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Abstract Seismic monitoring of injected CO2 plumes in fractured storage reservoirs relies on accurate
knowledge of the physical mechanisms governing elastic wave propagation, as described by appropriate,
validated rock physics models. We measured laboratory ultrasonic velocity and attenuation of P and S
waves, and electrical resistivity, of a synthetic fractured sandstone with obliquely aligned (penny‐shaped)
fractures, undergoing a brine‐CO2 flow‐through test at simulated reservoir pressure and temperature. Our
results show systematic differences in the dependence of velocity and attenuation on fluid saturation
between imbibition and drainage episodes, which we attribute to uniform and patchy fluid distributions,
respectively, and the relative permeability of CO2 and brine in the rock. This behavior is consistent with
predictions from amultifluid rock physics model, facilitating the identification of the dispersive mechanisms
associated with wave‐induced fluid flow in fractured systems at seismic scales.

1. Introduction

From the microscopic scale to large faulting systems, cracks are present in almost every rock formation
found in the Earth's crust. Anisotropic and potentially frequency‐dependent wave propagation are key geo-
physical signatures describing cracked rocks. Such properties are crucial to assess the suitability of hydrocar-
bon reservoirs and saline aquifers for geological carbon storage (GCS) (Chiaramonte et al., 2015; Iding &
Ringrose, 2010).

Previous studies have analyzed a number of factors affecting the brine‐CO2 saturation dependence in saline
sandstone reservoirs—the most suitable geological context for GCS (Michael et al., 2010). These factors
include the distinction between pore pressure and pore fluid distribution effects (Falcon‐Suarez et al., 2016,
2017, 2018), the frequency dependence of elastic wave properties and the methodology to upscale informa-
tion collected in laboratory (Lei & Xue, 2009; Mikhaltsevitch et al., 2014; Nakagawa et al., 2013), or the effect
of mineralogical changes in the elastic and transport properties of the rock (Canal et al., 2013; Hangx
et al., 2010, 2015; Vialle et al., 2014; Vialle & Vanorio, 2011). However, most of these studies are restricted
to nonfractured rocks (Nooraiepour et al., 2018), although the nucleation and reactivation of fractures
endanger safe GCS (Rutqvist, 2012; Velcin et al., 2020).

The distribution of different pore fluids is largely conditioned by reservoir heterogeneities, wettability
(Al‐Khdheeawi et al., 2017), and saturation history (Knight & Nolen‐Hoeksema, 1990). To address the
uncertainties associated with CO2‐brine partially saturated fractured rocks, we need to conduct controlled
experiments on samples with well‐defined physical and structural properties (e.g., Amalokwu et al., 2016;
Rathore et al., 1995; Tillotson et al., 2011), to generate data sets to help constrain robust rock physics models.
However, fluid‐dependent phenomena dominating in laboratory observations such as frequency‐dependent
behavior or fluid distribution in the pore space are rarely examined in conjunction with their intrinsic
anisotropy (Amalokwu et al., 2014; Murphy, 1984).

Few rock physics theories incorporate the subtleties associated with such partially saturated cracked rocks
holistically. Recently, Papageorgiou and Chapman (2017) have suggested a theory that combines
uniform/patchy fluid distribution (Dutta & Odé, 1979; White, 1975) and squirt flow (Chapman, 2003;
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Dvorkin et al., 1995) phenomena for partially saturated isotropic rocks. Later, Jin et al. (2018) extended their
work to incorporate mesoscopic flow that occurs between fractures and the pore space for anisotropic rocks.
The model of Jin et al. (2018) is therefore appropriate to describe frequency‐dependent wave velocities of
partially saturated, cracked samples. If properly calibrated, this model also could be used to describe seismic
velocities obtained during and after CO2 injection in fractured GCS reservoirs.

Here, we present a brine‐CO2 partial saturation experiment in cracked sandstone with a well‐defined frac-
ture network (cracks aligned at oblique angle), under realistic geological conditions of confining (40 MPa)
and pore (10 MPa) pressure. During the test, we measured ultrasonic P and two orthogonal Swave velocities
and attenuations, together with electrical resistivity that we used to determine the evolution of the degree of
CO2 saturation (up to ~60%, including drainage and imbibition saturation paths). We simultaneously fit
ultrasonic velocities to constrain the rock physics model of Jin et al. (2018), which explains the observed ani-
sotropic and dispersive properties, and variation with partial saturation, as well as a counterintuitive
increase of the velocity despite the decrease of stiff fluid. The transport and mechanical results are assessed
in Muñoz‐Ibáñez et al. (2019).

2. Experimental Procedure

We used a ~2‐cm length, ~5‐cm diameter synthetic sandstone core plug, containing fractures aligned at 45°
from its axis. The sample was manufactured using a mixture of sand, kaolinite, and sodium silica gel
(Falcon‐Suarez et al., 2019), but with a predetermined number of 2‐mm diameter (δ), 0.2‐mm thickness
(τ) aluminum discs (Amalokwu et al., 2015; Tillotson et al., 2012). Once baked, the sample was immersed
in an acidic bath to remove the aluminum discs, resulting in a silica‐cemented sandstone with 45° aligned
penny‐shaped cracks. The fracture density (εf ¼ 0.0298 ± 0.0077) and an average fracture aspect ratio
(τ/δ ¼ 0.088 ± 0.001) were obtained from X‐ray CT scan image processing (Amalokwu et al., 2015), which
leads to a porosity fraction attributed to fractures of ~10% (Muñoz‐Ibáñez et al., 2019).

A set of 90° biaxial 350‐ohm electrical strain gauges was epoxy glued on the lateral side wall of the sample to
measure axial and radial strains during the test. Porosity (ϕ) by He pycnometry and permeability to nitrogen
(kgas) were determined under minimal confining stress (~0.5 MPa) before (ϕ0 ¼ 27.3 ± 0.6%;
kgas,0 ¼ 5.5 ± 3.13 mD) and after (ϕf ¼ 29.6 ± 0.7%; kgas,f ¼ 12.1 ± 3.24 mD) the test.

The sample was subjected to steady‐state brine‐CO2 flow‐through (BCFT), using the experimental rig for
CO2 storage multiflow tests described in Falcon‐Suarez et al. (2017). The rig implements sensors for measur-
ing, simultaneously, electrical resistivity and ultrasonic waves (velocity and attenuation) using the pulse
echo technique (Amalokwu, 2016; Best, 1992; McCann & Sothcott, 1992). Here, we used a sensor that incor-
porates P and Swave transducers in one platen, and a single Swave transducer in the other (all transmitting
400‐ to 1,000‐kHz broadband acoustic pulses). For these transducers, the velocity precision is ±0.1% with an
accuracy of ±0.3% (95% confidence), while attenuation accuracy is ±0.2 dB/cm (Best, 1992). The S wave
transducer polarizations were aligned parallel and perpendicular to the fracture strike, measuring oblique
S1 (fast) and S2 (slow) wave velocity and attenuation, respectively, for estimations of the shear wave aniso-
tropy (expressed as (nS1 − nS2)/nS1, for a given S wave attribute n).

The BCFT test was conducted under constant hydrostatic confining (Pc ¼ 40 MPa) and pore (Pp ¼ 10 MPa)
pressure, at room temperature (20°C), using 3.5%NaCl synthetic brine and liquid CO2, and covered drainage
and imbibition episodes. An overpressure limit of 2 MPa was imposed (Muñoz‐Ibáñez et al., 2019), which
prevents rock mechanical damage (fracture propagation) at the simulated conditions (Velcin et al., 2020).
The total flow (Q ¼ Qw + QCO2) was initially regulated in each episode (Q < 0.5 cm3 min−1), and the CO2

fractional flow (XCO2 ¼ QCO2/Q) increased in 0.2 units episodes during the drainage part of the test. After
the last drainage episode, the BCFT test concluded with a 100% brine flow‐through to force the natural imbi-
bition process that occurs in saline aquifers after ceasing the CO2 injection (Gaus, 2010).

During the test, axial and radial strains were measured continuously (every second), while ultrasonic P and
S1,2 wave velocities (VP, VS1,2) and attenuations (inverse quality factors Q P

−1, QS1,2
−1), and resistivity were

acquired, at least, every 0.5 times the sample pore volume (PV ~ 10.46 cm3) of flow‐through. Then, using
Archie's (1942) first and second laws, the bulk resistivity of porous media partially saturated with brine
and CO2 was transformed into degree of brine saturation (Carrigan et al., 2013; Falcon‐Suarez et al., 2016,
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2017, 2018; Muñoz‐Ibáñez et al., 2019; Nakatsuka et al., 2010). For resistivity, the error increases from <1%
up to 5% with resistivity and sample anisotropy (North et al., 2013). The upper value leads to a saturation
uncertainty of ±5%, when converting resistivity into degree of saturation using Archie's approach with a
saturation exponent n ¼ 2, usually adopted for sandstones (Mavko et al., 2009). However, the dual
porosity of our sample influences the rock wettability and the saturation history (Muñoz‐Ibáñez
et al., 2019). In turn, n might become variable for a given resistivity‐saturation relationship, invalidating
the use of Archie's law (Suman & Knight, 1997; Zhou & Stenby, 1997). To account for this, we propagate
saturation error derived from ±10% variations in n, which covers the deviation from drainage to
imbibition in nonuniform pore size distribution in water‐wet samples (Suman & Knight, 1997).

After the BCFT test, the sample was cleaned with deionized water and then dried, before being saturated
with CO2 at the test conditions to collect the corresponding ultrasonic properties. Further information about
the testing methodology in Falcon‐Suarez et al. (2017), Muñoz‐Ibáñez et al. (2019) and as supporting infor-
mation in the online version of this manuscript.

3. Results
3.1. Ultrasonic Waves

The pulse‐echomethod used in this study (Winkler & Plona, 1982) provides accurate measurements of ultra-
sonic velocities and attenuation (Amalokwu, 2016; Best, 1992; Best et al., 2007; Tillotson et al., 2011, 2012).
Figure 1a shows energy dissipation related to multiple arrivals for both the P and Swave signals between top
and base reflection peaks (framed within the data‐processing windows W1 and W2, respectively). The
energy dissipation is independent of the partial saturation for S1 and S2, which trends are almost identical
under different partial CO2 saturations (SCO2), while multiple internal reflections distort the signal after
the first pulse. P wave also evidences scattering arrivals in the time between the top and base reflections,
but varies with the saturation state, which magnifies the overall energy dissipation, as calculated from the
reduction in amplitude of the base reflection relative to the top reflection.

The horizontal and vertical cross‐sections of the fractures (Figure 1b) show local fracture propagation that in
some cases can exceed original fracture length (e.g., Y3). This fracture elongation is preferentially inducing
energy dissipation for S waves, which the wavelength (3 mm) is closer to the fracture length (2 mm) than
that of P waves (5 mm). Therefore, the attenuation data shown in Figure 2 have to be understood in quali-
tative terms, with QP

−1 showing significant changes between drainage and imbibition paths, while the QS1
−1

and QS2
−1 are largely affected by scattering with no significant changes (i.e., variations lie within the experi-

mental error).

3.2. BCFT Test

The brine‐CO2 flow‐through (BCFT) test lasted ~75 hr, resulting in a total fluid throughput of ~63 PV.
Figure 2 shows the ultrasonic properties (VP, VS1,2 and QP

−1, QS1,2
−1; all the results at 600 kHz obtained

from Fourier analysis of the broadband signals), plotted together with the electrical resistivity and volu-
metric strains measured during the BCFT test.

The transition from the first brine: CO2 fractional flow episode (XCO2 ¼ 0) to the second (XCO2¼ 0.2) marks
the arrival of the free CO2 phase in the rock (PV ~3.6), and the resistivity increases progressively with the
volume of CO2 passing through the rock. The CO2 arrival leads to a sharp increase of VP (~1.5%) and
Qp

−1 (~50%), followed by a progressive decrease of VP with the increasing CO2 content and the opposite
for QP

−1. The two orthogonal components of the shear wave show similar trends in both the velocities
(VS1, VS2) and the attenuations (QS1

−1, QS2
−1), with relative differences of ~6% between VS1 and VS2 and

throughout the BCFT test. VS1 and VS2 drop during XCO2 ¼ 0.2, followed by a soft increasing trend there-
after. Similarly, QS1

−1 and QS2
−1 progressively increase during drainage and drop to approximately the ori-

ginal values during the forced imbibition episode (XCO2 ¼ R‐0). However, this trend is inconclusive as it
occurs within the experimental uncertainty.

The imbibition (R‐0) started with a single brine pulse (~0.5 PV at 42.8 PV; BP in Figure 2), with continuous
monitoring of the geophysical properties of the sample. Then, continuous brine flow through the sample was
progressively replacing the CO2 from the pore space, as inferred from the resistivity drop (down to ~24%
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above the original brine‐saturated conditions). The imbibition affected P and S wave properties differently:
VP increased and Q P

−1 decreased, both up to ~2% below and above the original brine‐saturated values,
respectively, while VS1,2 and QS1,2

−1 fully recovered by the end of the imbibition. Yin et al. (1992) also
found that the attenuation depends not only on the degree of saturation and the frequency of the
measurements but also on the saturation history. They reported ~7% shift on the degree of saturation for
the attenuation peak from drainage to imbibition paths at sonic frequencies (~1,500 Hz). In our case, this
shift reaches up to 30% for Q P

−1 (Figure 2), because of the interplay of the scattering on heterogeneities
(crack‐induced internal reflections) and energy dispersive mechanisms related to partial fluid flow in
porous media. This render the attenuation measurements unreliable as quantitative indicators of the
changing physical properties of the sample due to pore fluid substitution.

The sample evidences mechanical deformation (inflation) after XCO2 > 0.5, which stabilizes during imbibi-
tion. This minor inflation (~0.12%) is within the porosity fraction commonly attributed to microcracks (0.7%;
Fortin et al., 2007). Thus, it could be related to microcracks reopening due to differential pressure
(Pdiff ¼ Pc − Pp) drop during the experiment associated with the increase of inlet‐to‐outlet Pp gradients with
the increasing XCO2 (Muñoz‐Ibáñez et al., 2019).

4. Insights From Data Analysis

Theories for wave propagation through partially saturated rocks emphasize two dominant dispersive
mechanisms taking place when wave propagation induces local and mesoscale fluid flow: squirt flow
(Chapman, 2003; Dvorkin et al., 1995) and patchy saturation (Dutta & Odé, 1979; White, 1975) effects.
While the diffusive character of Biot flow (Biot, 1956) is significant in unconsolidated sediments, in conso-
lidated rocks, the predicted dispersion is much smaller and occurs at much higher frequencies than the
experimental frequency. We therefore focus on the first two: squirt flow and patchy saturation.

Papageorgiou and Chapman (2017) combined these two effects into a single theory. Later, Jin et al. (2018)
extended their theory to include anisotropic effects due to fractures, showing that the moduli of a fractured,
partially saturated rock can be interpreted as two coupled standard linear solid (SLS) models (Mavko
et al., 2009). These two SLS models have relaxation frequencies linked by the scale ratio of the fracture size
to the pore/microcrack size. For a rock with aligned fractures, the SLS with lower relaxation frequency

Figure 1. P and S1,2 wave signals (a) at the saturation states corresponding to fractional flow episodes of pure brine
(XCO2 ¼ 0) and CO2 (XCO2 ¼ 1). W1 and W2 indicate the time windows used for the Fourier analysis (Best, 1992).
(b) Thin section analysis from two (mutually orthogonal) slides prepared after the BCFT test. From original images, color
channel filtering was applied to emphasize porous (bright) with respect to grains (dark) areas.
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corresponds to an anisotropic mechanism that induces dispersion in
the fracture normal direction only, whereas the SLS with higher
relaxation frequency is isotropic.

In partial saturation, both the combined squirt‐patch effect and the
effective fluid moduli impact the two SLS relaxation frequencies
(Brie et al., 1995; Papageorgiou & Chapman, 2017). The relaxation
frequencies depend on relative permeability and a patch parameter
q, which lies between 1 at uniform saturation and the ratio of the
fluid moduli at patchy saturation (Papageorgiou & Chapman, 2017).
The magnitude of each SLS model induced dispersion is controlled
by the fracture density (εf) and by microcrack density (εm), for the
SLS with lower relaxation frequency and higher relaxation fre-
quency, respectively.

To calculate the relaxation frequencies at partial saturation, we use
the Brooks‐Corey relative permeability model, suitable for explaining
the two fluid phases' interaction in our sample (Muñoz‐Ibáñez
et al., 2019), and the fracture and microcrack densities εf ¼ 0.042
and εm ¼ 0.02. εf is derived from the design of synthetic fractures in
the sample (Tillotson et al., 2012), while εm is arbitrarily adopted
within the range of values observed in similar synthetic rocks
(Papageorgiou et al., 2018). In the Supporting Information, we show
how we derive the VP, VS1, VS2 of an effective medium with these
properties. The increase in VP at low saturation, together with the
absence of fluid‐dependent shear wave anisotropy, is consistent with
the behavior of our model in the frequency regime, where the large
fractures are effectively sealed but squirt flow dispersion is still obser-
vable isotropically. Current data prevent us from further constraining
these frequencies, so we present modeling for a range of relaxation
frequencies of the microcrack SLS relative to the experiment fre-
quency, as well as saturation distribution scenarios for patchy and
uniform saturated pores.

Figure 3 summarizes our modeling results, considering the rela-
xation frequency and fluid distribution scenarios (Figure 3a) and
the model's predictions for VP, VS and shear wave anisotropy

(Figures 3b–3d). For the fit, we perform a nonlinear Nelder‐Mead minimization in two steps for each
of the three relaxation frequencies ωi. First, we deduce effective medium matrix parameters λ, μ at full
water saturation; that is, we determine λ, μ given constant ε, εf, ωi such that, when Sw ¼ 1, (VP(th)

(λ, μ) − VP(ex))
2+(VS1(th)(λ, μ) − VS1(ex))

2+(VS2(th)(λ, μ) − VS2(ex))
2 is minimum (subscripts “th” and

“ex” for theoretic and experimental, respectively). As a second step, we invert for the patch parameter
at partial saturation for each of the imbibition/drainage stages; that is, given λ, μ, ε, εf, ωi, we determine

q such that ∑
Sj

VP theorð Þ qð Þ − VP expð Þ
� �2 þ VS1 theorð Þ qð Þ − VS1 expð Þ

� �2 þ VS2 theorð Þ qð Þ − VS2 expð Þ
� �2� �

is mini-

mum, where Sj are the saturation steps for which we have data.

Despite the difference in fluids and incomplete saturation path, our VP results are similar in form to the
observations in Knight and Nolen‐Hoeksema (1990), where velocities showed strong hysteresis with values
consistently higher during drainage. Knight and Nolen‐Hoeksema (1990) attribute this discrepancy to a dif-
ference in pore‐fluid distribution under drainage (patchy saturation) and imbibition (uniform saturation),
which is consistent with our observations. However, we note the lack of significant VS hysteresis and the
strong impact of the saturation distribution to the velocity dispersion in our work.

The absence of imbibition data with Sw ≥ 0.85 prevents saturation history analysis at the high saturation
regime and indicates a residual CO2 trapping of ~15% at the experimental conditions. However, the

Figure 2. Brine‐CO2 flow‐through test in fracture sandstone. P and S1,2 wave
velocities (VP, VS1,2), attenuations (Q P

−1, QS1,2
−1) and electrical resistivity,

together with volumetric strains for six brine: CO2 flow rates drainage episodes
(XCO2 ¼ 0 to 1) and the forced imbibition (XCO2 ¼ R‐0; BP denotes the initial
imbibition brine pulse; see text). The ultrasonic properties were measured at a
single frequency of 600 kHz (pulse‐echo technique), obtained from the Fourier
analysis of broad band signals. Error bars displayed every 10 measurements.
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increase observed in porosity (~5%) and permeability (~45%) after the BCFT test might have occurred during
drainage. Then, abnormally high values of VS1,2 measured at full CO2 saturation (marked by stars in
Figure 3), together with the elevated VS1,2 and reduced VP values with respect to modeling along the
imbibition path, indicate the reduction of the sample's density (i.e., porosity increase) affected its shear
modulus minimally, in agreement with Delle Piane and Sarout (2016).

We also observe a striking increase in VP at low CO2 saturation (Sw ~ 0.9), despite the addition of softer
fluid in the system. Given the similar density between the CO2 and brine, this increase is attributed to an
increase in the elastic modulus. This phenomenon is unusual but still identified in previously reported
data for sandstones (Batzle et al., 2006), limestones (Cadoret et al., 1995), and shales (Szewczyk
et al., 2018), with air and water as pore fluids under atmospheric pressure conditions. In our experiment,
the viscosity and moduli of the two fluids differ by only one or two orders of magnitude within the
experimental bandwidth, which magnifies the observed effect with respect to the previous observations.
This increase is also present in the modeling predictions, and we have excluded CO2 dissolution into
water as a possible cause for this phenomenon as its impact would be of the order of <1%, much smaller
than the observation. The reason for this increase lies in the complex interplay between partial fluid
mobility and effective fluid modulus: a Sw range exists between 0.8 and 0.9 in which the dispersion from
frequency‐dependent effects overcompensates for the addition of the soft fluid, making the system stiffer
at partial than at full saturation.

Figure 3. (a) Patchy and uniform models for microfractures and fractures frequency domains. Ultrasonic P and S wave velocities VP (b), VS1 and VS2 (c), and S
wave velocity anisotropy, SWVA ¼ (VS1 − VS2)/VS1 × 100 (d), versus degree of brine saturation (Sw). Two modeling scenarios for pore fluid distribution:
uniformly (U, with patch parameter q¼ 1) and patchy (P, with q ¼ 0.2), at frequencies ω1 ¼ 0.027, ω2¼ 0.17, and ω3 ¼ 1.0725. Subscripts d and i refer to drainage
and imbibition, respectively. The star symbol indicates the CO2 saturation measurement (see text). Two single cross bars show horizontal and vertical errors for
low and high Sw.
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5. Discussion

The ultimate goal of our work is to understand the geophysical behavior of fractured reservoirs undergoing
CO2 injection and identify the mechanisms that can be used to effectively monitor GCS projects. We extend
the work of Nooraiepour et al. (2018) in considering properties of distributions of fractures, which is closer to
the equivalent medium concept required to scale to reservoir conditions. To date, data regarding partial
saturation in fractured media are limited to controlled experiments at atmospheric conditions using water
and air as nonwetting phase (e.g., Amalokwu, 2016). The air has higher compressibility, lower viscosity,
and density 3 orders of magnitude lower than ours at the experimental conditions (i.e., liquid CO2).
Therefore, we expect to find discrepancies between our results and those found in the literature related to
the nonwetting fluid properties.

The properties of the pore fluids and their mobility through the porous media complicate the distinction
between pore fluid distribution and rock fabric in fractured media. Kong et al. (2017) remarked that the
fracture‐filling fluid can disguise Pwave dispersion and attenuation effects due to fracture orientation, when
its modulus is much smaller than that of the pore‐filling fluid. Amalokwu et al. (2015) found that fractures
obliquely oriented with respect to wave propagation can lead to S wave velocity anisotropy (SWVA) drop
with increasing water saturation, because VS2 (sensitive to fluid compressibility reduction) decreases, while
VS1, considered independent of the pore fluid (Tillotson et al., 2012), remains constant. Conversely, our
results show minor SWVA variation with the CO2 content, within the bounds imposed by experimental
error.

The distribution of the two fluids in our porous medium is conditioned by the wettability of the CO2‐

brine‐rock system, the pore geometry, and the saturation history (Cinar & Riaz, 2014; Krevor et al., 2015).
Our experiment simulates different stages of CO2 injection in fractured saline siliciclastic reservoirs, at
realistic geological stress conditions. The test covers fluid substitution during CO2 plume advance (drai-
nage) and the natural aquifer recharge after ceasing the injection activities (imbibition) with a maximum
CO2 saturation ~0.6, in agreement with previous CO2‐water fluid substitution tests in sandstones
(Burnside & Naylor, 2014). The low capillarity forces of the fractures with respect to the pores lead to pre-
ferential CO2 fracture filling (Muñoz‐Ibáñez et al., 2019), which magnifies the effect of drainage versus
imbibition paths.

Our results indicate that P wave properties (VP, QP
−1) are highly sensitive to the saturation history, while S

waves show very little differences between drainage and imbibition saturation paths. This finding has impor-
tant implications for CO2 storage, since the information inferred from seismic surveys during the injection
and post injection activities are significantly different; but this also applies for the differential monitoring
of the front (drainage) and the trailing edge (imbibition) of the CO2 plume. The degree of partial saturation
in sandstones with fractures aligned at oblique angles might have some effect in the SWVA, in agreement
with Amalokwu et al. (2016), but certainly insufficient to be used as a robust indicator of pore fluid distribu-
tion. This finding has direct application on the interpretation of S wave splitting data sets from gas and GCS
reservoirs containing or developing fractures during production or injection activities.

The use of ultrasonic waves to explore fractured media is influenced by the characteristics of the fracture,
such as fracture length (c), aperture, crack surface roughness, and the saturating fluid, as well as the wave-
length (λw). If c/λw < 1, the porous medium appears homogeneous, while for c/λw > 1, heterogeneities begin
to act as energy scattering fronts. In our rock sample, c is slightly lower than λw for both the P and S waves,
which leads to somewave scattering in the recorded signals. In addition, regardless of how homogeneous the
medium is, absolute scale also plays a part.

Here, we identify and analyze themechanisms that are necessary to describe an effective medium that repro-
duces the dispersive behavior of the rock. The results from our controlled experiment suggest that fluid flow
induces dispersive behavior at the pore and fracture scale (with a transition frequency that scales with effec-
tive mobility), which is sufficient to describe this fractured medium. Likewise, we observe that despite the
single experimental frequency, dispersion varies across saturation consistently with our modeling strategy
indicating that the dominant mechanisms—at least with respect to wave‐induced fluid flow—have been
taken into account in the effective medium. This interpretation is supported by Figure 3, where the counter-
intuitive features of themodel are reproduced, such as the increase of compressional velocity at intermediate
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saturation depending on drainage/imbibition paths, in conjunction with the relatively small dispersion in
shear wave velocities.

Likewise, we anticipate that a fractured, partially saturated reservoir rock will exhibit dispersive behavior
according to these mechanisms at the field scale. To make this fully predictive, we would need to calibrate
the model with specific field velocity measurements and have a hydrological characterization of the reser-
voir formation. Our identification of these mechanisms offers a step toward overcoming the difficulty in dis-
tinguishing saturation effects from fluid distribution effects in fractured systems. This problem is dominant
in the characterization and monitoring of CO2 storage reservoirs where faults have been recognized
(Chiaramonte et al., 2015; Iding & Ringrose, 2010).

6. Conclusions

In this work, we record experimental observation suggesting anisotropic rocks with aligned fractures have
bulk and shear elastic behavior that depends on the saturation path (imbibition/drainage). During our
high‐pressure brine‐CO2 flow‐through experiment on a synthetic sandstone, stiffening was observed for
low (~10%) CO2 saturation in the drainage phase, despite the apparent fluid softening. We found shear wave
velocity anisotropy to be independent of saturation path and were unable to draw conclusions about its
dependence on fluid content due to high uncertainties associated with the S wave measurements. Using
recently published work, we were able to explain the dependence of the elastic constants on imbibition
and drainage. We observe manifestations of different patchiness in the fluid distribution, with more uniform
saturation during imbibition and patchy saturation during drainage, in accordance to previously published
experiments performed on isotropic rocks. Using the same rock physics model, we were able to capture the
increase in modulus observed during drainage as a result from a decrease in effective mobility due to relative
permeability effects.

Data Availability Statement

Data presented in this study are available at the U.K. National Geoscience Data Centre (NGDC) repository
(https://doi.org/10.5285/abc38c58-3a69-42ed-86ac-1502509bd88c).

References
Al‐Khdheeawi, E. A., Vialle, S., Barifcani, A., Sarmadivaleh, M., & Iglauer, S. (2017). Impact of reservoir wettability and heterogeneity on

CO2‐plume migration and trapping capacity. International Journal of Greenhouse Gas Control, 58, 142–158. https://doi.org/10.1016/j.
ijggc.2017.01.012

Amalokwu, K. (2016). Saturation effects on frequency‐dependent seismic anisotropy in fractured porous rocks, Doctoral thesis, 168 pp,
University of Southampton.

Amalokwu, K., Best, A. I., & Chapman, M. (2016). Effects of aligned fractures on the response of velocity and attenuation ratios to water
saturation variation: A laboratory study using synthetic sandstones. Geophysical Prospecting, 64(4), 942–957. https://doi.org/10.1111/
1365-2478.12378

Amalokwu, K., Best, A. I., Sothcott, J., Chapman, M., Minshull, T., & Li, X.‐Y. (2014). Water saturation effects on elastic wave attenuation
in porous rocks with aligned fractures. Geophysical Journal International, 197(2), 943–947. https://doi.org/10.1093/gji/ggu076

Amalokwu, K., Chapman, M., Best, A. I., Sothcott, J., Minshull, T. A., & Li, X.‐Y. (2015). Experimental observation of water saturation
effects on shear wave splitting in synthetic rock with fractures aligned at oblique angles. Geophysical Journal International, 200(1),
17–24. https://doi.org/10.1093/gji/ggu368

Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics, https://doi.org/10.2118/942054-G
Batzle, M. L., Han, D.‐H., & Hofmann, R. (2006). Fluid mobility and frequency‐dependent seismic velocity—Direct measurements.

Geophysics, 71(1), N1–N9. https://doi.org/10.1190/1.2159053
Best, A. I. (1992). The prediction of the reservoir properties of sedimentary rocks from seismic measurements, 393 pp, University of

Reading.
Best, A. I., Sothcott, J., & McCann, C. (2007). A laboratory study of seismic velocity and attenuation anisotropy in near‐surface sedimentary

rocks. Geophysical Prospecting, 55(5), 609–625. https://doi.org/10.1111/j.1365-2478.2007.00642.x
Biot, M. A. (1956). Theory of Propagation of ElasticWaves in a Fluid‐Saturated Porous Solid. II. Higher Frequency Range. The Journal of the

Acoustical Society of America, 28(2), 179–191. https://doi.org/10.1121/1.1908241
Brie, A., Pampuri, F., Marsala, A. F., & Meazza, O. (1995). Shear sonic interpretation in gas‐bearing sands, in SPE Annual Technical

Conference and Exhibition, edited, p. 10, Society of Petroleum Engineers, Dallas, Texas.
Burnside, N. M., & Naylor, M. (2014). Review and implications of relative permeability of CO2/brine systems and residual trapping of CO2.

International Journal of Greenhouse Gas Control, 23, 1–11. http://doi.org/10.1016/j.ijggc.2014.01.013
Cadoret, T., Marion, D., & Zinszner, B. (1995). Influence of frequency and fluid distribution on elastic wave velocities in partially saturated

limestones. Journal of Geophysical Research, 100(B6), 9789–9803. https://doi.org/10.1029/95JB00757
Canal, J., Delgado, J., Falcón, I., Yang, Q., Juncosa, R., & Barrientos, V. (2013). Injection of CO2‐saturated water through a siliceous

sandstone plug from the Hontomin test site (Spain): Experiment and modeling. Environmental Science & Technology, 47(1), 159–167.
http://doi.org/10.1021/es3012222

10.1029/2020GL088439Geophysical Research Letters

FALCON‐SUAREZ ET AL. 8 of 10

Acknowledgments
We have received funding from the
U.K.'s Natural Environment Research
Council (grant NE/R013535/1 GASRIP
and grant NE/N016041/1 CHIMNEY),
the European Union's Horizon 2020
research and innovation programme
(grant no. 654462 STEMM‐CCS), the
program PETROMAKS2 of the
Research Council of Norway (RCN
grant number: 267765), and the Xunta
de Galicia and the European Union
(European Social Fund—ESF). Zhaoyu
Jin was supported by the Principal's
Career Development PhD Scholarship
and Edinburgh Global Research
Scholarship from The University of
Edinburgh. The experiment was con-
ducted at the NOC Rock Physics
Laboratory in Southampton. The
authors thank Dr. Laurence North for
his support in the laboratory with the
geophysical measurements.

 19448007, 2020, 16, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020G

L
088439 by U

niversidade D
e L

a C
oruña, W

iley O
nline L

ibrary on [08/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5285/abc38c58-3a69-42ed-86ac-1502509bd88c
https://doi.org/10.1016/j.ijggc.2017.01.012
https://doi.org/10.1016/j.ijggc.2017.01.012
https://doi.org/10.1111/1365-2478.12378
https://doi.org/10.1111/1365-2478.12378
https://doi.org/10.1093/gji/ggu076
https://doi.org/10.1093/gji/ggu368
https://doi.org/10.2118/942054-G
https://doi.org/10.1190/1.2159053
https://doi.org/10.1111/j.1365-2478.2007.00642.x
https://doi.org/10.1121/1.1908241
http://doi.org/10.1016/j.ijggc.2014.01.013
https://doi.org/10.1029/95JB00757
http://doi.org/10.1021/es3012222


Carrigan, C. R., Yang, X., LaBrecque, D. J., Larsen, D., Freeman, D., Ramirez, A. L., et al. (2013). Electrical resistance tomographic mon-
itoring of CO2 movement in deep geologic reservoirs. International Journal of Greenhouse Gas Control, 18, 401–408. http://doi.org/
10.1016/j.ijggc.2013.04.016

Chapman, M. (2003). Frequency‐dependent anisotropy due to meso‐scale fractures in the presence of equant porosity. Geophysical
Prospecting, 51(5), 369–379. https://doi.org/10.1046/j.1365-2478.2003.00384.x

Chiaramonte, L., White, J. A., & Trainor‐Guitton, W. (2015). Probabilistic geomechanical analysis of compartmentalization at the Snøhvit
CO2 sequestration project. Journal of Geophysical Research: Solid Earth, 120, 1195–1209. https://doi.org/10.1002/2014JB011376

Cinar, Y., & Riaz, A. (2014). Carbon dioxide sequestration in saline formations: Part 2—Review of multiphase flow modeling. Journal of
Petroleum Science and Engineering, 124, 381–398. https://doi.org/10.1016/j.petrol.2014.07.023

Delle Piane, C., & Sarout, J. (2016). Effects of water and supercritical CO2 on the mechanical and elastic properties of Berea sandstone.
International Journal of Greenhouse Gas Control, 55, 209–220. http://doi.org/10.1016/j.ijggc.2016.06.001

Dutta, N. C., & Odé, H. (1979). Attenuation and dispersion of compressional waves in fluid‐filled porous rocks with partial gas saturation
(White model)—Part I: Biot theory. Geophysics, 44(11), 1777–1788. https://doi.org/10.1190/1.1440938

Dvorkin, J., Mavko, G., & Nur, A. (1995). Squirt flow in fully saturated rocks. Geophysics, 60(1), 97–107. https://doi.org/10.1190/1.1443767
Falcon‐Suarez, I., Marín‐Moreno, H., Browning, F., Lichtschlag, A., Robert, K., North, L. J., & Best, A. I. (2017). Experimental assessment of

pore fluid distribution and geomechanical changes in saline sandstone reservoirs during and after CO2 injection. International Journal of
Greenhouse Gas Control, 63, 356–369. https://doi.org/10.1016/j.ijggc.2017.06.019

Falcon‐Suarez, I., North, L., Amalokwu, K., & Best, A. (2016). Integrated geophysical and hydromechanical assessment for CO2 storage:
Shallow low permeable reservoir sandstones. Geophysical Prospecting, 64(4), 828–847. http://doi.org/10.1111/1365-2478.12396

Falcon‐Suarez, I., Papageorgiou, G., Chadwick, A., North, L., Best, A., & Chapman, M. (2018). CO2‐brine flow‐through on an Utsira Sand
core sample: Experimental and modelling. Implications for the Sleipner storage field. International Journal of Greenhouse Gas Control,
68, 236–246. https://doi.org/10.1016/j.ijggc.2017.11.019

Falcon‐Suarez, I. H., Amalokwu, K., Delgado‐Martin, J., Callow, B., Robert, K., North, L., et al. (2019). Comparison of stress‐dependent
geophysical, hydraulic and mechanical properties of synthetic and natural sandstones for reservoir characterization and monitoring
studies. Geophysical Prospecting, 67(4), 784–803. https://doi.org/10.1111/1365-2478.12699

Fortin, J., Guéguen, Y., & Schubnel, A. (2007). Effects of pore collapse and grain crushing on ultrasonic velocities and Vp/Vs. Journal of
Geophysical Research, 112, B08207. https://doi.org/10.1029/2005JB004005

Gaus, I. (2010). Role and impact of CO2‐rock interactions during CO2 storage in sedimentary rocks. International Journal of Greenhouse Gas
Control, 4(1), 73–89. http://doi.org/10.1016/j.ijggc.2009.09.015

Hangx, S., Bakker, E., Bertier, P., Nover, G., & Busch, A. (2015). Chemical–mechanical coupling observed for depleted oil reservoirs sub-
jected to long‐term CO2‐exposure—A case study of theWerkendam natural CO2 analogue field. Earth and Planetary Science Letters, 428,
230–242. http://doi.org/10.1016/j.epsl.2015.07.044

Hangx, S. J. T., Spiers, C. J., & Peach, C. J. (2010). Creep of simulated reservoir sands and coupled chemical‐mechanical effects of CO2

injection. Journal of Geophysical Research, 115, B09205. http://doi.org/10.1029/2009JB006939
Iding, M., & Ringrose, P. (2010). Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. International

Journal of Greenhouse Gas Control, 4(2), 242–248. https://doi.org/10.1016/j.ijggc.2009.10.016
Jin, Z., Chapman, M., & Papageorgiou, G. (2018). Frequency‐dependent anisotropy in a partially saturated fractured rock. Geophysical

Journal International, 215(3), 1985–1998. https://doi.org/10.1093/gji/ggy399
Knight, R., & Nolen‐Hoeksema, R. (1990). A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution.

Geophysical Research Letters, 17(10), 1529–1532. https://doi.org/10.1029/GL017i010p01529
Kong, L., Gurevich, B., Zhang, Y., & Wang, Y. (2017). Effect of fracture fill on frequency‐dependent anisotropy of fractured porous rocks.

Geophysical Prospecting, 65(6), 1649–1661. https://doi.org/10.1111/1365-2478.12505
Krevor, S., Blunt, M. J., Benson, S. M., Pentland, C. H., Reynolds, C., Al‐Menhali, A., & Niu, B. (2015). Capillary trapping for geologic

carbon dioxide storage—From pore scale physics to field scale implications. International Journal of Greenhouse Gas Control, 40,
221–237. http://doi.org/10.1016/j.ijggc.2015.04.006

Lei, X., & Xue, Z. (2009). Ultrasonic velocity and attenuation during CO2 injection into water‐saturated porous sandstone: Measurements
using difference seismic tomography. Physics of the Earth and Planetary Interiors, 176(3:4), 224–234. https://doi.org/10.1016/j.
pepi.2009.06.001

Mavko, G., Mukerji, T., & Dvorkin, J. (2009). Rock physics handbook—Tools for seismic analysis in porous media. New York: Cambridge
University Press.

McCann, C., & Sothcott, J. (1992). Laboratory measurements of the seismic properties of sedimentary rocks. Geological Society of London,
Special Publication, 65(1), 285–297. https://doi.org/10.1144/gsl.sp.1992.065.01.22

Michael, K., Golab, A., Shulakova, V., Ennis‐King, J., Allinson, G., Sharma, S., & Aiken, T. (2010). Geological storage of CO2 in saline
aquifers: A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4(4), 659–667.
http://doi.org/10.1016/j.ijggc.2009.12.011

Mikhaltsevitch, V., Lebedev, M., & Gurevich, B. (2014). Measurements of the elastic and anelastic properties of sandstone flooded with
supercritical CO2. Geophysical Prospecting, 62(6), 1266–1277. https://doi.org/10.1111/1365-2478.12181

Muñoz‐Ibáñez, A., Falcon‐Suarez, I. H., Marín‐Moreno, H., Martín, J. D., & Mackin, P. (2019). Transport properties of saline CO2 storage
reservoirs with unconnected fractures from brine‐CO2 flow‐through tests. Journal of Petroleum Science and Engineering, 184, 106551.
https://doi.org/10.1016/j.petrol.2019.106551

Murphy, W. F. (1984). Acoustic measures of partial gas saturation in tight sandstones. Journal of Geophysical Research, 89(B13),
11,549–11,559. https://doi.org/10.1029/JB089iB13p11549

Nakagawa, S., Kneafsey, T. J., Daley, T. M., Freifeld, B. M., & Rees, E. V. (2013). Laboratory seismic monitoring of supercritical CO2

flooding in sandstone cores using the Split Hopkinson Resonant Bar technique with concurrent X‐ray computed tomography imaging.
Geophysical Prospecting, 61(2), 254–269. https://doi.org/10.1111/1365-2478.12027

Nakatsuka, Y., Xue, Z., Garcia, H., & Matsuoka, T. (2010). Experimental study on CO2 monitoring and quantification of stored CO2 in
saline formations using resistivity measurements. International Journal of Greenhouse Gas Control, 4(2), 209–216. http://doi.org/
10.1016/j.ijggc.2010.01.001

Nooraiepour, M., Bohloli, B., Park, J., Sauvin, G., Skurtveit, E., & Mondol, N. H. (2018). Effect of brine‐CO2 fracture flow on velocity and
electrical resistivity of naturally fractured tight sandstones. Geophysics, 83(1), WA37–WA48. https://doi.org/10.1190/geo2017-0077.1

North, L., Best, A. I., Sothcott, J., & MacGregor, L. (2013). Laboratory determination of the full electrical resistivity tensor of heterogeneous
carbonate rocks at elevated pressures. Geophysical Prospecting, 61(2), 458–470. https://doi.org/10.1111/j.1365-2478.2012.01113.x

10.1029/2020GL088439Geophysical Research Letters

FALCON‐SUAREZ ET AL. 9 of 10

 19448007, 2020, 16, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020G

L
088439 by U

niversidade D
e L

a C
oruña, W

iley O
nline L

ibrary on [08/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://doi.org/10.1016/j.ijggc.2013.04.016
http://doi.org/10.1016/j.ijggc.2013.04.016
https://doi.org/10.1046/j.1365-2478.2003.00384.x
https://doi.org/10.1002/2014JB011376
https://doi.org/10.1016/j.petrol.2014.07.023
http://doi.org/10.1016/j.ijggc.2016.06.001
https://doi.org/10.1190/1.1440938
https://doi.org/10.1190/1.1443767
https://doi.org/10.1016/j.ijggc.2017.06.019
http://doi.org/10.1111/1365-2478.12396
https://doi.org/10.1016/j.ijggc.2017.11.019
https://doi.org/10.1111/1365-2478.12699
https://doi.org/10.1029/2005JB004005
http://doi.org/10.1016/j.ijggc.2009.09.015
http://doi.org/10.1016/j.epsl.2015.07.044
http://doi.org/10.1029/2009JB006939
https://doi.org/10.1016/j.ijggc.2009.10.016
https://doi.org/10.1093/gji/ggy399
https://doi.org/10.1029/GL017i010p01529
https://doi.org/10.1111/1365-2478.12505
http://doi.org/10.1016/j.ijggc.2015.04.006
https://doi.org/10.1016/j.pepi.2009.06.001
https://doi.org/10.1016/j.pepi.2009.06.001
https://doi.org/10.1144/gsl.sp.1992.065.01.22
http://doi.org/10.1016/j.ijggc.2009.12.011
https://doi.org/10.1111/1365-2478.12181
https://doi.org/10.1016/j.petrol.2019.106551
https://doi.org/10.1029/JB089iB13p11549
https://doi.org/10.1111/1365-2478.12027
http://doi.org/10.1016/j.ijggc.2010.01.001
http://doi.org/10.1016/j.ijggc.2010.01.001
https://doi.org/10.1190/geo2017-0077.1
https://doi.org/10.1111/j.1365-2478.2012.01113.x


Papageorgiou, G., & Chapman, M. (2017). Wave‐propagation in rocks saturated by two immiscible fluids. Geophysical Journal
International, 209(3), 1761–1767. https://doi.org/10.1093/gji/ggx128

Papageorgiou, G., Falcon‐Suarez, I., Chapman, M., & Best, A. (2018). Pressure‐varying CO2 distribution affects the ultrasonic velocities of
synthetic sandstones. International Journal of Greenhouse Gas Control, 74, 1–8. https://doi.org/10.1016/j.ijggc.2018.03.022

Rathore, J. S., Fjaer, E., Holt, R. M., & Renlie, L. (1995). P‐ and S‐wave anisotropy of a synthetic sandstone with controlled crack geometry.
Geophysical Prospecting, 43(6), 711–728. https://doi.org/10.1111/j.1365-2478.1995.tb00276.x

Rutqvist, J. (2012). The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical and Geological Engineering, 30(3),
525–551. http://doi.org/10.1007/s10706-011-9491-0

Suman, R. J., & Knight, R. J. (1997). Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks—A
network study. Geophysics, 62(4), 1151–1162. https://doi.org/10.1190/1.1444216

Szewczyk, D., Holt, R. M., & Bauer, A. (2018). The impact of saturation on seismic dispersion in shales—Laboratory measurements.
Geophysics, 83(1), MR15–MR34. https://doi.org/10.1190/geo2017-0169.1

Tillotson, P., Chapman, M., Best, A. I., Sothcott, J., McCann, C., Shangxu, W., & Li, X.‐Y. (2011). Observations of fluid‐dependent shear‐
wave splitting in synthetic porous rocks with aligned penny‐shaped fractures. Geophysical Prospecting, 59(1), 111–119. https://doi.org/
10.1111/j.1365-2478.2010.00903.x

Tillotson, P., Sothcott, J., Best, A. I., Chapman, M., & Li, X.‐Y. (2012). Experimental verification of the fracture density and shear‐wave
splitting relationship using synthetic silica cemented sandstones with a controlled fracture geometry. Geophysical Prospecting, 60(3),
516–525. https://doi.org/10.1111/j.1365-2478.2011.01021.x

Velcin, H., Dautriat, J., Sarout, J., Esteban, L., & Godel, B. (2020). Experimental reactivation of shear‐fractured Berea and Boise sandstones
by brine or liquid CO2 injection at depth. Journal of Geophysical Research: Solid Earth, 125, e2019JB018281. http://doi.org/10.1029/
2019JB018281

Vialle, S., Contraires, S., Zinzsner, B., Clavaud, J.‐B., Mahiouz, K., Zuddas, P., & Zamora, M. (2014). Percolation of CO2‐rich fluids in a
limestone sample: Evolution of hydraulic, electrical, chemical, and structural properties. Journal of Geophysical Research: Solid Earth,
119, 2828–2847. https://doi.org/10.1002/2013JB010656

Vialle, S., & Vanorio, T. (2011). Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2‐saturated
water. Geophysical Research Letters, 38, L01302. http://doi.org/10.1029/2010GL045606

White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2), 224–232. https://doi.
org/10.1190/1.1440520

Winkler, K. W., & Plona, T. J. (1982). Technique for measuring ultrasonic velocity and attenuation spectra in rocks under pressure. Journal
of Geophysical Research, 87(B13), 10,776–10,780. https://doi.org/10.1029/JB087iB13p10776

Yin, C. S., Batzle, M. L., & Smith, B. J. (1992). Effects of partial liquid/gas saturation on extensional wave attenuation in Berea sandstone.
Geophysical Research Letters, 19(13), 1399–1402. https://doi.org/10.1029/92GL01159

Zhou, D., & Stenby, E. H. (1997). A percolation study of wettability effect on the electrical properties of reservior rocks. Transport in Porous
Media, 29(1), 85–98. https://doi.org/10.1023/A:1006598111378

10.1029/2020GL088439Geophysical Research Letters

FALCON‐SUAREZ ET AL. 10 of 10

 19448007, 2020, 16, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020G

L
088439 by U

niversidade D
e L

a C
oruña, W

iley O
nline L

ibrary on [08/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1093/gji/ggx128
https://doi.org/10.1016/j.ijggc.2018.03.022
https://doi.org/10.1111/j.1365-2478.1995.tb00276.x
http://doi.org/10.1007/s10706-011-9491-0
https://doi.org/10.1190/1.1444216
https://doi.org/10.1190/geo2017-0169.1
https://doi.org/10.1111/j.1365-2478.2010.00903.x
https://doi.org/10.1111/j.1365-2478.2010.00903.x
https://doi.org/10.1111/j.1365-2478.2011.01021.x
http://doi.org/10.1029/2019JB018281
http://doi.org/10.1029/2019JB018281
https://doi.org/10.1002/2013JB010656
http://doi.org/10.1029/2010GL045606
https://doi.org/10.1190/1.1440520
https://doi.org/10.1190/1.1440520
https://doi.org/10.1029/JB087iB13p10776
https://doi.org/10.1029/92GL01159
https://doi.org/10.1023/A:1006598111378


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


