

C.2 An example on diagnosis using xclingo . 201

D Liver Transplantation Dataset: Description of the Features 209

E Extended Summary in Spanish 211

List of Figures

1.1 An example of a circuit for diagnosis . 8

1.2 An example of a (very technical) Support Graph 10

1.3 An example of a Techincal Explanation obtained using xclingo 10

1.4 An example of a Commonsense Explanation obtained using xclingo 11

2.1 clingo Python API example for renaming variables in the AST 21

2.2 An example of a Context class . 22

2.3 An example of executing Python code within clingo 23

3.1 Some results for model {p, q, r} of program in Example 3. 30

3.2 Examples of edge pruning and node forgetting. 34

4.1 Support Graphs for programs 4.3 and 4.4 . 48

4.2 ASP components of xclingo . 64

4.3 Architecture of xclingo. 80

4.4 Pipeline pattern for the Preprocessingmodule. 81

4.5 Base decorator components for the XclingoAST class 82

4.6 Decorated components for the main rules of the translation. 82

4.7 Decorated components for some annotation rules. 83

4.8 Decorated components for trace annotation rules. 83

4.9 Design for the main classes of the Explainingmodule. 84

5.1 Explanations in the context of the KR workflow 89

5.2 Steps for encoding the user requirements as an ASP program. 91

5.3 Two circuits that behave the same for the same inputs 92

5.4 ASP specifications for Circuit 1 and Circuit 2 . 92

5.5 Common ASP code for Circuit 1 and Circuit 2. 92

5.6 Solutions for both Circuit 1 and Circuit 2 . 92

5.7 Explanations for both Circuit 1 and Circuit 2 . 93

5.8 Typical set up of a blocks world problem. 94

5.9 Model Feeding approach . 100

5.10 Data flow under Model Feeding approach . 101

5.11 Methodology for answering different causal queries 104

6.1 Examples of C-graphs . 113

6.2 Examples of Proof Graphs . 114

6.3 Support Graphs for Program 6.1. 114

6.4 And-or explanation tree for atom bomb from Program 6.1 116

6.5 Four Explanation Trees . 117

6.6 A natural language explanation produced by BioQuery-ASP 118

6.7 Modification of Program 4.1 . 121

6.8 Some #pred directives . 126

6.9 Some xclingo annotations . 126

6.10 Two explanation graphs . 128

6.11 Python snippet of code for using xASP. 130

6.12 Some xASP explanations . 131

6.13 Some xASP explanations for the query not bomb . 131

6.14 Explanation from xASP obtained for Program 6.5. 132

6.15 Some ABA arguments . 134

6.16 Abbreviated ABA arguments for literals in Program 6.15. 135

6.17 Some attacking trees . 136

6.18 Some LABAS justifications . 137

7.1 Comparison of the performance of different ML algorithms 145

7.2 Best trained decision tree for liver transplantation 147

7.3 Support decision system architecture . 148

7.4 Example of output of the system . 148

7.5 A branch of the best Decision Tree . 149

7.6 A branch of some Decision tree . 150

7.7 An example of a Crystal-tree explanation . 150

7.8 A non-technical explanation from Crystal-tree users 151

7.9 A Spanish explanation from Crystal-tree . 151

7.10 Example of use of the Crystal-tree library. 152

7.11 Adding labels to a Crystal-tree object. 153

7.12 Crystal-tree’s process for obtaining an explanation 154

7.13 Partial ASP-translated input instance . 155

7.14 ASP translation of a branch of a Decision Tree . 155

7.15 ASP rules for modelling the conditions of a Decision Tree 155

7.16 Tranlsated thresholds of a Decision Tree . 156

7.17 Generated trace annotations by Crystal-Tree . 158

7.18 A not clinically significant branch from a Decision Tree 159

7.19 A non-clinically significant explanation . 159

8.1 Typical FDM printing process for 3DP of medicines 164

8.2 Experiments acceleration and recommendation . 165

8.3 Alternative 3DP datasets . 167

8.4 Comparison of the performance of different ML algorithms 168

8.5 Some boxes computed by aspBEEF . 169

8.6 Some aspBEEF shorthand predicates . 171

8.7 Choice rule for generating boxes with aspBEEF . 171

8.8 aspBEEF rules detecting predictions within the boxes 171

8.9 Rules modelling overlapping in aspBEEF . 172

8.10 Rules modelling impurity in aspBEEF . 172

8.11 asprin preferences for aspBEEF . 172

8.12 Feature selection in aspBEEF. 173

8.13 Computational efficiency of aspBEEF for the number of predictions 174

8.14 Some boxes found by aspBEEF for 3DP experiments 175

8.15 Some aspBEEF explanations using xclingo . 175

C.1 Example trapped agent . 199

C.2 An example of a circuit for diagnosis . 201

C.3 Some explained diagnoses . 207

C.4 An example of an explanation when inertia is not traced 208

List of Programs

4.1 Don’t Drive Drunk . 42

4.2 Annotated version of Don’t Drive Drunk . 43

4.3 Don’t Drive Drunk using only trace_rule annotations 48

4.4 Don’t Drive Drunk using only trace annotations 48

4.5 Brangelina . 54

4.6 Chain of firing squads . 56

4.7 Holding Objects . 58

4.8 Polluted River . 59

4.9 Annotated version of Polluted River . 60

4.10 Hamiltonian Path . 63

5.1 Blocks World: initial state . 95

5.2 Blocks World: common code . 95

5.3 Blocks World: encoding 1 . 96

5.4 Blocks World: encoding 2 . 97

5.5 Blocks World: encoding 3 . 99

5.6 Data for gabriel and clare. 106

5.7 Rules for being punished and sentenced. 106

5.8 Performing abduction over the events for imagining different worlds. 107

5.9 Rules connecting the abduced facts back to the usual predicates. 108

5.10 Introducing queryQ . 108

6.1 Bomb (from [49]) . 112

6.2 Opera (from [10]) . 119

6.3 Opera 2 (from [10]) . 120

6.4 Modification of Bomb . 127

6.5 Modification of Polluted River . 130

7.1 Complete ASP translation of the best Decision Tree 157

7.2 Crystal-Tree default annotations . 158

C.1 Trapped Agent . 200

xxiv LIST OF PROGRAMS

Chapter 1

Introduction

Within the last few years, we have witnessed how Artificial Intelligence (AI) has mastered tasks con-

sidered unthinkable to be performed by anything different from a trained human. A good example

of this is Generative AI [23], which is able to write and comprehend natural language text to, clone

voices, as well as to generate all kinds of graphics such as drawings, photorealistic pictures, or even 3D

models. The advancement of AI has been so rapid that research struggles to identify potential positive

applications thatmay arise. These include fraudor cyberbullying detectionon social networks, person-

alized education, and simultaneous translation, to name three examples. However, like a double-edged

sword, it is equally true that these technologies can also be maliciously exploited in many ways such as

political manipulation, automated cybercrime, or identity theft.

Concerning that, countries are increasing their efforts to create regulations [28].DuringDecember

2023, for instance, the Council and the Parliament of the European Union (EU) approved the first

comprehensible law on AI [27] (the so-called EU AI Art). In this document, AI systems are classified

into different risk levels, with their corresponding regulatory frameworks to control or mitigate them.

Among the criteria used to identify the level of risk of a particular system are those data-related (such as

privacy and the absence of unfair biases) but also, and perhaps more importantly, the domain or field

in which these systems are used also comes into play, with some being identified as higher-risk areas.

These include the legal, administrative, educational, military and/or police, and healthcare domains.

Associated with those risks, several requirements that the systems must comply with are defined. In

particular, according to points 1 and 2 of Article 13 of the EU Parliament’s proposal, transparency and

comprehensibility of the systems are required.

Article 13.1. High-risk AI systems shall be designed and developed in such a way as to ensure
that their operation is sufficiently transparent to enable users to interpret the system’s output
and use it appropriately. ...

Article 13.2. High-risk AI systems shall be accompanied by instructions for use in an appro-
priate digital format or otherwise that include concise, complete, correct and clear informa-
tion that is relevant, accessible and comprehensible to users.

European Commission proposal on regulating AI Systems [27].
Proposed in 2021, approved in December 2023.

2 CHAPTER 1. INTRODUCTION

This points in the direction of the eXplainableArtificial Intelligence (XAI) research field, which has ex-
perienced an unprecedented increase in research interest in recent years. On the one hand, efforts from

computer science are made to achieve transparent and comprehensible AI algorithms. On the other

hand, and perhaps more importantly, actors from the social sciences such as philosophers or sociolo-

gists try to define such concepts in the first place from an ethical and humanistic point of view. As an

example, the report by V.Dignum [34] names three main requirements regarding the interpretability

of AI systems:

1. Transparency

Indicates the capability to describe, inspect and reproduce themechanisms through
which AI systems make decisions ...

2. Responsibility

Refers to the role of people themselves in their relation to AI systems. ...
Responsibility in AI is also an issue of regulation and legislation, in particular

where it respects liability ...

3. Accountability

Accountability is the capability to give account, i.e. to be able to report and explain
one’s actions anddecisions. To ensure accountability decisions should be derivable from,
and explained by, the decision-making mechanisms used. ...

In developing explanation mechanisms, it is important to be mindful that the ex-
planations should be comprehensible and useful to a human, ...

Explanation is relevant for trusting AI systems for a number of reasons. Firstly,
explanations can reduce the opaqueness of a system, and support understanding of its
behavior and its limitations. ...

From the definition, the term Responsibility seems to fall more on the side of ethics, regulations and

legal fields, aiming to control how the AI systems are used, with which purposes, by whom and finally,

who and how are they affected. Transparency and Accountability, however, are challenges that can be
tackled more from a more technical side, by providing AI systems and algorithms with such capabil-

ities. We would refer to a system as transparent when the mechanism
1
that relates its input into its

output is documented and clear enough so that each step is fully known and reproducible. In con-

trast, an accountable system possesses the ability to self-explain in a way that may not only describe its

technical behavior but can also justify its decisions or results in a comprehensible and useful way for

human actors to trust the system.

Unfortunately, as TimMiller claims in his influential survey onXAI [75], “it is fair to say thatmost
work in explainable artificial intelligence uses only the researchers’ intuition of what constitutes a ‘good’
explanation”, instead of building on the vast existing research on the topic from the social sciences. To

gain user’s trust in the systems is essential that we look at how real people define, generate, select, eval-

uate, and present explanations, rather than defining arbitrary ad-hoc approaches. As a conclusion, [75]
1

This includes a procedure, an algorithm, or perhaps an inference method

3

highlights the following properties of explanations that XAI systems should pursue to enhance user

trust.

(1) Explanations are contrastive: the research suggests that people tend to ask for expla-

nations in response to abnormal or unexpected observations with respect to their own

beliefs.

In otherwords, people donot simply askwhy some eventPoccurs. In contrast, they typically ask “Why
P” in contexts where they expected an event Q to occur, but are instead confronted with a situation

where an unexpected event P does hold and Q does not. Therefore, the real question they need an

answer to is “WhyP instead of Q?”. Note that this is different than simply askingWhy not Q?, because
it implies that the asking user considers a default, expected world that has been broken. Indeed, it is

from the differences between the actual world (where P holds) and the default, expected world (where

Q holds) that people start to build explanations. Take for instance the following example from [75].

... why the Challenger shuttle exploded in 1986 (rather than not exploding, or perhaps why
most other shuttles do not explode). The explanation that it exploded “because of faulty seals”
seems like a better explanation than “there was oxygen in the atmosphere”.

Explanation in Artificial Intelligence: Insights from the social sciences
TimMiller. Published in October 2018.

In the example, P is the explosion of the Challenger shuttle, which happened in the actual world,

whereas Q could be that the shuttle do not explode which was something expected by the user. “There
was oxygen in the atmosphere” is not considered a good explanation because both the actual world and
the default world assumed by the asking actor share this. Conversely, the fact that seals were faulty

is considered abnormal with respect to the actor’s assumptions and therefore is perceived by her as a

satisfying explanation.

Of course, strictly speaking, the oxygen in the atmosphere is a necessary cause for the explosion to

occur, as other (perhaps impossible to count) non-mentioned causes are. In fact, handling the complete

chain of causes quickly becomes impossible for humans in real scenarios. This becomes worse if we

also try to take into account all the possible causal inhibitors that could prevent the explosion from

happening, including those the less related to the actual world. For instance, arguing the fact that it

wasn’t stormy the day the shuttle launched as a reason for the explosion to happen because it wouldn’t

have taken off in that case. This connects with the other two properties identified by [75].

(2)Explanations are selected (inabiasedmanner): explanations rarely consist of the actual
and complete causes of an event, rather than a (biased) selectionof a subset of causes based

on the context and several other criteria such as temporal proximity, necessity, sufficiency,

abnormality, etc.

(3) Explanations are social: when a system explains a result, a transfer of knowledge hap-

pens from the system to the user as part of a (people-like) interaction. As such, the infor-

mation presented is relative to the system’s beliefs about the explainer’s beliefs.

4 CHAPTER 1. INTRODUCTION

In other words, explanations are both context-dependent and user-dependent. When people try to

find the reasons for an unexpected event, they first try to imagine close contrastive scenarios that suc-
cessfully explain it. This relates to abductive reasoning and/or causal simulation. However, in this

process, the exploration of the hypothetical worlds is not arbitrary but carefully guided by the person’s

beliefs on the relevance of the different possible causes, which change depending on the context. In

other words, the imagined contrastive scenarios are not only close but relevantly close. This selection
of relevant causes not only influences the finding of valid contrastive worlds but also the information

ultimately included in the explanation, often also tailored to the receiver’s knowledge and perspective.

The following quote from [62] (also retrieved from [75]) greatfully illustrates this.

There are as many causes of x as there are explanations of x. Consider how the cause of
death might have been set out by the physician as ‘multiple haemorrhage’, by the barrister
as ‘negligence on the part of the driver’, by the carriage-builder as ‘a defect in the brakelock
construction’, by a civic planner as ‘the presence of tall shrubbery at that turning’. None
is more true than any of the others, but the particular context of the question makes some
explanations more relevant than others.

Patterns of Dicovery
Norwood Russell Hanson. Published in 1958.

In [75] several criteria such as temporal proximity, necessity or sufficiency (among others) are identified

as often good filters for relevant causes, whereas others like probability are shown as less useful. In

fact, in his final major finding, Miller contrasts probabilities with cause-effect when evaluating a good

explanation.

(4) Explanations are causal: while truth and likelihood are important in explanation and

probabilities really do matter, referring to probabilities or statistical relationships in ex-

planation is not as effective as referring to causes. The most likely explanation is not al-

ways the best explanation for a person, and importantly, using statistical generalizations

to explain why events occur is unsatisfying unless accompanied by an underlying causal

explanation for the generalization itself.

Unfortunately, Machine Learning (ML) algorithms cannot extract any causal relations from data

(since they cannot perform interventions [80, 82]), and so, explanatory approaches for those AI mod-

els do not rely on any causal knowledge either. For instance, the SHAP [68] technique assigns a value

to each input variable of an instance that represents the average contribution of that variable to the

final decision, but this is based on correlation rather than any learned causal knowledge. Besides, an-

other well-known XAI technique LIME [88] explains complex non-interpretable AI models by com-

puting simpler transparent models trained on the predictions of the former. However, even for trans-

parent simplerAI algorithms likeDecisionTree (DT), explanations extracted from themare not always

causally correct. Take for instance the following DT.

5

Smokes?
No

uu
Y es

))
Alcoholic?

No
vv

Y es
))

High Risk

Low Risk Age > 35?
No

vv
Y es

))
Low Risk High Risk

The tree identifies different risk classes for an arbitrarypatientbasedonwhetherhe smokes,whether

she is an alcoholic and her age. From such a tree, one can conclude that Do not smoking is a reason
to have High Risk (by sequentially answering No-Yes-Yes to the conditions in the tree) or that Being
Alcoholic is a reason to have Low risk (by answering No-Yes-No). These conditions learned by the al-

gorithm come from statistical relations in the training data that help the DT to better differentiate the

instances of each class. However, by relying only on this information and not taking causal relations

into account, one may reach absurd conclusions. To quote Judea Pearl in his celebrated book “The

Book of Why” [82].

Aworld governed solely by probabilities and correlations would be a strange one indeed. For
example, patients would avoid going to the doctor to reduce the probability of being seriously
ill; cities would dismiss their firefighters to reduce the incidence of fires; doctors would rec-
ommend a drug to male and female patients but not to patients with undisclosed gender;
and so on.

The Book ofWhy
Judea Pearl and DanaMackenzie. Published in June 2018.

To summarize, the problem of users’ lack of trust in AI seems to lie in the fact that while AI

speaks in the language of correlations, statistics and probability, people only understand the language

of causality. Controversely, relying only on human-generated natural language to teach AI systems to

explain themselves does not seem a good option either. This is the case of Large Language Models
(LLM) systems [25] like GPT and its widely known chat application ChatGPT. During his talk in Vi-

enna regarding XAI inMay 2022, Edward E. Leemade a prediction [65] suggesting that the insistence

on explanations from experts may lead to the training of generative AI systems to produce any con-

vincingly plausible content. This prediction materialized later in the same year, 2022, with the public

release of ChatGPT
2
. This development enables anyone to generate a paragraph justifying why some-

thing should be donewith the same ease as producing another justification for doing the opposite (this

capability has already been exploited, for example, in the generation of legal claims). Many of these gen-

erated contents rely on fallacious reasoning, erroneous computations, or nonexistent facts (referred to

as hallucinations). However, discerning their fraudulent components is not always straightforward for

humans at first glance.

2https://chat.openai.com

https://chat.openai.com

6 CHAPTER 1. INTRODUCTION

Facedwith the inability to generate explanations that generate confidence inusers, some authors, as

for instance Ghassemi et al. [58], are beginning to believe that the solution is not only to offer convinc-

ing explanations but to design systems that are auditable and verifiable both internally and externally.

It, therefore, seems clear that it is important for AI systems to have some kind of causal knowledge to

support their decisions, either learned autonomously from training ormanaged by experts. Evenmore

so in the case where the generation of explanations is an essential requirement.

1.1 In the Quest for Commonsense Explanations
The discipline of AI that is very suitable to support this causal knowledge isKnowledge Representation
and Reasoning (KRR), a field that has been central to AI since its inception by John McCarthy [73].

KRR involves performing inference on explicit representations of knowledge using computational

logic. Several specializeddisciplineswhichhavematured significantly over time such asNon-monotonic

Reasoning, Ontologies, Uncertainty, and Causality, take part in the KRR field. McCarthy introduced

the term ‘CommonsenseReasoning’ at the birth of theKRRfield, emphasizing the need to formally rep-

resent human-like thinking in machines. By this term, McCarthy emphasizes that, to achieve human-

like thinking machines, we must formally capture human-like reasoning. This is similar to what, as we

have already explained, Miller recently tried to establish in his survey [75]: that we need to look at how

people explain to teach machines how to explain.

Definition 1 (Commonsense Explanation). As a parallelism, we propose the notion of ‘Commonsense
Explanation’ as an explanation from a system to a human, that provides accountability to the system.
A commonsense explanation is based (fundamentally) on actual causal knowledge of the real-world do-
main in human understanding terms. FollowingMiller’s findings (2) and (3) a commonsense explana-
tion must be context and user-dependent, carefully selecting the causal knowledge used in it as well as the
language and tone with respect to the system’s purposes and the system’s beliefs about the target human
actor.

A simple idea that perhaps captures most of what we try to establish with this definition is the idea

of a explanation Turing test. That is: if a user cannot say whether the explanation was generated by a

human or a system, then it is a commonsense explanation. Let this intuition be the ultimate goal of

our approach.

Indeed the main goal of this dissertation is to develop this notion of explanation under the KRR

paradigm. This will be done from a fundamentally practical perspective, by the implementation of

tools for computing such explanations and their practical application to different AI problems and

systems. The KRR discipline we have chosen to work with the explanations isNon-Monotic Reason-
ing (NMR) [74]. This area of study emerges within artificial intelligence in the late 1970s and early

1980s driven by the efforts to model human-like reasoning. In contrast with classical logic, where de-

ductions are always true even in the presence of additional information, Non-monotonic reasoning

deals with reasoning under uncertainty and incomplete information. This seems to be suitable for

commonsense reasoning which involves reasoning about everyday situations and making judgments

based on experience. This approach is used nowadays for all kinds of purposes and applications.

Answer Set Programming (ASP) stands out as one of the most successful paradigms for practical

KRR and declarative problem solving, grounded in NMR [18, 54]. ASP offers a flexible KRR frame-

1.2. MOTIVATION 7

work built on a solid mathematical foundation, leveraging stable models semantics [57] for logic pro-

gramming and fully characterized by Equilibrium Logic [79]. In ASP, knowledge is represented as a

logic program, that is, a set of rules of the form:

H ← B

whereH (namely the head of the rule) is a set of atoms andB (namely the body of the rule) is a set of
literals such that we can some atom inH is true if all literals inB hold. For instance, the rule

is_on(bulb)← closed(switch), not broken(relay). (1)

can be interpreted in natural language as “the light bulb is on if the switch is closed and the relay is not
broken”. From a rule with an empty body B (called a fact), its head H is considered true as in the

following example.

closed(switch)← (2)

Rules (1) and (2) together form an ASP program that, after solving produces the unique solution (i.e.

Answer Set)A1 as a result.

A1 = {closed(switch), is_on(bulb)}

Note that an ASP program can have from none to several answer sets. However, in the additional

presence of the fact broken(relay), we would have obtained the following answer set instead.

A2 = {closed(switch), broken(relay)}

Due to the accessibility and the efficiency of ASP solvers such as clingo [51, 55], ASP-based tools

are widely applicable across diverse domains [44], including multi-robot pathfinding, product config-

uration, spacecraft system diagnosis, phone call routing, transportation line scheduling, biochemical

reactions modeling, and workforce management. Given this wide use, it is natural that, in the context

of the rise of the XAI, the use of ASP for the generation of explanations has attractedmuch interest in

the past decade. In particular, Jorge Fandinno’s PhD [47],which constitutes the theoretical precedent

for the work undertakenwithin this dissertation, interprets ASP programs as cause-effect relations and

develops causal semantics based on this. Indeed, the use of ASP rules to represent causal relations is

straightforward, just by rethinking the meaning of the rule asB causesH . For instance, rule (1) could

be rethought as “closing the switch causes the light bulb to be on when the relay is not broken”.
Moreover, in the recent survey [48] (published in 2019), up to six different approaches to the

explainability of ASP programs are considered. Since that time, new approaches like s(CASP) [7] or

xASP [4] (both will be visited later in the Chapter 6) have emerged, while other already existing have

evolved. In particular, xclingo [21] is one of these tools, that implements the approach proposed in

this dissertation.

1.2 Motivation
We have introduced the notion of Commonsense Explanation in Definition 1, inspired by what liter-

ature says to characterize a trustable XAI system, including the European new Law on AI require-

ments and most important properties on explanations given by literature on social sciences, such as

8 CHAPTER 1. INTRODUCTION

the notions of transparency and accountability. To that aim, we have seen how technological support

is necessary to represent and introduce causal knowledge into the systems, and how the ASP paradigm

constitutes a good candidate for it. The core of this dissertation will be focused on developing the

practical tools to obtain commonsense explanations from (and for) ASP programs.

Take the following example Example 1 from [11],where an agent operating a circuit has to diagnose

why a bulb is not lit as expected.

r

s2

b

s1

Figure 1.1: A circuit with a bulb b, a relay r and two switches, s1 and s2.

Example 1. (From [11]) Consider a system S consisting of an agent operating an analog circuit from
Fig. 1.1. We assume that switches s1 and s2 are mechanical components that cannot become damaged.
Relay r is a magnetic coil. If not damaged, it is activated when s1 is closed, causing s2 to close. Un-
damaged bulb b emits light if s2 is closed. For simplicity of presentation, we consider the agent capable
of performing only one action, close(s1). The environment can be represented by two damaging exoge-
nous actions: brk, which causes b to become faulty, and srg (power surge), which damages r and also b
assuming that b is not protected. Suppose that the agent operating this device is given the goal of lighting
the bulb. He realizes that this can be achieved by closing the first switch, performing the operation, and
discovering that the bulb is not lit. □

We will use this example to illustrate to contrast the notions of solution, technical explanation

and commonsense explanation. Say that, after some KR effort, a KR engineer writes a program P
that captures the diagnosis reasoning needed to solve the example’s problem. We do not show the

particular implementation of program P as we want to focus on the intuitive comprehensibility of

different possible outputs. After solving P with an ASP solver (we will use clingo[52], in particular),
we obtain the answer sets shown in Output 1.1. In it, we found that there are 3 valid diagnoses: Answer

1 Answer: 1
2 o(toggle(s1),1) o(break,1) o(surge,1) h(relayline,off,1) h(light,off,1)
3 Answer: 2
4 o(toggle(s1),1) o(surge,1) (relayline,off,1) h(light,off,1)
5 Answer: 3
6 o(toggle(s1),1) o(break,1) h(relayline,on,1) h(light,off,1)
7 SATISFIABLE

Output 1.1: Answer sets for program P , solving Example 1 obtained using clingo.

1.2. MOTIVATION 9

1, where the bulb was broken and there was a power surge, meaning that both the bulb and the relay

are off; Answer 2, where only the power surge happened, meaning that both the bulb and the relay are

off; and finally, Answer 3, where only the bulb was broken, meaning that both the bulb and but relay

are on.

Unfortunately one cannot unravel the reasons why the light is off by just looking at the answer sets

answers depicted in Output 1.1. What both approaches [47], and the one taken in this dissertation,

do is to build graphs representing the causal chains that explain the different events computed by P .

We define our notion of such graphs and refer to it as Support Graphs (Definition 6 in Section 3.2)

where each node represents a true atom in an answer set, and the edges are drawn from the atoms in

the body of a rule to the atoms in its head. However, the way to compute such graphs is not trivial.

Indeed, several other approaches apart from [47] and our approach use similar graph-like explanations,

also obtained from the program and a particular answer set and they do not coincide with our notion

of Support Graph. For generating the graphs, a preprocessing of the program is needed to collect the

causal relations from the rules. More importantly, how to collect these relations from some particular

ASP syntactic constructs such as choice rules or aggregates is not clear, currently being an open problem
in the field for which we propose an approach later in Section 4.3.2.

Even though we consider Suport Graphs as explanations for a whole answer set, these are far from
being Commonsense Explanations since do not meet almost any requirement mentioned in Defini-

tion 1. Take for instance the support graph depicted in Figure 1.2, concerning Answer 3 in Output 1.1

with respect to Program P .

Only users knowledgeable in both ASP (and possibly in the particular program) would such an

explanation as intuitive or comprehensible. However, they do provide some degree of transparency

to an ASP system, as they contain the full derivation trace for every atom in that answer representing

how the new atoms are inferred from the knowledge in the program. In fact, by reverse traversing the

graph from a given node, one can obtain tree-like explanations of the reasons for a particular atom.

Figure 1.3 shows an example of one of these explanations. This kind of explanation, which we refer to

asTechnical Explanation (Definition 2, given below), although is also far fromwhat we could consider

a Commonsense Explanation, is still important for the internal verification of the system.

Definition 2 (Technical Explanation). A ‘Technical Explanation’ fully depicts the underlying mecha-
nisms used by a system to eventually reach a result or a decision. Its purpose is the internal verification of
the functioning of the system, and thus it is presented in full detail and in technical language. It is aimed
at actors with experience in the underlying technology and/or in the system in particular.

A good example to illustrate the difference between a technical and a commonsense explanation

would be ChatGPT-like explanations. These explanations could be considered commonsense expla-

nations as they are in human terms and are even able to convince real humans with false arguments.

Themain problem is that, although convincing, they do not offer any warranty of trustability. In con-

trast, they are not technical explanations at all, since the explanation given has nothing to do with the

inner workings of the system that led to their achievement. We aim to equip systems with trustable

commonsense explanations providing accountability as well as with technical explanations proving

transparency.

With the developed tool xclingo we start with support graphs as a basis, we define operations to
select the relevant causal knowledge in the graph with respect to the targeted actor’s beliefs (fulfilling),

10 CHAPTER 1. INTRODUCTION

Figure 1.2: Support Graph computed by xclingo for Answer 3 in Output 1.1 with respect to Program

P .

1 *
2 |__h(light,off,1)
3 | |__c(light,off,1)
4 | | |__h(bulb,broken,1)
5 | | | |__c(bulb,broken,1)
6 | | | | |__o(break,1)
7 | | | | | |__time(1)
8 | | | | | | |__plength(1)
9 | | | | | |__exog(break)
10 | | | | |__time(1)
11 | | | | | |__plength(1)
12 | | |__time(1)
13 | | | |__plength(1)z

Figure 1.3: Technical Explanation obtained by xclingo for the atom h(light,off,1) representing the
light beinf off in Answer 3 of Output 1.1 with respect to program P

1.3. GOALS AND STRUCTURE 11

1 *
2 |__"The light is off at 1"
3 | |__"The bulb has been damaged at 1"
4 | | |__"Hypothesis: something has broken the bulb at 1"

Figure 1.4: A filtered, natural language explanation obtained by xclingo from Support Graph G3 in

Figure 1.2.

and provide the mechanisms needed to express the explanations in natural language aiming to achieve

commonsense explanations. Figure 1.4 shows an example of the explanations that can be achievedwith

xclingo.
Even with the provided tools for selecting andmanipulating explanations, we have found that it is

not trivial to obtain explanations that fully comply with the final user’s expectations. In fact, we claim

that right after the effort invested in representing a problem into a program, an additional effort will

often have to be made to accommodate the ASP encoding for obtaining the desired explanations. We

refer to this new development process as Explanation Design, this is a refactorization of original (al-

ready correct) encoding, not formaintenance or efficiency purposes, but for ensuring the explanations

obtained from the program are commonsense explanations. In Chapter 5 we introduce and detail this

process, using a running example to illustrate the different challenges it poses.

Finally, to fulfill the fourth property postulated by Miller in [75] (i.e. explanations are a social

interaction), in Section 5.5 we propose a question-answering design for an ASP XAI system. On it,

the explanatory process is presented as an interaction between the user and the system, where the sys-

tem reacts to human demands, sequentially changing the reasoning mode depending on the type of

explanatory query the user poses. We propose different types of explanation answers and means to

implement them.

1.3 Goals and Structure
This dissertation is posed from a fundamentally practical perspective and it is explicitly divided into

two parts. Part I, defines the notion of explanation in ASP (support graphs), describes how xclingo
implements it, and finally, it provides valuable insights on how to use the tool to obtain commonsense

explanations through explanation design for ASP applications. Part II, on the other hand, aims to

demonstrate how to obtain explanations in the context of ML applications. In particular, we show

two real-world applications, namely: explanations for tree-basedML algorithms applied to liver trans-

plantations and explanations formodel-agnosticML applied to 3D-printing ofmedicines. To sumup,

the goals of this dissertation are:

1. To expand the formalism of logic programming to incorporate new language extensions for

designing commonsense explanations based on formal semantics.

2. To implement a tool and to explore its applicability to real problems of logic programming, such

as planning, problem-solving, or diagnosis, among others.

3. The study of a methodology that involves the design of understandable explanations for non-

technical users as a fundamental part of it.

12 CHAPTER 1. INTRODUCTION

4. The applicationof explanation techniques toMLmodels in real domainwithusers fromoutside

disciplines.

In particular, this dissertation has produced the following publications within the context of Part I

(Explanations for Answer Set Programming):

Cabalar P, Muñiz B. Model Explanation via Support Graphs. Theory and Practice of Logic

Programming. 2023 Oct 2:1-4.

Cabalar P, Muñiz B. Commonsense Explanations for the Blocks World. Challenges and Ad-

equacy Conditions for Logics in the New Age of Artificial Intelligence 2023 (ACLAI 2023).

Workshop.

Cabalar P, Muñiz B. Explanation graphs for stable models of labelled logic programs. InPro-

ceedings of the International Conference on Logic Programming 2023 Workshops co-located

with the 39th International Conference on Logic Programming (ICLP 2023), London, United

Kingdom, July 9th and 10th 2023 Jul 9.

P. Cabalar, J. Fandinno and B. Muñiz, "A System for Explainable Answer Set Programming",

in Proc. of the 36th International Conference on Logic Programming (ICLP’20), EPTCS 325,

pp 124-136, 2020.

In addition, it has produced the following publications within the context of Part II
34
. (Applica-

tions to Explainable Machine Learning).

Ong JJ, Castro BM, Gaisford S, Cabalar P, Basit AW, Pérez G, Goyanes A. Accelerating 3D

printing of pharmaceutical products using machine learning. International Journal of Pharma-

ceutics: X. 2022 Dec 1;4:100120 (Machine Learning pipeline design and experiments)

Cabalar P,Muñiz B, Pérez G, Suárez F. ExplainableMachine Learning for liver transplantation.

arXiv preprint arXiv:2109.13893. 2021 Sep 28. (unpublished draft)

Castro BM, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar

P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery

systems. Journal of Controlled Release. 2021 Sep 10;337:530-45. (Machine Learning pipeline

design and experiments; Data preparation)

Elbadawi M, Castro BM, Gavins FK, Ong JJ, Gaisford S, Pérez G, Basit AW, Cabalar P, Goy-

anes A. M3DISEEN: A novel machine learning approach for predicting the 3D printability of

medicines. International Journal of Pharmaceutics. 2020Nov 30;590:119837 (Machine Learn-

ing pipeline design and experiments; Data preparation)

Cabalar P, Martín R, Muñiz B, Pérez G. aspBEEF: Explaining Predictions Through Optimal

Clustering. InProceedings 2020 Aug 28 (Vol. 54, No. 1, p. 51). MDPI.

3

For some publications, the particular contribution of the author is detailed at the end of the citation

4

In particular for pharmaceutics publications, the order of the authors is established by the amount of work provided by

each author

1.3. GOALS AND STRUCTURE 13

F.Aguado, P. Cabalar, J. Fandinno, B.Muñiz, G. Pérez and F. Suárez, "ARule-Based System for

Explainable Donor-Patient Matching in Liver Transplantation", in 15th International Confer-

ence on Logic Programming (ICLP’19), technical communications applications track, Septem-

ber 20-25, 2019. Electronic Proceedings of Theoretical Computer Science 306, pp. 266-272,

2019.

The rest of this dissertation is organized as follows. Chapter 2 provides some background results

that are required in the rest of the dissertation.

Part I starts by providing the definitions of important notions such as support graphs or justified

models in Chapter 3. After that, the ASP explainability tool xclingo is presented, including the usage
of the language extensions as well its implementation based on ASP. Then Chapter 5 provides dis-

cusses important topics related to commonsense explanations as well as proposes a methodology to

answer real causal questions of different types. Finally, Chapter 6 compares different state-of-the-art
approaches to ASP explainability both in technical terms and (when possible) in terms of how suitable

they are for obtaining Commonsense Explanations.
Part II covers the work related to the application explanation techniques to ML applications for

obtaining explanations of already trained ML models. Two real proof of concept cases are shown in

which we face the task of providing explanations to non-technical users outside the KRR field. Thus,

the notions of commonsense explanations become of much greater importance. In particular, Chap-

ter 7 addresses the problemof obtaining comprehensible explanations forDecisionTrees in the context

of a Decision Support System for Liver Transplantation. On the other hand, Chapter 8 demonstrates

the use of a symbolic, model-agnostic explainability approach to explainingMLmodel predictions for

the process of 3D-printing of medicines.

Part III concludes this dissertation by summarizing the contributions and outlining the future

research lines.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Answer Set Programming

Answer Set Programming (ASP) [18, 54] is a logic programming paradigm for Knowledge Representa-

tion and Reasoning that has become of great importance in the last years to the point that it has been

largely exploited in both academic and industrial applications [44]. For the sake of completeness, we

include here the basic definitions used in the rest of the thesis.

We start from a finite signatureAt , a non-empty set of propositional atoms. A rule is an implica-

tion of the form:

p1 ∨ · · · ∨ pm ← q1 ∧ · · · ∧ qn ∧ ¬s1 ∧ · · · ∧ ¬sj ∧ ¬¬t1 ∧ · · · ∧ ¬¬tk (2.1)

Given a rule r of the form 2.1 we refer to the disjunction p1 ∨ · · · ∨ pm as the head of r, writ-

ten Head(r), and denote the set of head atoms as H (r)
df

= {p1, . . . , pm} The conjunction in the

antecedent of the implication is called the body of r and denoted asBody(r). We also define the pos-

itive and negative parts of the body respectively as the conjunctions Body+(r)
df

= q1 ∧ · · · ∧ qn and

Body−(r)
df

= ¬s1 ∧ · · · ∧¬sj ∧¬¬t1 ∧ · · · ∧¬¬tk. The atoms in the positive body are represented

asB+(r)
df

= {q1, . . . , qn}. As usual, an empty disjunction (resp. conjunction) stands for⊥ (resp.⊤).
A rule r with empty headH (r) = ∅ is called a constraint. On the other hand, whenH (r) = {p} is
a singleton, B+(r) = ∅ and Body−(r) = ⊤ the rule has the form p ← ⊤ and is said to be a fact,
simply written as p. The use of double negation in the body allows for representing elementary choice

rules. For instance, we will sometimes use the abbreviation {p} ← B to stand for p← B ∧ ¬¬p.
AnASP programP is a set of rules. A programP is positive ifBody−(r) = ⊤ for all rules r ∈ P .

A program P is non-disjunctive if |H (r)| ≤ 1 for every rule r ∈ P .

Definition 3 (HornProgram). AprogramP is said to beHorn if it is both positive and non-disjunctive.
That is, if for every rule r ∈ P ,Body−(r) = ∅ and |Head(r)| <= 1

Note that the condition |Head(r)| <= 1 implies that a Horn program may include (positive)

constraints⊥ ← B.

16 CHAPTER 2. BACKGROUND

A propositional interpretation I is any subset of atoms I ⊆ At . We say that a propositional

interpretation is a (classical) model of a programP if I |= Body(r)→ Head(r) in classical logic, for
every rule r ∈ P .

Definition 4 (Reduct). Given a program P and a set of atomsM , the Reduct of P w.r.tM , written
PM is the program resulting of:

1. removing every rule of the form 2.1 such that some si ∈M ,

2. removing every remaining negative literal in the program.

Definition 5 (StableModel). Given an interpretation I , we say it is a stable model (or answer set) of a
program P , if I is a minimal model of P I . We denote the set of all stable models of P as SM(P)

2.1.1 Monotonicity vs Non-Monotonicity

Monotonicity is a property that many logical systems possess, such as, for instance, classical logic.

Given three different theories in classical logic T , γ and σ monotonicity states that, if T |= γ, then
T ∪σ |= γ, for any possible theoryσ. In other words, if something is entailed by a theory, the addition

of new knowledge cannot change that.

Non-monotonicity breaks that property. Under a non-monotonic setting such as ASP, the inclu-

sion of new knowledge can lead to different conclusions. For instance, take the following program:

wet← not battery. (2.2)

This program has only one answer set, namelyA1 = {wet}, sowet is entailed by the rule 2.2. How-

ever, by the addition of the rule battery ← ⊤, A1 is no longer an answer set of the new program

whose unique answer set now isA2 = {battery}, sowet is no longer entailed.

2.1.2 Grounding Answer Set Programs With Variables

ASPsystems allow theuseofpredicates. That is, rulesmayhave atomsof the formatom(t1, t2, . . . , tn)
where ti are terms (that is either contents of variables). A variable is always represented as an identifier

starting with a capital letter such asX , Y ,Z , etc. An atom (or literal) having any variable is referred to

as non-ground, and ground otherwise. If a rule has any non-ground atom or literal, then the rule is also

non-ground (ground otherwise). Before finding the answer sets of a program, most ASP systems first

perform a grounding step over the rules of the program. Take for instance the following program P3,

wireless(1). (2.3)

wireless(2). (2.4)

up(X) : −wireless(X). (2.5)

where rules 2.3 and 2.4 are ground facts, and 2.5 is a non-ground rule. Intuitively, the process of

grounding is a replacement of a program P by another ground(P) where variables are replaced by

2.1. ANSWER SET PROGRAMMING 17

all their possible instantiations, that is, by the possible constants (from those occurring in P). As an

example, take program ground(P3) corresponds to:

wireless(1). (2.6)

wireless(2). (2.7)

up(1) : −wireless(1). (2.8)

up(2) : −wireless(2). (2.9)

2.1.3 Aggregates

An aggregate element has the form:

t1, . . . , tm : l1, . . . , ln (2.10)

where ti are terms (i.e. constants, numerical terms, function terms, or variables) and li are literals. Then
an aggregate atom is defined as:

#aggr {E} ≺ u (2.11)

where#aggr ∈ {#max ,#min,#sum,#count} is anaggregate function name,≺∈ {<,≤, >,≥
,=, ̸=} is an aggregate relation,u is a term, andE is a possibly infinite collection of aggregate elements

separated by the symbol “;”. Being a an aggregate atom, a and not a are aggreagte literals.

What is special about aggregates is that they can be used as literals in the body of rules and thus

have their own truth value, but also act as functions computing (and retrieving) values. Each different

aggregate function (name) has a different interpretation. For instance the rule

old_students(N)← #count{S : student(S), age(S,A), A > 65} = N. (2.12)

contains a #count aggregate that for any pair of values S,A such there exists some student(S),
age(S,A) atoms that are true. Whenever the aggregate atom holds, then it does so with an associ-

ated value. In rule 2.12, variableN captures that value whenever the aggregate literal is true, therefore

the rule is supported and an atom olds tudents(N) (for a particular value forN) is derived.

Consider this other example

person(p). (2.13)

property(p, 12). (2.14)

property(p, 10). (2.15)

grant(P)← #sum{C : property(P,C)} < 25, person(P). (2.16)

Here, two property(P,C) facts are being taken into account in the aggregate. Each valueC such that

property(P,C) is true is being added to the aggregate so that the total is then checked to be lower

than 25, which is true, thus the rule is satisfied and the atom grant(p) is derived.

An aggregate atom is said to bemonotonewhen the increase of any of its arguments keeps the atom

true, if it was true before. For instance, the#sum aggregate in 2.16 is not monotone: increasing 12

18 CHAPTER 2. BACKGROUND

to 15 makes the atom become false. On the other hand, changing ‘<’ by ‘>’ would make the aggregate

become monotone.

2.1.4 Choice rules

A choice element is an element of the form:

a : l1, . . . , lk (2.17)

where a is a classical atom and l1, . . . , lk are literals. Then a choice atom has the form:

{C} ≺ u (2.18)

where C is a collection of choice elements separated by “;”,≺∈ {<,≤, >,≥,=, ̸=} and u is a term

(i.e. a constant, arithmetic term, or a variable). ≺ and u defaults to≥ and 0 respectively.

Finally, choice rules have the form:

C ≺ u← b1, . . . , bn. (2.19)

where C ≺ u is a choice atom and b1, . . . , bn are literals. Intuitively, when the body of a choice rule

is satisfied, instead of deriving an atom, we may derive any subset of a atoms belonging to the choice

elements in C , such that its corresponding literals l1, . . . , lk are also true. Furthermore, the number

of derived atoms must comply with the condition imposed by≺ u.

To illustrate how choice rules work, consider program P4,

person(p). (2.20)

shirt(blue). (2.21)

shirt(white). (2.22)

shirt(pink). (2.23)

shirt(green). (2.24)

dirty(green). (2.25)

{packed(S) : shirt(S),not dirty(S)} <= 2 : −person(p). (2.26)

As atom person(p) is true by fact 2.20, the choice rule 2.26 is satisfied and thus we have to con-

sider the different subsets of atoms that will be derived. First, as the green shirt is dirt (fact 2.25)

the choice atom is not true when S = green and thus packed(green) cannot be part of any set

2.2. ASP SOLVER CLINGOAND PYTHONAPI 19

of derivated atoms. Then the possible derivable subsets are comprising 2 or fewer atoms in S =
{packed(blue), packed(white), packed(pink)}. Those are any S′ ⊆ S such that |S′| <= 2

S′ = {∅,
{packed(blue)},
{packed(white)},
{packed(pink)},
{packed(blue), packed(white)},
{packed(blue), packed(pink)},
{packed(white), packed(pink)}}

2.2 ASP Solver Clingo and Python API

2.2.1 Pooling

Ontopof standardASP expressions, clingodefines its own extensions, enriching the language. Pooling
is an example of a shortcut to enhance the expressivity and compactness of ASP programs. By the use

of the symbol ; in the head (or in some literal in the body) of a rule, one can save space and group several

rule definitions in one. The intuition is that the rules break into several rules. For instance, consider

the following definition using pooling.

1 shirt(blue;white;pink;green).

Between each possible value, we use the symbol ; here splits the definition of independents Creating a
different fact for each different value. The below’s program below is equivalent to the previous one.

1 shirt(blue). shirt(white). shirt(pink). shirt(green).

2.2.2 #show and #project

The #show directive defines the set of atoms that are included in the outputwhen visualizing the answer

sets of a program. To illustrate how it works, consider the following program:

1 shirt(blue;white;pink;green).
2 trousers(jeans;fabric).
3

4 2 {selected(S): shirt(S); selected(P): trousers(P)} 2.

where exactly two items of clothing are chosen from a set of shirts and trousers. The answer sets of the

program are listed below.

1 Answer: 1
2 shirt(blue) shirt(white) shirt(pink) shirt(green) trousers(jeans) trousers(fabric) selected(fabric) selected(white)
3 Answer: 2
4 shirt(blue) shirt(white) shirt(pink) shirt(green) trousers(jeans) trousers(fabric) selected(fabric) selected(blue)
5 Answer: 3
6 shirt(blue) shirt(white) shirt(pink) shirt(green) trousers(jeans) trousers(fabric) selected(fabric) selected(green)
7 ...

20 CHAPTER 2. BACKGROUND

Then the #show directive can be used to specify a particular set of atoms to be shown, The first

option is to specify predicates that we want to list in the output. For instance by introducing #show
sentence/1. into the program we obtain the output below.

1 Answer: 1
2 selected(fabric) selected(white)
3 Answer: 2
4 selected(fabric) selected(blue)
5 Answer: 3
6 selected(fabric) selected(green)
7 ...

Additionally, the #show can be used to define a precise set of atoms to be visualized. This is done

by using it as a conditional atom. Consider the following variation of the program

1 shirt(blue;white;pink;green).
2 trousers(jeans;fabric).
3

4 2 {selected(S): shirt(S); selected(P): trousers(P)} 2.
5

6 #show.
7 #show selected(S) : selected(S), trousers(S).

The first #show declarative filters out every atom in the answer sets. The second defines a set of atoms

selected(S) such that the conjunction selected(S), trousers(S) is true. The atoms in the defined set

are those that will be shown in the answer sets. The next output lists the corresponding output.

1 Answer: 1
2 selected(fabric)
3 Answer: 2
4 selected(jeans)
5 Answer: 3
6 selected(jeans) selected(fabric)
7 Answer: 4
8 selected(jeans)
9 ...

Additionally, we can also make use of #project to collapse several answer sets. When we use #show
as in the previous example it could happen that several answer sets show the exact same atoms. For

instance, in the last output we have shown, Answer 2 and Answer 4 show the same atoms. Of course,

they do not represent the same answer set, but because of our previously defined #show, they collapse to
the same relevant atoms. For instance, by simply including the option –projectwe avoid this behavior
(see the output listed below).

1 Answer: 1
2 selected(fabric)
3 Answer: 2
4

5 Answer: 3
6 selected(jeans) selected(fabric)
7 Answer: 4
8 selected(jeans)

As we are only showing the selected trousers and we collapse the answer sets in terms of these atoms,

we only get four answers, one corresponding to each possible combination. Moreover #project can be
used in a similar manner than #show to specify the set of atoms you want to perform the collapse on.

2.2. ASP SOLVER CLINGOAND PYTHONAPI 21

2.2.3 clingo’s Abstract Syntax Tree

On top of being a command line tool clingo can further be used as anAPI 1 controlled by a procedural
language such as Python. it provides much more functionality and control over the operation of the

ASP solver than from the usual Command Line Tool (CLI). In addition to allowing greater control of

the solver and grounder, it is also possible to access other functionalities. One of particular importance

is the possibility of accessing the Abstract Syntax Tree (AST).
When parsing an ASP program, each sentence (i.e. each ASP language construct ending with a

point .) is processed and a Python object corresponding to the sentence is created. Each element of the

grammar
2
of clingohas its own, uniquePython class. Although in termsof functionality, the different

classes behave almost the same, identifying the different grammar elements allows us to analyze the

syntax tree of a program. The objects are organized in a tree-like structure such that more general

grammar elements are father nodes of the more elemental ones For instance, when clingo parses a rule
it creates an instance of the ASTType.Rule class. The child of this object can be inspected to find the

head and the body of the rule, each one implementing a class representing its corresponding element

in the grammar.

One functionality that they offer is the use of Transofmers. The transformers are an abstract class

offered by the clingo’s Python API. The idea behind it is that engineers can define their own Python
classes by implementing a transformer so that, during parsing, their code intervenes just when certain

grammar elements are parsed. The word transformer comes from the notion that this can be used

to modify (thus, transform) the input program before grounding (during parsing). For instance, Fig-

ure 2.1 shows an example using a transformer for renaming variables of the program.

1 from clingo.ast import Transformer, Variable, parse_string

2

3 class VariableRenamer(Transformer):

4 def visit_Variable(self, node):

5 return node.update(name='_' + node.name)

6

7 vrt = VariableRenamer()

8 parse_string('p(X) :- q(X).', lambda stm: print(str(vrt(stm))))

9

10 # Output:

11 # p(_X) :- q(_X).

Figure 2.1: Example of Python code defining a transformer for renaming the variables of the input

logic program.

The code defines a Transformer (child) class called VariableRenamer. In it, provides a method

visit_Variable, whose specificnaming is not arbitrarybut responds to apattern such that visit_<GrammarElement>,
meaning that the method will be invoked whenever a variable is parsed. When parsing the program

1

https://potassco.org/clingo/python-api/5.6/clingo/

2

https://potassco.org/clingo/python-api/5.6/clingo/ast.html

22 CHAPTER 2. BACKGROUND

p(X) ← q(X). in line 8, the method is invoked twice (one for each variable X in the rule), and up-

dates the names of the variables. In line 11, the result is shown as a commented line.

2.2.4 Executing Python code within clingo with Context class

If the clingo installation is set up correctly, it will be able to execute Python code embedded in logic

programs. This is done by providing clingo with a special object called Context. Users can write their
custom Context classes, and provide them with methods that can be called during the instantiation

(grounding) process. This methods are called directly in the ASP code by using the ‘’ symbol.

In the case of xclingo, this is used to replace the placeholders in the text annotations with the

corresponding variable values. Figure 2.2 shows the Python class implementing this functionality.

When called, the function takes an arbitrary text that may contain some placeholders ‘%’ and a tuple

1 class XClingoContext:

2 """Xclingo context class."""

3

4 def label(self, text, tup):

5 """Given the text of a label and a tuple of symbols, handles the variable instantiation

6 and returns the processed text label."""

7 if text.type == SymbolType.String:

8 text = text.string

9 else:

10 text = str(text).strip('"')

11 for val in tup.arguments:

12 text = text.replace("%", val.string if val.type == SymbolType.String else str(val), 1)

13 return [String(text)]

14

Figure 2.2: A Context class for binding variable values to text placeholders.

of values tup and orderly replaces each appearance of a placeholder by its respective value in the tuple.
Figure 2.3 shows a small program that can be executed by clingo and that uses that Context class.

Between lines 1 and 22, enclosed by #script (python) and #end., we define a Python code block, where
we define our Context class and we modify the main behavior of clingo to introduce our defined

functionality. The last two lines are the ASP rules for our program. When solving the program with

clingo, the method label will be called when instantiating the second rule (the one with the atom

some_text in the head). Within that call to the function, the value for the text variable would be the
string "% is sentenced to %" while the value for the tup variable would be (in this particular case)

(gabriel, prison), meaning that variable P took the value gabriel and variable S took the value prison.
The method returns the string after making the replacements. Output 2.1 shows the result of solving

the program in Figure 2.3.

2.2. ASP SOLVER CLINGOAND PYTHONAPI 23

1 #script (python)

2 from clingo import String

3 from clingo.symbol import SymbolType

4

5 class Context:

6 """Xclingo context class."""

7

8 def label(self, text, tup):

9 """Given the text of a label and a tuple of symbols, handles the variable instantiation

10 and returns the processed text label."""

11 if text.type == SymbolType.String:

12 text = text.string

13 else:

14 text = str(text).strip('"')

15 for val in tup.arguments:

16 text = text.replace("%", val.string if val.type == SymbolType.String else str(val), 1)

17 return [String(text)]

18

19 def main(prg):

20 prg.ground([("base", [])], context=Context())

21 prg.solve()

22 #end.

23

24 sentence(gabriel, prison).

25 some_text(@label("% is sentenced to %", (P, S,))) :- sentence(P, S).

Figure 2.3: Small program using the context Class from Figure 2.2

1 Answer: 1
2 sentence(gabriel,prison) some_text("gabriel is sentenced to prison")
3 SATISFIABLE

Output 2.1: Output after solving the program in Figure 2.3 with clingo.

24 CHAPTER 2. BACKGROUND

2.2.5 Theory definitions

Part of clingo language syntax is devoted to theory specification [53]. This functionality aims to pro-

vide clingo users with an easy way to extend the solver’s functionality without the need to manually

modify any of its parts.

First, users have to provide some theory definitions, which have the form

#theory T{D1 : . . . ;Dn}.

where T is the theory name and each Di is a definition for a theory term or a theory atom. A theory

atom has the form

&p/k : t, o or &p/k : t, {♢1, . . . ,♢m}, t′, o

where p is a predicate name of arity k, t and t′ are names of some theory term definitions, each♢i is a

theory operator form ≥ 1, and o ∈ {head , body , any , directive} determines where the theory atom

may occur in a rule. Finally, a theory operator has the form

♢ : p, unary or ♢ : p, binary, a

where♢ is a unary or binary theory operator with precedence p ≥ 0. Binary operators’ associativity is
given by a ∈ {right, left}.

By providing these definitions, one can then include those constructs into the logic program, so

that theywill become accepted as part of the syntax. The theory atomsused in the programwill become

part of the AST representation of the program, and thus they can bemanipulated. This can be used to

integrate all kinds of expressions adapting the expressivity of the language to a specific problem. Also,

when using the clingo Python API special behavior can be defined for these special atoms, extending

the functionality of the solver.

In the case of xclingo, they are used to extend clingo syntax to include a new set of annotations.

We use these annotations to allow the user to create natural language explanations. These annotations

are handled internally as theory atoms, and thus they are easily manipulated by xclingo as another
member of the program in the AST.

Part I

Explanation in Answer Set
Programming

Chapter 3

Support Graphs

3.1 Introduction

In this Chapter, we describe a formal characterization of explanations in terms of graphs constructed

with atoms and program rule labels. Under this framework, models may be justified, meaning that

they have one or more support graphs, or unjustified otherwise. We prove that all stable models are

justified whereas, in general, the opposite does not hold, at least for disjunctive programs. We also

characterize a pair of basic operations on graphs, which we call edge pruning and node forgetting,

that allow performing information filtering in the explanations. These formal definitions constitute

the basis of xclingo, which relies on an ASP encoding to generate the explanation graphs of a given

answer set of some original program. We prove the soundness and correctness of this encoding and

then proceed to explain the new xclingo specification language, in terms of the effects it produces on

support graphs.

The rest of this chapter is structured as follows. Section 3.2 provides the definitions for this frame-

work. Section 3.3 defines two operations over the explanation graphs used to remove irrelevant infor-

mation from the graphs. Section 3.4 describes a simple ASP encoding for computing the graphs and

proves its soundness and completeness.

3.2 Explanations as Support Graphs

We start from a finite
1
signature At , a non-empty set of propositional atoms. A (labelled) rule is an

implication of the form:

ℓ : p1 ∨ · · · ∨ pm ← q1 ∧ · · · ∧ qn ∧ ¬s1 ∧ · · · ∧ ¬sj ∧ ¬¬t1 ∧ · · · ∧ ¬¬tk (3.1)

Given a rule r like (3.1), we denote its label as Lb(r)
df

= ℓ. We also call the disjunction in the conse-

quent p1 ∨ · · · ∨ pm the head of r, written Head(r), and denote the set of head atoms as H (r)
df

=
{p1, . . . , pm}; the conjunction in the antecedent is called the body of r and denoted asBody(r). We

1

We leave the study of infinite signatures for future work. This will imply explanations of infinite size, but each one

should contain a finite proof for each atom.

28 CHAPTER 3. SUPPORT GRAPHS

also define the positive and negative parts of the body respectively as the conjunctions Body+(r)
df

=

q1∧· · ·∧qn andBody−(r)
df

= ¬s1∧· · ·∧¬sj∧¬¬t1∧· · ·∧¬¬tk. The atoms in the positive body

are represented asB+(r)
df

= {q1, . . . , qn}. As usual, an empty disjunction (resp. conjunction) stands

for⊥ (resp. ⊤). A rule r with empty headH (r) = ∅ is called a constraint. On the other hand, when

H (r) = {p} is a singleton,B+(r) = ∅ andBody−(r) = ⊤ the rule has the form ℓ : p← ⊤ and is

said to be a fact, simply written as ℓ : p. The use of double negation in the body allows representing

elementary choice rules. For instance, we will sometimes use the abbreviation ℓ : {p} ← B to stand

for ℓ : p← B ∧¬¬p. A (labelled) logic programP is a set of labelled rules where no label is repeated.

Note that P may still contain two rules r, r′ with same body and head Body(r) = Body(r′) and
H (r) = H (r′), but different labels Lb(r) ̸= Lb(r′). A program P is positive ifBody−(r) = ⊤ for

all rules r ∈ P . A programP is non-disjunctive if |H (r)| ≤ 1 for every rule r ∈ P . Finally,P isHorn
if it is both positive and non-disjunctive: note that this may include (positive) constraints⊥ ← B.

A propositional interpretation I is any subset of atoms I ⊆ At . We say that a propositional

interpretation is a (classical) model of a labelled program P if I |= Body(r) → Head(r) in classical
logic, for every rule r ∈ P . The reduct of a labelled program P with respect to I , written P I

, is a

simple extension of the standard reduct by [57] that collects now the labelled positive rules:

P I df

= { Lb(r) : Head(r)← Body+(r) | r ∈ P, I |= Body−(r) }

As usual, an interpretation I is a stable model (or answer set) of a programP if I is a minimal model of

P I
. Note that, for the definition of stable models, the rule labels are irrelevant. We write SM (P) to

stand for the set of stable models of P .

Wedefine the rules of aprogramP that support an atompunder interpretation I asSUP(P, I, p)
df

=
{r ∈ P | p ∈ H (r), I |= Body(r)} that is, rules with p in the head whose body is true with respect
to I . The next proposition proves that, given I , the rules that support p in the reduct P I

are precisely

the positive parts of the rules that support p in P .

Proposition 1. For any model I |= P of a program P and any atom p ∈ I : SUP(P I , I, p) =
SUP(P, I, p)I .

Proof. We prove first ⊇: suppose r ∈ SUP(P, I, p) and let us call r′ = Lb(r) : Head(r) ←
Body+(r). Then, by definition, I |= Body(r) and, in particular, I |= Body−(r), so we conclude
r′ ∈ P I

. To see that r′ ∈ SUP(P I , I, p), note that I |= Body(r) implies I |= Body+(r) =
Body(r′).

For the⊆ direction, take any r′ ∈ SUP(P I , I, p). By definition of reduct, we know that r′ is a
positive rule and that there exists some r ∈ P where Lb(r) = Lb(r′), H (r) = H (r′), B+(r) =
B+(r′) and I |= Body−(r). Consider any rule r satisfying that condition (we could have more than

one): we will prove that r ∈ SUP(P, I, p). Since r′ ∈ SUP(P I , I, p), we get I |= Body(r′) but
this is equivalent to I |= Body+(r). As we had I |= Body−(r), we conclude I |= Body(r) and so
r is supported in P given I . □

Definition 6 (Support Graph/Explanation). Let P be a labelled program and I a classical model of
P . A support graphG of I under P is a labelled directed graphG = ⟨I, E, λ⟩ whose vertices are the

3.2. EXPLANATIONS AS SUPPORT GRAPHS 29

atoms in I , the edges inE ⊆ I × I connect pairs of atoms, the total function λ : I → Lb(P) assigns a
label to each atom, andG further satisfies:

(i) λ is injective

(ii) for every p ∈ I , the rule r such that Lb(r) = λ(p) satisfies:
r ∈ SUP(P, I, p) andB+(r) = {q | (q, p) ∈ E}.

A support graphG is said to be an explanation if it additionally satisfies:

(iii) G is acyclic. □

Condition (i) means that there are no repeated labels in the graph, i.e., λ(p) ̸= λ(q) for different
atoms p, q ∈ I . Condition (ii) requires that each atom p in the graph is assigned the label ℓ of some

rule with p in the head, with a body satisfied by I and whose atoms in the positive body form all the

incoming edges forp in the graph. Intuitively, labellingpwith ℓmeans that the corresponding (positive

part of the) rule has been fired, “producing” p as a result. Since a label cannot be repeated in the graph,
each rule can only be used to produce one atom, even though the rule head may contain more than

one (when it is a disjunction). In general, program P may allow alternative ways of deriving an atom

p in a model I . Thus, a same model I may have multiple support graphs under P , as we will illustrate

later.

It is not difficult to see that an explanationG = ⟨I, E, λ⟩ for a model I is uniquely determined

by its atom labelling λ. This is because condition (ii) about λ in Definition 6 uniquely specifies all the

incoming edges for all the nodes in the graph. On the other hand, of course, not every arbitrary atom

labelling corresponds to a well-formed explanation. We will sometimes abbreviate an explanation G
for a model I by just using its labelling λ represented as a set of pairs of the form λ(p) : pwith p ∈ I .

Definition 7 (Supported/Justified model). A classical model I of a labelled program P if I |= P is
said to be a supported model of P if there exists some support graph of I under P . Moreover, I is said to
be a justified model of P if there exists some explanationG (i.e. acyclic support graph) of I under P . We
write SPM (P) and JM (P) to respectively stand for the set of supported and justified models of P . □

The name of supported model is not casual: we prove later on that, for non-disjunctive programs,

the above definition coincides with the traditional one in terms of fixpoints of the immediate conse-

quences operator [42] or as models of Clark’s completion [26].

FromDefinition7, it is clear that all justifiedmodels are obviously supportedJM (P) ⊆ SPM (P)
but, in general, the opposite does not hold, as wewill see later. Ourmain focus, however, is on justified

models, since we will relate them to proofs, that are always acyclic. We can observe that not all models

are justified, whereas a justified model may have more than one explanation, as we illustrate next.

Example 2. Consider the labelled logic program P

ℓ1 : a ∨ b ℓ2 : d← a ∧ ¬c ℓ3 : d← ¬b

Nomodel I |= P with c ∈ I is justified since c does not occur in any head, so its support is always empty
SUP(P, I, c) = ∅ and c cannot be labelled. The models of P without c are {b}, {a, d}, {b, d} and

30 CHAPTER 3. SUPPORT GRAPHS

{a, b, d} but only the first two are justified. The explanation for I = {b} corresponds to the labelling
{(ℓ1 : b)} (it forms a graph with a single node). Model I = {a, d} has the two possible explanations:

ℓ1 : a −→ ℓ2 : d ℓ1 : a ℓ3 : d (3.2)

Model I = {b, d} is not justified: we have no support for d given I , SUP(P, I, d) = ∅, because I
satisfies neither bodies of ℓ2 nor ℓ3. On the other hand, model {a, b, d} is not justified either, because
SUP(P, I, a) = SUP(P, I, b) = {ℓ1} and we cannot use the same label ℓ1 for two different atoms a
and b in a same explanation (condition (i) in Def. 6). □

Definition 8 (Proof of an atom). Let I be a model of a labelled program P ,G = ⟨I, E, λ⟩ an expla-
nation for I under P and let p ∈ I . The proof for p induced byG, written πG(p), is the derivation:

πG(p)
df
=

πG(q1) . . . πG(qn)

p
λ(p),

where, if r ∈ P is the rule satisfying Lb(r) = λ(p), then {q1, . . . , qn} = B+(r). When n = 0, the
derivation antecedent πG(q1) . . . πG(qn) is replaced by⊤ (corresponding to the empty conjunction).□

Example 3. Let P be the labelled logic program:

ℓ1 : p ℓ2 : q ← p ℓ3 : r ← p, q

P has a unique justified model {p, q, r} whose explanation is shown in Figure 3.1 (left) whereas the in-
duced proof for atom r is shown in Figure 3.1 (right). □

ℓ1 : p //
((

ℓ2 : q // ℓ3 : r

⊤
p

(ℓ1)

q
(ℓ2)

⊤
p

(ℓ1)

r
(ℓ3)

Explanation Proof for atom r

Figure 3.1: Some results for model {p, q, r} of program in Example 3.

The next proposition trivially follows from the definition of explanations:

Proposition 2. If P is a Horn program, and G is an explanation for a model I of P then, for every
atom, p ∈ I , πG(p) corresponds to aModus Ponens derivation of p using the rules in P .

It is worth mentioning that explanations do not generate any arbitrary Modus Ponens derivation

of an atom, but only those that are globally “coherent” in the sense that, if any atom p is repeated in a
proof, it is always justified repeating the same subproof.

In the previous examples, justified and stable models coincided: one may wonder whether this is a

general property. As we see next, however, every stable model is justified but, in general, the opposite

may not hold. To prove that stable models are justified, we start proving a correspondence between

explanations for any model I of P and explanations under P I
.

3.2. EXPLANATIONS AS SUPPORT GRAPHS 31

Proposition 3. Let I be a model of program P . Then G is an explanation for I under P iff G is an
explanation for I under P I .

Proof. ByProposition 1, for any atomp ∈ I , the labels inSUP(P, I, p) andSUP(P I , I, p) coincide,
so there is no difference in the ways in which we can label p in explanations for P and for P I

. On the

other hand, the rules in SUP(P I , I, p) are the positive parts of the rules in SUP(P, I, p), so the

graphs we can form are also the same. □

Corollary 1. I ∈ JM (P) iff I ∈ JM (P I).

Theorem 1. Stable models are justified: SM (P) ⊆ JM (P).

Proof. Let I be a stable model of P . To prove that there is an explanation G for I under P , we can

use Proposition 1 and just prove that there is some explanationG for I under P I
. We will build the

explanation with a non-deterministic algorithmwhere, in each step i, we denote the graphGi asGi =
⟨Ii, Ei, λi⟩ and represent the labelling λi as a set of pairs of the form (ℓ : p)meaning ℓ = λ(p). The
algorithm proceeds as follows:

1: I0 ← ∅;E0 ← ∅;λ0 ← ∅
2: G0 = ⟨I0, E0, λ0⟩
3: i← 0
4: while Ii ̸|= P I do
5: Pick a rule r ∈ P I

s.t. Ii |= Body(r) ∧ ¬Head(r)
6: Pick an atom p ∈ I ∩H (r)
7: Ii+1 ← Ii ∪ {p}
8: λi+1 ← λi ∪ {(ℓ : p)}
9: Ei+1 ← Ei ∪ {(q, p) | q ∈ B+(r)}
10: Gi+1 ← ⟨Ii, Ei, λi⟩
11: i← i+ 1
12: end while
The existence of a rule r ∈ P I

in line 5 is guaranteed because the while condition asserts Ii ̸|= P I

and so there must be some rule whose positive body is satisfied by Ii but its head is not satisfied. We

prove next that the existence of an atom p ∈ I ∩ Head(r) (line 5) is also guaranteed. First, note that
thewhile loop maintains the invariant Ii ⊆ I , since I0 = ∅ and Ii only grows with atoms p (line 7)
that belong to I (line 6). Therefore, Ii |= Body(r) implies I |= Body(r), but since I |= P I

, we

also conclude I |= r and thus I |= Head(r) that is I ∩H (r) ̸= ∅, so we can always pick some atom

p in that intersection. Now, note that the algorithm stops because, in each iteration, Ii grows with
exactly one atom from I that was not included before, since Ii |= ¬Head(r), and so, this process will
stop provided that I is finite. The while stops satisfying Ii |= P I

for some value i = n. Moreover,

In = I , because otherwise, as Ii ⊆ I is an invariant, we would conclude In ⊂ I and so I would not
be a minimal model of P I

, which contradicts that I is a stable model of P . We remain to prove that

the finalGn = ⟨In, En, λn⟩ is a correct explanation for I under P I
. As we said, the atoms in I are

the graph nodes In = I . Second, we can easily see thatGn is acyclic because each iteration adds a new

node p and links this node to previous atoms from B+(r) ⊆ Ii (remember Ii |= Body(r)) so no
loop can be formed. Third, no rule label can be repeated, because we go always picking a rule r that is
new, since it was not satisfied in Ii but becomes satisfied in Ii+1 (the rule headHead(r) becomes true).

32 CHAPTER 3. SUPPORT GRAPHS

Last, for every p ∈ I , it is not hard to see that the (positive) rule r ∈ P I
such that Lb(r) = λn(p)

satisfies p ∈ H (r) andB+(r) = {q | (q, p) ∈ E} by the way in which we picked r and inserted p in
Ii, whereas I |= Body(r) because Ii |= Body(r), r is a positive rule and Ii ⊆ I . □

As a result, we get SM (P) ⊆ JM (P) ⊆ SPM (P), that is, justifiedmodels lay in between stable

and supported.

Proposition 4. If P is a consistent Horn program then it has a unique justified model I that coincides
with the least model of P .

Proof. Since P is Horn and consistent (all constraints are satisfied) its unique stable model is the least

model I . By Theorem 1, I is also justified by some explanation G. We remain to prove that I is the

unique justifiedmodel. Suppose there is anothermodelJ ⊃ I (remember I is the leastmodel) justified

by an explanationG and take some atom p ∈ J \ I . Then, by Proposition 2, the proof for p induced
byG, πG(p), is a Modus Ponens derivation of p using the rules in P . Since Modus Ponens is sound

and the derivation starts from facts in the program, this means that pmust be satisfied by any model

of P , so p ∈ I and we reach a contradiction. □

In general, the number of explanations for a single justified model can be exponential, even when

the program isHorn, and so, has a unique justified and stablemodel corresponding to the least classical

model, as we just proved. As an example
2
:

Example 4 (A chain of firing squads). Consider the following variation of the classical Firing Squad
Scenario introduced by [81] for causal counterfactuals (althoughwedonot use it for that purpose here). We
have an army distributed in n squads of three soldiers each, a captain and two riflemen for each squad.
We place the squads on a sequence of n consecutive hills i = 0, . . . , n − 1. An unfortunate prisoner is
at the last hill n − 1, and is being aimed at by the last two riflemen. At each hill i, the two riflemen ai
and bi will fire if their captain ci gives a signal to fire. But then, captain ci+1 will give a signal to fire if
she hears a shot from the previous hill i in the distance. Suppose captain c0 gives a signal to fire. Our logic
program would have the form:

s0 : signal0 ai : fireAi ← signal i a′i+1 : signal i+1 ← fireAi

bi : fireB i ← signal i b′i+1 : signal i+1 ← fireB i

for all i = 0, . . . , n − 1 where we assume (for simplicity) that signaln represents the death of the
prisoner. This program has one stable model (the least model) making true the 3n+1 atoms occurring in
the program. However, this last model has 2n explanations because to derive signal i+1 from level i, we
can choose between any of the two rules a′i or b′i (corresponding to the two riflemen) in each explanation.
□

In many disjunctive programs, justified and stable models coincide. For instance, the following

example is an illustration of a program with disjunction and head cycles.

Example 5. Let P be the program:

ℓ1 : p ∨ q ℓ2 : q ← p ℓ3 : p← q

2

This example was already introduced as Program 7.1 by [47] in his PhD dissertation.

3.2. EXPLANATIONS AS SUPPORT GRAPHS 33

This program has one justified model {p, q} that coincides with the unique stable model and has two
possible explanations, {(ℓ1 : p), (ℓ2 : q)} and {(ℓ1 : q), (ℓ3 : p)}. □

However, in the general case, not every justified model is a stable model: we provide next a simple

counterexample. Consider the program P :

ℓ1 : a ∨ b ℓ2 : a ∨ c

whose classical models are the five interpretations: {a}, {a, c}, {a, b}, {b, c} and {a, b, c}. The last
one {a, b, c} is not justified, since we would need three different labels and we only have two rules.

Eachmodel {a, c}, {a, b}, {b, c}has a unique explanation corresponding to the atom labellings {(ℓ1 :
a), (ℓ2 : c)}, {(ℓ1 : b), (ℓ2 : a)} and {(ℓ1 : b), (ℓ2 : c)}, respectively. On the other hand, model

{a} has two possible explanations, corresponding to {(ℓ1 : a)} and {(ℓ2 : a)}. Notice that, in the

definition of explanation, there is no need to fire every rule with a true body in I –we are only forced to
explain every true atom in I . Note also that only the justifiedmodels {a} and {b, c} are also stable: this
is due to the minimality condition imposed by stable models on positive programs, getting rid of the

other two justified models {a, b} and {a, c}. The following theorem asserts that, for non-disjunctive

programs, every justified model is also stable.

Theorem 2. If P is a non-disjunctive program, then SM (P) = JM (P). □

Proof. GivenTheorem 1, wemust only prove that, for non-disjunctive programs, every justifiedmodel

is also stable. Let I be a justifiedmodel ofP . By Proposition 3, we also know that I is a justifiedmodel

of P I
. P I

is a positive program and is non-disjunctive (since P was non-disjunctive) and so, P is a

Horn program. By Proposition 4, we know I is also the least model of P I
, which makes it a stable

model of P . □

Moreover, for non-disjunctive programs, we can prove that our definition of supported model,

coincides with the traditional one in terms of fixpoints of the immediate consequences operator [42].

Given a non-disjunctive program P , let TP (I) be defined as {p | r ∈ P, I |= Body(r),Head(r) =
p}.

Theorem 3. If P is a non-disjunctive program, then I = TP (I) iff I ∈ SPM (P). □

Proof. For left to right, suppose I = TP (I). It is easy to see that this implies I |= P . By definition of

TP , for each atom p there exists some rule r withHead(r) = p and I |= Body(r). Let us arbitrarily
pick one of those rules rp for each p. Then we can easily form a support graph where λ(p) = Lb(rp)
and assign all the incoming edges for p as (q, p) such that q ∈ Body+(rp).

For right to left, suppose I |= P and there is some support graphG of I underP . We prove both

inclusion directions for I = TP (I). For ⊆, suppose p ∈ I . Then p is a node in G and there is a

rule r such that λ(p) = Lb(r), p = Head(r) (P is non–disjunctive) and I |= Body(r). But then
p ∈ TP (I). For⊇, take any p ∈ TP (I) and suppose p ̸∈ I . Then, we have at least some rule r ∈ P
with I |= Body(r) and I ̸|= Head(r)(= p), something that contradicts I |= P . □

To illustrate supported models in the disjunctive case, consider the program:

ℓ1 : a ∨ b← c ℓ2 : c← b

34 CHAPTER 3. SUPPORT GRAPHS

The only justified model of this program is ∅which is also stable and supported. Yet, we also obtain a
second supportedmodel {b, c} that is justified by the (cyclic) support graphwith labelling {ℓ1 : b, ℓ2 :
c}.

3.3 Filtered Explanations

In this section, we consider a pair of operations on explanation graphs that allow filtering their infor-

mation depending on what a final user may consider relevant or not. These two operations are edge
pruning and node forgetting. The idea behind edge pruning is as follows. Consider a proof πG(p) as a
reversed tree, with the atom p in the root, and unfolding the tree upwards until we reach the facts that
constitute the leaves. When doing this upwards unfolding, wemay reach points in the proof where we

are not interested in deepening, so we prefer pruning the tree at that node. To put an example, imagine

that we are solving a planning problem and we have rules to compute dist(X,Y) standing for the
minimum distance between each pair of pointsX,Y in a graph of locations. To explain a given plan,

we are not interested in explaining the values of these distances, whose explanations can be long (they

depend on path lengths in the graph) and always repeated, since they do not vary along time. Instead,

we may prune the proofs at predicate dist(X,Y), declaring that we are not interested in showing a
justification for these atoms. The effect of pruning dist(X,Y) in the explanations is the same as if

distances had been directly provided as input facts, rather than being precomputed using rules.

Formally, we define edge pruning as an operation in the graph.

Definition 9 (Edge pruning). Let G = ⟨I, E, λ⟩ be an explanation and let us define the subset of
atomsA ⊆ At and the subset of labels L ⊆ Lb(P). Then, the (edge) pruning operation onG produces

a new graph prune(G,A,L)
df
= ⟨I, E \ E′, λ⟩ where:

E′
df
=

{
(p, q) ∈ E | p ∈ A

}
∪ {(p, q) ∈ E | λ(q) ∈ L} □

In other words, we remove the outgoing edges for all pruned atomsA and the incoming edges for

all nodes q with a pruned labelλ(q) ∈ L. As an example, Figure 3.2 shows inG2 the result of pruning

G1 withA = {e} andL = {ℓ4}.

ℓ1 : a

yy ��

ℓ2 : b

yy
ℓ3 : c

%%

ℓ4 : d

��

// ℓ5 : e

��yy
ℓ6 : f ℓ7 : g

ℓ1 : a

yy

ℓ2 : b

ℓ3 : c

%%

ℓ4 : d

��

// ℓ5 : e

ℓ6 : f ℓ7 : g

ℓ1 : a

yy

�� ��

ℓ2 : b

�� ��

ℓ3 : c

%%
ℓ6 : f ℓ7 : g

G1 G2 = prune(G1, {e}, {ℓ4}) G3 = forget(G1, {d, e})

Figure 3.2: Examples of edge pruning and node forgetting.

3.4. AN ASP ENCODING TO COMPUTE AND FILTER EXPLANATIONS 35

The intuition for the second operation, node forgetting, is to obtain explanations that only consist
of atoms and rules considered relevant, removing the irrelevant information.

Definition 10 (Node forgetting). Let G = ⟨I, E, λ⟩ be an explanation and let A ⊆ At be a set of

atoms to be removed. Then, the node forgetting operation onG produces the graph forget(G,A)
df
= ⟨I \

A, E′, λ⟩whereE′ contains all edges (p0, pn) such that there exists a path (p0, p1), (p1, p2), . . . , (pn−1, pn)
inE with n ≥ 0, {p0, pn} ∩A = ∅ and {p1, . . . , pn−1} ⊆ A. □

Note thatE′ contains all original edges (p, q) ∈ E for non-removed atoms {p, q}∩A = ∅, since
they correspond to the case where n = 1. Graph G3 in Figure 3.2 is the result of forgetting nodes

A = {d, e} onG1.

If we are going to prune some edges and forget some nodes, the order in which we perform both

operations produces different results. For instance, take the graphG:

ℓ1 : a −→ ℓ2 : b −→ ℓ3 : c

and suppose we want to both prune atomA = {b} and forget the same atom. If we start by pruning,

forget(prune(G, {b}, ∅), {b}), the final result leaves two disconnected nodes ℓ1 : a and ℓ3 : c. If we
start instead by forgetting, prune(forget(G, {b}), {b}, ∅), we get

ℓ1 : a −→ ℓ3 : c

because the result of pruning after forgetting has no effect since node b does not exist any more. For

this reason, in practice, pruning will be performed in the first place (when we still have all the original

nodes in the graph) and forgetting afterwards.

Definition 11 (Filtered explanation). Given a labelled programP , letL be a set of labelsL ⊆ Lb(P),
andA,F be sets of atomsA,F ⊆ At . A labelled graphG is a (L,A, F)-filtered explanation formodel I
under programP if there is some explanationG′ of I underP such thatG = forget(prune(G′, A, L), F).

It is easy to see that different (unfiltered) explanations may lead to the same (L,A, F)-filtered
explanation. For instance, take the program in Example 2 and suppose we want to apply the filtering

(∅, ∅, {d}), that is, we just forget atom d. Then, the two explanations (3.2) we obtained for model

{a, d} in Example 2 collapse into a single filtered one with the unique labelled node ℓ1 : a.

It is not hard to see that we may have two different (unfiltered) explanations G′ and G′′ An im-

portant observation is that, if pruning and forgetting are defined as overall operations on a set of ex-

planations, we may get that two different explanationsG1 andG2 end up producing the same filtered

explanationG3. For this reason, pruning and forgetting not only reduce the information in each ex-

planation but may also significantly reduce the number of different (filtered) explanations.

3.4 An ASP Encoding to Compute and Filter Explanations
In this section, we focus on the computation of explanations for a given stable model. We assume that

we use an ASP solver to obtain the answer sets of some program P and that we have some way to

label the rules. For instance, we may use the code line number (or another tag specified by the user),

36 CHAPTER 3. SUPPORT GRAPHS

followed by the free variables in the rule and some separator. In that way, after grounding, we get a

unique identifier for each ground rule.

To explain the answer sets ofP wemay build the following (non-ground)ASP programx(P) that
can be fedwith the (reified) true atoms in I to build the ground programx(P, I). Aswewill prove, the
answer sets of x(P, I) are in one-to-one correspondence with the explanations of I . The advantage of
this technique is that, rather than collecting all possible explanations in a single shot, something that

is too costly for explaining large programs, we can perform regular calls to an ASP solver for x(P, I)
to compute one, several or all explanations of I on demand. Besides, this provides a more declarative

approach that can be easily extended to cover new features (such as, for instance, minimisation among

explanations).

For each rule in P of the form (3.1), x(P) contains the set of rules:

sup(ℓ) ← as(q1) ∧ · · · ∧ as(qn) ∧ as(pi) ∧ ¬as(s1) ∧ · · · ∧ ¬as(sj) (3.3)

∧ ¬¬as(t1) ∧ · · · ∧ ¬¬as(tk) (3.4)

{f(ℓ, pi)} ← f(q1) ∧ · · · ∧ f(qn) ∧ as(pi) ∧ sup(ℓ) (3.5)

⊥ ← f(ℓ, pi) ∧ f(ℓ, ph) (3.6)

for all i, h = 1 . . .m and i ̸= h, and, additionally x(P) contains the rules:

f(A) ← f(L,A) ∧ as(A) (3.7)

⊥ ← not f(A) ∧ as(A) (3.8)

⊥ ← f(L,A) ∧ f(L′, A) ∧ L ̸= L′ ∧ as(A) (3.9)

As we can see, x(P) reifies atoms in P using three predicates: as(A) which means that atomA is in

the answer set I , so it is an initial assumption; f(L,A)means that rule with label L has been “fired”

for atomA, that is, λ(A) = L; and, finally, f(A) that just means that there exists some fired rule for

A or, in other words, we were able to derive A. Predicate sup(ℓ) tells us that the body of the rule r
with label ℓ is “supported” by I , that is, I |= Body(r). Given any answer set I of P , we define the

program x(P, I)
df

= x(P) ∪ {as(A) | A ∈ I}. It is easy to see that x(P, I) becomes equivalent to

the ground program containing the following rules:

{f(ℓ, p)} ← f(q1) ∧ · · · ∧ f(qn) for each rule r ∈ P of the form of (3.1),

I |= Body(r), p ∈ H (r) ∩ I (3.10)

⊥ ← f(ℓ, pi) ∧ f(ℓ, pj) for each rule r ∈ P of the form of (3.1),

pi, pj ∈ H (r), pi ̸= pj (3.11)

f(a)← f(ℓ, a) for each a ∈ I (3.12)

⊥ ← not f(a) for each a ∈ I (3.13)

⊥ ← f(ℓ, a) ∧ f(ℓ′, a) for each a ∈ I, ℓ ̸= ℓ′ (3.14)

Theorem 4 (Soundness). Let I be an answer set of P . For every answer set J of program x(P, I) there
exists a unique explanationG = ⟨I, E, λ⟩ of I under P such that λ(a) = ℓ iff f(ℓ, a) ∈ J . □

3.4. AN ASP ENCODING TO COMPUTE AND FILTER EXPLANATIONS 37

Proof. We have to prove that J induces a valid explanation G. Let us denote At(J)
df

= {a ∈ At |
f(a) ∈ J}. Since (3.12) is the only rule for f(a), we can apply completion to conclude that f(a) ∈ J
iff f(ℓ, a) ∈ J for some label ℓ. So, the setAt(J) contains the set of atoms for which J assigns some

label: we will prove that this set coincides with I . We may observe that I ⊆ At(J) because for any
a ∈ I we have the constraint (3.13) forcing f(a) ∈ J . On the other hand, At(J) ⊆ I because the
only rules with f(a) in the head are (3.12) and these are only defined for atoms a ∈ I . To sum up, in

any answer set J of x(P, I), we derive exactly the original atoms in I , At(J) = I and so, the graph
induced by J has exactly one node per atom in I .

Constraint (3.14) guarantees that atoms f(ℓ, a) have a functional nature, that is, we never get two
different labels for a same atoma. This allows defining the labelling functionλ(a) = ℓ ifff(ℓ, a) ∈ J .
We remain to prove that conditions (i)-(iii) in Definition 6 hold. Condition (i) requires that λ is injec-

tive, something guaranteed by (3.11). Condition (ii) requires that, informally speaking, the labelling

for each atom a corresponds to an activated, supported rule for a. That is, ifλ(a) = ℓ, or equivalently
f(ℓ, a), we should be able to build an edge (q, a) for each atom in the positive body of ℓ so that atoms

q are among the graph nodes. This is guaranteed by that fact that rule (3.10) is the only one with pred-

icate f(ℓ, a) in the head. So, if that ground atom is in J , it is because f(qi) are also in J i.e. qi ∈ I , for
all atoms in the positive body of rule labelled with ℓ. Note also that (3.10) is such that I |= Body(r),
so the rule supports atom p under I , that is, r ∈ SUP(P, I, p). Let E be the set of edges formed

in this way. Condition (iii) requires that the set E of edges forms an acyclic graph. To prove this last

condition, consider the reduct program x(P, I)J . The only difference of this programwith respect to

x(P, I) is that rules (3.10) have now the form:

f(ℓ, p)← f(q1) ∧ · · · ∧ f(qn) (3.15)

for each rule r ∈ P like (3.1), I |= Body(r), p ∈ H (r)∩ I as before, but additionally f(ℓ, p) ∈ J so

the rule is kept in the reduct. Yet, the last condition is irrelevant since f(ℓ, p) ∈ J implies f(p) ∈ J
so p ∈ At(J) = I . Thus, we have exactly one rule (3.15) in x(P, I)J per each choice (3.10) in

x(P, I). Now, since J is an answer set of x(P, I), by monotonicity of constraints, it satisfies (3.11),

(3.13) and (3.14) and is an answer set of the rest of the program P ′ formed by rules (3.15) and (3.12).

This means that J is a minimal model of P ′. Suppose we have a cycle in E, formed by the (labelled)

nodes and edges (ℓ1 : p1) −→ · · · −→ (ℓn : pn) −→ (ℓ1 : p1).Take the interpretation J ′ =
J \ {f(ℓ1, p1), . . . , f(ℓn, pn), f(p1), . . . , f(pn)}. Since J is a minimal for P ′ there must be some

rule (3.15) or (3.11) not satisfied by J ′. Suppose J ′ does not satisfy some rule (3.11) so that f(a) ̸∈ J ′

but f(ℓ, a) ∈ J ′ ⊆ J . This means we had f(a) ∈ J since the rule was satisfied by J so a is one of the
removed atomspi belonging to the cycle. But thenf(ℓ, a) should have been removedf(ℓ, a) ̸∈ J ′ and
we reach a contradiction. Suppose instead thatJ ′ does not satisfy some rule (3.15), that is, f(ℓ, p) ̸∈ J ′

and {f(q1), . . . , f(gn)} ⊆ J ′ ⊆ J . Again, since the body holds in J , we get f(ℓ, p) ∈ J and so,

f(ℓ, p) is one of the atoms in the cycle we removed from J ′. Yet, since (ℓ : p) is in the cycle, there is

some incoming edge from some atom in the cycle and, due to the way in which atom labelling is done,

this means that this edge must come from some atom qi with 1 ≤ i ≤ n in the positive body of the

rule whose label is ℓ. But, since this atom is in the cycle, this also means that f(qi) ̸∈ J ′ and we reach
a contradiction. □

38 CHAPTER 3. SUPPORT GRAPHS

Theorem 5 (Completeness). Let I be an answer set of P . For every explanation G = ⟨I, E, λ⟩ of I
under P there exists a unique answer set J of program x(P, I) where f(ℓ, a) ∈ J iff λ(a) = ℓ inG.□

Proof. Let I be an answer set of P andG = ⟨I, E, λ⟩ be some explanation for I under P and let us

define the interpretation:

J := {f(a) | a ∈ I} ∪ {f(ℓ, a) | λ(a) = ℓ}

We will prove that J is an answer set of x(P, I) or, in other words, that J is a minimal model of

x(P, I)J . First, we will note that J satisfies x(P, I)J rule by rule. For the constraints, J obviously

satisfy (3.7) because it contains an atom f(a) for each a ∈ I . We can also see that J satisfies (3.11)

because graphG does not contain repeated labels, sowe cannot have two different atomswith the same

label. The third constraint (3.14) is also satisfiedbyJ because atomsf(ℓ, a), f(ℓ′, a) are obtained from
λ(a) that is a function that cannot assign two different labels to a same atom a. Satisfaction of (3.11) is
guaranteed since the head of this rule f(a) is always some atom a ∈ I and therefore f(a) ∈ J . For the
remaining rule, (3.10), we have two cases. If f(ℓ, p) ̸∈ J then the rule is not included in the reduct and

so there is no need to be satisfied. Otherwise, if f(ℓ, p) ∈ J then the rule in the reduct corresponds

to (3.15) and is trivially satisfied by J because its only head atom holds in that interpretation. Finally,

to prove that J is a minimal model of x(P, I)J , take the derivation tree πG(a) for each atom a ∈ I .
Now, construct a new tree π where we replace each atom p in πG(a) by an additional derivation from
f(ℓ, p) to f(p) through rule (3.12). It is easy to see that π constitutes aModus Ponens proof for f(a)
under the Horn program x(P, I)J and the same reasoning can be applied to atom f(ℓ, a) ∈ J that is

derived in the tree π for f(a). Therefore, all atoms in J must be included in any model of x(P, I)J .
□

We have proved how the answer sets of program x(P, I) coincide exactly with each explanation G
of a model I under program P. We will now show how we can introduce the Edge pruning andNode
forgetting operations (respectively defined in 9 and 10). LetAP ⊆ I be the set of atoms to be pruned,

let LP ⊆ Lb(()P) the set of labels to be pruned and AF ⊆ I the set of atoms to be forgot. Recall

also program x(P) to define the following non ground program g(P)
df

= x(p) ∪ {as(A) | A ∈

3.4. AN ASP ENCODING TO COMPUTE AND FILTER EXPLANATIONS 39

I} ∪ {prune(A) | A ∈ AP} ∪ {prunel(L) | L ∈ LP} ∪ {keep(A) | A ∈ I \ AF} ∪ ER,

whereER represents the following set of rules,

e(Effect ,Cause)← f (Label ,Effect), sup(Label), f (Cause),

not prune(Effect),
f (Label ,Cause), not prunel(Label) (3.16)

skip(A,B)← e(A,B), not keep(A) (3.17)

skip(A,B)← e(A,B), not keep(B) (3.18)

gedge(Effect ,Cause)← e(Effect ,Cause), not skip(Effect ,Cause) (3.19)

reach(A,B)← skip(A,B) (3.20)

reach(A,B)← reach(A,Y), skip(Y ,B), not keep(Y) (3.21)

gedge(Effect ,Cause)← reach(Effect ,Cause), keep(Effect), keep(Cause) (3.22)

gnode(A)← keep(A) (3.23)

When solved, the program g(P)will compute the filtered explanations formodel I underP as defined

in definition 11, given the setsAP ,LP andAF .

The atoms e(Effect ,Cause) derivated from the head of the rule (3.16), represent the edges of the

graph, after the pruning but before the forgetting. As explained inDefinition 9, this operation involves

deleting two sets of edges. On one hand, the outcoming edges of the atoms inAP represented by the

predicate prune(A) are removed, which is handled by the second line of the body of this rule. On

the other hand, the same happens for the incoming edges of the atoms labeled with the labels in LP
represented by the predicate prunel(L), which is handled by the third line of the body of this rule. Re-
calling the forgetting operation fromDefinition 10, it first involves the removal of any edge incident to

the atoms onAF (i.e not keep(A)). Such removals are considered in predicate skip(Effect ,Cause)
computed from rules (3.17) and (3.19).

Predicate gedge(Effect ,Cause) represents the final edges of the filtered graph (i.e. rule (3.19)

means that any non-removed or pruned edge remains). Furthermore, forgetting also involves the cre-

ation of new edges connecting nodes thatwere transitively connected through forgotten atoms. This is

modeled by rule (3.22), with the help of the reach(A,B) predicate, defined by rules (3.20) and (3.21),
whichmeans that you can reach from non-forgotten nodeA to non-forgotten nodeB traversing only

through forgotten nodes and edges. Finally, predicate gnode(A) captures the non-forgotten atoms

that remain in the filtered explanation.

40 CHAPTER 3. SUPPORT GRAPHS

Chapter 4

Xclingo

4.1 Introduction

Weprovide a tool called xclingo, which computes the support graphs for ASP programs. The tool fur-

ther extends the ASP language with some so-called annotations that help the user design the produced

explanations. Several examples of how to use these annotations are provided in Section 4.2.

xclingo relies on a meta-programming or reification method for computing the support graphs

of a program. That is, the semantics of support graphs are specified in the xclingoASP program that,

togetherwith a reification of the original program,whose answer sets correspond to the support graphs

of a program. Both the reification’s and the support graph’s semantics specifications are explained and

discussed in Section 4.3.

The internal architecture of the tool and some software design decisions are discussed in Sec-

tion4.4. This also includes additional advanced features such as theoption to add extensions to xclingo.
Extensions are snippets of ASP code that one can inject into the xclingo support graphs-computing

program such that its behavior can be further extended in many ways.

4.2 Using Xclingo to Generate Explanations

4.2.1 Annotating a program to obtain Explanations

As an illustration, consider program P 4.1.

This program decides whether if a person is either innocent or sentenced to prison, depending on

whether or not she has committed certain offenses. A person can be punished and therefore sentenced

to prison if she drives after having ingested alcohol above the legal limit (namely 30 mg/l) or if she re-

sisted authority (see lines 9 and 10). By default, a person is innocent (line 12) but can be sentenced to

prison when punished (line 13). In particular, the program depicts 2 persons gabriel and clare. For
gabriel, we imagine three scenarios: onewhere gabriel has an alcohol blood level of 40mg/l, onewhere

gabriel resisted authority, and a third one where both situations happen. The events involved are rep-
resented by the atoms alcohol(gabriel, 40) and resist(gabriel). The choice from line 7 generates

the three scenarios. The #show from line 15 asks clingo to show the sentences for every person in the

program.

42 CHAPTER 4. XCLINGO

1 % dont_drive_drunk.lp
2

3 person(gabriel;clare).
4 drive(gabriel). drive(clare).
5 alcohol(clare, 5).
6 % Either gabriel drove drunk or resisted to authority
7 1{alcohol(gabriel, 40); resist(gabriel)}.
8

9 punish(P) :- drive(P), alcohol(P,A), A>30, person(P).
10 punish(P) :- resist(P), person(P).
11

12 sentence(P, innocent) :- person(P), not punish(P).
13 sentence(P, prison) :- punish(P).
14

15 #show sentence/2.

Program 4.1: Example dont_drive_drunk.lp.

A standard call to clingo by running

clingo 0 dont_drive_drunk.lp (Command 4.1)

would produce the output in Output 4.1. There, we see that Program 4.1, has exactly 3 answer sets.

Due to the #show sentence of line 15, we canonly see sentence/2 atoms in the solutions, thus one cannot

distinguish the reason why gabriel was sentenced to prison in each scenario. To do so we would need

1 Answer: 1
2 sentence(clare,innocent) sentence(gabriel,prison)
3 Answer: 2
4 sentence(clare,innocent) sentence(gabriel,prison)
5 Answer: 3
6 sentence(clare,innocent) sentence(gabriel,prison)
7 SATISFIABLE

Output 4.1: Output for program P 4.1 after running Command 4.1.

to modify the original encoding, either to add extra #show statements, remove all of them, or to model

the reason why somebody is punished, for example, as an extra argument to the sentence predicate.
Let us see now what kind of output we can obtain using xclingo. Essentially, xclingo works as

a command line tool in the same way clingo does. When fed with files, the tool will interpret them

as ASP programs extended with the xclingomarkup annotation language and then will compute the

explanations. To illustrate how this works, consider now program P 4.2, which extends program P 4.1

with some extra xclingo annotations. In this version, we see several annotations that include trace,
trace_rule and show_trace. Each of them starts with %, so that clingo would interpret them as mere

comments. As a result, running Command 4.1 over the annotated program P 4.2 would produce the

exact same output we got in Output 4.1 for program P 4.1.

The trace annotation from line 12 associates a text describing the alcohol level with atoms of the

form alcohol(P, A) for any alcohol(P, A)where A (the registered alcohol level) is greater than 30. The
trace_rule annotations from lines 14, 17, 20 and23, on the other hand, dependon the rule right below

and will associate the corresponding text with any atom derived from such rules. Finally, similarly to

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 43

1 % annotated_dont_drive_drunk.lp
2

3 person(gabriel;clare).
4 drive(gabriel). drive(clare).
5 alcohol(clare, 5).
6

7

8 % Either gabriel drove drunk or resisted to authority
9 1{alcohol(gabriel, 40); resist(gabriel)}.
10

11

12 %!trace_rule {"% drove drunk (over 30mg/l)", P}.
13 punish(P) :- drive(P), alcohol(P,A), A>30, person(P).
14

15 %!trace_rule {"% resisted to authority", P}.
16 punish(P) :- resist(P), person(P).
17

18 %!trace_rule {"% is innocent by default",P}.
19 sentence(P, innocent) :- person(P), not punish(P).
20

21 %!trace_rule {"% has been sentenced to prison", P}.
22 sentence(P, prison) :- punish(P).
23

24 %!show_trace {sentence(P,S)} :- sentence(P,S).
25 #show sentence/2.

Program 4.2: Annotated annotated_dont_drive_drunk.

what clingo #show does, the show_trace annotation is used to select the subset of atoms that will be

explained in the output. In this case, any occurrence of atom sentence(P, S). In Appendix A, we will
discuss the usage of each kind of annotation in full detail.

To use xclingo to obtain explanations for Program P 4.2, we would ran Commmand 4.2,

xclingo -n 0 0 annotated_dont_drive_drunk.lp (Command 4.2)

obtaining the output in Output 4.2.

In contrast to what we saw in clingo’s output in Output 4.1, a user can now easily understand

that the difference between the scenario in answer set 1 and answer set 2 is the reason why gabriel is
being punished for. Besides, we see how answer set 3 has 2 explanations, following what was explained

in Example 2 of Section 3.2 about some solutions potentially having several explanations. Also, it is

straightforward to see how in answer set 3, driving drunk and resisting to authority are equally valid
reasons to punish gabriel. In terms of structure, in xclingo’s output, we see the answer set section ad-
ditionally divided into several explanation sections, each one featuring each computed support graph

for the corresponding answer set. Inside each answer set explanation, we see a tree-like atom explana-
tion for the atoms requested through show_trace annotations. The atom explanation start with a root

node * fromwhere it hangs the rest of the explanation. The nodes of the tree explanation are indented
and connected through lines for easy reading. The parent nodes are in a lower level of indentation (i.e.

located at the left) while child nodes are in the next indentation level. The parent-children relations in

the tree must be understood as cause-effect relations where children nodes are the joint causes. Infor-

mally speaking, each indented connection can be read as a because or as a is caused by. For instance, the
first atom explanation in Explanation 1.1, should be read as:

44 CHAPTER 4. XCLINGO

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"gabriel has been sentenced to prison"
5 | |__"gabriel resisted to authority"
6

7 *
8 |__"clare is innocent by default"
9

10 ##Total Explanations: 1
11 Answer: 2
12 ##Explanation: 2.1
13 *
14 |__"gabriel has been sentenced to prison"
15 | |__"gabriel drove drunk (over 30mg/l)"
16 | | |__"gabriel alcohol's level is 40"
17

18 *
19 |__"clare is innocent by default"
20

21 ##Total Explanations: 1
22 Answer: 3
23 ##Explanation: 3.1
24 *
25 |__"gabriel has been sentenced to prison"
26 | |__"gabriel drove drunk (over 30mg/l)"
27 | | |__"gabriel alcohol's level is 40"
28

29 *
30 |__"clare is innocent by default"
31

32 ##Explanation: 3.2
33 *
34 |__"gabriel has been sentenced to prison"
35 | |__"gabriel resisted to authority"
36

37 *
38 |__"clare is innocent by default"
39

40 ##Total Explanations: 2
41 Models: 3

Output 4.2: Output for Program P 4.2 after running Command 4.2.

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 45

gabriel has been sentenced to prison because gabriel resisted authority.

Turn your attention now to the commands 4.1 and 4.2. In clingo’s command, we request the

solver all the models (i.e. answer sets) by placing the option 0 right before the input files. Using any
numberN > 0means requiringN answer sets atmost. In the case of xclingo, in addition to handling
the answer sets of the original program, it also gives the user the option to request an arbitrary number

of explanations for eachmodel. That is why the option -n inCommand4.2 is followed by two integers.

The first is the number of answer sets of the original program that xclingo will consider at most, and

the second is the number of maximum explanations xclingo will compute for each model. Note that

this corresponds to the maximum number of support graphs considered, rather than the number of

tree-like atom explanationswe find inside each answer set explanation, this is determined by the atoms

that match with the show_trace annotations inside the program. For example, Command 4.3 is asking

for all the explanations only for the first answer set. Output 4.3 is the output we would obtain by

running Command 4.3.

xclingo -n 1 0 annotated_dont_drive_drunk.lp (Command 4.3)

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"gabriel has been sentenced to prison"
5 | |__"gabriel resisted to authority"
6

7 *
8 |__"clare is innocent by default"
9

10 ##Total Explanations: 1
11 Models: 1

Output 4.3: Output for Program 4.2 after running Command 4.3.

On the other hand, Command 4.4 is asking for only one explanation for each first three answer sets.

xclingo -n 3 1 annotated_dont_drive_drunk.lp (Command 4.4)

In Output 4.4, which is the output we would obtain by running Command 4.4, we see how we only

obtain one explanation in answer set 3 now.

Note the absence of cause for clare being innocent in all the answer sets. It is important to dis-

tinguish between the different types of questions that can be formulated and the different ways of

answering them. Now, be aware that the kind of question that we are trying to explain here is “How
come clare to be innocent?” and not “Why is clare innocent instead of guilty” or “Why clare was not
sentenced to prison”. For answering “How come” questions, we focus only on the positive part of the

program as, in the real physical world, only events that happened can be actual causes for other events.

Using events that did not happen to answer would be performing a counterfactual, which is appro-

priate for a different type of questions but not “How come” questions. For instance, in this case, the

program poses that any person is innocent if there is no evidence of punishment. We could say that

having clare been punished, would be a cause for being in prison, but not that the absence of punish-
ment is a cause for being innocent. There is no need to mention all the crimes that clare could have

46 CHAPTER 4. XCLINGO

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"gabriel has been sentenced to prison"
5 | |__"gabriel resisted to authority"
6

7 *
8 |__"clare is innocent by default"
9

10 ##Total Explanations: 1
11 Answer: 2
12 ##Explanation: 2.1
13 *
14 |__"gabriel has been sentenced to prison"
15 | |__"gabriel drove drunk (over 30mg/l)"
16 | | |__"gabriel alcohol's level is 40"
17

18 *
19 |__"clare is innocent by default"
20

21 ##Total Explanations: 1
22 Answer: 3
23 ##Explanation: 3.1
24 *
25 |__"gabriel has been sentenced to prison"
26 | |__"gabriel drove drunk (over 30mg/l)"
27 | | |__"gabriel alcohol's level is 40"
28

29 *
30 |__"clare is innocent by default"
31

32 ##Total Explanations: 1
33 Models: 3

Output 4.4: Output for Program 4.2 after running Command 4.4.

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 47

committed but not, to explain how she has come to be innocent. Such an approach would involve

updating the causes for clare being innocent any time new possible crimes were represented in the

program (for instance drug trafficking, speeding while driving, etc.), even if the particular situation of

clare would have not changed. However, if the posed question is “Why clare was not sentenced to
prison”, a valid answer would involve imagining events that have not occurred and which would have

caused that, (this is, counterfactual reasoning), and giving the crimes that clare has not committed

would be appropriate. In Section 5.5, we propose a way to answer this type of question with xclingo
when they are explicitly posed by a user.

4.2.2 Tracing or Hiding Atoms

In Chapter 3, we have shown the definition of support graphs (see Definition 6) and how we can

obtain explanations for any atom that match its corresponding derivation proofs (see Definition 8 and

Example 3). However, by default, xclingo does not compute the explanations directly as the derivation

proofs. For instance, in outputs 4.2, 4.3 and 4.4, we have seen that: (1) instead of the atom names, we

obtain their corresponding text traces written by the user; and (2), any non-traced atom is ommited in
the final explanation trees. Recall the node forgetting operation defined in Chapter 3 (Definition 10)

as well and note how the tree explanations computed by xclingo are the proofs obtained from the

support graph after forgetting any non-traced atom.

By default, xclingo considers any atom in the answer set as a forgettable atom and thus, it will be

removed from the final explanations. To prevent this default behavior for a set of atoms, the user has to

write Trace annotations. Each trace annotation defines a set of atoms that will be considered as traced
(not forgettable) and therefore will be part of the tree explanations. In addition, it also allows the user
to define parametrized text labels that replace the atoms when displaying the explanations. Inside the

given text, the user can make use of several placeholders % to link the values of the variables referred to
in the actual ground atoms. This link is done in the order the variables were placed in the annotation.

Another option to prevent xclingo to forget atoms is the trace_rule annotation. It works very
similarly to trace annotations, except that they accompany particular rules explicitly and they only

affect the atoms derived from this rule. To understand how this affects the explanations, please recall

Definition 6 in Chapter 3. There we see that each atom in the graph has to be linked to a unique

(labeled) rule ℓ. Unlike trace annotations, which affect any atom disregarding which rule they come

from, trace_rule annotations only affect the atoms in the graph that were labeled with their particular

rule’s label.

As an example, take programs 4.3 and 4.4 where we use trace_rule and trace annotations respec-
tively to trace the same atoms from the same ASP source code. As it can be easily seen, the trace
annotations from Program 4.4 are intendedly written to trace the exact same set of atoms that the

trace_rule annotations from Program 4.3 (i.e. the bodies of the trace annotations coincide with the

corresponding bodies of the two rules dor deriving punish(P)). The set of atoms that are being traced
are the same. Both programs have the same unique answer setA.

A = {{resist(gabriel), alcohol(gabriel, 40),
drive(gabriel), punish(gabriel)}}

Besides, this answer set has exactly the two support graphs that are depicted in Figure 4.1. The labels

48 CHAPTER 4. XCLINGO

1 % only_tracerules.lp
2

3 resist(gabriel).
4 alcohol(gabriel,40).
5 drive(gabriel).
6

7 %!trace_rule {"% resisted authority",P}.
8 punish(P) :- resist(P).
9

10 %!trace_rule {"% drove drunk", P}.
11 punish(P) :- drive(P), alcohol(P, A), A > 30.
12

13 %!show_trace {punish(gabriel)}.

Program 4.3: Program dont_drive_drunk using only trace_rule.

1 % only_traces.lp
2

3 resist(gabriel).
4 alcohol(gabriel,40).
5 drive(gabriel).
6

7 punish(P) :- resist(P).
8 punish(P) :- drive(P), alcohol(P, A), A > 30.
9

10 %!trace {punish(P), "% drove drunk", P} :- drive(P), alcohol(P, A), A > 30.
11 %!trace {punish(P), "% resisted authority",P} :- resist(P).
12

13 %!show_trace {punish(gabriel)}.

Program 4.4: Program dont_drive_drunk using only trace.

ℓ1 : resist(gabriel)

��
ℓ4 : punish(gabriel)

ℓ2 : alcohol(gabriel, 40)

((

ℓ3 : drive(gabriel)

��
ℓ5 : punish(gabriel)

Figure 4.1: Support graphs for the only answer set from programs 4.3 and 4.4.

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 49

used in the graphs are taken from the rules in the order they appear in the programs (i.e. the first

rule for punish(P) takes label ℓ4 and the second takes label ℓ5). Note how the causes for the atom

punish(gabriel) change depending on the rule being used to label it. We would obtain these two

graphs regardless of which of both programs we would use to explain the answer set. However, the

explanations got by xclingo do not look the same. If we run Command 4.5 with Program 4.3 we

obtain the explanations in Output 4.5

xclingo -n 0 0 only_tracerules.lp -auto-tracing=facts (Command 4.5)

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"gabriel resisted authority"
5 | |__resist(gabriel)
6

7 ##Explanation: 1.2
8 *
9 |__"gabriel drove drunk"
10 | |__drive(gabriel)
11 | |__alcohol(gabriel,40)
12

13 ##Total Explanations: 2
14 Models: 1

Output 4.5: Explanations obtained for Program 4.3 after running Command 4.5.

In this output, we can see how each text label is displayed only when their corresponding rule is being

used to explain the atom. This is thanks to the trace_rule annotation special behavior. However, in

Output 4.6 we can see the different output we get using only trace annotations. As you can see, both

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"gabriel drove drunk";"gabriel resisted authority"
5 | |__resist(gabriel)
6

7 ##Explanation: 1.2
8 *
9 |__"gabriel drove drunk";"gabriel resisted authority"
10 | |__drive(gabriel)
11 | |__alcohol(gabriel,40)
12

13 ##Total Explanations: 2
14 Models: 1

Output 4.6: Explanations obtained after running Command 4.5 for Program 4.4 instead.

text labels, being drunk and resisting, are being displayed inboth explanations 1.1 and 1.2, disregarding
which rule is being used, even when in the case of explanation 1.2 the cause of the punishment was

not resisting.

This example tries to illustrate the contrast between trace_rule and trace annotations. It is im-

portant to understand this difference to correctly design the desired explanations. RecallingDefinion 6

50 CHAPTER 4. XCLINGO

of support graphs, only one rule from the program can be used in a graph to justify an atom. When,

given an answer set, we have several rules for justifying an atom, we produce several graphs in which

we include only one of the alternative rules. The trace_rule annotations are bonded to the rule and
thus, their text only affects to graphs in which the corresponding rule was selected. In contrast, trace
annotations are bonded to atoms and therefore their text affects all possible graphs. In the previous

example, we have two rules that can justify punish(gabriel). In Outputs 4.6 and 4.5, explanations 1.1
and 1.2 respectively correspond to the support graph for which each rule was selected instead of the

other. However, note how trace annotations texts appear in both explanations. In terms of support

graphs, we can think on trace annotations as if we were introducing a new rule ℓ : p′ ← p∧C where

p is the atom we are tracing, ℓ is the text we are associating to atom p,C is the condition we introduce

as part of the trace annotation (i.e. the body of the annotation), and p′ is an auxiliary atom. As this

fresh rule is the only one supporting atom p′, it has to be used to label the atom in any support graph.

The appearances of p in the rest of the programwould be then replaced by p′ to keep the correct causal
chains between the atoms.

Let us end this section with a note on how to organize the code regarding annotations. In general,

keeping the traces independent from the code using trace annotations is always a better option. It
enhances the cleanliness and reusability of the source code. Indeed, several different annotation files

can bewrittenwith different purposes such as generating explanations for different users or in different

languages. However, as we have just seen, for obtaining particular explanations, sometimes we need to

use trace_rule annotations that must be placed next to their rules and, unfortunately, are impossible

to separate in independent modules rules for now.

4.2.3 Obtaining Explanations without Manually Tracing Atoms

Another possibility allowed by xclingo to obtain explanationswithout adding any trace or trace_rule
annotation using the command line option –auto-tracing. When this option is used with the value

–all, xclingowill add an additional trace to every atom in the answer set. The text of this automatically

added trace will match the atom itself (i.e. an automatic trace for the atom sentence(gabriel, prison)
will be the text sentence(gabriel, prison)). Leveraging from this option, one could obtain explanations

for non-annotated Program P 4.1, but we would still have to add at least one show_trace annotation
or xclingowould not compute an explanation for any atom. For instance, if we take that program and

an additional file containing (i.e. showtrace.lp) only the annotation

%!show_trace sentence(P,S) :- sentence(P,S).

and we run xclingowith the option –auto-tracing=all like in Command 4.6

xclingo -n 0 0 dont_drive_drunk.lp showtrace.lp –auto-tracing=all (Command 4.6)

we would obtain the output in Output 4.7. In this output, we see how all the (ground) atoms that

intervened in the derivation of the explained atom are shown in the explanation. Since all the atoms

in the answer set are traced, the explanation trees shownmatch the derivation proofs for the explained

atoms. The automatic tracing option also admits the facts value, whichwill produce automatic traces

only for the facts of the program (i.e. those derived from rules with an empty body).

Of course, the –auto-tracingoption canbemixedwith custom trace and trace_rule annotations.
For instance, consider now the execution of Command 4.7 below:

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 51

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__sentence(gabriel,prison)
5 | |__punish(gabriel)
6 | | |__resist(gabriel)
7 | | |__person(gabriel)
8

9 *
10 |__sentence(clare,innocent)
11 | |__person(clare)
12

13 ##Total Explanations: 1
14 Answer: 2
15 ##Explanation: 2.1
16 *
17 |__sentence(gabriel,prison)
18 | |__punish(gabriel)
19 | | |__drive(gabriel)
20 | | |__alcohol(gabriel,40)
21 | | |__person(gabriel)
22

23 *
24 |__sentence(clare,innocent)
25 | |__person(clare)
26

27 ##Total Explanations: 1
28 Answer: 3
29 ##Explanation: 3.1
30 *
31 |__sentence(gabriel,prison)
32 | |__punish(gabriel)
33 | | |__drive(gabriel)
34 | | |__alcohol(gabriel,40)
35 | | |__person(gabriel)
36

37 *
38 |__sentence(clare,innocent)
39 | |__person(clare)
40

41 ##Explanation: 3.2
42 *
43 |__sentence(gabriel,prison)
44 | |__punish(gabriel)
45 | | |__person(gabriel)
46 | | |__resist(gabriel)
47

48 *
49 |__sentence(clare,innocent)
50 | |__person(clare)
51

52 ##Total Explanations: 2
53 Models: 3

Output 4.7: Output for Program P 4.1 after running Command 4.6.

52 CHAPTER 4. XCLINGO

xclingo -n 0 0 dont_drive_drunk.lp showtrace.lp –auto-tracing=facts (Command 4.7)

which use the –auto-tracing=facts option instead, where showtrace.lp now contains the following

two annotations:

1 % showtrace.lp
2

3 %!show_trace {sentence(P,S)} :- sentence(P,S).
4 %!trace {sentence(P,S), "Sentece for %: %",P, S} :- sentence(P,S).

This call produces Output 4.8

Furthermore, if an atom has more than one associated text trace (for instance, the automatically

generated one and a user-defined one), the tree explanation will show all of them. For example, if we

just change the option facts by all in Command 4.7, any sentence/2 atom will have two text traces:

the automatic one and the custom one (inside traces.lp). As a result, we would obtain explanations
like the following one,

1 *
2 |__"Sentece for gabriel: prison";sentence(gabriel,prison)
3 | |__punish(gabriel)
4 | | |__drive(gabriel)
5 | | |__alcohol(gabriel,40)
6 | | |__person(gabriel)

Where both traces for sentence(gabriel, prison) are shown separated by a semicolon. This can be

especially useful while designing your custom trace and trace_rule annotations, to check if they are
being applied to the atoms as expected.

4.2.4 Muting ASP Code to Avoid Causal Links

When explaining ASP programs, xclingo assumes every rule in the input program depicts a cause-

effect relation, where the atoms in the head are the effects and the literals in the body are the actual
causes. However, as soon as we leave literature examples, this becomes a false assumption for most

real ASP applications. Even in very causality-oriented applications such as diagnosis, we can often

find non-causal rules among standard ASP implementations. A very typical example where the causal

assumption breaks is when anASP rule is used to complete the domain of a predicate. For instance the

rule:

person(S) :- student(S).

means that students are also persons and is used to complete the person list without repeating all the

(already declared) student names. However, it does not mean that S is a person because she is a student
or that being a student cause an entity to be a person. xclingowill assume this latter meaning by default,

though. We can prevent this assumption by telling xclingowhich rules are notmeant tomodel causal-

effect relations. To this aim, the users can make use ofmute (i.e. mute) andmute body (i.e. mute_body)
annotations. They respectively work in an analogous way to trace and trace_rule (see Section 4.2.2).
A mute annotation defines a set of atoms andmarks them asmuted atomsmeaning that any will not be

considered as a cause for any other atom. On the other hand, a mute_body annotation marks a rule as

muted rule removing the cause-effect relations between the head and body of that particular rule. In

the same way trace and trace_rule indirectly define the set of atoms over which xclingo applies the

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 53

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"Sentece for gabriel: prison"
5 | |__resist(gabriel)
6 | |__person(gabriel)
7

8 *
9 |__"Sentece for clare: innocent"
10 | |__person(clare)
11

12 ##Total Explanations: 1
13 Answer: 2
14 ##Explanation: 2.1
15 *
16 |__"Sentece for gabriel: prison"
17 | |__drive(gabriel)
18 | |__alcohol(gabriel,40)
19 | |__person(gabriel)
20

21 *
22 |__"Sentece for clare: innocent"
23 | |__person(clare)
24

25 ##Total Explanations: 1
26 Answer: 3
27 ##Explanation: 3.1
28 *
29 |__"Sentece for gabriel: prison"
30 | |__drive(gabriel)
31 | |__alcohol(gabriel,40)
32 | |__person(gabriel)
33

34 *
35 |__"Sentece for clare: innocent"
36 | |__person(clare)
37

38 ##Explanation: 3.2
39 *
40 |__"Sentece for gabriel: prison"
41 | |__person(gabriel)
42 | |__resist(gabriel)
43

44 *
45 |__"Sentece for clare: innocent"
46 | |__person(clare)
47

48 ##Total Explanations: 2
49 Models: 3

Output 4.8: Output for Program P 4.1 after running Command 4.7.

54 CHAPTER 4. XCLINGO

1 % brangelina.lp
2

3 wed(angelina,billy,2000). divorced(angelina,billy,2003).
4 wed(brad,jennifer,2000). divorced(brad,jennifer,2005).
5 wed(brad,angelina,2014). divorced(brad,angelina,2019).
6 wed(billy,connie,2014).
7

8 person(A1) :- wed(A1,A2,Y).
9 person(A2) :- wed(A1,A2,Y).
10 %!mute {person(P)}.
11

12 %!mute_body.
13 wed(A,B,Y) :- wed(B,A,Y).
14 %!mute_body.
15 divorced(A,B,Y) :- divorced(B,A,Y).
16

17 unwed(A1,A2,YM) :- wed(A1,A2,YM), divorced(A1,A2,YD), YM<YD.
18

19 married(A1) :- wed(A1,A2,YM), not unwed(A1,A2,YM).
20 single(P) :- person(P), not married(P).
21

22 %!show_trace {single(P)}.
23 %!show_trace {married(P)}.

Program 4.5: Example brangelina.lp

forgetting operation discussed in Section 3.3, mute and mute rule define the sets over which the edge

pruning operation is performed. Recalling Definition 9 of edge pruning, any outgoing edge from a

muted atom is pruned, and any incoming edge on an atom labeled with a muted rule’s label is pruned.

To illustrate the behavior of these annotations and their utility consider Program P4.5, The pro-

gram has several facts about weddings, divorces, and their associated years. Predicate person(P) just
collects anybody mentioned in any wedding. Besides, predicates wed(A1,A2,Y) and divorced(A1,A2,Y)
are symmetric in their arguments X and Y. Predicate unwed(A1,A2,Y)points out awedding wed(A1,A2,Y)
that became ineffective by a later divorce. Finally, predicates married(A1) and single(P) indicate the
current marital status of some person X. Note that the rule for single(P) is formulated as a default:
somebody is single if we cannot prove she is currently married.

Note that one could be also interested in showing the complete list of marriages and divorces to

prove that someone is single. This would be modeled in a different way. Here, the default perspective

adopts the idea that someone is single if not proven to be currently married and the previous history is

not disclosed: it may even be subject to privacy and data protection constraints.

Program 4.5 has a unique answer set for which xclingo generates the unique explanation shown

in Output 4.9 by using the Command 4.8.

xclingo -n 0 0 brangelina.lp –auto-tracing=all (Command 4.8)

Note the use of mute and mute_body annotations in lines 10, 12 and 14. Rules from lines 13 and 15

only model the symmetric properties of predicates wed(A1,A2,Y) and divorced(A1,A2,Y), but they are
notmeant tomodel any causal relation. The mute_body annotations from lines 12 and 13 are preventing

those rules from propagating cause; i.e. is xclingo will not use the rules to create edges in the support
graphs. The mute annotation of line 10 ismaking any person(P) atom asmuted, meaning that it cannot

be a cause for another atom. If not muted, the person atoms would take part in explaining single

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 55

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__single(angelina)
5

6 *
7 |__single(brad)
8

9 *
10 |__single(jennifer)
11

12 *
13 |__married(billy)
14 | |__wed(billy,connie,2014)
15

16 *
17 |__married(connie)
18 | |__wed(connie,billy,2014)
19 | | |__wed(billy,connie,2014)
20

21 ##Total Explanations: 1

Output 4.9: Output for Program 4.5 after running Command 4.8.

atoms (see rules in line 20), as xclingowould conclude that a being married is a reason to be a person.

Moreover, if a person gets married more than once, then it has several explanations for being a person.

Output 4.10 corresponds to a program in which the person/1 atoms were not muted.

In fact, this Output shows only a part of the complete output: we are only explaining single(P)
atoms for brevity. Aswe can see, not only person(P) appears nowas a cause of single(P), but person(P)
is caused by the weddings as well. Also, as we anticipated, we have more than one explanation now

due to each wedding being an alternative cause for person. Moreover, wed(A1,A2,Y) is a symmetric

predicate, meaning that for each wedding a person P was involved in, we are providing two causes

for person(P): wed(P,A,Y) and wed(A,P,Y). Since brad and angelina had a total of two weddings, and
jennifer had one, this leads to a total of 32 explanations.

4.2.5 Explanation Explosion

As demonstrated in the example of the previous section,muting atoms and rules is not only a way to

customize the explanations, but sometimes a needed tool to design proper explanations. Notmuting
non-causal rules can also lead to an undesired explosion in the number of explanations.

Consider Program P 4.6. The program is a variation (introduced by Fandinno in [49]) of the clas-

sical Firing Squad Scenario introduced by J.Pearl in [81] for causal counterfactuals (althoughwe do not
use it for that purpose here). We have an army distributed inmaxn >= 1 squads of three soldiers

each, a captain and two riflemen (a and b) for each squad. We place the squads on a sequence ofmaxn
consecutive hills. An unfortunate prisoner is at the last hillmaxn − 1, and is being aimed at by the

last two riflemen. At each hill i, the two riflemen ai and bi will fire (respectively represented by the

atoms fire_a(i) and fire_b(i)) if their captain gives a signal to fire represented by atom signal(i).
But then, the captain at the net hill will give a signal to fire (this is signal(i+1)) if she hears a shot from
the previous hill i in the distance. Suppose the captain at hill 0 gives a signal to fire.

56 CHAPTER 4. XCLINGO

1 ##Explanation: 1.1
2 *
3 |__single(angelina)
4 | |__person(angelina)
5 | | |__wed(angelina,brad,2014)
6

7 *
8 |__single(brad)
9 | |__person(brad)
10 | | |__wed(brad,angelina,2014)
11

12 *
13 |__single(jennifer)
14 | |__person(jennifer)
15 | | |__wed(brad,jennifer,2000)
16

17 ##Explanation: 1.2
18 *
19 |__single(angelina)
20 | |__person(angelina)
21 | | |__wed(angelina,brad,2014)
22

23 (. . .)

Output 4.10: Output for Program 4.5 after runningCommand 4.8, when unmuting atom person(P).

1 % chain_of_firing_squads.lp
2

3 #const maxn=7.
4 signal(0).
5

6 fire_a(N) :- signal(N),N<maxn.
7 fire_b(N) :- signal(N), N<maxn.
8

9 signal(N+1) :- fire_a(N), N<maxn.
10 signal(N+1) :- fire_b(N), N<maxn.
11

12 %!show_trace {signal(maxn)}.

Program 4.6: Example chain_of_firing_squads.lp.

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 57

This program is positive andhas only one answer set (the leastmodel). However, this answer set has

a total of 2maxn
explanations since any atom signal(i+1) for any hill i can be explained by fire_a(i)

or fire_b(i). Output 4.11 shows part of xclingo’s output after Command 4.9.

xclingo -n 0 0 chain_of_firing_squads.lp –auto-tracing=all (Command 4.9)

1 ##Explanation: 1.128
2 *
3 |__signal(7)
4 | |__fire_b(6)
5 | | |__signal(6)
6 | | | |__fire_a(5)
7 | | | | |__signal(5)
8 | | | | | |__fire_b(4)
9 | | | | | | |__signal(4)
10 | | | | | | | |__fire_a(3)
11 | | | | | | | | |__signal(3)
12 | | | | | | | | | |__fire_a(2)
13 | | | | | | | | | | |__signal(2)
14 | | | | | | | | | | | |__fire_b(1)
15 | | | | | | | | | | | | |__signal(1)
16 | | | | | | | | | | | | | |__fire_a(0)
17 | | | | | | | | | | | | | | |__signal(0)
18

19 ##Total Explanations: 128

Output 4.11: Extract of the output for Program P4.6 after running Command 4.9.

Note the impact that this observation has on particular real-world scenarios. For instance, this of

explanation explosion may also easily happen in temporal scenarios where some events are caused by

events in the previous timesteps. Any system trying to obtain all explanations will face an exponen-

tial computation cost, even for positive programs (as it is the case of the previous example). The most

straightforward solution to this problem is obtaining just one (or a custom limited number of) expla-

nation. This can be done easily with xclingo, as we have already shown. A perhaps more convenient

way to tackle the problem is by selecting among the explanations by defining criteria. In xclingo, this
can use a feature called extensions. In Section 4.4.3, we explain how to create and apply extensions.

4.2.6 Explaining aggregates

xclingo also provides explanations for aggregates using a first straightforward approach (we discuss its
limitations later in this section and in Section 4.3.2). In shortwords, any atom contributing to the final

value computed by the aggregate is considered as a joint cause, among the rest of the atoms supporting

the rule.

To demonstrate how this works consider Program 4.7.

In this program, we count howmany objects are held by mary at different time steps. The predicate

held_by(O,E,T) represents that the object O is being held by the entity E at time step T, whereas the
predicate numberObjectsbyEntityatTime(N,E,T) indicates the number of objects N being held by E at T.
The rule in line 11 uses a #count aggregate counting the different objects O being held by E at T, given
their corresponding held_by atoms. A couple of mute_body annotations prevent domain predicates

58 CHAPTER 4. XCLINGO

1 held_by(football,mary,0).
2 held_by(apple,mary,0).
3 held_by(football,mary,1).
4

5 time(T):-held_by(O,E,T).
6 entity(E):-held_by(O,E,T).
7

8 numberObjectsbyEntityatTime(N,E,T):- N=#count{O: held_by(O,E,T)}, entity(E),time(T).
9

10 %!show_trace {numberObjectsbyEntityatTime(N,mary,T)}.

Program 4.7: Example holding_objects.lp.

entity/1 and time/1 from propagating cause. A show_trace annotation finally requests explanations

for the number of objects that mary holds at the different time steps.

After running Command 4.10, xclingo obtains Output 4.12.

xclingo -n 0 0 polluted_river.lp –auto-tracing=all (Command 4.10)

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__numberObjectsbyEntityatTime(2,mary,0)
5 | |__entity(mary)
6 | |__time(0)
7 | |__held_by(football,mary,0)
8 | |__held_by(apple,mary,0)
9

10 *
11 |__numberObjectsbyEntityatTime(1,mary,1)
12 | |__entity(mary)
13 | |__time(1)
14 | |__held_by(football,mary,1)
15

16 ##Total Explanations: 1
17 Models: 1

Output 4.12: Output for Program 4.7 after running Command 4.10.

As it can be seen, the held_by atoms are considered a cause of the numberObjectsbyEntityatTime,
at the same level as the other atoms entity and time. In other words, xclingo considers as equally con-
tributive causes all the atoms involved in the set of values to be aggregated and the rest of the body of

the rule. A more elaborated approach would be, to reason about the necessary and/or the sufficient

causes that make the rule true. This kind of analysis seems more useful in explaining monotone aggre-

gates. For instance, consider Program 4.8. It consists of 3 entities factory a, factory b and farm c, each
of them has contributed to polluting river rhinwith a particular amount of chemical pollution (30, 30

and 60, respectively) and an additional amount of 10 nutrient pollution in the case of farm c. A river is

considered polluted if the total amount of pollution is greater than 50. This is represented in the rule

from line 13, which uses a #sum aggregate in its body. Finally, a show_trace annotation asks why river

rhin is polluted. After running Command 4.11, xclingo obtains Output 4.13.

xclingo -n 0 0 polluted_river.lp –auto-tracing=all (Command 4.11)

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 59

1 % polluted_river.lp
2

3 river(rhin).
4 factory(a;b).
5 farm(c).
6

7 chemical(a, rhin, 30). chemical(b, rhin, 60). chemical(c, rhin, 10).
8 nutrient(c, rhin, 30).
9

10 entity(E) :- factory(E).
11 entity(E) :- farm(E).
12

13 polluted_river(River) :-
14 river(River),
15 #sum{P1: entity(E), chemical(E, River, P1); P2: entity(E), nutrient(E, rhin, P2)}=Sum,
16 Sum>50.
17

18 %!show_trace {polluted_river(rhin)}.

Program 4.8: Example polluted_river.lp.

1 ##Explanation: 1.1
2 *
3 |__polluted_river(rhin)
4 | |__river(rhin)
5 | |__entity(a)
6 | | |__factory(a)
7 | |__entity(b)
8 | | |__factory(b)
9 | |__entity(c)
10 | | |__farm(c)
11 | |__chemical(a,rhin,30)
12 | |__chemical(b,rhin,60)
13 | |__chemical(c,rhin,10)
14 | |__nutrient(c,rhin,30)
15

16 ##Total Explanations: 1

Output 4.13: Output for Program 4.8 after running Command 4.11.

As can be seen, any contribution from any company acts as a joint cause. Moreover, note that all

the ground possibilities to derive both conditional atoms appear in the explanation. However, in this

case, b alone is sufficient to consider the river as polluted, as also are a together with c. Although this
kind of analysis is not possible natively in xclingo, it is possible via the use of extensions, a featurewhich
is discussed in Section 4.4.3. However, is not clear if providing a subset of atoms would be the default

behavior, or if it should be the user the one that should select how the aggregate should be explained

in each case. This topic still requires more research.

Finally, as the previous explanations contain so much detail, we provide an annotated version in

Program 4.9 that includes some trace, trace_rule and mute annotations. Additionally, it modifies the

predicate entity to include the type of entity (factory or farm), for using it as part of a text trace. When

running Command 4.12, xclingo obtains the explanations found in Output 4.14.

xclingo -n 0 0 polluted_river_annotated.lp (Command 4.12)

60 CHAPTER 4. XCLINGO

1 % poluted_river_annotated.lp
2

3 river(rhin).
4 factory(a;b).
5 farm(c).
6

7 chemical(a, rhin, 30). chemical(b, rhin, 60). chemical(c, rhin, 10).
8 nutrient(c, rhin, 30).
9

10 entity(E, factory) :- factory(E).
11 entity(E, farm) :- farm(E).
12 %!mute {entity(E,T)}.
13

14 %!trace {chemical(E,R,P), "% % contributed % to chemical pollution", T, E, P} :- chemical(E,R,P), entity(E, T).
15 %!trace {nutrient(E,R,P), "% % contributed % to nutrient pollution", T, E, P} :- nutrient(E,R,P), entity(E, T).
16

17 %!trace_rule {"River % is considered polluted (total pollution %)", River, Sum}.
18 polluted_river(River) :-
19 river(River),
20 #sum{P1: entity(E, T), chemical(E, River, P1); P2: entity(E, T), nutrient(E, rhin, P2)}=Sum,
21 Sum>50.
22

23 %!show_trace {polluted_river(rhin)}.

Program 4.9: An annotated version of polluted_river.lp.

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"River rhin is considered polluted (total pollution 100)"
5 | |__"company a contributed 30 to chemical pollution"
6 | |__"company b contributed 60 to chemical pollution"
7 | |__"farm c contributed 10 to chemical pollution"
8 | |__"farm c contributed 30 to nutrient pollution"
9

10 ##Total Explanations: 1

Output 4.14: Output for Program 4.9 after running Command 4.12.

4.2. USING XCLINGO TOGENERATE EXPLANATIONS 61

4.2.7 Explaining unsatisfiable programs

Up to this point, we have shown how to use xclingo features to design and obtain explanations for

the answer sets of ASP programs. In all cases, both the tool and the method explained in Chapter 3

need an actual answer set to start computing explanations. When the program P has no answer set,

SM(P) = ∅, there are no support graphs to be shown, and the user would get no explanation at

all. Yet, xclingo implements a simple method to avoid this situation, pointing at the constraints that

contribute in a higher degree to the unsatisfiability of P .

More precisely, when facing an unsatisfiable program, xclingo can point at which constraints are
being “active” and explain why is that. By “active” we mean that if we removed the set of constraints

C to get program P ′ = P \ C , we would get at least some modelM ∈ SM(P ′) such thatM |= B
for all constraint (⊥ ← B) ∈ C To enable this feature, the user can decide which constraints can be

used in this kind of explanation by adding trace_rule annotations right before them, as with regular

rules.

After finding out that the original program has no answer set, xclingo will relax (i.e. create an
auxiliary head for the constraint rule, disabling it) the traced constraints in the original program and

try to solve it again.

If the program is still unsatisfiable, then xclingowill answer UNSAT. But if this scall obtains some an-

swer set, then xclingowill explain (the head atoms of) these relaxed constraints as if they were positive

rules.

Of course, relaxing a constraint will cause the program to generate incorrect solutions when solv-

ing. Within these solutions, we will find at least one but potentially of these auxiliary atoms indicating

that some relaxed constraints are being fired. Since this option is mainly oriented toward debugging

programs expected to be satisfiable, we assume that the user will be interested in cases where relaxed

constraints are fired as less as possible. In other words: the closest to a correct solution. To this aim,

xclingowill minimize the number of these auxiliary atoms to find such a model.

To illustrate how this works, consider Program 4.10. The program includes a graph with 5 ver-

tices and some edges and tries to find Hamiltonian paths on it. Predicate in/2 represents the edges
included in the path and the predicate reached/1 gives the vertices that the path passes through. The
first two constraints ensure each vertex is only crossed once, and the last constraint ensures all vertices

are included in the path. Note how all constraints are tracedwith customized texts.

Since any of the included edges impinges in vertex 5, it cannot be aHamiltonian path in the graph.

However, by runningCommand4.13, we can obtain somehints aboutwhy the programhas nomodel.

xclingo -n 0 0 hamiltonian_path.lp (Command 4.13)

Output 4.15 shows xclingo output. First, we can see how the first attempt to obtain models for Pro-

gram 4.10 ends in an unsatisfiable result. After that, xclingo relaxes the traced constraints and starts
minimizing the number of times they are fired. Firstmodels are not so helpful, since a lot of constraints

are being fired. For instance, the first obtained model corresponds to an empty path, where any vertex

is reached. The last one is more interesting though, where we see that only vertex 5 is unreachable and

at this point, the user probably realizes that there is a mistake in the input data (for instance, vertex 5

should not exist, perhaps there is some missing edge).

62 CHAPTER 4. XCLINGO

1 UNSATISFIABLE
2 Relaxing constraints... (mode=minimize)
3 Answer: 1
4 ##Explanation: 1.1
5 *
6 |__"I can't reach vertex 1 from vertex 1"
7

8 *
9 |__"I can't reach vertex 2 from vertex 1"
10

11 *
12 |__"I can't reach vertex 3 from vertex 1"
13

14 *
15 |__"I can't reach vertex 4 from vertex 1"
16

17 *
18 |__"I can't reach vertex 5 from vertex 1"
19

20 ##Total Explanations: 1
21 Answer: 2
22 ##Explanation: 2.1
23 *
24 |__"I can't reach vertex 1 from vertex 1"
25

26 *
27 |__"I can't reach vertex 2 from vertex 1"
28

29 *
30 |__"I can't reach vertex 5 from vertex 1"
31

32 ##Total Explanations: 1
33 Answer: 3
34 ##Explanation: 3.1
35 *
36 |__"I can't reach vertex 5 from vertex 1"
37

38 ##Total Explanations: 1
39 Models: 3

Output 4.15: Output for Program P 4.10 after running Command 4.13.

4.3. ASP IMPLEMENTATION 63

1 % hamiltonian_path.lp
2

3 vtx(1..5).
4 edge(1,2).
5 edge(2,3). edge(2,4).
6 edge(3,1). edge(3,4).
7 edge(4,3). edge(4,1).
8

9 {in(X,Y)} :- edge(X,Y).
10

11 %!trace_rule {"I can't pick outgoing edges %->% and %->%",X,Y,X,Z}.
12 :- in(X,Y), in(X,Z), Y!=Z.
13

14 %!trace_rule {"I can't pick incoming edges %->% and %->%",X,Z,Y,Z}.
15 :- in(X,Z), in(Y,Z), X!=Y.
16

17 reached(V) :- in(1, X).
18 reached(Y) :- reached(X), in(X,Y).
19

20 %!trace_rule {"I can't reach vertex % from vertex 1",X}.
21 :- vtx(X), not reached(X).
22

23 #show in/2.

Program 4.10: Example hamiltonian_path.lp.

Note how, when explaining unsatisfiable programs, xclingo automatically shows the explanations

of the traced constraintswithout theneed for any show_trace annotation. Whereasuser-written show_trace
annotations will be ignored.

Although this will be more widely discussed in Chapter 5, let us advance how this feature does

not cover all the types of causal queries related to explaining UNSAT programs. It is especially useful,

however, when debugging programs that should be satisfiable. In that sense, we could consider the

explanations as error prompts. For that purpose, tracing all the constraints should not harm, as they

will only be used when the program fails for unknown reasons (i.e. it gives no answer set). Although it
would be convenient to accompany them with a good set of annotations for the atoms involved in the

constraints to obtain informative error messages.

4.3 ASP Implementation
For computing the support graphs of ASP programs, xclingo leverages meta-programming. This is

because the tool uses an ASP program for computing the support graphs of another (input) ASP pro-

gram. Due to the declarative nature of ASP, this provides the implementation with enhanced main-

tainability.

In Section 3.4 of Chapter 3, we provide an encoding for computing support graphs which was

proved to be consistent with respect to the definitions. The encoding used by xclingo that will be
discussed in this section, although equivalent, extends it with some additional features, as for instance,

the annotations. During the discussion, we will refer to the original encoding where appropriate.

Of course, since the code computing the explanations is ASP code, the input of such process must

also be ASP code. This input includes the models of the original program itself as well as its models.

Figure 4.2 shows how the differentASP components of xclingo interact to obtain the explanations. In

64 CHAPTER 4. XCLINGO

Figure 4.2: ASP components of xclingo. The diagram shows the flow from the original program to

the computed support graphs..

4.3. ASP IMPLEMENTATION 65

the case of the original program (in the figure called annotated_program.lp), it is firstly translated into
a reified version (in the figure called reified_program.lp). This reification follows the implementation

explained in Section 3.4 but additionally includes the annotations. Themodels of the original program

are obtained by using clingo (normally) to solve the program. Finally, the reification and the model

(one at a time) are put together with the core xclingo ASP program (in the figure called xclingo.lp).
The program resulting from the union of these three will be called explainer program. When solved,

each answer set of the explainer program will be one of the explanations of the corresponding model

and so we refer to them in the figure as Graph Model. In this way, xclingo also adopts the unusual

problem-solving methodology in ASP with a one-to-one correspondence between the answer sets of

the encoding and the solutions to a problem, in this case, the explanations of another answer set.

Understanding the ASP specification of the explainer program is perhaps not so important for the

final users, whose only interest is to obtain explanations that meet their requirements. It can be so,

however, for the ASP engineer who has to write annotated programs that fulfill such requirements. As

we have seen, the xclingomarkup annotation language provides significant flexibility for designing the

final explanations. But understanding the semantics of the explainer program, coupled with the fact

that this is a declarative specification, should allow advanced ASP engineers to extend such program

to achieve more ambitious functionalities. Once the expert understands the internal representation of

the explanations graphs, that could be exploited for finding out new relations within the graph like the

indirect causes of an atom or writing complex minimization criteria regarding the explanations, among

manyother ideas. Indeed, someof themostused xclingo features like the auto-tracing are implemented

as a one ASP-line extension of the explainer program. That extension and others included by default

in xclingowill be discussed in Section 4.4.3, as well as how to proceed to write custom extensions.

For the rest of this section, we will discuss the building and the semantics of xclingo’s explainer
program. More precisely, the reification generated for the original program as well as the xclingo core
ASP code to compute the explanations.

4.3.1 Representation of the explained model

The first important predicate of the explainer program is _xclingo_model/1, where its first (and only)
argument is meant to be an atom. Its meaning is that the atom is true for the corresponding model.

This predicate corresponds to the as/1 predicate defined in the original encoding (see Section 3.4 of
Chapter 3). Since the solving of the original program computes the models, the atoms within them

are collected by xclingo. The process to include them in the explainer program just involves wrapping

the atoms within the predicate.

For instance, if we have an answer set consisting of the following atoms,

{alcohol(clare, 5), person(gabriel), person(clare), drive(gabriel)}

It would be translated into

_xclingo_model(alcohol(clare,5)).
_xclingo_model(person(gabriel)).
_xclingo_model(person(clare)).
_xclingo_model(drive(gabriel)).

66 CHAPTER 4. XCLINGO

4.3.2 Reifing ASP rules

The reification mainly serves two purposes. On the one hand, it must retain the information about

the rules themselves. This is, identifying each rule, recording its head and body, and representing the

cause-effect relations that are assumed by xclingo from the rules of the original program. On the other

hand, it must represent each xclingo annotation accordingly.
Wewill start discussingwhat the reification does not need to do. Since the approach is to start from

an already computedmodel of the original program, andonly to obtain explanations for that particular

model, there is no need to take into account any part of the original program that may remove models

or select among them. These are sentences that may remove invalid models such that constraints or

that apply an ordering between them such that #minimize. During the preprocessing step, this kind of

sentences are ignored. In the case of constraints, anymodel that xclingo explains is already a validmodel

of the original program, so considering the constraints will have no effect. Note that, this is the case of

the default xclingoprocess andnot the special case of explaining an unsatisfiable problem. That special

case will be discussed later. In the case of #minimize sentences, xclingo will explain each model as it is

obtained from clingominimization until it reaches the minimum. Considering the original minimize
sentences is not needed to explain an already obtained model. #show sentences are also ignored, that is,
those that controlwhich atoms are displayed in clingooutput. Other elements donotneed tobe reified

but they are included in the reification. This is the case of #const sentences, theory atom definitions or

anything that does not fall in the category of Rule under the clingo internal representation of the

program.

We will now discuss the aspect of the xclingo reification for rules and annotations. Note that the

translation of an arbitrary program can be obtained for any programby using the –output=translation
option like in Command 4.14.

xclingo example.lp –output=translation (Command 4.14)

First, for any piece of ASP code that is not ignored by the preprocessor, xclingo will include the
original version in a comment before the actual translation. After that, the translation of the element

can be composed of 1 or more rules that fulfill different purposes. While discussing the translation, it

is important to bear in mind that each rule in the program will have an orderly numbered identifier.

This identifier is indeed, the label corresponding to the rule as explained in Chapter 3.

The first important predicate used to represent the reification is:

_xclingo_sup(RuleId, DisjunctionId, Head, (Var1, Var2, ..., VarN))

It represents that the rule with id RuleId, and its atom Head are supported by the current model in the

same sense as 3.3, fromthe encodingprovided in ection3.4ofChapter 3. In the case theheadof the rule

is disjunctive, several instanceswouldbe generated eachone incrementing the DisjunctionId argument

to differentiate between them. The third argument Head represents the corresponding disjunctive atom
from the head. Finally, the last argument represents the sequence of all the free variables used in the

body of the rule.

For usual rules, at least a support rule is always generated where its head is an _xclingo_sup/4 atom.

In the case of disjunctive rules, a different support rule will be generated for each one of them by in-

crementing the third argument (DisjunctionId) as explained before. Following the meaning of the

predicate _xclingo_sup/4, support rules are intended to be enabledwhen the original rule is supported

4.3. ASP IMPLEMENTATION 67

by the considered model. To this aim, the body of support rules consists of _xclingo_model/1 literals
wrapping all the positive literals in the body of the original rule. For instance, the rules,

drive(gabriel).
punish(P) :- drive(P); alcohol(P,A); A > 30; person(P).

would be translated into the following support rules:

_xclingo_sup(1,0,drive(gabriel),()).
_xclingo_sup(2,0,punish(P),(P,A)) :- _xclingo_model(drive(P)),

_xclingo_model(alcohol(P,A)), A > 30, _xclingo_model(person(P)).

In this way, for each possible set of values that the variables may take that meet the condition in the

body, a support rule will derive a different _xclingo_sup/4 atom. These different derivations will differ

only in the values taken by the variables in the fourth argument.

The second predicate that is important for the reification is

_xclingo_depends(SupportAtom, (Lit1, Lit2, ..., LitN))

This predicatemodels the cause-effect dependencies between the head of a rule and the positive literals

from the body. The first argument is the particular non-ground _xclingo_sup/4 atom for the rule we

are modeling the dependencies for. The second one is the sequence of the non-ground positive atoms

in the body of the rule. To compute such cause-effect dependencies in terms of the current model,

the preprocessor generates dependency rules for every original rule that is not a fact. The head is an

atom of _xclingo_depends predicate, and the body is the corresponding _xclingo_sup/4 literal. For

instance, see now the complete translation for the previously translated program, which now includes

a dependency rule.

_xclingo_sup(1,0,drive(gabriel),()).
_xclingo_sup(2,0,punish(P),(P,A)) :- _xclingo_model(drive(P)),

_xclingo_model(alcohol(P,A)), A > 30, _xclingo_model(person(P)).
_xclingo_depends(_xclingo_sup(5,0,punish(P),(P,A)),(drive(P);alcohol(P,A);person(P))) :-

_xclingo_sup(5,0,punish(P),(P,A)).

In plain words, dependency rules mean that we take for granted the cause-effect dependencies from

the body of a rule if the rule is supported by the model.

In fact, if we add some atoms from a model,

_xclingo_model(drive(gabriel)). _xclingo_model(person(gabriel)). _xclingo_model(alcohol(gabriel,
40)).

_xclingo_model(drive(robert)). _xclingo_model(person(robert)). _xclingo_model(alcohol(robert, 35)
).

_xclingo_sup(1,0,drive(gabriel),()).
_xclingo_sup(2,0,punish(P),(P,A)) :- _xclingo_model(drive(P)),

_xclingo_model(alcohol(P,A)), A > 30, _xclingo_model(person(P)).
_xclingo_depends(_xclingo_sup(2,0,punish(P),(P,A)),(drive(P);alcohol(P,A);person(P))) :-

_xclingo_sup(2,0,punish(P),(P,A)).

and we solve with clingo we obtain the following

68 CHAPTER 4. XCLINGO

_xclingo_model(drive(gabriel)) _xclingo_model(person(gabriel)) _xclingo_model(alcohol(gabriel,40))
_xclingo_model(drive(robert)) _xclingo_model(person(robert)) _xclingo_model(alcohol(robert,35))
_xclingo_sup(1,0,drive(gabriel),())
_xclingo_sup(2,0,punish(gabriel),(gabriel,40))
_xclingo_sup(2,0,punish(robert),(robert,35))
_xclingo_depends(_xclingo_sup(2,0,punish(gabriel),(gabriel,40)),person(gabriel))
_xclingo_depends(_xclingo_sup(2,0,punish(robert),(robert,35)),person(robert))
_xclingo_depends(_xclingo_sup(2,0,punish(gabriel),(gabriel,40)),alcohol(gabriel,40))
_xclingo_depends(_xclingo_sup(2,0,punish(robert),(robert,35)),alcohol(robert,35))
_xclingo_depends(_xclingo_sup(2,0,punish(gabriel),(gabriel,40)),drive(gabriel))
_xclingo_depends(_xclingo_sup(2,0,punish(robert),(robert,35)),drive(robert))

Aswecan see,we automatically get different dependencies for punish(gabriel) and for punish(robert).
Note how in the head of generated Dependency rules, the second argument is a tuple where the

positive literal from the body of the rule are separated by ‘;’. This clingo syntax construct is named

pool, and it is a way to abbreviate several lines of code in one. In the following rule for instance,

_xclingo_depends(_xclingo_sup(2,0,punish(P),(P,A)),(drive(P);alcohol(P,A);person(P))) :-
_xclingo_sup(2,0,punish(P),(P,A)).

Instead of repeating the rule three times varying the second argument with the different body literals

(drive(P), alcohol(P, A) and person(P)). We just instead use a pool to abbreviate the three rules in

one. The latter code is equivalent to this:

_xclingo_depends(_xclingo_sup(2,0,punish(P),(P,A)),(drive(P))) :- _xclingo_sup(2,0,punish(P),(P
,A)).

_xclingo_depends(_xclingo_sup(2,0,punish(P),(P,A)),(alcohol(P,A))) :- _xclingo_sup(2,0,punish(P),(P
,A)).

_xclingo_depends(_xclingo_sup(2,0,punish(P),(P,A)),(person(P))) :- _xclingo_sup(2,0,punish(P),(P
,A)).

For each generated support rule (each one with its unique pair of RuleId and DisjunctionId), one
dependency rule is generated. For instance, when translating a disjunctive rule like this one

resist(gabriel), obey(gabriel) :- stopped(gabriel).

note how each generated support rule (each one with its own disjunctive id 0 and 1) has its own de-

pendency rule.

% resist(gabriel); obey(gabriel) :- stopped(gabriel).
_xclingo_sup(6,0,resist(gabriel),()) :- _xclingo_model(stopped(gabriel)).
_xclingo_depends(_xclingo_sup(6,0,resist(gabriel),()),stopped(gabriel)) :- _xclingo_sup(6,0,resist(

gabriel),()).
_xclingo_sup(6,1,obey(gabriel),()) :- _xclingo_model(stopped(gabriel)).
_xclingo_depends(_xclingo_sup(6,1,obey(gabriel),()),stopped(gabriel)) :- _xclingo_sup(6,1,obey(

gabriel),()).

This happens as well with choice rules, although in this case, the dependencies are a little bit more

tricky to model. Consider the following choice rule,

4.3. ASP IMPLEMENTATION 69

1{
pos(NewPos, T): NewPos=PrevPos+1, pos(PrevPos, T-1);
pos(NewPos, T): NewPos=PrevPos-1, pos(PrevPos, T-1);
pos(NewPos, T): NewPos=PrevPos+5, springboard(PrevPos), pos(PrevPos, T-1)

}1 :- timestep(T), T>0.

where an agent decides her new position based on the current one, being able to move one position to

the right or the left or having the option to jumpfive positions to the right if there is a springboard in its

current position. Depending on the choice that we consider, the dependencies for the derived atoms

change. As it is part of the positive body of the rule, the literal timestep(T)will be treated as a valid de-
pendency disregarding the choice. However, for each conditional atom, the positive part of the condi-

tion is also a dependency. Thismeans that, in this case, all choices have a dependencywith pos(PrevPos,
T-1), and that the springboard choice has an extra dependency with springboard(PrevPos). Further-
more, the support rule must also change for the third option, to include the springboard condition, as

it is a necessary condition for the third choice to derive anything. To sum up, the complete translation

of the original choice rule above would be the following:

% 1 <= { pos(NewPos,T): NewPos = (PrevPos+1), pos(PrevPos,(T-1)); pos(NewPos,T): NewPos = (PrevPos
-1), pos(PrevPos,(T-1)); pos(NewPos,T): NewPos = (PrevPos+5), springboard(PrevPos), pos(
PrevPos,(T-1)) } <= 1 :- timestep(T); T > 0.

_xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)) :- NewPos = (PrevPos+1); _xclingo_model(pos(
PrevPos,(T-1))); _xclingo_model(timestep(T)); T > 0.

_xclingo_depends(_xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)),(pos(PrevPos,(T-1));timestep(T)
)) :- _xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)).

_xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)) :- NewPos = (PrevPos-1); _xclingo_model(pos(
PrevPos,(T-1))); _xclingo_model(timestep(T)); T > 0.

_xclingo_depends(_xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)),(pos(PrevPos,(T-1));timestep(T)
)) :- _xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)).

_xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)) :- NewPos = (PrevPos+5); _xclingo_model(
springboard(PrevPos)); _xclingo_model(pos(PrevPos,(T-1))); _xclingo_model(timestep(T)); T > 0.

_xclingo_depends(_xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)),(springboard(PrevPos);pos(
PrevPos,(T-1));timestep(T))) :- _xclingo_sup(1,0,pos(NewPos,T),(T,PrevPos,NewPos)).

On it, 6 rules were generated: one support and one dependency rule for each possible choice. Each one

of them captures the correct support and causal dependencies between the atoms.

Something similar happens when translating aggregates. Consider for example the following rule,

traffic_incidents(N) :- N = #count { P: alcohol(P,A), drive(P), A > 30; P: park(P,Z),
no_parking_zone(Z) }, person(P).

where we count the numberN of persons P that either drove drunk or parked in a no-parking zone.

Considering when this rule is supported, the only necessary literal is person(P). In the case no person
has committed any of both offences, the counterN will take the value 0 and we derive the atom. This

means that this rule only needs to generate one support rule, checking if person(P) is in the model.

Regarding the causal dependencies, the idea is that an atom is a cause when it contributes to the total

count. For instance, if we find out that gabriel drove drunk, we have to increase the counter, and

both atoms alcohol(gabriel, A) (having A some ground value) and drive(gabriel) become causes

70 CHAPTER 4. XCLINGO

of the derived traffic_incidents atom. The same happens for park and no_parking_zone atoms, for

instance, when clare parks in a no-parking zone. If a third person daniel also parked at an illegal zone,
another two atoms become causes. In short, for any way to verify one of the conditional atoms within

the aggregate, all the atoms used in the condition become causes for the head of the rule. This means

that aggregates will produce a dependency rule for each conditional atom. The following code is the

translation for the previously shown rule.

% traffic_incidents(N) :- N = #count { P: alcohol(P,A), drive(P), A > 30; park(P,Z),no_parking_zone
(Z) }; person(P).

_xclingo_sup(1,0,traffic_incidents(N),(P,N)) :- N = #count { P: _xclingo_model(alcohol(P,A)),
_xclingo_model(drive(P)), A > 30; park(P,Z),no_parking_zone(Z) }; _xclingo_model(person(P)).

_xclingo_depends(_xclingo_sup(1,0,traffic_incidents(N),(P,N)),person(P)) :- _xclingo_sup(1,0,
traffic_incidents(N),(P,N)).

_xclingo_depends(_xclingo_sup(1,0,traffic_incidents(N),(P,N)),(alcohol(P,A);drive(P))) :-
_xclingo_model(alcohol(P,A)); _xclingo_model(drive(P)); A > 30; _xclingo_sup(1,0,
traffic_incidents(N),(P,N)).

Remark on explaining aggregates

Although it is clear to us that every possible combination that triggers a conditional atom should be

considered a cause, that does notmean that a proper explanation of any aggregate should include all of

them. In the case of #count aggregates, where every combination contributes to the sum, it seems safe

to include them all as a cause. But in the case of monotone aggregates, for instance, this is not so clear.

Following what we explained in Example 4.8, providing good explanations for the aggregates would

probably require some sort of minimization of the set of causes that still comply with the conditions

over the aggregate. Therefore, generating a choice as well as a #minimize sentence in the translation

seems to be the way to go.

However, it is future work to see if this strategy would serve to explain other aggregates that follow

different semantics.

4.3.3 Show Trace annotations and to-explain atoms

Computing the support graphs is possible now that the already shown ASP translation can figure out

which rules are supported and the causal dependencies among the atoms. In Chapter 3, we explained

how to obtain the support graphs given the program and a model. However, it is important to note

that xclingo, in contrast, is oriented towards explaining certain atoms. These atoms are specified by

the user using show_trace annotations. From now on, we will refer to the atoms the user has queried

as to-explain atoms.
To represent such atoms we use the predicate _xclingo_show_trace/1, where its only argument is

a to-explain atom. Any atom belonging to this predicate is of course obtained from the translation

of show_trace annotations. Whenever an annotation of this kind is found, it is translated into a sim-

ple rule, which checks the atoms from the model to derive some to-explain atoms. For instance, the

following annotation,

%!show_trace {sentence(P,S)} :- age(P,A), A<18.

4.3. ASP IMPLEMENTATION 71

where the user asks for sentences for persons P under 18 years old, it is translated into the following

rule

_xclingo_show_trace(sentence(P,S)) :- _xclingo_model(sentence(P,S)); _xclingo_model(age(P,A)); A <
18.

As it canbe seen, the literals in thebodyof the annotation are replacedbynew literals using _xclingo_model/1
predicate to wrap up the atoms from the original literals. The conditions over the variables remain un-

touched. In this way, _xclingo_show_trace/1 tells us which atoms should be explained for the given

model.

Knowing which atoms the user is interested in before actually computing the graphs offers some

computational advantages. For instance, since we know the dependencies between the atoms (via

_xclingo_depends/2), we can start from the atoms that we want to explain and identify which atoms

are relevant for explaining such atoms by traversing the dependencies. These relevant atoms are rep-

resented in the encoding by the _xclingo_relevant/1 predicate. The rules from where we obtain the

relevant atoms are the following:

% Marks relevant atoms of the program, concerning the atoms that must be explained.
_xclingo_relevant(ToExplainAtom) :- _xclingo_show_trace(ToExplainAtom).
_xclingo_relevant(Cause) :- _xclingo_relevant(Effect), _xclingo_depends(_xclingo_sup(R, D, Effect,

Vars), Cause).

They can be interpreted in plain language as (1) any to-explain atom is relevant; and (2) any atom

that is identified as a Cause of another relevant atom Effect by some rule R, is also relevant.

4.3.4 Building Support Graphs

In Definition 6 we have explained how, in a particular support graph, only one rule can be responsible

for explaining a particular atom. This condition is indeed reflected by the fact that the λ function must
be injective. This means that, in a single support graph, one supported rule can be used to justify an

atom. The predicates _xclingo_fbody/4 and _xclingo_f/4 are used to select which rules are used in

each support graph.

The four arguments of both predicates are analogous to the arguments from the already explained

predicate _xclingo_sup/4. In the case of _xclingo_fbody/4, the fbody terms come from a “fireable”

body. In plain words, an arbitrary atom

_xclingo_fbody(RuleId, DisjunctionId, Head, (Var1, Var2, ..., VarN))

means that the rule RuleId, is eligible to be selected to explain the atom Head in the current support

graph, with some particular ground values of the free variables in the body of the rule. On the other

hand, the f of _xclingo_f/4 comes from fired, and an atom

_xclingo_f(RuleId, DisjunctionId, Head, (Var1, Var2, ..., VarN))

means that the rule RuleId, has been selected to explain the atom Head in the current support graph,

again, with some particular values for the variables. The DisjunctionId variable identifies which atom
the predicate talks about among the disjunctive atoms in the head of rule RuleId.

Knowing themeaning of these two predicates, the choice rule responsible for selectingwhich rules

explain which atoms easily follows.

72 CHAPTER 4. XCLINGO

1{_xclingo_f(RuleID, D, Atom, Vars) : _xclingo_fbody(RuleID, D, Atom, Vars)}1 :- _xclingo_relevant(
Atom).

Intuitively, the rule can be read as: for any relevant atom, select one and only one rule to fire it (or to
explain it) from the eligible rules. Whenever we have several rules that may fire or explain the atom,

we generate a different graph. This directly relates with rules 3.10 and 3.12 of the encoding provided

in Section 3.4 of Chapter 3 Besides the cardinality constraint imposed, mimics the effect of rules 3.8

and 3.8 also from the original encoding.

Before explaining howwe decidewhen a rule is fireable or eligible, let us introduce a third predicate

_xclingo_f_atom/1. This predicate simply acts as a shortcut to know if an atom has a rule that explains

it. The corresponding rule following this definition is

_xclingo_f_atom(Atom) :- _xclingo_f(_, _, Atom, _).

Now, the definition of a fireable rule follows two conditions. First, that any supported fact rule

that features a relevant atom is fireable. This definition is specified in the following ASP rule:

_xclingo_fbody(RuleID, D, Atom, Vars) :- _xclingo_relevant(Atom), _xclingo_sup(RuleID, D, Atom,
Vars), not _xclingo_depends(_xclingo_sup(RuleID, D, _, _), _).

Note how the way to specify when a rule is a fact is by checking whether it does not have any causal

dependency. The second condition says that a non-fact rule is fireable if all its dependencies can fired

or explained by some other rule. The rule implementing this is the following:

_xclingo_fbody(R, D, Atom, Vars) :-
_xclingo_sup(R, D, Atom, Vars),
_xclingo_f_atom(Cause) : _xclingo_depends(_xclingo_sup(R, D, Atom, Vars), Cause).

The two last discussed rules above relate with rule 3.5 of the encoding provided in Section 3.4 of

Chapter 3

In this way, _xclingo_fbody/4 and _xclingo_f/4 form a recursive definition that decides the label-

ing of the atoms in the graph (i.e. which rules are selected to explain the atoms). This definition focuses

on relevant atoms, starts firing rules from the facts (i.e. those having an empty body) and recursively

selects new fireable rules until every relevant atom is explained by some rule.

However, this is not enough to comply with the injectiveness condition of the λ function from

Definition 6. To do so, we still have to deal with disjunction. The choice rule which decides which

rules are fired forbids that an atom be explained by two rules, however, it does not forbid two different

atoms being explained by the same rule. To prevent this, we introduce the following constraint:

:- _xclingo_f(R,D1,_,_), _xclingo_f(R,D2,_,_), D1!=D2.

Which ensures only one of the disjunctive heads of a rule is fired by it.

At this point,weknowthenodes fromthe graphwhich are givenby _xclingo_f_atom/1or _xclingo_relevant/1.
Theλ function fromDefinition6 (i.e. which rule explains each atom in the graph) is givenby _xclingo_f/4.
The only remaining thing wemiss in building the graph are the edges, which can be defined in the fol-

lowing way:

_xclingo_direct_cause(RuleID, Effect, Cause) :- _xclingo_f(RuleID, DisID, Effect, Vars),
_xclingo_depends(_xclingo_sup(RuleID, DisID, Effect, Vars), Cause).

4.3. ASP IMPLEMENTATION 73

Note that having the first argument RuleId is not necessary to build the graph, as having the edge

vertices Effect and Cause completely defines it. However, this is useful when filtering the graph via

mute and mute_body annotations, as we will explain later in this chapter.
The code explained up to this point corresponds with one of the core ASP programs of xclingo

called xclingo_fired.lp, which is completely listed in Appendix B.1.

Now let us consider an example to demonstrate howwe can obtain the support graphs for anyASP

program. Recall again Program 4.1, but including also the following show_trace annotation:

%!show_trace{sentence(gabriel, S)}.

This means that we will only query explanation for gabriel’s sentences. First, we need a model to

explain. As we have already seen, the program has a total of 3 answer sets. We will stick with one of

them, and encode themodel aswe have explained for the translation. Themodelwewill explain, which

is already properly encoded, is listed below:

% model3.lp

_xclingo_model(alcohol(clare,5)). _xclingo_model(alcohol(gabriel,40)).
_xclingo_model(person(gabriel)). _xclingo_model(person(clare)).
_xclingo_model(drive(gabriel)). _xclingo_model(drive(clare)).
_xclingo_model(sentence(clare,innocent)).
_xclingo_model(punish(gabriel)).
_xclingo_model(resist(gabriel)).
_xclingo_model(sentence(gabriel,prison)).

Listing 4.1: Encoding for the third model of Program P 4.1, shown in Output 4.1

Note how it corresponds to the third model shown in Output 4.1, where gabriel can be punished

both for driving drunk and for resisting authority. The translation for Program 4.1 extended with the

previous show_trace annotation is listed below.

% dont_drive_drunk_translation.lp

% person(gabriel;clare).
_xclingo_sup(1,0,person(gabriel;clare),()).
% drive(gabriel).
_xclingo_sup(2,0,drive(gabriel),()).
% drive(clare).
_xclingo_sup(3,0,drive(clare),()).
% alcohol(clare,5).
_xclingo_sup(4,0,alcohol(clare,5),()).
% 1 <= { alcohol(gabriel,40); resist(gabriel) }.
_xclingo_sup(5,0,alcohol(gabriel,40),()).
_xclingo_sup(5,0,resist(gabriel),()).
% punish(P) :- drive(P); alcohol(P,A); A > 30; person(P).
_xclingo_sup(6,0,punish(P),(A,P)) :- _xclingo_model(drive(P)); _xclingo_model(alcohol(P,A)); A >

30; _xclingo_model(person(P)).
_xclingo_depends(_xclingo_sup(6,0,punish(P),(A,P)),(drive(P);alcohol(P,A);person(P))) :-

_xclingo_sup(6,0,punish(P),(A,P)).

74 CHAPTER 4. XCLINGO

% punish(P) :- resist(P); person(P).
_xclingo_sup(7,0,punish(P),(P,)) :- _xclingo_model(resist(P)); _xclingo_model(person(P)).
_xclingo_depends(_xclingo_sup(7,0,punish(P),(P,)),(resist(P);person(P))) :- _xclingo_sup(7,0,punish

(P),(P,)).
% sentence(P,innocent) :- person(P); not punish(P).
_xclingo_sup(8,0,sentence(P,innocent),(P,)) :- _xclingo_model(person(P)); not _xclingo_model(punish

(P)).
_xclingo_depends(_xclingo_sup(8,0,sentence(P,innocent),(P,)),person(P)) :- _xclingo_sup(8,0,

sentence(P,innocent),(P,)).
% sentence(P,prison) :- punish(P).
_xclingo_sup(9,0,sentence(P,prison),(P,)) :- _xclingo_model(punish(P)).
_xclingo_depends(_xclingo_sup(9,0,sentence(P,prison),(P,)),punish(P)) :- _xclingo_sup(9,0,sentence(

P,prison),(P,)).
% &show_trace { sentence(gabriel,S) }.
_xclingo_show_trace(sentence(gabriel,S)) :- _xclingo_model(sentence(gabriel,S)).

Listing 4.2: Translation of Program P 4.1 extended with an extra show_trace annotation

These two pieces of ASP code, put together with the program explained up to this point (completely

depicted in Listing B.1 in Appendix B) will compute the corresponding explanations if solved. This

will, however, only compute the subgraph that is relevant for explaining the sentence for gabriel as
explained before. Thus, by running Command 4.15,

clingo 0 model3.lp dont_drive_drunk_translation.lp xclingo_fired.lp (Command 4.15)

we obtain the models representing the explanations listed below.

Answer: 1
_xclingo_direct_cause(7,punish(gabriel),resist(gabriel))
_xclingo_direct_cause(7,punish(gabriel),person(gabriel))
_xclingo_direct_cause(9,sentence(gabriel,prison),punish(gabriel))
Answer: 2
_xclingo_direct_cause(6,punish(gabriel),drive(gabriel))
_xclingo_direct_cause(6,punish(gabriel),alcohol(gabriel,40))
_xclingo_direct_cause(6,punish(gabriel),person(gabriel))
_xclingo_direct_cause(9,sentence(gabriel,prison),punish(gabriel))
satisfiable

Weonly show the _xclingo_direct_cause/3 atoms for brevity. Aswe can see, it finds two explanations.

One can manually draw both graphs and check that they match with the explanations obtained by

xclingo for the third model when running Command 4.16

xclingo -n 0 0 dont_drive_drunk.lp –auto-tracing=all (Command 4.16)

Answer: 3
##Explanation: 3.1

*
|__sentence(gabriel,prison)
| |__punish(gabriel)
| | |__drive(gabriel)

4.3. ASP IMPLEMENTATION 75

| | |__alcohol(gabriel,40)
| | |__person(gabriel)

##Explanation: 3.2
*
|__sentence(gabriel,prison)
| |__punish(gabriel)
| | |__person(gabriel)
| | |__resist(gabriel)

4.3.5 Filtering support graphs

We will now explain how to add the annotations to the translation in order to filter the explanations

(i.e. performing the edge pruning as well the node forgetting operations over the graph) and display

customized text traces. First, we start discussing how we translate mute and mute_body annotations
to process the pruning operations over the final graph. As Definition 9 tells, the prune operations

operate over a set of atoms for which we want to delete the incoming edges and a set of labels such that

we will delete the outgoing edges of the atoms explained by those rules. The predicates the mute and
mute_body translate into, respectively serve those purposes. For muting atoms with mute annotations
we use the _xclingo_muted/1 predicate, where the only argument of the predicate is a muted atom.

The translation works exactly as the translation for the show_trace annotation, explained before. For
instance, the following mute annotation,

%!mute {person(P)}.

is translated into the following rule

_xclingo_muted(person(P)) :- _xclingo_model(person(P)).

In the case of mute_body annotations, the _xclingo_muted_body/1 predicate is used, where the only
argument of the predicate is the identifier (i.e. label) of the muted rule. To illustrate the translation of

mute_body annotations, consider the following annotation

%!mute_rule.
person(P) :- student(P).

for whose translation would be the following rules

_xclingo_muted_body(2).
_xclingo_sup(2,0,person(S),(S,)) :- _xclingo_model(student(S)).
_xclingo_depends(_xclingo_sup(2,0,person(S),(S,)),student(S)) :- _xclingo_sup(2,0,person(S),(S,)).

where 2 is the label of the rule affected by the mute_body.
Adding this into the translation will provide us with both sets of muted atoms and muted rules,

thatweneed toperform thepruningoperationover the graph. But to represent thenew resulting graph

after the pruning operation (and also after the forgetting operation), we will use three new predicates.

Thefirst predicate is _xclingo_graph/1which identifies the graphs. Namely,wehave _xclingo_graph(pruned)
which identifies the graph after the pruning operation and _xclingo_graph(forgotten) which identi-
fies the graph after the forgettingoperation. The secondpredicatewe introduce is _xclingo_node(Atom,

76 CHAPTER 4. XCLINGO

Graph)where Atom is the atomwithin the node and Graph references either the prunned graph or the for-
gotten. Finally, we introduce _xclingo_edge((Effect, Cause), Graph), where Effect and Causedepict
the directed edges of graph Graph, which again can be one of the two graphs.

Knowing this, recall predicates _xclingo_show_trace/1 and _xclingo_direct_cause/3 explained in
the previous section and consider the ASP code below used to compute the pruning graph from the

original support graph.

_xclingo_node(ToExplainAtom, pruned) :- _xclingo_show_trace(ToExplainAtom), not _xclingo_muted(
ToExplainAtom).

_xclingo_edge((Caused, Cause), pruned) :-
_xclingo_node(Caused, pruned),
_xclingo_direct_cause(RuleID, Caused, Cause),
not _xclingo_muted(Cause),
not _xclingo_muted_body(RuleID).

_xclingo_node(Atom, pruned) :- _xclingo_edge((_, Atom), pruned).

In plain words, we can interpret the rules as (1) any non-muted relevant atom is a node of the pruned
graph; (2) any edge from the original graph that aims to anode sharedwith the pruned graph is included,
if the atom at the source of the edge is neither a muted atom nor it was fired by a muted rule; and (3),

any atom at the source of an included edge is as well a node of the pruned graph. Again, this consists of
a recursive definition that starts from the to-explain atoms and includes new atoms from the original

graph whenever they or their rules are not muted

Now, we will discuss the translation of trace and trace_rule operations, which should give us the
tools to compute the forgotten (and final) graph, but also help us to keep track of text traces. In this
case, both annotations share the same predicate for representing the labels, which is _xclingo_label/2.
The first argument is the atom that is being traced, and the second is the user-defined text trace. In

the case of trace annotations, the translation is very similar to the translation of show_trace and mute
annotations. Consider the translation of the following annotation,

%!trace {alcohol(P,A), "% alcohol's level is %",P,A} :- alcohol(P,A), A>30.

shown below:

_xclingo_label(alcohol(P,A), @label("% alcohol's level is %", (P, A,))) :- _xclingo_model(alcohol
(P,A)), A>30.

Again, the literals in the body of the annotation becomewrapped by the _xclingo_model/1 atoms. The

only new concept included in this translation is the use of the @label predicate. This is a special type of
predicate that can be controlled via an external, Python-coded, object namedContext. During solving,

whenever the rule is derived or grounded, the corresponding Python code will be queried and, after

some processing, the atom will be replaced by some ASP code. In this case, all @label predicates are
replaced by the text trace, after linking the ground values of the variables to the text.

The translation changes a bit for trace_rule annotations. In this case, the atoms derived from the

head of a rule must be traced only if that rule was fired or selected to explain the atom in the current

support graph. This means that we need to somehow link the derivation of some _xclingo_label/2
atom to the selection of the corresponding rule. This is done by using an _xclingo_f/4 literal in the

body of the translated rule. For instance, consider the following traced rule,

4.3. ASP IMPLEMENTATION 77

%!trace_rule {"% drove drunk (over 30mg/l)", P}.
punish(P) :- drive(P), alcohol(P,A), A>30, person(P).

and its translation is shown below:

% punish(P) :- drive(P); alcohol(P,A); A > 30; person(P).
_xclingo_sup(1,0,punish(P),(P,A)) :- _xclingo_model(drive(P)); _xclingo_model(alcohol(P,A)); A >

30; _xclingo_model(person(P)).
_xclingo_depends(_xclingo_sup(1,0,punish(P),(P,A)),(drive(P);alcohol(P,A);person(P))) :-

_xclingo_sup(1,0,punish(P),(P,A)).
_xclingo_label(Head,@label("% drove drunk (over 30mg/l)",(P,))) :- _xclingo_f(1,DisID,Head,(P,A)).

Note how the identifier of the rule used in the literal in the bodymatches the identifier used in the rest

of the translation for that rule. The text trace is processed in the same way as we explained for trace
annotations.

Now, once we have an support graph and we have pruned it following mute and mute_body anno-
tations, _xclingo_label/2 atoms will tell us which atoms are traced, providing us with the ability to

perform the node forgetting operation over our graph and obtaining the filtered final explanation. To

this aim, we introduce the predicate _xclingo_visible/1 whose atoms come from _xclingo_label/2
as in the following rule:

_xclingo_visible(X) :- _xclingo_node(X, pruned), _xclingo_label(X, _).

In other words, any traced atom that is a node of the pruned graph is visible. From that, we now need

to create new edges that omit the forgotten atoms and connect the visible ones. For that purpose, we

introduce predicate _xclingo_skip and _xclingo_reach/2, where _xclingo_skip/2 identify edges that
should be removed, and _xclingo_reach(X,Y)means that we can traverse the graph from node X to Y
using only forgotten nodes in the pruned graph. The definition follows the rules below:

_xclingo_skip(X, Y) :- _xclingo_edge((X, Y), complete_explanation), not _xclingo_visible(X).
_xclingo_skip(X, Y) :- _xclingo_edge((X, Y), complete_explanation), not _xclingo_visible(Y).

_xclingo_reach(X, Z) :- _xclingo_skip(X, Z).
_xclingo_reach(X, Z) :- _xclingo_reach(X, Y), _xclingo_skip(Y, Z), not _xclingo_visible(Y).

Finally, we compute the forgotten graph using the definitions from the rules below:

_xclingo_node(Caused, forgotten) :- _xclingo_visible(Caused).
_xclingo_node(ToExplainAtom, forgotten) :- _xclingo_show_trace(ToExplainAtom).
_xclingo_edge((Caused, Cause), forgotten) :- _xclingo_edge((Caused, Cause), pruned), not

_xclingo_skip(Caused, Cause).
_xclingo_edge((Caused, Cause), forgotten) :- _xclingo_reach(Caused, Cause), _xclingo_visible(Caused

), _xclingo_visible(Cause).
_xclingo_edge((ToExplainAtom, Cause), forgotten) :- _xclingo_reach(ToExplainAtom, Cause),

_xclingo_visible(Cause), _xclingo_show_trace(ToExplainAtom).

From them, we can see that any to-explain atom or visible (i.e. traced) atom is a node of the graph. For

the rules concerning the edges, we know that (1) we have to include any edge from the pruned graph
that is not skippable (i.e. it does not exist a _xclingo_skip/2 atom concerning that edge); (2) we have to

78 CHAPTER 4. XCLINGO

form new edges between visible nodes which are reachable through skippable edges; and (3), we have

to form edges that connect the original to-explain atoms to reachable nodes.

The whole ASP rules shown in this section are put together in the ASP file xclingo_graph.lpwhich
is completely listed inListingB.2 inAppendix B.When xclingo_fired.lp and xclingo_graph.lp are added
to the translation of an annotated program, together with an encoded model, one can solve it and

collect either the complete graph, the pruned graph or the forgotten graph. Besides, with each tuple of
graphs, we obtain a set of _xclingo_label/2 atoms which gives us the text traces for the traced atoms.

4.3.6 Relaxing Constraints for Explaining Unsatisfiability

For the explanation of unsatisfiable programs, little changes are made to the processing of the input

program nor the explainer program. As we explained in Section 4.3.2, constraints are normally not

translated. For obtaining an explanation when there is no answer set, we have explained how xclingo
first relaxes any traced constraint and then applies a minimization to minimize the number of times a

constraint is violated. In this section, we will discuss how these two steps are implemented to obtain

explanations.

The first step is trying to repair the original annotated program to obtain some models. We only

focus on cases where
1
the traced constraints are causing the unsatisfiability and so they are relaxed.

Thus, an auxiliary head is generated for any traced constraint. This head consists of the predicate

_xclingo_violated_constraint(ConstraintId, (VAR1, VAR2, ... , VARN))where ConstraintId is an
identifier for the particular constraint, and VAR1, VAR2 and VAR3 are the free variables used in the body
of the constraint. The identifier is an incrementally generated number handled during this special

translation and is independent of the rule identifiers (i.e. labels). All the free variables are listed in the

head for the derived _xclingo_violated_constraint to distinguish between the different activations

of these rules. Thanks to the auxiliary head, a particular atom records every time the body of a traced

constraint is true. Take for instance the following traced constraint from Program 4.10.

%!trace_rule {"I can't reach vertex % from vertex 1",X}.
:- vtx(X), not reached(X).

After the relaxation step, it is translated into the following traced rule:

%!trace_rule {"I can't reach vertex % from vertex 1",X}.
_xclingo_violated_constraint(14,(X,)) :- vtx(X); not reached(X).

The minimization of the violated constraints now trivially follows. The following #minimize sen-
tence is added to the original program:

#minimize{1,ID, Vars: _xclingo_violated_constraint(ID, Vars)}.

In this way, when solving the new program, each generatedmodel (if any) will have progressively fewer

_xclingo_violated_constraint atoms until reaching a minimum.

Keep in mind that these two steps are done before the solving and the translation of the program.

This is, they aim to obtain models, not explanations. Assuming that we get a satisfactory program,

1

For simplicity, we do not consider unsatisfiability due to odd loops through default negation, which would require a

muchmore elaborated approach, but also, would assume amore technical knowledge from the user towhich the explanation

is targeted.

4.4. ARCHITECTURE ANDDESIGN 79

we only need to make a little change to the translation. This change is related, more precisely, to the

processing of the show_trace annotations. As it was explained in Section 4.2.7, any custom show_trace
annotation is ignored. In short, the show_trace annotations are not translated anymore, so they remain

as mere comments in the code. Besides, the explanations of the constraints are automatically shown.

For this purpose, a particular show_trace annotation that is shown below is added into the translation

by xclingo.

_xclingo_show_trace(_xclingo_violated_constraint(ID, Vars)) :- _xclingo_model(
_xclingo_violated_constraint(ID, Vars)).

Theannotationqueries any violationof any constraint,making xclingo to explain the _xclingo_violated_constraint
atoms as usual.

4.4 Architecture and Design
Figure 4.3 shows the architecture of xclingo. The tool is modularly divided into big four independent

components, with well-defined responsibilities that work together to generate explanations. Prepro-
cessing and Explainingmodules are Python code, while Extensions andXclingo LP are pure ASP code.

The Preprocessingmodule is a very large part of the tool which reifies the annotated logic program into

the translation that was fully explained in sections from 4.3.1 to 4.3.3. The Xclingo LP module con-

sists of 3 ASP files, responsible for computing the explanations from the translation andmodels of the

original program. The specification encoded in such files was already explained in detail in sections

from 4.3.4 and 4.3.5. The Extensionsmodule is a set of ASP programs that are used to extend either
the solving program or the explainer program to modify/increment the default functionality. Finally,

the Explaining controls the explaining phase, collecting the models as well as the translation and also

calls clingo for collecting back the explanations to finally bring them to the user.

The rest of the chapter is organized as follows. Section 4.4.1 explains the design behind the prepro-
cessing module and explains how the translation is generated. Section 4.4.2 discusses the flow of the

data from when the models of the original program are obtained until the explanations are displayed.

Finally, Section 4.4.3 shows some extensions xclingo already uses by default and discusses the imple-

mentation of custom user-defined extensions. Note that Xclingo LP module was already described in

detail in Section 4.3

4.4.1 Preprocessing module

The Preprocessingmodule is responsible for processing the original annotated program to produce the

corresponding translation. The task consists of receiving the original annotated program as a String,

parsing it to an Abstract Syntax Tree (AST) and finally returning a freshly new AST, which depicts

the translation. To implement such functionality in a maintenance-friendly way, it has to face two

main problems. (1) The problem of organizing the different translation strategies that the tool already

considers (namely, the default one and the one for explaining unsatisfiable programs), and any new

one that could arise. And (2), writing the translation code in a way that code-reusability is maximized.

Figure 4.4 depicts the design of the module. The classes PreprocessorPipeline and Preprocessor together
implement a Pipeline pattern, where a Pipeline object can register several preprocessors that will se-

quentially process the program. Each preprocessor assesses different purposes in the translation like

80 CHAPTER 4. XCLINGO

Figure 4.3: Architecture of xclingo.

4.4. ARCHITECTURE ANDDESIGN 81

Figure 4.4: Pipeline pattern for the Preprocessingmodule.

converting the annotations into a middle-step translation, relaxing the annotated constraints or di-

rectly translating the the rules. Thus, each pipeline registers different preprocessors in a different order,

which leads to different results. A user could potentially implement and register custom preprocessors

and/or pipelines to modify or extend the translation.

The default Preprocessors use clingo’s Python API to parse the program in a String form into a

sequence of AST objects. These AST objects are the representation of the major structures from the

annotated ASP program, such as rules, constraints, #show statements, etc. One by one, they process

each AST, identify the type of expression they belong to, pass it to the corresponding Translator to
generate the translation, and store this result, maintaining a record of the ongoing translation. The

XclingoAST class implements a Decorator pattern, which is used to build the fresh translated ASTs

(such as support Rules, dependency Rules and the rest of parts of the translation that are discussed

in sections from 4.3.2 to 4.3.6) starting from the original ASTs. The Translator class acts as the client
for this decorator, decoupling that knowledge from the Preprocessor who only sends and receives AST
objects.

Some of the different types of rules built for the translation share common parts. For instance,

the predicate used in the head of the support rules is the same one used for the body of dependency

rules and the positive part of the body of the original rules is wrapped by the same predicate for show
trace annotations and trace annotations. To keep the design clean, maximize code reuse and en-

hance maintainability, the xclingoAST decorator implementation makes use of multiple inheritance.

A base component defines the basic functionality, which consists of translating an AST by separately

building the head and body of the new rule. Figure 4.5 shows the design of the basic decorators. The

base components are XclingoAST and XclingoRule, Body and ReferenceLit which define the interface
that any other decorator must implement. For instance, the ModelBody decorator produces a body
where the positive literals from the original rule are wrapped with a _xclingo_model predicate to ref-

82 CHAPTER 4. XCLINGO

Figure 4.5: Base components of theDecorator pattern for designing the XclingoAST class.

erence the model that is being explained. Another example is the SupportLiteral decorator provides a
way to build the _xclingo_sup predicate. These decorators are later reused to define complex rules. For

instance, in Figure 4.6 the different types of rules that form the translation are defined by inheriting

from thebasic decorators. Eachof the three components drawnhere (RelaxedConstraint, SupportsRule

Figure 4.6: Decorated components for the main rules of the translation.

and DependsRule) inherit some common behavior from the basic decorators but define its additions

as well. For instance, even though the latter two inherit from the same classes the translation they pro-

duce is a different kind of translated rule. However, in this way, we avoid repeating code and simplify

both the design and the effort of adding new translations.

Figures 4.7 and 4.8 show the decorators and the components used to build the different transla-

tions for the annotations.

4.4. ARCHITECTURE ANDDESIGN 83

Figure 4.7: Decorated components for some annotation rules.

Figure 4.8: Decorated components for trace annotation rules.

84 CHAPTER 4. XCLINGO

4.4.2 Explaining module

The goal of the Explaining module is to solve the explainer program and provide the explanations to

the user. The design of this module is critical for the Python API user experience and for the main-

tenance of the xclingo’s CLI tool, which acts as a user for this module. In this sense, the design of

this module tries to extend clingo’s Python API, providing it with the ability to provide explanations
but without modifying its interface. Figure 4.9 depicts the design of the main classes of the module.

From the Python API user’s perspective, everything is masked behind the XclingoModel class method

Figure 4.9: Design for the main classes of the Explainingmodule.

compute_graphs. The classes XclingoControl and XclingoModel directly inherit from clingo’s Control
and Model classes respectively so that theuse apart fromobtaining explanations is the samewith clingo’s
and xclingo’s API. When such a method is invoked, the explainer program is built and solved, but ev-

erything stays transparent to the user which just receives an iterator over a sequence of XclingoGraph-
Model objects. These objects represent the answer set of the explainer program (i.e. the support graphs).

As their corresponding class also inherits from clingo’s Model class, they can be inspected as usual to

retrieve the atoms representing the graphs or Explanation Python objects can be obtained through the
explainsymbolmethod.

4.4.3 Extensions

Having an important part of the functionality written as anASP specificationmeans that we can lever-

age the advantages of a declarative paradigm. Beyond the implications for themaintenance of the code

itself, it should be now very easy for an ASP engineer to extend or modify crucial parts of the default

behavior of xclingo. Of course, this implies being familiar with the particular specification, which is

fully explained in Section 4.3. This can be used for a wide variety of goals, from adapting the output

to other system’s input to reasoning about the explanations themselves.

In fact, xclingo already makes use of this idea to implement some of its base features. A good ex-

ample of this is the auto-tracing. Recall this feature already explained in 4.2.3 which is used to generate
automatic traces for the atoms in the explanations. Once we have an support graph, encoded with the

predicates used by the tool, adding automatic traces for every atom (i.e. node) in the graph is as easy as

writing the following rule.

1 % Genrerates a label for each atom in the explanation
2 _xclingo_label(Atom, Atom) :- _xclingo_f_atom(Atom).

4.4. ARCHITECTURE ANDDESIGN 85

In this way, each Atom included in the explanation will have an associated trace that looks exactly like

the atom. This rule is saved in a file called autotrace_all.lp, which is used as an extension whenever the
user uses the option –auto-tracing=all. If the user uses the option –auto-tracing=all, the extension
autotrace_facts.lp is used instead. The rule used in the latter case is shown below.

1 % Genrerates a label for each fact atom in the explanation
2 _xclingo_label(Atom, Atom) :- _xclingo_f(_, _, Atom, ()).

As the _xclingo_f predicate fourth argument is a tuple containing the atoms from the body of the rule,

we can assume the atom is a fact when the tuple is empty. The same idea can be used to generate labels

only for particular atoms, perhaps based on the causal information gained from the graphs like labeling

the atoms that are caused by one another.

Another interesting example of this is to compute the indirect causes of the atoms. Given a support

graph, the original encoding of xclingo already provides the edges of the graph as the direct causes. The
edges of the support graph in several phases can be queried: the original support graph, the graph after

edge running and the graph after node forgetting. For instance, to obtain the indirect causes of an

atom in the original support graph trivially follows from the code below:

1 indirect_cause(Effect, Cause) :- direct_cause(RuleID, Effect, Cause).
2 indirect_cause(Effect, Cause) :- indirect_cause(Effect, Y), direct_cause(Y, Cause). % transitivity

This can also be used to form complex queries over the support graphs. For instance, one could

obtain only explanations where a particular atom is indirectly caused by another. The extension code

below will restrict the explanations graphs only to those where Gabriel is in prison because he resisted

authority

1 :- not indirect_cause(sentence(gabriel, prison), resist(gabriel)).

As we are explaining, the extensions can be used to modify as well as to extend the behavior of

xclingo. The use of pure ASP for the extensions provides them with outstanding flexibility. When

using extensions one can see xclingo as a framework rather than an explanation tool. In such a frame-

work, xclingo computes the support graphs for themodel concerning a program and lets the userwrite

some code that leverages the graphs in some way. Indeed, xclingo just interprets the input ASP pro-

gram as causal, but it is agnostic to the aim the programmer has. A very naive example to illustrate this

would be building a Hamiltonian path checker using xclingo. The rules themselves would be used to

represent the edges of the graph. For instance, if node a has incoming edges from b and c we could
write the rule

1 a :- b,c.

Bydoing thiswith the rest of the nodes, xclingowill internally draw the graph, andnowwe can include

our Hamiltonian checker as an extension.

86 CHAPTER 4. XCLINGO

Chapter 5

Commonsense Explanations with
xclingo

As stated in the introduction, the main goal of this dissertation is to provide ASP systems with com-

monsense explanations. After introducing the tool xclingo which computes support graphs and fur-

ther allows the user to design the final explanations obtained, in this Chapter we give notions on how
to use those features to actually get commonsense explanations. We start by contrasting the differences

between technical and commonsense explanations and further discuss their importance and the role

they can play in making ASP systems both transparent and accountable.

In Section 5.2 wemake an important observation about the explanations that we can obtain from

strong equivalent programs. In particular, two strong equivalent ASP programs can produce different

explanations. This has important consequences that are discussed throughout the chapter, such as that

explanations from efficient ASP encodings may not be suitable for commonsense explanations even if

they obtain the same solutions as the original encodings. In the line of demonstrating this, we provide

a practical example in Section 5.3 and a practical solution to the problem as well in Section 5.4.

Another topic of great importance that was introduced at the beginning of this dissertation is that

most of the explanations requested byhumans are not positive, "How come p to be true?" but rathermost

complex causal queries such as contrastive questions that require counterfactual answers. Section 5.5

further discusses these topics and proposes the design of a system that is able to answer this type of

causal query, including answers toWhy not? questions. A practical example of how to implement this

system using xclingo is provided.

5.1 Technical vs Commonsense explanations
Many AI projects fail when reaching the deployment phase, after all the work to obtain systems that

demonstrate to be able to solve the task theyweremodeled or trained for. Especially in critical domains

such asmedicine or law, themain problem these projects face is how to gain the user’s trust. Evenwhen

the performance of the system in the task is statistically sound, situations where the expert and the

system do not agree generate important trust issues that are hard to solve. Of course, this may happen

between two different human experts too, but the important difference in that case is that they can

argue about their opinions, reach conclusions and ultimately get to know which decision they should

88 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

trust. Even if they do not agree, each expert does not necessarily decrease the trust in each other, if

the arguments that justify each decision make sense. This kind of situation would be desirable with

automatic decision systems too.

In the case of machine learning, the most widely used algorithms produce models that work as

black boxes in the sense that a user cannot understand why the model makes a decision. Even in the

caseswhen themodels are readable, aswith decision trees, they canbe hard tounderstand if they are too

large, or have toomany features. And evenwhen, apart from readable, they are small and easy to follow,

that does not mean that the user will trust the explanations you can extract from them. For instance,

the conditions that the input instance has tomeet until reaching a leaf node in a decision tree, although

very effective as a classification test, maymake no sense for a healthcare professional. Something similar

happens with other symbolic approaches. Sure, one can check the ASP rules from the program to

see why exactly an atom is being derived. But with very few exceptions, in most cases, the final user

may have serious difficulties following that derivation, substantially reducing her trust in the system.

According to Dignum [34], the property of transparency refers to the capability to describe, inspect

and reproduce the mechanisms behind the system decisions and the provenance and dynamics of the

data that is used or created by the system. Systems like decision trees or ASP programs are transparent

since one can follow how the final decision is made from input to output. Yet, this claim is not fully

accomplished by ASP solvers in the sense that some parts of their behavior are not easily predictable.

For instance, the ordering in which multiple answer sets are generated or the time to obtain one or

more solutions may drastically depend on the configuration of the multiple heuristics involved and/or

on the optimizations implemented in the solver.

Accountability on the other hand, is the property that a system has when can justify or explain its

conclusions to users and other relevant actors. In the same line we were emphasizing before though,

this has to be done in a way that each actor understands the reasoning behind the explanation for

increasing the trust in the system.

In the later years, a lot of approaches for the explainability of AI systems were proposed, each of

them proposing a different concept of what an explanation is. In the case of MLmodels, for instance,

novel approaches like LIME [88] or SHAP [68], both model agnostic, disagree on what is an explana-

tion in the first place. For the former, an explanation is a linear model learned from several generated

instances around a particular prediction. Very differently, for the latter, an explanation is an estimation

of the contribution of each input feature to the conclusion. In theworld of logic programming, the sit-

uation is at least a little more homogeneous. In general, the agreement seems to be that an explanation

for logic programs has to refer to the derivation of the atoms themselves in some way. The survey [48],

published in 2019, visits and compares some of the state-of-the-art approaches to explainability inASP.
InChapter 6, we also review some of these approaches, including some new approaches that have been

published after the survey. For instance, systems like xASP [4, 99] (currently in its second version xASP2),
or sCASP [7] useDirected Acyclic Graphs and Justification Trees (respectively) to explain Answer Set
Programs. The differences between approaches are based on other aspects like whether the default

negation is included or not in the explanations, which aspect from ASP language are supported, or if

the explanations are computed fromground atoms or in a top-downmanner, among others. However,

disregardingwhether they focus onmachine learning or logic programs,most of these approaches only

provide transparency to the systems. Furthermore, most of them rely solely on technical concepts, that

a final user is normally not familiar with. In the case of logic programs, a final user would need to have

5.1. TECHNICAL VS COMMONSENSE EXPLANATIONS 89

an advanced understanding of logic programming to fully understand the explanations. But if the aim

is to provide accountable explanations, any approach should worry more about providing something

that speaks in a non-technical language and that makes sense for the non-technical users.

In any software development, there is a clear difference between the technical and the user’s world.

This is, the user stands her requirements in natural language, as an abstract set of features or goals, and

it is the responsibility of the development team to translate those requirements and to design some

technical implementation that supports such requirements. It would be considered a mistake, how-

ever, to present the user with an interface that makes use of concepts outside of the user’s world. Say

for instance that a user asks to search over the set of products, and the software shows a JSON object

containing the list of the search results as a response. Or that the user asks to know the distribution

of the sales of the last month and the software shows the list of all the sales together with their corre-

sponding dates. Sure, the information that the user has requested is there, but the software is neither

facilitating the interpretation nor speaking in the user’s terms. Muchmore adequatewould be to show

the products in a (probably smartly ordered) table and display a fancy histogram depicting the distri-

bution of the sales. Speaking the user’s language is a crucial piece when building software that aims to

satisfy non-technical user needs, often having a greater impact on the deployability of the tool than the

technical excellence or even the performance.

The same dilemma happens when we face solving with KR. Normally, the users are not directly

provided with the raw atoms from the answer sets of the program, but a fancy interface that collects

that output and presents it adequately is developed. Figure 5.1 depicts the typical KR pipeline and

emphasizes how the different steps belong either to the domain’s or user’s world in the upper half or

to the formal specification scope. We typically start with a description of the problem in user’s terms,

Figure 5.1: Explanations in the context of the KR workflow.

usually in natural language. The main task of the KR engineer is to encode such a description as a set

of rules in a logic program. This set of rules can be easier or harder to understand but, in the end, it

lies in the Formal specificationworld as the ASP code is itself a technical artifact. This encoding is then

solved and the solutions are obtained in the form of sets of atoms (i.e. answer sets). Unfortunately,

90 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

from the point of view of most final users, these atoms are still a cumbersome technical artifact that

belongs in the technical (formal specification)world. In the sameway, displaying an explanation that is

conformedonlywith the atoms from the answer sets still is a technical artifact that shouldnot be shown

to a final user. This kind of technical explanation provides transparency to the system but it is still far

fromproviding accountabilitynor beingwhatwe call a commonsense explanation. Among all the atoms

within the answer sets, it is just a subset of them that represents the solution. From this fact, additional

filtering usually follows after obtaining the answer sets. In the case of clingo solver, this involves the use
of #show sentences to only display the atoms that are considered relevant for representing the solution.

At this point, an extra effort can be made to design the displayed predicates, hiding the complex KR

representation behind them and showing the solution in the clearest way possible. What can drive us

back to the user world is to use additional software to decode and represent the solutions in the user’s

terms. This of course implies making an extra development effort, that requires a different type of

knowledge than the typical KR engineering. To that aim, it also exists ASP based software to integrate

both the encodingwith the solution displaying such as clingraph1 but any ad hoc solution couldwork.
In parallel, we need tomake an extra effort when designing the explanations for them tomeet the user’s

requirements. In the case of xclingo, this effort is firstly directed towards annotating the program.

For setting up the terminology, we refer to the term Technical Explanation as defined in Defini-

tion 2 in Chapter 1. Such an explanation speaks in technical terms and provides transparency to the

system. They are useful for debugging and testing the system, proving its correctness or even check-

ing some nonfunctional requirements. Thus, the type of user this kind of explanation is directed to

is an expert in the software the system is built in, in our case ASP. For that reason, the language the

explanation needs to speak is a technical one. For instance, showing the complete derivation proof of

an atom by using the –auto-tracing=all option would be an example of a technical explanation. In
the case of ASP, we further have different levels of technical explanations. The technical explanation

may be at the level of the inferencemechanism according to the answer set semantics (thus, being inde-

pendent of the solver). This is the case of Support Graphs, xclingo and most of the ASP explainability

approaches. Butwe could also provide explanations according to the specific solver behavior, following

its execution steps, heuristics, optimizations, etc.

On the other hand, we refer to Definition 1 also in Chapter 1 for the term Commonsense Expla-
nation. Such is an explanation that argues or justifies the system’s conclusion as a (selected) causal,

real-world explanation that speaks in a language the final user is familiar with. However, although it

is one of the most common cases, this does not always imply that natural language is the best way to

prompt the explanation. Sometimes, a diagram, a graph or even a chart can be the best support for

the explanation that the user needs. It is also of great importance to note that an explanation of this

kind does not necessarily reflect the internal computation process the system is doing to reach the con-

clusion. This process often does not match the real causal reasoning humans use to explain the events

of the real world that the system is talking about. Moreover, an intelligent implementation will usu-

ally make simplifications that break this causal reasoning but enhance the performance of the system.

However, if we are aware of the simplifications we can still provide a solution to get the explanations

back in the causal framework the user is expecting it to be.

Indeed, the encoding step from Figure 5.1 can often be divided in two as in Figure 5.2. First, the

engineer encodes the problem in themost straightforwardASP rules she can come upwith. That spec-

1

https://github.com/potassco/clingraph

5.2. STRONG EQUIVALENCEDOES NOT SUFFICE 91

Figure 5.2: Steps for encoding the user requirements as an ASP program.

ification is then tested to check that it meets the requirements. This first specification is not usually

the best in terms of performance but is the most straightforward encoding of the natural language

requirements and thus, its correctness is typically easy to check. As a result is often a good causal repre-

sentation fromwhich xclingo can obtain good explanations. After that, it is iteratively modified to an

equivalent version that increments the efficiency, often at the cost of losing the comprehensibility of

theASP code and requiring a harder effort for the verification of its correctness. In the case of xclingo’s
explanations forASPprograms, the explanation graphs are directly tied to the particular rules that form

the ASP program. In that sense, any simplification that we can make during computation will affect

the space of explanations that we will be able to obtain through xclingo, even if the original and the

simplified encodings are equivalent. This means that, as we demonstrate in the next section, some-

times the markup annotation language (although significantly flexible) can be insufficient to design

commonsense explanations that meet the user’s requirements.

5.2 Strong equivalence does not suffice

In the context of Answer Set Programming, two programs P1 and P2 are said to be strongly equiva-
lent [66] if for any other program P3, it holds that P1 ∪ P3 has the same answer sets than P2 ∪ P3.

This is a well-known property in the field that was born to simplify parts of a logic program without

looking at the rest of it and is a stronger version of equivalence as the mere coincidence in the set of

answer sets.

Figure 5.3 depicts two circuits from an example in [80]. Note how both circuits behave the same

for any input for the switches sw1 and sw2.

Figure 5.4 contains the ASP specification for both circuits, which are strongly equivalent. Then,

Figure 5.5 shows some common code for both circuits, where we add a choice rule for the switches and

some traces to obtain explanations.

By solving both circuits, we obtain a total of 4 answer sets, listed in Figure 5.6, corresponding to

each possible combination of states (up, down) for the two switches. As both programs are (strongly)

equivalent, the state of light is the same in all 4 cases, disregarding the circuit.

92 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

light

sw2

sw1
light

sw2

sw1

Figure 5.3: Example from [80]. It depicts Circuit 1 (left side) and Circuit 2 (right side).

1 % Circuit 1
2 light(on) :- sw(1,down).
3 light(on) :- sw(1,up),sw(2,down).
4 light(off) :- sw(1,up), sw(2,up).

1 % Circuit 2
2 light(on) :- sw(1,down).
3 light(on) :- sw(2,down).
4 light(off) :- sw(1,up), sw(2,up).

Figure 5.4: ASP specification corresponding with Circuit 1 and Circuit 2 from Figure 5.3.

1 % Adds switches and traces
2 switch(1;2).
3 1 {sw(X,up);sw(X,down)} 1 :- switch(X).
4 #show light/1.
5 #show sw/2.
6

7 %!trace {sw(X,V), "switch % is %",X,V} :- sw(X,V).
8 %!trace {light(V), "the light is %",V} :- light(V).
9 %!show_trace {light(V)}.
10 %!show_trace{sw(X,Y)}.

Figure 5.5: Common ASP code for Circuit 1 and Circuit 2.

1 Answer: 1
2 sw(1,down) sw(2,down) light(on)
3 Answer: 2
4 sw(1,down) sw(2,up) light(on)
5 Answer: 3
6 sw(1,up) sw(2,up) light(off)
7 Answer: 4
8 sw(1,up) sw(2,down) light(on)
9 SATISFIABLE

Figure 5.6: Answer sets for both circuits 1 and 2 from Figure 5.4 when solved together with the com-

mon code from Figure 5.5.

5.2. STRONG EQUIVALENCEDOES NOT SUFFICE 93

However, it can be easily seen just from the representation of each circuit, how the reasons for the

state of the light are different. Thus, it is not surprising that the explanations obtained by xclingo,
shown in Figure 5.7, reflect these differences.

1 Answer: 1 {sw(1,down) sw(2,down)}
2 ##Explanation: 1.1
3 *
4 |__"the light is on"
5 | |__"switch 1 is down"
6

7

8

9

10

11

12 ##Total Explanations: 1
13

14 Answer: 2 {sw(1,down) sw(2,up)}
15 ##Explanation: 2.1
16 *
17 |__"the light is on"
18 | |__"switch 1 is down"
19

20 ##Total Explanations: 1
21

22 Answer: 3 {sw(1,up) sw(2,up)}
23 ##Explanation: 3.1
24 *
25 |__"the light is off"
26 | |__"switch 1 is up"
27 | |__"switch 2 is up"
28

29 ##Total Explanations: 1
30

31 Answer: 4 {sw(1,up) sw(2,down)}
32 ##Explanation: 4.1
33 *
34 |__"the light is on"
35 | |__"switch 1 is up"
36 | |__"switch 2 is down"
37

38 ##Total Explanations: 1
39 Models: 4

1 Answer: 1 {sw(1,down) sw(2,down)}
2 ##Explanation: 1.1
3 *
4 |__"the light is on"
5 | |__"switch 1 is down"
6

7 ##Explanation: 1.2
8 *
9 |__"the light is on"
10 | |__"switch 2 is down"
11

12 ##Total Explanations: 2
13

14 Answer: 2 {sw(1,down) sw(2,up)}
15 ##Explanation: 2.1
16 *
17 |__"the light is on"
18 | |__"switch 1 is down"
19

20 ##Total Explanations: 1
21

22 Answer: 3 {sw(1,up) sw(2,up)}
23 ##Explanation: 3.1
24 *
25 |__"the light is off"
26 | |__"switch 1 is up"
27 | |__"switch 2 is up"
28

29 ##Total Explanations: 1
30

31 Answer: 4 {sw(1,down) sw(2,up)}
32 ##Explanation: 4.1
33 *
34 |__"the light is on"
35 | |__"switch 2 is down"
36

37

38 ##Total Explanations: 1
39 Models: 4

Figure 5.7: Explanations for both circuits 1 (left) and 2 (right) from Figure 5.4 when solved together

with the common code from Figure 5.5.

In the figure, we have included the state of each switch along with each answer set for enhancing

the readability, but this is not a feature of xclingo yet at this point. If we look at Answer 1, where both
switches 1 and 2 are down and the light is on, the only cause in Circuit 1 is switch 1, while in the case of

Circuit 2, each switch constitutes an alternative cause. In the case of answers 2 and 3, the explanations

for both circuits are the same. However, in the case of Answer 4, where switch 1 is up and switch 2 is

down, both switches are necessary to explain the light being on in Circuit 1, whereas only switch 2 is a

cause for Circuit 2.

This small example demonstrates how strong equivalence is not a sufficient condition to produce

the same explanation graphs. As a result, this complicates theworkflowdescribed in Figures 5.1 and 5.2

94 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

from Section 5.1. In particular, when we optimize the encoding after being happy with the straight-

forward one, we usually try to obtain something equivalent but faster. However, we cannot rely on

the explanations obtained from both encodings to be the same anymore, even when they are strongly
equivalent. Furthermore, in most cases, we will probably deal with a tradeoff between performance

and obtaining adequate explanations. In other words, we should now consider a new step in the KR

workflow that we could call explanation design, which represents an extra effort that we make as KR

engineers to design a representation that provides adequate explanations to the user. In the sense that

they are causally alignedwith the problem they represent (like the real circuits in the figures). This step

involves effort in modifying the specification, but only after understanding the user needs to identify

the requirements tied to the explanations.

5.3 A Practical Example of Explanation Design: Blocks World

To illustrate the problems we can face when introducing explanation design into the KRworkflow, let

us use the BlocksWorld domain as a running example. We will visit different specifications for solving

the problem that, although equivalent, produce different explanations.

The Blocks World problem is a classical puzzle in the AI Planning field. In this problem, we con-

sider several blocks which can be placed on the table or on top of other blocks. The goal is to transform

a given initial arrangement of blocks into a desired configuration or order. Figure 5.8 shows a typical

example of a blocks world problem setup.

Figure 5.8: Typical set up of a blocks world problem.

Under this representation, a solution consists of a sequence of actions, each one associated to a

timestep, where one block is moved from one stack to another. The main constraints regarding these

actions are that only the block on top of each stack can be moved, and the selected block can only

be placed on the block currently at the top of another stack. This problem is a well-known example

in the study of automated planning and is widely used to test and evaluate planning algorithms and

knowledge representation formalisms.

Program 5.1 shows the specification of an instance of the Blocks World problem.

Predicate h(Block, Location, Time) (namely holds) is used to describe the position of the blocks
at each particular timestep. Note that, since we have to describe the initial state, we are representing

the position of each block at timestep 0. Predicate g(Block, Location) (namely goal) represents the
goal state. That is, the position where we must find each block at the end of the plan.

Program 5.2 contains some common code for the four encodings that we will be visiting.

Lines 1 and 2 contain some domain predicates such as the blocks or the locations. Lines from 4

to 7 represent the executability constraints that ensure that the action’s preconditions are satisfied. We

5.3. A PRACTICAL EXAMPLE OF EXPLANATIONDESIGN: BLOCKSWORLD 95

1 #const last=3.
2 #const n=4.
3 h(on(2),table,0). h(on(3),table,0).
4 h(on(1),3,0). h(on(4),1,0).
5 g(on(4),table). g(on(1),4).
6 g(on(2),1). g(on(3),table).

Program 5.1: ASP specification of an initial state for the Blocks World problem.

1 time(0..last). step(1..last). block(1..n).
2 location(table). location(B):-block(B).
3

4 unclear(C,T) :- h(on(B),C,T),C!=table,time(T).
5 :- o(move(B,_),T), unclear(B,T-1). % executability
6 :- o(move(_,L),T), unclear(L,T-1). % executability
7 :- o(move(B,table),T), h(on(B),table,T-1), step(T). % executability
8 :- g(on(B),L), not h(on(B),L,last).
9

10 h(F,V,T) :- h(F,V,T-1), not c(F,T), step(T). % inertia
11 c(F,T) :- h(F,V,T-1),h(F,W,T),V!=W, step(T). % changes
12

13 % Text labels
14 timetext(0,initially). timetext(last,finally).
15 %!trace {h(on(B),L,T), "Block % is % on %",B,Txt,L} :- h(on(B),L,T), timetext(T,Txt).
16 %!trace {h(on(B),L,T), "Block % is now on % at %",B,L,T} :- h(on(B),L,T), h(on(B),L',T-1), L!=L', T!=last,T!=0.
17

18 %!show_trace {h(on(B),V,last)}.

Program 5.2: Common annotated ASP code for the Blocks World problem.

96 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

find the constraint for the goal state in Line 8. The rule in line 10 models inertia (a fluent F preserves

its previous value V if F has not changed, c(F, V)) and, the rule in line 11 models change (when the

inertia is broken). Change is represented with predicate c(Block, Time). From line 13 on, extra code

and annotations to write some text traces are added.

Recall now the workflow pipeline from Figure 5.2 and imagine that, after some engineering effort,

we come upwith the efficient specification in Program 5.3 formodeling the generation of the plan (i.e.

the movements of the blocks in each time step). We will call it Encoding 1 from now on.

1 action(move(B,table)):- block(B).
2 action(move(B,C)):- block(B),block(C),B!=C.
3

4 1 {o(A,T): action(A) } 1 :- step(T).
5 h(on(B),L,T) :- o(move(B,L),T).
6

7 %!trace {o(move(B,L),T), "We moved block % to % at step %",B,L,T} :- o(move(B,L),T).

Program 5.3: Encoding 1.

In Encoding 1, any action can be selected for each time step (line 4) and the state of moved blocks

is captured at line 5. The annotation at line 7 labels each movement with a descriptive text. The expla-

nations obtained by xclingo for Encoding 1 can be seen in Output 5.1.

1 *
2 |__"Block 14 is finally on 13"
3 | |__"Block 14 is now on 13 at 22"
4 | | |__"We moved block 14 to 13 at step 22"

Output 5.1: Explanations obtained for Encoding 1.

Contrary to what a common user would expect, the explanation for the final position of block 14

does not include the entire history of movements concerning the block, but rather only talks about

the final step 22. Let us detailedly explain why this is happening. First, note that the user is asking
xclingo to explain the position of all blocks at the last time step. This is done through the show_trace
annotation written in line 19 of Program 5.2. We will only show the explanations for block 14 for

brevity. Bear in mind that xclingo interprets the set of rules in the program as cause-effect relations.

If we follow the rules we see that, for the particular Encoding 1 (Program 5.3), h(F,V,T) depends on
o(move(B,L,T)) from the body of the rule in line 5 of Program 5.3which in turn depends on action(A)
and step(T) from rule in line 4. Both last mentioned predicates are domain, factual predicates that do

not depend on anything, meaning an end for the cause-effect chain that xclingo is unraveling. This can
be easily checked by enabling the auto-tracing=all option. In this way, we can check all the involved
cause-effect relations that xclingo is considering. Output 5.2 shows the explanation we get for block

14 when enabling such an option.

xclingo cannot generate an explanation for any h(B,L,T) atom that shows the history of move-

ments previous to instant T since there is no cause-effect connection between one state and its previous
ones (neither directly nor transitively). From a pure KR (non-explainability aware) point of view, it

makes sense that the choice rule in line 5 of Program 5.3 does not include the previous position of the

5.3. A PRACTICAL EXAMPLE OF EXPLANATIONDESIGN: BLOCKSWORLD 97

1 *
2 |__"Block 14 is finally on 13";h(on(14),13,23)
3 | |__"Block 14 is now on 13 at 22";h(on(14),13,22)
4 | | |__"We moved block 14 to 13 at step 22";o(move(14,13),22)
5 | | | |__action(move(14,13))
6 | | | | |__block(14)
7 | | | | |__block(13)
8 | | | |__step(22)
9 | |__step(23)

Output 5.2: Explanation for block 14, using Encoding 1 and enabling auto-tracing=all option.

block because it is not needed to generate the next movement. Indeed, adding such a condition would

slow down the solver when computing plans and have no effect on the solutions obtained. To even-

tually obtain an explanation that includes the complete history of actions several modifications to the

original program may be done. Let us now introduce Encodings 2 and 3 and discuss how they fulfill

this goal in different ways.

Encoding 2 (Program 5.4) only introduces one change with respect to Encoding 1.

1 action(move(B,table)):- block(B).
2 action(move(B,C)):- block(B),block(C),B!=C.
3

4 1 {o(A,T): action(A) } 1 :- step(T).
5 % h(on(B),L,T) :- o(move(B,L),T). % replaced
6 h(on(B),L,T) :- o(move(B,L),T), h(on(B),L’,T-1).
7

8 %!trace {o(move(B,L),T), "We moved block % to % at step %",B,L,T} :- o(move(B,L),T).

Program 5.4: Encoding 2.

This change concerns the effect axiom (originally at line 5, Program5.3), whichnow includes anew

literal recalling the position L’of block B at the previous state T-1. Note how that previous location L’ is
not used at all in the rule head to obtain the current step’s position, but just to introduce the transitive

cause-effect relation needed to generate the desired explanations. Output 5.3 shows the explanation

for block 14 when replacing Encoding 1 with Encoding 2.

1 *
2 |__"Block 14 is finally on 13"
3 | |__"Block 14 is now on 13 at 22"
4 | | |__"We moved block 14 to 13 at step 22"
5 | | |__"Block 14 is now on table at 16"
6 | | | |__"We moved block 14 to table at step 16"
7 | | | |__"Block 14 is initially on 11"

Output 5.3: Explanations obtained for Encoding 2.

Note howmovement and state causes in the explanations are grouped in the same indentation level,

showing how they are joint causes for the next position of the block. However, if we take lines 3 to 5

as an example we can see how a movement at step 22 and the state achieved at step 16 act together as a

98 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

1 *
2 |__"Block 14 is finally on 13";"Block 14 is not moved from 13 at 23"
3 | |__"Block 14 is now on 13 at 22"
4 | | |__"We moved block 14 to 13 at step 22"
5 | | |__"Block 14 is not moved from table at 21"
6 | | | |__"Block 14 is not moved from table at 20"
7 | | | | |__"Block 14 is not moved from table at 19"
8 | | | | | |__"Block 14 is not moved from table at 18"
9 | | | | | | |__"Block 14 is not moved from table at 17"
10 | | | | | | | |__"Block 14 is now on table at 16"
11 | | | | | | | | |__"We moved block 14 to table at step 16"
12 | | | | | | | | |__"Block 14 is not moved from 11 at 15"
13 | | | | | | | | | |__"Block 14 is not moved from 11 at 14"
14 | | | | | | | | | | |__"Block 14 is not moved from 11 at 13"
15 | | | | | | | | | | | |__"Block 14 is not moved from 11 at 12"
16 | | | | | | | | | | | | |__"Block 14 is not moved from 11 at 11"
17 | | | | | | | | | | | | | |__"Block 14 is not moved from 11 at 10"
18 | | | | | | | | | | | | | | |__"Block 14 is not moved from 11 at 9"
19 | | | | | | | | | | | | | | | |__"Block 14 is not moved from 11 at 8"
20 | | | | | | | | | | | | | | | | |__"Block 14 is not moved from 11 at 7"
21 | | | | | | | | | | | | | | | | | |__"Block 14 is not moved from 11 at 6"
22 | | | | | | | | | | | | | | | | | | |__"Block 14 is not moved from 11 at 5"
23 |__"Block 14 is not moved from 11 at 4"
24 |__"Block 14 is not moved from 11 at 3"
25 |__"Block 14 is not moved from 11 at 2"
26 |__"Block 14 is not moved from 11 at 1"
27 |__"Block 14 is initially on 11"

Output 5.4: The effect of tracing the intertia rule.

joint cause even though the rule from Program 5.4 explicitly recalls time step T-1 This is the effect of
forgetting non-traced atoms in the explanation.

To understand this, let us recall the different traces affecting this situation. h(on(B),L,T) atoms are

traced at the initial and final step (see line 16 of Program 5.2), and when the corresponding state of the

blocks changeswith respect to its previous state (see line 17ofProgra 5.2m). Finally, one last annotation

traces any generated movement of a block o(A, T), but this annotation is defined together with the

predicate at the end of each encoding (programs 5.3 and 5.4). These three annotations generate all the

text included in the final explanations.

The cases for the state of block 14 in step 22 (line 3 of Output 5.3) are the generated movement

togetherwith the its previous positionHowever, this previous state of block 14 did not receive any text,

since this only happens the instant the state of a block changes. The most recent change in the state of

block 14, as we can read in the explanation, occurs at step 16, when we move it from the top of block

11 to the table. The h/3 atoms from step 17 to step 21 were forgotten from the graph since they were

not traced. As a result, actions on steps 22 and 16 act as causes for the new position, which can be seen

as misleading at first.

One straightforward idea that we could have to solve this, is to add a text to all the states at any time

step, obtaining the full chain of stages of any block. This can be easily obtained by tracing the intertia
rule at line 10 in Program 5.2. However, the result is almost unreadable, showing too much irrelevant
information, as we can see in Output 5.4.

In a temporal setting, users will be interested in when and how the fluents change rather than
knowing the value for the fluent in every time step of the plan. Instead of having a large explanation

5.3. A PRACTICAL EXAMPLE OF EXPLANATIONDESIGN: BLOCKSWORLD 99

repeating irrelevant information for every time step, it is much more interesting to only highlight the

changes and to show the intervals in which the fluent did not change. Once we have seen why tracing

inertia is not a good solution for the problem of Encoding 2, let us introduce how Encoding 3 solves

the issue. This encoding introduces the same dependence that Encoding 2 but this time in the choice

rule instead (see Program 5.5), leaving the rest of the code untouched concerning Encoding 1.

1 action(move(B,table)):- block(B).
2 action(move(B,C)):- block(B),block(C),B!=C.
3

4 % 1 {o(A,T): action(A) } 1 :- step(T). % replaced
5 1{o(A,T): action(A), A=move(B,L), @h(on(B),L’,T-1)@}1 :- step(T).
6 h(on(B),L,T) :- o(move(B,L),T).
7

8 %!trace {o(move(B,L),T), "We moved block % to % at step %",B,L,T} :- o(move(B,L),T).

Program 5.5: Encoding 3.

Similarly to Encoding 2, the previous position is introduced as a cause in the condition of the

conditional atom of the choice rule but it is not used for obtaining the new movement. Therefore,

in the obtained explanations shown in Output 5.5, we can observe something similar to what was

achieved with Encoding 2, but this time every consequent cause is in a new level of indentation.

1 *
2 |__"Block 14 is finally on 13"
3 | |__"Block 14 is now on 13 at 22"
4 | | |__"We moved block 14 to 13 at step 22"
5 | | | |__"Block 14 is now on table at 13"
6 | | | | |__"We moved block 14 to table at step 13"
7 | | | | | |__"Block 14 is initially on 11"

Output 5.5: Explanations obtained for Encoding 3.

With Encoding 3, the structure of the explanations is finally closer to what a common user would

find intuitive. However, certain literals have been added to the program only to model the causal rela-

tionships and not to solve the problem, which feels unclean and also may introduce additional com-

puting and affect performance. Table 5.1 shows how different encodings affect solving and explaining

time. For each Encoding, solving time, explaining time and the addition of both are shown in seconds.

Among each time measure, the percentage that the sample represents of the total is shown between

parentheses.

Encoding 1 Encoding 2 Encoding 3

Solving Time 1.187s (45%) 3.503s (83%) 3.614s (61%)

Explaining Time 1.356s (55%) 0.706s (17%) 2.274s (39%)

Total 2.453s 4.209s 5.888s

Table 5.1: Times for different encodings.

100 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

From these results, it is possible to see the tradeoff between code optimization and the explanation
design. The existence of any "good practices" that achieve good explanations and at the same time fast

specifications have yet to be investigated and (if they exist) are likely to be highly dependent on the type

of problem and domain. However, even if we cannot reconcile explanation design and speed in a single

specification, we can still combine the two using some tricks with xclingo.

5.4 Model Feeding for Fast Commonsense Explanations

There is a technique we can apply with xclingo to leverage the best of both worlds: fancy, common-

sense explanations together with fast solving. The workflow remains the same: first, we work on a

straightforward specification of the problem that is replaced (after some enhancements) by a faster

specification. We will refer to this latter specification as fast encoding.
Then, we invest additional effort in explanation design, modifying the fast encoding until we

achieve a (very likely slower) version of the specification that meets the user requirements in terms

of explanations. This will be called the explaining encoding. Now, the idea is to use the fast encoding
for obtaining the models, to later explain them using the explaining encoding. We can do this using

the –feed-model=<file> option from xclingo. The file expected by the option should contain a valid

model obtained using the fast encoding and any solver. We refer to this technique asmodel feeding. Fig-
ure 5.9 shows the model feeding workflowwhile Figure 5.10 shows how the data flows when applying

the approach.

Figure 5.9: KR workflow from Figure 5.2 updated to fit themodel feeding approach.

Using this approach we can save much time when the solving time of the explaining encoding is

much greater than the fast encoding. In the case of the BlocksWorld example from Section 5.3 we can

obtain the explanations from Encoding 3, with the solving time from Encoding 1. For this example,

this drastically reduces the time needed to obtain the explanations by 41%.

5.5 Answering Different Types of Causal Queries

5.5.1 Classifying types of answers

In a real-world scenario, explanation queries from the user will usually be natural language questions

such as “Why p?”, “Why not q?”, How come s? or “Why is there no solution?”. As they are stated in

5.5. ANSWERINGDIFFERENT TYPES OF CAUSAL QUERIES 101

Figure 5.10: Data flow when applying model feeding approach.

natural language, it is natural for these questions to be ambiguous and, as discussed in Chapter 1, to

include implicit information. Thus, it is normal that different ASP explainability approaches end up

producing different answers for the same questions.

For instance, for the question “How come p?”, Causal Values provided by [49] are different from

And-Or Graphs of [45]. Although both are semantically related, they are different in form, the for-

mer an algebraic expression, and the latter a labeled directed graph. Also, different natural language

questions can sometimes be answered very similarly. Take, for instance, the questions “What if p?”
and “How to get p?”. Although not the same, both questions implicitly suggest that p is not true in

a current solutionM . Thus, to implement a valid answer, both questions imply reasoning about an

alternative solution and then using it to explain the result.

AsMiller shows in [75], sometimes some natural language questions have some additional implicit

purpose not mentioned in the query. For instance, he argues that most of the “Why p?” questions are
implicitly contrastive “Why p instead of q?” questions. Therefore, it seems reasonable to explicitly

separate the notions of (natural language) question and answer. In this Section, we propose different

abstract answer types andwe provide general definitions for them. Also, we propose the kinds of ques-

tions that they can solve.

Proof-based explanation

Throughout this dissertation, we have seen how xclingo, by default, is able to answer, say positive,
“How come p?” questions. First, once a modelM is found xclingo can compute the support graphs

G1, G2, ..., Gn corresponding to M (see Definition 6). Such graphs Gi can be considered explana-

tions for the whole model. Then, to explain “How come p?”, we can obtain an explanation for p (fol-
lowing Definition 8) from anyGi for the atom p such that p ∈M . From now on we will refer to this

kind of answer as a proof-based explanation.
Consider this term as an abstraction embracing not only our notion of explanation but also any

other definition that is built from some kind of derivation starting from a program and one of their

models. In fact, in Chapter 6 we will see how most of the approaches to explainability in ASP [48]

102 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

provide definitions that fall inside (or at least can relate to) this abstraction. Therefore, we define this

abstraction as in Definition 12.

Definition 12 (Proof-based Explanation). A Proof-based Explanation for a queryQ with respect to a
program P and a model M of P such that Q ∈ M (or Q ⊆ M if Q is a set of atoms), is an object
representing or that can relate to a particular (or several) derivation proof(s) of p using rules in P with
respect toM . We denote this as why(Q,M,P).

Unsatisfiability Explanation

Another type of response of interest that has been investigated recently is what we could refer to as the

abstraction Unsatisfiability Explanation, defined in Section 13. This is (again, abstractly) the prob-

lem of finding the reasons why a program has no models. For implementing this abstraction several

approaches could be taken.

Definition 13 (Unsatisfiability Explanation). An Unsatisfiability Explanation of a program P such
thatSM(P) = ∅ is an object representing the reasonswhyP hasnomodel. Wedenote this aswhyunsat(P).

Note that an unsatisfiability explanation would be answering different natural language questions

like “Why is there no solution?” but also “Why is there no solution such that Q”. This indicates that the
same answer type can answer several natural language questions. Moreover, it could be argued how this

type of answer could be a valid answer for a question such that “Why not p?” in the case that p /∈ Mi

for allMi of the program.

How-come Explanations for Why-Not Questions

Let us discuss now answers for natural language questions such as “Why not Q?”. First, asking such a
question suggests that we are considering a modelM such thatQ is false inM . Then, recall the first

finding byMiller [75], explanations are contrastive, thatwas discussed inChapter 1. In short, thismeans

that, in the real world, most questions like “Why p?” are actually (implicitly) questions like “Why p
instead of q?”, where q is something that is false but which the questioner expects to be true. This

suggests the existence of a default worldwhereQ is true, that is expected to exist by the questioner and
that is different from the actual world where Q is false. In Miller’s [75], the default world is referred

to as the fact whereas the actual world is referred to as the foil. Moreover, he also points out that

meaningful explanations are built on the differences between the fact and the foil. This connects with
Reiter’s theory for diagnosis [87]where a similar notion is considered in which the differences between

both are called discrepancies. Later approaches to diagnosis [11] follow this idea.

Now relating this to explainability in ASP, it seems reasonable to assume that, when a user asks

something like “Why not q?” is because Q is false concerning the actual model M and the user as-

sumes the existence of an alternative model M ′ such that Q is true in M ′. Therefore, by providing
M ′ or the differences betweenM andM ′ we could answer the user’s question. Moreover, a proof-like

explanation could be obtained from any of them. This would be a different type of (abstract) answer

involving finding the alternative modelM ′ where some query holds. Also, note that such an explana-

tion would also answer also questions like “What has to change so that p?”, reinforcing the idea that the
same type of answer can solve several natural language questions. Then, we define the abstract answer

typeHow-To Explanation in Definition 14, that starting from a modelM and a program P such that

5.5. ANSWERINGDIFFERENT TYPES OF CAUSAL QUERIES 103

a particular foil Q does not hold, it provides a set of changes inM and/or P such that there exists a

modelM ′ whereQ holds.

Definition 14 (HowTo Explanation). Given a formulaQ, a programP and amodelM ∈ SM(P)
such that M ⊭ Q, a program P ′ such that is obtained by adding or removing rules from P , and an
alternative model M ′ ̸= M of P ′ such that M ′ |= Q, a How-To Explanation is either M ′, or the
differences betweenM ′andM , or an object representing the reasons for q being true inM ′ using rules in
P ′. We denote this as howto(Q,M,P).

Note that the alternative modelM ′ can still be a model of the original program P when P ′ = P
so that any rule is neither added nor removed.

5.5.2 Answering Causal Questions

In this section, we propose an abstract methodology for answering a subset of explaining questions.

For its design, we refer to the different abstract answer types defined in the previous section. A dia-

gram depicting such methodology is shown in Figure 5.11. We will discuss the interpretation of each

diagram’s branch (fromA to F) and how they can be implemented using support graphs and xclingo.
In the figure, green squares with corner edges represent solving steps that could be performedwith any

ASP solver, blue squares with rounded edges represent one of the abstract explanation answers defined

in the previous section, grey squares with corner edges represent some abstract process implementing

either a solving step or an abstract explanation answer, white diamonds represent flow splits depending

on some conditions, and finally, white circles represent the end of the flow.

We start from a fixed program P and a fixed model M of P . Then, after inspecting the model,

the user poses a question. This should be a question in natural language that would be translated by a

system into a queryQ that can either be a set of atoms or a formula. We do not provide any particular

mapping between questions and queries or answers, although Figure 5.11 includes some suggestions

through the different flows.

IfQ is a set of atoms such thatQ ⊆M , we follow Branch A. Then, the system provides a Proof-
based Explanation, why(q,M, P) answer for every atom q ∈ Q. If the user provides a new query,

we go back to the starting point in the flow diagram. If not, we reach an end. For implementing this

branch using xclingo, the set of atomsQ would be specified by show_trace annotations. Then, each
why(q,M,P) answer would be implemented following:

why(q,M, q) = πG(q) such thatG ∈ GP,M

where GP,M is the set of all explanations of M under P (as defined in Definition 6), and πG(q) is
the proof for p induced by some G (as defined in Definition 8). Intuitively the default explanations

provided by xclingo for all the atoms q for modelM .

IfQ is a formula such thatM ⊭ Q, we follow Branch B. From now on, it is supposed that the

user expects the existence of a modelM ′ ̸= M such thatM ′ |= Q. In other words, the user has in

mind the existence of an alternative model or solution for which the query holds. The finding of such

model M ′ can be easily implemented as the solving of the program P ∪ {⊥ ← ¬Q} such that it

minimizes the differences betweenmodelM ′ ofP ∪{⊥ ← ¬Q} and the original modelM . Assume

for now that such model M ′ exists, then we continue the flow of Branch B and provide a How To

104 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

Figure 5.11: Diagram depicting the proposed methodology for answering explanation questions.

5.5. ANSWERINGDIFFERENT TYPES OF CAUSAL QUERIES 105

Explanation, howto(Q,M,P) as an answer. Implementing this branch using xclingo, would not be
possible in the sense thatQ is a formula and xclingo can only receive sets of atoms as a query. In the

cases that the formulaQ could bemapped to a set of atoms, thenwe could use the following approach.

Once modelM ′ is found, it would be explained using program P via model feeding (see Section 5.4).

Formula Q would be translated into a set of atoms, that would be explained as usual with xclingo.
Thus, the answer howto(Q,M,P) of Branch Bwould be implemented by xclingo as:

howto(Q,M ′, P ′) = {πG(q) | q ∈ Q ∧G ∈ GP ′,M ′}

where GP,M is the set of all explanations of M under P (as defined in Definition 6), and πG(q) is
the proof for p induced by someG (as defined in Definition 8). Intuitively, xclingo would compute

every explanation graphG for modelM ′ and then would explain each atom q ∈ Q as a proof-based

explanation concerning each graphG.

Branch C on the other hand, corresponds to the case that SM(P ∪ {⊥ ← ¬Q}) = ∅. That
is, a model M ′ of P such that M |= Q does not exist. In this case, we look for a repair P ′, such
that there exists a modelM ′ of P ′ andM ′ |= Q. In particular, we look for the closest possible repair

(i.e. such that it requires the fewest changes). This could be implemented by using abductive reason-

ing. If such repair is possible, we continue the flow of Branch C and provide a how-to explanation,

howto(Q,M,P) as an answer. If the user provides a new query aboutM ′ orM , we go back to the

start of the execution. If not, the execution reaches an end. We provide an implementation forBranch
C using xclingo in Section 5.5.3.

If we cannot find a repair, we follow Branch D. Where we will provide the user with the reasons

for the unsatisfiability of the program P with respect to queryQ. To that aim, we need to provide an

unsatisfiability explanation, whyunsat(P ∪ {⊥ ← ¬Q}) answer. After that, if the user provides a
new query, we go back to the start of the execution. If not, the execution reaches an end.

For showing how Branch D can be implemented with xclingo please recall Section 4.2.7, where
we show how the tool can find reasons for explaining the unsatisfiability of a program, although the

definitions given inChapter 3 do not provide such a notion. As explained in Section 4.3.6, this is done

byfirst disabling the traced constraints, by addingnewauxiliary head atoms, thus becomingusual rules,

and then computing proof-like explanations for the auxiliary atoms derived from such rules. To define

this implementation, we could first define the program P ′ resulting in relaxing some constraints C
in P , by adding some arbitrary heads to the rules given by a function γ. More formally, let P be a

program such that SM(P) = ∅ andC be a set of of rules of the form⊥ ← B such thatC ⊆ P and

γ : C → H an injective function whereH is a set of atoms different from any atom used in P , then

(P ′, γ) = relax(P,C) where P ′ is the program resulting of replacing any rule r ∈ C ⊆ P of the

form⊥ ← B by a fresh rule r′ of the form γ(r)← B.

Thus, given (P ′, γ) = relax(P,C) where P is an unsatisfiable program and C a set of relaxed

constraints in P , and a model M ′ of P ′, a whyunsat(P) answer by xclingo is a set of proof-based
explanation that follows:

whyunsat(P) = {πG(p) | r ∈ C ∧G ∈ GP,M}

whereGP,M is the set of all explanations ofM underP . Intuitively, the answer is the set of all xclingo’s
proof-based explanations for the heads introduced for relaxing the constraints. Alternatively, abstrac-

106 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

tion [90]methods couldbeused to identify theparts of theprogram for catchingunsatisfiability reasons
of programs as explained in [89]. The identified abstraction of the program could be provided as an ex-

planation, thus being considered as a technical explanation. Or perhaps that abstraction could be used

for generating some kind of proof-like explanation. Finally, another option would be using the notion

of (minimal)Unsatisfiability Core [103] to find a set of assumptions that lead to an unsatisfiable result.

Again, the set of assumptions could be considered the explanation of the unsatisfiability or could be

exploited to produce proof-like explanations, by the use of an explanation ASP tool. This approach

has been tested using xclingo in [83], for obtaining natural language explanations for configuration

problems.

5.5.3 Counterfactuals in xclingo

A counterfactual “asserts that if the world had been different in certain specified ways, then things would
have been different in other specified ways”. Following this definition from Judea Pearl [80], we can

easily see how Branch C is indeed a counterfactual. We face a world where Q does not hold (in any

solution), so we imagine a different world where queryQ is possible. In particular, we are interested in

the closest possible hypotheticalworld, that is the one thatweneed the fewest changes to bemade to get

it. In this section, we show how to perform this counterfactual reasoning, and to obtain explanations

for it using xclingo. To do so, we refer back to an example that we have mentioned several times in this

thesis.

Recall Program 4.2 and consider now its variation in programs 5.6 and 5.7.

1 person(gabriel).
2 person(clare).
3

4 drive(gabriel).
5 drive(clare).
6

7 alcohol(gabriel, 40).
8 alcohol(clare, 5).
9

10 resist(gabriel).

Program 5.6: Data for gabriel and

clare.

1 %!trace_rule {"% drove drunk (over 30mg/l)", P}.
2 punish(P) :- drive(P), alcohol(P,A), A>30, person(P).
3

4 %!trace_rule {"% resisted to authority", P}.
5 punish(P) :- resist(P), person(P).
6

7 %!trace_rule {"% is innocent by default",P}.
8 sentence(P, innocent) :- person(P), not punish(P).
9

10 %!trace_rule {"% has been sentenced to prison", P}.
11 sentence(P, prison) :- punish(P).

Program 5.7: Rules for being punished and sentenced.

The laws for punishing and sentencing persons in Program5.7 are thewith respect to Program4.2.

On the contrary, the data talking about clare and gabriel does change in Program 5.6 in the sense that

we removed the choice deciding wether gabriel resists authority or drinks too much alcohol. Now,

both things are true, so the program only has one answer set, where clare is innocent, and gabriel has
two alternative reasons for going to prison shown in Output 5.6.

Imagine now a user receives this output from a system implementing the methodology presented

in Section 5.5. This user expected clare to be sentenced to prison, so immediately asks for another

possibleworldwhere queryQ, sentence(clare, prison) is true. This isBranch B. However, this is not

possible given the current events (i.e. given the facts provided in Program 5.6 there is only one answer

set). The system informs of this and starts to imagine different scenarios (i.e. changing the actual facts),

5.5. ANSWERINGDIFFERENT TYPES OF CAUSAL QUERIES 107

1 ##Explanation: 1.1
2 *
3 |__"gabriel has been sentenced to prison"
4 | |__"gabriel drove drunk (over 30mg/l)"
5

6 *
7 |__"clare is innocent by default"

1 ##Explanation: 1.2
2 *
3 |__"gabriel has been sentenced to prison"
4 | |__"gabriel resisted to authority"
5

6 *
7 |__"clare is innocent by default"

Output 5.6: Output by xclingo for programs 5.6 and 5.7 when we ask to explain sentences for clare

and gabriel.

trying to find the least set of changes that need to be made so clare enters prison. Therefore, entering
in Branch C.

This implies performing abductive reasoning about what gabriel and clare did (or did not), so

that the user’s expected situation would have happened. For instance, by considering a scenario where

gabriel had not resisted authority, forgetting events that occurred, or envisioning clare consuming

enough alcohol to be punished, reflecting on hypothetical situations. This abductive reasoning is per-

formed by Programs 5.8.

1 %%% addable
2 _abducible(alcohol(clare, 35)). _abducible(resist(clare)).
3

4 %%% removable
5 _abducible(drive(gabriel)). _abducible(drive(clare)).
6 _abducible(alcohol(clare, 5)). _abducible(alcohol(gabriel, 40)).
7 _abducible(resist(gabriel)).
8

9 {_abduced(add,A): not model(A)} :- _abducible(A).
10 {_abduced(rm,A): model(A)} :- _abducible(A).
11 #minimize{1,A: _abduced(T,A)}.

Program 5.8: Performing abduction over the events for imagining different worlds.

It is assumed that the system is somehowprovidedwith a set, indicatingwhich atoms are abducbile.
This could be fixed or dynamically specified by the user depending on the application. In the case of

xclingo, this could be easily implemented in the form of a, say, %!abducible annotation, that would
work as the other two annotations that define sets over atoms (i.e. trace and mute). For instance here,
driving, drinking and resisting are abducible, but person is not included as an abducible predicate. The
choice rules in lines 9 and 10 generate the different abduced atoms. In particular, the first one abduces

atoms that are not in the referencemodel (i.e.M in Figure 5.11 from Section 5.5), this is _abduced(add,
A). Whereas the second one abduces atoms that are true in the model, respectively _abduced(add, A).
Note that model(A) represents the _xclingo_model predicate explained in section 4.3.1. Finally, the

#minimize in the last line, ensures we find the closest hypothetical world possible.

Now, to connect the rules back to the punish and sentence rules in Program 5.7, we use the rules

in Program 5.9. Intuitively, we take atoms that were in themodel and not removed and those that were

not in the model and abduced. The programs from figures 5.7, 5.9 and 5.9 form our program P ′ in
our methodology (Figure 5.11).

108 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

1 model(person(gabriel)). model(person(clare)).
2 model(drive(gabriel)). model(drive(clare)).
3 model(alcohol(gabriel, 40)). model(alcohol(clare, 5)).
4 model(resist(gabriel)).
5

6 person(P) :- model(person(P)), not _abduced(rm, person(P)).
7 person(P) :- _abduced(add, person(P)).
8

9 drive(P) :- model(drive(P)), not _abduced(rm, drive(P)).
10 drive(P) :- _abduced(add, drive(P)).
11

12 alcohol(P, A) :- model(alcohol(P, A)), not _abduced(rm, alcohol(P, A)).
13 alcohol(P, A) :- _abduced(add, alcohol(P, A)).
14

15 resist(P) :- model(resist(P)), not _abduced(rm, resist(P)).
16 resist(P) :- _abduced(add, resist(P)).

Program 5.9: Rules connecting the abduced facts back to the usual predicates.

Finally, we need to put together our query Q and our new program P ′. Recalling Branch C of

Figure 5.11, we are only interested in hypothetical worlds (M ′) such that the query is true (i.e. M ′ |=
Q). In other words, the program that we want to solve is P ′ ∪ {⊥ ← ¬Q}. Thus, we include a
constraint forcing the query in Program 5.10, as well as some annotations for xclingo.

1 :- not sentence(clare, prison).
2 %!show_trace {sentence(clare, S)}.
3 %!trace {_abduced(add,A), "_abduction_ Had % held", A}.
4 %!trace {_abduced(rm,A), "_abduction_ Hadn't % held", A}.

Program 5.10: Introducing queryQ

By putting the four pieces of code together and calling xclingo, we obtain the output in Out-

put 5.7.

1 Answer: 2
2

3 ##Explanation: 2.1
4 *
5 |__"clare has been sentenced to prison"
6 | |__"clare drove drunk (over 30mg/l)"
7 | | |__"_abduction_ Had alcohol(clare,35) held"
8

9 ##Total Explanations: 1

1 Answer: 3
2

3 ##Explanation: 3.1
4 *
5 |__"clare has been sentenced to prison"
6 | |__"clare resisted to authority"
7 | | |__"_abduction_ Had resist(clare) held"
8

9

10 ##Total Explanations: 1

Output 5.7: Output from xclingo for programs 5.7, 5.9, 5.9 and 5.10 together, implementingBranch
C from Figure 5.11.

This implementation finds two alternative hypothetical worldswhere clare goes to prison, namely

one in which she resists authority and one where she drinks toomuch alcohol. The worlds found only

add those both atoms (i.e. alcohol(clare, 35) resist(clare)) due to theminimize. As a final remark,

5.5. ANSWERINGDIFFERENT TYPES OF CAUSAL QUERIES 109

the option –opt-mode=optN has to be introduced when using xclingo for obtaining both minimal hy-

pothetical models.

110 CHAPTER 5. COMMONSENSE EXPLANATIONSWITH XCLINGO

Chapter 6

Related Work

The topic of explainability in ASP has been exploredwith a growing interest over the last decade. Only

5 years after the publication of the survey [48], new systems have arisen and some existing approaches

have evolved.

In this chapter, we review some of the most relevant approaches of the literature on ASP explana-

tions, including formalisms and tools. Wemake a comparison between each approach and ours under

triple lens. First, we compare the mathematical objects that support the different definitions of ex-

planation. Second, for those approaches that provide usable tools, we compare their functionalities

against each other and against xclingo. Third, wherever possible, we compare the approaches in terms

of the possibility of obtaining commonsense explanations.

6.1 Causal Graphs

Causal Graphs (c-graphs) [19, 49] introduce several concepts that have served as the basis for most of

the work explained in this dissertation. More precisely, the concept causal graphs are graph-like expla-
nations that serve as the basis behind the idea of support graphs. Indeed xclingo started as a partial

implementation of causal graphs to obtain causal explanations from labeled logic programs. Causal

graphs act as the semantics for Causal Terms and Causal Values that provide algebraic expressions to
represent and evaluate causes (i.e. the graphs) whose properties create a distributive complete lattice.

They provide a causal semantics that extends stable models, answer sets and well-founded models, and
defineCausal Literals showing how they can be applied to derive causal information for standard logic

programs.

Both definitions, causal graphs and support graphs, start from the concept of Labeled Logic Pro-
grams, introduced in [19],where each rule in the program is labeled and causes are represented as graphs

so that the vertices are those rule labels. Let us start by illustrating causal values’s algebraic expressions

to represent these graphs. To this aim, product (*) and application (·) are used to represent the edges
of a graph. In particular, (*) captures the idea that several causes need to work together to cause an

effect, while (·) captures the idea of causal chain. For instance, the following graph (first introduced in
Figure 3.1) can be represented by the expression below:

ℓ1 : p //
((

ℓ2 : q // ℓ3 : r

112 CHAPTER 6. RELATEDWORK

ℓ1 · ℓ3 ∗ ℓ1 · ℓ2 · ℓ3
Furthermore, the sum (+) operator can be used for separating alternative causes. Thus, the following

graphs (initially introduced in Figure 4.1), can be represented by the expression below:

ℓ1 : resist(gabriel)

��
ℓ4 : punish(gabriel)

ℓ2 : alcohol(gabriel, 40)

((

ℓ3 : drive(gabriel)

��
ℓ5 : punish(gabriel)

ℓ1 · ℓ4 + (ℓ2 ∗ ℓ3) · ℓ5
Note that, while in support graphs each graph explains the whole model and we have a different graph

for each alternative explanation, here a unique causal value expression captures all alternative explana-

tions for ℓ5 regarding the same answer set. This is the first difference between both approaches.

Moreover, these expressions fulfill several properties so that they form a distributive complete lat-

tice. Inparticular, these properties are detailed inFigures 13 to 16 from [49]. Following these properties,

we can perform interesting equivalences between causal values. For instance, the following holds:

ℓ1 · ℓ4 + (ℓ2 ∗ ℓ3) · ℓ5 = ℓ1 · ℓ4 + (ℓ2 · ℓ5) ∗ (ℓ3 · ℓ5)

Furthermore, regarding the first example, we can establish the following equivalence,

ℓ1 · ℓ3 ∗ ℓ1 · ℓ2 · ℓ3 = ℓ1 · ℓ2 · ℓ3

where one of the joint causes is subsummed by the other (stronger) cause. This constitutes a second

difference with respect to support graphs, where having this property would mean removing the edge

(ℓ1, ℓ3) in the graph.

Let us now introduce the different notions of graphs proposed by Fandinno et al. and how they

relate to causal values and support graphs. Consider for instance Program 3.3 from [49] as an example

(see Program 6.1).

b : bomb ← open s : wireless
u : open ← up(a), up(b) y : wireless

l(L) : up(L)← wireless

Program 6.1: Program 3.1 from [49].

In the example, a suitcase containing abombcanbe activatedby awirelessmechanism that flips two

locks (up(a), and up(b)), causing the bomb to explode. The mechanism is activated simultaneously

by two different remote controls s and y. The causal value cvbomb for b is:

cvbomb = ((s+ y) · l(b) ∗ (s+ y) · l(a)) · u · b

6.1. CAUSAL GRAPHS 113

Which can be rewritten in Disjunctive Normal Form (DNF), that is, as a sum of terms using only (*)

and (·):
cvbomb = s · (l(a) ∗ l(b)) · u · b+

y · (l(a) ∗ l(b)) · u · b+
(s · l(a) ∗ y · l(b)) · u · b+
(y · l(a) ∗ s · l(b)) · u · b

Each term in the expression of a causal value in DNF form is defined by Fandinno et al. as a Sufficient
Cause.

Recalling Definition 3.2 from [49], causal graphs are sets of edgesG ⊆ Lb × Lb transitively and
reflexively closed, where Lb is the set of labels from a logic program. For instance, Figure 6.1 depicts

the c-graphs corresponding to the four possible proofs for atom bomb in Program 6.1.

s

�� ��
l(a)

��

l(b)

��
u

��
b

y

�� ��
l(a)

��

l(b)

��
u

��
b

s

��

y

��
l(a)

��

l(b)

��
u

��
b

y

��

s

��
l(a)

��

l(b)

��
u

��
b

CG1 CG2 CG3 CG4

Figure 6.1: C-graphs corresponding to the four different proofs of atom bomb in (labeled) Program6.1.

Whose corresponding causal values would be:

cv1 = s · (l(a) ∗ l(b)) · u · b cv3 = (s · l(a) ∗ y · l(b)) · u · b
cv2 = y · (l(a) ∗ l(b)) · u · b cv4 = (y · l(a) ∗ s · l(b)) · u · b

And the sum of all of them equivalates to cvbomb ,

cv1 + cv2 + cv3 + cv4 = cvbomb

meaning that they are the set of sufficient causes for b. Moreover, although the c-graphs (CG1, . . . , CG4)

in the figure correspond to the transitive and reflexive reductions of the real c-graphs, both the transi-

tivity and reflexivity properties are of great importance as they allow the graphs to be expressed as just

a set of edges, and thus establish an order ⊆ relation between them. Indeed, the four c-graphs from

the figure are ⊆-minimal, only differing in the presence of edges (s , l(a)), (s , l(b)), (y , l(a)) and
(y , l(b)). However, although the⊆-minimality between c-graphs is not enough to capture this, it is

clear that graphsCG3 andCG4 are redundant with respect toCG1 andCG2 .

To deal with this redundancy, Proof Graphs cgraph(π) are introduced as c-graphs that correspond
to a particular proof π of an atom obtained by first labeling each atom in the program and then form-

ing edges connecting: (1) subproof consequences with proof (i.e. rule) labels; and (2) these labels in

turn with its corresponding consequent’s atom label. For instance, consider the Proof Graphs for atom
bomb depicted in Figure 6.2.

114 CHAPTER 6. RELATEDWORK

s

��
wireless

�� ��
l(a)

��

l(b)

��
up(a)

��

up(b)

��
open

��
u

��
b

��
bomb

y

��
wireless

�� ��
l(a)

��

l(b)

��
up(a)

��

up(b)

��
open

��
u

��
b

��
bomb P

s

��

y

��
wireless

�� ��
l(a)

��

l(b)

��
up(a)

��

up(b)

��
open

��
u

��
b

��
bomb

PG1 PG2 PG3 ,4

Figure 6.2: Proof Graphs corresponding to the four different proofs of atom bomb in (labeled) Pro-

gram 6.1.

s : wireless

yy %%
l(a) : up(a)

%%

l(b) : up(b)

yy
u : open

��
b : bomb

y : wireless

zz $$
l(a) : up(a)

%%

l(b) : up(b)

yy
u : open

��
b : bomb

SG1 SG3

Figure 6.3: Support Graphs for Program 6.1.

Note how PG1 and PG2 respectively correspond with CG1 and CG2 , whereas PG3 ,4 corre-

sponds to bothCG3 andCG4 . ARedundant Proof is then defined as a proof so that there exists an-
other proofwhose subproofs are a strict subset of the latter. This notion canbe easily captured in proof

graphs by⊆-minimality among their sets of edges. For instance PG3 ,4 is redundant (is a strict super-

set of) with respect to PG1 and PG2 . Finally, by only taking the non-redundant proof graphs (PG1

and PG2) and ignoring any atom vertex, we end up having CG1 and CG2 again. These two graphs

correspond to the support graphs we would obtain by applying the Definition 6 from Section 3.2 to

Program 6.1. They are shown in Figure 6.3.

In particular, SG1 and SG2 correspond to PG1 and PG2 respectively, and CG1 and CG2 re-

spectively. In contrast,PG3 ,4 ,CG3 andCG4 have no correspondant support graphs. This naturally

follows from the support graphs definition. In those three graphs two different rules (those labeled

with s and y) are used to give support to the same atom wireless (see PG3,4), which is not allowed

in support graphs by condition (i) of Definition 6. This establishes a (third) important difference be-

6.2. AND-OR EXPLANATION TREES ANDTREE EXPLANATIONS 115

tween support graphs and c-graphs, that is, the support graphs represent a subset of the Fandinno et

al’s sufficient causes.

Also regarding thedefinitionof support graphs, note that c-graphs are onlydefined fornon-disjunctive

programs whereas our approach handles disjunctive programs. In contrast, support graphs only con-

sider programs with a unique labeling for the rules, that is, the labels act as rule identifiers. Meanwhile,

in c-graphs one can repeat labels among rules, meaning that the same label can justify different atoms.

Finally, and also related to that, in c-graphs we can also filter irrelevant information out from the expla-

nations. This is done by labeling the rules with a 1, which is the neutral element in the causal values.

After simplifying the expressions, the labels disappear, but the transitive causal connections are pre-

served, just as it happens in support graphs with the forgetting operation (see Definition 10).

6.2 And-Or Explanation Trees and Tree Explanations

In [45], Erdem and Öztok developed a system for query answering and explanation of biomedical

queries. The queries are stated in a controlled natural language called BioQuery-CNL* [46, 78] and
translated into ASP programs. Biomedical knowledge is extracted from RDF ontologies and then

translated into an ASP program [13, 40]. The query is answered by solving the ASP program resulting

from the union of both the query encoding and the logic program. Besides, this system is incremented

with the embedding of a tool called ExpGen-ASP [43, 78] for generating natural language explanations

for the answers to the queries. This section studies the explanations generated by that system and its

relation to support graphs and causal graphs.

Extracting Shortest Explanations from And-Or Explanation Trees

In [45], the notion of explanation is defined as aVertexLabel Treewith respect to anASPprogramand a

particular answer set of that program. Vertices from those trees are labeled eitherwith the rules (namely

rule-vertices) from the program or the atoms (namely atom vertices) in the answer set. Resembling

causal proof graphs from [49] (see Section 6.1), they define a special case of vertex label trees called

and-or explanation trees (Definition 2 from [45]). In them, edges go from rule vertices to the atom

vertices whose corresponding atoms are supported by that particular rule, and then from the atoms

in the positive body of the rules to their corresponding rule vertices. Furthermore, they are defined

starting from a given atom p (belonging to the explained answer set), which labels the vertex in the

root of the tree. For instance, Figure 6.4 shows the and-or explanation tree obtained for atom bomb in
Program 6.1.

Note that each one of the two rules “wireless ←” supporting wireless atom vertex in both

branches of AOET1 come from different rules from Program 6.1, respectively labeled with s and

y. Since their representation does not start from labeled logic programs imagine, for the sake of the

comparison, that Program 6.1 is modified according to the following rules:

wireless ← s_wireless s_wireless ←
wireless ← y_wireless y_wireless ←

We draw these two labels here for clarity, although this representation of explanations does not start

from labeled logic programs. Intuitively, rule vertices are AND vertices whereas atom vertices are OR

116 CHAPTER 6. RELATEDWORK

bomb

��
bomb ← open

��
open

��
open ← up(a), up(b)

tt **
up(a)

��

up(b)

��
up(a)← wireless

��

up(b)← wireless

��
wireless

ss ��

wireless

�� ++
wireless← wireless_s

��

wireless← wireless_y

��

wireless← wireless_s

��

wireless← wireless_y

��
wireless_s ← wireless_y ← wireless_s ← wireless_y ←

AOET1

Figure 6.4: And-or explanation tree for atom bomb corresponding to Program 6.1 and its unique an-

swer set.

verticesmeaning that each supporting rule constitutes an alternative cause. In a sense, the and-or trees

contain every possible explanation for an atom with respect to a particular answer set. Indeed, they

define the notion of Explantion Treewhich are extracted from and-or explanation trees by (informally

speaking) visiting only one child for every OR vertex to produce several non-disjunctive trees each one
representing a particular explanation for the atom. This notion coincides with the relation between

causal values and sufficient causes from [49]. To illustrate this, Figure 6.5 shows the 4 explanation trees

that are obtained fromAOET1 .

Note how each explanation tree corresponds to one causal proof graph from Figure 6.2, but re-

placing the label of each rule vertex by the corresponding rule label in Program 6.1. In particularET1

corresponds toPG1 ,ET3 corresponds toPG2 , andET2 andET4 corrspond toPG4 . Additionally,

they include the notion of Explanation which results in ignoring rule vertex in each explanation tree,
removing them from the trees and leaving only the atom vertices. Again, this is a deletion in the same

sense that applying the forgetting operation from Definition 10. Finally, they introduce an ordering

among explanations based on the cardinality of the set V of vertex of each tree, defining as shortest
explanations those with the minimal number of vertex. The system ExpGen-ASP uses two different

algorithms (provided in [45]) to either generate one or (respectively) k shortest explanations.

Interestingly, the set of explanation trees obtained for a particular atom and answer set seems to

have a one-to-one correspondencewith the sufficient causes from [49]. In particular, explanations seem

to be a special case of proof graphs where the whole rule is introduced as a node in the graph, instead

of using a label that identifies the rule.

6.2. AND-OR EXPLANATION TREES ANDTREE EXPLANATIONS 117

bomb

��
bomb ← open

��
open

��
open ← up(a), up(b)

vv ((
up(a)

��

up(b)

��
up(a)← wireless

��

up(b)← wireless

��
wireless

��

wireless

��
wireless← wireless_s

��

wireless← wireless_s

��
wireless_s ← wireless_s ←

bomb

��
bomb ← open

��
open

��
open ← up(a), up(b)

vv ((
up(a)

��

up(b)

��
up(a)← wireless

��

up(b)← wireless

��
wireless

��

wireless

��
wireless← wireless_s

��

wireless← wireless_y

��
wireless_s ← wireless_y ←

ET1 ET2

bomb

��
bomb ← open

��
open

��
open ← up(a), up(b)

vv ((
up(a)

��

up(b)

��
up(a)← wireless

��

up(b)← wireless

��
wireless

��

wireless

��
wireless← wireless_s

��

wireless← wireless_s

��
wireless_y ← wireless_s ←

bomb

��
bomb ← open

��
open

��
open ← up(a), up(b)

vv ((
up(a)

��

up(b)

��
up(a)← wireless

��

up(b)← wireless

��
wireless

��

wireless

��
wireless← wireless_y

��

wireless← wireless_y

��
wireless_y ← wireless_y ←

ET3 ET4

Figure 6.5: The four Explanation Trees obtained fromAOET1 depicted in Figure 6.4.

118 CHAPTER 6. RELATEDWORK

Relevant Part of a Program Concerning a Query

One important trait of the approach followed by Erdem andÖztok [45] is that, for obtaining explana-

tions for an atom p, they start from the relevant part of the programwith respect to p. In other words,
they discard those rules in the program that are not useful for answering queries about p, thus linearly
reducing the computation time for processing such queries. The particular method to identify the

relevant rules is given in [43]. The intuition is to find the reachable symbols in the Predicate Depen-
dency Graph from [12] of the given program π (namely DG(π)) starting from atom p. Any rule in
the original program π whose head contains a reachable atom is part of the relevant set of rules, where

reachability is considered as the transitive closure overDG(π).

Although the notion of support explanation graphs given in Chapter 3 does not include any no-

tion of relevance of a labeled logic program, the xclingo uses a similar technique, as explained at the

beginning of Section 4.3.4.

Explanation Design with ExpGen-ASP

As for xclingo and most of the explanation tools for ASP, the structure of the explanations obtained

from ExpGen-ASP fundamentally emerges from (and its binded to) the rules of the particular ASP

program. Although, Erdem and Öztok’s definition of explanation is neither explicitly built from nor

related to any notion of derivation or proof, their tree structure resembles one. Indeed, we have already

seen how a one to one correspondence can be established to the proofs extracted from a support graph,

and thus to Modus Ponens derivations following Proposition 2.

In [45] and [78], the authors mention the possibility of expressing the explanations in natural lan-

guage. This feature has been added to the ExpGen-ASP tool as a way to facilitate the understanding

of explanations obtained for particular queries, providing. Figure 6.6 shows an example of a natural

language explanation of a shortest explanation for a particular query.

1 The distance of the gene CASK from the start gene is 2.
2 The gene CASK interacts with the gene DLG4 according to BioGRID.
3 The distance of the gene DLG4 from the start gene is 1.
4 The gene DLG4 interacts with the gene ADRB1 according to BioGRID.
5 ADRB1 is the start gene.

Figure 6.6: An example of a natural language explanation (from [45]) produced by the BioQuery-ASP

system after the embedding of the ExpGen-ASP system. The explanation ismeant to explain the query

“What are the genes that are related to the gene ADRB1 via gene-gene interaction chain of length atmost
3?”. The answer to the query is “CASK”.

Resembling how xclingo displays the information, the text is structured in different levels of in-

dentationwhere each new indentation can be read as a “because”. To generate such text, the tool allows

the user to define a set of template-like natural language expressions that are associated with particular

predicates. According to [45], this table is not meant to define a text for every predicate used in the

explanations and thus, only some of the vertices have an associated text. They also mention that a pre-

order depth-first traversal of the trees collects such vertices and, from that, the text is then built using

the look-up table, although this process is not detailed. From the results shown, it could be assumed

6.3. S(CASP) 119

that verticeswithout text are ignoredor forgotten in a similarway that xclingodealswithnon-annotated
atoms (that is, following the forgetting operation defined in Definition 10).

This feature provides the KR-engineer with some flexibility to design explanations. However, it

seems the text templates can only be defined at a predicate level, that is, all the atoms from a particular

predicate are associated with the defined text (see Table 4 from [45]). Of course, this proves to be

sufficient to deal with the particular case of answering biomedical queries. However, it may lack the

expressiveness needed to conveniently design accountable explanations for other real case scenarios

such as problem-solving, planning or diagnosis where, under particular KR representations, atoms

belonging to the same predicate could need to be ignored or not, or may need to be associated with

different texts. In Chapter 5, we have shown the impact of the use of such explanation design features

when trying to fulfill end-user explanation needs.

6.3 s(CASP)

Minimal s(CASP) Justification Trees

The system s(ASP), presented in [70], introduces a method for computing stable models of a normal

logic program without requiring it to be grounded. Therefore, several additional properties emerge

such as the use of variables that may range over infinite domains or the use of complex data struc-

tures like lists. s(CASP) [9] represents an incremental enhancement of s(ASP), extending it with Con-

straint ASP programs. The evaluation method is a query-driven (goal-directed) execution and back-

ward chaining that computes partial answer sets. For instance, consider Program 6.2 taken from the

s(CASP) tutorial in [10].

1 opera(saturday) :- not home(saturday).
2 home(saturday) :- not opera(saturday).
3 dinner(sunday).
4

5 ?- opera(D).

Program 6.2: Example 4 from [10].

This program has two answer sets, namely A1 = {dinner(sunday), opera(saturday)} and
A2 = {dinner(sunday), home(saturday)}. The clause starting with ?- in line 5 represents the

query that s(CASP) has to find an answer for, although the tool can be queried on the fly if called in

interactive mode. For the query opera(D) and Program 6.2, s(CASP) returns the one partial answer

set {nothome(saturday), opera(saturday)}. A partial answer set can be defined as a subset of an

answer set of the program that contains only what is needed to answer a given query. Note that a

partial answer set potentially represents or relates to several (always at least one) answer sets. For this

particular case, it relates only to the original answer setA1 for which it is true that opera(saturday) ∈
Aiandhome(saturday) /∈ Ai. Also note that dinner(sunday) is not present in the partial answer
set, although it belongs both toA1 andA2, because it is not relevant for answering query opera(D).

Another important difference with respect to other ASP systems that also emerges from this top-

down evaluation method is that safety does not need to be ensured anymore, that is, variables used in

120 CHAPTER 6. RELATEDWORK

the scope of default negated atoms not p(X) do not need to appear in any positive literal. For instance,
consider Program 6.3 taken from Example 7 from [10].

1 opera(X) :- not home(X).
2 home(X) :- not opera(X).
3 home(monday).
4

5 :- baby(D), opera(D).
6

7 baby(tuesday).
8

9 ?- opera(D).

Program 6.3: Example 7 (and Figure 1) from [10].

This program cannot be grounded by a solver like clingo, due to the unsafety of variable X in lines
1 and 2. However, for query opera(D), s(CASP) produces the following partial answer set.

{baby(tuesday), home(tuesday), not opera(tuesday),

not baby(_|{_ /∈ [tuesday]}),
not home(D|{D /∈ [monday,tuesday]}),
opera(D|{D /∈ [monday,tuesday]})}

Note how, for instance, the literal not home(D | {D /∈ [monday,tuesday]}) is defined in terms of

the set of values variable D cannot be bound to. This may happen as well with positive literals like

opera(D | {D /∈ [monday,tuesday]}).
Additionally, s(CASP) counts with the capacity to produce natural language explanations for the

results of the queries [8]. Authors call these explanationsMinimal s(CASP) Justification Trees. These
trees are constructed by recording the literals in the path of a successful goal-driven proof of a given

query. They are obtained togetherwith the answer of a querywhen the option –tree is enabled. Unlike
support graphs and the rest of previously commented approaches, that obtain explanations using an

answer set as a startingpoint, s(CASP) justifications are sowith respect to aparticular partial answer set.

For Program 4.1, using xclingo’s option –auto-tracing=all and the following show_trace annotation,

%!show_trace sentence(P,S) :- sentence(P,S).

we obtained the explanations inOutput 4.7. Since s(CASP) does not share the syntax for clingo choice
rules, the loop in Figure 6.7 can be introduced instead to create the three scenarios of Program 4.1, in

order to compare the explanations of both systems.

This introduces new predicates w1, w2 and w3 that, of course, will affect the explanations. For in-
stance, Output 6.1 shows the justification that s(CASP) provided accompanying the first answer for

the query ?- sentence(P,S).
The output is divided into three parts starting by showing the justification tree, then providing the

partial answer set and finally the bindings for the query’s free variables. The justification is shown in a

similar way as xclingo proof for an atom, where the subsequent proofs (or reasons) for each atom are

implicitly indicated by the level of indentation in the text, and in the s(CASP) case explicitly shown

by the← and the ∧ symbols. The second part of the explanation relates to the justification of the

6.3. S(CASP) 121

1 %1{alcohol(gabriel, 40); resist(gabriel)}.
2 w1 :- not w2, not w3.
3 w2 :- not w1, not w3.
4 w3 :- not w1, not w2.
5 alcohol(gabriel, 40) :- w1.
6 resist(gabriel) :- w2.
7 alcohol(gabriel, 40) :- w3.
8 resist(gabriel) :- w3.

Figure 6.7: Loop introduced in Program4.1 to replicate the effect of the choice rule commented in line

1 (originally in line 6).

1 % Justification
2 query ←
3 sentence(gabriel,prison) ←
4 punish(gabriel) ←
5 drive(gabriel) ∧
6 alcohol(gabriel,40) ←
7 w1 ←
8 not w2 ←
9 chs(w1) ∧
10 not w3 ←
11 chs(w1) ∧
12 40>30 ∧
13 person(gabriel) ∧
14 o_nmr_check ←
15 not o_chk_1 ←
16 proved(not w2) ∧
17 proved(not w3) ∧
18 proved(w1) ∧
19 not o_chk_2 ←
20 proved(w1) ∧
21 not o_chk_3 ←
22 proved(w1).
23 % Model
24 { punish(gabriel), sentence(gabriel,prison)}
25 % Bindings
26 P = gabriel,
27 S = prison

Output 6.1: Oneof the justifications providedby s(CASP) to for Program4.1 after replacing the choice

rule by the loop in Figure 6.7

122 CHAPTER 6. RELATEDWORK

global constraints predicate (namely o_nmr_check). Those are constraints introduced by the s(CASP)

compiler to ensure the partial models are consistent with the user’s explicitly written constraints but

also with loops (see Loop Handling in [7]) as happens in the code shown in Figure 6.7. For the sake

of the comparison, the parts of the justifications concerning the introduced loop (namely the global

constraint justification and any allusions to literals w1, w2 and w3) will be omitted from now on.

To obtain all the justifications we can use the Command 6.1,

scasp –tree -s0 –query="sentence(P,S)" dont_drive_drunk.lp (Command 6.1)

where the option -s0 tells the system to obtain all the possible partial answer sets for the query, simi-

larly to -n option in clingo and xclingo. For such command, s(CASP) obtains the minimal s(CASP)

justification trees shown in Figure 6.2.

It must be mentioned that the exact output of s(CASP) has been summarized for brevity: the par-

tial models and the particular bindings for the variables that accompany the justifications have been

removed from this and any subsequent output. When comparing these justifications to other ASP ex-

plainability tools like xclingo, the reader must recall that they are not computed using either answer

sets or partial answer sets as a starting point, but they come naturally from the top-down evaluation

that s(CASP) performs to answer the queries. Although they do relate to a corresponding partial an-

swer set, one cannot (directly) tell whether two justifications belong to the samemodel or not. In other

words, one cannot tell whether both explanations refer to the same world (or solution) and so, are si-
multaneously valid or not. To know that for a group of justifications, it would be necessary to check

if their corresponding partial models and the global constraints justification that is being omitted here

are compatible. For instance, it is easy to see how each of the 7 justifications from s(CASP) relate to

each one of the explanations obtained by xclingo for the three answer sets, with the exception of Justi-
fication 6 (in Output 6.2), that corresponds with both explanations of sentence(clare, innocent) in
Answer 3 (in Output 4.7) In contrast, in Output 4.7 obtained from xclingo, alternative explanations
corresponding to the same solution are shown together (like in Answer 3 of Output 4.7).

Except for the justifications concerning clare, the appearance and the structure of both systems’

tree justifications/explanations resemble almost the same. A difference is that, when justifying that

a person drove drunk (respectively not drunk) the fact that her alcohol level is above the threshold

(respectively below) is included. But, by far, the greatest difference is that s(CASP) includes the ex-

planation of the default negated literal not punish(clare), to justify sentence(clare, innocent). In
justifications 5, 6 and 7, clare is justified to be innocent because (summarizing) she did not resist au-

thority and she was not drunk while driving (namely, her alcohol level was lower than 30).

Number of generated explanations

By executing Program4.6, introduced in Section 4.2.5, as it happenswith support graphs and xclingo,
this leads to an exponential number of explanations (that is, the worst case) when explaining any sig-
nal/1 atom. For instance, by querying the atom signal(5), s(CASP) obtains a total of 25 = 32
different explanations. This is also the number of causal graphs and Tree Explanations generated by

Fandinno et al.’s and Erdem et al.’s approaches respectively. Output 6.3 shows one of the 32 explana-

tions obtained.

Another important similarity with respect to our approach is that, within the same explanation,

the reasons for each atom are fixed. That is, if an atom appears as a cause several times within an ex-

6.3. S(CASP) 123

1 % --------------- Answer 1 (0.000 sec)
2 query ←
3 sentence(gabriel,prison) ←
4 punish(gabriel) ←
5 drive(gabriel) ∧
6 alcohol(gabriel,40) ←
7 w1 ←
8 40>30 ∧
9 person(gabriel)
10

11 % --------------- Answer 2 (0.000 sec)
12 query ←
13 sentence(gabriel,prison) ←
14 punish(gabriel) ←
15 drive(gabriel) ∧
16 alcohol(gabriel,40) ←
17 w3 ←
18 40>30 ∧
19 person(gabriel)
20

21 % --------------- Answer 3 (0.000 sec)
22 query ←
23 sentence(gabriel,prison) ←
24 punish(gabriel) ←
25 resist(gabriel) ←
26 person(gabriel)
27

28 % --------------- Answer 4 (0.000 sec)
29 query ←
30 sentence(gabriel,prison) ←
31 punish(gabriel) ←
32 resist(gabriel) ←
33 w3 ←
34 person(gabriel)
35

36 % --------------- Answer 5 (0.000 sec)
37 query ←
38 sentence(clare,innocent) ←
39 person(clare) ∧
40 not punish(clare) ←
41 drive(clare) ∧
42 not alcohol(clare,A | {A /∈ [5]}) ∧
43 proved(drive(clare)) ∧
44 alcohol(clare,5) ∧
45 5=\30 ∧
46 not resist(clare)
47

48 % --------------- Answer 6 (0.000 sec)
49 query ←
50 sentence(clare,innocent) ←
51 person(clare) ∧
52 not punish(clare) ←
53 drive(clare) ∧
54 not alcohol(clare,A | {A /∈ [5]}) ∧
55 proved(drive(clare)) ∧
56 alcohol(clare,5) ∧
57 5=<30 ∧
58 not resist(clare)
59

60 % --------------- Answer 7 (0.000 sec)
61 query ←
62 sentence(clare,innocent) ←
63 person(clare) ∧
64 not punish(clare) ←
65 drive(clare) ∧
66 not alcohol(clare,A | {A /∈ [5]}) ∧
67 proved(drive(clare)) ∧
68 alcohol(clare,5) ∧
69 5=<30 ∧
70 not resist(clare)

Output 6.2: Explanatory output obtained by s(CASP) for Program 4.1 after replacing the choice rule

by the loop in Figure 6.7.The output was obtained by executing Command 6.1. The justifications

explain the query sentence(P,S).

124 CHAPTER 6. RELATEDWORK

1 query ←
2 signal(5) ←
3 fire_b(4) ←
4 signal(4) ←
5 fire_b(3) ←
6 signal(3) ←
7 fire_b(2) ←
8 signal(2) ←
9 fire_b(1) ←
10 signal(1) ←
11 fire_b(0) ←
12 signal(0).
13 % Model
14 { fire_b(0), fire_b(2), fire_b(4), signal(1), signal(3), signal(5),
15 fire_b(1), fire_b(3), signal(0), signal(2), signal(4)
16 }

Output 6.3: One of the 32 explanations from the output of s(CASP) for Program 4.6. The query is

signal(5).

planation, its explanation (the subtree hanging from it) is the same in all its appearances. For instance,

consider again Program 6.1. In the case of s(CASP) it generates only two explanations where the cause

for both up(a) and up(b) is the same wireless (or s, or y). This coincides with the number of support

graphs (and therefore with the explantions obtained via xclingo), the⊆ −minimal causal graphs from

Fandinno’s and the shortest explanation trees obtained by Erdem et al.

Explanation Design with s(CASP)

In terms of explanation design, s(CASP) provides tools for controlling the filter in which information

is present in the justifications and also ways to generate natural language explanations.

Concerningfiltering, theoptions that s(CASP)providesmainly focusoncontrollingwhichnegated

literals should be justified. To that aim, the user can make use of several command line options (ex-

plained in [7] and [10]), including:

• short: shows the negated literals selected with #show directives.

• mid: adds the rest of user-defined predicates (positive and/or classically negated).

• long: generates the complete s(CASP) justification tree, including auxiliary predicates.

In newer versions of s(CASP) (with respect to [10]), there also exists the option pos which removes

negated literals from the tree, but preserves the positive par of the subgraph hanging from them. For

instance, the execution of Command 6.2, makes Justification 5 (and thus, also 6 and 7) become what

we can see in Output 6.4.

scasp -s1 –pos –tree dont_drive_drunk_choice.lp –query="sentence(clare, S)" (Command 6.2)

Although not detailed, the result of this deletion resembles a forgetting operation (defined in Def-

inition 10) over the nodes of the tree that correspond to default negated literals. Indeed, the existence

of the long option reveals that this is done by default to hide all the internal s(CASP) predicates.

6.3. S(CASP) 125

Output 6.4: Output for Program 4.1 after replacing the choice rule by the loop in Figure 6.7. The

output was obtained by calling Command 6.2.

However, selecting a particular set of literals is not possible for now, which can become a problem

when dealing with causal domains and representations, as we argue in section 4.2.4. For instance, the

justification shown inOutput 6.4 could not be considered causally correct since being a person is not a

cause of being innocent. To be fair, in this particular case the literal person(P) could be removed from

any rule in Program 4.1 since s(CASP) does not need to ensure the safety of the variables, thus fixing

the issue. However, as it is explained in Section 4.2.4, the use of extensional rules as

person(S) :- student(S).

would still represent an issue.

Moreover, the system offers an automatic way to generate natural language explanations, like the

one shown in Output 6.5, through the use of the –human option.

scasp -s1 –tree –human dont_drive_drunk_choice.lp –query="sentence(gabriel, S)" (Command 6.3)

1 sentence holds for clare, and innocent, because
2 there is no evidence that punish holds for clare, because
3 there is no evidence that drove_drunk holds for clare, because
4 drive holds for clare, and
5 there is no evidence that alcohol holds for clare, and A not equal to 5, and
6 drive holds for clare, justified above, and
7 alcohol holds for clare, and 5, and
8 5 is less than or equal to 30
9 there is no evidence that resist holds for clare

Output 6.5: Output for Program 4.1 after replacing the choice rule by the loop in Figure 6.7. The

output was obtained by calling Command 6.3.

The explanation preserves the same indentation structure, replacing← and ∧ symbols with the

words because and and respectively. Besides, it collects the values from the literals and constructs natu-

ral language expressions that capture the original meaning of the replaced literals by using predefined

patterns like there is no evidence that <predicate name> holds for <value>. Except for the case that
user-unfriendly, cumbersome predicate names written by the KR engineer could be shown in the jus-

tification, this option is a very effectiveway ofmaking automatic technical explanationsmore accessible

without expending any effort in explanation design. It could also be highly useful during the explana-

tion design process itself. Throughout the explanation prototyping phase, these types of explanations

could be presented to the user to gather feedback and thus involve the user more easily in the design

process.

Finally, s(CASP) also gives the option to design the text templates that replace the literals in the

justification. This is done by the use of #pred directives, that target certain predicates and define a

custom text very similarly to how trace annotations work. For instance, Figure 6.8 shows some #pred
for Program 4.1.

126 CHAPTER 6. RELATEDWORK

1 #pred drive(P) :: '@(P) has driven'.
2 #pred alcohol(P, A) :: '@(P)\'s alcohol level is @(A)'.
3 #pred punish(P) :: '@(P) is punished'.
4 #pred resist(P) :: '@(P) resisted'.
5 #pred sentence(P,S) :: '@(P:person)\'s sentence is @(S)'.

Figure 6.8: Some #pred directives that associate some custom text to particular predicates.

1 the person clare's sentence is innocent, because
2 clare has driven, and
3 clare has driven, justified above, and
4 clare's alcohol level is 5, and
5 5 is less than or equal to 30

Output 6.6: Output for Program 4.1 together with #pred directives in Figure 6.8 after using Com-

mand 6.4.

These clauses are meant to be kept in a separate file, and the (Variable:Name) marks are used to

link the variable value to the text, where Name is used in the natural language patterns to build more

meaningful texts. Output 6.6 shows the effect of adding the directives as in Command 6.4.

scasp -s1 –pos –human –tree dont_drive_drunk.lp dont_drive_drunk.pred –query="sentence(clare, S)" (Command 6.4)

If compared with trace and trace_rule annotations, #pred directives provide less flexibility. They
operate solely at the predicate level, but not at the rule or atom (or literal) level. That is, either we

annotate all the literals belonging to a certain predicate or we annotate none. It is not possible to

restrict a custom text to the atoms derived from particular rules, nor to a subset of the literals based

on the values of their variables. This means that, except for predicates that appear only as the head

of one rule, the trace_rule annotation cannot be replicated. Even for trace annotations, some of the

original text annotations wewrote in the first examples (see Program 4.2) would need the introduction

of auxiliary artifacts to be replicated, for instance, those in Figure 6.9.

1 %!trace {punish(P), "% drove drunk", P} :- punish(P), resisted(P).
2 %!trace {punish(P), "% resisted authority",P} :- drive(P), alcohol(P, A), A > 30

Figure 6.9: Some xclingo annotations that cannot be replicated in s(CASP).

Interestingly, s(CASP) exhibits an also powerful feature that allows to generate a natural language-

based translation of the ASP code. This is related to Sartor et al.’s Logical English [64], for which there
is indeed an integration with s(CASP) [91]. The translation works similarly to the natural language

generation for justifications and uses similar patterns. Having such a tool for a declarative language

like ASP is of great importance, as it can help bridge the gap between the user world and the technical

worldBeyond the idea that the #preddirective or xclingo text annotations canbeused to sketch amean-

ingful description of the code and directly provide a natural language explanation of the specification

itself. That is, aiming not only to achieve accountable explanations but also to provide accountable

specifications.

6.4. OFFLINE JUSTIFICATIONS 127

6.4 Offline Justifications

Offline Justifications

The approach followedbyPontelli et al. [84, 85], develops a notion of justification of an atomunder the

ASP semantics. The proposed justifications take the form of labeled directed graphs that explain the

truth value of the atom (either true or false) with respect to an answer set and a set of assumptions. The

authors first define amore general notionof these structures calledOfflineExplanationGraph and then
specialize it to the concept ofOffline Justification. These are twonotions of graphs, the former allowing

positive cycleswhereas the latter no. It is important to remark that the definition firstly provided in [85]

was later updated in [100],where similar conceptswere devised, but under the names ofDerivaionPath
and Explanation Graphs respectively.

We start revising the notion of the explanation graph. Such graphs are defined with respect to a

program P , an answer setA, a set of atoms assumed to be false U and the atom to be explained a. A
vertex can be one of the following:

• A positive atom p labeled with + (from now on written p+). In other words, atoms that are

true w.r.t are the concerning answer set (i.e. p ∈ A).

• A (default) negative atom labeled with − (from now on written p−). That is, atoms that are

false w.r.t the concerning answer set (i.e. p /∈ A).

• Either one of the following three: ⊤ ,⊥, or assume.

Intuitively, ⊤ is used as a cause for facts, ⊥ is used as a cause for negative atoms (i.e. are not in A) so

there is no rule in P having such an atom in its head, and assume is used to give a cause for atoms inU
(i.e. those assumed as negative). Let the graph edges are tuples ⟨x, y, s⟩, where x is the source vertex, y
is the target vertex, and s ∈ {+,−, ◦} is the edge label. For each positive atom vertex x+, (only) one
rule r ∈ P supported byA is selected to draw edges ⟨x+, y+,+⟩ for each positive literal y in the body
of r; and ⟨x+, y−,−⟩ for each positive literal “not y” in the body of r. For each negative atom vertex

x−, (only) one rule r ∈ P not supported byA is selected to draw edges ⟨x−, y+,−⟩ for each positive
literal y in the body of r; and ⟨x−, y−,+⟩ for each positive literal “not y” in the body of r. For each
atom u ∈ U , an edge ⟨u−, assume, ◦⟩ is drawn. Finally, cycles are allowed over negative atoms but not

over positive atoms.

Reconsider now the following example Program 6.4 which modifies the previously shown Pro-

gram 6.1 (see Section 6.1), by introducing abnormal conditions that may prevent the bomb from ex-

ploding (see Figure 6.4). We include these new rules for illustrating the usage of default negation and

assumptionsU for this approach.

open ← up(a), up(b),not abnormal
abnormal ← wet abnormal ← battery

wet ← not battery battery ← not wet

Program 6.4: Some modifications applied to Program 6.1, now the bomb may not explode if it is wet

or if the battery fails.

128 CHAPTER 6. RELATEDWORK

For building the explanation graphs for atom bomb, a set of assumptions U is needed first. This

set of assumptions is computed with respect to to a corresponding answer setA. Program 6.4 has two

answer sets in neither of which the bomb explodes, in particular a first answer set such thatwet ∈ A1,

where the wetness prevents the explosion and a second answer set such that battery ∈ A2 where the

battery fails. In the case of answer setA1 = {wet ,wireless , up(a), up(b), abnormal} the only valid
set of assumptions isU = {battery}, for which we obtain the explanation graphs in Figure 6.10.

bomb−

+��
open−

+yy +��
−

%%
up(a)+

+��

up(b)+

+yy

abnormal+

+��
(s)wireless+

+��

wet+

−��
⊤ battery

◦
��

assume

bomb−

+��
open−

+yy +��
−

%%
up(a)+

+��

up(b)+

+yy

abnormal+

+��
(y)wireless+

+��

wet+

−��
⊤ battery

◦
��

assume

EG1 EG2

Figure 6.10: The two explanation graphs drawn according the definitions in [100], when the assump-

tion set isU = {battery}. Another two could be obtained when the assumption set is {wet}.

Note the labels (s) and (y) for the wireless atoms in the graphs. Although in the context of

this approach, rules are not labeled we include them for clarity when comparing the graphs with the

previously reviewed approaches.

The graph EG1 explains that atom bomb is false (i.e. is labeled with−) because it has a positive
dependency towards atom open which is negative. Then continues justifying that, although positive

dependencies with up(a) and up(b), which are both true, are met, the negative dependency with

abnormal which is not met since the atom is true. Then, abnormal is true because wet is true,
because battery is assumed to be false. Finally, up(a) and up(b) are both true because they have a

positive dependency with wireless which is true because it is a fact. The only difference w.r.tEG2 is

that the rule labeled with (y) is used to support the atomwireless instead of the rule labeled with (s).

The amount of explanations found for atoms up(a) and up(b) relate to Fandinno’s causal graphs
(Figure 6.1) andErdemet al. explanation trees (Figure 6.5) in the sameway that our approach’s support

graphs (Figure 6.3). This is because both approaches fix the rule for deriving atom wireless in their

definitions for the graphs, whereas the other two allow explaining the same atom with different rules

on different occurrences. In the case of positive programs, the explanations produced by this approach

and support graphs should coincide.

6.4. OFFLINE JUSTIFICATIONS 129

xASP2 System

Trien, Son, Pontelli andBalduccini [100] provide a tool called exp(ASP) that is inspired by offline justifi-

cations. Later in the same year, they provided an incremental version of this tool called exp(ASPc) [101]
which includes explanations for choice rules and aggregates.

One year later, Trien, Son and Balduccini [102], present a new tool called xASP which solves some

shortcomings of the previous tool. In the latest two publications [5, 6] a new version of this tool

called xASP2 is presented. This version includes explanations for new language extensions like con-

straints and also implements the explanation computation with a method involving the use of ASP

meta-programming. That is, like xclingo’s ad-hoc explainer program (see Section 4.3), it is a gener-

ated ASP program that computes the explanations for the original ASP program. In particular, the

meta-program used by xASP2 follows the approach described in [22].

As a tool, recall xASP2 is not an implementation of offline justifications since the explanations ob-

tained do not correspond to that definition, although it takes some inspiration for some aspects such

as the assumptions. The tool is provided as a Python package, publicly published on github
1
. Given

a program, a model and a set of atoms to explain, the tool provides an API with several endpoints

to compute (i) the minimal assumption set, (ii) the explanation sequences; and (iii) the explanation

graphs. Figure 6.11 illustrates the use of the Python API.

The minimal assumption sets and both the explanation DAGs and sequences are provided in the

formofASP atoms representing the assumptions or the edges of the graphs respectively. The generated

igraph corresponds to a generatedHTMLdepicts page that visually represents the graph and provides

some functionality like doing zoom-in or zoom-out on the graphs.

Consider the program dont_drive_drunk.lp again (see Program 4.1 in Section 4.2.1). Figure 6.12

shows the explanations obtained by xASP for the atoms sentence(clare, innocent) (left) and sen-
tence(gabriel, prison) (right). The explanations coincide with those obtained by xclingo with the
only difference of the inclusion here of the negative literal not punish(P) from rule in line 12 (of Pro-

gram 4.1 in Section 4.2.1). However, as offline justifications or s(CASP), the tool can also produce

explanations for atoms that are not true with respect to to the corresponding model. For instance,

Figure 6.13 shows the explanations for not bomb in Program 6.4 both with xASP and s(CASP).

Unlike its corresponding explanation graphEG2 from Figure 6.10 and the explanation obtained

by s(CASP), xASP just uses the literal preventing open to be derived (i.e. abnormal is true) to explain
that bomb is false. Note also that s(CASP) generates two explanations for answer setA1 corresponding

to the use of each of the two wireless rules for justifying atoms up(1) and up(2).

We will test now the explanations obtained by xASP for aggregates. To this aim, we will refer back

to Program 4.8. Since the version of the tool being reviewed in this dissertation does not support

recursion in aggregates, we need to rewrite the rule containing the #sum aggregate (see Program 6.5).

Each set in the original aggregate has been isolated in a rule deriving a common predicate __ag-
gregate_set/2 that is later used in line 2 to collect all the atoms participating in the aggregate. Rea-

sonable values for variable Sum need to be provided as value invention is not supported. Please take

this difference into account when comparing the output from xclingo in Output 4.13 against xASP’s
in Output 6.14

1https://github.com/alviano/xasp

https://github.com/alviano/xasp

130 CHAPTER 6. RELATEDWORK

1 from xasp.entities import Explain
2 from dumbo_asp.primitives import Model
3

4 with open("dont_drive_drunk.lp", "r") as rfile:
5 prog = rfile.read()
6

7 explain = Explain.the_program(
8 prog,
9 the_answer_set=Model.of_program(prog),
10 the_atoms_to_explain=Model.of_atoms("sentence(gabriel, prison)"),
11)
12

13 # explain.compute_minimal_assumption_set() # for computing the minimal assumption set

14 # print(explain.minimal_assumption_set())

15

16 # explain.compute_explanation_dag() # for obtaining the graphs

17 # print(explain.explanation_dag())

18

19 # explain.compute_explanation_sequence() # for obtaining the explantion sequence

20 # print(explain.explanation_sequence())

21

22 explain.compute_igraph() # for generating a html version of the graphs

23 print(explain.show_navigator_graph())

Figure 6.11: Python snippet of code for using xASP.

1 polluted_river(River) :-
2 river(River),
3 #sum{P: __aggregate_set(P,River)}=Sum,
4 Sum = 51..1000.
5

6 __aggregate_set(P1,River) :- entity(E, T), chemical(E, River, P1).
7 __aggregate_set(P2,River) :- river(River), entity(E, T), nutrient(E, rin, P2).

Program 6.5: Modification of Program 4.8. The rule containing the aggregate is rewritten for being

compatible with xASP.

6.4. OFFLINE JUSTIFICATIONS 131

Figure 6.12: Explanations obtained with xASP for Program 4.1. The explanation for sentence(clare,
innocent) is shown on the left side of the figure whereas the explanation for sentence(gabriel,
prison) is on the right side.

1 query <*\leftarrow*>
2 not bomb <*\leftarrow*>
3 not open <*\leftarrow*>
4 up(1) <*\leftarrow*>
5 wireless <*\land*>
6 up(2) <*\leftarrow*>
7 proved(wireless) <*\land*>
8 abnormal <*\leftarrow*>
9 wet <*\leftarrow*>
10 not battery <*\leftarrow*>
11 chs(wet).

Figure 6.13: Explanation obtained with xASP for Program 6.4 at the the left and by s(CASP) at the
right. Query is not bomb. The answer set being explained isA1 such that wet ∈ A1.

132 CHAPTER 6. RELATEDWORK

Figure 6.14: Explanation from xASP obtained for Program 6.5.

6.5. M-JUSTIFICATIONS ANDR-JUSTIFICATIONS FOR C-ATOMS 133

Although the structure of the explanation is not the same, we can see how, as in xclingo, all atoms

are used instead of including only a sufficient set.

Explanation Design with xASP

System x(ASP) is mainly thought for debugging in ASP, producing fully detailed technical explana-

tions. Some effort is made by providing an interactive environment where the graphs are depicted in

a browser. However, without any means of selecting particular information of interest for the user or

expressing the information in natural laguage means, the system is not able to produce accountable or

commonsense explanations.

6.5 m-justifications And r-justifications For C-Atoms
The recent approach by Eiter, Geibinger and Detsch [38, 39] proposes the use of Abstract Constraint
Atoms (c-atoms) [69] for extracting two different types of explanations. In particular, they propose two

different kinds of explanations, namelym-justifications, which explain the truth value of an atomwith

respect to a given model and r-justifications that proceed in a top-down fashion and take the whole

program into account as a chain of activated rules.

Their notions of explanations rely on programs containing c-atoms. With respect to a c-literal L,
intuitively, anm-justification forLwith respect to to a total model I as the smallest partial justification

J such that J ≤ I for which L is true. In other words, the smallest set of sufficient (positive and

negative) atoms in I needed to makeL hold.

Consider the following aggregate from Example 2 of [38],

#sum {2: a, 1: b; 1 : c} > 1.

that canbe represented as the c-atomCA1 = ⟨D1, C1⟩whereD1 = {a, b, c} andC1 = {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}
are respectively the domain and the satifiers of CA1 Then, following the definition, there exist two

partial interpretations for CA1, namely ⟨{a}, ∅⟩ meaning that atom a alone is sufficient for the ag-

gregate to hold, and ⟨{b, c}, ∅⟩meaning that atoms b and c are (together) sufficient as well. The only

m-justification for CA1 = ⟨D1, {∅, {b}, {c}}⟩, that is CA1 being false, is the partial interpretation

⟨∅, {a, c}⟩meaning that, in the case a and c are false, that is sufficient to know that the aggregate will

not hold.

This notion is of great importance for the discussion on how to explain aggregates. Previously in

Section 4.2.6 we introduced how xclingo explains aggregates. Also there, we commented on how the

notion of the sufficient causes of an aggregate could be useful in some cases. The particular imple-

mentation for achieving those explanations is explained in Section 4.3.2. The sufficient causes found

by this approach coincide with the example given in Section 4.2.6. In particular, for Program 4.8 m-

justifications for the aggregate checking if river rin is polluted are

⟨{chemical(b, rin, 60)}, ∅⟩

⟨{chemical(a, rin, 30),nutrient(b, rin, 30)}, ∅⟩

At the end of Section 6.4, we compare the output of xclingo and the xASP system regarding the expla-

nation of aggregates. Both systems gather all the participating atoms in the aggregate and incorporate

134 CHAPTER 6. RELATEDWORK

them into the explanations. However, it appears that current explainability ASP systems are miss-

ing a feature for extracting the sufficient causes of an aggregate. The concept of m-justification could

provide guidance for future implementations on how explainability systems should handle aggregate

explanations.

6.6 LABAS justifications

Assumption Based Argumentation (ABA) framework [15, 36] is a computational framework for de-

fault reasoning. The explanability approach by Schulz and Toni, called LABAS justification [93, 94,

95], leverages the notions of arguments and attacking trees from ABA frameworks. LABAS explains

the truth value of a literal for a given answer set and program. The original definitions are provided

with respect to the translation of a logic program into an ABA framework. Due to the correspon-

dence between a logic program and its corresponding translation [96], in the survey [48], Schulz and

Fandinno provide the correspondent definitions with respect to the original logic program. We will

use the definitions provided by the latter here.

We start from the (very general) notion of an argument for a literal l with respect to program P .

Intuitively, the argument of l is a finite tree where l corresponds to the root node and the rest are

literals from the program so that: (1) children of non-leaf nodes corresponding to positive literals h,
are the literals of a rule r ∈ P such that h is the head of r; and (2) fact literals and negative literals

are always leaf nodes. That is, an argument represents a derivation for a literal stopping only when

negative literals and facts are reached. Figure 6.15 shows arguments (displayed as a tree) for bomb and
abnormal literals with respect to Program 6.4.

bomb

open

up(a) up(b) not abnormal

(s)wireless (s)wireless

abnormal

wet

not battery

abnormal

battery

not wet

A1 A7 A10

Figure 6.15: ABA arguments for literals bomb and abnormal from Program 6.4.

Note that there exist other 3 arguments likeA1 but replacing any (s)wireless nodeby (y)wireless .
We will consider justA1 for the examples although we will clarify what would happen if we consider

the four arguments. Note that other arguments for other literals such as for instance open are a subtree

of one of those subtrees.

Arguments can also be denoted asA : (AP,FP) ⊢ lwhereA is a unique name for the argument,

AP is the set of assumptionpremises (i.e. the set of negated (leaf) literals in the argument),FP is the set

of fact premises (i.e. the set of positive (leaf) literals in the argument) and l is the literal the arguments

refer to. For instance, argument A1 can be denoted as A1 : ({not abnormal}, {(s)wireless}) ⊢
bomb. The rest of the arguments that are subtrees of those in Figure 6.15 are listed Figure 6.16.

6.6. LABAS JUSTIFICATIONS 135

A1 : ({not abnormal}, {(s)wireless}) ⊢ bomb A7 : ({not battery}, {}) ⊢ abnormal
A2 : ({not abnormal}, {(s)wireless}) ⊢ open A8 : ({not battery}, {}) ⊢ wet
A3 : ({}, {(s)wireless}) ⊢ up(1) A9 : ({not battery}, {}) ⊢ not battery
A4 : ({}, {(s)wireless}) ⊢ up(2) A10 : ({not wet}, {}) ⊢ abnormal
A5 : ({}, {(s)wireless}) ⊢ (s)wireless A11 : ({not wet}, {}) ⊢ battery
A6 : ({not abnormal}, {}) ⊢ not abnormal A12 : ({not wet}, {}) ⊢ not wet

Figure 6.16: Abbreviated ABA arguments for literals in Program 6.15.

Although each argument possesses its own tree form and abbreviated denotation, for the sake of

this explanation we can group the arguments by from which tree argument of Figure 6.15 they can

be obtained from by noticing those that share assumption and fact premises. In this particular case,

arguments fromA1 toA6 come from the tree form ofA1, A7 toA9 come from the tree form ofA7

andA10 toA12 come from the tree form ofA10.

If we now consider the previously mentioned variations of argument A1 we would obtain the

following two in abbreviated form: A13 : ({not abnormal}, {(y)wireless}) ⊢ bomb and A14 :
({not abnormal}, {(s)wireless , (y)wireless}) ⊢ bomb. Although there are a total of four vari-

ations, the two of them resulting in flipping the occurrences of (s)wireless and (y)wireless result
in the same abbreviated form as AP and FP are set. This means that we would have three ways to

explain the literal bomb being true in an answer set. Note that this number of explanations coincides

with the number of proof graphs in Figure 6.2, and that the corresponding support graphs 6.3 are a

subset of both of them.

Nowthenotionof attacking trees fromABAframeworks is used todefineattack trees justifications.
By defintion, an argumentAa : (APa, FPa) ⊢ la attacks another argumentAd : (APd, FPd) ⊢ ld
if not la ∈ APd. Intuitively, an attack tree justification for a literal l w.r.t an answer setM , is a tree of

attacking arguments such that the argument in the root of the tree is of the formA : (AP,FP) ⊢ l.
Each argument is labeled + or − if the literal they refer to is (respectively) in M or not. In the case

of arguments labeled with + all the literals in its AP must hold with respect to the model, if that

is not the case the argument cannot be used. Arguments labeled with− are attacked by only another

argument, thusmeaning that to prevent the derivation of an atomonly one of the premises needs to be

false. Arguments labeled with+ are attacked by an argument for each of their assumption premises,

thus meaning that for proving the derivation of an atom all its premises must be true. Figure 6.17

shows an attacking tree justification for literal bombwith respect to Program 6.4 and answer setA1 =
{wet ,wireless , up(a), up(b), abnormal}.

The attack tree justificationATJ1 infinitely repeats itself once it reaches the loopbetweenwet and
battery . Note that we cannotA10 : ({not wet}, {}) ⊢ abnormal to attackA1 since not wet does
not hold forA1 (i.e. wet ∈ A1). Recall that this condition only applies for arguments labeled with+,

that is whyA1 can be used even though abnormal ∈ A1 Intuitively we can read the justification as:

1. bomb is false since, asA1 (which is false) says, it negatively depends on abnormal , which is true.

2. This latter fact is argumented by A7 (which is true), saying that abnormal is true because
battery does not hold.

136 CHAPTER 6. RELATEDWORK

A−
1 : ({not abnormal}, {(s)wireless}) ⊢ bomb

A+
7 : ({not battery}, {}) ⊢ abnormal

OO

A−
11 : ({not wet}, {}) ⊢ battery

OO

A+
8 : ({not battery}, {}) ⊢ wet

OO

A−
11 : ({not wet}, {}) ⊢ battery

OO

A+
8 : ({not battery}, {}) ⊢ wet

OO

.

.

.

OO

ATJ1

Figure 6.17: Attacking tree justification for bomb with respect to Program 6.4 and answer setA1.

3. Which is supported by A11 saying that for deriving battery we would have needed wet to be
false.

4. But asA8 counterarguments, wet is true because battery is false.

5. From this point on the tree infinitely repeats A11 and A8 attacking each other, reflecting the

loop between both atoms.

Finally, a LABAS justification can be obtained from an attack tree justification in a two-step pro-

cess. Intuitively, support and attack relations are obtained from the tree. These are pairs representing

the directed edges of a graph. The support edges go from the assumptions of an argument (i.e. AP
and FP) to the literal that the argument refers to. For the arguments that are not The attack edges go

from the arguments (i.e. the literals concluded by the arguments) to the assumptions they attack. All

literals (including those from assumptions of the arguments) are labeled with+ or− if they are in (or

respectively not in) the model corresponding modelM . Edges are also labeled with the same label as

its source node.

Figure 6.18 shows the LABAS justification obtained from attacking treeATJ1 in Figure 6.17.

Dashed edges represent support relations whereas solid edges represent attacking relations. Note

that, since the graph is drawn from a set (of edges) it is now finite. Another important point is that the

LABAS justification of an atom that is false w.r.t the answer set (as it is our case with bomb) is defined
as the set of all the possible LABAS justifications for that atom. This follows the idea that for an atom

to be false all the ways to derive such an atom have to be unsuccessful. In our case,LJ1 corresponds to
only one way of deriving a bomb that was falsified. To complete the justification, the rest of LABAS

justifications using argumentsA12 andA13 would have to be included.

As conclusion, LABAS justifications explain the truth value of literals in an answer set with respect

to a program in terms of the negative literals used in the rules of the program. They focus on how the

6.7. JUSTIFICATION THEORY 137

bomb−A1

not abnormal−asm

−

abnormal+A7

+

OO

not battery+
asm

+

battery−
A11

−
OO

not wet−asm

−

wet+A8

+

OO

LJ1

Figure 6.18: LABAS justification for bomb with respect to Program 6.4 and answer setA1. In partic-

ular, it comes from attacking treeATJ1 in Figure 6.17.

different default negated atoms enable or prevent the derivation of other atoms. The positive parts of

the derivations are given less importance. Indeed, they are collapsed into layers where only the facts

are shown. In contrast with offline justifications that explain negative literals as assumptions with re-

spect to a corresponding answer set, LABAS detailedly explains the different ways in which the default

negated literals of the programmay intervene in the derivations.

6.7 Justification Theory

Justification Theory initially developed in [33] and further developed more recently in [14, 32, 71] is

an abstract formalism for justifications. This theory defines a notion called Justification Frame which
is a structure JFP = (F,L, P) obtained from a logic program P . Where L is the set of all possible

literals over the signature of program P and F a set of facts named fact space, and additionally they

denote a set F◦ = F \ L and named parameter facts. One of the intuitions for a justification frame is

it can be understood as a casual system where literals L are endogenous facts governed by the rules in

P and parameter factsF◦ are exogenous facts governed by an agent or system. In this sense, as support

graphs and xclingo, justification frames envision a logic program as a set of causal relations over a set

of events that are the atoms occurring in the program

Thanks to 4-valued interpretations and to the definition of an abstract derivation operator, jus-

tification frames can be defined over different semantics. This allows the authors to compare logic

programs interpreted under different semantics in terms of their corresponding justification frames.

From justification frames, they define JF-justifications as a subset of rulesR ⊆ P containing rules

r ∈ R such that the head of r are x ∈ L. Additionally, a JF-justification can only contain at most

one rule for each x ∈ L. This coincides with Definition 6 of support graphs where only one rule

138 CHAPTER 6. RELATEDWORK

supporting a particular atom can be used to build the graph. A JF-justification JFJ is called complete
if ∀x ∈ L, ∃r ∈ JFJ such that head(r) = x. Then they provide a correspondence between a

complete JF-justificaton JFJ and a directed graph whose leaves are parameter facts from F◦ and the
children of non-leaf x are S = {S|(r ← S) ∈ JFJ ∧ head(r) = x}, or in words: the literals oc-
curring in the body their corresponding rule r ∈ JFJ Although it has not been properly studied yet,

it seems that support graphs and these graphs could be similar at least for the atoms corresponding to a

particular model of the program. Interestingly, in the first defined variant [33] of this theory justifica-

tions were represented as trees [72] instead of graphs, whereas graph-like justifiactions were introduced

later in [32].

6.8 Explaining unsatisfiability

Atypical approach for several applications ofASP such as problem-solving, for instance, is the generate-
and-test strategy. That is, the ASP specification defines a search space that is known to be a superset of
the solutions, considers all of them possibly by generating them via choice rules, and finally those that

are not considered a valid solution are disregarded. For the latter, integrity constraints are typically used

to define what constitutes a valid solution. Take for instance the blocks world problem, for which we

introduce an encoding for obtaining commonsense explanations in Section 5.3. This is a good example

of the generate-and-test approach applied toproblem-solving. Programs5.3, 5.4 and5.5 showdifferent

ways of generating the same search space of solutions, whereas in Program 5.2 several constraints test if

the generated potential solution comply the blocks world rules or not (i.e. only blocks on top of others

are moved, at the final step the goal state is reached, etc).

If generate-and-test is a common approach in ASP, it follows naturally that finding the reasons

a particular potential solution is not a valid solution is of great importance for explainability in ASP.

Moreover, sometimes these invalid solutions must be considered as a use case as in the case of con-

figuration of products [83]. In this problem, an ASP program is used to consider the possibilities for

configuring a product with respect to some user preferences. However, it may be the case where a user

may introduce conflictive preferences, this is any configuration that complies with them is possible. In

such a case, wewould like to inform the user of the reasons why this happens, either based on the user’s

preferences or the product configuration constraints. In all cases, since this is a user-use case, it would

be desirable to provide common sense explanations for this.

This means that rather than only asking how-come or why not questions about events that happen
or not in the current solution it is also of great importance for explainability inASP to be able to answer

questions similar towhy does this instance does not have a solution? orwhy this <query> is not a solution?.
As we already introduced in Section 5.5, note that identifying them as different solutions does not

mean that they cannot be implemented in a similar way. In fact, technically speaking, this problem can

be stated as the problem of finding the reasons why a potential answer set is not a solution, or what

we have to change in the program for one of these sets to be a valid solution. Thus, this relates to the

fields of debugging ASP programs [16, 97] and repairing ASP programs [1, 105]. In general terms, in

both cases, there is an expected output that a program is not producing and the problem is to identify

which parts of the program are responsible for that. In the case of debugging, the modification of the

identified bug is left open to the engineering user, whereas in repairing, the idea is further suggesting

(typically the minimal set of) changes in the program so that the expected output is obtainable.

6.8. EXPLAININGUNSATISFIABILITY 139

For now, most of the research has focused on producing technical explanations, directed either to

knowledgeable ASP engineers or to the system itself, but little research has been done on its use for

generating user-friendly explanations. In Section 5.5.3, we propose an implementation for obtaining

how-to explanations with xclingo that is related to the topic and could be indeed considered a form
of repairing. Further research on this topic exceeds the goals of this dissertation but it represents a

line of future research of great interest and applicability. For instance, in Section 5.5 we discussed

the possibility of using abstraction methods [89, 90] to identify the relevant parts of a program such

that it is inconsistent, and to use that for generating explanations. The rest of this Section visits some

approaches for obtaining the reasons why a program is inconsistent or unsatisfiable.

From spock to DWASP

spock [16, 56] is a system for identifying semantic errors in ASP specifications. It relies on the use of

a meta-program or reification that represents the tested specification but extends it with rules that

identify the different reasons why a set of atoms (i.e. a potential answer set) may not be an answer set.

In particular, it includes predicates saying if a particular original rule is applicable or not, another for

saying if an atom is unsupported or not and finally one to say if an atom is unfounded or not. It also

includes choice rules generating the considered potential answer sets so that the models of the reified

program are invalid solutions accompanied by extra predicates indicating the reasons why they are not

consistent.

Onemain drawback of spock is that only dealswith propositional programs andnotwithASPpro-

grams including variables. This problem was addressed later by the tool Ouroboros [76]which extends
spock’s approach. One of the differences introduced is that, instead of generating a space of invalid so-

lutions, this tool requires the user to introduce the potential model in question. That is, the approach

assumes there is a solution that the user expects that is not a solution of the testedASP program, which

closely relates to contrastive explanations. To this aim, this tool extends the spock’s reification, and in-
troduces the expectedmodel as a predicate, similarly to what xclingo dowith themodel to explain (see

Section 4.3.1).

Ouroboros requirement of providing the whole model was a bit cumbersome for the user. For this

reason, the approaches that followed switched to an interactive approach. This was de case of the work

presented by [92]. In this method, the user is asked by the system only for the relevant atoms that the

user expects to be in the solution, and the rest of the atoms are generated like in spock. This work
introduces the fundamental concepts of test cases and background theory. Test cases are sets of atoms,

in particular, it defines four sets: positive caseswhich are two sets of atoms that must be in (respectively

out of) all answer sets; and negative cases which are sets of atoms that must be in (respectively out of)

some answer set. The background theory is a subset (of rules) of the tested program. It relies on the

same predicates that spock use to find unsatisfied rules and unsupported and unfounded atoms. The

atoms belonging to those predicates are called abnormality atoms. The idea behind the method is to

identify the sets of abnormality atoms that satisfy the test cases and the given background theory.

Later, another tool called DWASP [35, 50] was published. This is a debugging tool that leverages

the solver WASP [2, 3] and applies some of the ideas introduced by the previously commented ap-

proaches, such as the use of a background theory or the creation of a reification of the program called

debugging program. In this reification, an ad-hoc debug atom is introduced in the body of any rule

that does not belong to the background theory, that defaults to the set of atoms in the program. This

140 CHAPTER 6. RELATEDWORK

default atom identifies the rule they participate in and contains all the variables in the body of such a

rule. The debugging program is then solvedwithWASP,which allows one to assume the truth of some

atoms when computing the answer sets. Since debug atoms only appear in the body of rules, they are

unsupported by default, meaning that any rule with any of these atoms in the body can be true un-

less its corresponding debug atom is assumed true. DWASP exploits this by computing unsatisfiable

cores. Unsatisfiable cores are sets of atoms that, if true, prevent the program from having any answer

set. Leveraging this notion, DWASP finds the subset of debugging atoms such that, if one of them is

not assumed to hold, then an answer set of the program exists.

Perhaps is of interest to discuss the different meta-programming approaches. As we have seen, all

the previously mentioned approaches use a meta-programming method in some way. This is true also

for other explanability systems like xclingo (see Section 4.3) and xASP (see Section 6.4). All of these sys-
tems produce a meta-encoding or reification corresponding in some way to the program that is being

debugged or explained. Although different, they all seem to represent the same notions of the sup-

portiveness of an atom, the satisfiability of a rule, and so on. For instance, note the similarity between

the DWASP’s debug atom and xclingo_xclingo_sup predicate. In both cases, they are associated with
a particular rule and they contain the variables of the body of such rule. The aim of the latter is to

collect the values the rule was derived with, in order to show hints during debugging (in the case of

DWASP) and for designing better natural language explanations in the case of xclingo. Moreover, it

seems that even though most explainability approaches focus on technical explanations almost all of

them are trying to emulate the underlying semantics of the language rather than explaining how the

used solver works. It could be of interest to have, in addition to user-oriented and semantic technical

explanation layers, a deepest solver technical layer that speaks in terms of the solver steps. Perhaps the

focused interest of the research in semantic technical explanations is due to the fact that most ASP

engineers are neither solver developers nor final users, but rather they fall in the middle.

Part II

Applications to Explainable Machine
Learning

Chapter 7

A Tool for Explaining Decision Trees
Applied to Liver Transplantation

7.1 Introduction

In Part I of this thesis, we have explained our approach to explaining models of logic programs and

provided a tool that implements such an approach (in particular for ASP programs). There are a lot

of questions that still wait to be answered in that context and, in recent years, the interest in the topic

is growing in the field of Logic and Knowledge Representation. Thus, a very important part of the

research effort included in this thesis is towards the development and application of xclingo for Logic
and KR contexts. However, another important part of the work was more related to the application

of xclingo for obtaining explanations in ML contexts. In particular, two different case studies were

considered. The first of these two is the development of a Support Decision System for liver donor-

recipient matching of liver transplants. In a critical context like this one, there is no discussion of why

explanations are needed. Besides, it is particularly important that such explanations are reproducible

and that provide accountability and transparency. The developed system provides estimations of the

survival of potential donor-recipient pairs, aswell as explains such estimation. The explanations are ob-

tainedusing xclingo fromanASP representationof anMLclassifier, in particular aDecisionTreeClas-

sifier (DT).More precisely, a tool called Crystal-treewas developed, acting as a client of the xclingo’s
Python API, that provides natural language explanations of trained DT models. In this Chapter, we

present such a tool and explain how it works, including the logic programming implementation using

xclingo.

The rest of the Chapter is structured as follows. Section 7.2 introduces the problem of donor-

recipient matching and briefly explains how the ML learning models were obtained. Section 7.3 ex-

plains the architecture of the developed system and how cystal-tree is used to obtain explanations, as
well as shows an example of use. Finally, Section 7.4 shows how Crystal-tree is used and explains the
particular logic programming implementation using xclingo.

144

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

7.2 Machine Learning Models for Utility Estimation in Liver Trans-
plantation

One of the most critical and sensitive medical procedures is the management of the waiting list in

a transplantation unit. In the case of liver transplantation, the usual approach for donor-recipient

matching establishes a priority in the waiting list through some scoring system such as MELD [104],

[63] (Model for End-Stage Liver Disease), SOFT [86] (Survival Outcomes Following Liver Transplan-

tation), or BAR [37] (Balance of Risk). These scores are mostly focused on the seriousness of the

patient’s condition (for MELD, this is the only criterion), giving less relevance to the suitability of the

matching with a given donor. This approach leads to undesirable side effects. On the one hand, new

patients entering the list with higher (that is more urgent) scores get incoming grafts more quickly, but

due to their worse health state, this often implies a shorter average expansion of the recipient’s life span.

On the other hand, the recipients that would have lasted longer, stay longer periods on the list, waiting

for their health state to become “worse enough” to be selected to get a graft. In other words, while the

urgency-based approachminimizes the deathswithin thewaiting list, the average life span of the recipi-

ents could be increased bymore utility-oriented criteria. The utility of a transplant is usuallymeasured

as the time elapsed since transplantation until a graft failure or, ultimately, the patient’s death, within

some predefined temporal window. Thus, in utility-based approaches, the adequacy of the matched

graft acquires a crucial role: a particular recipient may have a longer estimated life span with one graft

than with another and, in the same way, one graft could grant a longer life span to one patient than

to another. To put an example, this would allow us to avoid assigning an incoming graft to the most

urgent patient when there is a high risk of failure for that particular matching when compared to other

patients on the list. Of course, the problem then becomes how to estimate that risk.

Computers can be used to assist the specialists in deciding a suitable donor-patient matching by

predicting the result of the transplantation using some Machine Learning (ML) method trained on

the available data. In this way, the predicted utility (possibly among the most urgent recipients) could

complete the current protocols, or could even be incorporated into them as one more factor in the

scoring systems. Indeed, several examples of applications of ML to the transplantation domain have

been published in recent years. While some of them, like [67], focus on predicting the short-term

survival of the recipient, others focus more on the long-term like [61].

It seems pretty obvious that a protocol for donor-patient matching cannot eventually rely on a

black-box system, regardless of the potential accuracy of its predictions. The system behavior has to be

accountable for healthcare professionals, patients and relatives or otherwise, they would not trust it.

Also, it must guarantee fairness and transparency, even from a legal point of view. Given thatmostML

algorithms, particularly those with the highest performance, behave as black boxes whose conclusions

can be hardly explained or not explained at all, this problem is perhaps the most important challenge

yet to be faced when applying these ML techniques. It may be even more important than dealing

with clinical data, which contains tons of sensible data and is often stored in an unstructured way, on

multiple platforms.

Thus, we opted for a hybrid approach to build our system where two ML models are trained. In

our hybrid approach, one opaque (possibly superior in terms of performance) model provides statis-

tically trustable predictions while a second transparent model supports it with a second (this time ex-

plainable) prediction.After testing out severalMLmodels, we selected aMultilayer Perceptron (MLP)

7.2. MACHINE LEARNINGMODELS FORUTILITY ESTIMATION IN LIVER
TRANSPLANTATION 145

model for the former, while for the latter, we used a Decision Tree (DT) model. The reason behind

usingDTmodels is that they can be represented as a set of readable symbolic conditions or rules, mean-

ing that one can write an ASP program and use xclingo to obtain natural language explanations from
the tree. Besides, in the recent survey [29] of articles that apply AI to organ transplantation, more than

half of the approaches include a DT-based learning algorithm. Thus, our approach could be exploited

in already deployed systems that use DTmodels to enhance them with natural language explanations.

To the aim of training such models, an important amount of data was manually collected at the

liver transplantation unit at the University Hospital Center
1
of A Coruña (CHUAC), Spain. This

data was properly analyzed and preprocessed for the ML algorithms. The best-predicting input fea-

tures of the dataset were found, via both univariate and multivariate statistical significance analysis.

Three algorithms were tested: Decision Tree, Multilayer Perceptron and Random Forest, for which

their hyper-parameters were optimized. After the analysis, we obtained the best models for each algo-

rithm, whose comparison in performance is shown in Figure 7.1. From the results, it is easy to see how

Figure 7.1: Best results for each algorithm. Several metrics are shown, including some typical com-

monly used in the medical field like sensitivity and specificity.

MLP outperformed the rest of the algorithms and thus was finally selected as the opaque model. On

the other hand, the disparity between the DT results and the other algorithms is clear. However, this

difference is mitigated by its capacity to produce explanations, something that is missing in both RF

andMLPmodels. Besides, is important to underscore that the alignment of the explanations provided

by the particular DT with the user requirements, is equally crucial as the performance of the models.

1Complexo Hospitalario Universitario de A Coruña, CHUAC.

146

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

Unfortunately, the explanations of our best DTmodel were not approved by our medical expert. Ac-

cording to the evaluation, even when there was an agreement between the system and the expert, the

arguments exposed by the explanations were not clinically significant, resulting in a decrease in trust

from the expert’s standpoint. In pursuit of a valid DT model to obtain explanations from, the top

7 DT models found were detailedly analyzed by the expert. In a new methodology step that could

be compared to what we have explained about explanation design, the expert selected one DT model

among the 7 candidates, aiming to find a good tradeoff point between the performance of the model

and the clinical significance of the explanations. Finally, the top 7DTmodel was selected by the expert

to be the explainer model of the system. The complete model can be read in Figure 7.2. The subset of

features used by the tree and in the rest of the examples of this Chapter are described in Appendix D.

7.3 The Support Decision System

Figure 7.3 shows the main components of the final support decision system. From the particular

donor-recipient pair, the corresponding input features are collected to create an input instance. As

we can see in the figure, the system applies two different ML models, the DT (Top7 from Figure 7.2)

and the best MLP model, which respectively use their own subsets of input features. The Supportive
Explanation is obtained from the tree by the use of the Crystal-tree Python package. Finally, both

predictions as well as explanations are provided to the final user (i.e. the medical expert).

After processing a particular input instance, the systemfinally produces an output likewhat can be

seen in 7.4. The report first shows the prediction of the DTmodel with a confidence level, in this case

dead with a confidence of 100%. Then, we get a natural language explanation extracted from the DT.

The explanation is generated by crystal_tree by traversing the conditions in the DT path, summaris-

ing them and displaying text patterns to obtain a readable set of sentences. As an additional reminder,

we also show the metric results we obtained for the DT model on the test set – this part is fixed, as it

does not depend on the input instance. TheMLP prediction is similarly shown below, but it does not

include the textual explanation. In this case, the MLP agrees with the DT in a dead prediction with a
slightly lower confidence of 93.37%. Note that, in general, we may have cases in which the two mod-

els disagree, since these models have different predictive power. In such a case, reliance on confidence

ratios, model-specific performance metrics and the provided explanation serves to help expert evalua-

tion of the case on hand. In this way, we aim to sensibly manage the user’s trust in the system for each

scenario, rather than imposing reliance on an oracle-like prediction. For instance, the expert can see

her initial intuition reinforced when the two models agree showing a high confidence and a clinically

sensible supporting explanation, that is, a relevant combination of conditions that could have escaped

to the expert’s attention at first sight. Conversely, it could undermine the expert’s intuition when pre-

dictions conflict with it, potentially leading the user to reassess her original stance. Moreover, when

confidence is low or the explanations lack significance, users are led to be cautious and withhold trust

in the system for the specific input pair.

In particular, the explanation shown inFigure 7.4 comes from the leaf of theDT that is highlighted

in Figure 7.5 and so that its 3 arguments use features don_sodium, rec_sodium and rec_hcc_afp_30
which respectively correspond with the features used in the nodes of that branch of the DT ordered

from the root to the leaf. From the 3 arguments of the explanation, the second (The recipient is hep-

atitis C-positive) and the third (The recipient hasHCCand her afp is higher than 30 ng/ml) are indeed

7.3. THE SUPPORTDECISION SYSTEM 147

Figure 7.2: Decision tree Top7 with kappa=0.71.

148

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

Figure 7.3: General view on the architecture of the final developed support decision system.

Decision Tree Predcition is: dead (confidence = 100%)

Explanation:

*
|__Bad forecast: dead (confidence= 100%)
| |__The donor's sodium is lower than 162.51 mEq/L
| |__The recipient is hepatitis C-positive
| |__The recipient has HCC and it's afp is higher than 30 ng/ml

Model's performance:
Kappa 0.71
Sensitvity 0.70
Specificity 0.97
AUROC 0.83

Multilayer Perceptron (MLP) Prediction is: dead (confidence = 93.37%)

Model's performance:

Kappa 0.85
Sensitivity 1.00
Specificity 0.92
AUROC 0.95

Figure 7.4: Example of output of the system for a particular donor-recipient pair.

7.4. CRYSTAL TREE: A TOOL FOR EXPLAININGDECISION TREES 149

Figure 7.5: Branch of DT 7 (completely shown in Figure 7.2).

known reasons for a bad prognosis. On the other hand, for the first argument (The donor’s sodium is

lower than 162.51 mEq/L), this is not so clear. In general, we say a patient suffers from hyponatremia

when sodium levels are under 135mEq/L and fromhypernatremiawhen are above 145mEq/L. Saying

that the donor’s sodium is lower than 162.51 mEq/L includes both hyponatremia and hypernatremia

ranges, as well as the normal values between 135 and 145 mEq/L. This makes the first argument not

so clinically significant, but just a reflection of the conditions used by the DT to ultimately reach the

conclusion. This is a clue ofwhy the explanations obtained from anyDTmodels, should not be under-

stood as causal explanations, rather than an explanation of how a model achieved a certain prediction.

In fact, having the sodium being above the threshold (note that this is a counterfactual question), the

conclusion would have been the same, meaning that the condition was not causally necessary. Sec-

tion 7.6 further develops on how to understand (or not to) the explanations obtained from a DT.

7.4 Crystal Tree: A Tool for Explaining Decision Trees

In this section, we describe our tool called Crystal-treewhich produces text explanations from a given

decision tree and a set of values for the input features. The explanations include the outcome of the

decision tree together with those conditions satisfied by the input values that led to the conclusion.

These explanations are provided in natural language, in a summarized way as shown, for instance, in

Figure 7.7 used to explain a path from one of the discarded DTmodels, displayed in Figure 7.6.

The explanations must be read as a summarized representation of the path followed by the input

sample (i.e. a recipient-donor pair) until a decision node is reached. The explanations produced by

Crystal-tree are text-based and are organized in a two-level-tree structure. The first level shows the

decision of the tree (for Figure 7.7 the recipient will survive more than 5 years) for the given input and

the probability of the decision, according to the data observed by the DT during training. The second

level summarizes the conditionsmet by the input sample (i.e. the recipient) to follow a certain path and

150

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

Figure 7.6: An example of a branch in one of the (disregarded) Decision trees.

*
|__Good forecast: alive, for recipient 126 (confidence: 60\%)
| |__The donor's cause of death was a CVA
| |__The recipient is hypertensive
| |__The recipient's level of AFP is between 4.4 and 24.3

Figure 7.7: Example of explanation corresponding to the path in Figure 7.6.

7.4. CRYSTAL TREE: A TOOL FOR EXPLAININGDECISION TREES 151

*
|__Good forecast: alive, for recipient 126 (confidence: 60\%)
| |__Donor death: stroke
| |__The recipient is hypertensive
| |__Tumor marker status: good

Figure 7.8: A version of the explanation in Figure 7.7 for non-specialists.

*
|__Buen pronóstico: vivo, para el receptor 126 (confianza: 60\%)
| |__Muerte de donante: derrame cerebral
| |__El receptor es hipertenso
| |__Estado del marcador tumoral: bueno

Figure 7.9: Spanish version of the explanation in Figure 7.8.

to produce the final decision. The latter includes only one sentence per each feature used to reach the

decision, so that: (1) features not used in the path of the tree are not included in the explanation; and

(2) all the conditions over a repeatedly used feature within the path are summarized as the narrowest

range of all the thresholds. As an example, note that the explanation shown in Figure 7.7 does not

mention the medical condition of the recipient because it does not appear in the path (Figure 7.6)

used to decide the outcome. Also, despite the path includes two conditions about the recipient’s alpha-

fetoprotein (AFP) (less or equal to 24.3 andmore than 4.4) both of themwere summarized in just one

sentence. This is particularly helpful when dealing with deep trees that use a few variables. In those

cases, wemay end up having paths that include a lot of conditions over the same variable and gradually

close the interval of values that led to classification. The summarization of such conditions makes the

explanation easier to follow.

By default, the tool generates domain-independent explanations, including conditions that just

refer to the variable name and its possible values, like for instance, don_cva = 1. However, the user

can tune the text in the explanations using some sort of template: note how don_cva = 1 is replaced
by the text ‘The donor’s cause of death was a CVA’ in the explanation of Figure 7.7. This feature

can be used for adapting the explanations to different kinds of situations, or users. With the same

decision tree and input data, the outcome explanation can be adapted to different technical levels, to

givemore or less detail (some variables can be hidden, even under certain conditions) or to be expressed

in different languages. As an illustration, Figure 7.8 provides an alternative explanation intended for a

non-specialist user, such as the recipient herself, whereas Figure 7.9 displays the same explanation but

generated using the Spanish text labels.

The behavior of Crystal-tree is controlled through a Python library, so other kinds of adaptations
are potentially possible. For instance, considering again the translation example, the explanations could

be dynamically translated into any language selected by the user. Figure 7.10 shows an example of us-

age of the Python library. From lines 1 to 9, the code loads the data and trains a Decision Tree classifier

152

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

1 import sklearn

2 from Crystal-tree import CrystalTree

3

4 # Loads a dataset

5 X, y = sklearn.datasets.load_iris(return_X_y=True, as_frame=True)

6

7 # Trains a decision tree

8 clf = sklearn.tree.DecisionTreeClassifier()

9 clf.fit(X,y)

10

11 # Translates the classifier into an explainable logic program

12 crys_tree = CrystalTree(clf)

13

14 # Creates the labels used by the tree

15 # if skipped, default labels will be used

16 setup_traces(crys_tree)

17

18 # Print explanations for input X

19 crys_tree.explain(X)

Figure 7.10: Example of use of the Crystal-tree library.

(which is saved in the variable clf) on the whole data set. Line 12 creates a CrystalTree object from
the trained decision tree. Line 19 generates an explanation for each input sample in the vector X. As
explained before, by default, Crystal-tree will use generic text for generating the explanations. To
adapt the text to the domain, additional Python code is needed. The function setup_traces in line 16,
adapts the explanations to get the same result as shown in Figure 7.7. Figure 7.11 shows part of the

code within the function. To personalize the explanations, Trace objects are added into the Crystal-
Tree object. This will introduce new text in the explanations, which will overwrite the default. These

Trace objects can be associated either to a certain target class, (when the target_class argument is pro-

vided as in lines 4 and 7), or to a certain feature (when the second argument is the name or the ordinal

position of a feature), for which a set of conditions can be further set. If the feature is used in the

corresponding path and the provided conditions are satisfied by the input sample, then the explana-

tion will include the trace text. The specified text pattern can also include four special placeholders,

%_class, %_instance, %_prob, %_t, %_min or %_max that will be replaced by the names of the class, the

identifier of the input sample, the probability of the prediction or the value of the threshold used, re-

spectively. More detailed instructions on this topic (including examples) together with the source code

and installation instructions are available in the Crystal-tree public GitHub repository
2
.

2

All files are publicly available in https://github.com/bramucas/Crystal-tree

https://github.com/bramucas/Crystal-tree

7.4. CRYSTAL TREE: A TOOL FOR EXPLAININGDECISION TREES 153

1 from Crystal-tree import Trace, Condition

2

3 def setup_labels(crystal_tree_object):

4 crystal_tree_object.add_trace(

5 Trace("Good forecast: %_class, for recipient %_instance (confidence of %_prob)",

6 None, target_class=0)

7)

8 crystal_tree_object.add_trace(

9 Trace("Bad forecast: %_class, for recipient %_instance (confidence of %_prob)",

10 None, target_class=1)

11)

12

13 crystal_tree_object.add_trace(

14 Trace("The donor's cause of death was not a stroke",

15 "don_cva", predicate="le", threshold=0.5)

16)

17 crystal_tree_object.add_trace(

18 Trace("The donor's cause of death was stroke",

19 "don_cva", predicate="gt", threshold=0.5)

20)

21 crystal_tree_object.add_trace(

22 Trace("The recipent's weight is between %_min kg and %_max kg",

23 "rec_weight", predicate="between", thresholds=(60, 80))

24)

25 crystal_tree_object.add_trace(

26 Trace("High level of liver tumor marker in the recipient (afp above 30 ng/dL)",

27 "rec_afp", conditions=[Condition("rec_afp", ">30.0")])

28)

29 (. . .)

Figure 7.11: Adding labels to a Crystal-tree object.

154

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

7.5 Implementation using Xclingo
At an implementation level, Crystal-tree leverages the fact that a DT classifier can be formalized as

a formula in Disjunctive Normal Form (DNF). Essentially, this formalization involves identifying all

the leaf nodes that lead to the prediction of a particular class and collecting all the conditions c1 . . . cn
considered in the path that comes from the root of the tree. Each path is then formalized as the con-

junction of all the conditions c1 ∧ c2 ∧ . . . ∧ cn. The disjunction of all the formalized paths is DNF

logic formula that captures the behavior of the classifier for the given class. In the case of binary clas-

sification DT models, the negation of such a formula captures the behavior of the opposite class. For

multiclass classification problems, it becomes necessary to formalize each class’s particular formula to

completely capture the classification function, in a one against all way.
Figure 7.12 shows how the Python package processes the data to obtain the explanations. Crystal-

Figure 7.12: The data flow of the Crystal-tree Python package to obtain explanations from a DT

model and an input instance.

tree takes a DT model, computes such a formula in the form of a xclingo-annotated ASP program,

and thenuses xclingo to obtain natural language explanations for given input instances, which involves
the encoding of the input instance as a set of ASP facts as well. Both pieces are put together with

some xclingo annotations (in the Figure, default_traces.lp or custom_traces.lp, depending on the user’s
configuration) and then are explained by a simple call to the xclingo Python API.

Implementing an ad hoc procedural algorithm from scratch for the samepurposewould not be too

difficult. The main advantages of the logic programming implementation, however, are its flexibility

and declarativeness. This has multiple potential advantages, like enabling variations of the classifier

behavior by simple changes in the logical rules, studying the classifier results under uncertainty (i.e.

when some variables are unknown) or allowing formal comparisons (like the analysis of equivalence)

to other DTs, when represented as logic programs. Indeed, Crystal-tree also provides the option of

just obtaining the encoding for the user to modify any part of it or use it for other purposes different

from obtaining explanations.

Let us illustrate how the ASP representation for the DT models works. Take, for instance, a par-

ticular donor-recipient pair with the following particular values: don_sodium = 157.054, rec_vhc = 1
and rec_hcc_afp_30 = 1. Each value for each variable is converted into a fact using value(I, F, V)

7.5. IMPLEMENTATIONUSING XCLINGO 155

predicate, where I is an identifier for the input instance (one can provide several instances at once and
obtain several explanations), F is an identifier for the particular feature (this identifier is defined at the
moment of generating the translation) and V represents the value of the instance for that feature. The
particular translation of such an input instance is shown in Figure 7.13. First note that, for brevity,

1 value(1, 2, 157054). % don_sodium 157.054
2 value(1, 1, 1000). % rec_vhc 1.0
3 value(1, 0, 1000). % rec_hcc_afp_30 1.0

Figure 7.13: Partial translation of an input instance for DT Top 7, depicted in Figure 7.2.

we are only considering 3 of the seven features that our DTmodel uses. A complete translation of an

input instance would use all of them. As it is the first input instance that we are asking to explain, it

receives the identifier 1. Another important detail is the treatment for decimal values. As we cannot

represent them directly in the ASP specification, in the moment of translation all numerical values

are scaled (i.e. multiplied by some previously computed factor) to preserve the precision used in the

numerical representation of the tree. This transformation is reverted once the textual explanations are

built.

For preprocessing the DTmodel an ad hoc Python code inorderly traverses the tree keeping track
of the conditions in each path. Whenever it reaches a leaf node, it generates a rule that represents

that path such that if the values of an instance meet the conditions (i.e. the particular donor-recipient

pair would traverse that path in the tree), the rule is fired. For instance, for the path in Figure 7.6,

the preprocesser generates the rule in Figure 7.14. The head of the rule uses class(C, I, P) predicate,

1 class(1,I, 100) :- gt(I,0,500), gt(I,1,500), le(I,2,162514).

Figure 7.14: Translation for the path in Figure 7.6, fromDT Top 7 (Figure 7.2).

where C is the identifier for the class that the represented path is predicting, I is the input instance that is
being classified (i.e. the bodyof the rule is true for instance I) and P is the probability associatedwith the
decision of the leaf node. The body of the rule is the conjunction of all the conditions in the particular

path. To that aim, three predicates are used: gt(I, F, T) that means that the value of instance I for
feature F is greater than threshold T, le(I, F, T) which represents the complementary lower or equal
to condition, and finally between(I, F, Min, Max)which imposes the feature F to be within the range
(Min, Max]. The definitions for these predicates are shown in Figure 7.15. These three rules are static

1 gt(I, F, T) :- value(I, F, V), V>T, thres(T).
2 le(I, F, T) :- value(I, F, V), V<=T, thres(T).
3 between(I, F, Min, Max) :- value(I, F, V), V>Min, thres(Min), V<=Max, thres(Max).

Figure 7.15: Static base code containing the definitions of predicates gt/3, le/3 and between/4.

code that is included in any translation for anyDTmodel. Note the use of predicate thres(T). It is used
to provide ground to the rules and it represents the whole set of different thresholds used in the nodes

156

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

of the tree. For the givenDTmodel, a set of thres/1 facts is generated. For instance, forDTTop 7 from
Figure 7.2 the set of facts in Figure 7.16 is generated. As for the input values and the conditions in each

1 thres(500). thres(162514). thres(154266). thres(100711).
2 thres(150738). thres(11451). thres(52485). thres(6400).
3 thres(8450). thres(4000). thres(1231). thres(153764).
4 thres(3550). thres(100711). thres(5300). thres(1323).
5 thres(1138) thres(376500).

Figure 7.16: The set of thres/1 facts generated for the DTmodel Top 7 depicted in Figure 7.2.

path, the values are scaled topreserve the decimal precision. Aswas explainedbefore, the representation

used by Crystal-tree summarizes repeated conditions over the same variable. For instance, for a path

having the conditions don_sodium <= 162.514 and don_sodium <= 154.226, our representation would
only include the latter condition,which is stronger. This summarizationmay involve imposing a closed

range over a variable, in which case the between/3 predicate is used for that variable.
For an example of a full translation see Proram7.1, which contains the full translation ofDTmodel

Top 7 from Figure 7.2. The code shown constitutes an example of a classifier.lp program, which is one

of themain components used in Figure 7.12. Note that, the last line, contains a show_trace annotation
for querying explanations for any instance I. It is a standalone ASP representation of the classifier and
can be used for any purpose beyondmaking (or explaining) predictions. Indeed, the Crystal-tree tool
can provide this translation to the user to be used as a base to implement other systems that reason

about the classifier.

With a mere call to xclingo Python API the classifier.lp together with an encoded input instance
would be enough to provide explanations by using the xclingo’s auto-tracing feature. However, the

obtained explanations would be in terms of the atoms representing the conditions and so would fain

in providing accountability. To solve this, a third piece of code containing some annotations is added

to the generated program before calling xclingo. If the user does not define custom text traces, a de-

fault set of trace annotations is added. This default set is shown in Figure 7.2. The additional fea-
ture_names(F, FName) predicate is generated whenever the user provides Crystal-treewith the names

of the input variables of the model. The default text traces change depending if there is a feature name

available to be used or not.

If, on the other hand, the user defines any custom trace, the default will not be appended to the

final translation and the traces following the user’s definition will be generated instead. For instance,

for the set of custom traces defined by a user in Figure 7.11, Figure 7.17 shows their corresponding

translation into xclingo annotations. Depending on the user’s configuration either prediction, le, gt,
betweenor even value atoms canbe tracedwith custom text. This provides goodflexibility to customize

the explanations. Also, when no feature names are provided, the ordinal identifier of the rule is used

instead in the generated annotations.

7.6 Discussing Decision Tree Explanations

Even though the good performance achieved by the trainedMLmodels, the critical point of this sup-

port decision system is the trust that the expert (final user) can place on it. In that sense, the first hurdle

7.6. DISCUSSINGDECISION TREE EXPLANATIONS 157

1 %%% thresholds
2 thres(500). thres(162514). thres(154266). thres(100711).
3 thres(150738). thres(11451). thres(52485). thres(6400).
4 thres(8450). thres(4000). thres(1231). thres(153764).
5 thres(3550). thres(100711). thres(5300). thres(1323).
6 thres(1138). thres(376500).
7 %%% base
8 gt(I, F, T) :- value(I, F, V), V>T, thres(T).
9 le(I, F, T) :- value(I, F, V), V<=T, thres(T).
10 between(I, F, Min, Max) :- value(I, F, V), V>Min, thres(Min), V<=Max, thres(Max).
11 %%% paths
12 class(1,I, 100) :-
13 le(I,1,500), le(I,2,150738), le(I,5,52485), le(I,6,6400).
14 class(0,I, 57) :-
15 le(I,1,500), le(I,2,150738), le(I,3,11451), between(I,5,52485,100711), le(I,6,6400).
16 class(1,I, 100) :-
17 le(I,1,500), le(I,2,150738), gt(I,3,11451), between(I,5,52485,100711), le(I,6,6400).
18 class(1,I, 100) :-
19 le(I,1,500), le(I,2,150738), le(I,5,100711), between(I,6,6400,8450).
20 class(0,I, 100) :-
21 le(I,1,500), le(I,2,150738), le(I,3,1231), le(I,4,4000), le(I,5,100711), between(I,6,8450,376500).
22 class(1,I, 100) :-
23 le(I,1,500), le(I,2,150738), le(I,3,1231), gt(I,4,4000), le(I,5,100711), between(I,6,8450,376500).
24 class(0,I, 100) :-
25 le(I,1,500), le(I,2,150738), gt(I,3,1231), le(I,5,100711), between(I,6,8450,376500).
26 class(0,I, 100) :-
27 le(I,1,500), between(I,2,150738,153764), le(I,5,100711), le(I,6,376500).
28 class(0,I, 100) :-
29 le(I,1,500), between(I,2,153764,154266), le(I,5,100711), le(I,6,3550).
30 class(1,I, 100) :-
31 le(I,1,500), between(I,2,153764,154266), le(I,5,100711), between(I,6,3550,376500).
32 class(1,I, 100) :-
33 le(I,1,500), le(I,2,154266), le(I,5,100711), gt(I,6,376500).
34 class(0,I, 100) :-
35 le(I,1,500), le(I,2,154266), gt(I,5,100711).
36 class(0,I, 100) :-
37 le(I,1,500), between(I,2,154266,162514).
38 class(0,I, 100) :-
39 le(I,0,500), gt(I,1,500), le(I,2,162514), le(I,5,75000), le(I,6,5300).
40 class(1,I, 100) :-
41 le(I,0,500), gt(I,1,500), le(I,2,162514), le(I,3,1138), le(I,5,75000), gt(I,6,5300).
42 class(0,I, 100) :-
43 le(I,0,500), gt(I,1,500), le(I,2,162514), between(I,3,1138,1323), le(I,5,75000), gt(I,6,5300).
44 class(1,I, 100) :-
45 le(I,0,500), gt(I,1,500), le(I,2,162514), gt(I,3,1323), le(I,5,75000), gt(I,6,5300).
46 class(0,I, 100) :-
47 le(I,0,500), gt(I,1,500), le(I,2,162514), between(I,5,75000,100711).
48 class(1,I, 100) :-
49 le(I,0,500), gt(I,1,500), le(I,2,162514), gt(I,5,100711).
50 class(1,I, 100) :-
51 gt(I,0,500), gt(I,1,500), le(I,2,162514).
52 class(1,I, 100) :-
53 gt(I,2,162514).
54

55 prediction(I) :- class(C,I,P).
56 %!show_trace {prediction(I)}.

Program 7.1: An example of a classifier.lp (shown in Figure 7.12). In particular, this ASP code repre-

sents the complete translation of the DTmodel Top 7, depicted in Figure 7.2.

158

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

1 feature_names :- feature_name(F,FName).
2

3 %!trace {gt(I,F,T), "% > %_t", FName, T} :- feature_name(F,FName).
4 %!trace {le(I,F,T), "% <= %_t", FName, T} :- feature_name(F,FName).
5 %!trace {between(I,F,Min,Max), "% in (%_t,%_t]", FName, Min, Max} :- feature_name(F,FName).
6

7 %!trace {gt(I,F,T), "feature % > %_t", F, T} :- not feature_names.
8 %!trace {le(I,F,T), "feature % <= %_t", F, T} :- not feature_names.
9 %!trace {between(I,F,Min,Max), "feature % in (%_t,%_t]", F, Min, Max} :- not feature_names.
10

11 %!trace {prediction(I), "Predicted class % for instance % (% probability)", C, I, P} :- class(C, I, P).

Program 7.2: default_traces.lp program containing the set of default traces used to generate natural

language explanations for the DTmodels.

1 %!trace {prediction(I), "Good forecast: %, for recipient % (confidence %_prob)",C,I,P} :- class(C,I,P),C=0.
2 %!trace {prediction(I), "Bad forecast: %, for recipient % (confidence %_prob)",C,I,P} :- class(C,I,P),C=1.
3 %!trace {le(I, F, T), "The donor's cause of death was not a stroke"} :- feature_name(F, "don_cva"), T=5000.
4 %!trace {gt(I, F, T), "The donor's cause of death was stroke"} :- feature_name(F, "don_cva"), T=5000.
5 %!trace {between(I, F, Min, Max), "The recipent's weight is between % kg and % kg", Min, Max} :- feature_name(F, "rec_weight

"), Min=60000, Max=80000.
6 %!trace {value(I, F, V), "High level of liver tumor marker in the recipient (afp above 30 ng/dL)"} :- feature_name(F, "

rec_afp"), V>30000.

Figure 7.17: Translation of the custom traces defined by a user in Figure 7.11.

we dealt with was that the explanations obtained by our best DT model were not convincing to the

expert from a medical point of view. This forced us to evaluate other DT models (those immediately

worse in terms of performance) in search of clinically meaningful explanations. That led us to con-

clude that it is a mistake to understand the explanations extracted from the paths of a DT model as

causal explanations. On the contrary, the conditions from the decision nodes actually reflect statistical

information that was used during the learning process. The DT learning algorithm proceeds recur-

sively, introducing a new condition that splits the current data set into two new subsets in a way that

the entropy of the result is minimized (that is, the information gain is maximized). The larger the dif-

ference between the ratios for each class in a subset, the lower the entropy is. Informally speaking, the

upper a condition node is in the tree, the more it helps to “clarify the picture" with respect to a statisti-
cal partition of the data set. In this way, this arrangement helps in minimizing the average number of

questions (depth of the path) we make to obtain a prediction. However, it also produces curious ef-

fects when reading a particular path as an explanation for a prediction. A first counterintuitive effect is

that the same variable may be checked several times (evenmore than twice) along a path depending on

different threshold values Fortunately, this redundancy can be easily removed from the explanations,

as our tool Crystal-tree does.
A second, and more important, counterintuitive effect that appears when explaining a prediction

by simply reading a path is that some of the conditions we check along the path can be causally opposed
to the prediction eventually obtained. To see an example, suppose we had a transplant case with the

following data:

rec_hcv = 1

7.6. DISCUSSINGDECISION TREE EXPLANATIONS 159

don_cva = 0
rec_afp = 27
rec_provenance = 0

We will use one of the DT models that our expert discarded during the selection process. If we fol-

low the DT conditions using these data, we get the path in Figure 7.18 reaching node #12, whereas
its corresponding explanation is displayed in Figure 7.19. While the explanation predicts a bad fore-

Figure 7.18: Another path in the decision tree, explained by Listing 7.19.

cast, the fact that the donor did not die by a CVA (don_cva = 0) and that the recipient is at Home

(rec_provenance = 0) are known to particularly contribute to the good prognosis. These conditions

must correspond to the nodes followed by the tree tomake a prediction but cannot be read as necessary
causes strictly required to achieve that prediction. In reality, what they do is restrict the subset of the

data where the remaining conditions (which might be causally related) explain the prediction. For in-

stance, this explanation could be understood asHepatitis C-positive recipient explains the poor prognosis

*
|__Bad forecast: dead, for recipient 114 (confidence: 100\%)
| |__The donor's cause of death was not a CVA
| |__The recipient is at Home
| |__The recipient is hepatitis C-positive
| |__AFP is greater than 10.05 ng/ml

Figure 7.19: Explanation corresponding to the path in Figure 7.18.

160

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

among donor-recipient pairs in which the donor did not have a stroke and the recipient was not admit-
ted to the hospital. Much of the information about these causal relationships is already known by the

experts. This is, indeed, what allows them to discriminate between theDTmodels that are causally sig-

nificant and those that are not. This Background Causal Knowledge information could be introduced

in the form of text Traces. The causally opposed conditions of a path of the tree could be written in

the explanations preceded by some predefined text like ”Despite of ...´´, to give the hint that is not part
of a causal relation discovered by the algorithm, but just statistical information it is leveraging form.

But perhaps a harder problem we may find when extracting explanations from the paths of a DT

model is the existence of irrelevant conditions. Take for instance the selectedDTdepicted in Figure 7.2,

and the donor-recipient pair with the following values:

don_sodium = 152.500
rec_vhc = 1
rec_hcc_afp_30 = 0
rec_weight = 92

If one follows the conditions from the tree, this pair ends up reaching a dead leaf node after evaluating
4 condition nodes. Thus, a path-based explanation would consist of these four conditions displayed

as equally valuable and necessary causes for the prediction, this is that prediction could not be achiev-

able without meeting the conditions. Now see, however, that had the value for rec_hcc_afp_30 be 1,
our input instance would be as well classified as dead. Moreover, the same happens if increasing the

don_sodium value to be above the first 162.514 threshold. What is more, in the three cases the associated

confidence in the prediction is 100%. In other words, with the rest of the input data unchanged, the
prediction will still be dead regardless of these two variables. To sum up, these two conditions in the

explanation just reflect how the DT has organized the conditions to be checked, but cannot be read as

necessary causes to explain the prediction.

An interesting possible future line of research is to design an algorithm that collects minimal sets

of necessary conditions for each possible prediction made by the tree. Since we have already translated

the DT model into a logic program, this is, into a logic formula in Disjunctive Normal Form, one

option would be to minimize such a formula. To this aim, known approaches like Quine-McCluskey

(QM) could be used to simplify this expression. The result of such a process, although would behave

as the original DT model in any case, would not be a tree structure anymore but a set of rules whose

bodies represent joint, necessary causes for the predictions. However, the QM method only works

with Boolean expressions and, unfortunately, a lot of the conditions in a decision tree are ranges over

numerical features. To apply such an approach, mapping the tree to a fully Boolean or adapting the

QM algorithm to deal with ranges of numerical features would be needed. Another (similar in some

sense) option to deal with unnecessary causes in DT path-based explanations is the one used in [30,

31]. From a givenMLmodel, this approach computes Symbolic Decision Graphs fromwhere obtaining

explanations that avoid the use of any non-necessary input feature. These graphs can be represented as

an ASP program to obtain natural language explanations via xclingo. Additionally, in this work, they
also show how to obtain different kinds of formulas to perform counterfactual reasoning (i.e. finding

out what changes we would have to make in the input to flip the actual decision of the classifier) or

even find biases over specific input features.t

In contrast to the previously mentioned approach, a graph is obtained for each particular pair

of models and input instance, whereas in the DT minimization approach, we obtain a fresh set of

7.6. DISCUSSINGDECISION TREE EXPLANATIONS 161

formulas representing the necessary conditions for classifying an input instance. Although our first

attempts on this research line suggest that the computational cost of minimizing a DTmodel is much

higher, this product is valuable and can be provided to the experts as a result.

162

CHAPTER 7. A TOOL FOR EXPLAININGDECISION TREES APPLIED TO LIVER
TRANSPLANTATION

Chapter 8

Explanations for ML Applied to 3D
Printing of Medicines

8.1 Introduction

This chapter continues the research line obtaining common sense explanations for ML classifiers. In

the previous chapter, we started with symbolic ML algorithms as DT. The problem then was to pro-

duce common sense explanations from suchmodels that embrace the properties defined inDefintion 1

fromChapter 1. In this chapter, we face the task of obtaining explanations for non-symbolic classifiers.

Recall that oneof the requirements for a common sense explanation is that it has tobe causal. In the

case of symbolic approaches, as they are naturally transparent (i.e. a technical user can just read what
the classifier is doing), one can try to validate the causal knowledge that the model can be capturing

from the correlations learned. For instance, in the previous chapter, we show how some of our DTs

were directly disregarded by our expert because the rules learned by the tree were, in the expert’s words,

not clinically significant. From all the models, the expert chose one as the more clinically significant,

that is, more aligned with the causal knowledge of the expert.

As you see, even thoughwe cannot sayDTmodels are causal (see Section7.6 for a deeper discussion

on this topic), we can at least check if their learned correlation knowledge is aligned with the user’s

intuitions. In the case of non-symbolicML algorithms, that act as black boxes, this validation step can

sometimes be too hard. Unfortunately, these systems are indeed those that were the most extended in

recent years, and that are already affecting the lives of people on a daily basis (think on loan allocation

or medical diagnosis, but also recommendations of all kinds such as in politics, culture or leisure).

In this Chapter, we study the application of amethod for obtaining symbolic explanations for any

kind ofML classifier. We provide anASP implementation of such amethod called aspBEEF andwe test
it in the real-world application of enhancing the development of 3D-printed medicines. In the next

sections, we first introduce the study case of 3D-printedmedicines research (Section 8.2) and after that

we present the tool aspBEEF and the method it is inspired in (Section 8.3).

164 CHAPTER 8. EXPLANATIONS FORMLAPPLIED TO 3D PRINTINGOFMEDICINES

8.2 Accelerating 3D-Printed Medicine Research with ML

Since the approval of the first 3D-printed medicine, Spritam, 3D-Printing (3DP) has been touted as

the next disruptor of the pharmaceutical manufacturing industry [98]. The gold end goal of this field

of research is the so-called precision medicines, allowing every individual to be able to receive the right

dose at the right time. Different (3DP) technologies have been tested for this purpose among them

FDM is the most actively explored 3DP technology in pharmaceutics.

FDM is a thermal material extrusion technology whose popularity is mainly attributed to its af-

fordability, versatility and compactibility [59]. Figure 8.1 outlines the typical process of FDMprinting.

Figure 8.1: Typical process of FDMprinting applied to 3DP ofmedicines. Medicines produced by this

process are called printlets instead of tablets.

First, raw pharmaceutical material is processed through hot melt extrusion (HME) to obtain long

strands of filaments which are subsequently fed into an FDM 3D printer. The printer melts the fila-

ment and it is deposited layer-by-layer onto a build plate to create a 3D object. The size and shape of

the object can be easily modified by software.

Yet, developments of new medicines in pharmaceutical FDM 3DP have been hampered by the

empirical process of formulation development. Numerous parameters within this two-step process

can influence the performance of the final product. These include, but are not limited to, pre-HME

variables (e.g. proportion of starting materials, object design), HME variables (e.g. extrusion temper-

ature and speed, among others), and FDM 3DP variables (e.g. printing speed, printing temperature,

platform temperature). Consequently, to produce the desired product, researchers must undergo a

long process of trial and error, slowly adjusting each parameter one at a time and evaluating the perfor-

mance of each prototype. Not only is this time-consuming and inefficient, but it also necessitates large

amounts of material waste and monetary costs. Consequently, this results in a system unsuitable for

on-demand applications. Therefore, it would be desirable to have a means of predicting the optimal

parameters that will produce the 3D-printed object with the desired performance. Given a sufficient

amount of real experiments ML algorithms may hold the key to optimizing this process.

In brief words, the goal is to trainMLmodels able to predict the correct parameters that are needed

to obtain a desired 3D-printed medicine, accelerating the trial and error process. Figure 8.2 outlines

the two workflows that are the end goal of this application.

8.2. ACCELERATING 3D-PRINTEDMEDICINE RESEARCHWITHML 165

Figure 8.2: Experiments acceleration workflow (at the left side) and experiment recommendation (at

the right side).

First, we propose the Experiments acceleration workflow, depicted on the left side of the figure. In
it, the user (the laboratory operator) introduces the suggested experiment, that is the input parameters

for the FDM process so that a successful experiment is expected. The system answers back with the

predicted results for the experiment that could be successful or not. The operator continues to design

new experiments until the system predicts that the experiment will succeed. Then the experiment is

performed and the result, either good or not, is fed into the database so new models are trained. The

hope is that the systemhelps in skipping failing experiments and even if somepredictions arewrong and

the experiment fails, that is added to the database of experiments as valuable evidence for training better

models. Conversely, the second workflow, namely Experiment recommendation workflow requires the

system to directly suggest the FDMparameters that will lead to a successful experiment. The operator

performs the experiments and introduces the results into the system so it can learn more.

A third related goal is to obtain explanations for the system. To this aim, although several methods

are yet to be tested, we have opted for obtaining a symbolic Explainer. Given a prediction of the clas-
sifiers, the symbolic explainer can produce an explanation in terms of numerical ranges over the input

features. We later transform this output into a natural language message for the user.

Moreover, the explainer itself is a symbolic object (thus representable under a KR paradigm as

ASP) that captures the behavior of the original MLmodel. In a sense, is a symbolic approximation of

theMLmodel function that allows us to perform some reasoning in terms of how themodel predicts a

classification from a particular input. Recall now the recommendationworkflow fromFigure 8.2. In a

sense, flow implies flipping the traditional way in which we leverageML and, instead of predicting the

output from the input parameters, we rather perform the counterfactual query which input produces
the desired output? Having an approximated symbolic representation of the ML model allows us to

perform this kind of task. This last approach is still untested and represents part of the future work of

this project.

166 CHAPTER 8. EXPLANATIONS FORMLAPPLIED TO 3D PRINTINGOFMEDICINES

8.2.1 Obtaining the FDM-Predicting ML Models

Ofcourse, to obtain the explainer objectweneedfirst tohave trained and testedMLmodelswith a good

performance in predicting the experiment results. The experiments associated with the derivation of

these models involved a very significant workload, which is beyond the scope of this dissertation. Even

so, that process and its associated publications were produced also under this doctoral thesis, which is

listed in Section 1.3. Still, work on explanations in this context is at an early stage.

For a detailed description of the data used, and theML pipeline used to get themodels, we refer to

the published articles [24, 41, 77]. In the following, we give a very brief idea of the work done to obtain

the models and the different related experiments.

3D-Printing Data

Unlike in the case study of Chapter 7, the data were collected and provided by the FabrX
1 2

company

although the design and development (andmaintenance) of a relational database for this data was per-

formed by the author of this dissertation. The dataset started comprising 614 experiments evaluated

by expert HME and FDM operators from University College London – School of Pharmacy and the

company Fabrx, using 143 excipients and drugs. These data grew with the subsequent publications,

by collecting up to 980 experiments from almost a decade of 3DP of medicines literature, to reach

the number of 1594 experiments and 254 different excipients and drugs. These data were analyzed by

performing multiple tasks of visualization.

The evaluated input features canbe classified into three groups: material concentration (that is, the

relative amount of each material participating as part of the mixture before extrusion, see Figure 8.1),

FDM input parameters and Dissolution parameters. From this source dataset, 5 variations were de-

signed and processes for exporting the original dataset to the 5 formats were developed. Each variation

encodes the material concentration in a different way, for instance, one groups the amounts by the

type of molecule the material falls into; another for instance, such as the Physical Properties Dataset,

expresses the mixture of materials as the weighted average of the individual physical properties of each

participating material (their molecular weight, or their melting point, among others). Figure 8.3 de-

picts the alternative datasets and briefly outlines how they are obtained from the source.

ML Pipeline

Starting from these datasets, 4 ML algorithms were tested in the task of predicting the different 3DP

parameters of interest, namely: (1) HM extrusion temperature; (2) HM extrusion filament aspect; (3)

FDM printing temperature; (4) FDM printability (i.e. says if the obtained printlet is successful); and
(5), dissolution profile. (1) and (3) are numerical variables, whereas (2) and (4) are categorical vari-

ables representing the quality of the extruded filament (and printed printlet, respectively) and (5) is

the approximation of a function representing the dissolution of the printlet inside the patient body

over time. The ML training pipeline was incrementally enhanced with the subsequent publications.

At themoment, the pipeline consists of several steps including, among others, normalization and stan-

dardization of numerical variables, and exhaustive feature selection via grid search. Figure 8.4 shows

1

https://www.fabrx.co.uk

2

https://fabrx-ai.com

8.2. ACCELERATING 3D-PRINTEDMEDICINE RESEARCHWITHML 167

Figure 8.3: The alternative datasets depicted. Source: [77], Figures 1 and 2.

168 CHAPTER 8. EXPLANATIONS FORMLAPPLIED TO 3D PRINTINGOFMEDICINES

the latest results obtained of three different ML algorithms, published in [77], contrasting the perfor-

mance metrics over the alternative datasets.

Figure 8.4: Latest ML results for three algorithms, namely MultiLayer Perceptron (MLP), Support

Vector Machine (SVM) and Randon Forest (RF). Source: [77], Figure 7.

M3DISEENWeb Application

An AI-based web application, named M3DISEEN
3 4

, was designed, developed and deployed lever-

aging the trained ML models. With the subsequent publications, the functionality of this web ap-

plication was further increased to update the models, handle new parameters and predict new target

features as the dissolution profile.

8.3 aspBEEF: an ASP implementation of BEEF

BEEF: Balanced English Explanations of Forecasts

The developed tools are based on Balanced English Explanations of Forecasts (BEEF) [60]. The BEEF
algorithm is able to learn a symbolic classification model (that we will refer to as an explainer from

now on) from the predictions of an already trained machine learning classifier (hence the use of the

term forecasts). The explanations obtained are said to be balanced because they may give reasons for a

prediction to be in one class or in the opposite class
5
. Besides, they are able to express this explanation

in natural language terms.

The aim of the algorithm is to explain the outcome of anyMLbinary classifier in terms of intervals

over the input features. It starts from a set of predictions from theML classifier, represented as points

in an-dimensional space wheren is the number of input features of the classifier. The originalmethod

restricts itself to the binary classifier, thus, each point is labeled with 0 or 1, depending on if they are

3

A public version of this tool is publicly available in m3diseen.com

4

Since May 2023 the maintenance of this application is no longer the responsibility of the author of this thesis.

5

Although the originalmethod is originally designed for binary classification probelms, our implementation can be easily

generalized for multiclass classification problems

https://m3diseen.com

8.3. ASPBEEF: AN ASP IMPLEMENTATIONOF BEEF 169

predicted as part of the negative (respectively positive) class. Even though, our representation that will

be later explained can be easily generalized formulticlass problems. In fact, the examples and the figures

used to illustrate the process in this section will use a three-class problem. Over the set of predictions,

BEEF first runs a traditional clustering method, such as KMeans. Then, using the traditionally found

clusters as a starting point, a set of axis-aligned, hyperrectangular clusters (that we will refer to as boxes,
for short) is iteratively approximated such that it maximizes the agreement in the classification with

respect to the original clusters. To illustrate the method we will use 2-dimensional representations as

the one shown in Figure 8.5.

Figure 8.5: Example of some boxes approximated for the classifications of an arbitraryML classifier in

a three-class classification problem.

The problem of finding these boxes, which is named Explanation Computation Problem, is then

stated as a combinatorial problem where a set of boxes at most h boxes have to be found such that

they satisfy some predefined thresholds in terms of the following properties: overlapping, purity and
inclusion. Firstly the overlap between two boxes w.r.t a given feature is defined as the amount of space

shared between two boxes when projecting the boxes over the dimension of that particular feature.

The property to beminimized by the algorithm though, is the overall overlap that is the product of the
overlap between all the boxes. The second property to be minimized is called purity of a box, which
is just the percentage that represents the population of points belonging to the majority class in that

box. In the original algorithm, the particular purity of each cluster is minimized. Note that, if the

number of boxes is restricted to at most h boxes, the previously defined two properties are very easily

170 CHAPTER 8. EXPLANATIONS FORMLAPPLIED TO 3D PRINTINGOFMEDICINES

minimized by defining each box capturing only one point. Thus to avoid this they introduce the last

property called inclusion, which is the relation of the total points that fall outside any box.
Note that in Figure 8.5, we are showing the boxes projected to two dimensions for the sake of the

representation, but they are actually comprised of n dimensions. Because of that, we cannot visually

know if the points fall inside the boxes or not, nor if the boxes overlap each other.

Starting from the initially found clusters, the algorithm iteratively adjusts the boundaries of the

boxes, until the thresholds are satisfied. This problem has been proved to be NP-complete by the au-

thors, their framework uses some heuristics during the search, at the cost of losing optimality.

Boxes found are axis-aligned and finite, so they can be described as a set of intervals over each

dimension (each input feature). Besides, each box is labeled with the name of the majority predicted

class within. We can explain a model outcome o just by finding out the description (the intervals) of

the boxes o fell in. The descriptions of those boxes whose label matches the predicted class will be

the supporting explanations. The rest will be the opposing explanations. The sum of supporting and

opposing explanations is what BEEF calls a balanced explanation.

aspBEEF implementation

Our approach aspBEEF leverages ASP to implement a method of obtaining natural language explana-

tions forML classifiers. It is inspired by BEEF’s combinatorial approach to finding boxes-like clusters.

Themain differencewith respect to the original approach is that aspBEEF aims to compute an optimal

set of boxes with respect to a given overlapping, impurity and inclusion thresholds, rather than using

a greedy approach to find a good one.

We start from a set of predictions pi ∈ P from an ML classifier. Recall that each prediction is a

point pi = (x⃗, yi) in a n-dimensional space, where x⃗ = (v1, v2, · · · , vn), n is the number of input

features of the model, and yi ∈ {0, 1, · · · ,c} is the class labeling the point where c is the number of

classes. Then each prediction pi is encoded as a set of atoms value(i, f, v) for each f ∈ {0, 1, · · · , n}
where i identifies the prediction and v 6

is the value of the prediction for the input feature f . Addi-
tionally, a class(i, yi) is introduced for any prediction pi.

Recall also that, in BEEF, the number of allowed boxes h is determined by the user. In contrast,

in aspBEEF, the number of boxes is also given by the user but it is fixed. Thus, a fact rectangle(b) for
each b ∈ {0, 1, · · · , h} is also introduced in the program to identify the different boxes. We will call

input(P) to the set of facts consisting of all the encoded predictions pi and rectangle facts.

Let us nowdefine the program aspBEEF as theASPprogram that generates a finite limit for each

box b, computes its corresponding properties (i.e. overlapping, impurity and inclusion) such that the

solution of program input(P)∪ aspBEEF is an optimal set of boxes. We will now break down the

rules in aspBEEF and explain its different parts.

First, consider the following domain predicates pid/1, feature/1 and class/1 respectively model-

ing the set of identifiers for the predictions pi ∈ P , the set of features f ∈ {0, 1, . . . , n} and the set
of classes cl ∈ {0, 1, · · · , c} defined by the rules in Figure 8.6.

For each box b ∈ {0, 1, · · · , h}, and feature f ∈ {0, 1, . . . , n} we generate the corresponding
upper and lowerboundofbox bover the featuref . Eachboundary ismodeled as an atom rectval(b, f , v),

6

As the input features could be real numerical variables that cannot be handled by ASP, the values are scaled to integer

number so that all decimal places are preserved.

8.3. ASPBEEF: AN ASP IMPLEMENTATIONOF BEEF 171

1 pid(I) :- value(I,A,V).
2 feature(A) :- value(I,A,V).
3 class(CL) :- class(I,CL).

Figure 8.6: Some shorthand predicates for identifying predictions, features and classes (respectively).

where b is a box, f is a feature and v the position of any predictionpi over the dimension corresponding

to the feature f . The generation of the possible boundaries is done by the choice rule in Figure 8.7. As

1 2 { rectval(R,F,V) : value(_,F,V) } 2 :- rectangle(R), feature(F).

Figure 8.7: Choice rule generating the lower and upper bound for each box b and feature f .

the search space of possible boundaries for the boxes is infinite, we fix the possible boundaries to the

position of the predictions in the space, namely the values (v1, v2, · · · , vn) = x⃗ of any prediction pi.
In Figure 8.8 we now define several rules that capture which predictions pi fall inside the boundaries
of each box b.

1 featureinlier(R,I,F) :- value(I,F,V), rectval(R,F,V0), rectval(R,F,V1), V >= V0, V <= V1, V0 < V1.
2 featureoutlier(R,I,F) :- value(I,F,V), rectval(R,F,V0), rectval(R,F,V1), V < V0, V0 < V1.
3 featureoutlier(R,I,F) :- value(I,F,V), rectval(R,F,V0), rectval(R,F,V1), V > V1, V0 < V1.
4

5 rectoutlier(R, I) :- featureoutlier(R,I,F).
6 rectinlier(R, I) :- featureinlier(R,I,F), not rectoutlier(R,I).
7

8 outliercount(C) :- C=#count{ I : outlier(I) }.
9

10 :- rectangle(R), not rectinlier(R, _).

Figure 8.8: Rules from aspBEEF capturing when a point I falls inside or outside the boundaries of
box R.

Intuitively, predicate featureinlier(R, I, F) and featureoutlier(R, I, F)model when the po-

sition of a prediction I with respect to the dimension of feature F is between (respectively, out) of

the boundaries of box R for feature F. Thus, lines 5 and 6, define when a prediction I falls outside
(rectoutlier(R, I)) or inside the boundaries rectinlier(R, I) of box R. Additionally, we introduce
a constraint forbidding the existence of any box R such that any prediction I falls in it.

Also, line 8 introduces a predicate outliercount(C) which counts the number C of outlier pre-
dictions. This models exclusion rather than inclusion as BEEF. We will thus minimize the exclusion

instead.

Using thesepredicates,wenow introduce thenotionof theoverlappingproperty in theaspBEEF
programusing the rule in Figure 8.9. As a simplification, we just count the number of overlapping pre-

dictions that are shared by two boxes rather than computing the space shared between the boxes.

Then impurity is specifiedby the rules in Figure 8.10. Intuitively, class_count(R,CL,IC) counts the
number IC of predictions of class CL falling in box R. Predicate rectclass(R, CL)models the majority

class CL of box R. An impure point, represented by the predicate impurepoint(I), is a prediction I such

172 CHAPTER 8. EXPLANATIONS FORMLAPPLIED TO 3D PRINTINGOFMEDICINES

1 overlappoint(I, R1, R2) :- rectinlier(R1, I), rectinlier(R2, I), R1 < R2.
2 overlapcount(C) :- C=#count{ I : overlappoint(I, R1, R2) }.

Figure 8.9: Rules finding (and counting) predictions I over two or more boxes.

1 class_count(R,CL,IC) :- class(CL), rectangle(R),
2 IC=#count{I: class(I, CL), rectinlier(R, I)}.
3

4 rectclass(R, CL1) :- class_count(R, CL1, NCL1), not class_count(R, CL2, NCL2), NCL2 < NCL1,
5 class(CL1), class(CL2), _safe(NCL2).
6

7 impurepoint(I) :- rectinlier(R,I), class(I, CLI), rectclass(R,CLR), CLI != CLR.
8

9 impurecount(C) :- C=#count{ I : impurepoint(I) }.

Figure 8.10: Rules modeling the class of a box R based on the majority class within R, and impure

predictions I.

that its class does not match the box R it falls inside of. Finally, impurecount(C) counts the number C
of total impure points with respect to the considered set of boxes. Note that, as we will minimize the

overall impurity, identifying the particular boxes the impure predictions fall into makes no difference.

Finally, we use the ASP extension asprin [17] that allows a flexible way of defining preference rela-
tions for optimization. Figure 8.11 shows the use of asprin’s preferences for optimizing the set of boxes

with respect to the introduced properties.

1 #const overlapprio = 3.
2 #const impurityprio = 2.
3 #const outlierprio = 1.
4

5 #preference(overlap, less(cardinality)){
6 overlappoint(I, R1, R2) : rectangle(R1), rectangle(R2), pid(I)
7 }.
8 #preference(impurity, less(cardinality)){
9 impurepoint(I): pid(I)
10 }.
11 #preference(outlier, less(cardinality)){
12 outlier(I) : pid(I)
13 }.
14 #preference(all, lexico){
15 overlapprio::**overlap; impurityprio::**impurity; outlierprio::**outlier
16 }.
17

18 #optimize(all).

Figure 8.11: asprin preferences for aspBEEF program.

Furthermore, inspired by BEEF’s[60], by Gover et al. feature selection feature, we introduced an

additional option that allows the feature set to be left free to choose from. The user specifies the num-

ber of features as a constant. Figure 8.12 shows how that is specified in the aspBEEF program. Of

course, then the boundary selection choice rule from Figure 8.7 has to be updated to only use the

chosen features (see line 4).

8.3. ASPBEEF: AN ASP IMPLEMENTATIONOF BEEF 173

1 #const featurecount = 2.
2

3 featurecount { selected_feature(F): feature(F), not target(F) } featurecount.
4 2 { rectval(R,F,V) : value(_,F,V) } 2 :- rectangle(R), selectedfeature(F).

Figure 8.12: Feature selection in aspBEEF.

As a preliminary benchmark, we tested the tool finding boxes for the predictions of aML classifier

trained in random samples of three different sizes of the publicly available IRIS data set
7
. We compare

performance using both the fixed and free feature selection methods. Each measure has been taken

100 times and then averaged to smooth out outlying values. The search space and the computational

time growexponentiallywith thenumber of free features. Cases inwhich all of the features are selected,

(e.g. all of the four features in the case ofTable 8.1) eliminate any decision-making over feature selection

completely, thus greatly reducing the problemcomplexity. Thebest times are achievedusing a pre-fixed

set of features, but this requires previous knowledge of the search space.

Sample Size Used Features Time w/ Free Features (s) Time w/ Fixed Features (s)
60 2 1.1288 0.7253

60 3 1.1103 0.6995

60 4 0.5443 0.5700

90 2 3.4666 1.6238

90 3 2.5741 1.3963

90 4 1.3596 1.1760

150 2 27.7299 5.5057

150 3 28.8644 5.9140

150 4 7.7072 6.1569

Table 8.1: Times table for a data set of 150 points and 4 features.

The tool was further tested for obtaining explanations for anML that predicts the success (or fail-

ure) of the 3DP-printing process given a mixture of materials and the rest of the FDM parameters.

Predictions for all experiments in the original dataset of experiments comprising a total of 614 exper-

iments were obtained. Then, the dataset of predictions was split into random subsets of 30, 50, 100,

200, and 400 predictions. The tool was tested on all of the sub-datasets, results were collected and

execution times weremeasured. We fixed the number of features to 2, but we left the selection of those

features free. Figure 8.13 the evolution of the time invested in finding the optimal solution against

the number of considered predictions. The curve shows an exponential-like evolution as the number

of predictions grows. Note that for a dataset comprising 100 predictions (and using 2 free features),

the time invested is around 2 minutes. After that, the invested time was (approximately) 4 hours, 145

hours and 13 days for 200, 400 and 614 predictions respectively.

Figure 8.14 shows a particular example of one of the sets of boxes found for the dataset comprising

100 predictions, and Figure 8.15 shows a couple of examples on using that boxes for obtaining expla-

7

https://archive.ics.uci.edu/ml/datasets/iris

https://archive.ics.uci.edu/ml/datasets/iris

174 CHAPTER 8. EXPLANATIONS FORMLAPPLIED TO 3D PRINTINGOFMEDICINES

Figure 8.13: Time invested by aspBEEF in finding the optimal set of boxes (in minutes) vs the number

of prediction points included in the experiment.

nations for a particular prediction. The natural language explanations were obtained by representing

the boxes as an xclingo-annotated ASP program.

Discussion

It isworth noting that themodel obtained is no longer a probabilisticmodel. For example, if an anoma-

lous input is introduced, and the point falls outside all defined boxes, no prediction or explanation is

possible. That is closer to human reasoning, and therefore to common sense explanations. A typi-

cal machine learning model, by contrast, always produces a prediction no matter how nonsensical the

input is.

In case a point falls into multiple boxes, an explanation is generated for each box. The original

BEEF explainer supports counter-explanations (hence the term Balanced). Probabilistic models usu-

ally predict the probability of the positive class (in the case of binary classification). That is, if the

predicted probability is above 50% then the prediction is positive, otherwise it is negative. When the

probability is close to the threshold (graphically, the prediction would fall close to the boundary that

separates one class from another in the feature space) and hence the probability is very close to 50%, the

model prediction is equally sharp. These cases correspond to overlapping the boxes andwould produce

competing explanations inBEEF. Fromahumanperspective, balanced explanations aremore intuitive.

The fact that the models obtained by BEEF are symbolic offers many possibilities. Different rea-

soning tasks other than inference can be performed. For example, it can be applied to counterfactual

reasoning: "What should change for the prediction to beX?This opens up the possibility of generating

recommendations for experiments rather than just predicting those introduced by experts.

8.3. ASPBEEF: AN ASP IMPLEMENTATIONOF BEEF 175

Figure 8.14: Example of a set of boxes found for the predictions of the ML model predicting the out-

come of 3DP experiments.

1 *
2 |__The experiment is "printable" (Box 1)
3 | |__Average M.Weight in [178778.3, 320548.05] (g/

mol)
4 | |__Average M.Point in [145, 160] (<*\textdegree*>

C)

1 *
2 |__The experiment is "not printable" (Box 2)
3 | |__Average M.Weight in [10897.9, 70901.1] (g/mol

)
4 | |__Average M.Point in [87.6, 131.4] (<*\

textdegree*> C)

Figure 8.15: Explanations corresponding to predictions produced by Boxes in Figure 8.14. The left

side corresponds to Box 1 whereas the right side corresponds to Box 2.

176 CHAPTER 8. EXPLANATIONS FORMLAPPLIED TO 3D PRINTINGOFMEDICINES

Part III

Conclusions

Chapter 9

Conclusions

In this thesis we have provided a formal characterization of explanations of logic programs in terms of

graphs constructed with atoms and program rule labels called support graphs, as well as the notion of

a justified model. Besides, we have proved that all stable models are justified whereas, in general, the

opposite does not hold, at least for disjunctive programs. We have also characterized a pair of basic

operations on graphs, which we call edge pruning and node forgetting, that allow performing infor-

mation filtering in the explanations. We have implemented and presented a tool called xclingo, which
computes the support graphs for ASP programs. The tool further extends the language of Answer

Set Programming (ASP) with annotations that help the user design the produced explanations. We

have also shown how this tool is implemented in ASP via meta-programming. We have defined the

notions of commonsense explanations and technical explanations in terms of what literature on so-

cial sciences considers human-like explanations. We also discussed the process of explanation design

for obtaining these kind of explanations using xclingo. We have shown how strongly equivalent logic

programs may produce different explanations, thus leading to potentially important problems in the

typical Knowledge Representation (KR) workflow. For instance, we have shown how efficient ASP

encodings for solving real-world problems may not be suitable for obtaining commonsense explana-

tions even though they are equivalent to the original program. We have provided the design of a system

able to answer different types of causal questions and we have shown how this system can be imple-

mented using xclingo. We have compared our approach with a relevant part of the literature on the

topic of the explainability of ASP in terms of explanation definitions, practical tools, and the design of

commonsense explanations. Finally, we have shown the application of two explainability techniques

for obtaining explanations from different Machine Learning (ML) models for real-world problems

and real-world users from outside the KR world. In particular, we have developed applications in the

domains of liver transplantation and 3D printing of medicines.

The focus of the thesis has been on obtaining commonsense explanations, that is, explanations

aimed at a non-expert user. For this purpose, the developed tool xclingo allows the use of annotations
that aid in designing explanations in natural language that are user-friendly. This objective is achieved

without renouncing a well-founded formalism such as support graphs, for which the tool has been

proven correct by Theorems 4 and 5. This constitutes the main contribution of this thesis. Regarding

the xclingo tool, it is easily accessible to the public and has reached a highly favorable state of usability,
demonstrating very straightforward usage. In particular, the fact that it accepts the same language as

180 CHAPTER 9. CONCLUSIONS

clingo and that annotations are seen as comments makes xclingo a perfect companion tool to clingo.
It can be used to obtain explanations easily without modifying the semantics of the original program.

Additionally, it avoids introducing new auxiliary artifacts. Furthermore, while previous versions of the

tool used an adhoc implementation inPython, it has nowbeen rewritten as anASPmeta-program (this

is fully detailed in Section 4.3). This has proven to be very beneficial in various ways. Firstly, due to the

declarative nature of ASP, it has been easier to verify that the tool is correct with respect to the defini-

tions of support graphs. Secondly, the code is much more maintainable. Lastly, whereas the previous

implementation always computed all explanations (consuming enormous computation times and be-

coming unviable in theworst cases), as each explanation is now amodel of theASPprogram, obtaining

only one (or an arbitrary number n) is very straightforward. Another important contribution is the

partial classification of the types of causal questions proposed in Section 5.5, which explicitly separates

the notions of question and response (or explanation). Additionally, abstract proposals on how these

questions could be answered are provided. While it seems that the reviewed approaches agree that

positive explanations should be answered by relying in some way on some type of atom derivation,

the way to respond to negative (“Why not”) queries is what sets them apart. Although implemented

differently, most rely on some form of abduction in which they imagine what should have happened

(or what changes would have to be made) for the event to have occurred. In the same section, we also

propose a way to implement this using xclingo, although the ideal scenario would be (and is indeed

the most immediate future work) to have this available natively in the tool. This could be done with

a new type of annotation to point out abducible atoms. In this way, when a program has no answer

set, xclingo would automatically try to find one by applying abduction on the set of atoms that the

user has declared as abducible. Including this, we also provide an abstract interactive methodology to

answer the causal queries of a user in a real system, which is fully explained in a diagram in Figure 5.11.

In this sense, although we did not cover all types of queries, we firmly believe that the proposed dis-

tinction constitutes an important contribution that can help clarify a taxonomy of causal questions

and answers in the future.

Apart fromwhat was mentioned earlier, we proceed to outline the areas in which this work can be

extended in the future. Correspondences between support graphs andCabalar et al’s proof graphs [49]

should be further studied. In Section 6.1, we outlined some of them that should naturally follow

from the different notions of explanations. For instance, the possible correspondence between sup-

port graphs and⊆-minimal proof graphs. This could be further studied for other formalisms as well.

Moreover, both the semantics of support graphs and the implementationof xclingo couldbe extended
to capture Cabalar et al’s notion of sufficient causes. Given the declarative nature of the ASP xclingo
current implementation, this should be easy to obtain by minimizing the alternative support graphs.

Concerning new xclingo features, causal literals [20] could be implemented. These are literals

enabling reasoning about causes in the logic programs. For instance, one could have a rule of the form:

a← caused(b, c).

This means that we derive atom a if, in the current world, c is a cause of b. Different literals can be

designed to capture different notions of causes such as direct cause, indirect cause, sufficient cause,

etc. Although some of these causal literals are already possible to implement via extensions (see Sec-

tion 4.4.3) other would possibly require amore complex approach. For instance, for designing a causal

181

literal capturing the idea that c causes b in every possible explanation (or also, in every possible solution)
this would possibly require the use of a multi-shot approach or the use of epistemic reasoning.

Furthermore, whenwe either try to abduce a counterfactual answer or simply have to select among

alternative explanations, user-defined preferences could be considered. Either as an xclingo extension
or as a new type of annotation, the user should be able to introduce those preferences in a friendly way.

The use of flexible preferences like those introduced by asprin [17] could be studied.
Finally, we also plan to give support to sufficient causes for some types of aggregates that could

be implemented as we commented on different occasions (in sections 4.2.6, 4.3.2, and 6.5). This also

relates to the previous point in the sense that the intuition about which should be considered a correct

cause for an aggregate is still unclear and seems to depend on the type of aggregate (and its monotonic-

ity).

182 CHAPTER 9. CONCLUSIONS

Bibliography

1. S. Ahmetaj, R. David, A. Polleres, and M. Šimkus. “Repairing SHACL Constraint Violations

Using Answer Set Programming”. In: The Semantic Web – ISWC 2022. Ed. by U. Sattler, A.
Hogan,M.Keet, V. Presutti, J. P. A.Almeida,H.Takeda, P.Monnin,G. Pirrò, andC. d’Amato.

Springer International Publishing, Cham, 2022, pp. 375–391. isbn: 978-3-031-19433-7.

2. M. Alviano, C. Dodaro,W. Faber, N. Leone, and F. Ricca. “WASP: ANative ASP Solver Based

on Constraint Learning”. In: Logic Programming and Nonmonotonic Reasoning. Ed. by P. Ca-
balar and T. C. Son. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 54–66. isbn:

978-3-642-40564-8.

3. M. Alviano, C. Dodaro, N. Leone, and F. Ricca. “Advances inWASP”. In: Logic Programming
and Nonmonotonic Reasoning. Ed. by F. Calimeri, G. Ianni, andM. Truszczynski. Springer In-

ternational Publishing, Cham, 2015, pp. 40–54. isbn: 978-3-319-23264-5.

4. M. Alviano, L. L. T. Trieu, T. C. Son, and M. Balduccini. “Advancements in xASP, an XAI

System for Answer Set Programming”. In: Proceedings of the 38th Italian Conference on Com-
putational Logic, Udine, Italy, June 21-23, 2023. Ed. by A.Dovier andA. Formisano. Vol. 3428.

CEURWorkshop Proceedings. CEUR-WS.org, 2023. url: https://ceur-ws.org/Vol-3428/
paper2.pdf.

5. M. Alviano, L. L. T. Trieu, T. C. Son, and M. Balduccini. “Advancements in xASP, an XAI

System for Answer Set Programming”. In: Proceedings of the 38th Italian Conference on Com-
putational Logic, Udine, Italy, June 21-23, 2023. Ed. by A.Dovier andA. Formisano. Vol. 3428.

CEURWorkshop Proceedings. CEUR-WS.org, 2023. url: https://ceur-ws.org/Vol-3428/
paper2.pdf.

6. M. Alviano, L. L. T. Trieu, T. C. Son, and M. Balduccini. “Explanations for Answer Set Pro-

gramming”. In: Proceedings 39th International Conference on Logic Programming, ICLP 2023,
Imperial College London, UK, 9th July 2023 - 15th July 2023. Ed. by E. Pontelli, S. Costan-
tini, C. Dodaro, S. A. Gaggl, R. Calegari, A. S. d’Avila Garcez, F. Fabiano, A. Mileo, A. Russo,

and F. Toni. Vol. 385. EPTCS. 2023, pp. 27–40. doi: 10.4204/EPTCS.385.4. url: https:
//doi.org/10.4204/EPTCS.385.4.

7. J.Arias,M.Carro,Z.Chen, andG.Gupta. “Justifications forGoal-DirectedConstraintAnswer

Set Programming”. In: International Conference on Logic Programming, ICLP. 2020.

https://ceur-ws.org/Vol-3428/paper2.pdf
https://ceur-ws.org/Vol-3428/paper2.pdf
https://ceur-ws.org/Vol-3428/paper2.pdf
https://ceur-ws.org/Vol-3428/paper2.pdf
http://dx.doi.org/10.4204/EPTCS.385.4
https://doi.org/10.4204/EPTCS.385.4
https://doi.org/10.4204/EPTCS.385.4

184 BIBLIOGRAPHY

8. J. Arias, M. Carro, Z. Chen, and G. Gupta. “Justifications for Goal-Directed Constraint An-

swer Set Programming”. In: Proceedings 36th International Conference on Logic Programming
(Technical Communications), ICLP Technical Communications 2020, (Technical Communica-
tions)UNICAL,Rende (CS), Italy, 18-24th September 2020. Ed. by F.Ricca, A.Russo, S.Greco,
N. Leone, A. Artikis, G. Friedrich, P. Fodor, A. Kimmig, F. A. Lisi, M. Maratea, A. Mileo, and

F. Riguzzi. Vol. 325. EPTCS. 2020, pp. 59–72. doi: 10 . 4204 / EPTCS . 325 . 12. url: https :
//doi.org/10.4204/EPTCS.325.12.

9. J. Arias,M. Carro, E. Salazar, K.Marple, andG. Gupta. “Constraint Answer Set Programming

without Grounding”. Theory Pract. Log. Program. 18:3-4, 2018, pp. 337–354. doi: 10.1017/
S1471068418000285. url: https://doi.org/10.1017/S1471068418000285.

10. J. Arias, G. Gupta, and M. Carro. “A Short Tutorial on s(CASP), a Goal-directed Execution

of Constraint Answer Set Programs”. In: Proceedings of the International Conference on Logic
Programming 2021 Workshops co-located with the 37th International Conference on Logic Pro-
gramming (ICLP 2021), Porto, Portugal (virtual), September 20th-21st, 2021. Ed. by J. Arias,
F. A.D’Asaro, A.Dyoub,G.Gupta,M.Hecher, E. LeBlanc, R. Peñaloza, E. Salazar, A. Saptaw-

ijaya, F.Weitkämper, and J. Zangari. Vol. 2970.CEURWorkshopProceedings.CEUR-WS.org,

2021. url: https://ceur-ws.org/Vol-2970/gdepaper1.pdf.

11. M. Balduccini and M. Gelfond. “Diagnostic reasoning with A-Prolog”. Theory and Practice of
Logic Programming 3:4-5, 2003, pp. 425–461.

12. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge

University Press, 2010. isbn: 978-0-521-14775-0. url: http : / / www . cambridge . org / de /
academic/subjects/computer- science/artificial- intelligence- and- natural- language-
processing/knowledge-representation-reasoning-and-declarative-problem-solving.

13. O. Bodenreider, Z.H. C, Oban, M.C. Doĝanay, E. Erdem, and H. Kosçucu. “A preliminary

report on answering complex queries related to drug discovery using answer set programming.”

In: Proceedings of the Third International Workshop on Applications of Logic Programming to
the (Semantic)Web andWeb Services (ALPSWS 2008). 2008.

14. S.M.N. P. B. Bogaerts and M. Denecker. “Consistency in Justification Theory”. NMR 2018
20, 2018.

15. A. Bondarenko, F. Toni, and R. A. Kowalski. “An Assumption-Based Framework for Non-

Monotonic Reasoning”. In: Logic Programming andNon-monotonic Reasoning, Proceedings of
the Second International Workshop, Lisbon, Portugal, June 1993. Ed. by L.M. Pereira and A.

Nerode. MIT Press, 1993, pp. 171–189.

16. M. Brain,M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S.Woltran. “Debugging ASP Pro-

grams by Means of ASP”. In: Logic Programming and Nonmonotonic Reasoning. Ed. by C.
Baral, G. Brewka, and J. Schlipf. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 31–

43. isbn: 978-3-540-72200-7.

17. G. Brewka, J. P. Delgrande, J. Romero, and T. Schaub. “asprin: Customizing Answer Set Pref-

erences without a Headache”. In: AAAI. AAAI Press, 2015, pp. 1467–1474.
18. G. Brewka, T. Eiter, and M. Truszczynski. “Answer set programming at a glance”. Communi-

cations of the ACM 54:12, 2011, pp. 92–103.

http://dx.doi.org/10.4204/EPTCS.325.12
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.4204/EPTCS.325.12
http://dx.doi.org/10.1017/S1471068418000285
http://dx.doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/S1471068418000285
https://ceur-ws.org/Vol-2970/gdepaper1.pdf
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/knowledge-representation-reasoning-and-declarative-problem-solving
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/knowledge-representation-reasoning-and-declarative-problem-solving
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/knowledge-representation-reasoning-and-declarative-problem-solving

BIBLIOGRAPHY 185

19. P. Cabalar. “Causal Logic Programming”. In: Correct Reasoning - Essays on Logic-Based AI in
Honour of Vladimir Lifschitz. Ed. by E. Erdem, J. Lee, Y. Lierler, and D. Pearce. Vol. 7265.

Lecture Notes in Computer Science. Springer, 2012, pp. 102–116. doi: 10.1007/978-3-642-
30743-0_8. url: https://doi.org/10.1007/978-3-642-30743-0%5C_8.

20. P. Cabalar and J. Fandinno. “Enablers and inhibitors in causal justifications of logic programs”.

Theory Pract. Log. Program. 17:1, 2017, pp. 49–74. doi: 10 . 1017 / S1471068416000107. url:
https://doi.org/10.1017/S1471068416000107.

21. P. Cabalar, J. Fandinno, and B. Muñiz. “A System for Explainable Answer Set Programming”.

In:Proc. of the 36th Intl.Conf. onLogicProgramming (ICLP,TechnicalCommunications).Vol. 325.
EPTCS. 2020, pp. 124–136.

22. F.Calimeri,W.Faber,M.Gebser,G. Ianni,R.Kaminski,T.Krennwallner,N.Leone,M.Maratea,

F. Ricca, and T. Schaub. “ASP-Core-2 Input Language Format”. Theory Pract. Log. Program.
20:2, 2020, pp. 294–309. doi: 10.1017/S1471068419000450. url: https://doi.org/10.1017/
S1471068419000450.

23. Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. Yu, and L. Sun.AComprehensive Survey of AI-Generated
Content (AIGC): A History of Generative AI from GAN to ChatGPT. 2023.

24. B.M. Castro, M. Elbadawi, J. J. Ong, T. Pollard, Z. Song, S. Gaisford, G. Pérez, A.W. Basit,

P. Cabalar, and A. Goyanes. “Machine learning predicts 3D printing performance of over 900

drug delivery systems”. Journal of Controlled Release 337, 2021, pp. 530–545.

25. Y. Chang, X.Wang, J.Wang, Y.Wu, L. Yang, K. Zhu,H. Chen, X. Yi, C.Wang, Y.Wang,W. Ye,

Y. Zhang, Y. Chang, P. S. Yu, Q. Yang, and X. Xie. “A Survey on Evaluation of Large Language

Models”. ACM Trans. Intell. Syst. Technol., 2024. Just Accepted. issn: 2157-6904. doi: 10.
1145/3641289. url: https://doi.org/10.1145/3641289.

26. K. L. Clark. “Negation as Failure”. In: Logic and Databases. Ed. by H. Gallaire and J. Minker.

Plenum, 1978, pp. 293–322.

27. E. Commision. Artificial intelligence act. 2021. url: https://data.consilium.europa.eu/doc/
document/ST-8115-2021-INIT/en/pdf.

28. E. Commision. Ethics Guidelines for Trustworthy AI. Accessed: 08-02-2024. 2019.url: https:
//digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.

29. K. Connor, E. O’Sullivan, L. Marson, S. Wigmore, and E. Harrison. “The Future Role of Ma-

chine Learning in Clinical Transplantation”. Transplantation Publish Ahead of Print, 2020.

30. A. Darwiche. Logic for Explainable AI. 2023. arXiv: 2305.05172 [cs.AI].

31. A. Darwiche and A. Hirth. “On the (Complete) Reasons Behind Decisions”. Journal of Logic,
Language and Information 32, 2022. doi: 10.1007/s10849-022-09377-8.

32. M.Denecker,G.Brewka, andH.Strass. “AFormalTheoryof Justifications”. In:LogicProgram-
ming andNonmonotonicReasoning - 13th InternationalConference , LPNMR2015, Lexington,
KY, USA, 2015. Proceedings. Ed. by F. Calimeri, G. Ianni, andM. Truszczynski. Vol. 9345. Lec-

ture Notes in Computer Science. Springer, 2015.

http://dx.doi.org/10.1007/978-3-642-30743-0_8
http://dx.doi.org/10.1007/978-3-642-30743-0_8
https://doi.org/10.1007/978-3-642-30743-0%5C_8
http://dx.doi.org/10.1017/S1471068416000107
https://doi.org/10.1017/S1471068416000107
http://dx.doi.org/10.1017/S1471068419000450
https://doi.org/10.1017/S1471068419000450
https://doi.org/10.1017/S1471068419000450
http://dx.doi.org/10.1145/3641289
http://dx.doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://data.consilium.europa.eu/doc/document/ST-8115-2021-INIT/en/pdf
https://data.consilium.europa.eu/doc/document/ST-8115-2021-INIT/en/pdf
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://arxiv.org/abs/2305.05172
http://dx.doi.org/10.1007/s10849-022-09377-8

186 BIBLIOGRAPHY

33. M.Denecker
1
andD.De Schreye. “Justification semantics: a unifying framework for the seman-

tics of logic programs”. In: Logic Programming and Non-Monotonic Reasoning: Proceedings of
the Second InternationalWorkshop. MIT Press. 1993, p. 365.

34. V. Dignum. Ethical Framework of the HumanE AI Project. Accessed: 08-02-2024. 2019. url:
https : / / www . humane - ai . eu / wp - content / uploads / 2019 / 11 / D13 - HumaneAI - framework -
report.pdf.

35. C. Dodaro, P. Gasteiger, B.Musitsch, F. Ricca, and K. Shchekotykhin. “Interactive Debugging

of Non-ground ASP Programs”. In: Logic Programming andNonmonotonic Reasoning. Ed. by
F. Calimeri, G. Ianni, and M. Truszczynski. Springer International Publishing, Cham, 2015,

pp. 279–293. isbn: 978-3-319-23264-5.

36. P. Dung, R. Kowalski, and F. Toni. “Assumption-Based Argumentation”. Argumentation in
Artificial Intelligence, 2009, pp. 199–218.

37. P. Dutkowski, C. E. Oberkofler, K. Slankamenac, M.A. Puhan, E. Schadde, B. Müllhaupt, A.

Geier, and P. A. Clavien. “Are there better guidelines for allocation in liver transplantation?: A

novel score targeting justice and utility in the model for end-stage liver disease era,” Ann. Surg
254:5, 2011, pp. 745–754.

38. T. Eiter andT.Geibinger. “ExplainingAnswer-Set ProgramswithAbstractConstraintAtoms”.

In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJ-
CAI2023, 19th-25thAugust 2023,Macao, SAR,China. ijcai.org, 2023, pp. 3193–3202.doi: 10.
24963/IJCAI.2023/356. url: https://doi.org/10.24963/ijcai.2023/356.

39. T. Eiter, T. Geibinger, and J. Oetsch. “Contrastive Explanations for Answer-Set Programs”.

In:Logics in Artificial Intelligence - 18th European Conference, JELIA 2023, Dresden, Germany,
September 20-22, 2023,Proceedings. Ed. byS. A.Gaggl,M. V.Martinez, andM.Ortiz.Vol. 14281.

Lecture Notes in Computer Science. Springer, 2023, pp. 73–89. doi: 10.1007/978- 3- 031-
43619-2_6. url: https://doi.org/10.1007/978-3-031-43619-2%5C_6.

40. T. Eiter, G. Ianni, R. Schindlauer, andH. Tompits. “Effective Integration of Declarative Rules

with External Evaluations for Semantic-Web Reasoning”. In: The SemanticWeb: Research and
Applications, 3rd European Semantic Web Conference, ESWC 2006, Budva, Montenegro, June
11-14, 2006, Proceedings. Ed. byY. Sure and J.Domingue.Vol. 4011. LectureNotes inComputer

Science. Springer, 2006, pp. 273–287. doi: 10.1007/11762256_22. url: https://doi.org/10.
1007/11762256%5C_22.

41. M. Elbadawi, B.M. Castro, F. K. Gavins, J. J. Ong, S. Gaisford, G. Pérez, A.W. Basit, P. Ca-

balar, and A. Goyanes. “M3DISEEN: A novel machine learning approach for predicting the

3D printability of medicines”. International Journal of Pharmaceutics 590, 2020, p. 119837.
42. M.H. van Emden and R. A. Kowalski. “The Semantics of Predicate Logic as a Programming

Language”. Journal of the ACM 23, 1976, pp. 733–742.

43. E. Erdem, Y. Erdem, H. Erdogan, and U. Öztok. “Finding Answers and Generating Explana-

tions for Complex Biomedical Queries”. In: Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011. Ed. by
W. Burgard and D. Roth. AAAI Press, 2011, pp. 785–790. doi: 10.1609/AAAI.V25I1.7946.
url: https://doi.org/10.1609/aaai.v25i1.7946.

https://www.humane-ai.eu/wp-content/uploads/2019/11/D13-HumaneAI-framework-report.pdf
https://www.humane-ai.eu/wp-content/uploads/2019/11/D13-HumaneAI-framework-report.pdf
http://dx.doi.org/10.24963/IJCAI.2023/356
http://dx.doi.org/10.24963/IJCAI.2023/356
https://doi.org/10.24963/ijcai.2023/356
http://dx.doi.org/10.1007/978-3-031-43619-2_6
http://dx.doi.org/10.1007/978-3-031-43619-2_6
https://doi.org/10.1007/978-3-031-43619-2%5C_6
http://dx.doi.org/10.1007/11762256_22
https://doi.org/10.1007/11762256%5C_22
https://doi.org/10.1007/11762256%5C_22
http://dx.doi.org/10.1609/AAAI.V25I1.7946
https://doi.org/10.1609/aaai.v25i1.7946

BIBLIOGRAPHY 187

44. E. Erdem, M. Gelfond, and N. Leone. “Applications of Answer Set Programming”. AI Mag.
37:3, 2016, pp. 53–68. doi: 10.1609/AIMAG.V37I3.2678. url: https://doi.org/10.1609/
aimag.v37i3.2678.

45. E. Erdem and U. Öztok. “Generating explanations for biomedical queries”. Theory Pract. Log.
Program. 15:1, 2015, pp. 35–78.

46. E. Erdem and R. Yeniterzi. “Transforming Controlled Natural Language Biomedical Queries

into Answer Set Programs”. In: Proceedings of the BioNLPWorkshop, BioNLP@HLT-NAACL
2009, Boulder, Colorado, USA, June 4-5, 2009. Ed. by K. B. Cohen, D. Demner-Fushman, S.

Ananiadou, J. Pestian, J. Tsujii, and B. L. Webber. Association for Computational Linguistics,

2009, pp. 117–124. url: https://aclanthology.org/W09-1315/.

47. J. Fandinno. “A Causal Semantics for Logic Programming”. PhD thesis. Facultad de Infor-

mática, University of A Coruña, 2015.

48. J. Fandinno and C. Schulz. “Answering the "why" in answer set programming - A survey of

explanation approaches”. Theory and Practice of Logic Programming 19:2, 2019, pp. 114–203.
49. J. Fandiño. “A Causal Semantics for Logic Programming”. PhD thesis. University of Coruña,

2015.

50. P. Gasteiger, C. Dodaro, B. Musitsch, K. Reale, F. Ricca, and K. Schekotihin. “An integrated

Graphical User Interface for Debugging Answer Set Programs”. CoRR abs/1611.04969, 2016.

arXiv: 1611.04969. url: http://arxiv.org/abs/1611.04969.

51. M.Gebser,R.Kaminski, B.Kaufmann,M.Ostrowski, T. Schaub, andP.Wanko. “Theory Solv-

ing Made Easy with Clingo 5”. In: 32nd Intl. Conf. on Logic Programming (ICLP, Technical
Communications). Ed. by M. Carro and A. King. Vol. 52. OASIcs. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2016, 2:1–2:15.

52. M.Gebser, R. Kaminski, B. Kaufmann, andT. Schaub. “Clingo =ASP +Control: Preliminary

Report”. ArXiv abs/1405.3694, 2014. url: https://api.semanticscholar.org/CorpusID:
7977544.

53. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko. “Theory

Solving Made Easy with Clingo 5”. In: Technical Communications of the 32nd International
Conference on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City, USA.
Ed. by M. Carro, A. King, N. Saeedloei, and M.D. Vos. Vol. 52. OASIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2016, 2:1–2:15. doi: 10.4230/OASICS.ICLP.2016.2. url:
https://doi.org/10.4230/OASIcs.ICLP.2016.2.

54. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publish-

ers, 2012. isbn: 978-3-031-00433-9. doi: 10.2200/S00457ED1V01Y201211AIM019. url: https:
//doi.org/10.2200/S00457ED1V01Y201211AIM019.

55. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. “Multi-shot ASP solving with clingo”.

CoRR abs/1705.09811, 2017.

56. M. Gebser, J. Pührer, T. Schaub, and H. Tompits. “A Meta-Programming Technique for De-

bugging Answer-Set Programs.” In: vol. 1. 2008, pp. 448–453.

http://dx.doi.org/10.1609/AIMAG.V37I3.2678
https://doi.org/10.1609/aimag.v37i3.2678
https://doi.org/10.1609/aimag.v37i3.2678
https://aclanthology.org/W09-1315/
https://arxiv.org/abs/1611.04969
http://arxiv.org/abs/1611.04969
https://api.semanticscholar.org/CorpusID:7977544
https://api.semanticscholar.org/CorpusID:7977544
http://dx.doi.org/10.4230/OASICS.ICLP.2016.2
https://doi.org/10.4230/OASIcs.ICLP.2016.2
http://dx.doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.2200/S00457ED1V01Y201211AIM019

188 BIBLIOGRAPHY

57. M. Gelfond and V. Lifschitz. “The stable models semantics for logic programming”. In: Proc.
of the 5th International Conference on Logic Programming. 1988, pp. 1070–1080.

58. M. Ghassemi, L. Oakden-Rayner, and A. L. Beam. “The false hope of current approaches to

explainable artificial intelligence in health care”. The Lancet Digital Health 3:11, 2021, e745–
e750. issn: 2589-7500. doi: https : / / doi . org / 10 . 1016 / S2589 - 7500(21) 00208 - 9. url:
https://www.sciencedirect.com/science/article/pii/S2589750021002089.

59. A. Goyanes, F. Fina, A. Martorana, D. Sedough, S. Gaisford, and A. Basit. “Development of

modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive

manufacturing”. International Journal of Pharmaceutics 527, 2017. doi: 10.1016/j.ijpharm.
2017.05.021.

60. S. Grover, C. Pulice, G. I. Simari, and V. S. Subrahmanian. “BEEF: Balanced English Explana-

tions of Forecasts”. IEEETransactions onComputational Social Systems 6:2, 2019, pp. 350–364.
doi: 10.1109/TCSS.2019.2902490. url: https://doi.org/10.1109/TCSS.2019.2902490.

61. D. Guijo-Rubio, J. Briceño, P. A. Gutiérrez, M. Ayllón, R. Ciria, and C. Martínez. “Statistical

methods versus machine learning techniques for donor-recipient matching in liver transplanta-

tion”. PloS one 16, 2021, e0252068. doi: 10.1371/journal.pone.0252068.

62. N. R. Hanson. Patterns of Discovery. University Press, Cambridge [Eng.], 1958.

63. K. B.Klein, T.D. Stafinski, andD.Menon. “Predicting survival after liver transplantation based

on pre-transplant MELD score: A systematic review of the literature”. PLoS One 8:12, 2013,
e80661.

64. R. A. Kowalski, J. A. Dávila, G. Sartor, and M. Calejo. “Logical English for Law and Educa-

tion”. In:Prolog: TheNext 50Years. Ed. byD. S.Warren,V.Dahl, T. Eiter,M. V.Hermenegildo,

R. A. Kowalski, and F. Rossi. Vol. 13900. Lecture Notes in Computer Science. Springer, 2023,

pp. 287–299. doi: 10.1007/978-3-031-35254-6_24. url: https://doi.org/10.1007/978-3-
031-35254-6%5C_24.

65. E. A. Lee. Limits of Machines, Limits of Humans. 2022.

66. V. Lifschitz, D. Pearce, and A. Valverde. “Strongly equivalent logic programs”. ACM Trans.
Comput. Log. 2, 2001, pp. 526–541. doi: 10.1145/502166.502170.

67. C.-L. Liu, R.-S. Soong, W.-C. Lee, G.-W. Jiang, and Y.-C. Lin. “Predicting Short-term Survival

after LiverTransplantationusingMachineLearning”. ScientificReports 10, 2020.doi: 10.1038/
s41598-020-62387-z.

68. S. Lundberg and S.-I. Lee. “AUnified Approach to InterpretingModel Predictions”. In: 2017.

69. V.W. Marek, I. Niemelä, andM. Truszczynski. “Logic programs with monotone abstract con-

straint atoms”.TheoryPract. Log. Program.8:2, 2008, pp. 167–199.doi: 10.1017/S147106840700302X.
url: https://doi.org/10.1017/S147106840700302X.

70. K. Marple, E. Salazar, and G. Gupta. “Computing Stable Models of Normal Logic Programs

Without Grounding”. CoRR abs/1709.00501, 2017. arXiv: 1709.00501. url: http://arxiv.
org/abs/1709.00501.

http://dx.doi.org/https://doi.org/10.1016/S2589-7500(21)00208-9
https://www.sciencedirect.com/science/article/pii/S2589750021002089
http://dx.doi.org/10.1016/j.ijpharm.2017.05.021
http://dx.doi.org/10.1016/j.ijpharm.2017.05.021
http://dx.doi.org/10.1109/TCSS.2019.2902490
https://doi.org/10.1109/TCSS.2019.2902490
http://dx.doi.org/10.1371/journal.pone.0252068
http://dx.doi.org/10.1007/978-3-031-35254-6_24
https://doi.org/10.1007/978-3-031-35254-6%5C_24
https://doi.org/10.1007/978-3-031-35254-6%5C_24
http://dx.doi.org/10.1145/502166.502170
http://dx.doi.org/10.1038/s41598-020-62387-z
http://dx.doi.org/10.1038/s41598-020-62387-z
http://dx.doi.org/10.1017/S147106840700302X
https://doi.org/10.1017/S147106840700302X
https://arxiv.org/abs/1709.00501
http://arxiv.org/abs/1709.00501
http://arxiv.org/abs/1709.00501

BIBLIOGRAPHY 189

71. S. Marynissen. “Advances in Justification Theory”. PhD thesis. Ph. D. thesis, Department of

Computer Science, KU Leuven. Denecker, Marc and . . ., 2022.

72. S.Marynissen and B. Bogaerts. “Tree-Like Justification Systems areConsistent”. arXiv preprint
arXiv:2208.03089, 2022.

73. J. McCarthy. “Programs with common sense”. In: Proceedings of the Teddington Conference on
theMechanization of Thought Processes. 1959, pp. 75–91.

74. D. V.McDermott and J. Doyle. “Non-Monotonic Logic I”.Artificial Intelligence 13:1-2, 1980,
pp. 41–72.

75. T. Miller. “Explanation in artificial intelligence: Insights from the social sciences”. Artificial
Intelligence 267, 2019, pp. 1–38.

76. J. Oetsch, J. Pührer, and H. Tompits. “Catching the Ouroboros: On Debugging Non-ground

Answer-Set Programs”. Theory and Practice of Logic Programming 10, 2010. doi: 10 . 1017 /
S1471068410000256.

77. J. J. Ong, B.M.Castro, S. Gaisford, P. Cabalar, A.W. Basit, G. Pérez, andA.Goyanes. “Acceler-

ating 3D printing of pharmaceutical products using machine learning”. International Journal
of Pharmaceutics: X 4, 2022, p. 100120.

78. U. Öztok and E. Erdem. “Generating Explanations for Complex Biomedical Queries”. In: Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Fran-
cisco, California, USA, August 7-11, 2011. Ed. by W. Burgard and D. Roth. AAAI Press, 2011,

pp. 1806–1807. doi: 10.1609/AAAI.V25I1.8055. url: https://doi.org/10.1609/aaai.v25i1.
8055.

79. D. Pearce. “ANewLogical Characterisation of StableModels andAnswer Sets”. In:Nonmono-
tonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216). Springer-Verlag, 1997.

80. J. Pearl.Causality. 2nd ed. Cambridge University Press, 2009. doi: 10.1017/CBO9780511803161.

81. J. Pearl. “Reasoning with Cause and Effect”. In: Proc. of the 16th International Joint Conference
on Artificial Intelligence, IJCAI 99, Stockholm, Sweden. Ed. by T. Dean. Morgan Kaufmann,

1999.

82. J. Pearl and D.Mackenzie. The Book ofWhy. The New Science of Cause and Effect. Basic Books,
New York, 2018. isbn: 978-0-465-09760-9.

83. A. Pieper. “Advanced Topic in Interactive Product Configuration”. Bachelor’s thesis. 2023.

84. E. Pontelli and T. C. Son. “Justifications for Logic Programs Under Answer Set Semantics”.

In: Logic Programming, 22nd International Conference, ICLP 2006, Seattle,WA, USA, August
17-20, 2006, Proceedings. Ed. by S. Etalle and M. Truszczynski. Vol. 4079. Lecture Notes in

Computer Science. Springer, 2006, pp. 196–210. doi: 10.1007/11799573_16. url: https:
//doi.org/10.1007/11799573%5C_16.

85. E. Pontelli, T. C. Son, and O. El-Khatib. “Justifications for logic programs under answer set

semantics”.Theory Pract. Log. Program. 9:1, 2009, pp. 1–56.doi: 10.1017/S1471068408003633.
url: https://doi.org/10.1017/S1471068408003633.

http://dx.doi.org/10.1017/S1471068410000256
http://dx.doi.org/10.1017/S1471068410000256
http://dx.doi.org/10.1609/AAAI.V25I1.8055
https://doi.org/10.1609/aaai.v25i1.8055
https://doi.org/10.1609/aaai.v25i1.8055
http://dx.doi.org/10.1017/CBO9780511803161
http://dx.doi.org/10.1007/11799573_16
https://doi.org/10.1007/11799573%5C_16
https://doi.org/10.1007/11799573%5C_16
http://dx.doi.org/10.1017/S1471068408003633
https://doi.org/10.1017/S1471068408003633

190 BIBLIOGRAPHY

86. A. Rana, M.A. Hardy, K. J. Halazun, D. C. Woodland, L. E. Ratner, B. Samstein, J. V. Guar-

rera, R. S. Brown Jr, and J. C. Emond. “Survival Outcomes Following Liver Transplantation

(SOFT) Score: A Novel Method to Predict Patient Survival Following Liver Transplantation”.

American Journal of Transplantation 8:12, 2008, pp. 2537–2546.

87. R.Reiter. “A theoryof diagnosis fromfirst principles”.Artificial Intelligence32:1, 1987, pp. 57–
95. issn: 0004-3702. doi: https://doi.org/10.1016/0004-3702(87)90062-2. url: https:
//www.sciencedirect.com/science/article/pii/0004370287900622.

88. M.Ribeiro, S. Singh, andC.Guestrin. ““Why Should ITrust You?”: Explaining the Predictions

of Any Classifier”. In: 2016, pp. 97–101. doi: 10.18653/v1/N16-3020.

89. Z. G. Saribatur and T. Eiter. “Omission-Based Abstraction for Answer Set Programs”. Theory
Pract. Log. Program. 21:2, 2021, pp. 145–195. doi: 10.1017/S1471068420000095. url: https:
//doi.org/10.1017/S1471068420000095.

90. Z. G. Saribatur, T. Eiter, and P. Schüller. “Abstraction for non-ground answer set programs”.

Artif. Intell. 300, 2021, p. 103563. doi: 10.1016/J.ARTINT.2021.103563. url: https://doi.
org/10.1016/j.artint.2021.103563.

91. G. Sartor, J. A. Dávila, M. Billi, G. Contissa, G. Pisano, and R. A. Kowalski. “Integration of

Logical English and s(CASP)”. In: Proceedings of the International Conference on Logic Pro-
gramming 2022Workshops co-located with the 38th International Conference on Logic Program-
ming (ICLP 2022), Haifa, Israel, July 31st - August 1st, 2022. Ed. by J. Arias, R. Calegari, L.
Dickens, W. Faber, J. Fandinno, G. Gupta, M. Hecher, D. Inclezan, E. LeBlanc, M. Morak, E.

Salazar, and J. Zangari. Vol. 3193. CEURWorkshop Proceedings. CEUR-WS.org, 2022. url:

https://ceur-ws.org/Vol-3193/paper5GDE.pdf.

92. K. Schekotihin. “Interactive Query-Based Debugging of ASP Programs”. Proceedings of the
AAAI Conference on Artificial Intelligence 29, 2015. doi: 10.1609/aaai.v29i1.9394.

93. C. Schulz. “Argumentation for Answer Set Programming and other Non-monotonic Reason-

ing Systems”. Theory Pract. Log. Program. 13:4-5-Online-Supplement, 2013. url: http : / /
static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20161018085635834-
0697:S1471068413000112:tlp2013038.pdf.

94. C. Schulz and F. Toni. “ABA-Based Answer Set Justification”. Theory Pract. Log. Program.
13:4-5-Online-Supplement, 2013. url: http://static.cambridge.org/resource/id/urn:
cambridge.org:id:binary:20161018085635834-0697:S1471068413000112:tlp2013002.pdf.

95. C. Schulz and F. Toni. “Justifying answer sets using argumentation”. Theory Pract. Log. Pro-
gram. 16:1, 2016, pp. 59–110. doi: 10.1017/S1471068414000702. url: https://doi.org/10.
1017/S1471068414000702.

96. C. Schulz and F. Toni. “Logic Programming in Assumption-Based Argumentation Revisited

- Semantics and Graphical Representation”. In: Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. Ed. by B. Bonet and
S. Koenig. AAAI Press, 2015, pp. 1569–1575. doi: 10.1609/AAAI.V29I1.9417. url: https:
//doi.org/10.1609/aaai.v29i1.9417.

http://dx.doi.org/https://doi.org/10.1016/0004-3702(87)90062-2
https://www.sciencedirect.com/science/article/pii/0004370287900622
https://www.sciencedirect.com/science/article/pii/0004370287900622
http://dx.doi.org/10.18653/v1/N16-3020
http://dx.doi.org/10.1017/S1471068420000095
https://doi.org/10.1017/S1471068420000095
https://doi.org/10.1017/S1471068420000095
http://dx.doi.org/10.1016/J.ARTINT.2021.103563
https://doi.org/10.1016/j.artint.2021.103563
https://doi.org/10.1016/j.artint.2021.103563
https://ceur-ws.org/Vol-3193/paper5GDE.pdf
http://dx.doi.org/10.1609/aaai.v29i1.9394
http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20161018085635834-0697:S1471068413000112:tlp2013038.pdf
http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20161018085635834-0697:S1471068413000112:tlp2013038.pdf
http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20161018085635834-0697:S1471068413000112:tlp2013038.pdf
http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20161018085635834-0697:S1471068413000112:tlp2013002.pdf
http://static.cambridge.org/resource/id/urn:cambridge.org:id:binary:20161018085635834-0697:S1471068413000112:tlp2013002.pdf
http://dx.doi.org/10.1017/S1471068414000702
https://doi.org/10.1017/S1471068414000702
https://doi.org/10.1017/S1471068414000702
http://dx.doi.org/10.1609/AAAI.V29I1.9417
https://doi.org/10.1609/aaai.v29i1.9417
https://doi.org/10.1609/aaai.v29i1.9417

BIBLIOGRAPHY 191

97. T. Syrjänen. “Debugging inconsistent answer set programs”. In: Proceedings of the 11th Interna-
tionalWorkshop on Non-Monotonic Reasoning (NMR’06). 2006, pp. 77–84.

98. S. J. Trenfield, A. Awad, A. Goyanes, S. Gaisford, and A.W. Basit. “3D Printing Pharmaceu-

ticals: Drug Development to Frontline Care”. Trends in Pharmacological Sciences 39:5, 2018,
pp. 440–451. issn: 0165-6147. doi: https://doi.org/10.1016/j.tips.2018.02.006. url:
https://www.sciencedirect.com/science/article/pii/S0165614718300440.

99. L. L. Trieu, T. C. Son, andM. Balduccini. “xASP: An Explanation Generation System for An-

swer Set Programming”. In: Logic Programming andNonmonotonic Reasoning. Ed. by G. Got-
tlob, D. Inclezan, and M. Maratea. Springer International Publishing, Cham, 2022, pp. 363–

369. isbn: 978-3-031-15707-3.

100. L. L. Trieu, T. C. Son, E. Pontelli, and M. Balduccini. “Generating explanations for answer

set programming applications”. In: Artificial Intelligence and Machine Learning for Multi-
DomainOperations Applications III. Ed. byT. Pham andL. Solomon. Vol. 11746. International

Society for Optics and Photonics. SPIE, 2021, p. 117461L. doi: 10.1117/12.2587517. url:
https://doi.org/10.1117/12.2587517.

101. L. L. T.Trieu,T. C. Son, andM.Balduccini. “exp(ASPc) : ExplainingASPProgramswithChoice

Atoms andConstraintRules”. In:Proceedings 37th International Conference onLogic Program-
ming (TechnicalCommunications), ICLPTechnicalCommunications 2021, Porto (virtual event),
20-27th September 2021. Ed. by A. Formisano, Y. A. Liu, B. Bogaerts, A. Brik, V. Dahl, C. Do-

daro, P. Fodor, G. L. Pozzato, J. Vennekens, andN. Zhou. Vol. 345. EPTCS. 2021, pp. 155–161.

doi: 10.4204/EPTCS.345.28. url: https://doi.org/10.4204/EPTCS.345.28.

102. L. L. T. Trieu, T. C. Son, and M. Balduccini. “xASP: An Explanation Generation System for

Answer Set Programming”. In: Logic Programming andNonmonotonic Reasoning - 16th Inter-
national Conference, LPNMR 2022, Genova, Italy, September 5-9, 2022, Proceedings. Ed. by
G. Gottlob, D. Inclezan, and M. Maratea. Vol. 13416. Lecture Notes in Computer Science.

Springer, 2022, pp. 363–369. doi: 10.1007/978-3-031-15707-3_28. url: https://doi.org/
10.1007/978-3-031-15707-3%5C_28.

103. H. Weichelt. “Finding minimal unsatisfiable cores”. Bachelor’s thesis. 2023.

104. R. Wiesner, E. Edwards, R. Freeman, A. Harper, R. Kim, P. Kamath, W. Kremers, J. Lake, T.

Howard, R.M.Merion, and et al. “Model for end-stage liver disease (MELD) and allocation of

donor livers”.Gastroenterology 124:1, 2003, pp. 91–96.

105. T. Zhu, Z. Zhang, Y. Zhai, and Z. Gao. “A processing method for inconsistent answer set pro-

grams based on minimal principle”. In: International Conference on Automatic Control and
Artificial Intelligence (ACAI 2012). 2012, pp. 270–274. doi: 10.1049/cp.2012.0971.

http://dx.doi.org/https://doi.org/10.1016/j.tips.2018.02.006
https://www.sciencedirect.com/science/article/pii/S0165614718300440
http://dx.doi.org/10.1117/12.2587517
https://doi.org/10.1117/12.2587517
http://dx.doi.org/10.4204/EPTCS.345.28
https://doi.org/10.4204/EPTCS.345.28
http://dx.doi.org/10.1007/978-3-031-15707-3_28
https://doi.org/10.1007/978-3-031-15707-3%5C_28
https://doi.org/10.1007/978-3-031-15707-3%5C_28
http://dx.doi.org/10.1049/cp.2012.0971

192 BIBLIOGRAPHY

Appendix A

Markup Annotations in Detail

xclingo is fed with standard ASP programs which can be extended with so-called annotations. The
currently defined markup annotation language of xclingo includes up to 5 different kinds of anno-

tations which mainly support 2 purposes. On one hand, they are used by the user to define what has

to be explained, which is the case of the show_trace annotation. On the other hand, the annotations

help in designing the final explanations. The user can make use of trace and trace_rule annotations
to define the relevant information that will take part in the explanations but to customize the text that

will be displayed as well. By contrast, mute and mute_body annotations are used to remove non-causal

aspects of ASP programs that we normally do not want to include in the explanations.

All kinds of annotations start with a particular token (for instance, show_trace for the Show trace
annotation), and all the tokens start with the standard comment ASP symbol %. This means that any

of the annotations introduced by xclingo’s markup annotation language do not modify the seman-

tics of the extended ASP program at all. After that, each annotations have its own particular syntax.

Figure A.1 shows the complete BNF of the xclingo’s markup annotation language.

1 <list-of-variables> ::= <ASP-variable> ["," <list-of-variables>]
2

3 <showtrace> ::= "%!show_trace" "{" <ASP-non-ground-atom> "}" ":-" <ASP-rule-body> "."
4 <trace> ::= "%!trace" "{" <ASP-non-ground-atom> "," <ASP-string> "," <list-of-variables> "}" ":-" <ASP-rule-body> "."
5 <mute> ::= "%!mute" "{" <ASP-non-ground-atom> "}" ":-" <ASP-rule-body> "."
6 <tracerule> ::= "%!trace_rule" "{" <ASP-string> "," <list-of-variables> "}" "."
7 <muterule> ::= "%!mute_rule" "."

Listing A.1: Complete BNF for xclingo’s markup annotation langugae

TheBNF rules <ASP-variable>, <ASP-non-ground-atom>, <ASP-rule-body> and <ASP-string> follow the

standard syntax for the corresponding ASP standard element. The rules <tracerule> and <muterule>
must be placed right before the rules that will be affected by the annotation.

The rest of the Appendix visits the particular usage and syntax of each annotation in detail, as well

as gives some advice on their application and/or the organization of annotations in files. The particular

implementation of each one is discussed in Section 4.3.

194 APPENDIX A. MARKUP ANNOTATIONS INDETAIL

A.1 Show Trace annotation

The Show trace annotation is used to define the set of atoms that xclingo will explain. In that sense,

this annotation acts as a query that the user writes for the set of atoms that she wants to obtain an

explanation for.

The BNF for the syntax of the show_trace annotation is shown in Listing A.2.

1 <showtrace> ::= "%!show_trace" "{" <ASP-non-ground-atom> "}" ":-" <ASP-rule-body> "."

Listing A.2: BNF for the show_trace annotation

As it can be seen, the syntax following the show_trace starting token recalls a standard ASP rule, where
the <ASP-non-ground-atom> between the curly braces would act as a non-disjunctive head for the rule.
Any atom derived from this rule would be considered a queried atom, this is, as part of the set of atoms

that the userwants xclingo to explain. Any queried atom that is true in the answer set is then explained.

Of course, several show_trace annotations can be included when running a program and all of them

contribute to the set of queried atoms.

It can be interesting to maintain your show_trace sentences in a separate file. This file would act

as the query to xclingo, in a way we could have multiple files that feature different queries. This query
files can be mixed, replaced or even reused for different ASP encodings.

A.2 Trace annotation

By default, xclingo considers any atom in the answer set as a forgettable atom and thus, they will be

removed from the final explanations. To prevent this default behavior for a set of atoms, the user can

write Trace annotations. Each Trace annotation defines a set of atoms that will be considered as traced
(not forgettable) and therefore will be part of the tree explanations. In addition, it also allows the user
to define parametrized text labels that replace the atoms when displaying the explanations.

The BNF for the syntax of the trace annotation is shown in Listing A.3.

1 <list-of-variables> ::= <ASP-variable> ["," <list-of-variables>]
2 <trace> ::= "%!trace" "{" <ASP-non-ground-atom> "," <ASP-string> "," <list-of-variables> "}" ":-" <ASP-rule-body> "."

Listing A.3: BNF for the trace annotation

If comparedwith the show_trace annotation syntax,wenowsee a couple of additional elements. Inpar-

ticular, the <ASP-string> and <list-of-variables> after the <ASP-non-ground-atom>. As the show_trace
annotation, we can imagine that it works as a standardASP rule, fromwhere derived atomswill be con-

sidered as traced atoms. Additionally, for each derived atom a particular text string will also be derived

and associated with its corresponding derived atom. This text will be used later for replacing the atoms

in the final tree explanations.

The <ASP-string> element is a parametrized string. Inside the given text, the user can make use

of several placeholders % to link the values of the variables referenced in the <list-of-variables>, that
must have been used in <ASP-rule-body>. The linkage is done by the order the variables appear in the
list. For instance, in the following annotation

1 %!trace {values(VAR1,VAR2,VAR3) , "Values: VAR1=% VAR2=% VAR3=%", VAR1, VAR2, VAR3} :- values(VAR1,VAR2,VAR3).

A.3. MUTE ANNOTATION 195

the first % placeholder will take the value of variable VAR1, the second will take it from VAR2 and the last
from VAR3. The number of placeholders and referenced variables is not limited.

A.3 Mute annotation

In terms of syntax, mute annotations work in the same way show_trace annotation does. Listing A.4

shows the BNF for the mute annotation.

1 <mute> ::= "%!mute" "{" <ASP-non-ground-atom> "}" ":-" <ASP-rule-body> "."

Listing A.4: BNF for the mute annotation

It acts as a standard ASP rule and the derived atoms will be treated asmuted atoms. These atoms can’t

act as a cause for any other atom, this is, any cause-effect relation whereas amuted atom is a cause that

will be removed from the explanation.

The most convenient and typical application of this annotation is to remove non-causal relations

that are assumed by xclingo from our ASP code. For instance, often some domain predicates are de-

rived from others like in the following rule:

person(S) :- student(S).

However, understanding this rule as causal (i.e. S is a person because is a student) would be a mistake.

This default behavior can be prevented bymuting the atom person.
From a practical perspective, this annotation is used to remove edges from the explanation graph.

Moreprecisely, the outgoing edges ofmutedatoms are removed, just as it is explained in theDefinition9

of the edge prunning operation.
As it was demonstrated in Section 4.2.4, the impact of muting non-causal atoms in the final ex-

planations is often critical. We, therefore, recommend always bearing in mind muting this type of

relations to prevent an explosion in the number of explanations.

A.4 Trace_rule annotation

In Chapter 3, we have seen how when several rules support an atom for a particular Answer Set we

create different explanation graphs. In each of these graphs, each atom is only labeled by one of the

rules. However, trace and mute annotations allow us to manipulate the design of the final explanation

at an atom level. This is, the user can controlwhich atoms appear (or do not appear) in the explanations

andwhich atoms should act as causes (or not) disregarding which rules these atomswere derived from.

So if what we need is to differentiate which rule an atomwas derived from, we can not count on them.

For that purpose, we have Trace rule annotations. This kind of annotation works similarly to trace
annotations, but they work on a rule level. This is, they mark atoms as traced and link text labels to

them, but only to the atoms in the current explanation graph that share its label with a particular rule.

This annotation must be written preceding the ASP rule to which is to apply. In terms of the

syntax, it is simpler when compared with previously shown annotations. The BNF of the trace_rule
annotation is shown in Listing A.5.

196 APPENDIX A. MARKUP ANNOTATIONS INDETAIL

1 <tracerule> ::= "%!trace_rule" "{" <ASP-string> "," <list-of-variables> "}" "."

Listing A.5: BNF for the trace_rule annotation

Since the set of atoms is determined by the corresponding traced rule, in this annotationwe do not find
any syntax for that. Indeed, we only have the needed element to create the text labels that the atoms

will be replaced by. The customization of the text works in the samemanner it does in the case of trace
annotations. The placeholders in the text are orderly replaced by the variables in the list, which take

the values from the body of the corresponding traced rule.

A.5 Mute_rule annotations
The usage is very similar to trace_rule annotation’s usage. The user only has to write the mute_body
token preceding the rule that is meant to mute. Listing A.6 shows its BNF.

1 <muterule> ::= "%!mute_rule" "."

Listing A.6: BNF for the mute_body annotation

As it does not have any other extra parameter, its syntax remains very simple.

In essence, it works as a rule level mute annotation. When used, this kind of annotation targets a

rule and marks it asMuted. Any atom derived from amuted rule will act as if it has no causes. From a

practical perspective is away to remove edges from the explanation graph. More precisely, the incoming

edges of atoms labeled withmuted rule’s labels are removed, just as it is explained in the Definition 9

of the edge prunning operation.

Appendix B

Xcligo’s logic program

1 %%%%%%%%%%%%%% xclingo_fired.lp %%%%%%%%%%%%%%%%%
2

3 % Marks relevant atoms of the program, with respect of the atoms that must be explained.
4 _xclingo_relevant(ToExplainAtom) :- _xclingo_show_trace(ToExplainAtom).
5 _xclingo_relevant(Cause) :- _xclingo_relevant(Effect), _xclingo_depends(_xclingo_sup(R, D, Effect, Vars), Cause).
6

7 %%%% fireable if it fact
8 _xclingo_fbody(RuleID, D, Atom, Vars) :- _xclingo_relevant(Atom), _xclingo_sup(RuleID, D, Atom, Vars), not _xclingo_depends(

_xclingo_sup(RuleID, D, _, _), _).
9 %%%% _xclingo_fbody if
10 _xclingo_fbody(R, D, Atom, Vars) :-
11 _xclingo_sup(R, D, Atom, Vars),
12 _xclingo_f_atom(Cause) : _xclingo_depends(_xclingo_sup(R, D, Atom, Vars), Cause).
13

14 % Decides which rule fire each relevant atom (must be one and only one).
15 1{_xclingo_f(RuleID, D, Atom, Vars) : _xclingo_fbody(RuleID, D, Atom, Vars)}1 :- _xclingo_relevant(Atom).
16 % Two elements from the same disyunction cannot be selected
17 :- _xclingo_f(R,D1,_,_), _xclingo_f(R,D2,_,_), D1!=D2.
18

19

20 _xclingo_f_atom(Atom) :- _xclingo_f(_, _, Atom, _).
21

22 _xclingo_direct_cause(RuleID, Effect, Cause) :- _xclingo_f(RuleID, DisID, Effect, Vars), _xclingo_depends(_xclingo_sup(
RuleID, DisID, Effect, Vars), Cause).

Listing B.1: Complete contents of logic program xclingo_fired.lp.

1 %%%%%%%%%%%%%% xclingo_graph.lp %%%%%%%%%%%%%%%%%
2

3 % Complete explanation graph (handles %!mute) (includes non labelled atoms)
4 _xclingo_graph(complete_explanation).
5 _xclingo_node(ToExplainAtom, complete_explanation) :- _xclingo_show_trace(ToExplainAtom), not _xclingo_muted(ToExplainAtom).
6 _xclingo_edge((Caused, Cause), complete_explanation) :-
7 _xclingo_node(Caused, complete_explanation),
8 _xclingo_direct_cause(RuleID, Caused, Cause),
9 not _xclingo_muted(Cause),
10 not _xclingo_muted_body(RuleID).
11 _xclingo_node(Atom, complete_explanation) :- _xclingo_edge((_, Atom), complete_explanation).
12

13 % Compressing graph (only labelled; and show_trace Atoms even if they are not labelled)
14 _xclingo_visible(X) :- _xclingo_node(X, complete_explanation), _xclingo_label(X, _).
15 %
16 _xclingo_skip(X, Y) :- _xclingo_edge((X, Y), complete_explanation), not _xclingo_visible(X).
17 _xclingo_skip(X, Y) :- _xclingo_edge((X, Y), complete_explanation), not _xclingo_visible(Y).

198 APPENDIX B. XCLIGO’S LOGIC PROGRAM

18 %
19 _xclingo_reach(X, Z) :- _xclingo_skip(X, Z).
20 _xclingo_reach(X, Z) :- _xclingo_reach(X, Y), _xclingo_skip(Y, Z), not _xclingo_visible(Y).
21 %
22

23 % Explanation (compressed) graph
24 _xclingo_graph(explanation).
25 _xclingo_edge((Caused, Cause), explanation) :- _xclingo_edge((Caused, Cause), complete_explanation), not _xclingo_skip(

Caused, Cause).
26 _xclingo_edge((Caused, Cause), explanation) :- _xclingo_reach(Caused, Cause), _xclingo_visible(Caused), _xclingo_visible(

Cause).
27 _xclingo_edge((ToExplainAtom, Cause), explanation) :- _xclingo_reach(ToExplainAtom, Cause), _xclingo_visible(Cause),

_xclingo_show_trace(ToExplainAtom).
28 _xclingo_node(Caused, explanation) :- _xclingo_visible(Caused).
29 _xclingo_node(ToExplainAtom, explanation) :- _xclingo_show_trace(ToExplainAtom).
30

31 % Labels
32 _xclingo_attr(node, Atom, label, Label) :- _xclingo_label(Atom, Label), _xclingo_node(Atom, explanation).

Listing B.2: Complete contents of logic program xclingo_graph.lp.

1 %%%%%%%%%%%%%% xclingo_show.lp %%%%%%%%%%%%%%%%%
2 #show.
3 % All show traces
4 #show _xclingo_show_trace(Atom) : _xclingo_show_trace(Atom), _xclingo_node(Atom, Graph), Graph=complete_explanation.
5 #project _xclingo_show_trace(Atom) : _xclingo_show_trace(Atom), _xclingo_node(Atom, Graph), Graph=explanation.
6 % Which causes explain not visible show_traces
7 % #show _xclingo_link(ToExplainAtom, Cause) : _xclingo_link(ToExplainAtom, Cause).
8 % #project _xclingo_link(ToExplainAtom, Cause) : _xclingo_link(ToExplainAtom, Cause).
9

10 % Edges of the explanation
11 #show _xclingo_edge((Caused, Cause), Graph) : _xclingo_edge((Caused, Cause), Graph), Graph=explanation.
12 #project _xclingo_edge((Caused, Cause), Graph) : _xclingo_edge((Caused, Cause), Graph), Graph=explanation.
13 % Labels
14 #show _xclingo_attr(Type, Atom, Attr, Label) : _xclingo_attr(Type, Atom, Attr, Label), Type=node, Attr=label, _xclingo_node(

Atom, explanation).
15 #project _xclingo_attr(Type, Atom, Attr, Label) : _xclingo_attr(Type, Atom, Attr, Label), Type=node, Attr=label,

_xclingo_node(Atom, explanation).

Listing B.3: Complete contents of logic program xclingo_show.lp.

Appendix C

Additional Examples

C.1 An example on explaining constraints
Consider the following example in Figure C.1. In this example, an agent has to move from an initial

position to a goal position using an exact number of moves. For the particular number of 4 steps, the

0 1 2 3 4

0

��
1

�� ��
0

��

2

�� ��
1

��

1

�� ��

3

�� ��
0 0 2 2 4

Figure C.1: Description of an instance of the problem of moving an agent towards a goal. On the

left side, we see the scenario for the particular instance. On the right side, we see the complete tree of

possible movements when the number of admitted steps is 4.

possible paths that the agent canmake starting from the initial position 0 are a total of 5 different paths.
All of them are depicted on the right side of Figure C.1. Note that only one of them ends at the goal

position 4. Additionally, the scenario contains a trap at position 2 so the agent must avoid it when

planning its route to the goal. It is easy to see how for this example there is no route such that this latter

premise is not broken.

The Program PC.1 implements the example. Lines from 3 to 10 specify the domain and the prob-

lem instance. In particular, lines 8, 9, and 10 represent the position of the trap, the goal position and

the initial position of the agent, respectively. A choice rule (in lines 12 to 16) is used to generate the

different movement plans. The generated movements are traced using the annotations in lines 18 and
19. Finally, line 25 forbids the agent to cross any cell with a trap on it at any step, while line 28 forbids

any movement plan that does not end in the goal position. Note how these two constraints are traced
by a trace_rule annotation.

200 APPENDIX C. ADDITIONAL EXAMPLES

1 % trapped_agent.lp
2

3 %% Domain and instance
4 #const time=4.
5 timestep(0..time).
6 cell(0..4).
7

8 trap_at(1).
9 goal_at(4).
10 pos(0, 0).
11

12 %% Movement
13 1{
14 pos(X', T): X'=X+1, cell(X'), pos(X, T-1);
15 pos(X', T): X'=X-1, cell(X'), pos(X, T-1)
16 }1 :- timestep(T), T>0.
17

18 %!trace {pos(Pos, T), "Step %: agent moves to %", T, Pos} :- pos(Pos, T).
19 %!trace {pos(Pos, T), "Trapped!"} :- pos(Pos, T), trap_at(Pos).
20

21

22 %% Constraints
23

24 %!trace_rule {"Oh no! Trapped", T, TrapPos}.
25 :- pos(TrapPos, T), trap_at(TrapPos), timestep(T).
26

27 %!trace_rule {"In final step % Agent is not at goal %", time, GoalPos}.
28 :- goal_at(GoalPos), not pos(GoalPos, time).

Program C.1: Annotated ASP code implementing the example from Figure C.1.

Recalling the possible paths the agent can choose from the right side of Figure C.1, it is easy to

see how all of them fail to comply with the trap constraint, while only one of them ends in position

4 meeting the goal condition. Therefore, this instance is UNSATISFIABLE, and solving it would

not produce any answer set. However, since both constraints are traced, once xclingo finds out the
original program is UNSAT, it will relax those and try to solve it again, obtaining 5 answer sets, each

one of them featuring one of the 5 possible paths. Instead of trying to explain why the constraints are

being violated in all the answer sets, xclingo tries to find the one with the smallest number of them.

This minimization leads to a sequence of explained answer sets until we reach an optimum. This last

answer set, informally speaking, would be the closest one to be a valid answer to the problem. The

particular output for Program P C.1 is shown in Listing C.1.

1 UNSATISFIABLE
2 Relaxing constraints... (mode=minimize)
3 Answer: 1
4 ##Explanation: 1.1
5 *
6 |__"Oh no! Trapped"
7 | |__"Step 1: agent moves to 1";"Trapped!"
8 | | |__"Step 0: agent moves to 0"
9

10 *
11 |__"Oh no! Trapped"
12 | |__"Step 3: agent moves to 1";"Trapped!"
13 | | |__"Step 2: agent moves to 0"
14 | | | |__"Step 1: agent moves to 1";"Trapped!"
15 | | | | |__"Step 0: agent moves to 0"

C.2. AN EXAMPLE ONDIAGNOSIS USING XCLINGO 201

16

17 *
18 |__"In final step 4 Agent is not at goal 4"
19

20 ##Total Explanations: 1
21 Answer: 2
22 ##Explanation: 2.1
23 *
24 |__"Oh no! Trapped"
25 | |__"Step 1: agent moves to 1";"Trapped!"
26 | | |__"Step 0: agent moves to 0"
27

28 ##Total Explanations: 1
29 Models: 2

Listing C.1: Output for Program P C.1 after running Command C.1

The output above was obtained using the following command:

xclingo -n 0 0 trapped_agent.lp (Command C.1)

On it, you can see how thefirst try to solve theprogramproducesUNSAT(line 1). Then xclingo relaxes
the constraints and solves them again. At first, it explains an answer set where constraints are violated

a total of 3 times: the agent crosses a trap 2 times and its path does not end at the goal position. After

that, it finds another answer where the trap constraint is only violated 1 time and the goal constraint is

not violated. The first answer corresponds to the leftmost branch of the planning tree from Figure C.1

and the latter corresponds to the rightmost path where the agent ends in position 4.

C.2 An example on diagnosis using xclingo

Weconsider an example from [11] (Fig.C.2). In the example, an analogAC circuit is presented. In it, an

agent can close a switch that should ultimately cause a bulb to turn on. However, there are exogenous

actions that can modify the environment and make the bulb not turn on by closing the switch. Our

goal is to develop a diagnostic system that can identify the reasons why the light does not turn on and

present them to the user in the form of readable explanations.

r

s2

b

s1

Figure C.2: A circuit with a bulb b, a relay r and two switches, s1 and s2.

202 APPENDIX C. ADDITIONAL EXAMPLES

Example 6. (From [11]) Consider a system S consisting of an agent operating an analog circuit AC
from Fig. C.2. We assume that switches s1 and s2 are mechanical components that cannot become dam-
aged. Relay r is a magnetic coil. If not damaged, it is activated when s1 is closed, causing s2 to close.
Undamaged bulb b emits light if s2 is closed. For simplicity of presentation, we consider the agent ca-
pable of performing only one action, close(s1). The environment can be represented by two damaging
exogenous1 actions: brk, which causes b to become faulty, and srg (power surge), which damages r and
also b assuming that b is not protected. Suppose that the agent operating this device is given the goal of light-
ing the bulb. He realizes that this can be achieved by closing the first switch, performing the operation, and
discovering that the bulb is not lit. □

OurASP implementation of this example (we call programP1 in ListingsC.2 andC.3) follows the

one presented in [11]with the addition of c/3 and few other predicates for improving the explanation

results. At first sight, the encoding may seem too involved for our small example, but this is because

the representation is general enough to cover a whole family of similar diagnosis problems. ListingC.2

contains the basic type definitions. The predicate names are self-explanatory, except perhaps lines 15–

24. This is because we allow arbitrary fluent domains that can be specified explicitly through predicate

value(F,V), meaning that fluent F may have value V. When no value has been specified in that way,

fluents are assumed Boolean by default. Finally, predicate domain(F,V) collects all domain values for V,
regardless of whether they are defined explicitly or by default. In our example, fluents relay, light,
s1 and s2 can take values on and off (to make them more readable) whereas the rest of fluents are

Boolean.

Listing C.3 contains the description of the problem. Given any action A, fluent F, value V and time

point Iwe use the following predicates:

h(F,V,I) = F holds value V at I
obs_h(F,V,I) = Fwas observed to hold value V at I
c(F,V,I) = F’s value was caused to be V at I
c(F,I) = F’s value was caused at I
o(A,I) = A occurred at I
obs_o(A,I) = Awas observed to occur at I

As usual in diagnosis problems, we differentiate between what happens in the real world, with

predicates h/3 and o/2, and the partial observations we have about that world, with predicates obs_h/3
and obs_o/2, respectively. If we execute clingo on this code, we obtain the three answer sets that cor-

respond to the possible diagnosis: one including an exogenous action o(break,1); a second one with
the exogenous action o(surge,1); and, finally, a third, non-minimal diagnosis where both exogenous

actions occur. Of course, in the original work by Balduccini and Gelfond, diagnoses were additionally

minimized to avoid the unnecessary addition of exogenous actions, but for the purpose of this paper,

we consider the three answer sets of programP1 as equally interesting for generating explanations. We

will complete it using different xclingo features in order to get the diagnoses in a fully readable and

understandable way.

First, in Listing C.4 we introduce some trace_rule annotations for the indirect effects and mal-
functioning rules we introduced in Listing C.3.

C.2. AN EXAMPLE ONDIAGNOSIS USING XCLINGO 203

1 % plength(1).
2 plength(1).
3 time(0..L) :- plength(L).
4 step(1..L) :- plength(L).
5

6 switch(s1). switch(s2).
7 component(relay). component(bulb).
8

9 fluent(relay).
10 fluent(light).
11 fluent(b_prot).
12 fluent(S):-switch(S).
13 abfluent(ab(C)) :- component(C).
14 fluent(F) :- abfluent(F).
15

16 value(relay,on). value(relay,off).
17 value(light,on). value(light,off).
18 value(S,open) :- switch(S).
19 value(S,closed) :- switch(S).
20 hasvalue(F) :- value(F,V).
21 % Fluents are boolean by default
22 domain(F,true) :- fluent(F), not hasvalue(F).
23 domain(F,false) :- fluent(F), not hasvalue(F).
24 % otherwise, they take the specified values
25 domain(F,V) :- value(F,V).
26

27

28 agent(close(s1)).
29 exog(break).
30 exog(surge).
31 action(Y):-exog(Y).
32 action(Y):-agent(Y).

Listing C.2: Type predicates for program P1.

204 APPENDIX C. ADDITIONAL EXAMPLES

1 % Inertia
2 h(F,V,I) :- h(F,V,I-1), not c(F,I), step(I).
3

4 % Axioms for caused
5 h(F,V,J) :- c(F,V,J).
6 c(F,J) :- c(F,V,J).
7

8 % Direct effects
9 c(s1,closed,I) :- o(close(s1),I), step(I).
10

11 % % Indirect effects
12 c(relay,on,J) :- h(s1,closed,J), h(ab(relay),false,J), time(J).
13 c(relay,off,J) :- h(s1,open,J), time(J).
14 c(relay,off,J) :- h(ab(relay),true,J), time(J).
15 c(s2,closed,J) :- h(relay,on,J), time(J).
16 c(light,on,J) :- h(s2,closed,J), h(ab(bulb),false,J), time(J).
17 c(light,off,J) :- h(s2,open,J), time(J).
18 c(light,off,J) :- h(ab(bulb),true,J), time(J).
19

20 % Malfunctioning
21 c(ab(bulb),true,I) :- o(break,I), step(I).
22 c(ab(relay),true,I) :- o(surge,I), step(I).
23 c(ab(bulb),true,I) :- o(surge,I), not h(b_prot,true,I-1), step(I).
24

25

26 % Executability
27 :- o(close(S),I), h(S,closed,I-1), step(I).
28

29 % Something happening actually occurs
30 o(A,I) :- obs_o(A,I), step(I).
31

32 % Check that observations hold
33 :- obs_h(F,V,J), not h(F,V,J).
34

35 % Completing the initial state
36 h(F,V,0) :- domain(F,V), not -h(F,V,0).
37 -h(F,V,0) :- h(F,W,0), domain(F,V), W!=V.
38

39

40 % A history
41 obs_h(s1,open,0).
42 obs_h(s2,open,0).
43 obs_h(b_prot,true,0).
44 obs_h(ab(bulb),false,0).
45 obs_h(ab(relay),false,0).
46 obs_o(close(s1),1).
47

48 % Something went wrong
49 obs_h(light,off,1).
50

51 % Diagnostic module: generate exogenous actions
52 o(Z,I) :- step(I), exog(Z), not no(Z,I).
53 no(Z,I) :- step(I), exog(Z), not o(Z,I).

Listing C.3: Program P1 describing Example 6.

C.2. AN EXAMPLE ONDIAGNOSIS USING XCLINGO 205

1 %%%%%% Indirect effects
2 %!trace_rule {"The relay is working at %",J}.
3 c(relay,on,J) :- h(s1,closed,J), h(ab(relay),false,J), time(J).
4

5 %!trace_rule {"The relay is not working at %",J}.
6 c(relay,off,J) :- h(s1,open,J), time(J).
7

8 %!trace_rule {"The relay is not working at %",J}.
9 c(relay,off,J) :- h(ab(relay),true,J), time(J).
10

11 c(s2,closed,J) :- h(relay,on,J), time(J).
12

13 %!trace_rule {"The light is on at %",J}.
14 c(light,on,J) :- h(s2,closed,J), h(ab(bulb),false,J), time(J).
15

16 %!trace_rule {"The light is off at %",J}.
17 c(light,off,J) :- h(s2,open,J), time(J).
18

19 %!trace_rule {"The light is off at %",J}.
20 c(light,off,J) :- h(ab(bulb),true,J), time(J).
21

22 %%%%%% Malfunctioning
23 %!trace_rule {"The bulb has been damaged at %",I}.
24 c(ab(bulb),true,I) :- o(break,I), step(I).
25

26 %!trace_rule {"The relay has been damaged at %",I}.
27 c(ab(relay),true,I) :- o(surge,I), step(I).
28

29 %!trace_rule {"The bulb has been damaged at %",I}.
30 c(ab(bulb),true,I) :- o(surge,I), not h(b_prot,true,I-1), step(I).

Listing C.4: Adding trace labels to specific rules with trace_rule.

206 APPENDIX C. ADDITIONAL EXAMPLES

This is a good opportunity to emphasize the utility of trace_rule. As we can see, we have several
rules for the same effects. For instance, we have lines 6 and 9 where we can find rules that capture

when the relay becomes off. However, they capture two different cause-effect relations, that are easily

understoodby just reading their corresponding text traces. Having traced this using trace annotations,
we would have not been able to differentiate between the activation of both rules, thus we would have

not been able to appropriately represent the explanations.

1 %!trace { o(surge,J), "Hypothesis: there has been a power surge at %",J} :- o(surge,J).
2 %!trace { o(break,J), "Hypothesis: something has broken the bulb at %",J} :- o(break,J).
3 %!trace { o(close(s1),J), "The agent has closed switch s1 at %",J} :- o(close(s1),J).
4

5 %!trace { h(ab(C),true,0), "The % was initially damaged",C} :- h(ab(C),true,0).
6 %!trace { h(ab(C),false,0), "Initially, the % was not damaged",C} :- h(ab(C),false,0).
7

8 %!trace {h(F,V,0), "% was initially %",F,V} :- h(F,V,0), not abfluent(F).

Listing C.5: Tracing atoms through trace annotations for Program P1.

Additionally, in Listing C.5 we introduce some trace annotations for the occurred actions and

for the initial values of the fluents. And finally, we request xclingo to explain the value of the funds

1 %!show_trace {h(light,V,1)} :- h(light,V,1).
2 %!show_trace {h(relay,V,1)} :- h(relay,V,1).

Listing C.6: Choosing which atoms to explain through show_trace annotations for Program P1.

light and relayby requesting the causes for the atoms h(light, V, 1) and h(relay, V, 1). This is done
through a couple of show_trace annotations shown in Listing C.6.

Fig. C.3 shows the explanations for the three answer sets we would obtain with plain clingo. An-
swer set 1 corresponds to the case inwhich both a power surge occurred and something broke the bulb.

The explanation for the relay being off (lines 2–6) can be read as follows: “the relay is not working at

1 because it has been damaged because there has been a power surge.” We have started all explanations

for exogenous actions with the word Hypothesis to clarify that these are assumptions added to explain

the observations. As we can see, in this first answer set, there are two alternative valid causes for the

light being off. The first one (Fig. C.3, lines 9–12) is that the bulb was damaged because something

broke it. The three lines in the explanation respectively come from the annotations (we will see later)

for lines 18, 21 and 52 in Listing C.3. The second cause (lines 14–16) is that the light was already off

in the initial state because switch s2was initially open: in this case, because of the activation of rules in
lines 17 and 5 in Listing C.3.

Answer set 2 (lines 19–29) corresponds to the case in which we just had a power surge. When this

happens, the relay is not working (as in the answer set 1) and the light simply remains off, since s2was
initially open. In this case, we do not get the additional reason for having the light off, since the bulb

is not broken.

Finally, answer set 3 shows the case where something breaks the bulb but there is no power surge.

In this case, we can see that the relay eventually worked because the agent closed the switch 1 and the
relay was not initially damaged. As nothing else happens, the relay is still undamaged in state 1.

C.2. AN EXAMPLE ONDIAGNOSIS USING XCLINGO 207

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"The light is off at 1"
5 | |__"The bulb has been damaged at 1"
6 | | |__"Hypothesis: something has broken the bulb at 1"
7

8 *
9 |__"The relay is not working at 1"
10 | |__"The relay has been damaged at 1"
11 | | |__"Hypothesis: there has been a power surge at 1"
12

13 ##Explanation: 1.2
14 *
15 |__"The light is off at 1"
16 | |__"s2 was initially open"
17

18 *
19 |__"The relay is not working at 1"
20 | |__"The relay has been damaged at 1"
21 | | |__"Hypothesis: there has been a power surge at 1"
22

23 ##Total Explanations: 2
24 Answer: 2
25 ##Explanation: 2.1
26 *
27 |__"The light is off at 1"
28 | |__"s2 was initially open"
29

30 *
31 |__"The relay is not working at 1"
32 | |__"The relay has been damaged at 1"
33 | | |__"Hypothesis: there has been a power surge at 1"
34

35 ##Total Explanations: 1
36 Answer: 3
37 ##Explanation: 3.1
38 *
39 |__"The light is off at 1"
40 | |__"The bulb has been damaged at 1"
41 | | |__"Hypothesis: something has broken the bulb at 1"
42

43 *
44 |__"The relay is working at 1"
45 | |__"The agent has closed switch s1 at 1"
46 | |__"Initially, the relay was not damaged"
47

48 ##Total Explanations: 1
49 Models: 3

Figure C.3: Explanations obtained for the annotated version of P1.

208 APPENDIX C. ADDITIONAL EXAMPLES

1 Answer: 1
2 ##Explanation: 1.1
3 *
4 |__"light is off at 20"
5 | |__"The light is off at 20"
6 | | |__"s2 is open at 20"
7 | | | |__"s2 is open at 19"
8 | | | | |__"s2 is open at 18"
9 | | | | | |__"s2 is open at 17"
10 | | | | | | |__"s2 is open at 16"
11 | | | | | | | |__"s2 is open at 15"
12 | | | | | | | | |__"s2 is open at 14"
13 | | | | | | | | | |__"s2 is open at 13"
14 | | | | | | | | | | |__"s2 is open at 12"
15 | | | | | | | | | | | |__"s2 is open at 11"
16 | | | | | | | | | | | | |__"s2 is open at 10"
17 | | | | | | | | | | | | | |__"s2 is open at 9"
18 | | | | | | | | | | | | | | |__"s2 is open at 8"
19 | | | | | | | | | | | | | | | |__"s2 is open at 7"
20 | | | | | | | | | | | | | | | | |__"s2 is open at 6"
21 | | | | | | | | | | | | | | | | | |__"s2 is open at 5"
22 | | | | | | | | | | | | | | | | | | |__"s2 is open at 4"
23 |__"s2 is open at 3"
24 |__"s2 is open at 2"
25 |__"s2 is open at 1"
26 |__"s2 is open at 0";"s2 was initially open"
27

28 ##Total Explanations: 1
29 Models: 1

Figure C.4: Explanation for h(light, off, 20) when only a surge occurred at time step 1 and
inertia is traced.

One important decision in terms of explanation design in the context of diagnosis is to avoid trac-

ing the inertia. In particular, for this example, we have the inertia rule from Listing C.3, Line 2. Actu-

ally, having traced this rule would cause the explanations to grow in size. For instance, if we ask for the

explanation of h(light, off, 20) in answer set 2 of Figure C.3 (replacing time stamp 1 by 20), we still

get the same explanation since the switch was initially off and nothing else changed that in the whole

time interval. However, if we trace inertia, for example by introducing a trace annotation like:

%!trace {h(F,V,T), "% is % at %",F,V,T} :- h(F,V,T).

for showing the value of each fluent at each time step, we would end up producing an explanation like

what we can see in Listing C.4 Where the explanation lineally grows in size but without adding any

relevant information to the user.

Appendix D

Liver Transplantation Dataset:
Description of the Features

Table D.1: Feature Descriptions

Feature Name Type:units Description

don_noradrenaline Numeric:µg

(base)/kg/min

Dose of noradrenaline administered to the donor

don_sodium Numeric:mEq/L Donor’s blood level of sodium

rec_weight Numeric:kg Recipient’s weight

rec_afp Numeric:ng/mL Recipient’s blood level of alpha-fetoprotein

rec_inr Numeric Standardizedmeasure of Recipient’s blood clotting, which is measured in di-

mensionless units.

don_acv Boolean True when the Donor’s cause of death was CVA

rec_hypertension Boolean True when the recipient is hypertensive

rec_hcv Boolean True when the recipient is HCV-positive or HCV-negative.

rec_hcc_afp_30 Boolean True whenever (1) the recipient is HCC-positive and (2) the Recipient’s

alpha-fetoprotein is greater than 30 ng/ml. This feature aims to capture the

presence of aggressive HCC in the Recipient’s body

rec_provenance Categorical The situation of the recipient prior to the transplantation procedure. It has

the following possible values:Home,Admitted inWard orAdmitted in ICU

210

APPENDIXD. LIVER TRANSPLANTATIONDATASET: DESCRIPTIONOF THE
FEATURES

Appendix E

Extended Summary in Spanish

La Inteligencia Artificial (IA) ha avanzado notablemente en los últimos años, logrando realizar tareas

que antes se pensaba que eran exclusivas de los humanos. La IA generativa [23], por ejemplo, puede

producir texto en lenguaje natural, imitar voces y generar diversos tipos de contenido visual, incluyendo

imágenes realistas ymodelos 3D. Este rápido progreso ha generado una búsqueda de aplicaciones posi-

tivas en áreas como la seguridad en redes sociales, la educación personalizada y la traducción en tiempo

real. Sin embargo, el lado negativo de este avance tecnológico es el potencial para el uso indebido, que

incluye manipulación política, cibercrimen y robo de identidad.

Para abordar estas preocupaciones, se están llevando a cabo esfuerzos regulatorios [28], ejemplifi-

cados por la adopción por parte de la Unión Europea (UE) de la primera ley integral sobre IA [27] (la

llamadaLey de IA de la UE). Esta legislación categoriza los sistemas de IA por nivel de riesgo y describe

los marcos regulatorios correspondientes. Consideraciones clave incluyen la privacidad de los datos,

la equidad y los dominios específicos en los que operan los sistemas de IA, como los sectores legal, ed-

ucativo y de salud. En particular, de acuerdo con los puntos 1 y 2 del Artículo 13 de la propuesta del

Parlamento Europeo, se requiere transparencia y comprensibilidad de los sistemas.

Artículo 13.1. Los sistemas de IAde alto riesgo debendiseñarse y desarrollarse demanera que
su funcionamiento sea suficientemente transparente para permitir a los usuarios interpretar
la salida del sistema y utilizarla adecuadamente. ...

Artículo 13.2. Los sistemas de IA de alto riesgo deben ir acompañados de instrucciones de uso
en un formato digital apropiado u otro que incluya información concisa, completa, correcta
y clara que sea relevante, accesible y comprensible para los usuarios.

Propuesta de la Comisión Europea sobre la regulación de sistemas de IA [27]. Propuesta en 2021,
aprobada en diciembre de 2023.

La investigación en XAI tiene como objetivo hacer que los algoritmos de IA sean transparentes y

comprensibles, aprovechando los conocimientos tanto de la informática como de las ciencias sociales.

Además, las ciencias filosóficas y éticas resaltan la importancia de esto. Por ejemplo, V. Dignum [34]

describe los requisitos para la interpretabilidadde la IA, enfatizando la transparencia, la responsabilidad

y la rendición de cuentas (en inglés, accountability).

212 APPENDIX E. EXTENDED SUMMARY IN SPANISH

1. Transparencia

Indica la capacidad de describir, inspeccionar y reproducir los mecanismos medi-
ante los cuales los sistemas de IA toman decisiones ...

2. Responsabilidad

Se refiere al papel de las personas mismas en su relación con los sistemas de IA. ...
La responsabilidad en la IA también es un problema de regulación y legislación, en
particular en lo que respecta a la responsabilidad legal ...

3. Rendición de cuentas

La rendición de cuentas es la capacidad de dar cuenta, es decir, de poder informar
y explicar las acciones y decisiones de uno. Para garantizar la rendición de cuentas,
las decisiones deben derivarse de, y explicarse mediante, los mecanismos de toma de
decisiones utilizados. ...

Al desarrollar mecanismos de explicación, es importante tener en cuenta que las
explicaciones deben ser comprensibles y útiles para un ser humano, ...

La explicación es relevante para confiar en los sistemas de IA por varias razones.
En primer lugar, las explicaciones pueden reducir la opacidad de un sistema y apoyar
la comprensión de su comportamiento y sus limitaciones. ...

Lamentablemente, tal y como Miller dice en su artículo [75], “se podría decir que la mayoría del
trabajo en inteligencia artificial explicable emplea únicamente la intuición de los investigadores en qué
es una buena explicación”, en lugar de apoyarse en la vasta investigación ya existente en la materia desde

las ciencias sociales. Su trabajo se puede resumir en que, para conseguir la confianza de los usuarios, las

explicaciones deben ser:

(1) Las explicaciones son contrastivas: la investigación sugiere que las personas tienden a

pedir explicaciones en respuesta a observaciones anormales o inesperadas con respecto a

sus propias creencias.

En otras palabras, las personas no simplemente preguntan por qué ocurre un evento P. Típicamente,

cuando una persona pregunta "¿Por qué P?", esta posiblemente esperaba que P no hubiese ocurrido (P

es inesperadopara ella) y, en su lugar, esperabanquehubiese ocurridoun eventodistintoQPor lo tanto,

la verdadera pregunta a la que necesitan una respuesta es "¿Por qué P en lugar de Q?". Tenga en cuenta

que esto es diferente que simplemente preguntar "¿Por qué no Q?", porque la anterior implica que la

persona se imaginaba unmundo predeterminado o esperado, que ha sido quebrantado. De hecho, es a

partir de las diferencias entre el mundo real (donde P se cumple) y el mundo predeterminado esperado

(donde se cumple Q) que las personas comienzan a construir explicaciones. Tome, por ejemplo, el

siguiente ejemplo de [75].

" ... por qué el transbordador Challenger explotó en 1986 (en lugar de no explotar, o

tal vez por qué la mayoría de los otros transbordadores no explotan). La explicación de

que explotó "por culpa de sellos defectuosos" parece ser unamejor explicación que "había

oxígeno en la atmósfera"."

213

En el ejemplo, P es la explosión del transbordadorChallenger, que ocurrió en elmundo real, mien-

tras que Q podría ser que el transbordador no explote, lo cual era algo esperado por el usuario. "Había

oxígeno en la atmósfera" no se considera una buena explicación porque es algo cierto tanto el mundo

real como el mundo predeterminado asumido por del actor. Por el contrario, el hecho de que los sellos

fueran defectuosos se considera anormal con respecto a las suposiciones del actor y, por lo tanto, se

percibe como una explicación satisfactoria.

Por supuesto, estrictamente hablando, el oxígeno en la atmósfera es una causa necesaria para que

ocurra la explosión, al igual que otras causas nomencionadas (quizás imposibles de contar). De hecho,

manejar la cadena completa de causas rápidamente se vuelve imposible para los humanos en escenarios

reales. Esto empeora si también intentamos tener en cuenta todos los posibles inhibidores causales

que podrían evitar que ocurra la explosión, incluidos los menos relacionados con el mundo real. Por

ejemplo, argumentar que no había tormenta el día del lanzamiento del transbordador como una razón

para que ocurra la explosión porque no habría despegado en ese caso. Esto se relaciona con las otras

dos propiedades identificadas por [75].

(2) Las explicaciones son seleccionadas (de manera sesgada): las explicaciones rara vez con-
sisten en las causas reales y completas de un evento, sino más bien en una (sesgada) selec-

ción de un subconjunto de causas basada en el contexto y varios otros criterios como la

proximidad temporal, la necesidad, la suficiencia, la anormalidad, etc.

(3)Las explicaciones son sociales: cuandoun sistema explicaun resultado, ocurreuna trans-

ferencia de conocimiento del sistema al usuario como parte de una interacción (similar a

las personas). Como tal, la información presentada es relativa a las creencias del sistema

sobre las creencias del explicador.

En otras palabras, las explicaciones son tanto dependientes del contexto comodel usuario. Cuando

las personas intentan encontrar las razones de un evento inesperado, primero intentan imaginar esce-

narios contrastivos "cercanos" que lo expliquen con éxito. Esto se relaciona con el razonamiento abduc-
tivo y / o la simulación causal. Sin embargo, en este proceso, la exploración de los mundos hipotéticos

no es arbitraria, sino cuidadosamente guiada por las creencias de la persona sobre la relevancia de las

diferentes posibles causas, que cambian según el contexto. En otras palabras, los escenarios contrastivos

imaginados no solo son "cercanos" sino "relevantemente cercanos". Esta selección de causas relevantes

no solo influye en la búsqueda demundos contrastivos válidos sino también en la información incluida

en última instancia en la explicación, a menudo también adaptada al conocimiento y la perspectiva del

receptor. La siguiente cita de [62] (también recuperada de [75]) ilustra esto perfectamente.

"Hay tantas causas de x como explicaciones de x. Considere cómo la causa de la muerte

podría haber sido presentada por el médico como ’hemorragia múltiple’, por el abogado

como ’negligencia por parte del conductor’, por el constructor del carruaje como ’un de-

fecto en la construcción del freno’, por unplanificador cívico como ’la presencia de arbus-

tos altos en ese giro’. Ninguna esmás verdadera que las demás, pero el contexto particular

de la pregunta hace que algunas explicaciones sean más relevantes que otras."

Patrones de Descubrimiento Norwood Russell Hanson. Publicado en 1958.

214 APPENDIX E. EXTENDED SUMMARY IN SPANISH

En [75] varios criterios como la proximidad temporal, la necesidad o la suficiencia (entre otros)

se identifican como buenos filtros para causas relevantes, mientras que otros como la probabilidad se

muestran como menos útiles. De hecho, en su hallazgo principal final, Miller contrasta las probabili-

dades con la relación causa-efecto al evaluar una buena explicación.

(4) Las explicaciones son causales: aunque la verdad y la probabilidad son importantes en

la explicación y las probabilidades realmente importan, referirse a probabilidades o rela-

ciones estadísticas en la explicación no es tan efectivo como referirse a causas. La expli-

cación más probable no siempre es la mejor explicación para una persona, e importante,

usar generalizaciones estadísticas para explicar por qué ocurren los eventos es insatisfac-

torio a menos que venga acompañado de una explicación causal subyacente para la gen-

eralización misma.

Sin embargo, lograr sistemas de IAque cumplan estas propiedades es un gran desafío. Si bien se ha-

cen esfuerzos para desarrollar técnicas de explicación, como las SHAP [68] y LIME [88], estos métodos

a menudo se basan en correlaciones y no en conocimiento causal. Esta brecha entre el lenguaje estadís-

tico de la IA y la comprensión causal humana contribuye a la falta de confianza en las explicaciones

generadas por la IA. Incluso con la aparición de los llamadosModelosMasivos de Lenguaje (LLM, por

sus siglas en inglés) [25], como GPT, que han demostrado increíbles dotes en la ejecución de tareas

que requieren de la compresnión del lenguaje natural, las explicaciones generadas por estos modelos

puden resultar muy convincentes pero falaces, socavando la confianza de los usuarios. Algunos investi-

gadores abogan por sistemas de IA auditables y verificables para abordar estos problemas, enfatizando

la importancia del conocimiento causal para respaldar las explicaciones.

En este contexto, el campo de la Representación del Conocimiento y Razonamiento Automático

(por sus siglas en inglés, KRR) desempeña un papel crucial, proporcionando una base para representar

el conocimiento causal en los sistemas de IA. De hecho, el razonamiento de sentido común, un aspecto
fundamental de KRR, busca enfatizar que debemos programar las máquinas de la forma más cercana

posible a cómo pensamos los humanos. Inspirándonos en esto, proponemos la noción de "Explicación

de sentido común", basada en el conocimiento causal real y adaptada a la comprensión humana. Pro-

porcionamos una definición abstracta de esta noción donde intentamos capturar los diferentes aspec-

tos enfatizados por las ciencias sociales y filosóficas para conseguir explicaciones que generen confianza

en los humanos.

El objetivo principal de esta tesis es desarrollar el concepto de explicación de sentido común den-

tro del paradigma de KRR. Este esfuerzo se abordará desde un punto de vista práctico, involucrando

la creación de herramientas para calcular explicaciones y su aplicación a diversos problemas y sistemas

de IA. Específicamente, el enfoque se centrará en el Razonamiento No-Monótono (por sus siglas en

inglés, NMR) [74], un campo dentro de la inteligencia artificial que trata el razonamiento bajo incer-

tidumbre e información incompleta, en contraste con la lógica clásica.

La Programación de Conjuntos de Respuestas (ASP, por sus siglas en inglés)[18, 54] emerge como

un paradigma prominente para KRR práctico y resolución declarativa de problemas, fundamentado

en principios de NMR. ASP proporciona unmarco flexible para representar conocimiento a través de

programas lógicos, facilitando el cálculo de soluciones basadas en la semántica demodelos estables [57].

Las herramientas basadas en ASP han sido aplicadas en diversos dominios debido a su accesibilidad y

eficiencia [44]. El uso de ASP para explicabilidad [48] ha generado un gran interés en los últimos años,

215

especialmente en el contexto de la IA Explicable (XAI). Se han propuesto varios enfoques para explicar

programas ASP, incluyendo semántica causal y explicaciones basadas en grafos. Sin embargo, obtener

explicaciones que cumplan con los criterios de explicaciones de sentido común presenta desafíos, lo

que hace necesario un mayor desarrollo en el campo.

La parte I de esta tesis proporciona e implementa el los formalismos necesarios para obtener ex-

plicaciones de sentido común para (y basadas en) programas ASP, además de explorar su aplicación a

diversos contextos del campo de representación de conocimiento y explorar un conjunto relevante de

las de las aproximaciones similares existentes.

Esta parte comienza con el Capítulo 3, en el cuál se describe una caracterización formal de las ex-

plicaciones en términos de grafos construidos en a partir del programa ASP. Bajo este marco, los mod-

elos pueden ser justificados, lo que significa que tienen uno o más grafos de soporte (en inglés, Support
Graphs), o no justificados en caso contrario. Demostramos que todos losmodelos estables son justifica-

dos, mientras que, en general, lo contrario no es cierto, al menos para programas disyuntivos. También

caracterizamos un par de operaciones básicas en grafos, que llamamos poda de aristas (en inglés edge
prunning) y olvido de nodos (en inglés, node forgetting), que permiten realizar filtrado de información

en las explicaciones. Se da también una especificación en ASP, para generar los grafos de soporte de un

conjunto de respuestas dado de algún otro programa ASP, para la cual demostramos su corrección y

validez con respecto a las definiciones dadas.

Posteriormente, el Capítulo 4 presenta xclingo, una herramienta que implementa dicha especifi-

cación, y que permite el cáclulo de los grafos se soporte para programas ASP. La herramienta además

extiende el lenguaje ASP con algunas anotaciones llamadas así que ayudan al usuario a diseñar las ex-

plicaciones producidas. Se proporcionan una extensa variedad de ejemplos de cómo usar estas anota-

ciones en la Sección 4.2. Además, xclingo se basa en un método de meta-programación o reificación

para calcular los grafos de soporte de un programa. Es decir, la semántica de los grafos de soporte se

especifica en el programa ASP de xclingo que, junto con una reificación del programa original, cuyos

conjuntos de respuesta corresponden a los grafos de soporte de un programa. Tanto la especificación

de semántica de la reificación como la de los grafos de soporte se explican y discuten en la Sección 4.3.

La arquitectura interna de la herramienta y algunas decisiones de diseño de software se discuten en

la Sección 4.4. Esto también incluye características avanzadas adicionales como la opción de agregar

extensiones a xclingo. Las extensiones son fragmentos de código ASP que uno puede inyectar en el

programa de cálculo de grafos de soporte de xclingo de manera que su comportamiento pueda ser

extendido de muchas maneras.

Una vez introducida la herramienta, en el Capítulo 5 brindamos nociones sobre cómo utilizala

para obtener explicaciones de sentido común. Comenzamos contrastando las diferencias entre expli-

caciones técnicas y de sentido común, y discutimos además su importancia y el papel que pueden de-

sempeñar para hacer que los sistemas ASP sean tanto transparentes como comprensibles. Después, en

la Sección 5.2, hacemos una observación importante sobre las explicaciones que podemos obtener a

partir de programas fuertemente equivalentes. En particular, dos programas ASP fuertemente equiva-

lentes pueden producir explicaciones diferentes. Esto tiene consecuencias importantes que se discuten

a lo largo del capítulo, como que las explicaciones de codificaciones ASP eficientes pueden no ser ade-

cuadas para explicaciones de sentido común incluso si obtienen las mismas soluciones que las codifica-

ciones originales. En línea con demostrar esto, proporcionamos un ejemplo práctico en la Sección 5.3

y también una solución práctica al problema en la Sección 5.4.

216 APPENDIX E. EXTENDED SUMMARY IN SPANISH

Tal y como ya se ha introducido, la mayoría de las explicaciones solicitadas por los humanos no

son positivas, "¿Cómo es que p es verdadero?" sino más bien consultas causales más complejas como

preguntas contrastivas que requieren respuestas contrafácticas. La Sección ?? discutemás a fondo estos

temas ypropone el diseñodeun sistemaquepueda responder a este tipode consulta causal, incluidas las

respuestas a preguntas de tipo ¿Por qué no?. Se proporciona un ejemplo práctico de cómo implementar

este sistema utilizando xclingo.

Para finalizar la Parte III, en el Capítulo 6, revisamos algunos de los enfoques más relevantes de la

literatura sobre explicaciones en ASP, incluyendo formalismos y herramientas. Realizamos una com-

paración entre cada enfoque y el nuestro bajo tres perspectivas. Primero, comparamos los objetos

matemáticos que respaldan las diferentes definiciones de explicación. Segundo, para aquellos enfoques

que proporcionan herramientas utilizables, comparamos sus funcionalidades entre sí y con xclingo.
Tercero, siempre que sea posible, comparamos los enfoques en términos de la posibilidad de obtener

explicaciones de sentido común.

En contraste, la Parte II se centra, en lugar de obtener explicaciones para ASP, en obtener expli-

caciones de sentido común para algoritmos de aprendizaje automático (por sus siglas en inglés, ML).

Esta parte consta de dos capítulos, cada uno dedicado a un problema real y en un dominio distinto,

en el que se requiere una solución de explicabilidad para modelos deML dirigidos a usuarios reales no

técnicos.

En concreto, el Capítulo 7 documenta el desarrollo de un Sistema de Apoyo a la Decisión para

la combinación de donante-receptor de hígado en trasplantes de hígado. En un contexto crítico como

este, nohaydiscusión sobre porqué senecesitan explicaciones. Además, es particularmente importante

que dichas explicaciones sean reproducibles y que proporcionen responsabilidad y transparencia. El

sistema desarrollado proporciona estimaciones de la supervivencia de posibles pares donante-receptor,

así como explica dicha estimación. Las explicaciones se obtienen utilizando xclingo a partir de una rep-
resentación ASP de un clasificador de ML, en particular un Clasificador de Árbol de Decisión (DT).

Más precisamente, se desarrolló una herramienta llamada Crystal-tree, que actúa como cliente de la

API de Python de xclingo, que proporciona explicaciones en lenguaje natural de modelos DT entre-

nados. En este capítulo, presentamos dicha herramienta y explicamos cómo funciona, incluyendo la

implementación basada en ASP utilizando xclingo.

En contraste con el capítulo anterior, en el Capítulo 8, nos enfrentamos a la tarea de obtener expli-

caciones para clasificadores no simbólicos. En concreto, estudiamos la aplicación de un método para

obtener explicaciones simbólicas para cualquier tipo de clasificador de ML. Proporcionamos una im-

plementación ASP de dicho método llamado aspBEEF y lo probamos para explicar las predicciones de

un modelo de apoyo a la invesitigación de desarrollo de medicamentos impresos en 3D. En las próx-

imas secciones, primero presentamos el caso de estudio de investigación de medicamentos impresos

en 3D (Sección 8.2) y después presentamos la herramienta aspBEEF y el método en el que se inspira

(Sección 8.3).

En conclusión, esta tesis contribuye a la caracterización formal de las explicaciones de los programas

lógicos, particularmente definiendo las nociones de gráficos de soporte y modelos justificados. Hemos

demostrado la relación entre los modelos estables y los modelos justificados, demostrando que si bien

todos los modelos estables están justificados, lo contrario no siempre es cierto, especialmente para pro-

gramas disyuntivos. Además, hemos introducido operaciones en gráficos, como la poda de aristas y el

olvido de nodos, que facilitan el filtrado de información en las explicaciones.

217

La implementaciónde la herramienta xclingopermite el cálculo de gráficos de soporte para progra-

mas ASP. Esta herramienta extiende el lenguaje de Programación de Conjuntos de Respuestas (ASP)

con anotaciones para ayudar en el diseño de explicaciones en lenguaje natural. Su implementación

en ASP a través de meta-programación asegura la corrección de la herramienta y su mantenibilidad,

al tiempo que mejora la usabilidad para los usuarios familiarizados con ASP. Además, la capacidad

de la herramienta para calcular solo las explicaciones relevantes mejora considerablemente la eficien-

cia. Hemos definido explicaciones de sentido común y explicaciones técnicas basadas en la literatura

de ciencias sociales, enfatizando la importancia de las explicaciones amigables para el usuario mante-

niendo el rigor formal. El proceso de diseño de explicaciones, dirigido a obtener explicaciones de sen-

tido común, es una contribución significativa que aborda los desafíos en la obtención de explicaciones

adecuadas a partir de programas lógicos equivalentes. Nuestra exploración de preguntas y respuestas

causales, junto con la metodología propuesta de pregunta-respuesta, proporciona un marco para pro-

cesos de explicación interactivos entre usuarios y sistemas. Esta distinción entre tipos de preguntas y

respuestas causales contribuye a clarificar la taxonomía de las explicaciones causales.

Las futuras extensiones de este trabajo incluyen estudiar más a fondo las correspondencias en-

tre gráficos de soporte y otros formalismos, implementar literales causales e incorporar preferencias

definidas por el usuario para seleccionar entre explicaciones alternativas. Además, el soporte para causas

suficientes y agregados en explicacionesmereceuna investigación adicional paramejorar las capacidades

de la herramienta.

	Abstract
	Abstract
	Resumen
	Resumo

	Contents
	Contents
	Figures
	Programs

	Introduction
	Introduction
	In the Quest for Commonsense Explanations
	Motivation
	Goals and Structure

	Background
	Answer Set Programming
	Monotonicity vs Non-Monotonicity
	Grounding Answer Set Programs With Variables
	Aggregates
	Choice rules

	ASP Solver Clingo and Python API
	Pooling
	#show and #project
	clingo's Abstract Syntax Tree
	Executing Python code within clingo with Context class
	Theory definitions

	I Explanation in Answer Set Programming
	Support Graphs
	Introduction
	Explanations as Support Graphs
	Filtered Explanations
	An ASP Encoding to Compute and Filter Explanations

	Xclingo
	Introduction
	Using Xclingo to Generate Explanations
	Annotating a program to obtain Explanations
	Tracing or Hiding Atoms
	Obtaining Explanations without Manually Tracing Atoms
	Muting ASP Code to Avoid Causal Links
	Explanation Explosion
	Explaining aggregates
	Explaining unsatisfiable programs

	ASP Implementation
	Representation of the explained model
	Reifing ASP rules
	Show Trace annotations and to-explain atoms
	Building Support Graphs
	Filtering support graphs
	Relaxing Constraints for Explaining Unsatisfiability

	Architecture and Design
	Preprocessing module
	Explaining module
	Extensions

	Commonsense Explanations with xclingo
	Technical vs Commonsense explanations
	Strong equivalence does not suffice
	A Practical Example of Explanation Design: Blocks World
	Model Feeding for Fast Commonsense Explanations
	Answering Different Types of Causal Queries
	Classifying types of answers
	Answering Causal Questions
	Counterfactuals in xclingo

	Related Work
	Causal Graphs
	And-Or Explanation Trees and Tree Explanations
	s(CASP)
	Offline Justifications
	m-justifications And r-justifications For C-Atoms
	LABAS justifications
	Justification Theory
	Explaining unsatisfiability

	II Applications to Explainable Machine Learning
	A Tool for Explaining Decision Trees Applied to Liver Transplantation
	Introduction
	Machine Learning Models for Utility Estimation in Liver Transplantation
	The Support Decision System
	Crystal Tree: A Tool for Explaining Decision Trees
	Implementation using Xclingo
	Discussing Decision Tree Explanations

	Explanations for ML Applied to 3D Printing of Medicines
	Introduction
	Accelerating 3D-Printed Medicine Research with ML
	Obtaining the FDM-Predicting ML Models

	aspBEEF: an ASP implementation of BEEF

	III Conclusions
	Conclusions

	Bibliography
	Appendices
	Markup Annotations in Detail
	Show Trace annotation
	Trace annotation
	Mute annotation
	Trace_rule annotation
	Mute_rule annotations

	Xcligo's logic program
	Additional Examples
	An example on explaining constraints
	An example on diagnosis using xclingo

	Liver Transplantation Dataset: Description of the Features
	Extended Summary in Spanish

