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Abstract—Nowadays, Diabetic Macular Edema (DME) is one
of the leading causes of blindness in developed countries, and its
characterized by the presence of pathological fluid accumulations
inside the retinal layers. Currently, the main way to detect
these fluid accumulations (as well as their severity) is through
the use of Optical Coherence Tomography (OCT) imaging. In
particular, this ophthalmological image modality allows a precise
non-invasive analysis of the morphology of the retina and its
structures.

Due to the complexity of attempting to successfully segment
these fluid accumulations, an alternative paradigm for their
detection has been recently proposed. This paradigm, based on
a diffuse representation of the pathological regions, creates an
intuitive representation of the pathological regions based on a
confidence map.

Currently, there are only two approaches for this paradigm:
one based on a predefined library of texture and intensity features
with established machine learning algorithms and other based
on deep learning methods. Both approaches have proven to offer
satisfactory results, but each one of them performs better in
different scenarios.

In this work, we perform a complete analysis and comparison
on the behaviour and performance of both strategies in a clinical
screening scenario to evaluate the suitability of both approaches
for the clinical practice as well as their performance as computer
vision strategies.

I. INTRODUCTION

Diabetic Macular Edema (DME) is characterized by the
pathological accumulation of fluid in the internal layers of the
retina. These accumulations progressively form cystoid bodies
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that destroy the morphology of the retina. If left unchecked,
they may derive in a problematic vision loss and, eventually,
irreversible blindness [1]. This pathology, direct consequence
of the diabetes mellitus, represents one of the main causes of
blindness in developed countries [2].

To effectively diagnose this pathology, Optical Coherence
Tomography (OCT) scans are commonly used [3]. This medical
image modality allows to obtain a non-invasive representation
of the retinal tissues [4]. Thanks to this capture technique, a
diagnosis of the severity of the damage, treatment and possible
clinical follow-up can be established. However, factors like
the capture conditions and the subjectivity of the expert in the
image analysis greatly affect the diagnosis and this posterior
follow-up. For this reason, over the recent years, Computer-
Aided Diagnosis (CAD) methodologies emerged to palliate
these complications and help the clinicians to satisfactorily
study the disease condition and progression.

Currently, in the context of intraretinal fluid accumulation
identification methodologies, there are two complementary
paradigms. The first paradigm aims to obtain a precise segmen-
tation of the fluid accumulations. For this precise segmentation,
works have been developed that use both classical computer
vision techniques (like in the works of Wilkins et al. [5] with
a thresholding and posterior rule-based filtering, Xu et al. [6]
with a voxel classification or Girish et al. with a watershed
transform and more advanced deep learning approaches (most
of them based on the U-Net architecture [7] or networks derived
from it, like in the works of Roy et al. [8], Chen et al. [9] and
Lu et al. [10], this last one with a multiclass approach).

However, since this paradigm relies on a precise detection of
the limits of the fluid accumulations, it suffers in cases where
these accumulations do not have defined edges (situations that
are frequent in this issue). For this reason, a paradigm based on
a regional analysis and diffuse representation of the detections
was proposed by Vidal et al. [11], using both classical [12]
as well as deep learning approaches [13] to that aim. While
both approaches have proven its applicability and robustness in
a clinical environment over a precise segmentation approach,



given the diffuse nature of the representations, it is difficult
to establish differences beyond mere visual inspection. Both
approaches present satisfactory results, but excel in different
fields.

Nowadays, it is critical to explain the behaviour of automatic
diagnostic support systems for an actual implementation in
clinical practice. Thus, in this work, we perform a detailed
analysis on the behaviour of both approaches to this paradigm
by simulating a complete medical screening scenario, being
able to test the real capabilities of both strategies.

II. INTRARETINAL FLUID IDENTIFICATION AND
CONFIDENCE MAP GENERATION

Fig. 1. Methodological steps for each of the approaches.

In Figure 1 we can graphically see the involved steps of
both analyzed approaches. To create the confidence maps, both
divide the retinal region into heavily overlapping samples of a
fixed size, classify them, and calculate the probabilities of each
pixel of belonging to a fluid region using the classification
results and a voting strategy (finding, this way, an estimate
of the confidence in the system for a pixel of belonging to a
pathological fluid region).

A. Classical learning-based approach

This approach [11] requires a complete and heterogeneous set
of 312 features, including intensity and texture characteristics.
Thus, mainly characterized by extracting, before training, a
complete set of characteristics from all the available datasets.
From this matrix of a considerable size, a feature selection
analysis is carried out by means of different complementary
strategies, thus extracting those which provide more information
to the subsequent discriminating system. Finally, the system
is trained with this subset of characteristics in a progressively
incremental way. This progressive and incremental analysis
allows us to study in more detail the contribution of each of the
characteristics, and to find the point where the improvement
differential is insignificant (thus simplifying the model to the
maximum and allowing a greater capacity of generalization).

B. Deep learning-based approach

As shown in Figure 1, this approach [13] follows the
same map generation strategy, but it does not need any
feature definition, selection or extraction. It directly trains a
densely connected convolutional neural network [14] to classify
the retinal region samples into pathological or not, greatly
simplifying the training process and promoting its sensitivity
and generalisation capability.

III. PERFORMANCE AND COMPARATIVE ANALYSIS

To compare both approaches, given that both are intended
for the clinical environment, we designed a medical screening
experiment similar to those that the system could be subjected
to during its use in clinical practice routine. In particular,
the objective of this experiment is to classify an image as
clinically relevant or not, evaluating two factors in the maps:
the confidence threshold from which we consider a detection
as relevant and the area occupied by this regional confidence.
Since the images present different resolutions and micron-px
relationships, we opted for using a relative measure of the
occupied area of the intraretinal fluid accumulations. This
measurement is the proportion of area occupied by the fluid
accumulations identified by a methodology versus the total
identified retinal surface in the OCT scan (in px). This way,
we study the proportion of region of interest considered as
pathological, given a confidence threshold from which a pixel
is considered part of a fluid region. In this case, the confidence
is the value returned by a methodology for its positive class.

Therefore, in a range of [0, 1] of possible confidence values
present in the maps and a possible pathological area/region
of interest ratio range of [0, 1], a given image x is considered
pathological as:

F (x) =
|M(x) > Ct|
|ROI(x)|

> Rt (1)

where M(x) represents the confidence assigned to the pixels in
the ROI by the algorithms, ROI(x) a binary mask determining
which image pixels belong to the region of interest and Ct &
Rt the thresholds in a given iteration for the confidence and
pathological area ratio, respectively.

To evaluate the results of this clinical screening experiment
we used as metric the area under the ROC curve (AUC) that,
for a binary score classification, can be defined as:

AUC =
TP

TP+FN + FP
FP+TN

2
(2)

where TP indicate the True Positives, FN the False Negatives,
FP the False Positives and TN the True Negatives.

For these experiments, both deep learning-based and classical
approaches were trained using the same set of samples from
two of the most representative capture devices of reference: a
Cirrus Meditec HD-OCT from Carl Zeiss and a Spectralis OCT
confocal laser ophthalmoscope from Heidelberg Engineering.
From the OCT images of these devices, a total of 3,247 samples
where extracted and manually labeled by an expert, including



both healthy, fluid and other pathological regions. In both cases,
the samples were taken with a size of 61×61.

The screening experiment, on the other hand, was performed
using a total of 323 OCT images. These images were separated
into both pathologically relevant or not, considering clinically
relevant images with a significant accumulation of intraretinal
fluid (these being both severe fluid accumulations and dense
groups of small fluid accumulations) and not clinically relevant
OCT images with sparse small fluid accumulations or less [11].
In that sense, 92 Spectralis and 51 Cirrus OCT images were
deemed as clinically relevant and 131 Spectralis and 49 Cirrus
OCT images where deemed as not clinically relevant. All the
maps, for both approaches, were generated using an image
sampling configuration with an overlap of 55px.

In Figures 2 & 3, we can see the results of this experiment.
As global conclusion, we can see how both strategies present
a configuration where both classes can be easily separated,
considering that the images include the most complex cases
with small fluid accumulations. In the case of the classical
approach (Figure 2), this optimal separation of 0.9240 AUC
is achieved if we consider a positive case whenever any
region (proportion threshold higher than 0) surpasses a 50%
of confidence in the cystoid class. On the other hand, the deep
learning-based approach needs to include at least a 10% of
relative area marked as pathological with a confidence higher
than 20% to reach its optimal separation of 0.9436 AUC.
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Fig. 2. Results of the screening experiment for the classical learning-based
approach.

The fact that the classical system obtains its best results
from any detection with a confidence greater than 40-50% is a
clear sign that it is not excessively sensitive to these minuscule
cysts, and either detects them with little confidence (hence the
fact its best results are around the 50% threshold of confidence)
or directly does not detect them.

Considering this, the fact that the centre of mass of the
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Fig. 3. Results of the screening experiment for the deep learning-based
approach.

deep learning matrix is diverted to higher proportion and
lower confidence values is indicative that it is considerably
more sensitive and robust to smaller fluid accumulations
than the classical approach. In Figure 4, two representative
examples of this case are shown, where images with minuscule
fluid accumulations (deemed as non-clinically relevant) are
completely ignored by the classical learning approach, while
the deep learning one gives a mid-to-high confidence value to
even the smallest sign of intraretinal fluid.

Fig. 4. Examples of OCT images with minuscule and minor fluid accumu-
lations. The difference map shows in blue and red the areas where the deep
and classical approaches returned higher confidence values, respectively.

Related to this, if we study the behaviour of both approaches
in the point at which any detection is accepted whatever the
confidence and proportion of the detection, we observe that,
compared to the AUC obtained in the deep approach of 0.7028,
the classical approach offers results close to randomness (an
AUC of 0.5417). This implies that the approach based on
classical learning is presenting a greater number of false
detections in lower levels of confidence while, at the same time,
the deep learning-based method is more likely to only generate
detections where its connected component is over a significant



accumulation of fluid (thus, the FPs of the deep learning
approach are negligible, as they are only slight overextensions
of true detections).

Fig. 5. Examples of OCT images with diverse fluid accumulations and
complications. The difference map shows in blue and red the areas where the
deep and classical approaches returned higher confidence values, respectively.

Figure 5 shows two OCT images representing the aforemen-
tioned cases. The leftmost image shows a darkened pattern
product of the capturing process, while the rightmost image
includes another pathological structure in the retinal tissues.
In these examples, the classical approach shows FPs in these
darkened regions and other abnormal pathological non-fluid
structures, while the deep learning approach shows no detection
whatsoever correctly detecting only the fluid accumulations.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Confidence thresholds

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Pr
op

or
tio

n 
th
re
sh

ol
ds

-0.0245 -0.0210

-0.0469 -0.0210 -0.0175 -0.0035

-0.0616 -0.0042 -0.0035 -0.0140 0.0035 0.0070

-0.0638 -0.0182 0.0140 0.0070 0.0035 0.0070 0.0140 0.0035

-0.0589 0.0125 0.0063 0.0245 0.0210 0.0035 0.0105 0.0175 0.0035

0.0037 0.0258 0.0342 0.0412 0.0455 0.0385 0.0210 0.0140 0.0245 0.0105

0.0783 0.0503 0.0748 0.0832 0.0867 0.0559 0.0524 0.0280 0.0210 0.0245

0.1375 0.0468 0.0685 0.0895 0.0930 0.0972 0.1119 0.0979 0.0524 0.0210

0.1806 0.0300 0.0288 0.0448 0.0881 0.1112 0.1426 0.1084 0.0909 0.0699

0.1611 0.0056 -0.0472 -0.0617 -0.0526 -0.0434 -0.0274 -0.0065 0.0192 0.0415

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Di
ffe
re
nc
e 
(D

ee
p 
- C

la
ss

ic)

Fig. 6. Map of differences between the deep learning and classical approach
screening performances. A negative difference (white values) indicates the
configurations where the classic approach surpasses the deep learning one.

Finally, in Figure 6, we can observe how, as we increase
the proportion of considered area and the minimum necessary
confidence, it is the deep learning approximation the one that
obtains a better performance. However, at extreme confidence-
minimum proportion and higher proportion-minimum confi-

Fig. 7. Examples of OCT images with no fluid accumulations at all. These
images contain different structures (like vessels) that present similar features
with the studied fluid accumulations. The difference map shows in blue and red
the areas where the deep and classical approaches returned higher confidence
values, respectively.

dence threshold bands, it is the classical approach the one that
surpasses the deep learning methodology (represented in the
figure as white).

This implies that the deep learning approach presents a
smoother confidence transition than the classical learning
approach, the later resulting in more adjusted confidence levels
to the fluid accumulations. This does not necessarily imply
worse results. As mentioned before, these broader detections
of the deep approach tend to be connected to a component that
overlaps a fluid region, while the classical approach is more
prone to FPs. As shown in Figure 5, the approach based on deep
learning returns measurements significantly more widespread
than the approach based on classical learning, but only around
the fluid regions. Also, in this same figure, it can also be
observed how the maps generated with the support of deep
learning techniques are able to indicate with high confidence
some fluid regions that the classical approach does not.

In order to facilitate a thorough assessment, Figure 7, also
presents a comparison between two healthy cases, from lesser
to higher complexity regarding normal retinal patterns that
could be confused with pathological fluid bodies. In the image
on the left, we can see a simple case. In this image, there is
no accumulation of fluid whatsoever, and no detection was
made by any of the methodologies. That is, no complications
and no patterns are present that could be confused with a fluid
accumulation. In the same figure on the right, we can observe a
high presence of shadows with high contrast and with a higher
width. It is precisely in these patterns where a system based on
a window sampling strategy can fall short. A partial capture of
one of these regions can be easily mistaken for a pathological
fluid accumulation, thus resulting in FPs.

By observing how both strategies reacted to these different
cases, we can further understand what the Figure 6 was showing
us. If we look at that table, we see how the classical system
only begins to outperform the deep method from a certain



consideration of size (in this case, 0.5 times the size of the
region of interest), but closing in to the deep learning based
system as we increase the size of the region considered as
pathological. The same way, it is shown how the confidence
threshold necessary for the classical method to surpass the
deep method is very low (20% of confidence).

Having this in mind along with previous section consider-
ations, we can understand the behavior of the system (that
is, apparently, paradoxical) observed in Figures 5 and 7.
The classical system presents a much higher sensitivity than
the system based on deep learning, and returns detections
even with the slightest “suspicion” that the pattern could
belong to an accumulation of pathological fluid. However, the
classical method is completely blind to patterns smaller than a
certain sample size. This is because the texture characteristics
were designed and optimized for a dataset with larger fluid
accumulations, so small patterns (such as those present in the
microcysts in Figure 4) go completely unnoticed. On the other
hand, larger patterns (such as those seen in Figures 5 and 7) are
detected from the point of view of the texture characteristics
extracted and selected by the system. Thus, while smaller
texture patterns go unnoticed (since the system is blind to
them and perceives them as normal layer patterns), the system
returns detections to the minimum signal of similarity with a
pathological body if its size is large enough to overcome that
“blindness threshold”.

It is interesting to note the inherent separation of the size of
the cysts made by the system, since in the clinical literature
these cysts are treated as a separate case from the DME disease.
Microcystic Macular Edema (as are called these smaller fluid
accumulations) is not only the precursor of larger accumulations
of pathological fluid byproduct of diabetes and age-related
macular degeneration [15] but, depending on their location in
the layers of the retina, it can also be an indicator of other
pathologies such as multiple sclerosis [16], [17]. Therefore,
and taking into account the inherent separation that the system
has made per se (thus, suggesting that there are features in the
image that clearly separate both types of fluid accumulations), it
is an indicator that an independent study of characteristics that
helps to identify MME fluid accumulations is both desirable
and necessary.

This “blindness threshold” issue is represented in the
examples presented in Figure 8, in which we see how, in spite
of having an accumulation of smaller cysts, the system returns
only a slight detection in the classic methodology. However, if
we examine closer the detection patterns of the classic strategy
in this figure, we can see that it is not really detecting fluid
accumulations: the contrast pattern generated by the mixture
of sponge-like fluid (which has led to microcysts) has resulted
in the appearance of a bubble of relatively high contrast. Thus,
although we have a fluid accumulation with detection, it is
clear that the classical system is detecting the joint pattern of
multiple microcysts rather than the individual detection of each
one of them.

On the other hand, since the network used presents a
considerable size, it is capable of retaining discrimination

Fig. 8. Examples of small fluid accumulations where the classic methodology
barely makes a detection. The difference map shows in blue and red the areas
where the deep and classical approaches returned higher confidence values,
respectively.

potential, learning texture characteristics at different scales and
maintaining its effectiveness even with smaller fluid patterns.
Thus, despite the smaller fluid accumulations shown in Figures
4 and 8, all are marked with high confidence where the fluid
bodies are present.

IV. CONCLUSIONS

In this work, we performed a study and exhaustive analysis
between three approaches designed for the detection of in-
traretinal fluid to measure the suitability and capabilities in this
complex issue. Due to the importance of the pathology (being
one of the main causes of blindness in developed countries)
and the relevance of an early diagnosis for the complete
and satisfactory recovery of patients, numerous segmentation
methodologies have emerged for its identification. However,
due to the complexity of detection and instance extraction, a
complementary paradigm to the classic segmentation has been
alternatively proposed: a detection based on an analysis of
overlapping regions and its supporting visualization strategy.

Currently, there are two main strategies employed for the
application of this algorithm: one based on a complex analysis
of texture characteristics, intensity, relevance ranking; and
other based on the same sampling algorithm; but replacing
the analysis of characteristics and classification by a deep
convolutional network, thus bypassing the necessity of a
predefined feature library and configurations.

To analyze these methodologies, since both systems are
based on a non-segmentation paradigm, we have designed an
adapted screening test. This test analyzes all possible fluid
accumulations and system responses. Thanks to this analysis
methodology we can study in a comprehensive way the behavior
of the systems and evaluate their contribution to the clinical
domain: their explanability.

Overall, the experiments indicated that the deep learning-
based approach obtained higher global results (0.9436 AUC
of the deep approach compared to the 0.9240 AUC of the
classical approach). However, the behavioural analysis shows



that there are cases in which the use of one approach or another
is desirable, depending on the goal of the search.

From what we have been able to observe, the core based
on a deep learning strategy presents greater sensitivity to any
type of fluid in the retina, returning a high level of confidence
even in the smallest fluid accumulations at the cost of lower
specificity, slightly extending the detections (but only around
the correct true positive regions with fluid).

On the other hand, the system with the core based on
an exhaustive analysis of texture and intensity features and
machine learning techniques already predominant in the domain
has achieved a higher level of sensitivity, but only to fluid
accumulations that exceed a certain threshold of size. Also, the
limitation of having to use a predefined library of characteristics
is the main drawback of this approach, causing it to be partially
blind to patterns of a size smaller than what its point of view
allows. However, this behavior (as we have already seen in
the analysis of the results) is contemplated as a separate case
to DME by the clinical literature (the Microcystic Macular
Edema or MME), with its own characteristics, implications and
casuistry that should be analyzed independently. Additionally,
its predefined library allows this methodology to reach a
greater specificity in the cases of fluid that exceed that already
mentioned “threshold of blindness”, adjusting better to the
limits of pathological accumulations of fluid than its deep
learning based counterpart even versus the regularized deep
learning approach.

Finally, in reference to healthy cases, all systems are able to
satisfactorily distinguish regions with healthy tissue. However,
of the three studied strategies, the ones based on deep learning
are the ones that best distinguish these regions. The classical
learning-based approach suffers in healthy regions with high
contrast patterns of considerable size, returning low-confidence
detections in these perfectly healthy zones. Nonetheless, the
original deep learning approach only returns a detection in
healthy tissue if its connected component is also part of a
section with true pathological fluid. In other words, the original
deep learning strategy tends to expand true detections a bit
towards healthy tissue, but never returns a positive in an isolated
healthy region. Thus, never returning a true false positive, but
rather an overextension of a true positive. This implies that,
although all approaches return similar results from AUC, thanks
to our analysis, we can see that their behavior is noticeably
different.

The approach based on deep learning is the most interesting
for the clinical domain because of its independence from
a library of characteristics and its improved sensitivity in
terms of smaller detections. However, a solution involving
both approaches is recommended: as proven by this analysis,
no approach is strictly better than the other. They complement
each other.
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