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Abstract—Optical Coherence Tomography (OCT) is a medical
imaging modality that is currently the focus of many
advancements in the field of ophthalmology. It is widely used to
diagnose relevant diseases like Diabetic Macular Edema (DME)
or Age-related Macular Degeneration (AMD), both among the
principal causes of blindness. These diseases have in common the
presence of pathological cystoid fluid accumulations inside the
retinal layers that tear its tissues, hindering the correct vision of
the patient.

In the last years, several works proposed a variety of
methodologies to obtain a precise segmentation of these
fluid regions. However, many cystoid patterns present several
difficulties that harden significantly the process. In particular,
some of these cystoid bodies present diffuse limits, others are
deformed by shadows, appear mixed with other tissues and other
complex situations. To overcome these drawbacks, a regional
analysis has been proven to be reliable in these problematic
regions.

In this work, we propose the use of the DenseNet architecture
to perform this regional analysis instead of the classical machine
learning approaches, and use it to represent the pathological
identifications with an intuitive color map. We trained, validated
and tested the DenseNet neural network with a dataset composed
of 3247 samples labeled by an expert. They were extracted from
156 images taken with two of the principal OCT devices of
the domain. Then, this network was used to generate the color
map representations of the cystoid areas in the OCT images.
Our proposal achieved robust results in these regions, with a
satisfactory 97.48% ± 0.7611 mean test accuracy as well as a
mean AUC of 0.9961 ± 0.0029.
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gular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01;
and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.

I. INTRODUCTION

Optical Coherence Tomography (OCT) is a medical imaging
technique that is used to study the retina, offering a cross-
sectional visualization of its tissues and other relevant structures.
The study of the retina is of great importance, as it allows to
study and detect pathologies not only specific of the vision, but
also others of general impact as diabetes [1], [2], abnormalities
of the vascular system [3], [4] and also of the nervous system
[5], [6]. In this work, we focus on the detection of cystoid
fluid accumulations in these retinal tissues using OCT images,
as they are one of the main symptoms of two of the main
causes of blindness in developed countries: the Age-related
Macular Degeneration (AMD) and Diabetic Macular Edema
(DME) pathologies.

In both diseases, an early diagnosis is critical, as if their
presence is not early detected and treated, invasive procedures
may be the only possible solution. Thus, being OCT the
principal and wide-available medical imaging technique and
the relevance of the aforementioned pathologies, several works
have arisen proposing approaches for the detection of these
cystoid bodies. These methodologies intend to help the clinician
to better assess the pathology, trying to isolate the subjectivity
of the human expert from the analysis and diagnosis.

Most of the proposed automatic approaches followed the
same main strategy: preprocessing step, initial candidate
segmentation and posterior false positive (FP) filtering. As
reference, Wilkins et al. [7] presented a segmentation process
based on a binarization using an empirically set threshold and a
filtering of FPs based on properties as the size and the intensity
profiles of the candidates. The same way, González et al. [8]
proposed a methodology based on the watershed transform



to generate the initial candidate set, filtering these candidates
with texture-based features. And, similarly, Sahoo et al. [9]
proposed a methodology based on the k-means clustering to
generate the initial detection, but directly filtering the detected
candidates with a complex set of rules.

Being OCT an imaging technique that creates consecutive
sectional cuts of the retina (B-Scans), several works tried
also to take advantage of this feature to create the precise
segmentation of these cystoid bodies. An example of works
that use these 3D capabilities are the ones of Chen et al. [10]
or Montuoro et al. [11], both based on a 3D voxel classification
and posterior contour refinement process to generate a precise
3D segmentation of these fluid regions.

Finally, recent approaches have applied deep learning
techniques to create the precise segmentation of these cystoid
bodies. Some examples of that can be found in the work
of Lee et al. [12], using a Convolutional Neural Network
(CNN); Schlegl et al. [13] with a decoder-encoder architecture;
Gopinath and Sivaswamy [14] using a CNN with a posterior
clustering step to filter FPs; Venhuizen et al. [15], Tennakoon
et al. [16] and Girish et al. [17] with approaches based on
derivations of the U-Net model, a network architecture designed
in the context of medical imaging; and Roy et al. [18], with
a proposal of a new architecture called “ReLayNet”, to also
solve this retinal cystoid fluid segmentation issue.

All these works focused on the extraction of a precise
segmentation for these cystoid bodies, but not all these fluid
structures can be directly and clearly segmented. These fluid
leakages tend to be mixed with the normal tissues of the retina
(presenting diffuse borders). They can also be easily obscured
in the OCT images by vessel shadows or from other dense
structures in superior layers. Sometimes, they can even appear
in grouped colonies with interlaced, diffuse and ripped tissue
walls. An example of these complications can be seen in Figure
1, where two OCT images present clear cystoid regions but
their exact segmentation is undefined due to several of the
abnormalities mentioned before.

The works of de Moura et al. [19], [20], with a classical
learning approach, were the first ones to tackle the issue of
these irregular patterns. Instead of trying to find a precise
segmentation like the rest of works, they proposed the study of
classifying squared samples of a given size depending if they
contain cystoid fluid or not. For this, they studied and extracted
a significative number of intensity and texture descriptors from
the samples, performed a comprehensive feature analysis and
trained several classifiers.

This way of handling the images allowed the identification
of the cystoid regions even if they presented the
mentioned complications. Following this idea and using the
classical learning approach of feature extraction, selection
and classification, the methodology was evolved into a
complementary paradigm to the classical segmentation
approach by Vidal et al. [21], where it was improved and
expanded to create intuitive fluid region maps. These maps
proved to be able to create a robust representation of the cystoid
regions even in the aforementioned zones of the OCT images, as

they represent an abstraction of the fluid regions with different
values depending on the underlying image. Moreover, these
maps successfully create a representation of this information in
a way that is easy for the expert clinician to analyze, and that
could also be used to extract image features for the clinical
characterization of the pathology.

In this work, we present an alternative powerful and
simplified way of generating these maps. Instead of the
mentioned classical approach that needs a manual definition
of features that may be incomplete or suboptimal, a feature
study combined with selection algorithms and a battery of
trained models to find the proper classifier that is able to fit
the data, we propose the direct use of a CNN to the problem.
In particular, given its characteristics, we adapted to this issue
a densely connected convolutional network (DenseNet) [22].
Hence, the chosen architecture is robust to overfitting thanks
to its densely connected layers, as it implicitly creates its own
features that may not even been considered by the classical
approach, offering an extra of self-supervision thanks to the
shorter paths between individual layers. Moreover, all these
improvements could also result in a better final accuracy of
the system.

This paper is divided in three sections. In Section 2,
Methodology, we further explain the details of the procedure
followed in this work. Section 3, Results and Discussion,
presents the results of the experiments, as well as details the
precise configuration used for each of the steps. Finally, in
Section 4 Conclusions, we state the final thoughts and future
work lines.

II. METHODOLOGY

The methodology firstly reduces the region of interest
(ROI) of the input OCT image to the area between the
innermost and outermost retinal layers: the Inner Limiting
Membrane (ILM) and the Retinal Pigment Epithelium (RPE),
respectively. From this ROI, several samples were extracted by
an expert, belonging to both healthy and cystoid fluid samples.
These samples were used to train a recent densely connected
convolutional network (DenseNet) proposed by Huang et al.
[22]. Using this trained model, with the design of an image
sampling procedure, the target images are decomposed into
overlapping samples of a given size and classified into two
of the considered categories. Finally, using the results of this
classification step, an intuitive color map is created indicating
the certainty of the region of belonging to the cystoid fluid
class. In the subsequent sections we will further explain each
one of the steps.

A. Delimitation of the region of interest

As the cystoid fluid leakages can only appear inside the
retinal layers, we firstly extract the region of interest (ROI)
delimited by the ILM and RPE layers. By doing so, we are
also improving the results in two different ways: first of all,
we reduce as much as possible the area that the sampling
algorithm has to evaluate. Secondly, we reduce the number of
cases that the network needs to handle as above the ILM layer



Fig. 1. OCT images from the two different OCT devices presenting diffuse cystoid limits, shadows and other complications.

we find the vitreous humor, a fluid inside the eyeballs that
presents a very similar homogeneous pattern to the intraretinal
cystoid fluid in the OCT images. Also, under the RPE layer, we
can find the choroid region, a vascular layer that has circular
patterns and borders that are very similar to the ones present
in the target cystoid fluid regions.

To extract the ILM and RPE layers we used an approach
based in the proposal of Chiu et al. [23], [24]. It uses the
algorithm of Dijkstra [24] to find the minimum paths between
both sides of the OCT image, using the gradients as weights
paths that identify the target layers. In Figure 2, an example
of OCT image with these ROI-marking layers that were using
the algorithm is presented.

Fig. 2. Example of image with the relevant ILM and RPE layers extracted
from the Cirrus OCT capture device.

B. Dataset creation

Once the ROI is delimited between the two limiting retinal
layers, an expert extracted and labeled a battery of samples from
all the images of both studied devices. Some of these extracted
samples fell partially outside the ROI, as they were taken close
to the retinal limiting layers. To prevent the inclusion of these
extraretinal regions and patterns in the dataset, all these samples
were cropped. This way, only the maximum rectangular region
inside each sample that contained exclusively ROI region was
used.

C. Training of the densely connected convolutional network

Thanks to the increased connectivity between layers of the
used densely connected network, it offers a reduced risk of
overfitting to problems with smaller training test sizes. Thus,
we considered that it constitutes a suitable architecture to
support our proposal. In particular, this densely connected
network is arranged in dense blocks, where each layer is directly
connected to every other layer in a feed-forward fashion through
a composite function of a batch normalization, a rectified linear
unit and a 3×3 convolution.

In this work, we use a modification on the DenseNet-161
configuration, whose main characteristics are depicted in Table
I, where we adapted the classification layer to the problem we
are dealing with. In particular, the original layer was designed
to support up to 1000 classes from the ImageNet dataset, so
we reinitialized that same linear layer to output only the two
considered target classes.

To virtually increase the dataset size, the samples are
randomly flipped horizontally (as the same patterns may appear
naturally in any horizontal orientation depending on the afflicted
eye and position). Additionally, as the network shape is squared
and with a fixed size, we reshaped every sample to match
the input size of the network of 224×224. This way, even
the rectangular-shaped samples that are product of the ROI
subsample extraction can be classified by the network. The
dataset mean was also shifted to 0 and the standard deviation
to 1.

Finally, to train the network, we based our procedure
in the original work, using a Stochastic Gradient Descent
(SGD) approach with Nesterov’s accelerated gradient [25],
[26]. Finally, as loss function, we used the Cross Entropy Loss,
defined in Equation 1:

loss(x, class) = −log

(
exp(x[class])∑

j exp(x[j])

)
(1)

D. Image sampling and color map generation

To create the target color maps, we used a sampling algorithm
[21] that divides the biggest rectangular area that contains the
ROI into overlapping windows of a given size. As some of the
samples may partially fall outside the ROI, they are cropped
the same way we did with the original training dataset (an
example of this case can be seen in Figure 3). This way, we
ensure that only the ROI patterns are classified by the network.
Moreover, only samples centered in the retina are considered
valid as, when cropped, smaller sample sizes may deform too
much the information when they are resized to fit the input
layer of the network.

As mentioned, after this sampling step, the samples are
resized to fit the network input, normalized and classified using
the previously trained DenseNet model. Each classified sample
is used to vote over the region it overlapped in the original
image. This way, the more overlapping samples consider a
given region to be cystoid, the more confidence the color map
will show. As some limiting regions may be overlapped by
less samples than others, each pixel is normalized between 0



TABLE I
STRUCTURE OF THE DENSENET161-BASED NETWORK CONFIGURATION USED IN THIS WORK.

Layers Convolution Pooling Dense block Transition layer Dense block Transition layer Dense block Transition layer Dense block Classification layer

Output Size 112×112 56×56 56×56 56×56 28×28 28×28 28×28 14×14 14×14 14×14 7×7 7×7 1×1 -

Structure

7×7

Convolution

Stride 2

3×3

Maxpool

Stride 2

1× 1 conv

3× 3 conv

× 6
1×1

Convolution

2×2

Average

pool

Stride 2

1× 1 conv

3× 3 conv

× 12
1×1

Convolution

2×2

Average

pool

Stride 2

1× 1 conv

3× 3 conv

× 36
1×1

Convolution

2×2

Average

pool

Stride 2

1× 1 conv

3× 3 conv

× 24

7×7

Global

average

pool

Fully-connected

softmax

2 classes

Fig. 3. Example of an extracted sample from an OCT image that falls outside
the ROI (a) and the resulting cropped sample that will be used in the dataset
(b).

and 1 depending on the total of samples that overlapped that
given area. Finally, an intuitive color map is applied to the
resulting confidence map to facilitate a better understanding
of the results.

III. RESULTS AND DISCUSSION

The training of the system was performed with 61×61
samples that were extracted from two representative
ophthalmological capture devices: a CIRRUS HD-OCT Carl
Zeiss Meditec confocal scanning laser ophthalmoscope and a
Spectralis OCT confocal scanning laser ophthalmoscope from
Heidelberg Engineering. All the samples were extracted from
OCT images centered in the macula by an expert, trying to
include representative samples from both pathological and
non-pathological regions. These samples were extracted from
different patients and also from both left and right eyes. From
the Cirrus device, a total of 1613 samples from 83 OCT
histological images were considered, 806 belonging to fluid
regions and 807 from non-fluid ones. On the other hand, from
the Spectralis device, 1634 samples from 73 OCT histological
images were considered, 778 fluid-containing samples and 856
from non-fluid regions.

The dataset was divided into 3 subsets: 50% of the samples
were randomly selected from the total to train the network,
30% of the samples were randomly selected for the validation
step and the remaining 20% of samples were reserved to test
the final trained model with a subset of unbiased samples.

For the training of the DenseNet model, an initial learning
rate of 0.01 and a momentum of 0.9 were empirically defined
as the starting conditions. Moreover, as previous tests showed
that this learning rate may overfit the network in long runs, the
learning rate during the training step was decreased by a factor
of 3 if the validation loss did not improve over 10 epochs.

As stopping criterion, instead of defining a fixed number
of epochs, we established an early-stopping rule. This rule
automatically stops the training of the network after 15 epochs
if no further improvement in the validation loss was achieved.
After the training step, the model that obtained the best
validation accuracy is the one that is afterwards used to generate
the intuitive color maps.
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Fig. 4. Mean training and validation accuracy after 50 independent randomly-
distributed experiments.

To correctly assess the feasibility of the problem, the
experiments were repeated, following the previous criteria, 50
times. In Figure 4, we can see the result of these experiments
over all the epochs. As seen in this figure, around epochs 60
- 70 the training reaches stability and the difference between
models is not significant, as even the standard deviation of
the accuracy from the epoch 70 to the last epoch is only
of 0.23 in training and 0.34 in validation. This way, these
experiments reach a final mean test accuracy of 97.48% ±
0.7611 as well as an AUC of 0.9961 ± 0.0029. This stagnation
can be further seen in Figure 5, where the first epochs show
a significant variance compared to the more stable section
after the aforementioned epochs. Moreover, it outperforms the
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Fig. 5. Mean training and validation loss after 50 independent randomly-
distributed experiments. A logarithmic scale has been set to correctly display
the loss values for a better understanding of the results.

original approach of Vidal et al. [21], that used the same OCT
image dataset and reached a 94.01% of accuracy with classical
machine learning techniques.

TABLE II
RESULTING CONFUSION MATRIX FROM THE TEST SUBSET OF SAMPLES AND

THE FINAL TRAINED NETWORK.

Expert label

Positive Negative Total

Predicted
Positive 313 8 321

Negative 9 320 329

Total 322 328 650

To further demonstrate the capabilities of the methodology,
a model has been chosen randomly from these experiments.
This model achieved a test accuracy of 97.38% with an AUC
of 0.9935, and its confusion matrix with the test dataset is
shown in Table II. As seen in this matrix, the sensitivity and
specificity of the system is well balanced, not favoring neither
the pathological nor the healthy classes.

By examining the unbiased test samples of this model, we
can further understand the behavior of the net, in particular
the patterns that where learned by the network. First of all,
Figure 6 presents representative samples with different cystoid
bodies that were correctly detected by the network. We can
see how the network is able to successfully detect regions
with diffuse borders, cystoid bodies with similar size to the
used window, fluid bodies that are present in poor quality
OCT images, fluid regions of small size closely agglomerated
(even with diffuse borders themselves) and mixed with other
pathological structures like the hyperreflective exudates that
tend to neighbor the fluid structures faced in this work.

Fig. 6. Examples of correctly classified positive test samples extracted from
images of both devices.

Fig. 7. Examples of correctly classified negative test samples extracted from
images of both devices.

On the other hand, the significant robustness of the system
is emphasized with scenarios as the ones of Figure 7. In this
figure, we can check how the trained network was clearly able
to distinguish between exudates mixed with pathological fluid
(as shown in Figure 6) and exudates that cast a shadow due to
the nature of the imaging technique and their higher density.
Moreover, other dark structures like darkened (without any
fluid presence) retinal layers, shadows with the source outside
the sample window and dark-to-light contrasts that tend to
confuse other approaches are successfully classified into the
correct class by the proposed method.

Fig. 8. Examples of test samples incorrectly classified as positives (1st row)
and test samples incorrectly classified as negatives (2nd row).

Finally, Figure 8 presents some representative examples
where the system failed to correctly assess the class of the
test sample. In the FPs presented in Figure 8, 1st row, we
can distinguish two types of behaviors. The system deemed
as negative some cases where the internal fluid covered the



entire sample, as well as samples where the tissues presented a
pattern very similar to the ones in the borders of the problematic
cysts. The dark homogeneous pattern is commonly found in
the foveal region of the images taken with the Cirrus device
(an example of this foveal pattern can be seen in Figure 2,
where the foveal region presents a very similar texture to
the eyeball internal fluid: the mentioned vitreous humor) so,
without further information about the surrounding structures,
the network considered the pathological case as the most
probable (which, considering we are talking about the medical
field, is the most logical option in case of doubt). Also, this
represents a reasonable decision, as even the expert opinion
could reach this conclusion with the information contained in
the analyzed sample.

Finally, regarding the false negatives (FN) of Figure 8, 2nd

row, the system presents some confusion when cysts presents
smaller sizes (called microcysts or pseudocysts) and are mixed
with darker retinal tissues. Probably, due to the size of these
cystoid structures and the rarity of the case, the dataset includes
an smaller set of representative samples to satisfy the network
training.

With all the information above, it is shown that the main
disadvantage of the system is suffering from its lack of
information from adjacent windows. Nonetheless, using the
methodology for the color map creation, this problem is
palliated by a voting system between overlapping adjacent
samples. In Figures 9 and 10, some examples of color maps
with different levels of complexity are shown from both Cirrus
and Spectralis capture devices, respectively. In the 1st row of
both figures, an OCT image without any kind of cystoid fluid is
also represented with satisfactory results. On the other hand, the
2nd row presents a case with different complications mixed with
the cystoid bodies. Both images present clear cystoid bodies
where part of their structure is mixed with normal retinal
tissues and shadows cast by other structures. Additionally, the
Spectralis image (Figure 9, 2nd row) presents other dense bodies
that could affect the detection, but the system correctly shows
the cystoid regions even in these unclear zones and correctly
skips the other dense pathological bodies.

Figure 8, 3rd row, presents an image example from each
device including nearby groups of cystoid bodies. The Cirrus
map is specially interesting, as these cystoid bodies are very
dim and difficult to analyze for both the expert and the network
(as can be seen in the FNs of Figure 8). This image shows the
benefits of the voting system, compensating the information
deficiency of a single sample, as even the two dim small
cystoid structures are detected with a sensible confidence by
the methodology.

IV. CONCLUSIONS

The OCT imaging modality has proven to be one of the most
reliable means of analyzing and helping to the early diagnosis
of pathologies like the Age-related Macular Degeneration and
Diabetic Macular Edema, both diseases among the main causes
of blindness in developed countries. The intraretinal fluid
accumulation that characterizes these diseases was mainly faced

by different proposals with direct and specific segmentation
approaches. Despite that many fluid regions can be correctly
segmented, many others present significant drawbacks for these
proposals. In particular, several of the fluid bodies in the retina
present diffuse contours, appear mixed with other pathological
structures or are corrupted in the OCT image due to shadows
and other darkened structures by the nature of the technique.
To overcome these complications, an alternative paradigm to
the segmentation approach was also recently proposed based
on a regional analysis and a color map representation of these
cystoid fluid bodies. Moreover, this way of representing the
cystoid regions allowed the clinicians to analyze the problematic
cases of the precise segmentation approach too.

This alternative paradigm mitigates these limitations by
generating a confidence map instead of a segmentation
by means of an intensive sampling of the image and a
voting system. Additionally, this paradigm could be easily
adapted to other pathologies and medical imaging modalities,
as the ground truth is represented by a reduced set of
representative samples and there is no need for a complete
precise segmentation (if was even possible in the first place).

This alternative paradigm demonstrated its viability and
suitability being previously faced by a classical learning
approach, which implied the necessity of a manually defined
large set of features that had to be filtered using feature selection
techniques. After this feature ranking, several models had to be
trained and tested to find the optimal number of features and
parameters that better represented the defined problem. Finally,
a valid model would be obtained and used in the map creation
step.

In contrast, by using Deep Learning techniques, there is no
need for this analysis of relevant features, feature selection
and model training/testing to find the optimal subset of
features whatsoever. Instead, the own network training process
and weight adjusting performs all these processes implicitly,
simplifying the entire approach. Moreover, the used network
architecture offers extra robustness to overfitting with small
datasets, being able to create its own features that may not been
considered by the manually defined set. These advantages not
only reduce the complexity of the training and map generation
processes, but also sensibly improve the final results.

To train and validate the methodology, we used a dataset
composed by 156 OCT images from two representative
ophthalmological devices: a CIRRUS HD-OCT Carl Zeiss
Meditec confocal scanning laser ophthalmoscope and a
Spectralis OCT confocal scanning laser ophthalmoscope from
Heidelberg Engineering. From this dataset, 3247 squared
windows were marked and extracted by an expert into fluid
or non-fluid samples. To further study the capabilities of the
proposed approach, we trained 50 DenseNet networks randomly
dividing the dataset into 50% for training, 30% for validation
and the remaining 20% for testing. These experiments proved
that the network was suitable for this issue and that was
correctly adapted to this task, achieving a mean test accuracy
of 97.48% ± 0.7611 and a mean area under the ROC curve
of 0.9961 ± 0.0029. Furthermore, a coherent analysis on the



(a) (b)

Fig. 9. Examples of color maps that were generated with images coming from the CIRRUS device (b) with their respective original image (a).

(a) (b)

Fig. 10. Examples of color maps that weregenerated with images coming from the SPECTRALIS device (b) with their respective original image (a).

different cases that the network may encounter was conducted,
using a network from the previous experiments that was chosen
at random. The test samples and color maps showed that
the system was able to satisfactorily classify the pathological
cystoid regions, independently of the presence of another
pathologies or complications caused by the OCT technique
itself.

Additionally, the intuitive color map generation process
implicitly integrates information about the neighboring patterns
to each classification through the voting system. Thus, each
detected zone is generated with a compendium of information
coming from the neighboring regions. This means that, even
if some misclassifications occur, they present a negligible
confidence value, being barely represented in the final map.
So, this methodology not only offers robustness in areas where

the cystoid bodies are mixed with other retinal patterns and
tissues, but also to its own misclassifications. For this reason,
we consider the proposed system as an appropriate approach
to be used in the medical field, helping the clinicians in the
early detection and assessment of the severity of the considered
pathologies.

As future work, we plan to expand this methodology to
different types of pathological structures that are also present
in the retina, as well as the design of several biomarkers that can
be extracted from these maps that could help in the assessment
of the studied pathologies. Finally, an study on possible kernels
for the voting process and window sizes is interesting to further
diminish the influence of the limited “field of view” of the
network when classifying the samples.
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[8] A. González, B. Remeseiro, M. Ortega, M. Penedo, and P. Charlón,
“Automatic cyst detection in OCT retinal images combining region
flooding and texture analysis,” IEEE Int. Symp. on Computer-Based
Medical Systems, pp. 397–400, 2013.

[9] M. Sahoo, S. Pal, and M. Mitra, “Automatic segmentation of accumulated
fluid inside the retinal layers from optical coherence tomography images,”
Measurement, vol. 101, pp. 138 – 144, 2017.

[10] X. Chen, M. Niemeijer, L. Zhang, K. Lee, M. D. Abramoff, and M. Sonka,
“Three-dimensional segmentation of fluid-associated abnormalities in
retinal oct: Probability constrained graph-search-graph-cut,” IEEE
Transactions on Medical Imaging, vol. 31, no. 8, pp. 1521–1531, Aug
2012.

[11] A. Montuoro, S. M. Waldstein, B. S. Gerendas, U. Schmidt-Erfurth, and
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