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Abstract. In the recent COVID-19 outbreak, chest X-rays were the main
tool for diagnosing and monitoring the pathology. To prevent further
spread of this disease, special circuits had to be implemented in the
healthcare services. For this reason, these chest X-rays were captured with
portable X-ray devices that compensate its lower quality and limitations
with more deployment flexibility. However, most of the proposed computer-
aided diagnosis methodologies were designed to work with traditional
fixed X-ray machines and their performance is diminished when faced
with these portable images. Additionally, given that the equipment needed
to properly treat the disease (such as for life support and monitoring
of vital signs) most of these systems learnt to identify these artifacts in
the images instead of real clinically-significant variables. In this work, we
present the first methodology forced to extract features exclusively form
the pulmonary region of interest specially designed to work with these
difficult portable images. Additionally, we generate a class activation map
so the methodology also provides explainability to the results returned
to the clinician. To ensure the robustness of our proposal, we tested
the methodology with chest radiographs from patients diagnosed with
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COVID-19, pathologies similar to COVID-19 (such as other types of viral
pneumonias) and healthy patients in different combinations with three
convolutional networks from the state of the art (for a total of 9 studied
scenarios). The experimentation confirms that our proposal is able to
separate COVID-19 cases, reaching a 94.7% ± 1.34% of accuracy.

Keywords: COVID-19 · Chest X-ray · CAD system · Class activation
map · Deep Learning · X-ray portable devices.

1 Introduction

Coronavirus COVID-19 disease is an affection that primarily impacts in the
pulmonary region [2], predominantly resulting in viral pneumonia. This results
in the appearance of pathological structures visible through chest X-rays and
other imaging techniques [19], present even in asymptomatic patients [4]. Amidst
the global COVID-19 pandemic of 2020, these chest radiographs were one of the
main means to diagnose the aforementioned pathology. For this reason, numerous
automatic computer-aided diagnosis (CAD) methodologies were developed, aimed
at reducing the subjectivity of the experts as well as the needed time and resources
[7, 14, 3]. These proposals were designed to work with images from either fixed
X-ray devices (which allow to obtain high-definition projection of the internal
tissues in different angles and depths) or CT devices (which generate a defined
single slice representation of the human body).

However, during medical emergencies and cross-contamination risk, the main
mean to diagnose lung diseases is by means of portable X-ray devices. These
devices do not require a special platform nor room, so they can be used in
dedicated circuits in hospitals and isolated areas (at the cost of lesser image
quality and limited angles with worse capture conditions)[10]. However, this lesser
image quality and limitations severely hinder the performance of methodologies
not tested for them. For this reason, contributions specially designed to work
with these portable devices were proposed, such as the work of Vidal et al. [20]
aimed at generating a segmentation of the pulmonary region, Moŕıs et al. [11, 12]
generating synthetic images to palliate the lack of samples in this issue, and de
Moura et al. [13] with the objective of performing a screening, separating normal
images from COVID-19 and from pathologies with COVID-19-like patterns. In
this last work (and in some works based on fixed devices [1]), they also generate
a gradient flow map so they can help the experts to assess what has the deep
learning model analyzed in the images.

These methodologies (as shown by the gradient flow maps generated by
the networks) were taking advantage of collateral information present in the
radiographs to generate their prediction. That is, for example, if foreign artifacts
commonly present in afflicted patients from certain diseases (such as respirators,
pacemakers, heart rate sensors, etc.) are shown in the radiographs, these networks
use this information to improve the metrics [16] and guess that an intubated
patient must be afflicted by some kind of pulmonary disease or at least be at
higher risk of being infected by the studied disease. While it is common for neural
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networks to take advantage of underlying statistical features commonly missed
by human experts, this implies that the system will perform worse with different
clinical protocols, stages of the pathology or even age groups as these artifacts
used to their advantage may change.

For this reason, we propose the first fully automatic methodology to remove
these factors by masking these extraneous artifacts and able to successfully work
with images from these portable X-ray devices. This way, we obtain a robust
methodology that only extracts information from the pulmonary region of interest,
resulting in a system that is able to work in any stage of the progression of
the patient and generate a prediction solely based on real clinical features. In
addition, we take advantage of this mechanism that forces the attention of the
network on the lung region to generate a representation that explains the results
to the clinician. Thus, the expert will not only be able to verify that the network
is obtaining the desired behavior, but may even discover factors overlooked by
the expert that can help determine a better treatment and assist in their future
monitoring. And, thanks to being able to work in these special scenarios with
portable X-ray devices, can be seamlessly implemented in healthcare circuits
specially designed to treat patients in a pandemic scenario. To the best of our
knowledge, this proposal represents the only study designed to work with these
portable devices able to extract information from exclusively the pulmonary
regions, perform a classification of the results between COVID-19, healthy and
similar pathologies to COVID-19, and generate an explainable representation of
these classifications.

2 Materials

To train, test and validate our methodology we used a specific dataset composed
by 2,071 radiographs from patients diagnosed with COVID-19, 716 from patients
diagnosed with non-COVID-19 pathologies (but with very similar features to it),
and 797 images from healthy patients. These images were acquired with an Agfa
dr100E GE and Optima Rx200 portable X-ray devices. All these images were
obtained by the Radiology Service of the Complexo Hospitalario Universidario
de A Coruña (CHUAC) during real live clinical practice. The images with non-
COVID-19 pathologies but with very similar patterns belong to types of viral
pneuomonias or bacterial infections that leave a comparable trace and damage on
the lungs of the afflicted. This is an specially interesting case, as the system need
to discern these images from the very similar belonging to COVID-19 patients
while also limited by the restrictions imposed by the portable X-ray devices. For
the sake of balancing the dataset between the three available types of images, 716
images were randomly selected from each set to compose the final used dataset.

3 Methodology

Our proposal is divided into two main steps presented in Fig. 1. In the first step,
we use an specially designed methodology to extract the lung region of interest
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from portable chest radiographs (Section 3.1). Once we have delimited this region
of interest, we mask the dataset and use it to train a convolutional neural network.
Finally, using this trained network, we extract the gradient flow to generate an
intuitive visualization of the relevant regions from the final classification (Section
3.2). This methodology will be followed with three different combinations of the
labels that are available in the dataset to further evaluate the capabilities of the
methodology and its behavior: Non-Healthy (COVID-19 + Pathologies similar
to COVID-19) versus Healthy, COVID-19 versus non-COVID-19 (Pathologies
similar to COVID-19 and Healthy), and every label as an independent class
(COVID-19 versus Pathological versus Healthy).

metho

COVID-19 Pathologies similar to COVID-19 Healthy
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Fig. 1. Workflow for each repetition during the training of the proposed methodology.

3.1 Region of interest extraction

To extract the region of interest we will use a methodology that is robust to the
artifacts and structures that are commonly present in portable chest radiographs.
In our case, we will use a proposal based on the work of Vidal et al. [20]. This
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methodology performs a double-stage transfer learning: in the first step, the
chosen network (in this case, an U-Net [15]) is adapted (via transfer learning)
from magnetic resonance imaging for brain glioma segmentation [5] to general-
purpose chest radiographs. Afterwards, the network undergoes a second transfer
learning stage, where the network is further refined to be able to work also with
radiographs extracted from portable devices (as well as with the pathologies
considered in this work). With this specially designed segmentation methodology,
we extract all the pulmonary regions of interest from the dataset. Finally, for each
of these images, we apply the Hadamard product (H) to filter-out all artifacts
not belonging to the lung area from the lower to the apical zone in the chest
radiographs. This way, we remove any external artifacts the network could use
to its advantage, artificially improving the metrics.

3.2 COVID-19 screening

In this second step, we will train three different networks for each of the case
studies considered in this work. Non-Healthy versus Healthy, COVID-19 versus
non-COVID-19, and every label as an independent class (COVID-19 versus
Pathological versus Healthy).

To train each of the networks, we will use the masked dataset of the pre-
vious step and three architectures from the state of the art: a ResNet18[8], a
Vgg19[18] and a DenseNet161[9]. Additionally, all these network architectures
were pretrained with the ImageNet dataset [6] to further speed up the training
and reduce the impact of the number of samples. Furthermore, to increase the
effective number of available samples, a data augmentation strategy was used by
randomly horizontally flipping and scaling the input lung radiographs. Finally,
the dataset is randomly shuffled and divided into three sets: 60% of the images to
be used for the training of the network, 20% for validation purposes of each epoch
of training, and the remaining 20% to test the performance and robustness of the
final models. Each model is set to be trained for a fixed number of 200 epochs,
empirically determined to be enough to reach an stability point where no further
improvements in the final metrics are achieved. From these 200 epochs, the model
that achieved the best validation loss in a given epoch is the one chosen from the
set. The models were trained using the cross-entropy as loss function, using as
optimizer the Stochastic Gradient Descent (SGD) with a constant learning rate
of 0.01 and a momentum of 0.9. Each network is trained independently and this
process is repeated five times for each model and case study mentioned above
in order to diminish the improbable selection bias and obtain more robust final
metrics.

Finally, as our proposal is designed to help the clinicians with their diagnostic
task, we extract the regions where the networks centered its attention. To do
so, we use gradient-weighted class activation mapping in the network [17]. This
strategy uses the gradient information flowing towards the last convolutional
layer to determine the relevance of each neuron towards the generation of the
classification, a generalization of Class Activation Mapping or CAM. This strategy
is commonly used to assess the robustness of the predictions of a network, as it
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allows to remove models that take advantage on circumstantial features instead
of actual relevant descriptors. However, once the models were verified to be valid,
the information generated by the network is also useful to the clinicians, as we
generate explainable results that can, even, help to discover new biomarkers
hitherto unconsidered or determine if some elements present in the image are
product of the quality of the X-ray images from portable devices / actual
pathological structures.

4 Results and discussion

Below we present the results that were obtained during the experimentation,
divided into results during the training (Section 4.1) and the metrics of the final
model and class activation maps (Section 4.2). In addition, within each section,
each of the three aforementioned cases of study will be discussed separately.

4.1 Training results

The results for the training of the models studying the case Healthy versus
Non-Healthy can be seen in Fig. 2. In this figure, we can see how this situation
represents the easiest for the model to learn, as the accuracy during the training
of all the three models quickly reached the maximum value. However, in this
case, we can also see how the training loss quickly falls down while the validation
loss stays on average on thee same height. We see how the system is training for
the initial variability, but quickly stabilises. This indicates that the issue at hand
might be too easy for the methodology and a variable learning rate should be
used. Because of this, we are perceiving slight traces of overfitting in the model
in the final epochs (albeit we will only keep the one with the best validation loss
nonetheless). This can also be seen in how the simpler architecture (Vgg19) is the
one who obtains best validation accuracy and loss from the three tested models.
This is normal given that healthy lungs do not present opacities, infiltrates and
dense tissues present in the studied afflicted lungs.

On the other hand, in the results of the training for the study case of COVID-
19 versus non-COVID-19 samples shown in Fig. 3, we can see how the results
are significantly different. We are evaluating a more difficult situation than in
the first scenario, and now the models present a more balanced progression
between training and validation. In this case, we see how both the training loss
and validation loss are proximal respective between the same model and no
predominant signs of overfitting (as well as for significantly improved accuracy
metrics during validation).

Finally, in Fig. 4 we can see the training and validation results for the case
study where we consider each class independently in the model targets. In this
case, we observe how all the models ended achieving an in-between compromise
between the same models in the two previous experiments. As we will analyze in
the following sections, the Healthy and the Pathological class probably present
some overlapping in certain scenarios that is being exacerbated by the quality
and limitations of the portable chest radiographs used in this work.
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Fig. 2. Accuracy and loss during training and validation of the models for the experiment
Healthy versus Non-Healhty.
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Fig. 3. Accuracy and loss during training and validation of the models for the experiment
non-COVID-19 versus COVID-19.
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4.2 Test results

The metrics for the first experiment (Healthy versus Non-Healthy) are shown in
Table 1. In this case, we can confirm what we saw in Fig. 2, where the Vgg19 model
is the one obtaining the best overall results. We can see how, in this case, the
simpler model is obtaining the best results of the experiment (albeit satisfactory
nonetheless in all scenarios). Additionally, we can see how the ResNet18 has
particularly high standard deviation in several metrics confirming what we stated
in the previous sections: the network has some traces of overfitting.

Table 1. Test results for the experiment evaluating healthy (H) versus pathological (P)
and COVID-19 (C) classes.

Architecture Accuracy Class Precision Recall F1-Score

Densenet161 87.2% ± 2.53%
H 85.0 % ± 2.76% 88.8% ± 4.58% 87.0% ± 3.33%

P+C 89.2% ± 2.89% 85.6% ± 1.62% 87.4% ± 1.85%

ResNet18 85.7% ± 1.63%
H 85.8% ± 3.71% 89.4% ± 4.80% 86.2% ± 1.94%

P+C 86.6% ± 4.18% 84.2% ± 4.40% 85.2% ± 1.47%

Vgg19 89.6% ± 1.29%
H 87.6% ± 1.74% 91.8% ± 1.72% 89.8% ± 1.47%

P+C 91.8% ± 1.83% 87.4% ± 1.36% 89.6% ± 1.29%

On the other hand, in the second experiment (COVID-19 versus non-COVID-
19) shown in Table 2 we see how the networks were able to obtain outstanding re-
sults. Moreover, in this case, we can highlight the performance of the DenseNet161
in terms of recall for the non-COVID-19 class and precision for the COVID-19
class. Additionally, we can observe how, like in the previous experiment, the
ResNet18 architecture stands out for its higher than average standard deviation.
Nonetheless, the DenseNet161 in this case would be the preferable model, as
it obtained the highest metrics even in the F1 Score that is resilient to the
unbalances of the dataset (unlike the accuracy, for example). Additionally, its
densely connected blocks that confer the network an extra layer of self-supervision
are preventing the network from falling into overfitting like the ResNet18.

Finally, in Table 3 we can see the results for the last experiment, where we
train the networks with all the classes independently. In this case, we can see how,
in all three networks the COVID-19 class stands out from the rest, being easily
distinguished from the rest. On the other hand, the precision of the healthy class
and the recall of the pathological class suffer a bit when separated. In this case,
we see how the pathological class and the healthy are intermixing results in some
cases. This may be due to the fact that some of the patients could have been
tested with an early onset stage of the diseases similar to COVID-19 that, in
conjunction with the difficulties imposed by the portable X-ray devices, present
very similar patterns to healthy images. This way, when these two classes are
separated (such as in this experiment and the first) they return mixed results.
For this reason, the desirable model in these cases is the ones generated in the
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Table 2. Test results for the experiment evaluating healthy (H) and pathological (P)
versus COVID-19 (C) classes.

Architecture Accuracy Class Precision Recall F1-Score

Densenet161 94.7% ± 1.34%
H+P 93.0% ± 1.10% 99.4% ± 0.8% 96.0% ± 1.10%
C 98.4% ± 2.24% 86.4% ± 2.42% 91.8% ± 1.94%

ResNet18 94.4% ± 1.06%
H+P 93.2% ± 1.47% 98.6% ± 1.74% 95.8% ± 0.75%
C 97.2% ± 3.49% 85.8% ± 3.76% 91.6% ± 2.94%

Vgg19 94.3% ± 1.43%
H+P 93.2% ± 1.17% 98.6% ± 1.36% 95.8% ± 1.17%
C 96.8% ± 2.79% 86.2% ± 1.33% 91.0% ± 1.67%

second experiment. In this experiment the pathological and the healthy classes
are combined and the confusing patterns, instead of penalizing the model, help
it to achieve outstanding better results.

Table 3. Test results for the experiment evaluating healthy (H) versus pathological (P)
versus COVID-19 (C) classes.

Architecture Accuracy Class Precision Recall F1-Score

Densenet161 83.4% ± 2.06%
H 77.2% ± 4.07% 81.4% ± 3.38% 79.2% ± 2.99%
P 80.4% ± 3.88% 78.8% ± 4.12% 79.4% ± 2.73%
C 93.8% ± 2.64% 90.2% ± 1.72% 91.8% ± 0.40%

ResNet18 81.8% ± 1.56%
H 72.4% ± 5.39% 82.6% ± 3.55% 77.0% ± 2.83%
P 81.2% ± 1.72% 76.8% ± 3.87% 78.8% ± 1.60%
C 95.0% ± 2.68% 85.8% ± 3.19% 90.0% ± 1.10%

Vgg19 81.3% ± 2.57%
H 72.8% ± 6.85% 80.4% ± 4.17% 75.8% ± 3.19%
P 82.0% ± 3.03% 76.8% ± 8.33% 79.0% ± 3.74%
C 92.4% ± 3.77% 87.8% ± 3.82% 89.8% ± 2.57%

For this reason, the DenseNet161 model from the second experiment is the one
that we will use to generate the class activation maps. In Fig. 5, we can see four
chest radiographs from portable devices as an example of the class activation maps
generated with our proposal. As the reader can see, the proposed methodology
has achieved satisfactory results, being able to successfully discern COVID-19
patients from healthy/pathological samples. Additionally, as shown in that same
figure, both for the non-COVID-19 cases and COVID-19 cases, thanks to the
proposed masking strategy, the system is only focusing on lung regions. While
on non-COVID-19 images the lung regions remain clean, COVID-19 detections
are centered on the affected lung regions (such as the bronchus/bronchioles in
the leftmost COVID-19 image). Thus, all the performed predictions are purely
based on the analysis of lung structures and not other artifacts (such as the wires
present in the leftmost healthy radiography).
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Non-COVID-19 COVID-19

Fig. 5. Examples of generated maps with the DenseNet161 trained to differentiate
non-COVID-19 patients from COVID-19 ones.

5 Conclusions

In this work we have presented a methodology capable of working with portable
X-ray images, critical for healthcare systems in emergency scenarios due to
their flexibility (at the cost of inferior capture quality). Our system has been
able to successfully differentiate COVID-19 from COVID-19-like pathologies
and from images of healthy patients, even with the difficulties imposed by the
capture quality of these portable devices. In addition, we have generated the
class activation maps of the chosen model, which has demonstrated that our
methodology of masking the region of interest in these portable device images
ensures that the model is focused exclusively on the pulmonary region. This
means that our system is not taking advantage of information foreign to the
domain (such as the presence of pacemakers, respirators, cardiac pulse meters,
etc.) and able to work independently of the established protocol. Moreover, these
class activation maps of the network are useful to assist the clinical expert in his
diagnostic task by providing an explainable representation of what is detected by
the system. Thus, the expert can not only determine the validity of the results,
but may also discover factors that went unnoticed during the overloaded clinical
practice of crowded emergency services. As a result, the system will provide
robust measurements regardless of clinical procedure, patient status or stage
of the pathology development. As future work, we plan to further improve the
experiments to reduce the impact of overfitting in some of the models with a
dynamic loss paradigm (to improve the resolution of the gradient descent) and
early stopping strategies, as well as the implementation of a data augmentation
strategy by synthesis of new samples with generative adversarial networks to
complement the variability of the dataset. Finally, as mentioned, some of the
samples presented are probably from early onset stages of different pathologies
with similar symptoms to COVID-19. A study with clinicians to reverse-engineer
the models and discover these early markers in images could be also of interest.
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