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Abstract. We study curvature homogeneous three-manifolds modeled on a
symmetric space which are critical for some quadratic curvature functional. If
the Ricci operator is diagonalizable, critical metrics are 1-curvature homoge-
neous Brinkmann waves and are critical for one speci�c functional. Otherwise,
critical metrics are modeled on Cahen-Wallach symmetric spaces and they are
Kundt spacetimes which are critical for all quadratic curvature functionals.

1. Introduction

1.1. Curvature homogeneous Lorentzian metrics. A pseudo-Riemannian man-
ifold (M, g) is said to be k-curvature homogeneous if for any pair of points p, q ∈M
there exists a linear isometry Φpq : TpM → TqM satisfying Φ∗pq∇iRq = ∇iRp for all
0 ≤ i ≤ k. For k = 0, we simply say that the manifold is curvature homogeneous.
Clearly, any locally homogeneous pseudo-Riemannian manifold is k-curvature ho-
mogeneous for all k ≥ 0. However, a manifold can be k-curvature homogeneous for
some k even if it is not homogeneous. A three-dimensional Riemannian manifold
is curvature homogeneous if the Ricci operator has constant eigenvalues, and 1-
curvature homogeneity implies local homogeneity [26]. In contrast to the Riemann-
ian setting, the Ricci operator of a Lorentzian manifold is not always diagonalizable.
Thus, with respect to an orthonormal basis {e1, e2, e3} of signature (+ +−), it cor-
responds to one of the following Jordan normal forms (see for example [22]):a 0 0

0 b 0
0 0 c

 ,

a 0 0
0 b c
0 −c b

 ,

a 0 0
0 b 1
0 −1 b± 2

 ,

b a −a
a b 0
a 0 b

 .

Type I.a Type I.b Type II Type III

Hence a three-dimensional Lorentzian manifold is curvature homogeneous if and
only if the Ricci curvatures and the Jordan normal form of the Ricci operator
do not change from point to point (see [20] for more information). Their study
naturally splits into four general cases corresponding to the algebraic possibilities
above, all of which are geometrically realizable as shown in [14]. Furthermore, while
2-curvature homogeneity guarantees local homogeneity, there are exactly two fam-
ilies of 1-curvature homogeneous Lorentzian three-manifolds which are not locally
homogeneous (see [10]).

Locally symmetric manifolds are an important class of homogeneous manifolds.
Three-dimensional Lorentzian symmetric manifolds are of constant sectional cur-
vature, a direct product N(λ) × R (where N(λ) is a surface of constant Gauss
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curvature) or a Cahen-Wallach symmetric space [13]. A pseudo-Riemannian man-
ifold is said to be semi-symmetric if the curvature tensor at each point coincides
with that of a symmetric space (but possibly changing from point to point). Non-
homogeneous three-dimensional curvature homogeneous pseudo-Riemannian man-
ifolds modeled on a symmetric space either have diagonalizable Ricci operator,
Ric = diag[λ, λ, 0], as in direct products N(λ) × R, or the Ricci operator is two-
step nilpotent, as in Cahen-Wallach symmetric spaces. They constitute the sim-
plest three-dimensional Lorentzian manifolds besides the symmetric ones mentioned
above.

1.2. Quadratic curvature functionals. Let (M, g) be a pseudo-Riemannian man-
ifold. The Einstein-Hilbert functional given by the average of the scalar curva-
ture τ , g 7→

∫
M
d3x
√
|g| τ , has been widely investigated. Einstein metrics corre-

spond to critical metrics of this functional constrained to constant volume. Second
order scalar curvature invariants naturally lead to quadratic curvature function-
als, which have been considered both in geometry and physics (see, for example,
[3, 4, 15, 16, 21, 28]). In dimension three any quadratic curvature functional is a
multiple of

S : g 7→
∫
M

d3x
√
|g| τ2, or Ft : g 7→

∫
M

d3x
√
|g| {‖ρ‖2 + tτ2},

for some t ∈ R. Euler-Lagrange equations corresponding to critical metrics of the
functionals above constrained to constant volume were given in [2]. Thus, critical
metrics for the functional S in dimension three are characterized by

(1) ∇2τ − 1
3∆τg − τ

(
ρ− 1

3τg
)

= 0,

and critical metrics for a functional Ft satisfy

(2) ∆ρ− (1 + 2t)∇2τ + 2
3 t∆τg + 2(R[ρ]− 1

3‖ρ‖
2g) + 2tτ(ρ− 1

3τg) = 0,

where R[ρ]ij = Rikjlρ
kl is the contraction of the curvature and the Ricci tensors.

It follows directly from equation (1) that metrics with τ = 0 are S-critical.
Also, Einstein metrics are S-critical and, from equation (2), it follows that three-
dimensional Einstein metrics are Ft-critical for all t ∈ R.

Any curvature homogeneous manifold has constant scalar curvature, so equa-
tion (1) reduces to τ

(
ρ− 1

3τg
)

= 0. Therefore, a curvature homogeneous metric is
S-critical if and only if it is Einstein or its scalar curvature vanishes. Equation (2)
also simpli�es if τ is constant and a three-dimensional curvature homogeneous met-
ric is Ft-critical if and only if it satis�es

(3) ∆ρ+ 2(R[ρ]− 1
3‖ρ‖

2g) + 2tτ(ρ− 1
3τg) = 0.

Three-dimensional homogeneous Lorentzian manifolds which are critical for some
quadratic curvature functional have been classi�ed in [8]. The homogeneity assump-
tion allows to describe (1)-(2) as a system of polynomial equations whose analysis is
algebraic in nature. Semi-symmetric curvature homogeneous manifolds, being non-
homogeneous relatives of symmetric spaces, are as homogeneous as they can be
from the point of view of their curvature. However, the Euler-Lagrange equations
(1)-(2) now become equivalent to a (generically overdetermined) system of nonlin-
ear PDEs, so the present situation is substantially di�erent from the homogeneous
one.

1.3. Kundt spacetimes. A Lorentzian manifold (M, g) is said to be a Kundt
spacetime if it admits a null geodesic vector �eld ` which is shear-free, twist-free
and expansion-free. Since in dimension three both the twist and the shear vanish,
a spacetime is Kundt if it admits an expansion-free null geodesic vector �eld (i.e.,
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‖`‖2 = 0, ∇`` = 0, and Tr∇` = 0). Besides its physical signi�cance, Kundt space-
times are also geometrically relevant since any Lorentzian metric with vanishing
scalar curvature invariants (VSI) is necessarily Kundt [17, 18].

The general form of a three-dimensional Kundt spacetime in local coordinates
(v, u, x) is

g =
1

P (u, x)2
dx2 + 2dudv + f(v, u, x)du2 + 2W (v, u, x)dudx,

and one may assume P (u, x) = 1 by considering the coordinate transformation
x̃ =

∫
1
P dx (see, for example, the discussion in [16]). Hence a three-dimensional

Kundt spacetime locally takes the form

(4) g = dx2 + 2dudv + f(v, u, x)du2 + 2W (v, u, x)dudx.

A Kundt metric is said to be degenerate if ∂vvW = ∂vvvf = 0. We refer to [17, 25]
for more information on the geometry of Kundt spacetimes.

A Kundt spacetime is said to be a Brinkmann wave if L = span{`} is a parallel
null line �eld. In dimension three, the metric takes the form (4) when expressing
in Kundt coordinates (v, u, x). Moreover, these may be further specialized so that
the metric takes the form (see [5])

(5) g = dx2 + 2dudv + f(v, u, x)du2.

The parallel null line �eld is locally generated by the null recurrent vector �eld ∂v.
If the null vector �eld may be re-scaled to be parallel (which occurs if and only if
the Ricci operator is two-step nilpotent), then coordinates may be chosen so that
the de�ning function f(v, u, x) does not depend on the coordinate v and the three-
dimensional manifold (M, g) is a pp-wave. Three-dimensional Brinkmann waves
which are critical for some quadratic curvature functional have been investigated
in [7] (see also [15]).

1.4. Main results. Our aim is to characterize semi-symmetric curvature homoge-
neous metrics which are critical for some quadratic curvature functional and provide
local coordinates for all of them. Semi-symmetric curvature homogeneous manifolds
behave di�erently with respect to curvature functionals depending on the structure
of the Ricci operator. If the Ricci operator is diagonalizable and the metric is not
symmetric, then it can only be critical for the functional F−1/2, in which case it is
a Brinkmann wave as follows

Theorem 1.1. Let (M, g) be a three-dimensional semi-symmetric curvature homo-
geneous manifold with diagonalizable Ricci operator which is not homogeneous. If
(M, g) is critical for some quadratic curvature functional, then it is F−1/2-critical
and it is a 1-curvature homogeneous Brinkmann wave.

Furthermore, there exist local coordinates (v, u, x) so that the metric tensor is of
the form g = dx2 + 2dudv + f(v, u, x)du2, where

f(v, u, x) = λv2 + v(α(u) + xβ(u)) +
x2β(u)2

4λ
+ xδ(u) + γ(u)

for smooth functions α, β, γ, δ and a constant λ 6= 0.

It is worth emphasizing that semi-symmetric curvature homogeneous critical Rie-
mannian metrics are locally symmetric (see Remark 2.7). Metrics in Theorem 1.1
are locally conformally �at if and only if they are locally symmetric (hence locally
isometric to a product N(λ) × R). Moreover, they are steady gradient Cotton
solitons (see Section 2.1).

On the other hand, if the Ricci operator is two-step nilpotent, then the scalar
curvature vanishes and metrics are S-critical. Hence, they are critical for some
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other quadratic curvature functional if and only if they are Ft-critical for all t ∈ R,
and one has

Theorem 1.2. Let (M, g) be a three-dimensional semi-symmetric curvature homo-
geneous manifold with two-step nilpotent Ricci operator which is not homogeneous.
If (M, g) is critical for some quadratic curvature functional Ft, then it is critical
for all quadratic curvature functionals and it is a degenerate Kundt spacetime.

Furthermore, there exist local coordinates (v, u, x) so that

(6) g = dx2 + 2dudv +

(
v2

x2
+ vf1(u) + f0(u, x)

)
du2 − 4

v

x
dudx,

where f1(u) is an arbitrary function and f0(u, x) is given by a 4th-degree polynomial
in x: f0(u, x) = α4(u)x4 + α3(u)x3 + α2(u)x2 + α1(u)x, with α3(u)2 + α4(u)2 6= 0.

The Cotton tensor of Kundt metrics in Theorem 1.2 vanishes if and only if
α4(u) = 0. Moreover Kundt metrics above are locally symmetric if and only if
α4(u) = α3(u) = 0, in which case they are �at (see Remark 3.5). Furthermore, all
metrics (6) have vanishing scalar curvature invariants (see Remark 3.6).

Theorems 1.1 and 1.2 will be proved in Sections 2 and 3, respectively, where we
analyze curvature homogeneous critical metrics in more detail. Finally, in Section 4,
we use results in Sections 2 and 3 to study critical metrics for massive gravity
functionals. This provides new solutions for the corresponding gravity theories.

2. Semi-symmetric curvature homogeneous metrics with

diagonalizable Ricci operator

The purpose of this section is to analyze criticallity of curvature homogeneous
metrics modeled on a product N(λ)×R. The functional F−1/2 given by F−1/2(g) =∫
M
d3x
√
|g| {‖ρ‖2− 1

2τ
2} plays a distinguished role in the symmetric setting [8], as

all symmetric manifolds are F−1/2-critical.
Let (M, g) be a three-dimensional Lorentzian manifold whose Ricci operator is of

the form Ric = diag[λ, λ, 0]. Since the Ricci operator is self-adjoint, the distribution
ker Ric cannot be null, so it is either timelike or spacelike. We follow the work
in [12] and let {E1, E2, E3} be a local orthonormal frame diagonalizing the Ricci
operator with ker Ric = span{E3}. Let σ̃ be the associated shear operator (i.e.,
the self-adjoint component of the traceless tensor S0 = S − 1

3 (trS)Id associated to
S(X) = ∇XE3). The second Bianchi identity shows that σ̃(E3) = 0 and hence the
shear operator has Jordan normal forma 0 0

0 −a 0
0 0 0

 ,

0 −a 0
a 0 0
0 0 0

 , or

ε −1 0
1 −ε 0
0 0 0

 ,

Type I.a Type I.b Type II

where ε = ±1. Furthermore the norm of the shear tensor is positive for Type
I.a, negative for Type I.b and zero for Type II. The semi-symmetric curvature
homogeneous manifolds with diagonalizable Ricci operator are described as follows.

Lemma 2.1. Let (M, g) be a three-dimensional semi-symmetric curvature homo-
geneous Lorentzian manifold with diagonalizable Ricci operator. Then, (M, g) is
locally symmetric or it is locally isometric to one of the following models:

(1) Diagonalizable shear operator. For a local orthonormal frame {E1, E2, E3}
of signature (+ +−) and smooth functions θ, ϕ, Lie brackets are given by

[E1, E2] = εθE1 − θE2 + 2ϕE3,

[E1, E3] = εϕE1 + ϕE2, [E2, E3] = −ϕE1 − εϕE2, (ε = ±1),
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where θ and ϕ are smooth functions satisfying the di�erential equations
E3(θ) = E3(ϕ) = 0, and

E1(θ) + εE2(θ) + 2θ2 + λ = 0, E1(ϕ) + εE2(ϕ) + 2θϕ = 0.

(2) Shear operator with complex eigenvalues. For a local orthonormal frame
{E1, E2, E3} of signature (−+ +), Lie brackets are given by
(2.i) [E1, E2] = θE1 − 2ϕE3, [E1, E3] = 2ϕE2, [E2, E3] = 0,

where the functions θ, ϕ satisfy the di�erential equations E3(θ) =
E3(ϕ) = 0, E2(θ) + θ2 + λ = 0, and E2(ϕ) + θϕ = 0.

(2.ii) [E1, E2] = −θE2 − 2ϕE3, [E1, E3] = 0, [E2, E3] = 2ϕE1,

where the functions θ, ϕ satisfy the di�erential equations E3(θ) =
E3(ϕ) = 0, E1(θ) + θ2 − λ = 0, and E1(ϕ) + θϕ = 0.

(3) Two-step nilpotent shear operator. For a local orthonormal frame {E1, E2, E3}
of signature (−+ +), Lie brackets are given by

[E1, E2] = −θ(E1 +E2), [E1, E3] = E1 +E2, [E2, E3] = −E1−E2,

where θ satis�es the di�erential equations E3(θ) = 0 and E1(θ)+E2(θ) = λ.

Proof. Let (M, g) be a curvature homogeneous Lorentzian three-manifold with di-
agonalizable Ricci operator Ric = diag[λ, λ, α]. If the shear operator is of Type I.a,
then it was shown in [12, Theorem 1] that there exists an orthonormal basis
{E1, E2, E3} such that g(E1, E1) = κ = ±1, g(E2, E2) = 1, g(E3, E3) = −κ,
ρ(E1, E1) = κλ, ρ(E2, E2) = λ and ρ(E3, E3) = −κα, and there exist functions θ1,
θ2, ω and σ satisfying

[E1, E2] = θ2E1 − θ1E2 + 2κωE3,

[E1, E3] = σE1 + ωE2, [E2, E3] = −κωE1 − σE2, α = 2(κσ2 − ω2),

E3(ω) = E3(σ) = 0, κE1(θ1) + E2(θ2) + κθ21 + θ22 + λ = 0,
E3(θ1)− σθ1 + ωθ2 = 0, E3(θ2)− κωθ1 + σθ2 = 0,
E1(σ) + E2(ω) + 2θ1σ = 0, κE1(ω) + E2(σ) + 2θ2σ = 0.

Setting α = 0, one has three possible cases: κ = 1 and σ = ±ω, or κ = −1 and
σ = ω = 0. If κ = −1 and σ = ω = 0, then the manifold is locally symmetric. If
κ = 1 and σ = ω, then a straightforward calculation on the di�erential equations
above shows that, in addition, ω = 0, and the manifold is locally symmetric, or
θ1 = θ2, which corresponds to Assertion (1) with ε = 1. If κ = 1 and σ =
−ω, then the di�erential equations above show that, in addition, ω = 0, and the
manifold is locally symmetric, or θ1 = −θ2, which corresponds to the case ε = −1
in Assertion (1).

If the shear operator is of Type I.b, then one has from [12, Theorem 2] that there
exists an orthonormal basis {E1, E2, E3} such that g(E1, E1) = −1, g(E2, E2) = 1,
g(E3, E3) = 1, ρ(E1, E1) = −λ, ρ(E2, E2) = λ and ρ(E3, E3) = α, and there exist
functions θ1, θ2, ω and σ satisfying

[E1, E2] = θ2E1 − θ1E2 − 2ωE3,

[E1, E3] = (σ + ω)E2, [E2, E3] = −(σ − ω)E1, α = 2(σ2 − ω2),

E3(ω) = E3(σ) = 0, E1(θ1)− E2(θ2) + θ21 − θ22 − λ = 0,
E3(θ1)− θ2(σ − ω) = 0, E3(θ2) + θ1(σ + ω) = 0,
E2(σ + ω) + 2θ2σ = 0, E1(σ − ω) + 2θ1σ = 0.

Setting α = 0, one has σ = ±ω. If σ = ω, then a straightforward calculation
shows that, in addition, ω = 0, and the manifold is locally symmetric, or θ1 = 0,
which corresponds to Assertion (2.i). If σ = −ω, then the di�erential equations
above show that ω = 0, and the manifold is locally symmetric, or θ2 = 0, which
corresponds to Assertion (2.ii) of the lemma.
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Finally, if the shear operator is of Type II, then it follows from [12, Theorem 3]
that there exists an orthonormal basis {E1, E2, E3} such that g(E1, E1) = −1,
g(E2, E2) = 1, g(E3, E3) = 1, ρ(E1, E1) = −λ, ρ(E2, E2) = λ and ρ(E3, E3) = α,
and there exist functions θ and ω satisfying

[E1, E2] = −θE1 − θE2 − 2ωE3,

[E1, E3] = E1 + (ω + 1)E2, [E2, E3] = (ω − 1)E1 − E2, α = −2ω2,

Ei(ω) = 0, E3(θ)− ωθ = 0, E1(θ) + E2(θ)− λ = 0.

Setting α = 0, one has that ω = 0, which corresponds to Assertion (3). �

Remark 2.2. Manifolds corresponding to Assertions (1)-(2) are locally symmetric if
and only if ϕ = 0. On the other hand, manifolds in Assertion (3) are never locally
symmetric.

Now, we turn back our attention to critical metrics. First of all, observe that
the Euler-Lagrange equation (2) strongly simpli�es in the semi-symmetric setting
with diagonalizable Ricci operator as follows.

Lemma 2.3. A three-dimensional metric with diagonalizable Ricci operator of the
form Ric = diag[λ, λ, 0] for λ constant is F−1/2-critical if and only if ∆ρ = 0.

Proof. We assume Ric = diag[λ, λ, 0] with λ constant. Then τ = 2λ is constant
too. Now, a straightforward calculation shows that R[ρ] = ρ̌, where ρ̌(X,Y ) =
g(Ric2X,Y ), and (3) reduces to

∆ρ+
2

3
λ2(1 + 2t) diag[1, 1,−2]g = 0.

Hence, it follows that t = − 1
2 if and only if ∆ρ = 0. �

The next result shows that only metrics with nilpotent shear operator (i.e. those
described in Lemma 2.1-(3)) are critical for some quadratic curvature functional
within the non locally homogeneous setting.

Lemma 2.4. Let (M, g) be a three-dimensional semi-symmetric curvature homo-
geneous Lorentzian manifold with diagonalizable Ricci operator which is not homo-
geneous. If (M, g) is critical for some quadratic curvature functional, then it is
locally given by

[E1, E2] = −θ(E1 + E2), [E1, E3] = E1 + E2, [E2, E3] = −E1 − E2,

for some function θ satisfying the di�erential equations E3(θ) = 0 and E1(θ) +
E2(θ) = λ, where {E1, E2, E3} is a local orthonormal frame of signature (− + +).
Furthermore, these metrics are F−1/2-critical and 1-curvature homogeneous.

Proof. We analyze the di�erent possibilities in Lemma 2.1. Attending to Equa-
tion (3), (M, g) is Ft-critical if and only if the symmetric (0, 2)-tensor �eld Ft =
∆ρ+ 2(R[ρ]− 1

3‖ρ‖
2g) + 2tτ(ρ− 1

3τg) vanishes identically.
Tensors ρ and R[ρ] for manifolds in Lemma 2.1 (1) are given by ρ(E1, E1) =

ρ(E2, E2) = λ and R[ρ](E1, E1) = R[ρ](E2, E2) = λ2, respectively (other compo-
nents being zero). Moreover, the components of the Laplacian of the Ricci tensor
are given by

∆ρ(E1, E1) = ∆ρ(E2, E2) = ε∆ρ(E1, E2) = 4λϕ2, ∆ρ(E3, E3) = 8λϕ2,

∆ρ(E1, E3) = −2ελ(2θϕ+ E1(ϕ)), ∆ρ(E2, E3) = −2λE1(ϕ).

Hence, Ft(E1, E2) = 4ελϕ2 and so, necessarily, ϕ = 0. Therefore, ∆ρ = 0 and, by
Lemma 2.3, these metrics are critical for t = − 1

2 . Moreover, from Remark 2.2, we
have that all critical metrics in this case are locally symmetric, so we conclude that
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metrics in Lemma 2.1-(1) are Ft-critical if and only if they are locally isometric to
a product N(λ)× R, in which case they are only F−1/2-critical (see [8]).

The Ricci tensor and the curvature contraction R[ρ] of manifolds in Lemma 2.1-
(2) have non-zero components ρ(E1, E1) = −ρ(E2, E2) = −λ, and R[ρ](E1, E1) =
−R[ρ](E2, E2) = −λ2. Moreover, ∆ρ is determined by the non-zero terms

∆ρ(E2, E2) = −∆ρ(E3, E3) = 8λϕ2,

∆ρ(E1, E3) = −2λθϕ, ∆ρ(E2, E3) = 2λE1(ϕ),

for manifolds in Lemma 2.1-(2.i), and

∆ρ(E1, E1) = ∆ρ(E3, E3) = −8λϕ2,

∆ρ(E1, E3) = 2λE2(ϕ), ∆ρ(E2, E3) = −2λθϕ,

for manifolds in Lemma 2.1-(2.ii). Thus, for manifolds in Lemma 2.1-(2.i) we
have Ft(E1, E1) = − 2

3 (1 + 2t)λ2 and, for manifolds in Lemma 2.1-(2.ii), we have

Ft(E2, E2) = 2
3 (1 + 2t)λ2. Hence t = − 1

2 in both cases. Now, by Lemma 2.3, these
metrics are critical if and only if ∆ρ = 0, which occurs only if ϕ = 0. Hence, by
Remark 2.2, the only critical metrics in these two families are locally isometric to
a product N(λ)× R and are critical for the functional F−1/2.

Finally, let (M, g) be as in Lemma 2.1-(3). Then ρ(E1, E1) = −ρ(E2, E2) = −λ,
and R[ρ](E1, E1) = −R[ρ](E2, E2) = −λ2. Furthermore the Laplacian of the Ricci
tensor vanishes identically so, by Lemma 2.3, all curvature homogeneous metrics
in Lemma 2.1-(3) are F−1/2-critical. Moreover, the non-zero components of the
covariant derivative of the Ricci tensor are given by

(∇E1
ρ)(E1, E3) = −(∇E2

ρ)(E1, E3) = (∇E2
ρ)(E2, E3) = −(∇E1

ρ)(E2, E3) = λ,

which shows that (M, g) is indeed 1-curvature homogeneous. Results in [8] show
that metrics in Lemma 2.1-(3) cannot be locally homogeneous. �

Proof of Theorem 1.1. It follows from Lemma 2.4 that a non-Einstein semi-
symmetric curvature homogeneous critical metric with diagonalizable Ricci oper-
ator is necessarily 1-curvature homogeneous and it is critical for t = − 1

2 . Fur-
thermore, the non-zero components of the Levi-Civita connection for metrics in
Lemma 2.1-(3) are

∇E1
E1 = E3 − E2θ, ∇E1

E2 = −E1θ − E3, ∇E1
E3 = E1 + E2,

∇E2E1 = −E3 + E2θ, ∇E2E2 = E1θ + E3, ∇E2E3 = −E1 − E2.

Hence ` = E1 +E2 is a recurrent null vector �eld, so L = span{`} is a parallel null
line �eld and the manifold is a Brinkmann wave.

We consider a Brinkmann wave in local coordinates (v, u, x) of the form g = dx2+
2dudv+ f(v, u, x)du2. The eigenvalues of the Ricci operator are { 12∂vvf,

1
2∂vvf, 0},

so 1
2∂vvf = λ. Hence f(v, u, x) = λv2 + a(u, x)v + b(u, x) for some functions a and

b. Now, we have

Ric(∂v) = λ∂v, Ric(∂u) = −1

2
(∂xxb+ v∂xxa) ∂v+λ∂u+

1

2
∂xa∂x, Ric(∂x) =

1

2
∂xa∂v.

From these expressions it is straightforward to see that, for the Ricci operator to be

diagonalizable, one has f(v, u, x) = λv2 + v(α(u) +xβ(u)) + x2β(u)2

4λ +xδ(u) +γ(u).
It follows from [7] that all these metrics are F−1/2-critical. �

Remark 2.5. Note that the energy ‖ρ‖2− 1
2τ

2 vanishes for all metrics in Theorem 1.1.

Remark 2.6. Three-dimensional 1-curvature homogeneous critical Lorentzian met-
rics which are not homogeneous have been classi�ed in [8]. Thus, notice that the
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family of metrics given in Theorem 1.1 corresponds to that in Theorem 2.1-(1) in
[8], although the description is given with respect to a di�erent frame.

Remark 2.7. Let (M, g) be a three-dimensional semi-symmetric curvature homoge-
neous Riemannian manifold. Then, (M, g) is locally symmetric or it admits a local
orthonormal frame {E1, E2, E3} so that [9]

[E1, E2] = θ(εE1−E2)−2ϕE3, [E1, E3] = ϕ(εE1+E2), [E2, E3] = −ϕ(E1+εE2),

for some smooth functions θ, ϕ satisfying E3(θ) = E3(ϕ) = 0, and

E1(θ) + εE2(θ) + 2θ2 + λ = 0, E1(ϕ) + εE2(ϕ) + 2θϕ = 0.

A similar argument to that given in Lemma 2.4 shows that if one of the metrics in
these manifolds is critical, then either λ = 0 and the metric is �at, or ϕ = 0 and
the manifolds is locally isometric to a product N(c)×R. Moreover, in this case the
metric is F−1/2-critical. Hence, we conclude that

Three-dimensional semi-symmetric curvature homogeneous Riemann-
ian manifolds are critical for some quadratic curvature functional
if and only if they are locally symmetric.

Alternatively, it was shown in [6] that any non-Einstein curvature homogeneous
semi-symmetric Riemannian manifold admits local coordinates (v, u, x) such that
the metric is homothetic to

(7) g = (coshu− h(x) sinhu)2dx2 + (du− f(x)v dx)2 + (dv + f(x)u dx)2.

Straightforward calculations show that metrics above are critical for some quadratic
curvature functional if and only if f = 0, in which case (M, g) is locally symmetric.

2.1. Cotton Solitons. Let Sij = ρij − τ
2(n−1)gij denote the Schouten tensor. The

Cotton tensor, Cijk = (∇iS)jk − (∇jS)ik, is the unique conformal invariant in
dimension three. Moreover, C vanishes if and only if the manifold is locally confor-
mally �at. The associated (0, 2)-Cotton tensor, which is trace-free and divergence-
free, is de�ned in dimension three by

(8) Cij =
1

2
√
|g|
Cnmiε

nm`g`j ,

where ε123 = 1. The Cotton �ow, which was introduced in [24], is determined by
the evolution equation ∂tg(t) = κC(t), where C(t) is the (0, 2)-Cotton tensor of
(M, g(t)) and κ is a constant (see also [23]). Self-similar solutions of the �ow, i.e.
solutions which remain �xed up to scalings and di�eomorphisms, are the Cotton
solitons. A gradient Cotton soliton is a triple (M, g, φ), where (M, g) is a pseudo-
Riemannian manifold and φ is a smooth function satisfying

(9) ∇2φ+ C = µ g

for µ ∈ R. A Cotton soliton is said to be shrinking, steady or expanding if µ > 0,
µ = 0 or µ < 0, respectively. Also note that, taking traces in (9), one has µ = 1

3∆φ.

We consider the metric g = dx2 + 2dudv + f(v, u, x)du2 with

f(v, u, x) = λv2 + v(α(u) + xβ(u)) +
x2β(u)2

4λ
+ xδ(u) + γ(u)

as in Theorem 1.1. The only non-zero component of the (0, 2)-Cotton tensor is
C(∂u, ∂u) = 1

4 {α(u)β(u)− 2λδ(u) + 2β′(u)}, which vanishes if and only if (M, g)
is locally symmetric, indeed locally isometric to a product N(λ)× R.

Let φ(u, x, y) be a smooth function. In order to analyze the gradient Cotton
soliton equation, consider the symmetric (0, 2)-tensor �eld C = ∇2φ + C − µg. A
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direct calculation gives the following expressions

C(∂v, ∂v) = ∂vvφ, C(∂v, ∂x) = ∂vxφ, C(∂x, ∂x) = ∂xxφ− µ,
C(∂v, ∂u) = ∂vuφ− 1

2 (2vλ+ α(u) + xβ(u))∂vφ− µ,
C(∂u, ∂x) = ∂xuφ− 1

4λ (2vλβ(u) + xβ(u)2 + 2λδ(u))∂vφ.

The �rst three equations give φ(v, u, x) = φ2(u)v + µ
2x

2 + φ1(u)x + φ0(u), and
using that C(∂v, ∂u) = 0, one has that φ2(u) = 0 and that µ = 0. Therefore, the
gradient Cotton soliton is necessarily steady. Moreover, the component C(∂u, ∂x)
now reduces to C(∂u, ∂x) = φ′1(u). Hence the function φ1 is constant and the
potential function becomes φ(v, u, x) = κx+ϕ(u). The remaining component now
reduces to

C(∂u, ∂u) = 1
4λ {(2λv + xβ(u)) (κβ(u) + 2λϕ′(u))

+λα(u)(β(u) + 2ϕ′(u)) + 2λβ′(u) + 2λ(κ− λ)δ(u) + 4λϕ′′(u)} .
Hence ϕ′(u) = − κ

2λβ(u), and the expression above simpli�es to

C(∂u, ∂u) =
1

4λ
(λ− κ)(α(u)β(u)− 2λδ(u) + 2β′(u)).

Now one has that κ = λ (unless the manifold is Cotton-�at and locally symmetric).
This shows that for φ(v, u, x) = λx− 1

2

∫
β(u)du, these Brinkmann waves are steady

gradient Cotton solitons. Summarizing the above, one has that

Any three-dimensional curvature homogeneous semi-symmetric man-
ifold with diagonalizable Ricci operator which is critical for a qua-
dratic curvature functional is a steady gradient Cotton soliton.

3. Semi-symmetric curvature homogeneous metrics with two-step

nilpotent Ricci operator

Next we consider semi-symmetric manifolds modeled on a Cahen-Wallach sym-
metric space. The Ricci operator of these manifolds is two-step nilpotent, hence the
scalar curvature vanishes and they are critical for the functional S. If, moreover,
a metric is Ft-critical for some t ∈ R, then it is critical for all quadratic curvature
functionals [7]. This family of metrics provides examples of non-Einstein metrics
which are critical for all quadratic curvature functionals.

Lemma 3.1. A 3-dimensional manifold with two-step nilpotent Ricci operator is
Ft-critical for some t (and, hence, for all t ∈ R) if and only if ∆ρ = 0.

Proof. Since Ric2 = 0, we have that τ = 0 and ‖ρ‖2 = 0. Hence, R[ρ] = −2ρ̌ = 0
and the Euler-Lagrange equations (3) reduce to ∆ρ = 0. �

Lemma 3.2. Let (M, g) be a semi-symmetric curvature homogeneous Lorentzian
manifold with two-step nilpotent Ricci operator which is critical for some qua-
dratic curvature functional. Then there exists a local pseudo-orthonormal frame
{E1, E2, E3} with g(E1, E1) = g(E2, E3) = 1 such that

[E1, E2] = 0, [E1, E3] = −AE1−GE2−(C+H)E3, [E2, E3] = (H−C)E1−IE2,

for some smooth functions A,C,G,H, I satisfying the di�erential equations

E2(A) = −C(C + 2H),
E1(C) = −2C(C +H), E2(C) = 0,
E1(G) = E3(A) +A(I −A)−G(3C +H) + 2ε, E2(G)− E3(C) = A(H − C)
E1(H) = −H2, E2(H) = 0,
E1(I) = E2(G)− I(C +H), E2(I) = C(2H − C),

where ε = ±1. Moreover, these metrics are critical for all quadratic curvature
functionals.
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Proof. It follows from the work of Bueken [11] that a curvature homogeneous
Lorentzian three-manifold with nilpotent Ricci operator admits a local pseudo-
orthonormal frame {E1, E2, E3} with g(E1, E1) = g(E2, E3) = 1 so that

(10)
[E1, E2] = −2FE1,
[E1, E3] = −AE1 −GE2 − (C +H)E3,
[E2, E3] = (H − C)E1 − IE2 − FE3,

with smooth functions A,C, F,G,H, I satisfying

(11)

E1(C)− E2(A) = −C2 −AF, E2(F ) = 3F 2,
E1(H)− 2E3(F ) = −H2 − 2F (I +A), E1(F )− E2(C) = −4CF,
E2(I)− E3(F ) = C(2H − C)− 2FI, E2(H) = 2F (H − C),
E1(I)− E2(G) = −FG− I(C +H),
E2(G)− E3(C) = A(H − C)− 2FG,
E1(G)− E3(A) = 2ε+A(I −A)−G(3C +H), ε = ±1.

The only non-zero component of the Ricci operator is Ric(E3) = −2εE2. Lemma 3.1
shows that a metric as above is critical for a quadratic curvature functional Ft if
and only if ∆ρ = 0. The non-zero components of the Laplacian of the Ricci tensor
are given by

∆ρ(E1, E1) = −16εF 2,
∆ρ(E1, E3) = 4ε(E2(C) + F (3H − C)),
∆ρ(E2, E3) = 8εF 2,
∆ρ(E3, E3) = −4ε(E2(A) + 2E3(F ) + C(C + 2H)− 4AF ).

It follows that ∆ρ = 0 if and only if F = 0, E2(C) = 0 and E2(A) = −C(C + 2H).
Now the result follows by simplifying the relations in (10) and (11). �

Remark 3.3. Let (M, g) be a metric as in Lemma 3.2. The non-zero components
of ∇ρ are given by

(∇E3ρ)(E1, E3) = 2εH, (∇E1ρ)(E3, E3) = −4εC, (∇E3ρ)(E3, E3) = −4εI.

Hence, metrics in Lemma 3.2 are locally symmetric if and only if the functions C,
H and I vanish identically. Moreover if C, H and I are constant, then the metrics
are 1-curvature homogeneous and results in [8, 10] show that they are indeed locally
homogeneous.

Remark 3.4. The covariant derivative of the null vector �eld E2 for any metric in
Lemma 3.2 satis�es

∇E1
E2 = CE2, ∇E2

E2 = 0, ∇E3
E2 = −HE1 + IE2.

If the function H vanishes identically, then L = span{E2} is a parallel null line
�eld and, since the Ricci operator is two-step nilpotent, the underlying structure
is a pp-wave. Hence there exist local coordinates (v, u, x) where the metric tensor
expresses as g = 2dvdu+ dx2 + (α(u)x3 +β(u)x2)du2, for functions α(u), β(u) (see
[7, Corollary 3.3]).

Proof of Theorem 1.2. It follows from the expressions of the covariant derivative
in Remark 3.4 that ` = E2 is an expansion-free null geodesic vector �eld (i.e.,
∇`` = 0, ‖`‖2 = 0, and Tr∇` = 0). Hence the underlying manifold is a Kundt
spacetime.

We consider local coordinates (v, u, x) where the metric expresses as in (4). Since
the Ricci operator of any metric in Lemma 3.2 is two-step nilpotent, g(Ric2 ∂u, ∂v) =
1
4 (∂vvW (v, u, x))2 = 0, so one has that

W (v, u, x) = vW1(u, x) +W0(u, x).
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Now, the scalar curvature becomes τ = ∂vvf + 2∂xW1− 3
2W

2
1 and, since τ = 0, one

obtains that

f(v, u, x) = v2
(
3
4W1(u, x)2 − ∂xW1(u, x)

)
+ vf1(u, x) + f0(u, x).

Then g(Ric2 ∂x, ∂x) = (∂xW1 − 1
2W

2
1 )2 = 0, and thus

W1(u, x) = − 2

x+ ω(u)
,

for an arbitrary smooth function ω(u). At this point, the form of the metric is
preserved by a change of coordinates (see, for example, [16]) given by

ṽ = v + F (u, x), ũ = u, x̃ = x+ ω(u),

where F is an arbitrary function. An appropriate choice of F results in W having
the form W (ũ, x̃) = −2 ṽx̃ in the new coordinates system. Thus, the metric tensor
becomes

g = dx2 + 2dudv +

(
v2

x2
+ vf1(u, x) + f0(u, x)

)
du2 − 4

v

x
dudx.

For this form of the metric one has g(Ric2 ∂u, ∂u) = 1
4 (∂xf1)2 = 0, so f1 does not

depend on x̃. Now Ric2 = 0.
Since, by Lemma 3.1, critical metrics with 2-step nilpotent Ricci operator have

harmonic Ricci tensor, an explicit calculation of ∆ρ shows that the only non-zero
component is given by

∆ρ(∂u, ∂u) = − 1
2∂

(4)
x f0 + 2

x∂
(3)
x f0 − 6

x2 ∂
(2)
x f0 + 12

x3 ∂xf0 − 12
x4 f0.

Solving the equation ∆ρ = 0, one has that the function f0 is given by a 4th-degree
polynomial on the coordinate x without independent term: f0(u, x) = α4(u)x4 +
α3(u)x3 + α2(u)x2 + α1(u)x, with α3(u)2 + α4(u)2 6= 0, otherwise the metric is
�at. �

Remark 3.5. A Kundt metric as in Theorem 1.2 is locally conformally �at if and
only if the component C(∂v, ∂v) = 3xα4(u) vanishes identically, this is, if and
only if α4(u) = 0. Moreover a straightforward calculation shows that it is locally
symmetric if and only if α3(u) = α4(u) = 0, in which case the metric is �at.

Remark 3.6. Given the form of the metrics in Theorem 1.2, they are degenerate
Kundt metrics. Furthermore, it follows from [18] that they are VSI spacetimes.

4. Solutions in massive gravity theories

The �eld equations in General Relativity, ρ− 1
2τg = 8πGT−Λg, are established in

terms of the Einstein tensor ρ− 1
2τg, the energy�momentum tensor T , the Newton's

constant G and the cosmological constant Λ. The �eld equations are derived from
the variation of the Einstein-Hilbert action SEH = 1

16πG

∫
d4x
√
|g|(τ−2Λ), which is

based on the total scalar curvature. Since the very early days of General Relativity,
di�erent alternatives have been proposed to be incorporated into a larger uni�ed
theory of gravity. While General Relativity involves second-order derivatives of the
metric, some extensions permit the �eld equations to be higher than second order.
Other extensions allow the action to be a function not only of the scalar curvature
but a function of the quadratic contractions of the curvature tensor: τ2, ‖ρ‖2 and
‖R‖2. In this �nal section we consider solutions to various massive gravity theories
within the framework of semi-symmetric curvature homogeneous Lorentzian three-
manifolds. Note that homogeneous solutions have been previously described in [1].
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4.1. Topologically massive gravity functional. Adding the gravitational Chern-
Simons term SCS = 1

2

∫
d3x
√
|g|εijkΓris

(
∂jΓ

s
rk + 2

3ΓsjvΓ
v
kr

)
to the Einstein-Hilbert

functional results in the topologically massive gravity functional, STMG = SEH +
1
ωSCS , where ω is a mass parameter [19]. The Euler-Lagrange equations of this

functional restricted to metrics of constant volume are ρ − 1
2τg + 1

ωC = Λg (see
[19]), where C denotes the Cotton tensor de�ned in (8). The value of Λ is deter-
mined by taking traces in this equation, so Λ = − 1

6τ , and we consider the symmetric

(0, 2)-tensor �eld given by TTMG = ρ− 1
3τg + 1

ωC.

4.1.1. Curvature homogeneous semi-symmetric TMG solutions with diagonalizable
Ricci operator. Let (M, g) be a curvature homogeneous manifold as in Lemma 2.1.
If (M, g) corresponds to Lemma 2.1-(1), then a straightforward calculation shows
that TTMG(E1, E1) = λ(ϕω + 1

3 ) and TTMG(E1, E2) = ελ
ω ϕ, so ϕ = λ = 0 and any

TMG solution is �at. We have a similar result for metrics in Lemma 2.1-(2) since
TTMG(E1, E1) = − 1

3λ (resp., TTMG(E2, E2) = 1
3λ) for metrics in Assertion (2.i)

(resp., Assertion (2.ii)), which shows that solutions in these cases are necessarily
�at. Also, metrics in Lemma 2.1-(3) do not provide nontrivial TMG solutions, since
TTMG(E3, E3) = − 2

3λ in this case.

4.1.2. Curvature homogeneous semi-symmetric TMG solutions with nilpotent Ricci
operator. We proceed as in Lemma 3.2 and consider a curvature homogeneous met-
ric with two-step nilpotent Ricci operator as in (10)-(11). A straightforward calcu-
lation shows that TTMG is determined by the nonzero terms

TTMG(E1, E3) = −4ε

ω
F, TTMG(E3, E3) =

2ε

ω
(2C +H − ω).

Hence a metric (10)-(11) is a solution in TMG if and only if F = 0 and H = ω−2C.
Since F = 0 and H = ω − 2C, it follows from (11) that E2(C) = 0 and E2(A) =
1
2 (6C2− 4ωC +ω2). Now a direct calculation shows that ∆ρ(E3, E3) = −2εω2 6= 0
and thus, by Lemma 3.1, no metric above can be critical for a quadratic curvature
functional.

Since the function F = 0 in (10)-(11), E2 is an expansion-free null geodesic vector
�eld (see Remark 3.4), therefore the underlying structure is a Kundt spacetime.
From the proof of Theorem 1.2, it follows that the metric is given in local coordinates
as

g = dx2 + 2dudv +

(
v2

x2
+ f1(u)v + f0(u, x)

)
du2 − 4

v

x
dudx.

A straightforward calculation shows that TTMG is determined by the non-zero term

TTMG(∂u, ∂u) = 1
2ω

(
∂(3)x f0 −

3 + ωx

x
∂(2)x f0 + 2

3 + ωx

x2
∂xf0 − 2

3 + ωx

x3
f0

)
.

Solving the equation TTMG(∂u, ∂u) = 0, the above is summarized as follows:

A semi-symmetric curvature homogeneous TMG solution which is
not locally symmetric is a Kundt spacetime

g = dx2 + 2dudv +

(
v2

x2
+ f1(u)v + f0(u, x)

)
du2 − 4

v

x
dudx

with f0(u, x) = β3(u)xexω + β2(u)x2 + β1(u)x, for arbitrary func-
tions β1(u), β2(u), and β3(u) 6= 0.



CURVATURE HOMOGENEOUS CRITICAL METRICS IN DIMENSION THREE 13

4.2. New massive gravity functional. The new massive gravity proposed by
Bergshoe�, Hohm, and Townsen is a three-dimensional modi�cation of General
Relativity which complements the Einstein-Hilbert action by a quadratic term,
‖ρ‖2 − 3

8τ
2, which adds a conserved term to the �eld equations (see [3, 4]). The

action SNMG = SEH − 1
m2F−3/8, where m is the mass of the graviton, yields the

�eld equations

(12) ρ− 1
3τg −

1
2m2 (K − 1

3 (|ρ|2 − 3
8τ

2)g) = 0,

where K = 2∆ρ− 1
2∇

2τ − 3
2τρ+ 4R[ρ]− ( 1

2∆τ + |ρ|2 − 3
8τ

2)g.
The curvature homogeneity assumption reduces signi�cantly the �eld equations

so that they are equivalent to TNMG = 0, where TNMG is the symmetric (0, 2)-
tensor �eld given by TNMG = ρ− 1

3τg −
1

2m2 (K − 1
3 (|ρ|2 − 3

8τ
2)g).

4.2.1. Curvature homogeneous semi-symmetric NMG solutions with diagonalizable
Ricci operator. We proceed as in Section 4.1.1 and consider the di�erent possibili-
ties in Lemma 2.1. If (M, g) corresponds to Lemma 2.1-(1), then TNMG(E1, E2) =
4ελϕ2

m2 , and thus any NMG solution is locally symmetric by Remark 2.2. For met-

rics in Lemma 2.1-(2.i) since TNMG(E1, E1) = λ(λ−2m2)
6m2 and TNMG(E2, E2) =

−λ(λ−2m
2+48ϕ2)

6m2 , one has that λ = 2m2 and ϕ = 0, so (M, g) is also locally
symmetric by Remark 2.2. Metrics in Lemma 2.1-(2.ii) behave similarly, since

TNMG(E2, E2) = −λ(λ−2m
2)

6m2 and TNMG(E1, E1) = λ(λ−2m2+48ϕ2)
6m2 .

The non-zero components of TNMG for metrics in Lemma 2.1-(3) are given by

TNMG(E1, E1) = −TNMG(E2, E2) =
1

2
TNMG(E3, E3) =

λ(λ− 2m2)

6m2
λ.

Hence manifolds with λ = 2m2 > 0 are 1-curvature homogeneous solutions in NMG
modeled onN(λ)×R. Furthermore, note that these manifolds are Brinkmann waves
(see Theorem 1.1) and are also F−1/2-critical (see Lemma 2.4). Summarizing the
above, one has:

A semi-symmetric curvature homogeneous NMG solution with di-
agonalizable Ricci operator is symmetric or it corresponds to a
Brinkmann wave g = dx2 + 2dudv + f(v, u, x)du2, determined by

f(v, u, x)=2m2v2+ v(α(u)+ xβ(u))+
1

8m2
x2β(u)2+ xδ(u)+ γ(u),

for smooth functions α(u), β(u), γ(u), δ(u).

4.2.2. Curvature homogeneous semi-symmetric NMG solutions with nilpotent Ricci
operator. We proceed as in Section 4.1.2 and consider a curvature homogeneous
metric with two-step nilpotent Ricci operator described by (10)-(11). A straight-
forward calculation shows that TNMG is determined by the nonzero terms

TNMG(E1, E1) = −2TNMG(E2, E3) = 16ε
m2 F

2,

TNMG(E1, E3) = 4ε
m2 {F (C − 3H)− E2(C)},

TNMG(E3, E3) = 2ε
m2 {2C2 − 8AF + 4CH −m2 + 2E2(A) + 4E3(F )}.

Hence a metric (10)-(11) is a solution in NMG if and only if F = 0, E2(C) = 0,
and E2(A) = −C2 − 2CH + 1

2m
2. Observe from Lemma 3.2 that these metrics are

not critical for any quadratic curvature functional Ft.
As for TMG solutions, since F = 0 in (10)-(11), the underlying structure is a

Kundt spacetime. Using the expression (6), the metric is given in local coordinates
by

g = dx2 + 2dudv +

(
v2

x2
+ f1(u)v + f0(u, x)

)
du2 − 4

v

x
dudx.
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A straightforward calculation shows that TNMG is determined by the non-zero term

TNMG(∂u, ∂u) =
1

2m2

(
∂(4)x f0 −

4

x
∂(3)x f0 +

12−m2x2

x2

(
∂(2)x f0 −

2

x
∂xf0 +

2

x2
f0

))
.

We solve the equation TNMG(∂u, ∂u) = 0 to obtain the following.

A semi-symmetric curvature homogeneous NMG solution with non-
diagonalizable Ricci operator is a Kundt spacetime

g = dx2 + 2dudv +

(
v2

x2
+ f1(u)v + f0(u, x)

)
du2 − 4

v

x
dudx

with f0(u, x) = β4(u)xemx+β3(u)xe−mx+β2(u)x2+β1(u)x, for ar-
bitrary functions β1(u), β2(u), β3(u), β4(u), with β3(u)2+β4(u)2 6= 0.

4.3. General massive gravity functional. The general massive gravity action is
de�ned by adding the Chern-Simons and the new massive gravity deformation terms
to the Einstein-Hilbert action, thus resulting into a combination of the topological
and new massive gravity theories SGMG = SEH + 1

ωSCS −
1
m2F−3/8. The �eld

equations are given by ρ− 1
3τg + 1

ωC −
1

2m2 (K − 1
3 (|ρ|2 − 3

8τ
2)g) = 0 (see [27]).

The case of diagonalizable Ricci operator is very rigid. Proceeding as in the
previous subsections one has that metrics corresponding to Assertions (1) and (2)
in Lemma 2.1 provide GMG solutions only if they are products N(2m2)×R, while
metrics in Lemma 2.1-(3) are never GMG solutions.

If the Ricci operator is nilpotent, then a metric described by (10)-(11) is a GMG
solution if and only if the symmetric (0, 2)-tensor �eld TGMG = ρ − 1

3τg + 1
ωC −

1
2m2 (K − 1

3 (|ρ|2 − 3
8τ

2)g) vanishes identically. Now, the tensor �eld TGMG of a
curvature homogeneous metric with nilpotent Ricci operator described by (10)-(11)
is determined by

TGMG(E1, E1) = −2TGMG(E2, E3) = 16ε
m2 F

2,

TGMG(E1, E3) = − 4ε
m2ω

{
F (m2 + (3H − C)ω) + E2(C)ω)

}
,

TGMG(E3, E3) = 2ε
m2ω

{
(2C +H)m2 + (2C(C + 2H)− 8AF −m2)ω

+2E2(A)ω + 4E3(F )ω} ,

the other components being zero. Hence TGMG = 0 if and only if F = 0, E2(C) = 0,

and E2(A) = 1
2 (m2−2C(C+2H))−m

2

2ω (H+2C). Moreover, these metrics are critical
for some (hence for all) quadratic curvature functional if and only if H + 2C = ω,
i.e., if and only if they are also TMG solutions.

Since the function F = 0 in (10)-(11), the underlying structure is a Kundt metric.
Using the expression (6), the metric is given in local coordinates as

g = dx2 + 2dudv +

(
v2

x2
+ f1(u)v + f0(u, x)

)
du2 − 4

v

x
dudx.

A straightforward calculation shows that TGMG is determined by the non-zero term

TGMG(∂u, ∂u) = 1
2m2

(
∂
(4)
x f0 − 4ω−m2x

ωx ∂
(3)
x f0

+ 12−m2x(3+ωx)
x2

(
∂
(2)
x f0 − 2

x∂xf0 + 2
x2 f0

))
.

Solving the equation TGMG(∂u, ∂u) = 0, the above is summarized as follows:

A semi-symmetric curvature homogeneous GMG solution which is
not locally symmetric is a Kundt spacetime

g = dx2 + 2dudv +

(
v2

x2
+ f1(u)v + f0(u, x)

)
du2 − 4

v

x
dudx



CURVATURE HOMOGENEOUS CRITICAL METRICS IN DIMENSION THREE 15

with

f0(u, x) = β4(u)xe−
m
2ω (m+

√
m2+4ω2)x + β3(u)xe−

m
2ω (m−

√
m2+4ω2)x

+ β2(u)x2 + β1(u)x,

for arbitrary functions β1(u), β2(u), β3(u), β4(u), with β3(u)2+β4(u)2 6= 0.
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